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Abstract

Muhammad Umer
ADVERSARY AWARE CONTINUAL LEARNING

2022-2023
Robi Polikar, Ph.D., Professor & Department Head, Electrical & Computer Engineering

Department, Rowan University
Doctor of Philosophy

Continual learning approaches are useful as they help the model to learn new infor-

mation (classes) sequentially, while also retaining the previously acquired information

(classes). However, these approaches are adversary agnostic, i.e., they do not consider

the possibility of malicious attacks. In this dissertation, we have demonstrated that con-

tinual learning approaches are extremely vulnerable to the adversarial backdoor attacks,

where an intelligent adversary can introduce small amount of misinformation to the model

in the form of imperceptible backdoor pattern during training to cause deliberate forgetting

of a specific class at test time. We then propose a novel defensive framework to counter

such an insidious attack where, we use the attacker’s primary strength – hiding the back-

door pattern by making it imperceptible to humans – against it and propose to learn a

perceptible (stronger) pattern (also during the training) that can overpower the attacker’s

imperceptible (weaker) pattern. We demonstrate the effectiveness of the proposed defen-

sive mechanism through various commonly used replay-based (both generative and ex-

act replay-based) continual learning algorithms using CIFAR-10, CIFAR-100, and MNIST

benchmark datasets. Most noteworthy, we show that our proposed defensive framework

considerably improves the robustness of continual learning algorithms with ZERO knowl-

edge of the attacker’s target task, attacker’s target class, shape, size, and location of the

attacker’s pattern. The proposed defensive framework also does not depend on the underly-

ing continual learning algorithm. We term our proposed defensive framework as Adversary

Aware Continual Learning (AACL).

v
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Chapter 1

Introduction

1.1 Motivation: Robustness in Continual Learning

Continual learning (CL)—also referred to as life-long, sequential, or incremental

learning—is the problem of learning tasks sequentially from an infinite stream of data [1].

In streaming data, different tasks arrive at different points in time and each task has a dif-

ferent distribution. The goal of the continual learning algorithm is to effectively adapt to

the new task(s) under an evolving environment without forgetting the knowledge acquired

in the previous task(s). Due to the sequential nature of the data, only the data from a single

task or sometimes a few tasks are available to the CL model at once. In this context, a

single task refers to a particular period of time during which the data come from a station-

ary distribution. A common phenomenon plaguing CL is that of catastrophic forgetting

[2], where the level of performance acquired by the model on some previously-learned

task is partially or completely lost (forgotten) while training to acquire new knowledge for

learning a subsequent task. Catastrophic forgetting is often characterized by the stability

- plasticity dilemma [3], where stability refers to the preservation of past knowledge, and

plasticity refers to the ability to acquire and integrate new knowledge.

Many real-world problems are characterized by non-stationary data. Network intru-

sion, web usage and user interest analysis, natural language processing, speech and speaker

identification, spam detection, anomaly detection, analysis of financial, climate, medical,

energy demand, or pricing data, as well as the analysis of signals from autonomous robots

and devices, brain signal analysis, and bio-informatics are just a few examples of the real

world problems where underlying distributions may – and typically do – change over time.

It is, therefore, of paramount importance to build machine learning models that can exhibit
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continual learning in changing environments without forgetting most of the information

already acquired.

Humans learn concepts sequentially, and do not suffer from the problem of catas-

trophic forgetting [4]. However, for common ML models, such as artificial neural networks

(ANNs), sequential learning is challenging due to the potentially complete loss of previ-

ously acquired knowledge. It has been shown that the reason behind catastrophic forget-

ting in neural networks is the drastic change in their parameter values (that were optimally

found for a specific task) when asked to learn a new different task [5]. One trivial solution

to avoid catastrophic forgetting is to store all incoming examples and train the model from

scratch, however such an approach is often computationally infeasible and impractical [6].

Ideally, data from all the previous tasks need not be stored in their raw format, and training

from scratch should not be necessary for every incoming task in order to get an efficient

and realistic artificial continual learning agent [7]. In fact, true continual learning requires

the model to be able to acquire new knowledge only with access to the existing knowledge

(current hypothesis) and the new data – but not the old data. As such, combining old and

new data actually violates the true definition and intention of CL [1], [8], [9], [10].

As mentioned previously, the main challenge for continual learning is to avoid or

lessen the impact of catastrophic forgetting. Therefore, much of the work in continual

learning has focused on avoiding catastrophic forgetting while maintaining this delicate

balance between stability and plasticity. In this work, we point out another and arguably

more important challenge for continual / incremental learning algorithms, which is the

vulnerability of these approaches to intentional adversarial attacks. While several CL ap-

proaches have been proposed over the years, these approaches have all been adversary

agnostic, i.e., they have not considered the possibility of a malicious or adversarial attack.

Yet, adversarial attacks on machine learning algorithms have been rapidly growing. Since

continual learning is critical to learning from large, streaming datasets, the importance of

studying the vulnerability of CL to adversarial attacks, as well as developing appropriate

2



defenses can be hardly overstated. In other words, neglecting the robustness aspect of con-

tinual learning approaches is imprudent. In this dissertation, I seek to answer the following

two important questions: 1) can deliberate forgetting – or misinformation – be introduced

in continual / incremental learning models through adversarial attacks; and 2) if so, how

can continual / incremental learning models be protected and rendered more robust against

such adversarial attacks?

1.2 Research Contributions

The primary focus of this effort is to propose a mechanism to ensure robustness in

continual learning models against adversarial attacks. The core contributions and findings

of this work are as follows

1. Before exploring the vulnerabilities of the modern continual / incremental learning

approaches, we first proposed bi-level optimization-based poisoning attack strategy

against related conventional co-variate shift-based domain adaptation approaches.

We show that such approaches are extremely vulnerable to the proposed poisoning

attack strategy. The attacker can assume complete control of these approaches by

inserting a few strategically generated malicious samples into the training data.

2. We identified the vulnerabilities of continual learning approaches against poisoning

attacks. Inspired by the misinformation effect in the human brains, we proposed

an adversarial backdoor attack strategy to cause deliberate forgetting of a particular

task or class of the attacker’s choice at test time. Most noteworthy, we show that

the attacker can achieve its goal with great success even if the attacker’s backdoor

pattern is imperceptible to human eye, and even if the backdoor pattern is provided

to as few as just 1% of total training data of a single task.

3. In an adversarial setting, the attacker has a natural advantage, in part due to possible

surprise element of the attack. The defender’s job is a bit more difficult. Hence,

3



one of the most important contributions of my dissertation involves exploring and

proposing defensive mechanisms to make CL algorithms more robust against mis-

information provided via backdoor malicious samples. Specifically, we propose a

novel defensive framework to ensure robustness in continual learning models to im-

perceptible misinformation inserted via adversarial backdoor attack. Our defensive

framework utilizes a small amount of defensive (decoy) samples to inhibit the im-

pact of the malicious samples. The defensive (decoy) samples also contain a pattern

similar to adversarial backdoor malicious samples but this pattern is: i) perceptible

(stronger); and ii) different than the attacker’s unknown imperceptible (weak) pat-

tern. The defensive samples are provided during the training of the CL model and

thus serve to inoculate the CL model against the malicious samples. We referred to

such learning or our defensive framework as the Adversary Aware Continual Learn-

ing (AACL).

1.3 Organization of The Dissertation

Chapter 2 provides an overview and background for continual learning (CL), i.e.,

the framework of CL, different scenarios of CL, the relationship of CL with domain adap-

tation, and existing CL approaches. Chapter 2 also provides a brief overview of adversarial

machine learning, false memory formation, backdoor poisoning attacks, the current de-

fenses to backdoor attacks and their limitations in continual learning settings. Chapter 3

introduces the proposed poisoning attack strategy developed as part of this dissertation,

to explore the vulnerabilities of domain adaptation approaches. Chapter 4 discusses the

idea of extending adversarial backdoor attacks to the CL models to deliberately introduce

the forgetting via imperceptible backdoor pattern. Chapter 5 introduces our proposed ad-

versary aware continual learning framework to ensure robustness in the CL models. This

chapter also discusses the similarities and differences of our proposed defense against one

of the popular and well-known adversarial training defense. Chapter 6 presents the exper-

4



imental setup and results, demonstrating the vulnerabilities of domain adaptation and CL

approaches to adversarial attacks. The promising results of our proposed defense frame-

work to achieve robustness in CL models are also discussed in this chapter using various

continual learning datasets and approaches. Finally, the conclusions and suggestions for

future work are discussed in Chapter 7.
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Chapter 2

Background

2.1 Continual Learning Framework

The continual learning (CL) setting that is normally considered in the literature

learns from the different sequential tasks, where each task represent a separate supervised

learning problem. The data associated with a single task is received at a time to a CL

model. We also consider the same CL setting in this work. Each task presented to the CL

model has different distributions however, the i.i.d. assumption is maintained within each

task. The training for each task can thus be performed offline where shuffling and repeated

revisiting of i.i.d. training data can be done to achieve reasonable training performance

for a given task. When a task t is received with its training data and corresponding labels,

(X t ,yt) drawn from a distribution Pt(X t ,yt), the goal of continual learning is to find the

optimal parameters θ ∗ that minimize the empirical risk of the overall model not only on

the current task but also on all tasks k = 1, ..., t seen so far including the current task t. The

empirical risk for this setting can then be written as [1]:

t

∑
k=1

E(Xk,yk)∼Pk
[ℓ( fθ (Xk),yk)] (1)

where E denotes the expectation operation.

It is easier to approximate Equation 1 empirically for the current task t as we have

access to the training data of the current task; however for prior tasks, the data may be

no longer available. Therefore, it is not possible to simply approximate the new optimal

parameter values. The goal of continual learning is to find the parameter values for a model

that is optimal for all tasks seen thus far. The machine learning models with continual

learning ability can be deployed in complicated settings where the goal is to learn from a

6



continuously evolving stream of information.

2.1.1 Continual Learning Scenarios

There are three important scenarios proposed for continual learning in the literature

[11], depending on whether at inference time task identity (from which task a given test

example is coming from) is provided and, if it is not, whether it must be inferred. These

scenarios in the order of increasing complexity are listed below.

• Task-Incremental Learning: This is the easiest continual learning setting because

the task identity is always provided at test time. In this setting, the a neural network

has a “multi-headed” output layer, with each task having its own output units, and

the rest of the network being shared among the tasks. Therefore, it is possible to train

the model with task-specific components. The relevant subset of the network can be

easily selected for each example at test time, making task incremental learning the

simplest incremental learning setting to handle.

• Domain-Incremental Learning: Task identity is not available at test time. How-

ever, the model also does not need to infer the task identity at test time. This scenario

assumes that the structure of the task remains the same; the number of classes to

predict does not change, but only the input distribution may be changing. An ANN

architecture in this setting has a “single-headed” output layer, where the entire net-

work is shared between the tasks.

• Class-Incremental Learning: Here, the models must be able to identify not only

the individual class labels for each task seen thus far, but also infer the task with

which each instance is associated. This is the most challenging but also the most

realistic scenario as it incrementally learns new classes over time. The architecture

in this setting also has a “single-headed” output layer, with the number of output

nodes being equal to the number of total classes seen thus far, including the classes
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presented in the current task.

The above-mentioned scenarios can be described through the following example:

Let’s consider a case of sequential learning of computer vision tasks for an autonomous

vehicle. Let’s further assume that there are two binary tasks for the vehicle, the Task 1

is to identify pedestrians on the road from the other vehicles, and Task 2 is to distinguish

between the stop sign and the yield sign. In task incremental learning setting, the neural

network can be trained with two different tasks separately, and hence have different output

heads for each task. At test time – since the task identity, i.e., whether the model is pre-

sented with data from Task 1 or Task 2 is known – the corresponding output head can be

easily activated to predict the given task. In domain incremental learning, the task identity

(i.e., whether we are dealing with Task 1 or Task 2) is not known at test time. However, as

both tasks require distinguishing between two classes, the output label space can be made

fixed by mapping the label of class 1 of each task to a label of 0 and label of class 2 of

each task to a label of 1. Now, the goal of the network is to identify whether a particular

example from a given task is coming from the first class (”pedestrians on the road” or ”stop

sign”) or the second class (”other vehicles” or ”yield sign”) without the need to infer the

identity of the task. The network can therefore be trained with a single output head. For

the class incremental learning scenario, the task identity is not only unknown but the model

also needs to infer this at test time. In this case, the neural network can be initialized with

a single output head containing the output nodes equal to the total number of classes in

each task. During training, the nodes corresponding to the classes seen so far will always

be active. In our example, when the autonomous vehicle is being trained on the second

task, i.e., to differentiate stop sign from the yield sign, the CL model takes into account the

examples presented in the first task by keeping the nodes corresponding to those examples

active. Once the model is trained on all classes from each task, it can predict test examples

from any class without knowing the task identity.

Mathematically, all three scenarios can be defined as follows: Let k = 1,2, ..., t be
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an index tracking the subsequent tasks and t represent the current task. The input data X t

received for the current task has the marginal distribution P(X t), and the corresponding

labels/classes yt have the distribution P(yt). The task incremental learning has different

marginal and class distributions among tasks, i.e., P(Xk+1) ̸= P(Xk), and P(yk+1) ̸= P(yk)

where k = 1, ..., t. However, in task incremental setting, the task identity is always known,

which provides an additional benefit to the model and makes the job easier for the model to

learn sequential tasks. The model can be trained with the different output heads for differ-

ent tasks and a corresponding head can be simply activated at test time to do the prediction.

Knowing the task identity, (i.e., knowing which test example is coming from which task)

before hand is not realistic and hence task incremental learning, while simple - is not practi-

cal. In domain incremental setting, we have P(Xk+1) ̸= P(Xk), while P(yk+1) = P(yk), i.e.,

input marginal distributions differ between tasks while the output class distribution remains

same. From the above mentioned example of an autonomous vehicle, by mapping labels

of two different tasks to a fixed space, we have the same class distributions however, the

input marginal distributions of tasks are different, which represents a domain incremental

setting. Domain incremental learning although does not assume knowledge of task identity

however, it always assumes the fixed label/class space, which is not always practically pos-

sible. In class-incremental learning, both input data marginal distributions as well as output

class distributions differ between tasks, i.e., P(Xk+1) ̸= P(Xk), and P(yk+1) ̸= P(yk) where

k = 1, ..., t. Moreover, class incremental learning does not assume the knowledge of the task

identity and the fixed class/label space. Hence, class-incremental learning (CIL) presents

a more practical and challenging scenario than task and domain-incremental learning sce-

narios. Again from the above mentioned example of an autonomous vehicle, the realistic

setting is to predict the correct label of all classes at test time, i.e., pedestrian, other ve-

hicles, stop sign, and yield sign, presented sequentially to the model in each task during

training. Also, the model should be able to learn additional classes.
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2.1.2 Relationship of Continual Learning with Domain Adaptation / Transfer Learning

Domain adaptation [12, 13] represents a setting, where data come from two tasks

or domains: source and target domain. The corresponding tasks for both source and target

domains are the same, or both source and target domains have similar output class distribu-

tions. However, the input marginal distributions for the two domains are different. Hence,

from the CL setting, the domain adaptation problem is related to the domain incremental

learning problem. The goal of the domain adaptation problem is simply to adapt a model

trained on the source domain to perform well on the unlabelled target domain, i.e., transfer

knowledge from the source domain to the target domain without retaining the knowledge

from the source domain. An important distinction in domain adaptation is that there is no

continuous adaptation after adapting the model from the source to the target domain. In

contrast, domain incremental learning involves both continuous adaptation to new task(s)

as well as the accumulation of the previous knowledge from the previous task(s).

2.2 Continual Learning Approaches

As mentioned previously, continual learning (CL) tackles the problem of sequen-

tially learning different tasks from possibly an infinite stream of data that is continuously

evolving over time. One of the main problems faced by modern machine learning mod-

els for continual learning is catastrophic forgetting or catastrophic interference, where the

previously learned or acquired knowledge is completely lost when the model is asked to

learn new information/knowledge. Early research in neural networks to solve catastrophic

interference problem considered shallow architectures, using a subset of prior examples to

be replayed (reused) for training [14, 15], architectural approaches based on how human

brain handles stability-plasticity dilemma [16, 17, 4], ensemble-based approaches—such

as the Learn++ [18] family of incremental learning algorithms, and constraining networks

to reduce features overlap [19, 20, 21].
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Due to the success of modern deep learning models, recent research has shifted

towards studying continual learning in deep learning settings [22, 23, 24, 25]. Modern

CL approaches can broadly be categorized into three groups [6, 1]: 1) architecture-based

approaches, 2) regularization-based approaches, and 3) replay-based approaches. The key

concepts of each is briefly described below.

2.2.1 Architecture-Based Approaches

These approaches assign different sub-networks to each task, i.e., a different part

of the network is selected for each different task. Each sub-network is then trained specif-

ically to perform a given task task, and is not further trained once a new task is presented.

There are two ways to assign or dedicate different sub-networks to each task; i) when there

is no constraint on the size of the architecture, new nodes or branches can be added to

the network while freezing the previous set of parameters learned from each previous task.

Progressive neural network (PNN) [26] is the approach that creates a new model for each

new task to be learned. As a new model is added for each new task, the growth of pa-

rameters is quadratic for the model with respect to the number of tasks, [27] which is not

realistic. There are other algorithms proposed in the literature that – instead of adding a

new model every time a new task is received – strategically or dynamically expand the lay-

ers or neurons [28, 29]; ii) it is also possible to dedicate a specific part of a network to a new

task under fixed architecture constraint. Such an approach requires masking out the part of

the network (parameters or neurons) that is deemed important for the previous tasks while

learning the new task. Piggyback [30], Packnet [31], and HAT [32] are the algorithms that

define a special mask for each task, which are then used to assign different parameters for

different tasks. While learning a new task, the masks defined for previous tasks are used

to freeze the important weights for those tasks. PathNet [33] is a different algorithm that–

instead of freezing weights – defines a specific path for a specific task and uses only that

path to do prediction on that very specific task at test time.
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All these architectural based approaches require task identity to be known at test

time through some oracle in order to activate a particular model, layers, nodes or branches

for the specific task. Due to the need of task identity, these approaches can only be imple-

mented under task incremental learning scenario, which limit their practicality and use.

2.2.2 Regularization-Based Approaches

Regularization-based CL approaches add an extra regularization term to the loss

function to prevent loss of prior knowledge while learning new tasks. A work proposed in

Learning without Forgetting (LwF) [34] adds an additional distillation loss term to the loss

function of the model to transfer knowledge learned from the previous task while model

is learning new task. This approach uses a technique called knowledge distillation, first

introduced by Hinton et al. [35]. Distillation uses the outputs of the previous models as

soft labels. The additional distillation term in the loss function matches the probabilities

predicted by the model being trained to the soft labels obtained for the previous tasks.

Similar or related approaches are introduced in [7, 27].

Common regularization-based approaches first find the important parameters for the

previous task(s) and then add an extra regularization term in the loss function of the model

to penalize changes in the values of these parameters while the model is being trained on

the new task. More specifically, regularization-based approaches compute the importance

weight of each parameter in the network during (or after) learning a particular task. Then,

while learning subsequent tasks, changes to the important parameters are penalized. All

approaches that use the idea of importance weighting follow this principle, but differ in the

specific mechanism used to compute the importance weights. Elastic weight consolidation

(EWC) [36] is the first approach of this kind that uses the diagonal of the Fisher informa-

tion matrix to compute the importance weight matrix, which is then used to determine the

important parameters for the previous task(s). Online EWC [37], Synaptic intelligence (SI)

[38], and Memory Aware Synapses [39] are similar but faster approaches as they compute
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importance weight for the parameters in an online manner. Some other works that are based

on the idea of regularization are incremental moment matching [40], and Conceptor [41].

2.2.3 Replay-Based Approaches

Replay-based approaches follow one of two primary paths: i) Store original data

from the previous tasks to be replayed with data samples from the current task. The network

parameters are then jointly optimized over all data; ii) use a generative model to generate

the pseudo-data to be replayed with the real data samples. For first type of approaches,

iCaRL [42] is the most renowned work, which stores a fixed subset of exemplars per class

to be replayed during the learning of new classes. Exemplars from each class are picked

strategically to efficiently represent or estimate the class means in the feature space. The

other similar rehearsal methods that store a subset of previous examples are [43, 44]. When

storing data from previous tasks is possible, constrained optimization is a different strategy

to avoid catastrophic forgetting. These approaches put a constraint on the parameter update

for the new task so that these updates do not interfere with those of the previous tasks. The

constraint is achieved through regularizing the gradients when learning new tasks. To retain

the knowledge about the previous task(s), the gradient directions are projected on to the

feasible region. The feasible region is defined by the gradients estimated through first order

Taylor series approximation using previous tasks data [45] or defined by a randomly selects

subset of examples from the previous tasks data as done in [46]. More recently, random

path selection (RPS-Net) [47] algorithm proposes to optimize different paths for different

tasks while encouraging parameters sharing. Moreover, RPS-Net utilizes the knowledge

distillation and exemplars replay strategy along with optimal path selection to overcome the

catastrophic forgetting. RPS-net thus can also be considered as a hybrid strategy that uses

optimal model architecture, knowledge distillation, and exemplars replay at the same time.

Incremental Task Agnostic Meta Learning (iTAML) [48] is inspired from Meta Learning.

iTAML utilizes a novel meta-update rule to adapt the model to the new task while retaining
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knowledge about the previous task(s) at the same time. iTAML also does not need the task

identity at test time. iTAML first predicts the task identity using generalized parameters

and then adapt the model to task-specific parameters to do prediction on the predicted task.

A fixed memory of examples from previous task(s) is used by iTAML both during training

and testing.

The second type of replay-based approach where it is not possible to store data

from the previous tasks is to generate pseudo-data from the previous tasks and replay those

during the training of new task. In [14], random inputs are provided to the previous model

trained on the previous task(s), the output of this model becomes an associated target output

for this input. The random inputs and their associated target outputs thus represent the

pseudo-data to be replayed with the data of the new task. However, the random inputs

can work only for the shallow networks, as random inputs can not cover the entire input

feature space of contemporary deep neural networks and their high dimensional inputs.

[49]. Modern deep generative models such as GAN [50] or variational-autoencoders [51]

are then used to learn the distribution of the previous tasks’ data. The pseudo-samples

from the previous tasks are then generated from the distribution learned by the generator

and finally replayed with the new task training data to avoid catastrophic forgetting as done

in [52, 11], [8], [53].

All of the aforementioned approaches for continual learning work reasonably well

for avoiding catastrophic forgetting. In this work, we focus on a related but different direc-

tion, where we wish to explore the vulnerabilities - and mitigation approaches - for learning

in a continual setting when the model is deliberately attacked through external adversarial

attacks.

2.3 Adversarial Machine Learning & Continual Learning

Adversarial machine learning (AML) is an emerging field at the intersection of

machine learning and cyber-security. AML studies the vulnerabilities of ML algorithm
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towards various malicious attacks [54]. As our reliance on machine learning models has

increased dramatically in the past few decades, the efforts to attack these ML algorithms

with malicious intent have also increased tremendously. Two major and common types of

adversarial attacks are i) poisoning attacks, which insert malicious samples in the training

data to cause poor generalization performance[55]; and ii) evasion attacks, which manip-

ulate/perturb the test data to produce erroneous outputs at test time [56]. Since CL ap-

proaches involve retraining the model with each new batch of data (or each new task), and

since the model is continuously updated with an external data, the adversary’s choice in

targeting CL algorithms is typically a poisoning attack. Poisoning attacks have also been

identified as one of the most practical and serious threats to organizations in [57].

This dissertation discusses the novel intersection of adversarial machine learning

and continual / incremental learning. From adversarial machine learning perspective, the

focus of this work is on the poisoning (causative) attacks. Poisoning attacks have been suc-

cessfully launched against a variety of machine learning algorithms, such as support vector

machines (SVM) [55], clustering algorithms [58], principal component analysis [59], and

against embedded feature selection algorithms [60]. While the vulnerabilities of standard

machine learning classifiers to poisoning attacks have been well-established [55, 61, 56,

59], this dissertation represents the first effort in exploring the vulnerabilities of continual

learning approaches to adversarial attacks in general, and backdoor poisoning attacks in

particular.

2.3.1 Backdoor Poisoning Attack

Backdoor attacks are a specific class of poisoning attacks that can also be used in

a hybrid poisoning-evasion scenario [62, 63]. Backdoor attacks are very common in mod-

ern computer vision deep neural network models that are trained on image data. These

attacks take the form of malicious samples created by tagging a small portion of training

images with a special backdoor pattern. The adversary assigns a false label of its choice
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to these malicious samples, which are then added to the original training set. The model -

unbeknownst to model creator - is then trained on the new training dataset, which contains

both correctly-labeled images as well as mislabeled, tagged images. The attacker’s goal is

to force the model to learn an association between the backdoor pattern and the attacker’s

desired class label. Once the model learns this association, it performs well on clean (un-

tagged) test inputs during the inference stage. However, any test data that contains the

attacker’s chosen specific backdoor tag will be misclassified. The attacker can therefore

launch targeted evasion attacks against the model by applying the backdoor tag to any test

image of its choice. One scenario where backdoor attack seems plausible is when training

of a model is outsourced to a malicious third party due to the computational cost associated

with the training. The malicious third party can easily embed its chosen backdoor pattern in

to the model such that the model performs well on all of the clean inputs and produces tar-

geted misclassification on the set of the inputs that contain a specific backdoor pattern [62].

Another plausible realistic scenario of backdoor attacks is in Federated Learning [64]. Fed-

erated learning distributes the training process of deep learning models among thousand or

sometimes even million participants. Each participant trains the model locally and submits

an updated model to the central server. The central server averages the updates into the

new joint model. The joint model has no control on the local training data and the model of

each individual participant. It has been shown that any participant with a malicious intent

can assume complete control of the joint model via backdoor attack to adversely impact

the behaviour of the model on the attacker’s chosen examples or sub-tasks [65].

Such type of poisoning attacks are difficult to detect as the model performs normally

on the clean data; and produce misclassification only in the presence of backdoor pattern.

As mentioned before backdoor attacks can be considered as a hybrid poisoning-evasion

attack, however, an evasion attack to computer vision models [61] inserts strategically gen-

erated image-specific adversarial noise to produce erroneous output. The same adversarial

noise becomes ineffective when used to misclassify other image samples. However, in

16



backdoor attacks, the model is trained to learn one specific backdoor pattern. Once that

pattern is learned, the same pattern can be used to misclassify different samples of different

labels to the attacker’s desired target label in the presence of the backdoor pattern at test

time.

The backdoor attack can be illustrated using a simple example. Let’s assume we are

training a computer vision model that can classify cats and dogs (can be easily generalized

to any set of labels). Now further assume that there is an adversary that wants to launch

a backdoor attack to our model. More specifically, the attacker wants to use its chosen

specific backdoor pattern to misclassify certain dog samples of its own choosing) as cats

at test time. In order to achieve its goal, the attacker randomly picks small amount of

dog samples from the training data, insert it’s chosen backdoor pattern to these samples,

assign them a false label of ”cat”, and append them to the original training data of the

model. The model is then trained to associate backdoor pattern to the false label of cat. The

sample training scheme of cat vs dog model with backdoor pattern is shown in Figure 1.

In Figure 1, it is assumed that the backdoor pattern is a red square inserted at the top right

corner of the adversary-picked dog images and falsely labeled as cats. Once this specific

backdoor pattern (red square) is learned by the model, the same pattern can be applied to

any arbitrary (dog or other) sample at test time. Those images will then be misclassified as

cats. The sample testing phase of cat vs dog model with the backdoor pattern is shown in

Figure 2, where the dog sample with the red square pattern causes it to be misclassified as

a ”cat”.
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Figure 1

Training With Backdoor Pattern

Figure 2

Testing With Backdoor Pattern
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2.3.2 Conventional Backdoor Defenses & Their Limitations in Continual Learning

Setting

Existing backdoor defenses are designed to defend against backdoor attacks in con-

ventional stationary settings. Therefore, these approaches cannot be simply extended to

continual / incremental settings. Existing backdoor defenses can be broadly categorized

into three different categories; i) training time defenses, ii) inference-time defenses (during

testing), and iii) model correction defenses. We briefly explain these defenses along with

their limitations to succeed in continual / incremental learning settings.

Training-time defenses assume that the defender has access to the training data.

The goal of these defenses is to detect and remove the malicious samples. These defenses

commonly utilize anomaly detection techniques. Examples of such defenses are spectral

signatures [66], activation clustering [67], and gradient clustering [68]. In continual / in-

cremental learning setting, such defenses are not practical as anomaly detection is required

at each time step, which is computationally very expensive. Furthermore, these defenses

assume access to the training dataset that is potentially compromised. Such assumption

is not practicable and impossible in continual setting because it is unknown apriori which

task has been compromised.

Inference-time defenses aim to detect and remove backdoor pattern at test/inference

time. These defenses rely on the fact that the model will perform reasonably well on

the samples that do not contain backdoor pattern. Therefore, such defenses usually do

some pre-processing on the test samples before providing them to the model. For instance,

STRIP [69] superimposes various patterns on the input test samples and expects that the

predictions of the model would be random for clean inputs but more consistent for the input

that contains the backdoor pattern. Neo [70] seeks to systematically search the location of

the backdoor pattern and then modify the image by blocking the trigger. Li et al. [71] apply

spatial transformations on the test images to change the location of the backdoor pattern.

Doan et al. [72] use GradCam [73] to detect the presence of the backdoor triggers. Such
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defenses are not feasible in the class incremental setting as similar to the training time case,

it is also not known a-priori which task contains the backdoor pattern at inference time.

Such defenses need to be applied at each time step during testing, immensely increasing

the computational cost. Moreover, pre-processing the images for clean tasks may degrade

the test time performance of clean images.

Model correction defenses, on the other hand, aim to correct the trained model for

any backdoor vulnerabilities. For instance, fine pruning [74] assumes that neurons activated

by clean inputs and backdoor inputs are different. Therefore, fine pruning sorts the neurons

based on their activation on the clean inputs and prune those neurons that contribute least

to the classification task at hand. Artificial brain stimulation (ABS) [75] scans neurons

and use reverse-engineering techniques to generate backdoor pattern candidates. Backdoor

suppression [76] builds a wrapper around the trained model to neutralize the effect of the

backdoor pattern. Multiple noisy versions of an input are provided to the model and the

final prediction is obtained by applying the majority vote on the multiple noisy replicas of

the input. Neural cleanse [77] reverse engineers the backdoor pattern via optimization.

Model correction based approaches serve as a reasonable defense against the con-

ventional backdoor attacks; however, these defenses have major shortcomings even in the

conventional stationary setting. For instance, fine pruning [74] assumes that neurons are

activated differently for clean and backdoor inputs, which is not true in practice and there-

fore, cannot be assumed. Also, pruning neurons degrades the clean accuracy of the model.

Similarly, backdoor suppression [76] generates different noisy replicas of the input, which

severely degrades the accuracy of the model on the clean inputs. The approaches that re-

verse engineer backdoor pattern such as ABS [75] and neural cleanse [77] are computation-

ally demanding. Moreover, they often do not reverse engineer a pattern that is reasonably

similar to the one used by the attacker, resulting in very limited success only in select few

scenarios. In continual / incremental setting, we cannot simply prune neurons as some of

the neurons contain useful information for the previous task(s). Finally, as the number of
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tasks grow in incremental setting, all such defenses not only become more computationally

expensive but also impractical.

Inspired from a well-known adversarial training defense [78] to defend deep learn-

ing models against test-time evasion attacks, we propose a simple, robust and efficient de-

fensive framework to ensure robustness in continual / incremental learning models, which

we call Adversary Aware Continual Learning (AWCL). The complete details of the frame-

work is discussed in chapter 5.
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Chapter 3

Related Work: Poisoning Importance Weighting Based Domain Adaptation

We preface our investigation of the vulnerabilities of continual learning algorithms

to adversarial attacks with exploring the vulnerabilities of widely discussed and well es-

tablished related area of domain adaptation [12, 13, 79]. We observe that – while the field

of domain adaptation is well established – there is little or no prior work on robustness of

such approaches against adversarial attacks. In this chapter, we explore the vulnerabilities

of domain adaptation algorithms to poisoning attacks. The preliminary results obtained

from the approaches proposed in this chapter are published in [80, 81].

While the goal of continual learning algorithms is to learn new knowledge from in-

coming tasks while retaining knowledge acquired in prior tasks, the goal of domain adapta-

tion algorithms is to adapt from one domain from where labeled training data are obtained

(source domain) to another domain from where the unlabeled test data are obtained (target

domain). It is important to note that the essential cause of domain adaptation problem is

the difference or drift between the source and target domain data distributions.

Consider a domain adaptation problem, for which we are given i) a labeled training

dataset Dtr = {xtr,ytr} obtained from the source domain, with xtr representing the train-

ing data samples and ytr representing the corresponding labels; and ii) an unlabeled test

dataset Dte = {xte}, obtained from the target domain. There are two types of drift that

are commonly encountered: i) virtual drift, closely related to covariate shift, characterized

by the changes in the marginal distribution between the two domains, i.e., ptr(x) ̸= pte(x)

with the posterior distribution remaining unchanged, i.e., ptr(y|x) = pte(y|x); and ii) real

drift or just concept drift, characterized by changes in the posterior probability distribution,

i.e., ptr(y|x) ̸= pte(y|x). We initially consider the problem of learning under covariate shift

here, which can occur in many real-world applications such as bioinformatics [82], robotic
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control [83], spam filtering [84], brain-computer interface [85], and econometrics [86]. Un-

der covariate shift, standard machine learning techniques become unreliable because of the

bias caused by the covariate shift.

Covariate shift adaptation algorithms are designed to mitigate the influence of co-

variate shift [87], [88], where a classification model is trained on a weighted version of the

training data through an approach called instance or importance weighting. The weighting

transforms the source domain distribution to better represent the target domain data distri-

bution. The weighting factor is known as the importance ratio w(x), which is essentially

the ratio of target (test) data distribution pte(x) to source (training) data distribution ptr(x),

and hence plays a central role in covariate shift adaptation. A simple approach to estimating

the importance is to first estimate the training and test density functions from the training

and test data samples, and then compute the ratio of the estimated densities. However,

this naive approach proves to be impractical particularly in high dimensional cases. Esti-

mating densities in high dimensional cases requires either an appropriate parametric model

(rarely available in practice) or an exceptionally large training data along with substantial

computational resources.

A more practical approach to covariate shift adaptation is to estimate importance

ratio directly, and use it to weigh the training data. Several approaches have been pro-

posed to estimate the importance ratio directly without the complex data density estimation

step. These approaches include i) kernel mean matching (KMM) [89] that matches the two

distributions in a high dimensional reproducing kernel Hilbert space whose weights are

obtained using convex quadratic optimization; ii) a probabilistic classifier such as logistic

regression that separates training and test samples and learns the estimate of the impor-

tance ratio directly [90], and iii) Kullback-Leibler based importance estimation procedure

(KLIEP) [91] that matches the two distributions in terms of the Kullback-Leibler diver-

gence. Unconstrained Least Squares Importance Fitting (uLSIF) [92], on the other hand, is

a more sophisticated technique that formulates the direct importance estimation as a least-
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squares fitting problem that is then cast as a convex quadratic optimization problem. Such

a formulation has a closed form solution that can be computed by solving a system of lin-

ear equations. uLSIF is comparable in accuracy to other techniques but is computationally

more efficient in covariate shift adaptation scenarios. uLSIF is also used in Importance

Weighted Least Squares Probabilistic Classifier (IWLSPC) that models posterior probabil-

ities of classes under covariate shift scenario [93], and more recently in our prior work

called LEVELIW that was proposed to work under extreme verification latency scenarios

in concept drift settings [94].

Here, we explore the vulnerabilities of two importance ratio estimation algorithms:

i) a relatively simple and elegant logistic regression based importance estimation algorithm

and ii) a more sophisticated and practical Unconstrained Least Squares Importance Fitting

(uLSIF) [92] algorithm in an adversarial machine learning setting. The impact of that

vulnerability on covariate shift adaptation is also discussed in this dissertation. The detailed

working of both importance estimation algorithms and the attacker’s approach to launch

poisoning attacks against them is provided below.

3.1 Logistic Regression Based Importance Estimation

One of the simplest approaches to directly estimate the importance ratio includes

using a discriminative classifier, such as the logistic regression [90]. This is the technique

used in this work to demonstrate that importance estimation, and consequently the covari-

ate shift adaptation using the estimated importance ratio, can be poisoned by intelligently

adding strategic malicious samples into the training data. In order to directly estimate the

importance ratio, we use the logistic regression classifier as follows. First, let η be a se-

lector, a random variable to select training and test data distributions, such that η = −1

indicates that samples are drawn from the training data distribution ptr(x), and η = +1

indicates that samples are drawn from the test data distribution pte(x). The two data distri-
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butions are then written as
ptr(x) = p(x|η =−1)

pte(x) = p(x|η =+1)
(2)

Now the importance ratio w(x) is defined as

w(x) =
pte(x)
ptr(x)

=
p(x|η =+1)
p(x|η =−1)

(3)

Applying Bayes rule to Equation 3 provides the following

w(x) =
p(x)p(η=+1|x)

p(η=+1)
p(x)p(η=−1|x)

p(η=−1)

=
p(η =−1)p(η =+1|x)
p(η =+1)p(η =−1|x)

(4)

The ratio p(η =−1)/p(η =+1) can easily be determined by the ratio of the number of

samples in the training and the test datasets as

p(η =−1)
p(η =+1)

≈ ntr

nte
(5)

where ntr and nte are the number of samples drawn from the training and test data distribu-

tions, respectively. What is left to determine is the conditional probability p(η |x), which

can be approximated by discriminating training and test data using a discriminative classi-

fier, such as the logistic regression classifier. The random variable η plays the role of class

variable: when η = +1, the probability of data coming from the test distribution is high

as compared to the data coming from the training distribution, and vice versa for η =−1.

Using logistic regression in this manner is discussed briefly below.

The logistic regression classifier expresses the conditional probability p(η |x) by
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employing a parametric model of the following form

p(η |x) = 1
1+ e−(θT x+b)

= hθ,b(x) (6)

where θ,b are the parameters to be learned by minimizing the negative log-likelihood

L(θ,b) given as

L(θ,b) =−
ntr

∑
i=1

(η tr
i log(hθ,b(xtr

i ))+(1−η
tr
i ) log(1−hθ,b(xtr

i ))) (7)

where η tr
i is the corresponding label for the ith training instance xtr

i . Once the parameters

θ and b are learned, the importance can be approximated as follows

w(x) =
ntr

nte

p(η =+1|x)
p(η =−1|x)

=
ntr

nte

(
1+

p(η =+1|x)
p(η =−1|x)

−1
)

=
ntr

nte

(
p(η =−1|x)+ p(η = 1|x)

p(η =−1|x)
−1

)
=

ntr

nte

(
1

p(η =−1|x)
−1

) (8)

Using Equation 6 in Equation 8, we get the following

w(x) =
ntr

nte

(
e−(θ

T x+b)
)

(9)

Equation 9 shows that the importance can be directly approximated from the parameters

learned by the logistic regression classifier using the data drawn from training and test data

distributions.

3.1.1 Poisoning Logistic Regression Based Importance Estimation

Let’s briefly discuss the general procedure to poison the logistic regression (LR)

classifier. We follow a similar approach as to the one used in [60] or [55], to attack the

classifier. Specifically, an optimal attack strategy is first defined by the attacker to reach its

26



goal, under the constraints imposed by its knowledge of the system and capabilities of ma-

nipulating the input data. The attacker’s goal can be characterized in terms of the objective

functionW: given access to the entire training dataset, as in the case of perfect knowledge,

or some subset of the original training dataset (known as surrogate dataset, whose samples

are drawn from the same training data distribution) as in the case of limited knowledge, the

attacker wants to inject malicious samples xc into the training data to maximally increase

the classification error as shown below

maxxcW = L(θ,b)

subject to θ,b = argmin
θ,b

L(θ,b)
(10)

This problem is known as the bi-level optimization problem, where the attacker wants to

maximize the original loss function as described in Equation 7 with respect to the attack

samples subject to the constraint that the original parameters of the model are still obtained

by minimizing the loss function. Now, if we calculate the partial derivative of W with

respect to the attack points xc, we get

∂W
∂xc

=
1

ntr

ntr

∑
i=1

(hθ,b(xi)−ηi)(xT
i

∂θ

∂xc
+

∂b
∂xc

) (11)

Equation 11 is not simple to compute because we do not know ∂θ/∂xc or ∂b/∂xc. In

order to find these, we follow the approach described by Biggio et al. in [55] and use the

Karush-Kuhn-Tucker (KKT) stability condition of the inner optimization problem. The

KKT stability condition of logistic regression classifier states that at the optimal (attack)

point xc, the objective function L(θ,b) is stable, that is, the gradient of L(θ,b) with respect

to θ and b are zero. An assumption is made here, which states that the KKT condition under

perturbation of xc remains satisfied. Since the logistic regression classifier tries to optimize

L(θ,b) for any input value of xc, it is reasonable to assume that ∂L/∂θ and ∂L/∂b remain

equal to zero after a small change in the value of xc [55]. Having made that assumption,
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the following are true
∂

∂xc

(
∂L
∂θ

)T

= 0

∂

∂xc

(
∂L
∂b

)
= 0

(12)

After deriving the derivatives given in Equation 12, and re-arranging them in matrix form,

we obtain the following linear system. The complete derivation is provided in the appen-

dices. 
Σ µ

µT β




∂θ
∂xc

∂bT

∂xc


=−1

n


M

r


(13)

where

Σ = 1
n ∑

n
i=1 K(xi)xixT

i ,

µ = 1
n ∑

n
i=1 K(xi)xi, β = 1

n ∑
n
i=1 K(xi),

M = (hθ,b(xc)−ηc)I+(hθ,b(xc))(1−hθ,b(xc))xcθ
T

r = (hθ,b(xc))(1−hθ,b(xc))θ
T ,

K(x) = (hθ,b(x))(1−hθ,b(x)), and I represents the identity matrix. The derivatives ∂θ/∂xc

and ∂b/∂xc can be finally obtained by solving the linear system given by Equation 13, and

then substituted into Equation 11 to compute the final gradient.

To summarize, then, we start with a labeled training data Dtr = {xtr,ytr} and unla-

beled test dataDte = {xte} drawn from training and test distributions, i.e., ptr(x) and pte(x),

respectively, with the understanding that the marginal distribution of the training and test
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data are different, i.e., ptr(x) ̸= pte(x) but the conditional distributions are the same, i.e.,

ptr(y|x) = pte(y|x). The goal is to predict labels of the unlabeled test data by using a clas-

sifier, trained on the labeled training data. Prediction using an ordinarily trained classifier

will not be correct due to the shift in the marginal test distribution from the marginal train-

ing distribution. In order to do the prediction correctly, we first compute the importance

ratio w(x) between the training and test distributions using Equation 9 employing a logis-

tic regression classifier. To do so, we assign a class selector variable η = −1 to the data

obtained from the training data distribution (class 1) and η =+1 to the data obtained from

the test distribution (class 2). In other words, we create a training data for the logistic re-

gression classifier using data from both training and test domains. Once the importance

ratio is computed, we re-sample the training distribution according to the importance ratio,

where the (source) training distribution behave more similar to the (target) test distribution.

The classifier is re-trained on this newly modified training data, which is then used to make

the prediction on the unlabeled test data. We would normally expect this standard domain

adaptation procedure to produce the correct predictions, if it were not in the presence of an

adversary poisoning the training data. Now we want to explore the impact of well-crafted

malicious data samples when added to the training data of the discriminative classifier in its

ability to estimate the importance ratio described above. A subsequent goal is also to inves-

tigate the impact (of a presumably incorrectly computed importance ratio due to inclusion

of strategic attack points) on the final prediction results.

In order to determine a strategic attack point with maximum impact, the attacker

needs access to the training data on which the classifier is trained. This access can be perfect

(worst case scenario), meaning the attacker has full access to the entire data D = {xtr ∪

xte} or limited with partial access to the training data in the form of surrogate dataset D̂ ,

drawn from the same training distribution. We consider both settings here, though analysis

of limited knowledge attacks, which use the surrogate dataset D̂ is normally sufficient,

since for perfect knowledge attacks can be obtained simply by setting D̂ = D. Given the
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knowledge about the surrogate dataset D̂, the attacker’s capability amounts to injecting

a maximum number of poisoning data points into the training data D̂ with the aim of

maximizing the objective given in Equation 10.

The pseudocode of the attack algorithm is given in Algorithm 1, which is initial-

ized with a surrogate dataset D̂ that consists of q randomly selected attack points. For each

time-step t and for each attack point {xc}q
c=1, the attacker first learns the parameters {θ,b}

by minimizing the negative log-likelihood given in Equation 7 on the surrogate dataset ex-

panded by the initial attack points, and then uses these parameters to compute the gradient

of its objective with respect to the attack points through Equation 11. A gradient ascent type

optimization is used to update the values of the attack points and the process is repeated

for k iterations (time-steps) to obtain the final values of the attack points xc. These attack

points are added to the surrogate dataset, and the so-formed poisoned data – unbeknownst

to the unsuspecting logistic regression classifier – are employed to learn the parameters

{θ,b}, which are then used to estimate the importance ratio w(D̂) using Equation 9.

Algorithm 1 Poisoning Logistic Regression Based Importance Estimation (PLIRM)

1: procedure PLRIM( Surrogate training data: D̂, q initial attack points with labels:
{xt=0

c ,yc}q
c=1, step-size: α , number of steps: k)

2: for t = 1,....,k do
3: for c = 1,....,q do
4: {θ,b}← learn LR classifier on D̂ ∪{xt−1

c }
q
c=1

5: Calculate ▽W(xt−1
c ) according to Equation 11

6: xt
c← xt−1

c +α▽W(xt−1
c )

7: Return xc

After obtaining the final values of the attack points xc, and consequently poisoning

the importance weighting process, the next step is to determine the actual impact of this

process on the final prediction result of a subsequent machine learning classifier on the

unlabeled test data, after being trained on the surrogate data that includes the attack points

xc.
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3.2 Unconstrained Least Squares Importance Fitting (uLSIF)

As mentioned before, the goal of an unconstrained least squares importance fitting

(uLSIF) algorithm is to directly estimate the importance ratio between test (target) distri-

bution pte(x) and training (source) distribution ptr(x), i.e., w(x) = pte(x)/ptr(x). uLSIF

estimates the importance ratio w(x) through a linear-in-parameter model as follows

ŵ(x) =
t

∑
l=1

αlφl(x) (14)

where t is the number of parameters, α = (α1,α2, ....,αt) are the parameters to be learned

from the data samples, and {φl(x)}tl=1 are the basis functions such that φl(x)> 0 ∀x. One

particular choice of the basis functions is the kernel models.

Now, the parameters are determined such that the squared error

J(α) =
1
2

∫
(ŵ(x)−w(x))2 ptr(x)dx (15)

is minimized. Equation 15 can then be simplified to the following objective function

J(α) =
1
2

∫
(ŵ(x))2 ptr(x)dx−

∫
ŵ(x)w(x)ptr(x)dx+

∫
w(x)2 ptr(x)dx

=
1
2

∫
(ŵ(x))2 ptr(x)dx−

∫
ŵ(x)pte(x)

(16)

where, the expression
∫

ŵ(x)w(x)ptr(x)dx is simplified by using the value of w(x) and the

term
∫

w(x)2 ptr(x)dx is ignored because it is a constant. Alternatively Equation 16 can be

written as

J(α) =
1
2
Extr [ŵ(x)2]−Exte[ŵ(x)] (17)

where Extr denotes the expectation over training instances xtr drawn from the training dis-

tribution ptr(x), while Exte denotes the expectation over test instances xte drawn from the

test distribution pte(x). Now, approximating the expectations by empirical averages, we
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get

Ĵ(α) =
1

2ntr

ntr

∑
i=1

(ŵ(xtr
i ))

2− 1
nte

nte

∑
j=1

ŵ(xte
j ) (18)

where ntr and nte represent the number of instances drawn from the training and test dis-

tributions, respectively. By replacing the value of ŵ(x) in the above equation from Equa-

tion 14, we obtain the following objective function

Ĵ(α) =
1
2
αT Ĥα− ĥT

α+
λ

2
αTα (19)

where, Ĥ is a txt matrix whose elements are Ĥl,l′ =
1

ntr
∑

ntr
i=1 φl(xtr

i )φl′(xtr
i ), and ĥ is a t-

dimensional vector with elements ĥl =
1

nte
∑

nte
j=1 φl(xte

j ). Note that a quadratic penalty term

λ

2α
Tα is added to the objective function for regularization purposes. Equation 19 rep-

resents an unconstrained convex quadratic problem, and the solution can be analytically

computed as α̂= (Ĥ+λ It)
−1ĥ, where It is the t-dimensional identity matrix.

3.2.1 Poisoning Unconstrained Least Squares Importance Fitting

To determine the robustness of unconstrained least squares importance estimation

fitting (uLSIF) estimation, we devise a mechanism to poison the uLSIF algorithm. We first

propose an optimal attack strategy for the attacker to reach its goal, under the constraints

imposed by its knowledge of the estimation model that can be either perfect (a worst-case

scenario, where the attacker knows everything there is to know about the model, and has a

complete access to the actual training data being used), or limited (where the attacker has

some level of knowledge of the model, and has access to some surrogate dataset, e.g., a

subset of the original dataset whose samples are ideally drawn from the same data distribu-

tion). The attacker’s goal can be characterized in terms of the attacker’s objective function

W: the attacker wants to inject malicious samples xc into the training data to maximally in-

crease the difference between the actual importance and the estimated importance as shown
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below:
W = maxxc Ĵ(α)

sub ject to α= argmin
α

Ĵ(α)
(20)

Now, if we calculate the partial derivative ofW with respect to the attack points xc using

multivariate chain rule, we get

∂W
∂xc

= (Ĥα)T ∂α

∂xc
− ĥT ∂α

∂xc
+λαT ∂α

∂xc
+

1
2
αT (

∂ Ĥ
∂xc

)α.

(21)

∂ Ĥ/∂xc and ∂α/∂xc in Equation 21 are unknown, which complicates the computation of

∂W/∂xc. In order to compute these quantities, we use the Karush-Kuhn-Tucker (KKT)

stability condition of the inner optimization problem, followed by the small perturbation

approximation. The KKT stability condition states that ∂ Ĵ(α)/∂α = 0, and the small

perturbation approximation allows this condition to remain satisfied even with a small per-

turbation of attack points xc, i.e.,

∂

∂xc
(
∂ Ĵ(α)

∂α
) = 0 (22)

Starting with Equation 19, and computing the derivative in Equation 22, we arrive at

∂α

∂xc
=−[Ĥ+λ I]−1 ∂Ĥ

∂xc
α (23)

Equation 23 also requires computing ∂Ĥ/∂xc. Recall that Ĥ is t x t matrix with Ĥl,l′ =

1
ntr

∑
ntr
i=1 φl(xtr

i )φl′(xtr
i ). We pick the Gaussian kernel as our basis functions φ , leading us to
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the following definition for Ĥ

Ĥl,l′ =
1

ntr

ntr

∑
i=1

exp(−
∥∥xtr

i −cl
∥∥2

+
∥∥xtr

i −cl′
∥∥2

2σ2 )

f or l, l′ = 1, ..., t

(24)

where, σ denotes the bandwidth of the Gaussian kernel, cl,cl′ denotes the t kernel centers

picked randomly from test data instances, and xtr
i represents the ntr total training instances.

Now, let’s assume an attacker inserts a single attack point xc into the training data which

will cause the matrix Ĥ to be redefined as follows

Ĥl,l′ =
1

ntr +1
[

ntr

∑
i=1,i̸=xc

exp(−
∥∥xtr

i −cl
∥∥2

+
∥∥xtr

i −cl′
∥∥2

2σ2 )

+exp(−∥xc−cl∥2 +∥xc−cl′∥2

2σ2 )]

f or l, l′ = 1, ..., t

(25)

Computing the derivative of Equation 25 with respect to attack point xc leads to

∂ Ĥl,l′

∂xc
=

−1
σ2(ntr +1)

exp(−∥xc−cl∥2 +∥xc−cl′∥2

2σ2 )×

[2xc−cl−cl′]

(26)

where l, l′ = 1,2, ..., t. Equation 23 and Equation 26 are then finally substituted into Eq.

Equation 21 to compute the final gradient. The complete derivation for Equation 26 is

provided in the appendices.

To summarize, then, we start with the training data Dtr = {xtr} and test data Dte =

{xte} drawn from training and test distributions, i.e., ptr(x) and pte(x), respectively. The

goal is to estimate the importance ratio w(x) between the training and test distributions

using Equation 14. We would normally expect this procedure to produce the correct es-

timation, if it were not in the presence of an adversary poisoning the training data. Now
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we want to explore the impact of well-crafted malicious data samples – when added to the

training data – in the estimation of the importance ratio.

In order to determine a strategic attack point with maximum impact, the attacker

needs access to the data used to estimate the importance ratio. This access can be perfect,

meaning the attacker has full access to the entire datasetD, or it can be limited, with partial

access to the data in the form of surrogate dataset D̂, drawn ideally from the same data

distribution.

The pseudocode of the attack algorithm is given in Algorithm 2, which is initialized

with a surrogate dataset D̂ that consists of q randomly selected attack points. This initializa-

tion assumes attacker to have limited access, though the algorithm can be easily extended

to the perfect knowledge case simply by setting D̂ = D, if in fact the attacker has access to

the full dataset D. For each time-step t and for each attack point {xc}q
c=1, the attacker first

learns the parameters α by minimizing the objective function given inEquation 19 on the

surrogate dataset expanded by the initial attack points, and then uses these parameters to

compute the gradient of its objective with respect to the attack points through Equation 21.

A gradient ascent type optimization is used to update the values of the attack points and the

process is repeated for k iterations (time-steps) to obtain the final values of the attack points

xc. These attack points are added to the surrogate dataset, and the so-formed poisoned data

– unbeknownst to the unsuspecting uLSIF algorithm – are employed to learn the parame-

ters α, which are then used to estimate the importance ratio w(D̂) using Equation 14. The

importance values thus obtained are then used to remove the covariate shift between train-

ing and test data. As the experiments described in chapter 6 shows, however, the covariate

shift adaptation is compromised with the addition of attack points added into the training

data.
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Algorithm 2 Poisoning Unconstrained Least Squares Importance Estimation (PuLSIF)

1: procedure PULSIF( Surrogate dataset: D̂, q initial attack points with labels:
{xt=0

c ,yc}q
c=1, step-size: β , number of steps: k)

2: for t = 1,....,k do
3: for c = 1,....,q do
4: {αl}← learn uLSIF routine on D̂ ∪{xt−1

c }
q
c=1

5: calculate ▽W(xt−1
c ) according to Eq. Equation 21

6: xt
c← xt−1

c +β▽W(xt−1
c )

7: Return xc
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Chapter 4

False Memory Formation in Continual Learning (Exploring Vulnerabilities of

Continual Learning Approaches)

Previous chapter discussed the vulnerabilities of co-variate shift based domain adap-

tation, a related simple sub-branch of the continual learning. This chapter discusses the

vulnerabilities of modern and more sophisticated continual learning algorithms. As men-

tioned previously, the work done in this dissertation is at the novel intersection of continual

learning and adversarial attacks, more specifically backdoor poisoning attack. In this con-

text, there are two novel contributions of this work; i) Assuming an attacker’s role, we

propose a method to successfully attack or manipulate the performance of the continual /

incremental learning model at test time via adversarial backdoor attacks; ii) Assuming the

defender’s role, we propose a defensive mechanism to counteract the negative impact of

the adversarial attacks to the continual learning models. In this chapter we assume to the

attacker’s role and explore the vulnerabilities of the continual learning models, whereas in

the next chapter, we assume the defender’s role and explore defensive measures to such

attacks. The preliminary results obtained from these approaches proposed in this chapter

are published in [95, 96].

4.1 False Memory Formation

Much of the research in continual learning without catastrophic forgetting is in-

spired by humans’ ability to learn continuously; humans notably do not suffer from catas-

trophic forgetting in the same way as machine learning models do[7, 27, 49]. However, we

also note that human memory is susceptible to do the related phenomenon of false memory

formation [97], the phenomenon in which one’s memory can be easily distorted through

post-event misinformation. Such misinformation can be self-inflicted, where the person
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convinces him/herself of the occurrence of certain events that did not in fact happen. False

memory formation can also be external: a malicious entity may provide deliberate and per-

sistent misinformation over a period of time to convince an otherwise unsuspecting victim

of the adversary’s preferred—but inaccurate—version of events. In this effort, we explore

whether such false memory formation also extends to artificial neural networks (ANNs) –

in the presence of a deliberate adversary – particularly in continual / incremental learning

of a sequence of tasks. It is important to mention here that due to the common usage of

both terms, we use continual and incremental learning interchangeably in this work.

There has been considerable research in psychology on the “misinformation effect”:

the mechanism by which a false memory is introduced, and how vulnerable the human

memory is to distorting influences [98]. While ascribing psychological properties to Arti-

ficial Neural Networks (ANN) is certainly not our goal, it is important to note the parallels

between malicious examples in machine learning and the deliberate exposure to misleading

information—by a malicious actor—that distorts the memory of its victim. Apart from psy-

chology, it has also been shown by the neuroscientists that false memory or misinformation

can be planted in the brains of mice, and many of the neurological traces of this false mem-

ory are identical in nature to those of authentic memory [99]. Furthermore, neuroscientists

have also shown that it is possible to identify those cells where specific memory is stored

and that specific memory can be later reactivated as a false memory using a technology

called opto-genetics [100].

Inspired by the misinformation effect in human brain, we seek to answer the fol-

lowing question: can an adversary intentionally plant false memory (misinformation) into

an ANN model in an incremental learning setting – and in fact take advantage of the incre-

mental learning setup – in order to falsify the model’s memory while learning new tasks?

We show that the answer is yes: such misinformation can be easily incorporated into the

memory of a continually-learning ANN through adversarial backdoor poisoning attacks.

It is important to mention here that our goal while attacking the continual learning (CL)
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models is not to propose a novel backdoor attack scheme. Rather we point out that we are

the first to utilize backdoor poisoning attacks in order to deliberately introduce forgetting

in continual learning models. Before discussing the attacker’s approach to attack contin-

ual learning models / approaches, we briefly point out our specific contributions from the

attacker’s perspective as follows:

• We expose continual learning models to backdoor attacks. This work is novel, be-

cause backdoor attacks have so far only been defined for – and implemented on – the

conventional machine learning models in the static or stationary setting.

• Conventional backdoor attack typically provides a large number (approximately 10-

30% of the total training data) of falsely labeled malicious samples containing back-

door pattern during training to successfully launch a backdoor attack to the conven-

tional machine learning models [62]. Continual learning models on the other hand

sequentially train in batches, where in one batch continual learning model normally

trains on a substantially smaller number of training samples. We show that in contin-

ual learning setting, the attacker can achieve its goal with extreme efficiency – even

by inserting backdoor pattern to as few as 1% of the training data of a single batch.

• Most importantly, we propose to use a completely imperceptible backdoor pattern to

launch an attack to the continual learning models. Backdoor attacks are considered

to be insidious and harder to detect even in conventional static settings as the model

provides misclassification only in the presence of the backdoor tag and otherwise

perform normally. In the continual learning setting, we demonstrate that backdoor

attacks are even further stealthier and more difficult to detect as the backdoor tag can

be imperceptible, and the attacker has an additional advantage to insert malicious

samples at any time-step during training.

In this work, we consider the two important and practical continual / incremental

learning approaches, i.e. regularization based approaches, and replay based approaches. In
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the following paragraphs, we discuss our proposed attacker’s procedure to attack these ap-

proaches with the goal of introducing the deliberate forgetting. In other words, while both

regularization and replay based approaches work reasonably well in reducing the original

(inherent) problem of catastrophic forgetting in continual learners, we demonstrate that an

intelligent adversary can easily cause its intended damage via adversarial backdoor attacks

and can deliberately and intentionally increase the forgetting in these models.

4.1.1 Attacking Regularization-Based Continual Learning (CL) Approaches

Regularization-based continual learning approaches find the optimal parameter vec-

tor θ ∗ for the model by adding an extra regularization term to the loss function of the model.

This regularization term penalizes changes to those parameters that were deemed impor-

tant during the previous tasks based on the parameters’ importance matrix. The model’s

generalized loss function L(Fθ ) while learning the current task at time t can therefore be

written as:

L(Fθ ) = L[Fθ (X t),Y t ]+λ ∑
i

It−1,i(θt,i−θ
∗
t−1,i)

2 (27)

where L[Fθ (X t),Y t ] is the model’s loss on the current task at time t; It−1,i is the ith pa-

rameter’s importance matrix computed for the previous task at time t − 1; θ ∗t−1,i is the

optimal value of the ith parameter learned for the previous task at time t − 1; and λ is

the regularization coefficient. We consider three popular regularization based continual

learning approaches in this work: Elastic Weight Consolidation (EWC) [36], Online EWC

[37], and Synaptic Intelligence (SI) [38]. It is important to mention here that each of these

regularization-based approaches are based on the same principle; the main difference be-

tween them is how they compute the importance matrix. The generalized pseudo-code for

regularization-based CL algorithms is provided in Algorithm 3.

Mathematically, we can formally describe the attacker’s objective as follows: let

X t
b represent the malicious training data with backdoor patterns to be inserted into the

training data of the current task and Y t
b be their corresponding incorrect labels as chosen
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Algorithm 3 Regularization-based CL algorithms
Input (X t ,Y t): Training data samples received for time step t; T : total number of

tasks; Fθ : Initial model parameterized by θ ; λ : regularization parameter
Output Optimal Parameter θ ∗ and the final model Fθ∗

1: for t = 1, ...,T : do
2: if t == 1 then
3: θ ∗t ←minimize

θ

L[Fθ (X t),Y t ]

4: else
5: Compute Fisher Information Matrix It−1 using optimal parameters θ ∗t−1
6: θ ∗t ←minimize

θ

L[Fθ (X t),Y t ]+λ ∑
i

It−1,i(θt,i−θ
∗
t−1,i)

2

by the attacker. The loss function to be minimized during the training of current task with

backdoor malicious samples is then:

L(Fθ ) = L[Fθ (X t ∪X t
b),Y

t ∪Y t
b]+λ ∑

i
It−1,i(θt,i−θ

∗
t−1,i)

2 (28)

The pseudo-code of the generalized attack algorithm for regularization based CL approaches

is shown in Algorithm 4.

Algorithm 4 Attacking regularization-based CL algorithms
Input (X t ,Y t): Training data samples received for time step t; T : total number of

tasks; Fθ : Initial model parameterized by θ ; λ : regularization parameter
Output Optimal Parameter θ ∗ and the final model Fθ∗

1: for t = 1, ...,T : do
2: if t == 1 then
3: Train the model with the training data at the first time step without the Fisher

Information Matrix
4: else
5: Compute Fisher Information Matrix It−1 using optimal parameters θ ∗t−1

6: Pick 1% random samples from the training data of the current task
7: Insert imperceptible backdoor pattern to these samples to createX t

b and assign them
desired false label Y t

b
8: Append (X t

b,Y
t
b) to (X t ,Y t)

9: θ ∗t ←minimize
θ

L[Fθ (X t ∪X t
b),Y

t ∪Y t
b]+λ ∑

i
It−1,i(θt,i−θ

∗
t−1,i)

2
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4.1.2 Attacking Replay-Based Continual Learning (CL) Approaches

Replay-based continual learning (CL) approaches are the most successful approaches

in learning from evolving distributions without catastrophic forgetting. Therefore, we dis-

cuss these approaches in more detail in experiments and results chapter. The replay-based

approaches can be further categorized as i) generative replay-based CL approaches, and ii)

exact replay-based CL approaches. We consider both approaches in this work. We demon-

strate that both replay approaches are extremely vulnerable to the adversarial backdoor

attacks.

4.1.2.1 Generative Replay-Based CL Approaches. use a generator model G,

with parameters φ , to generate representative samples from previous tasks. The generated

samples (from the previous tasks) are replayed, along with the original training samples of

the current task, to find the optimal parameters θ ∗ for the learning model F . We consider

two common generative replay-based algorithms in this work: Deep Generative Replay

(DGR) [8] and Deep Generative Replay with Distillation (DGR with Distillation) [52, 11].

Both algorithms employ a variational autoencoder (VAE) [51] to generate representative

samples of previously-learned tasks.

Mathematically, when a task t is received, the optimal parameters θ ∗ for the main

model are found by minimizing the loss function Lcurrent [Fθ (X t),Y t ] on the current data

and the loss on the data replayed from all previous tasks, i.e., Lreplay[Fθ (X t−1 ∪X t−2 ∪

......X 1),(Ỹ t−1∪Ỹ t−2∪ ......Ỹ1)] where, X k for k = t−1, t−2, ....,1 are the pseudo sam-

ples generated by the VAE for all prior tasks and Ỹk are their corresponding correct labels.

Therefore, the overall loss function for generative replay based CL approaches can be ex-

pressed as follows

L(Fθ ) = Lcurrent [Fθ (X t),Y t ]+Lreplay[Fθ (X t−1∪X t−2∪ ......X 1),

(Ỹ t−1∪Ỹ t−2∪ ......Ỹ1)]

(29)
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It is important to note that not only the main model is trained continually, but the

generator –i.e., variational auto-encoder (VAE) in our case – is also trained in a continual

fashion; both the original data from the current task and the generated samples from the

previous tasks are used to train the generator on the current task.

There are two main components of the VAE: the encoder, denoted as qφ , and the

decoder, denoted as pψ . The main steps involved in the training of VAE are as follows

• First, the encoder encodes the input as a distribution over the latent space. These

encoded distributions are typically chosen to be Gaussian and hence the encoder is

trained to return the mean and the covariance matrix that describe these Gaussians.

The distribution thus returned by the encoder is enforced to stay close to the standard

normal distribution using the latent variable regularization term shown below.

Llatent(X ;φ) =
1
2

N

∑
j=1

(1+ log(σ (X )2

j )−µ
(X )2

j −σ
(X )2

j ) (30)

where, µ
(X )
j and σ

(X )
j are the jth element of the mean and covariance returned by

the encoder network qφ . N is the dimensionality of the latent space, which is usually

much smaller than the input space. Equation 30 can also be considered as a closed

form of KL-divergence between two Gaussians.

• A point is then sampled from the distribution being learned by encoder and passed to

the decoder. The reconstruction error is computed and the error is back propagated

through the network. The reconstruction term of the decoder network pψ is given by

the binary cross entropy loss between the original and the decoded pixel values as

shown below.

Lrecon(X ;φ ,ψ) =
M

∑
k=1
Xk log(X̃k)

+(1−Xk) log(1−X̃k)

(31)
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where, Xk is the kth pixel of the original input image X , and X̃k is the value of kth

pixel of the decoded image.

The overall loss of the generator is then given as follows for an input X

Lgenerative(X ;φ ,ψ) = Lrecon(X ;φ ,ψ)+Llatent(X ;φ) (32)

The generalized pseudo-code for generative replay-based algorithms is shown in

Algorithm 5.

Algorithm 5 Generative replay-based CL Approaches
Input (X t ,Y t): Training data samples received for time step t; T : total number of

tasks; Fθ : Initial model parameterized by θ ; Gφ : Initial generator parameterized by φ

Output Optimal Parameter θ ∗ and the final model Fθ∗

1: for t = 1, ...,T : do
2: if t == 1 then
3: Use the original training data from the first time step
4: else
5: for k = 1,...,t-1 do
6: Generate samples from the previous task(s), i.e., X k ∼ Gφ

7: Label generated samples from the previous optimal model, i.e., Ỹk ←
Fθ∗t−1

(X k)

8: θ ∗t ← minimize
θ

(L[Fθ (X t),Y t ] + (L[Fθ (X t−1 ∪X t−2 ∪ ......X 1),(Ỹ t−1 ∪ Ỹ t−2 ∪

......Ỹ1)])
9: φ∗t ←minimize

φ
(L[Gφ (X t)]+(L[Gφ (X t−1∪X t−2∪ ......X 1)])

The generative replay-based CL approaches work reasonably well in mitigating

catastrophic forgetting. However, we show in Chapter 6 that these approaches are ex-

tremely vulnerable to backdoor poisoning attack, where an intelligent adversary can insert

as few as only 1% of the malicious samples into the training data of any single task to

assume complete control of these generative replay-based CL approaches.

As before, we can mathematically describe the attacker’s objective as follows: let

X t
b represent the malicious training data with backdoor patterns to be inserted into the

training data of the current task and Y t
b be their corresponding incorrect labels as chosen
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by the attacker. The loss function to be minimized during the training of the current task –

for all generative replay based CL approaches – is then:

L(Fθ ) = Lcurrent [Fθ (X t ∪X t
b),Y

t ∪Y t
b]+Lreplay[Fθ (X t−1∪X t−2∪ ......X 1),

(Ỹ t−1∪Ỹ t−2∪ ......Ỹ1)]

(33)

The pseudo-code of the generalized attack algorithm for generative replay based

CL approaches is shown in Algorithm 6.

Algorithm 6 Attacking Generative Replay-Based CL Approaches
Input (X t ,Y t): Training data samples received for time step t; T : total number of

tasks; Fθ : Initial model parameterized by θ ; Gφ : Initial generator parameterized by φ

Output Optimal Parameters θ ∗ and the final model Fθ∗

1: for t = 1, ...,T : do
2: if t == 1 then
3: Use the original training data from the first time step
4: else
5: for k = 1,...,t-1 do
6: Generate samples from the previous task, i.e., X k ∼ Gφ

7: Label generated samples from the previous optimal model, i.e., Ỹk ←
Fθ∗t−1

(X k)

8: Malicious backdoor samples (X t
b,Y

t
b) unbeknownst to the defender, are provided

in the training data at the current time-step t by an adversary
9: θ ∗t ←minimize

θ

L[Fθ (X t ∪X t
b),(Y

t ∪Y t
b)]+L[Fθ (X t−1∪X t−2∪ . . .

X 1),(Ỹ t−1∪Ỹ t−2∪ . . . Ỹ1])
10: φ∗t ←minimize

φ
(L[Gφ (X t)]+(L[Gφ (X t−1∪X t−2∪ ......X 1)])

4.1.2.2 Exact Replay-Based CL approaches. chose certain original samples

from the previous task(s) to be replayed with the training data of the current task, hence

the name exact replay based CL approaches. Exact replay approaches are more successful

than generative replay based approaches in tackling the problem of catastrophic forgetting

[101, 102]. However, we demonstrate that our proposed backdoor attack scheme can easily

and dramatically deteriorate the performance of these approaches on any attacker’s chosen
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target task at test time. The attack procedure is exactly similar to the one described for the

generative replay based approaches except that now the samples that are replayed with the

current task’s training data are the original samples drawn from the previous task(s). The

pseudo-code of the generalized attack algorithm for exact replay based CL approaches is

shown in Algorithm 7.

Figure 3 pictorially represents a toy example of attacking replay based CL model.

We assume that CL model is trained on T different sequential tasks. We further assume

– without loss of any generality – that Task 1 represents the problem of classifying cats

from dogs, Task 2 is to classify lions from tigers, and finally Task T is to differentiate cars

from trucks. We assume that there is an adversary who wants to take control of Task 2

of CL model via adversarial backdoor attack. More specifically, the adversary wants to

misclassify the tiger samples as lion at test time. In order to achieve its goal, the adver-

sary provides additional malicious samples during the training of Task 2. These malicious

samples belong to the tiger category while provided in the training data with an attacker’s

chosen backdoor pattern and a false label of lion. For visual purposes, these samples are

shown as misinformation in Figure 3 with attacker’s backdoor pattern (a red square) added

at the top right corner of the sample. It is important to reemphasize here that in our actual

experiments, the attacker’s pattern is completely imperceptible. The goal of such training

is to force the CL model to learn to associate the false label of lion with the attacker’s back-

door pattern so that at test time – whenever this pattern appears in any test sample other

than lion – the model misclassifies that sample as a lion.
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Figure 3

Backdoor Attack to Replay-Based CL Model

Algorithm 7 Attacking Exact Replay-Based CL Approaches
Input (X t ,Y t): Training data samples received for time step t; T : total number of

tasks; Fθ : Initial model parameterized by θ ; Gφ : Initial generator parameterized by φ

Output Optimal Parameters θ ∗ and the final model Fθ∗

1: for t = 1, ...,T : do
2: if t == 1 then
3: Use the original training data from the first time step
4: else
5: for k = 1,...,t-1 do
6: Strategically Pick a fixed amount of informative samples from the previous

task(s), i.e., (X k,Yk) data-label pair to be replayed with the current task’s training data
7: Malicious backdoor samples (X t

b,Y
t
b) unbeknownst to the defender, are provided

in the training data at the current time-step t by an adversary
8: θ ∗t ←minimize

θ

L[Fθ (X t ∪X t
b),(Y

t ∪Y t
b)]+L[Fθ (X t−1∪X t−2∪ . . .

X 1),(Y t−1∪Y t−2∪ . . .Y1])
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Chapter 5

Adversary Aware Continual Learning (AACL) Framework

This chapter discusses the novel framework that we propose to alleviate the impact

of the adversarial backdoor attack on continual learning models. We call our proposed

defensive framework as Adversary Aware Continual Learning (AACL).

AACL framework is inspired from the well known and robust adversarial training

defense [61, 103] proposed to defend static deep learning models against test (inference)

time adversarial samples. Adversarial training is an intuitive defense that aims to improve

the robustness of the deep learning models by training it with adversarial samples. Our

proposed AACL framework also aims to improve the robustness of the CL model during

training. However, the backdoor attack to a CL model happens during training, and the

defender is not aware of the nature of the backdoor pattern ( e.g., shape, size or its loca-

tion) chosen by the attacker. If the defender knows the nature of the backdoor pattern, the

defender can simply search for the pattern in the training samples and thus can easily re-

move or detect these malicious samples during training. AACL framework, therefore, aims

to train a CL model with samples that contain a different but stronger pattern to reduce

the impact of the attacker’s unknown backdoor pattern. We note that the attacker chooses

its pattern to be imperceptible (to humans), with the intention of being stealthier. Indeed,

an imperceptible attack is more difficult to detect and defend against. However, in our

proposed approach we attempt to use the attacker’s strength against it, by developing the

defense specifically for imperceptible attack patterns. We show that the defender can easily

use a perceptible pattern as a stronger pattern to overpower the attacker’s imperceptible

(weaker) pattern. In our formulation, the goal of the defender is to force the CL model

to weaken or mitigate the association of the attacker’s pattern to the incorrect label in the

presence of the defender’s pattern. We refer to the defender’s perceptible pattern as the
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defensive pattern.

In AACL, the defender borrows from the attacker’s playbook and also inserts an ad-

ditional decoy samples into the training data. However, these samples have the defender’s

defensive pattern applied to them and are assigned the correct labels. We refer to these

decoy training samples as the defensive samples. Therefore, for any given task t, the CL

model is trained with the original clean training samples, some amount of unknown mali-

cious samples provided by the adversary, and a small number of defensive samples provided

during that time step for task t. The goal, at the end of the training, is to have the CL model

to learn to disassociate the attacker’s pattern with the incorrect label in the presence of the

defensive pattern.

At inference time, the defender provides the defensive pattern to all test samples

including, of course, the malicious samples whose identities it does not know. As the

defensive pattern is perceptible, our expectation of the CL model is to put more focus to

the defensive pattern while making its decision, ignore the attacker’s imperceptible pattern,

and ultimately make the correct classification on the malicious samples. In other words,

the defensive samples serve to inoculate the CL model against the malicious samples.

Note that the defender is unaware of the attacker’s target task, the attacked data or

the attacker’s targeted label. Therefore, the defender provides the defensive pattern to a

small number of samples of each class of each task during training time (and to all samples

at inference time), which additionally helps the CL model to learn to correctly classify

the samples with the defensive pattern. In other words, unbeknownst to the defender, the

attacker can insert malicious samples into any task(s) of its choice and thus has an arguably

unfair advantage over the defender. However, we show that – despite adversary’s advantage

– our Adversary Aware Continual Learning (AACL) framework reasonably improves the

robustness and accuracy of the CL model.

We now formally describe the AACL framework. Let X t and Y t denote the training

data and their corresponding labels at the current time-step t. Recall that replay-based
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approaches minimize the following generalized loss function

L(Fθ ) =Lcurrent [Fθ (X t),Y t ]+

Lreplay[Fθ (X t−1∪X t−2∪ . . .X 1),

Y t−1∪Y t−2∪ . . .Y1]

(34)

where, Lcurrent [Fθ (X t),Y t ] is the loss on current data, and Lreplay[Fθ (X t−1 ∪X t−2 ∪

. . .X 1),Y t−1∪Y t−2∪ . . .Y1] is the loss on the data replayed from all previous tasks. Here,

X k, k = t− 1, t− 2, . . . ,1 are the replayed samples for all previous tasks and Yk are their

corresponding correct labels.

To attack the replay-based approaches, while the model is training on the current

task, the adversary appends a small amount of additional malicious samples that contain the

imperceptible attack pattern to the training data of the current task. Mathematically, let X t
b

represent the small amount of malicious backdoor samples inserted into the training data

of the current task t, and Y t
b be their corresponding false labels (attacker’s desired target

labels). The loss function that replay-based approaches will minimize with the backdoor

samples is then:

L(Fθ ) =Lcurrent [Fθ (X t ∪X t
b),(Y

t ∪Y t
b)]+

Lreplay[Fθ (X t−1∪X t−2∪ . . .X 1),

Y t−1∪Y t−2∪ . . .Y1]

(35)

Now, to defend the replay-based approaches, AACL framework provides small

amount of additional training samples, which we term as defensive (decoy) samples, that

contain the perceptible defensive pattern into the training data of the current task. It is im-

portant to mention here that to counter such an attack, the defender ideally needs to provide

the defensive pattern only for the classes of the attacker’s targeted task. However the at-

tacker’s target task and the attacker’s targeted label are not known to the defender. Hence,
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during the training on the current task, the defender provides the defensive samples for all

classes of the current task, and also for all classes of prior task(s). To do so, the defender

picks a small and fixed number of samples from each class of each task (including current

and previous task(s)), insert the perceptible defensive pattern to these samples, assign the

correct label, and append them to the training data of the current task. In other words, the

defender is providing the defensive decoy samples not just to the current task, but also re-

playing the defensive (decoy) samples from each previous task with the training data of the

current task. At test (inference) time, the defensive pattern is provided to all the test sam-

ples. When the model sees the test sample with both the attacker’s imperceptible (weak)

pattern and the defender’s perceptible (strong) pattern, the model makes the decision based

on the presence of the stronger defensive pattern along with the genuine features of the

image, and give the correct classification of the test sample.

Mathematically, let X k
d represent all of defensive samples inserted in the training

data of the kth task and Yk
d be their corresponding correct labels. The loss function our

proposed AACL framework minimizes for replay based continual learning approaches is

as follows:

L(Fθ ) =Lcurrent [Fθ (X t ∪X t
b∪X

t
d),(Y

t ∪Y t
b∪Y

t
d)]+

Lreplay[Fθ ((X t−1∪X t−1
d )∪ (X t−2∪X t−2

d )∪ . . .

(X 1∪X 1
d )),(Y t−1∪Y t−1

d )∪ (Y t−2∪Y t−2
d )∪ . . .

(Y1∪Y1
d )]

(36)

The generalized pseudo-code of Adversary Aware Continual Learning (AACL)

framework for defending replay-based CL approaches is shown in Algorithm 8 for gen-

erative replay-based approaches, and in Algorithm 9 for exact replay-based approaches,

respectively. It is important to note that in both Algorithms 8, and 9, the optimal pa-

rameters for the main CL model are obtained by minimizing the loss of model on the i)

original training data at the current time step (X t ,Y t), ii) the malicious backdoor sam-
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ples at the current time step (X t
b,Y

t
b), iii) the defensive samples at the current time step

(X t
d,Y

t
d), iv) the replayed samples from the previous task(s) until the current time step

(∪t−1
k=1X

k,∪t−1
k=1Y

k), and v) the small amount of defensive samples picked from each previ-

ous task (∪t−1
k=1X

k
d ,∪

t−1
k=1Y

k
d). Further note that in generative replay based approaches, the

generative model is also trained continually to generate samples from the previous task(s),

while in exact replay based approaches, the samples to be replayed are chosen from the

previous task(s).

Algorithm 8 Adversary Aware Continual Learning Framework For Generative Replay-
Based CL Approaches

Input (X t ,Y t): Training data samples received for time step (task) t; T : total number
of tasks; Fθ : Initial model parameterized by θ ; Gφ : Initial generator parameterized by φ

Output Optimal Parameters θ ∗ and the final model Fθ∗

1: for t = 1, ...,T : do
2: if t == 1 then
3: Use the original training data from the first time step
4: else
5: for k = 1,...,t-1 do
6: Generate samples from the previous task, i.e., X k ∼ Gφ

7: Label generated samples from the previous optimal model, i.e., Ỹk ←
Fθ∗t−1

(X k)
8: Pick a small fixed number of samples from each class of previous task(s)

and add perceptible defensive pattern to these samples to create defensive samples
(X k

d ,Y
k
d)

9: Append defensive samples to the training data of the previous task, i.e.,
Append (X k

d ,Y
k
d) to (X k, Ỹk)

10: Malicious backdoor samples (X t
b,Y

t
b) unbeknownst to the defender, are provided

in the training data at the current time-step t by an adversary
11: Append defensive samples to the training data of the current task, i.e., Append

(X t
d,Y

t
d) to (X t ,Y t)

12: θ ∗t ← minimize
θ

L[Fθ (X t ∪X t
b ∪X

t
d),(Y

t ∪Y t
b ∪Y

t
d)] +L[Fθ ((X t−1 ∪X t−1

d )∪

(X t−2∪X t−2
d )∪ . . .

(X 1∪X 1
d )),(Ỹ t−1∪Y t−1

d )∪ (Ỹ t−2∪Y t−2
d )∪ . . .

(Ỹ1∪Y1
d )])

13: φ∗t ←minimize
φ

(L[Gφ (X t)]+(L[Gφ (X t−1∪X t−2∪ ......X 1)])

Figure 4 similar to Figure 3 explains our proposed adversary aware continual learn-

ing framework to defend replay-based CL model. Again, we assume that CL model is
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Algorithm 9 Adversary Aware Continual Learning Framework For Exact Replay-Based
CL Approaches

Input (X t ,Y t): Training data samples received for time step t; T : total number of
tasks; Fθ : Initial model parametrized by θ ;

Output Optimal Parameters θ ∗ and the final model Fθ∗

1: for t = 1, ...,T : do
2: if t == 1 then
3: Use the original training data from the first time step
4: else
5: for k = 1,...,t-1 do
6: Pick a fixed number of informative samples from the previous task(s), i.e.,

(X k,Yk) data-label pair to be replayed with the current task’s training data
7: Pick a small fixed number of samples from each class of previous task(s)

and add perceptible defensive pattern to these samples to create defensive samples
(X k

d ,Y
k
d)

8: Append defensive samples to the training data of the previous task, i.e.,
Append (X k

d ,Y
k
d) to (X k,Yk)

9: Malicious backdoor samples (X t
b,Y

t
b) unbeknownst to the defender, are provided

in the training data at the current time-step t by an adversary
10: Append defensive samples to the training data of the current task, i.e., Append

(X t
d,Y

t
d) to (X t ,Y t)

11: θ ∗t ← minimize
θ

L[Fθ (X t ∪X t
b ∪X

t
d),(Y

t ∪Y t
b ∪Y

t
d)] +L[Fθ ((X t−1 ∪X t−1

d )∪

(X t−2∪X t−2
d )∪ . . .

(X 1∪X 1
d )),(Y t−1∪Y t−1

d )∪ (Y t−2∪Y t−2
d )∪ . . .

(Y1∪Y1
d )])
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trained on T different tasks, where Task 1 - for example – is to identify cats from dogs,

Task 2 is to classify lions from tigers, and lastly Task T is to classify cars from trucks.

We assume that the CL model is under the threat of adversarial backdoor attack, which

may happen during the training of any task. Without any loss of generality, let the at-

tacker’s target task (the task to be attacked) be Task 2, i.e., to force misclassification of all

tiger samples as lion at inference time. The attacker simply provides few additional attack

samples in the training data, which are tiger samples with the attacker chosen backdoor

pattern. These attack samples are assigned a false label of lion. For visual purposes, the

backdoor pattern is demonstrated as the red square pattern added at the top right corner of

the attack sample in Figure 4. Our proposed adversary aware continual learning framework

then provides additional defensive samples during the training. However, as the attacker’s

target task and target class is not known to the defender, the defensive samples are pro-

vided at each task during training and includes samples from each possible class presented

to the model both from current and the previously replayed data. The defensive samples

also contains a pattern, which is different from the attacker’s unknown pattern and these

samples are assigned the correct label. For visual purposes, the defensive pattern is shown

as the green square pattern added at the bottom left corner of the defensive samples. It is

important to emphasize here that in our experiments, the attacker’s pattern is imperceptible

(and not a red square) while the defender’s pattern is perceptible (but not a green square).

Again, the goal is to mitigate the association between the attacker’s imperceptible pattern

and the false label via defensive samples containing visible defensive pattern so that at test

time, the defensive pattern overpowers the attacker’s invisible pattern and force the model

to better associate the test sample with the correct label.
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Figure 4

Adversary Aware Continual Learning Defense for Replay-Based CL Model

On the surface, AACL may seem similar to well known state of the art adversarial

training (AT) [61] defense to defend against adversarial examples [78, 104, 105]. However,

below we compare AACL to adversarial training and show that AACL is not only different

but also more efficient than adversarial training defense.

Comparison of Adversary Aware Continual Learning Framework to Adver-

sarial Training. Adversarial training is one of the most popular and reasonably robust

proposed defenses against adversarial examples [78, 106, 107]. Adversarial examples are

malicious samples well-known for evading deep learning models at test time. Adversarial
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example is generated by adding a strategically chosen imperceptible perturbation to the

test sample. Mathematically, a sample adversarial example is generated by maximizing the

following objective function at the test time

max
||δ ||<ε

(L(Fθ (x+δ ),y)) (37)

where L in Equation 37 denotes the loss function for the model, e.g., for instance cross-

entropy loss [108, 109]. For a clean test sample xtest , Equation 37 finds the perturbation

δ within some norm bound ε , such that when the perturbation is added to the test sample,

the loss L is maximized. To defend against adversarial examples at test time, adversarial

training proposes to solve the following min-max objective function during training

min
θ

(
1
N

N

∑
i=1

max
||δ ||<ε

(L(Fθ (xi +δ ),yi)) (38)

Where N is the number of training examples. In other words, the model with adversar-

ial training scheme is not learning the clean training samples but rather the perturbed or

adversarial version of the clean samples. Once the model is trained with the adversarial

examples, the model is considered to be robust against adversarial examples. Equation 38

can also be re-written as follows

min
θ

(
1
N

N

∑
i=1

(L(Fθ (xi +δ
∗),yi)) (39)

where, δ ∗ = argmax||δ ||<ε(L(Fθ (xi + δ ),yi). More specifically, adversarial training first

tries to find the optimal perturbations δ ∗ within some norm bound for a particular example

and then minimizes the loss function on that example.

The malicious backdoor sample can also be considered as a sample generated through

adding an imperceptible perturbation δatt to a randomly picked training sample x, i.e.,

xb = x+ δatt . In our case, the imperceptible perturbation δatt refers to the imperceptible
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backdoor pattern. This malicious sample is added to the training data with the attacker’s

chosen false label yb. On the other hand, our defensive sample is generated through adding

the defender’s chosen perceptible perturbation δ ∗de f to a randomly picked clean training

sample, i.e., xd = x+ δ ∗de f in the form of the defensive pattern. This defensive sample is

added to the training data with its true label y. The goal here is to force the CL model to

learn to correctly classify the defensive sample with the defensive perturbation δ ∗de f . Once

the model learns to disassociate the attacker’s noise in the presence of the defensive noise,

the model correctly classifies the malicious sample that contains both attacker’s noise (im-

perceptible) and the defender’s noise (perceptible).

Mathematically, if at a particular time step during the training of the CL model,

there are N original training samples, B malicious samples, and D defensive samples, the

CL model with our proposed Adversary Aware Continual Learning (AACL) framework

will then be minimizing the following objective function

min
θ

(
1

N +B+D
(

N

∑
i=1
L(Fθ (xi),yi)+

B

∑
j=1
L(Fθ (x j +δatt),

yb
j)+

D

∑
k=1
L(Fθ (xk +δ

∗
de f ),yk)))

(40)

The expression ∑
D
k=1L(Fθ (xk + δ ∗de f ),yk) in Equation 40 looks similar to the loss

function that adversarial training is trying to minimize in Equation 39. However, the adver-

sarial aware learning framework proposed against imperceptible backdoor training attacks

has the following major differences than adversarial training defense proposed against test

time adversarial examples:

• Adversarial training aims to learn – during training – the same or similar perturba-

tions that the attacker wants to add at test time. We argue that this generally imprac-

tical, as the defender (in CL setting or otherwise) does not usually have the luxury

to know the attacker’s pattern (perturbations) except perhaps that the pattern may
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or may not be imperceptible. IN our formulation, the CL defender aims to learn

a completely different but a stronger (perceptible) defensive pattern (perturbations)

during training. In other words, in adversarial training, the optimal perturbation δ ∗

in Equation 39 is identical to the actual perturbation δ provided to sample during

attack in Equation 37. On the other hand, in AACL, the optimal perturbation δ ∗de f in

Equation 40 is entirely different from the attacker’s perturbation δatt .

• In adversarial training, the defender provides adversarial perturbations to either all or

some fixed (high) proportion of the training samples because the defender knows that

there is no attack during training, the attack only happens at test time. In other words,

the adversarial training assumes that all of the training samples are correctly labeled,

which is not a good assumption to make, as there is always a chance of having few

mislabeled samples in the training data [110, 111, 112]. We, as a CL defender on the

other hand only add defensive pattern to a small amount of clean (correctly labeled)

training samples per class per task at a particular time-step.

• Adversarial training is known to be computationally ineffective as it needs to learn

every possible perturbation that exists in the perturbation space [113, 114, 115]. Our

adversarial aware continual learning framework, however, does not aim to learn the

attacker’s exact unknown imperceptible pattern (perturbations), it aims to learn an

entirely different but fixed and stronger (perceptible) pattern during training through

correctly labeled defensive samples. The stronger (perceptible) defensive pattern

when presented with the attacker’s weak (imperceptible) pattern in the test sample

at the same time, the CL model ignores the attacker’s pattern and thus provides the

correct prediction.

In summary, we can say that our proposed defensive framework is inspired by the

adversarial training framework, but our proposed framework is more efficient, realistic and

practical as compared to adversarial training.
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Chapter 6

Experiments & Results

In this chapter, we discuss various experiments that we designed to test our pro-

posed attack and defense approaches and the results obtained from those experiments. We

begin with discussing the experiments and results for attacking importance weighting based

domain adaptation approaches. We then discuss the experiments to attack and defend more

modern and sophisticated incremental / continual learning approaches through our pro-

posed adversary aware continual learning framework.

6.1 Attacking Importance Weighting Based Domain Adaptation

6.1.1 Attacking Logistic Regression Based Importance Estimation

We use a couple of synthetic datasets to demonstrate the vulnerability of logistic

regression based importance estimation to poisoning attacks, and subsequently the impact

of this attack on the final prediction results. The advantage of such synthetic datasets is that

they provide specific and precise control in the design of the dataset, allowing the algorithm

to be tested in specific configurations and scenarios that would be difficult or impossible

with real-world data that does not provide such control. We start with generating a simple

dataset, where 500 source and 500 target data samples are drawn from univariate Gaussian

distributions. Specifically, we have p1
tr(x) ∼ N (µ = 1.0,σ = 0.5),and p2

tr(x) ∼ N (µ =

2.0,σ = 0.5) for training data, and p1
te(x) ∼ N (µ = 1.5,σ = 0.25),and p2

te(x) ∼ N (µ =

2.5,σ = 0.25) for test data, where the superscripts 1 and 2 correspond to classes 1 and

2. The overall marginal distribution of the entire training data (i.e., the source domain),

and the entire test data (i.e., the target domain) are then ptr(x)∼N (µ = 1.5,σ = 0.9) and

pte(x) ∼ N (µ = 2.0,σ = 0.7), respectively, as shown in Figure 5. We note that labeled
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information is only available for training (source) data while test (target) data are unlabeled.

Figure 5

Training and Test Data Distributions
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We generate this dataset in such a way that there is a covariate shift between train-

ing and test data distributions, i.e., they differ only in their marginal distributions, but not

in conditional distributions. The goal of covariate shift adaptation techniques is to adapt

the training (source data) distribution towards the test (target data) distribution through

computing the importance ratio w(x) between the distributions. We use the logistic regres-

sion classifier based importance weighting to compute the importance ratio and adapt the

training distribution towards the test distribution as shown in Figure 6. Figure 6 shows

the original training data distribution (in red), the original test data distribution (in black),

and the adapted training data distribution using the logistic regression based importance

weighting (in purple) when the classifier is not under attack.
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Figure 6

Adapted Training Distribution Using LR Classifier Based Importance Estimation
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To demonstrate the vulnerability of the importance estimation procedure, we con-

sider both the perfect knowledge as well as the limited knowledge scenarios. Recall that

perfect knowledge scenario refers to the case when the attacker has access to the complete

original training dataset, whereas the limited knowledge scenario attacker has access to a

surrogate training dataset (a subset of the original training data). In the perfect knowledge

scenario, we vary the number of attack points added to the training data (1, 10, 15, 41, and

100), effectively varying the attack strength, and show the impact of the strength of the at-

tack on the overall procedure. For the limited knowledge case, we fix the number of attack

points added to the training data to 10, but vary the number of data points (cardinality) in

the training data to which attacker can have access to out of 1000 total samples from the

source and target data distributions (50, 100, 200, 250, 500). These experiments then show

the effect of the amount of adversary’s knowledge on the classifier performance.

First, let’s consider the perfect knowledge scenario where the attacker has access

to the entire dataset, i.e, all 1000 samples. We first randomly initialize the attack points,

add them into the training data with the labels of the opposite class, i.e., η = +1. Recall

that η represents a random class selector variable, such that η =−1 indicates that samples
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are drawn from the training data distribution ptr(x), and η =+1 indicates that samples are

drawn from the test data distribution pte(x). We run the algorithm mentioned in Algorithm

1 to obtain the final values of the attack points. For the gradient ascent procedure described

in Algorithm 1, we use a step size of α = 10 and a total number of steps of k = 100. Once

the attack points are determined, the optimal parameters {θ,b} are learned by the logistic

regression classifier, which is then used to estimate the importance ratio as defined in Equa-

tion 9. Finally, the estimated importance ratio is used to adapt the source data distribution to

target data distribution. Figure 7 shows the results, depicting the original source (training),

target (test) and the adapted distributions for various number of attack points. Figure 7a,

Figure 7b, Figure 7c, Figure 7d, Figure 7e show the results with 1, 10, 15, 41, and 100

attack points respectively. Compared to Figure 6, which shows the capability of the orig-

inal importance weighting (in the absence of an attack) in moving the source distribution

towards the target distribution, we observe from Figure 7 that the importance weighting

procedure is severely crippled with even a single attack point added to the training data.

This is because while the original algorithm did move the source distribution towards the

target distribution, the attacked algorithm failed to have any meaningful impact in moving

the source distribution towards the target distribution.
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Figure 7

Poisoning Importance Estimation With Perfect Knowledge Attack
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As the number of attack points increases, the adaptation of the training distribution

(shown in dotted blue lines in different sub-figures of Figure 7) gets even worse, moving
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away from the desired test distribution. This significant impact is perhaps not surprising,

given that the scenario described here (where the attacker has the complete knowledge of

the training and test data used) is indeed a worst case scenario. A more realistic scenario is

the limited knowledge attack scenario, where the attacker has access to only a subset of the

training data. Therefore, we now consider limited knowledge attack scenario as described

below.

For the limited knowledge attack scenario, we follow the same procedure and pa-

rameters as in the perfect knowledge scenario to attack the importance weighting technique,

but this time with the surrogate training data. This surrogate data is a subset of the original

1000 data samples. In this experiment, we keep the number of attack points fixed at 10, and

instead control the amount of (limited) knowledge by selecting 50, 100, 200, 250, and 500

samples as the surrogate training data. The results obtained with this limited knowledge at-

tack scenario are shown in Figure 8. Figure 8a, Figure 8b, Figure 8c, Figure 8d, Figure 8e

shows the results when the attacker has access to 50, 100, 200, 250, and 500 surrogate

training samples respectively. As seen in Figure 8a attacker with access to only 50 samples

of the training data now fails to prevent the importance sampling based domain adaptation

from properly adapting the source distribution towards the target distribution. Hence, this

attacker with 10 attack points is considerably less effective compared to the one that had

only one attack point, but operated under perfect knowledge scenario.
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Figure 8

Poisoning Importance Estimation With Limited Knowledge Attack
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As the number of samples to which attacker has access grows, the attacker becomes

increasingly more knowledgeable about the model, and its effectiveness – and hence the
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damage it inflicts – becomes more severe. The importance estimation procedure starts

failing in achieving its objective of adapting the source training distribution towards the

target test distribution. We do note that the impact of the attacker does not increase in

the last three sub-figures of Figure 8 (as the surrogate data size grows from 200 to 500),

because by the time the attacker has access to 200 data points, the damage inflicted already

reaches the level achieved under the perfect knowledge scenario for 10 attack points.

Beyond observing the ability of the attacker in corrupting the importance ratio, we

are also interested in observing the subsequent impact of the attack on the prediction results

of a trained classifier. Note that under attack, the classifier is trained on the re-sampled

training data with the attack points added into it (i.e., re-sampled from the adapted training

distribution). We use standard linear kernel SVM classifier for this task (though, one can

pick any supervised machine learning algorithm). We compute the prediction accuracy

for each of the different cases of both attack scenarios (perfect and limited knowledge)

we described above. The results are shown in Table 1 for the perfect knowledge attack

scenario, and in Table 2 for the limited knowledge attack scenario.
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Table 1

Prediction Accuracy for Perfect Knowledge Attack Scenario

Number of attack
points

Accuracy after re-sampling
from adapted training

distribution (without attack
points)

Accuracy after re-sampling
from adapted training

distribution (with attack points)

1 84.40% 76.00%

10 85.00% 74.40%

15 83.60% 75.80%

41 82.20% 68.60%

100 84.20% 66.60%

Table 2

Prediction Accuracy for Limited Knowledge Attack Scenario

Access to #
of points
from the

actual data

Number of
attack
points

Accuracy after
re-sampling from adapted

training distribution
(without attack points)

Accuracy after
re-sampling from adapted
training distribution (with

attack points)

50 10 86.20% 84.20%

100 10 83.40% 81.80%

200 10 81.80% 74.00%

250 10 85.60% 76.00%

500 10 84.20% 74.80%

We observe from Table 1 that under the perfect knowledge scenario, where the at-

tacker has full access to the data, the final classification accuracy is indeed severely affected
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even with only one optimal poisoned data point added: the classification accuracy drops

from 84.4% to 76%. From here, it goes from bad to worse with each added poisoned attack

point, with the classification accuracy dropping to 66.60% with 100 attack points. Hence,

in the case of perfect knowledge, the importance ratio based domain adaptation algorithm

can indeed be attacked – very effectively, in fact – with a simple poisoning attack. Ta-

ble 2, on the other hand, shows the scenario where the attacker has limited access to the

training data, through a surrogate dataset that has access to between 50 and 500 samples

of the 1000-point dataset. In these experiments, we fixed the number of attack points to

10 to determine the impact of the amount of knowledge the attacker has. In this limited

knowledge scenario, we see that the impact of the attack is less severe, when the number

of data points available to the attacker is less than 100, but the prediction accuracy drops

more significantly once the attacker’s knowledge increases with the number of data points

available to it.

To further demonstrate the effectiveness of poisoning attacks, we also generated

a 2-dimensional dataset. 200 training and 200 test data samples are generated from a 2-

dimensional Gaussian distributions, more specifically ptr(x) ∼ N (µ = [−2.5,0],Σ = I)

and pte(x)∼N (µ = [1,0],Σ = I) which are shown in Figure 9.
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Figure 9

2-Dimensional Training and Test Data Distributions for Poisoning Logistic Regression
Based Importance Estimation

For simplicity, we consider the perfect knowledge attack scenario with 10 attack

points added to the training data. The contour plots of the distributions are shown in

Figure 10, where red contour represent the original source data distribution, green con-

tour represents the target data distribution. The blue contour represents the adapted source

(training) distribution with no attack points, which – as expected is very close to the green

target data distribution. Finally, the black contour represents the adapted source (training)

distribution with 10 attack points added to the training data through running Algorithm

1. We observe from Figure 10 that the importance weighting procedure is again severely

compromised for 2-dimensional dataset when the importance weighting algorithm is un-
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der poisoning attack, as the black (adapted source distribution) fails to move towards the

original target distribution (in green).

Figure 10

Contour Plots Showing Training and Test Data Distributions for Poisoning Logistic Re-
gression Based Importance Estimation
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6.1.2 Attacking Unconstrained Least Squares Based Importance Estimation (uLSIF)

6.1.2.1 Synthetic Datasets for Importance Estimation. As before, we start

with a couple of synthetic datasets to demonstrate the vulnerability of importance esti-

mation using uLSIF to poisoning attacks. More specifically, we consider the following

three different scenarios, where 500 training and 500 test data samples are drawn from the

2-dimensional Gaussian distributions.

• Scenario 1: Training and test data distributions have the same mean but different
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variances, ptr(x)∼N (µ = [0,0],Σ = 0.5I) and pte(x)∼ N(µ = [0,0],Σ = 0.125I);

• Scenario 2: there is a difference between the means of the two distributions, but co-

variances are identical, ptr(x)∼N (µ = [0,0],Σ = I) and pte(x)∼N (µ = [0.5,0.7],

Σ = I); and

• Scenario 3: there is a more substantial difference between the means of the two

distributions, but both have same covariances, ptr(x) ∼ N (µ = [0,0],Σ = I) and

pte(x)∼N (µ = [1.3,1.3],Σ = I). The contour plots for these different scenarios are

shown in Figure 11.

Figure 11

Training and Test Data Distributions in First Scenario Figure 11a; Second Scenario Fig-
ure 11b; Third Scenario Figure 11c;
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To demonstrate the vulnerability of the importance estimation procedure, we obtain

the attack points strategically using our proposed mechanism described in Algorithm 2 for

each of the above scenarios. We also vary the number of attack points added to the training

data (1, 10, and 50), thereby effectively varying the attack strength, and show the impact of

the strength of the attack on the overall procedure in each case.

The procedure is as follows: we first randomly initialize the attack points, add them

into the training data, and run Algorithm 2 to obtain the final values of the attack points.

For the gradient ascent optimization strategy, we set step size β to 1.5, and number of steps

k to 100. Once the attack points are determined, they are added to the training data, and

the optimal parameters {αl} given by the uLSIF algorithm are then used to estimate the

importance values. We then calculate the absolute mean square error (MSE) between the

true importance values (calculating the true importance values for the synthetic datasets

is possible with the synthetic data since we have access to the true distributions) and the

predicted importance values; first when there is NO attack point in the training data and

then when there are attack points in the training data. The results are shown in Table 3 and

Table 4 respectively.

Table 3

Mean Square Error (MSE) Between the True Importance Values and the Predicted Impor-
tance Values (No Attack)

Dataset Scenarios Mean Square Error (MSE)

First Scenario 5.9055e-04

Second Scenario 0.0738

Third Scenario 0.0472
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Table 4

Mean Square Error (MSE) Between the True Importance Values and the Predicted Impor-
tance Values (with Attack)

Attack
points

MSE
(Scenario

1)

%
Increase
in MSE

MSE
(Scenario

2)

%
Increase
in MSE

MSE
(Scenario

3)

%
Increase
in MSE

1 6.6090e-04 0.0070% 0.0821 0.83% 0.0665 1.93%

10 0.0023 0.1709% 0.1415 6.77% 0.1540 10.68%

50 0.0056 0.5009% 0.1823 10.85% 0.2225 17.53%

Table 3 shows the absolute mean square error obtained between the true impor-

tance values and the importance values predicted by the uLSIF algorithm, when the actual

algorithm is not under attack. The smaller values obtained for MSE shown in Table 3 in-

dicate that uLSIF algorithm has done a good job in predicting the importance values, as

expected. Table 4 shows the MSE between the true importance values and predicted im-

portance values, but this time with different number of attack points added to the data for

each of the three scenarios. Table 4 also shows the percent increase in the error from the

value obtained when the algorithm was not under attack. As seen from Table 4, adding

even a single attack point – obtained strategically using our proposed attack strategy – in-

creases the absolute MSE between the true importance values and estimated importance

values using uLSIF for each of the three scenarios. The percent increase in the absolute

MSE is of course small when there is only one attack point added to the training data, but

the error increases considerably as the number of attack points also increases. For instance,

adding 50 attack points into the training data in Scenario 3 increases the error by 17.53%

from the original error. Note that the Scenario 3 represents a relatively more challenging

scenario than the other two scenarios. The original unconstrained least squares importance
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estimation algorithm without any attack points does a pretty good job in adapting training

distribution to test distribution. However, with 50 optimal attack points obtained using our

proposed strategy, the importance estimation process is severely crippled.

In Figure 12, we show that even a single attack point obtained using Algorithm

2 is indeed maximizing the attacker’s objective function. To do so, we plot the training

data samples (green circles), test data samples (blue circles), initial attack point (black di-

amond), the final attack point as obtained by Algorithm 2 (red diamond), and the contour

plot of the attacker’s objective function for Scenario 3. After 100 iterations (time steps)

of Algorithm 2, the initial attack point moves to the location where the attacker’s objec-

tive is maximum (the dark purple region in the contour plot of the attacker’s objective in

Figure 12).

Figure 12

Attacker’s Objective for Scenario 3 (With Single Attack Point)
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6.1.2.2 Real-world Dataset for Importance Estimation. In order to further

demonstrate the impact of attack points on importance estimation, we consider a real world
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Keystrokes dataset that is introduced in [116] and used as a streaming dataset in [116], [94],

and [117]. This 10-dimensional dataset contains information from the keystrokes dynam-

ics obtained from users who type a fixed password .tie5Roan1, followed by the Enter key.

The experiment is repeated 400 times in 8 sessions performed on different days. We use

the information obtained from two such sessions to construct our training and test batches.

Figure 13 shows the predicted importance values with no attack (blue line) and with attack

points (brown line) for the keystrokes dataset for 200 data samples. It can be seen that the

predicted importance value for each of the data sample with 10 attack points is generally

lower than the value with no attack. The absolute MSE value between the predicted impor-

tance values obtained without the attack points and the predicted importance values with

10 attack points added for Keystrokes dataset is 5.8031%.

Figure 13

Predicted Importance Values for Keystrokes Dataset
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6.1.2.3 Attacking Importance Estimation for Covariate Shift Adaptation. In

addition to demonstrating the vulnerability of importance estimation to poisoning attack,

we also want to explore the impact of attacking importance estimation on the covariate shift
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adaptation, i.e., the impact of the attack on the prediction results of a trained classifier. In

order to demonstrate such an impact, we consider synthetic as well as real world scenarios.

For synthetic dataset, we drew 500 training and 500 test data samples from 2-dimensional

Gaussian distributions, where both training and test data contain two classes; more specifi-

cally, we have p1
tr(x)∼N (µ = [0,0], Σ = 0.25I), and p2

tr(x)∼N (µ = [2,0], Σ = 0.25I)

for training data, and p1
te(x)∼N (µ = [0.5,1], Σ = 0.25I), and

p2
te(x)∼N (µ = [2.5,1], Σ= 0.25I) for test data, where the superscripts 1 and 2 correspond

to classes 1 and 2. The overall marginal distributions of training and test distributions are

then the bi-modal distributions, whose contour plots for training and test data distribution

are shown in Figure 14.

Figure 14

Training (Black Contour) and Test (Red Contour) Data Marginal Distributions

Note that the specific parameters of these distributions are chosen deliberately to

introduce a covariate shift between training and test data distributions. Given that labeled

information is only available for training data, training any standard machine learning clas-

sifier on this dataset will produce biased results when predicting the labels of the test data

due to the deliberately introduced covariate shift between the two. In particular, we con-

sider the logistic regression classifier here to predict the labels of the test data.

Covariate shift adaptation process weighs the loss function of the logistic regression
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classifier according to the importance values estimated by uLSIF to reduce the bias caused

by the covariate shift. uLSIF is able to reduce the bias effectively as long as the importance

estimation step is not under attack. When we attack the importance estimation process,

the prediction accuracy is adversely affected. These results are shown in Table 5: the

original test data prediction accuracy of the classifier trained on the training data without

covariate shift adaptation is 86%, which increases to 92.20% when there is no attack and

the importance values so estimated using uLSIF are used to weigh the loss function.

Table 5

Prediction Accuracy in Percentage

Dataset

No Impor-
tance

Weighting
(No

Attack)

With
Importance
Weighting

(No Attack)

With
Importance
Weighting
(1 Attack

Point)

With
Importance
Weighting
(10 Attack

Points)

With
Importance
Weighting
(50 Attack

Points)

Synthetic
Dataset

86.0% 92.20% 83.40% 74.20% 61.20%

Traffic
Dataset

77.22% 78.75% 72.08% 49.30% 38.47%

We then launch an attack on the importance estimation step of the uLSIF algorithm

by adding 1, 10, or 50 attack points obtained using the proposed attack strategy. The impact

on the prediction accuracy with the attack points are also shown in Table 5, where we ob-

serve that the accuracy of the classifier is noticeably affected even with only 1 attack point

– reduced from 86% to 83.40%. The drop in classification performance gets progressively

worse when we increase the number of attack points added to the training data: with 50

attack points, the classification performance drops to 61.20%.

Finally, in order to further demonstrate the effectiveness of the proposed attack
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strategy on the covariate shift adaptation, we also employ the real world traffic dataset.

Traffic dataset was first introduced in [118], which contains 5412 instances, 512 real at-

tributes and 2 classes – whether the traffic intersection is busy (class 1) or empty (class 2).

The images in this dataset are captured from a fixed traffic camera continuously observ-

ing an intersection over a period of two weeks. Some sample images of this dataset are

shown in Figure 15. We obtain training and test batches from the dataset in such a way that

training batch consists of the samples corresponding to images captured in a duration of

one and a half day (720 samples) and the test batch consists of the images corresponding

to the same duration (720 samples) but the following day and a half. The covariate shift

in the training and test batches is due to the changes in the scene that occur because of the

variations in illumination, shadows, fog, snow or even light saturation from oncoming cars.

We use training batch to train the logistic regression classifier and then use it to predict

the labels of the test data. Without covariate shift adaptation, the prediction accuracy is

77.22% as shown in Table 5. The uLSIF algorithm is then used to estimate the importance

values between the training and the test batches when there are no attack points added to

the training data. Those importance values are used to weigh the loss function of the lo-

gistic regression classifier during training, which is subsequently used to predict the labels

of the test data. The prediction accuracy receives a modest increase to 78.75%. We then

add 1, 10, and 50 attack points to the training data, as obtained using Algorithm 2. The

prediction accuracy with the attack points are also shown in Table 5, which shows that the

accuracy is severely affected with even a single attack point. Specifically, the classification

performance is reduced to 72.08% with one attack point. The drop in prediction accuracy

gets progressively more severe as we increase the number of attack points, dropping to

38.47% with 50 attack points.
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Figure 15

Traffic Dataset Samples

6.2 Adversary Aware Continual Learning (AACL): Attacking and Defending Mod-

ern Continual Learning Approaches

The previous sections discussed the experiments and results for attacking co-variate

shift adaptation approaches. Co-variate shift adaptation is a simpler yet related sub-field

of continual / incremental learning. In this section, we discuss the results obtained with

our proposed mechanism Adversary Aware Continual Learning (AACL) to defend mod-

ern and more sophisticated continual learning approaches. We evaluate our proposed

AACL defensive framework to defend various reply-based class incremental learning ap-

proaches against the adversarial imperceptible backdoor attacks also proposed and pre-

viously discussed in chapter 4. More specifically, we consider Deep Generative Replay

(DGR) [8], and Deep Generative Replay with Distillation [52, 11] as the examples of

generative replay-based class incremental learning algorithms, while Random Path Selec-

tion (RPS-net) [47], and Incremental task-agnostic metal learning (ITAML) [48] as ex-

act replay-based approaches. Recall that as mentioned before in chapter 2, RPS-net is a

hybrid approach that uses the strengths of architectural, regularization, and replay-based
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approaches to find an efficient solution to solve the problem of catastrophic forgetting in

continual learning. However, we show in this section that RPS-net is not robust against

our imperceptible backdoor attack. We then show that the robustness can be reasonably in-

creased using our proposed adversary aware continual learning defensive framework. We

consider the continual variants of commonly used CIFAR-10, and CIFAR-100, and MNIST

datasets. Continual variants of MNIST and CIFAR-10 both consist of 5 different tasks (in

ten classes), where each task represent a binary classification problem. Continual variant

of CIFAR-100 represents a more challenging scenario with 10 different tasks where each

task represents a 10-class classification problem. For all these datasets, continual learning

model is trained incrementally on different tasks. After training on all tasks, the goal is to

perform reasonably well on the test samples presented to the model from any task.

6.2.1 Defending Exact Replay-Based Continual Learning Approaches using AACL

When attacking CIFAR-10 dataset, we assume a continual learning setting that con-

sists of five tasks, each consisting on distinguishing two classes (out of a total of 10 classes);

the attacker can pick any of the five tasks of the continual learning scenario as its desired

target task. For now, we assume that the attacker’s target task is Task 1 (class 0 vs. class

1). The attacker inserts a small amount (1%) of malicious samples into the training data

of the target task. The attacker’s target class is Class 1, and its desired false label for class

1 is 0. The attacker’s attack pattern is an imperceptible rectangular frame of one pixel

width, inserted around the boundary of the image as shown in Figure 16a. The procedure

to generate imperceptible pattern is explained below. Note that the attack pattern shown in

Figure 16a is highlighted in red; however, the actual attack pattern as used in the experi-

ments is imperceptible.
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Figure 16

Imperceptible Attack Pattern & Perceptible Defense Pattern for CIFAR-10 Images

(a) (b)

To generate an imperceptible pattern for CIFAR-10 and CIFAR-100 images, we

use a frame of pixels in the image that are imperceptible to human eye. To do so, we set

r f to the original image with a frame whose values are set to one, and insert a backdoor

pattern to the image as the weighted sum of the clean image x and the framed image r f .

The weight of r f is set to ε and the weight of clean image x is set to 1− ε to obtain

xm = (1− ε) ∗ x+ ε ∗ r f . The imperceptibility of the backdoor pattern is controlled by ε:

smaller values make the pattern less noticeable to humans. A value of ε = 0.01 results in

a very imperceptible backdoor pattern. We use ε = 0.01 in our experiments to make the

backdoor pattern completely imperceptible to human eye. For visual purposes, a sample

clean image, framed image, an image with an invisible backdoor pattern (ε = 0.01), as well

as a visible pattern (with ε = 0.1) are shown in Figures Figure 17a , Figure 17b, Figure 17c,

and Figure 17d, respectively for CIFAR-10 dataset.
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Figure 17

Sample CIFAR-10 Images

(a) (b)

(c) (d)

To make the CL model robust to such an insidious attack, the defender also pro-

vides small amount of additional defensive samples in to the training data of the current

task. As the attacker’s target task and target class is unknown to the defender, the defensive

samples should cover all possible classes seen by the CL model so far until the current time

step including the classes seen in the previous task(s). More specifically, for CIFAR-10

dataset, the defender additionally inserts 500 clean (correctly labeled) defensive samples

from each class of each task (including both previous and current tasks) into the training

data at current time step. Note that the original CIFAR-10 dataset (without any malicious

and defensive samples) contains 5000 samples per class per task. The defender provides

its chosen defensive pattern to each defensive sample, which is perceptible (stronger) and

entirely different than the attacker’s unknown imperceptible (weaker) pattern. In our ex-

periments, the defensive pattern is a white (strong intensity) square pattern provided at the

bottom right corner of the defensive sample as shown in Figure 16b.
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The model is then trained on a set of training data containing original clean samples,

attacker’s unknown malicious samples, and the defensive samples during the training of

first task (attacker’s target task), and further trained on a set of clean and defensive samples

for the remaining four tasks (untargeted tasks). Once the CL model learns to correctly

classify the defensive samples containing stronger defensive pattern, the same defensive

pattern is then applied to all test samples at inference time. Those samples that contain

the attacker’s weaker imperceptible pattern when presented to the CL model along with

the stronger defensive pattern, the latter overpowers the former, allowing the CL model

to disassociate the image content with the imperceptible pattern, and hence mitigate the

misclassification caused by the attack.

Table 6 shows the individual task’s test time performance for both of the exact

replay-based continual learning approaches, i.e., ITAML and RPS-net evaluated on the

CIFAR-10 dataset. Results are presented with the mean and standard deviation computed

over 5 independent runs for three different settings; i) clean (no attack setting), ii) attack

(with attack only), and iii) defense (with attack and defense setting). The results show

that our proposed adversary aware continual learning (AACL) defensive framework con-

siderably improves the accuracy of the CL model for both of the algorithms. The defense

performance on attacker’s target task (Task 1) increases from 48.97% to 89.71%- an in-

crease of about 41% - for the ITAML algorithm. For RPS-net, the accuracy on the target

task increases from 33.09% to 63.53% giving an increase of about 30%.

83



Table 6

Test Accuracy (in %) of Exact Replay-Based Continual Learning Approaches on CIFAR-10

ITAML RPS-net

Tasks Clean Attack AACL Defense Clean Attack AACL Defense

Task 1 98.01±0.36 48.97±0.23 89.71±1.69 62.87±5.22 33.09±3.17 63.53±3.71

Task 2 89.44±0.71 88.60±0.38 82.30±1.47 45.48±2.49 46.41±5.56 48.30±2.39

Task 3 93.61±0.46 92.58±0.24 87.90±1.06 74.63±4.91 75.37±3.56 61.69±1.24

Task 4 97.60±0.27 97.07±0.27 94.26±0.46 86.19±1.77 86.72±5.32 80.84±1.80

Task 5 97.60±0.11 96.69±0.28 95.35±0.28 84.46±3.78 82.22±3.97 90.06±1.20

CIFAR-100 represents a more challenging dataset, which has 10 different tasks

in its continual learning variant: each task is a 10-class classification problem. During

training, the CL model is trained incrementally on these 10 different tasks, one task at a

time. Once the training is complete, the CL model’s goal is to correctly predict all 100

classes from these 10 tasks. As before, the attacker can pick any of the ten tasks as its

desired target task; without any loss of generality, we assume that the attacker’s target task

is Task 1, and the attacker’s desired target label is class 7 from Task 1. In other words,

the attacker attaches its invisible attack pattern to non-class-7 images and then assigns the

label ”class 7”. The attacker inserts 1% such malicious samples into the training data of

Task 1. Similar to CIFAR-10, the attacker’s pattern is the same imperceptible rectangular

frame of width 1, inserted in the perimeter of the image. As the attacker’s target task and

class are not known to the defender, the defender attaches its defensive pattern to some

small amount of defensive samples spanning all possible classes of each task seen thus far
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including both the current and previous task(s). In our experiment, for CIFAR-100 dataset,

the defender provides 100 additional correctly labeled defensive samples per class per task.

Note that the original CIFAR-100 dataset (without any malicious and defensive samples)

contains 500 samples per class per task.

The individual task’s test time performance for ITAML and RPS-net with CIFAR-

100 dataset are shown in Table 7. We see from Table 7 that even for the challenging

CIFAR-100 dataset, our proposed AACL defensive framework considerably improves the

accuracy for both of the exact replay-based continual learning algorithms. For ITAML,

the accuracy improves from 9.88% (attack setting) to about 44.14% (AACL defense set-

ting) and for RPS-net, the accuracy improves from 2.94% (attack setting) to about 30.38%

(AACL defense setting) for the attacker’s desired target, i.e., Task 1. Note that for ITAML,

we also observe a trade-off between natural accuracy on clean examples (examples from

clean untargeted tasks, i.e., Task 2 to Task 10 in both clean and attack setting) and their

corresponding AACL defense or robust accuracy on CIFAR-100 dataset, a common phe-

nomenon observed in the literature for adversarial training based defenses as well [119,

120, 121].
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Table 7

Test Accuracy (in %) of Exact Replay-Based Continual Learning Approaches on CIFAR-
100

ITAML RPS-net

Tasks Clean Attack AACL Defense Clean Attack AACL Defense

Task 1 80.62±0.51 9.88±1.46 44.14±2.59 34.34±3.78 2.94±0.13 30.38±0.43

Task 2 76.28±0.94 75.80±0.77 60.04±1.07 29.08±4.06 27.86±0.40 28.10±0.49

Task 3 76.76±0.89 76.68±0.52 65.30±0.54 40.36±2.36 45.24±4.13 46.86±0.60

Task 4 78.20±1.01 77.48±1.04 60.38±1.02 31.06±1.38 35.56±3.65 33.66±0.18

Task 5 78.90±0.69 76.94±0.79 63.02±0.47 36.84±1.60 41.68±2.94 36.78±0.64

Task 6 78.16±0.59 76.74±0.77 63.24±0.85 41.50±3.36 40.60±1.24 41.66±0.57

Task 7 77.64±0.97 76.24±0.82 63.48±0.72 47.64±2.14 48.02±2.80 33.88±0.62

Task 8 74.98±0.42 76.78±0.77 63.46±1.64 47.68±3.54 53.48±2.15 40.54±1.09

Task 9 80.12±0.41 77.70±1.14 62.99±1.13 62.26±2.54 60.26±5.10 58.72±0.53

Task 10 86.88±0.69 88.36±0.37 79.84±1.09 69.62±3.27 67.92±6.51 63.40±0.58

We also consider the continual variant of MNIST dataset. Similar to CIFAR-10

dataset, MNIST also consists of 5 different tasks, where each task is a binary classification

problem. Same as before, we assume that the attacker’s target task is Task 1 with class 0 as

the attacker’s desired false label. The attacker provides a small amount of malicious sam-

ples into the training data of its target task. The malicious samples contain an imperceptible

pattern, which is a square pattern inserted at the top left corner of the image. Sample im-

age with attacker’s imperceptible pattern is shown in Figure 18a. For the MNIST dataset,

the smaller imperceptible pattern is enough to achieve 100% attack success rate, however,
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with our adversary aware continual learning framework, the attack performance on MNIST

dataset significantly drops (significant increase in the robust performance) as demonstrated

later in this section. Note that the red circle is added only to highlight the location of the at-

tacker’s imperceptible pattern as it is not possible to visually see the pattern through human

eye. The red circle does not exist in the actual attack samples.

Figure 18

Imperceptible Attack Pattern & Perceptible Defense Pattern for MNIST Images

(a) (b)

To counter this attack, the defender provides additional defensive samples in to

the training data. As the defender is unaware about the target task and the target class,

the defensive samples span all possible classes seen thus far including both current and

previous task(s). For MNIST dataset, the defender provides 500 clean (correctly labeled)

defensive samples per class for each task into the training data. Note that clean MNIST

dataset contains more than 5000 samples per class per task. The defensive samples contain

the perceptible defensive pattern, which similar to CIFAR-10 and CIFAR-100 datasets,

is a white square pattern added at the bottom right corner of the image. Sample image

with defender’s perceptible pattern is shown in Figure 18b. Note that unbeknownst to the

defender, the perceptible pattern for MNIST dataset does not overlap with the attacker’s

imperceptible pattern, which further demonstrate the promising nature of our proposed

Adversary Aware Continual Learning (AACL) framework. AACL reasonably improves

the robust accuracy of the model even when there is no overlap between the attacker’s

87



imperceptible pattern and the defensive perceptible pattern.

Table 8 shows the individual tasks’ test time accuracy for both ITAML and RPS-net

on MNIST dataset. We note that the improvement in robust accuracy is more significant

from the attack performance. For both ITAML and RPS-net, our proposed AACL defensive

framework achieves robust (defense) accuracy closer to the clean accuracy for the target

task. For ITAML, the accuracy increases from 49.73% to 95.01% and for RPS-net, the ac-

curacy increases from 47.97% to 98.05%. Note that the attack success rate for this MNIST

based continual dataset is approximately 100% but our defensive framework completely

eliminates the impact of the attack causing the attack success rate to drop to 0%.

Table 8

Test Accuracy (in %) of Exact Replay-Based Continual Learning Approaches on MNIST

ITAML RPS-net

Tasks Clean Attack AACL Defense Clean Attack AACL Defense

Task 1 98.99±0.64 49.73±2.10 95.01±3.26 95.29±0.49 47.97±3.82 98.05±0.21

Task 2 95.71±0.78 96.94±0.57 96.96±1.72 74.87±0.86 75.25±0.72 86.44±1.25

Task 3 97.57±0.78 98.75±0.33 98.73±0.33 74.94±0.81 75.75±1.20 84.13±0.95

Task 4 96.69±1.19 97.05±1.42 98.12±1.01 88.49±0.66 88.52±1.43 92.82±1.09

Task 5 96.60±0.76 98.32±0.32 98.51±0.51 99.21±0.11 99.21±0.17 98.99±0.09

6.2.1.1 Defending Other Tasks. In order to show that our proposed adversary

aware continual learning (AACL) defensive framework improves the robust accuracy of the

continual learning algorithms regardless of which task is being attacked by the attacker, we
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run the same AACL framework with the exact same setting different times, each time pick-

ing a different target task other than Task 1 and target class as the attacker’s desired target

task and target class, respectively. Table 9 shows that for each target task, our proposed

AACL framework reasonably improves the test time accuracy on ITAML and RPS-net us-

ing CIFAR-10 dataset. We report the attack and defense performances for different cases

in Table 9, where each case representing a different target task picked by the attacker. It

can be seen that regardless of which task is being attacked by the attacker, our defensive

framework increases the test time performance to about 30-40% for each target task.

Table 9

Test Accuracy (in %) of Exact Replay-Based Continual Learning Approaches on CIFAR-10
for Defending Task 2 to Task 5

ITAML RPS-net

Target Task Attack AACL Defense Attack AACL Defense

Task 2 44.30 76.89 26.20 40.60

Task 3 50.00 83.50 23.50 52.61

Task 4 49.80 89.50 38.55 74.90

Task 5 48.95 86.55 29.85 52.45

Table 10 shows similar results for the more challenging CIFAR-100 dataset on both

ITAML and RPS-net algorithms. We observe that our proposed defensive framework im-

proves the robust accuracy of exact replay-based algorithms regardless of the target task.

For most of the tasks, the improvement in performance is about 20-30% more than the

attack performance. At a minimum, the increase in test time performance is about 9% for
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this complex dataset.

Table 10

Test Accuracy (in %) of Exact Replay-Based Continual Learning Approaches on CIFAR-
100 for Defending Task 2 to Task 10

ITAML RPS-net

Target Task Attack AACL Defense Attack AACL Defense

Task 2 12.40 39.80 1.40 19.60

Task 3 20.40 48.40 3.90 28.60

Task 4 16.80 46.09 1.25 20.31

Task 5 16.99 45.00 6.73 20.50

Task 6 16.20 46.50 2.50 25.60

Task 7 12.69 50.80 4.90 23.45

Task 8 15.89 45.60 6.10 16.95

Task 9 11.40 43.19 4.30 13.77

Task 10 9.30 43.90 4.11 13.10

For completeness, we also run the same experiments for the continual variant of

MNIST dataset and the results are shown in Table 11. We see that the improvement in

robust (defense) accuracy for both of the exact replay-based algorithms is considerable for

all the tasks. More specifically, our proposed defensive framework provides 20% minimum

improvement in the robust (AACL defense) accuracy from the attack setting. We note that

specifically for RPS-net algorithm when evaluated on Task 2 to Task 10 of CIFAR-100

dataset, the improvement in defense accuracy on later tasks starting from Task 8 is not as

considerable as it is for the previous tasks. One possible reason is the exposure of the model
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to an increasingly less number of defensive samples from the later task(s) as compared to

the previous task. A plausible solution to improve the accuracy on the later task is to add an

additional task-dependent parameter that progressively provides more defensive samples as

the model sees more and more tasks in the future.

Table 11

Test Accuracy (in %) of Exact Replay-Based Continual Learning Approaches on MNIST
for Defending Task 2 to Task 5

ITAML RPS-net

Target Task Attack AACL Defense Attack AACL Defense

Task 2 57.94 85.11 44.02 89.76

Task 3 59.78 99.15 43.73 67.72

Task 4 53.07 91.13 50.85 73.14

Task 5 58.19 78.72 53.00 83.76

6.2.2 Defending Generative Replay-Based Continual Learning Approaches using AACL

Generative replay-based continual learning approaches generate the pseudo-samples

from the previous task(s) and replay these samples with the training data of the current task

to achieve continual learning. These approaches are useful as they remove the necessity

of storing the exact (original) samples from the previous task(s) however, their success is

limited to simple MNIST based continual datasets. These approaches fail for more com-

plex datasets primarily due to the inability of the generator to generate high quality samples

from the previous tasks even without any attack [10, 101]. Therefore, the vulnerabilities
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of these generative replay based approaches are only considered for continual variant of

MNIST dataset in this work.

We show that our proposed AACL defensive mechanism also significantly improves

the robust performance of generative replay-based continual learning approaches. As be-

fore, we first assume that the attacker’s target task is Task 1 with class 0 as its desired

target label. The attacker inserts a small amount of malicious samples containing attacker’s

imperceptible pattern (a square pattern added at the top left corner of the image) into the

training data of the target task. To defend against this attack, the defender also provides

small amount of additional defensive samples into the training data. It is important to re-

emphasize again that the defender is not aware of the target task and target class of the

attacker, therefore the defensive samples consists of a set of all possible classes seen thus

far. As before, we provide 500 clean (correctly labeled) defensive samples per class per

task into the training data. The defensive samples contain the defensive perceptible pattern,

which is a white square pattern added at the bottom right corner of the image.

Table 12 shows the individual tasks’ test time performance of two generative replay

based continual learning approaches (deep generative replay (DGR), and deep generative

replay with distillation (DGR with distillation)) under three different settings: i) clean (no

attack); ii) attack (with attack only); iii) AACL defense (with attack and defense) evaluated

on the continual variant of the MNIST dataset. We see from Table 12 that our proposed de-

fensive mechanism significantly improves – and in fact completely recovers – the test time

performance on the attacker’s target task, Task 1. More specifically, the attack success rate

drops to almost 0% with our defensive mechanism thus achieving 100% robust (defense)

performance for both of the generative replay-based class incremental learning algorithms,

i.e., DGR and DGR with distillation. More specifically, the defense accuracy increases

from 42.39% to 91.06% on DGR, and the defense accuracy is increased from 44.18% to

94.66% for DGR with distillation.
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Table 12

Test Accuracy (in %) of Generative Replay-Based Continual Learning Approaches on
MNIST

DGR DGR with distillation

Tasks Clean Attack AACL Defense Clean Attack AACL Defense

Task 1 89.41±1.64 42.39±0.53 91.06±1.89 95.29±0.49 44.18±0.88 94.66±0.64

Task 2 88.20±0.78 85.65±1.02 90.68±0.30 89.87±0.46 86.24±0.59 90.45±0.26

Task 3 88.24±2.03 86.35±0.91 88.08±0.85 88.94±0.31 89.14±0.76 91.57±1.51

Task 4 95.17±0.19 94.75±0.36 96.02±0.12 96.49±0.35 96.15±0.18 96.37±0.29

Task 5 97.18±0.32 97.28±0.19 96.33±0.16 96.91±0.21 96.94±0.28 94.55±1.03

6.2.2.1 Defending Other Tasks. We also evaluate the test time performance

when other tasks are being targeted by the attacker and the results are presented in Ta-

ble 13, which shows that our proposed defensive mechanism (AACL defense) considerably

improves the test time performance for different target tasks. The improvement in robust

performance from the attack scenario to defense scenario is approximately 20% for all the

cases, which shows the promising nature of our proposed adversarial aware continual learn-

ing (AACL) defensive framework. We also note that the increase in defense performance

from the clean performance for the later tasks is not as considerable as it is for the previ-

ous tasks because the model sees less number of defensive samples from the later tasks.

As mentioned before, one possibility to improve the defense performance on later tasks

is to progressively provide more defensive samples in the later tasks via a task dependent

parameter.
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Table 13

Test Accuracy (in %) of Generative Replay-Based Continual Learning Approaches on
MNIST for Defending Task 2 to Task 5

DGR DGR with distillation

Target Task Attack AACL Defense Attack AACL Defense

Task 2 53.09 88.74 57.30 77.91

Task 3 58.48 76.41 57.47 73.00

Task 4 59.82 74.97 54.25 72.05

Task 5 58.90 71.41 53.56 76.60
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Chapter 7

Conclusion & Future Work

This work demonstrates that continual learning approaches are extremely vulner-

able to adversarial attacks. We first considered the simplest continual learning setting of

covariate shift adaptation, where the model only needs to adapt itself from the training

distribution to a different test distribution. We propose a bi-level optimization based poi-

soning attack strategy to attack covariate shift adaptation approaches. More specifically, on

commonly used logistic regression based importance estimation and unconstrained least

squares based importance estimation procedures, we demonstrated that these approaches

are vulnerable to the proposed poisoning attack strategy. We have shown that under per-

fect attack knowledge scenario, co-variate shift adaptation is severely compromised with

the insertion of even a single attack point obtained using the proposed attack strategy, and

– perhaps not surprisingly – the impact gets only worse with increased number of attack

points.

More importantly, we have shown that the more practical and modern continual

learning approaches are also extremely vulnerable to poisoning attacks. Specifically, we

utilized the backdoor poisoning attack strategy to adversely impact the performance of

continual learning (CL) algorithms. We showed that an attacker can take advantage of a

CL algorithm’s very ability to continuously learn new information over time, and use that

ability against itself by forcing to retain even the smallest amount of misinformation in

the form of adversarial backdoor pattern. We hence showed that, just like human brain

can be forced to learn misinformation while learning sequentially, so can CL models when

tasked to learn under continual learning settings. To make the attack more stealthier, our

attack strategy uses a completely imperceptible backdoor pattern and provides it to only

1% of the training data of any of its chosen single task. Even with this small amount of
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imperceptible misinformation, the attacker can easily induce false learning with pin-point

targeted damage, and force the CL model to forget any task and misclassify the instances

of any class as any other class of the attacker’s choosing.

To defend such a serious and insidious imperceptible backdoor attack to CL models,

a novel defensive framework is proposed in this work. We term our defensive framework as

adversary aware continual learning (AACL). The framework similar to the imperceptible

backdoor attacks, uses a small amount of defensive (decoy) samples to force the continual

learning (CL) models to learn a pattern, more specifically, a fixed defensive pattern, which

is i) entirely different than the attacker’s unknown imperceptible pattern and, ii) stronger

(perceptible) than the attacker’s pattern. While the attacker’s goal is to associate its im-

perceptible pattern with its chosen false target label, the defender’s goal is to remove that

association using an overpowering defensive pattern. After training, with an image in-

cluding both patterns presented to the model in a given test sample, the model pays more

attention to the core features of the original image along with the fixed defense pattern to

make its decision, thereby ignoring the attacker’s pattern and thus correctly classifying the

test sample.

We demonstrated the success of our proposed defensive framework using various

continual learning algorithms and datasets. Moreover, we showed that our proposed frame-

work can defend the continual learning algorithms regardless of which task or what time

step the attack happens. We believe that this is our first critical step to ensure robustness

in practical continual learning algorithm, which is of paramount importance to achieve the

goal of artificial general intelligence (AGI).

To summarize, the main contributions of this dissertation are as follows

• We proposed a poisoning attack strategy to adversely impact the performance of

covariate shift adaptation approaches.

• We utilized the backdoor poisoning attack strategy to implant small amount of misin-

formation in the form imperceptible backdoor pattern in the continual learning mod-
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els. The misinformation is used to cause the targeted misclassification at test time.

• We proposed a novel defensive framework employing a defensive (decoy) samples

to mitigate the impact of the imperceptible backdoor attacks in the CL model. We

called our framework as Adversary Aware Continual Learning (AACL).

7.1 Summary of Future Work

We envision our future work to cover the following aspects

1. We will propose an optimization strategy to find a defensive pattern that is optimal

for the specific model under attack and optimally defend it against any adversarial

attacks.

2. We will explore different strategies to equally improve the robust (defense) perfor-

mance on all the tasks. Note that ideally we want to achieve a robust (defense)

performance to become exactly equal to the clean performance on a given task.

3. Other forms of adversarial attacks needs to be evaluated against CL approaches for

instance clean label imperceptible backdoor attacks need to be designed to obtain

an even stealthier attack setting. Generalized defensive mechanism also needs to be

proposed that can defend not only imperceptible backdoor attacks proposed in this

work but also any type of threat to the CL models.
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Appendix A

Derivations of Poisoning Importance Estimation

Derivation of Poisoning Logistic Regression Classifier Based Importance Esti-

mation. The Logistic Regression classifier expresses the conditional probability p(η |x) by

employing a parametric model of the following form

p(η |x) = 1
1+ e−(θT x+b)

= hθ,b(x) (41)

where θ,b are the parameters to be learned by minimizing the negative log-likelihood

L(θ,b) given as

L(θ,b) =−
ntr

∑
i=1

(η tr
i log(hθ,b(xtr

i ))+(1−η
tr
i )log(1−hθ,b(xtr

i ))) (42)

where η tr
i is the corresponding label for an ith training instance xtr

i . The attacker’s goal is to

maximize the loss function with respect to the attack samples under the constraint that the

original parameters of the model are still obtained by minimizing the actual loss function.

The attacker’s goal then can be characterized in terms of the objective functionW as shown

below
maxxcW = L(θ,b)

sub ject to θ,b = argmin
θ,b

L(θ,b)
(43)
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Therefore, the attacker wants to calculate ∂W
∂xc

in order to achieve its objective, which we

derive as follows

∂W
∂xc

=
∂

∂xc
[− 1

ntr

ntr

∑
i=1

(η tr
i log(hθ,b(xtr

i ))+(1−η
tr
i )log(1−hθ,b(xtr

i )))]

=− 1
ntr

ntr

∑
i=1

[(
η tr

i
hθ,b(xtr

i )
−

1−η tr
i

1−hθ,b(xtr
i )

)(hθ,b(xtr
i )(1−hθ,b(xtr

i ))
∂

∂xc
((θT xi +b)))]

=− 1
ntr

ntr

∑
i=1

[(η tr
i −hθ,b(xtr

i ))(θ
T ∂xi

∂xc
+xT

i
∂θ

∂xc
+

∂b
∂xc

)]

=
1

ntr

ntr

∑
i=1

(hθ,b(xi)−ηi)(xT
i

∂θ

∂xc
+

∂b
∂xc

)

(44)

The formula shown above is not simple to compute because we do not know ∂θ
∂xc

and ∂b
∂xc

.

In order to find these, we use the Karush-Kuhn-Tucker (KKT) condition of the inner opti-

mization problem. The KKT stability condition of logistic regession (LR) classifier states

that at optimal xc, the objective function L(θ,b) is stable, i.e. the gradient of L(θ,b) with

respect to θ and b is zero. Now following the approach described by Biggio et al. in [55],

an assumption is made here that states that the KKT condition under perturbation of xc

remains satisfied. Since LR classifier tries to optimize L(θ,b) for any input value of xc, it

is sensible to assume that ∂L
∂θ and ∂L

∂b remain equal to zero after a small change in the value

of xc. Having made that assumption, the followings are true

∂

∂xc
(
∂L
∂θ

)T = 0

∂

∂xc
(
∂L
∂b

) = 0
(45)

Since we know that

(
∂L
∂θ

)T =
1

ntr

ntr

∑
i=1

(hθ,b(xi)−ηi)xi

∂L
∂b

=
1

ntr

ntr

∑
i=1

(hθ,b(xi)−ηi)

(46)
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which implies that

∂

∂xc
(
∂L
∂θ

)T =
1

ntr

ntr

∑
i=1

[xi
∂

∂xc
(hθ,b(xi)−ηi)+(hθ,b(xi)−ηi)

∂xi

∂xc
] =

1
ntr

ntr

∑
i=1

[xi
∂

∂xc
(hθ,b(xi))+(hθ,b(xi)−ηi)

∂xi

∂xc
]

(47)

Now, given that the attack point xc is added into the training data, we have:

∂

∂xc
(
∂L
∂θ

)T =
1
n
[

n

∑
i=1,i ̸=xc

xi(hθ,b(xi))(1− (hθ,b(xi)))
∂

∂xc
(θTxi +b)

+xc(hθ,b(xc))(1− (hθ,b(xc)))
∂

∂xc
(θTxc +b)]

+
1
n
[

n

∑
i=1,i ̸=xc

(hθ,b(xi)−ηi)
∂xi

∂xc
+(hθ,b(xc)−ηc)

∂xc

∂xc
]

=
1
n
[

n

∑
i=1,i ̸=xc

xi(hθ,b(xi))(1− (hθ,b(xi)))(θ
T ∂xi

∂xc
+xT

i
∂θ

∂xc
+

∂b
∂xc

)

+xc(hθ,b(xc))(1− (hθ,b(xc)))(θ
T ∂xc

∂xc
+xT

c
∂θ

∂xc
+

∂b
∂xc

)]+
1
n
[(hθ,b(xc)−ηc)I]

=
1
n
[

n

∑
i=1,i̸=xc

xi(hθ,b(xi))(1− (hθ,b(xi)))(xT
i

∂θ

∂xc
+

∂b
∂xc

)

+xc(hθ,b(xc))(1− (hθ,b(xc)))(θ
T +xT

c
∂θ

∂xc
+

∂b
∂xc

)]+
1
n
[

n

∑
i=1

((hθ,b(xc)−ηc)I]

=
1
n

n

∑
i=1

(hθ,b(xi))(1− (hθ,b(xi)))xixT
i

∂θ

∂xc
+

1
n

n

∑
i=1

(hθ,b(xi))(1− (hθ,b(xi)))xi
∂b

∂xc

+
1
n
(hθ,b(xc))(1− (hθ,b(xc)))(xcθ

T )+
1
n
[

n

∑
i=1

((hθ,b(xc)−ηc)I]

(48)

where n = ntr + 1: total number of training instances with one attack point xc added into

it, and I represents an identity matrix. Following the same procedure for solving ∂

∂xc
(∂L

∂b ),

we get the following

∂

∂xc
(
∂L
∂b

) =
1
n

n

∑
i=1

(hθ,b(xi))(1− (hθ,b(xi)))xT
i

∂θ

∂xc
+

1
n

n

∑
i=1

(hθ,b(xi))(1− (hθ,b(xi)))
∂b

∂xc

+
1
n
(hθ,b(xc))(1− (hθ,b(xc)))(θ

T )

(49)
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If we set the derivatives obtained in Equation 48 and Equation 49 to zero and re-

arrange the resulting equations in matrix form, we get the following linear system


Σ µ

µT β




∂θ
∂xc

∂bT

∂xc


=−1

n


M

r


(50)

where

Σ = 1
n ∑

n
i=1 K(xi)xixT

i

µ = 1
n ∑

n
i=1 K(xi)xi

β = 1
nK(xi)

M = (hθ,b(xc)−ηc)I+(hθ,b(xc))(1−hθ,b(xc))xcθ
T

r = (hθ,b(xc))(1−hθ,b(xc))θ
T

and K(x) = (hθ,b(x))(1− hθ,b(x)) The derivatives ∂θ
∂xc

and ∂b
∂xc

can be finally obtained by

solving the linear system given by Equation 50.

Derivation for Poisoning Unconstrained Least Squares Importance Estima-

tion. Recall from chapter 3 that unconstrained least squares importance estimation models

the importance ratio w(x) through a linear-in-parameter model as

ŵ(x) =
t

∑
l=1

αlφl(x) (51)

where t is the number of parameters, α = (α1,α2, ....,αt) are the parameters to be learned

from the data samples, and {φl(x)}tl=1 are the basis functions such that φl(x) > 0 ∀x. The

parameters α are determined by minimizing the following objective function

Ĵ(α) =
1
2
αT Ĥα− ĥT

α+
λ

2
αTα (52)
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where, Ĥ is a txt matrix whose elements are Ĥl,l′ =
1

ntr
∑

ntr
i=1 φl(xtr

i )φl′(xtr
i ), and ĥ is a t-

dimensional vector with elements ĥl =
1

nte
∑

nte
j=1 φl(xte

j ). Note that a quadratic penalty term

λ

2α
Tα is added to the objective function for regularization purposes. The goal of an at-

tacker is then to maximize the objective function defined in Equation 52 with respect to the

attack point under the constraint that the parameters of the linear model are still obtained

by minimizing the same objective function. Mathematically, the goal of an attacker can be

represented as a bi-level optimization problem shown below:

W = maxxc Ĵ(α)

sub ject to α= argmin
α

Ĵ(α)
(53)

The partial derivative of W with respect to the attack points xc using multivariate

chain rule is as follows

∂W
∂xc

= (Ĥα)T ∂α

∂xc
− ĥT ∂α

∂xc
+λαT ∂α

∂xc
+

1
2
αT (

∂ Ĥ
∂xc

)α.

(54)

∂ Ĥ/∂xc and ∂α/∂xc in Equation 54 need to be known in order to compute ∂W
∂xc

. To

compute these, we use KKT stability conditions of the inner optimization problem, which

states that
∂

∂xc
(
∂ Ĵ(α)

∂α
) = 0 (55)

Starting with Equation 19, and computing the derivative in Equation 55, we arrive at

∂α

∂xc
=−[Ĥ+λ I]−1 ∂Ĥ

∂xc
α (56)

Equation 56 also requires computing ∂Ĥ/∂xc. As mentioned previously that Ĥ is t x t

matrix with Ĥl,l′ =
1

ntr
∑

ntr
i=1 φl(xtr

i )φl′(xtr
i ). We pick the Gaussian kernel as our basis func-
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tions φ , leading us to the following definition for Ĥ

Ĥl,l′ =
1

ntr

ntr

∑
i=1

exp(−
∥∥xtr

i −cl
∥∥2

+
∥∥xtr

i −cl′
∥∥2

2σ2 )

f or l, l′ = 1, ..., t

(57)

where, σ denotes the bandwidth of the Gaussian kernel, cl,cl′ denotes the t kernel centers

picked randomly from test data instances, and xtr
i represents the ntr total training instances.

Now, let’s assume an attacker inserts a single attack point xc into the training data which

will cause the matrix Ĥ to be redefined as follows

Ĥl,l′ =
1

ntr +1
[

ntr

∑
i=1,i̸=xc

exp(−
∥∥xtr

i −cl
∥∥2

+
∥∥xtr

i −cl′
∥∥2

2σ2 )

+exp(−∥xc−cl∥2 +∥xc−cl′∥2

2σ2 )]

f or l, l′ = 1, ..., t

(58)

Equation 58 defines a matrix Ĥ when a single attack point xc is added to the train-

ing data. Now the derivative of Ĥl,l′ w.r.t the attack point xc will cause the first summation

term in the above expression to go to zero as it does not involve xc and we will have the
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following expression

∂ Ĥl,l′

∂xc
=

1
ntr +1

∂

∂xc
[exp(−∥xc−cl∥2 +∥xc−cl′∥2

2σ2 )]

=
−1

2σ2(ntr +1)
exp(−∥xc−cl∥2 +∥xc−cl′∥2

2σ2 )

∂

∂xc
[(xc−cl)

T (xc−cl)+(xc−cl′)
T (xc−cl′)]

=
−1

2σ2(ntr +1)
exp(−∥xc−cl∥2 +∥xc−cl′∥2

2σ2 )

∂

∂xc
[xT

c xc−xT
c cl−cT

l xc +cT
l cl +xT

c xc−xT
c cl′−cT

l′xc +cT
l′cl′]

=
−1

2σ2(ntr +1)
exp(−∥xc−cl∥2 +∥xc−cl′∥2

2σ2 )

∂

∂xc
[2xT

c xc−2xT
c cl +cT

l cl−2xT
c cl′+cT

l′cl′]

=
−1

2σ2(ntr +1)
exp(−∥xc−cl∥2 +∥xc−cl′∥2

2σ2 )[4xc−2cl−2cl′]

=
−1

σ2(ntr +1)
exp(−∥xc−cl∥2 +∥xc−cl′∥2

2σ2 )[2xc−cl−cl′]

(59)

So, finally we have the following

∂ Ĥl,l′

∂xc
=

−1
σ2(ntr +1)

exp(−∥xc−cl∥2 +∥xc−cl′∥2

2σ2 )[2xc−cl−cl′] (60)

where l, l′ = 1,2, ..., t. If we put the above expression into Equation 56, we can finally find

the required Equation 54 to compute ∂W
∂xc

in order to find the optimal attack point xc.

114



Appendix B

Attacking Regularization Based Continual Learning (CL) Approaches

Regularization based CL approaches are useful as they neither store data from the

previous tasks nor add more layers or nodes to the network with each new incoming task,

and thus avoid data storage and architectural complexity issues. However, with a fixed ca-

pacity single network and with no access to previous data at all – not even in the pseudo

form – these approaches do struggle for challenging datasets under continual learning set-

tings. More specifically, regularization-based approaches only perform well for continual

variant of MNIST dataset and fail for more complex and realistic datasets such as continual

variant of CIFAR-10, and CIFAR-100.

We evaluate our proposed attack strategy to attack regularization based continual

learning approaches and demonstrate that these approaches although not practical, however,

for those cases where they show reasonable performance, their test time performance can

be strongly impaired by an intelligent attacker.

To attack regularization based approaches using MNIST based continual dataset,

we assume without any loss of generality that the target task of the attacker is Task 1,

and the attacker’s desired false label is class 0. In this setting, we create a small number

of malicious samples by inserting an imperceptible backdoor pattern into only 1% of the

training data and assigning them a false label of 0. The falsely-labeled malicious samples

(containing the imperceptible backdoor pattern) are then added to the clean training data,

and the model is trained using regularization-based continual learning (CL) algorithms.

At inference time, we compute test accuracy for each task when there is “no attack”

and when there is an “attack”. Note that we consider the two new attack scenarios; First

scenario (worst-case) considers a setting where the attacker provides the attack or malicious

backdoor samples in to the training data of every tasks except the attacker’s targeted first
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task; Second scenario (realistic) considers a case where the attacker provides the malicious

backdoor samples in to the training data of the single task more specifically in the last task

in our case.

Recall that the attacker’s objective is to compromise Task 1 at test time; hence, in

all tasks except the first task, test examples are presented to the model without the backdoor

pattern, in order to monitor the model’s ability to retain performance on untargeted tasks.

For the targeted task, 100% of the test examples from each class – except class 0 – are

presented to the model with imperceptible backdoor tagged images. The attacker’s goal

here is to have each of these tagged images to be misclassified as class 0. In other words,

the attacker takes control of the classifier, by forcing it to classify any pattern it desires (by

tagging it with an imperceptible backdoor image) to be misclassified as any class it wishes

(class 0, in this example). The test accuracy for each task, as well as the average accuracy

across all tasks, under no attack and with attack are presented in Table A1 for the first attack

scenario and in Table A2 for the second attack scenario when attacking regularization-

based CL approaches. All attack results are presented with mean and standard deviation

computed over ten independent runs. Table A1 and Table A2 show that – in both attack

scenarios– the malicious data with imperceptible backdoor pattern are sufficient to force all

the regularization approaches to forget the first task, as the models’ 88-89% performance

under no attack drops to about 10-14% when attacked for Task 1. Note that the drop in

performance in the first attack scenario is more significant in the case of first attack setting,

which is expected as the attack samples are provided in more tasks but most noteworthy

the merely 1% of malicious samples provided in the only last task are more than enough

to cause targeted forgetting on the attacker’s target task, i.e., Task 1. Also note that the

performances on non-targeted tasks are not affected, as intended.
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Table A1

Test Accuracy (in %) of Regularization-Based Continual Learning Approaches on MNIST
with 1% Malicious Samples in Every Task except the First

EWC SI Online EWC

Tasks Clean Attack Clean Attack Clean Attack

Task 1 88.17 9.67 ± 0.04 88.32 11.11 ± 0.35 87.08 9.66 ± 0.04

Task 2 96.37 96.27 ± 0.18 95.13 95.28 ± 0.72 95.08 96.08 ± 0.32

Task 3 97.02 97.00 ± 0.09 95.25 95.22 ± 0.36 95.89 96.08 ± 0.24

Task 4 96.74 96.79 ± 0.07 94.31 94.03 ± 0.41 95.75 95.29 ± 0.25

Task 5 95.91 95.96 ± 0.09 91.65 90.84 ± 1.14 94.21 93.15 ± 0.32

Table A2

Test Accuracy (in %) of Regularization-Based Continual Learning Approaches on MNIST
with 1% Malicious Samples in only the Last Task

EWC SI Online EWC

Tasks Clean Attack Clean Attack Clean Attack

Task 1 88.17 10.01 ± 0.20 88.32 14.11 ± 0.53 87.08 11.25 ± 0.27

Task 2 96.37 96.27 ± 0.03 95.13 96.08 ± 0.08 95.08 95.98 ± 0.10

Task 3 97.02 97.00 ± 0.03 95.25 95.22 ± 0.06 95.89 96.08 ± 0.05

Task 4 96.74 96.79 ± 0.07 94.31 94.03 ± 0.05 95.75 96.29 ± 0.03

Task 5 95.91 95.96 ± 0.05 91.65 90.84 ± 0.01 94.21 93.15 ± 0.08
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