
Rowan University Rowan University 

Rowan Digital Works Rowan Digital Works 

Theses and Dissertations 

6-6-2023 

COMPUTATION OFFLOADING DESIGN FOR DEEP NEURAL COMPUTATION OFFLOADING DESIGN FOR DEEP NEURAL 

NETWORK INFERENCE ON IoT DEVICES NETWORK INFERENCE ON IoT DEVICES 

Asmika Boosarapu 
Rowan University 

Follow this and additional works at: https://rdw.rowan.edu/etd 

 Part of the Computer Sciences Commons, and the Mathematics Commons 

Recommended Citation Recommended Citation 
Boosarapu, Asmika, "COMPUTATION OFFLOADING DESIGN FOR DEEP NEURAL NETWORK INFERENCE 
ON IoT DEVICES" (2023). Theses and Dissertations. 3128. 
https://rdw.rowan.edu/etd/3128 

This Thesis is brought to you for free and open access by Rowan Digital Works. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more information, please 
contact graduateresearch@rowan.edu. 

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=rdw.rowan.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=rdw.rowan.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/3128?utm_source=rdw.rowan.edu%2Fetd%2F3128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu


COMPUTATION OFFLOADING DESIGN FOR DEEP NEURAL NETWORK
INFERENCE ON IoT DEVICES

by

Asmika Boosarapu

A Thesis

Submitted to the
Department of Computer Science

College of Science and Mathematics
In partial fulfillment of the requirement

For the degree of
Master of Science in Computer Science

at
Rowan University

April 26, 2023

Thesis Chair: Nancy Tinkham, Ph.D., Assistant Professor, Department of Computer
Science

Committee Members:
Shen Shyang Ho, Ph.D., Associate Professor, Department of Computer Science

Ning Wang, Ph.D., Assistant Professor, Department of Computer Science



© 2023 Asmika Boosarapu



Dedications

I would like to dedicate this work to my supportive husband, family, and friends,

without you this would not be possible.



Acknowledgements

I would like to particularly thank my thesis advisor Dr. Nancy Tinkham whose

generous guidance and support have shaped this work and helped for finishing the thesis

process after Dr. Ning Wang, my former advisor, took leave of absence.

I express my deep sense of gratitude to my former thesis advisor and committee

member Dr. Ning Wang and shall remain grateful for the significant time, effort and

support he devoted towards teaching me and guiding me throughout the project.

I would like to sincerely thank Dr. Shen Shyang Ho for serving as a committee

member and also guiding me throughout the journey at Rowan University.

This thesis is supported by National Science Foundation CPS Program Award

Number 2128341.

iv



Abstract

Asmika Boosarapu
COMPUTATION OFFLOADING DESIGN FOR DEEP NEURAL NETWORK

INFERENCE ON IoT DEVICES
2022-2023

Nancy Tinkham, Ph.D.
Master of Science in Computer Science

In recent times, advances in the technologies of Internet-of-Things (IoT) and Deep

Neural Networks (DNN) have significantly increased the accuracy and speed of a variety

of smart applications. However, one of the barriers to deploying DNN to IoT is the

computational limitations of IoT devices as compared with the computationally

expensive task of DNN inference. Computation offloading is an approach that addresses

this problem by offloading DNN computation tasks to cloud servers. In this thesis we

propose a collaborative computation offloading solution, in which some of the work is

done on the IoT device, and the remainder of the work is done by the cloud server. There

are two components to this collaborative approach. First, the input image to the DNN is

partitioned into multiple pieces, allowing the pieces of the image to be processed in

parallel, speeding up the inference time. Second, the DNN is split between two of its

layers, so that layers before the split point are processed on the IoT device, and layers

after the split point are processed by the cloud server. We investigated several strategies

for partitioning the image and splitting the DNN, and we evaluated the results using

several commonly-used DNNs: Lenet-5, AlexNet, and VGG-16. The results show that

collaborative computation offloading sped up the inference time of IoT devices by

35-40% as compared with non-collaborative methods.
v



Table of Contents

Abstract................................................................................................................................v

List of Figures...................................................................................................................viii

List of Tables.......................................................................................................................x

Chapter 1: Introduction........................................................................................................ 1

Chapter 2: Background........................................................................................................ 5

2.1 AI on IoT..................................................................................................................5

2.2 Challenges of Deploying DNN on IoT.................................................................... 6

2.3 Naive Computation Offloading (Cloud Only Processing).......................................8

2.4 IoT Only Computing (On Device Mobile Only Computing).................................. 9

2.5 AI Serving Applications.......................................................................................... 9

2.5.1 TensorFlow Extended................................................................................... 11

2.5.2 NVIDIA Triton Inference Server..................................................................13

2.5.3 KFServing.....................................................................................................14

Chapter 3: Literature Review.............................................................................................15

3.1 Mobile Edge Computing........................................................................................17

3.2 Computation Offloading Strategies....................................................................... 17

3.2.1 Collaborative Computing..............................................................................18

Chapter 4: Problem Setting................................................................................................21

4.1 Neural Network Architecture.................................................................................21

vi



Table of Contents (Continued)

4.2 System Model........................................................................................................ 25

4.2.1 Collaborative Computation Offloading........................................................ 26

4.3 Problem Formulation............................................................................................. 29

Chapter 5: Experiment Design...........................................................................................40

5.1 Dataset Description................................................................................................40

5.1.1 MNIST.......................................................................................................... 40

5.1.2 IMAGENET..................................................................................................41

5.2 Dataset Preprocessing............................................................................................ 41

5.3 Experimental Setup................................................................................................42

5.4 Experimental Parameters....................................................................................... 43

5.5 Performance Measures...........................................................................................46

5.6 Experimental Design and Implementation.............................................................46

Chapter 6: Empirical Results............................................................................................. 47

6.1 Lenet-5 Results...................................................................................................... 48

6.2 AlexNet Results..................................................................................................... 55

6.3 VGG-16 Results.....................................................................................................61

Chapter 7: Analysis and Discussion.................................................................................. 68

Chapter 8: Conclusion and Future Work........................................................................... 70

References..........................................................................................................................71

vii



List of Figures

Figure Page

Figure 1. Lenet-5 Architecture...........................................................................................24

Figure 2. AlexNet Architecture..........................................................................................24

Figure 3. VGG-16 Architecture......................................................................................... 25

Figure 4. No Computation Offloading...............................................................................26

Figure 5. DNN-Split with 2*2 Partition Computation Offloading (Layer 1 Split Point).. 27

Figure 6. DNN-Split with 2*2 Partition Computation Offloading (Layer 2 Split Point).. 28

Figure 7. DNN Inference Time for No Computation Offloading...................................... 32

Figure 8. Inference Time for DNN-Split Computation Offloading................................... 33

Figure 9. DNN-2*2 Partition with Layer 1 Split Computation Offloading.......................34

Figure 10. DNN-2*2 Partition with Layer 2 Split Computation Offloading.....................35

Figure 11. DNN-2*2 Partition with Layer 3 Split Computation Offloading..................... 36

Figure 12. Lenet-5 Impact of Bandwidth on DNN Inference Time...................................48

Figure 13. Lenet-5 Impact of Split Point on DNN Inference Time................................... 49

Figure 14. Lenet-5 Effect of Input Partition Strategy on DNN Inference Time................ 50

Figure 15. Lenet-5 Impact of Client Speed on DNN Inference Time................................51

Figure 16. AlexNet Bandwidth Impact on DNN Inference Time......................................55

Figure 17. AlexNet Impact of Split Point on DNN Inference Time.................................. 56

Figure 18. AlexNet Input Partition Strategy Effect on DNN Inference Time................... 57
viii



List of Figures (Continued)

Figure Page

Figure 19. AlexNet Client Speed Impact on DNN Inference Time...................................58

Figure 20. VGG-16 Impact of Bandwidth on DNN Inference Time................................. 61

Figure 21. VGG-16 Split Point Impact on DNN Inference Time......................................62

Figure 22. VGG-16 Input Partition Strategy Impact on DNN Inference Time................. 63

Figure 23. VGG-16 Client Upload Speed Impact on DNN Inference Time......................66

ix



List of Tables

Table Page

Table 1. The Detailed View of Best Results of Lenet-5.................................................... 53

Table 2. The Detailed View of Best Results of AlexNet................................................... 59

Table 3. VGG-16 Bandwidth Impact on Inference Time...................................................62

Table 4. Inference Time for Different Split Point.............................................................. 64

Table 5. VGG-16 Impact of Client Speed on Inference Time........................................... 67

Table 6. Comparison of Best Results of Lenet-5, AlexNet, and VGG-16.........................68

x



Chapter 1

Introduction

The Internet of Things (IoT) and Deep Neural Networks (DNN) are two rapidly

growing fields in the world of technology. The IoT refers to the interconnected network

of physical devices and objects, such as smartphones, smart appliances, and even

vehicles, that are able to exchange data with each other over the internet. DNN, on the

other hand, are a type of artificial intelligence (AI) that are designed to mimic the

structure and function of the human brain to perform complex tasks like image

recognition, natural language processing and speech recognition.The growth of IoT and

DNN is due to a combination of factors, including advancements in hardware and

software technology, the availability of big data, and the increasing demand for

automation and intelligent decision-making. With the rise of smart homes, smart cities,

and autonomous vehicles, the demand for IoT and DNN technologies is only expected to

continue to grow.

Deep Neural Networks have been widely used in many smart applications

because of their superior performance. Processing of intelligent applications is usually

done in the cloud, where all the data collected in the mobile device is transferred to the

cloud over a wireless network. The end devices we use for these intelligent applications

generate a lot of data, and its processing is done in the cloud, where data analysis is done,

and final results are sent back to the mobile devices/end devices. For this entire process

1



DNN takes a lot of computational resources, resulting in computational pressure on the

cloud, high latency and energy consumption and high bandwidth. Uploading large

volumes of high resolution data from end devices to cloud servers is not always desirable,

as it takes a lot of computational resources, such as high bandwidth, resulting in high

energy consumption when the network connection is poor.

There are other techniques, such as IoT only processing with no computation

offloading, which have gained popularity with their improved scalability and overall

performance. IoT only processing even improves the privacy of various applications, as

there are no data transfers between end device and cloud [4]. It processes the entire data

in the end device itself, which is really cumbersome. IoT devices are limited by their

battery life and require a lot of memory, which is really a big concern to deal with. DNN

structures are large and cannot be easily loaded to IoT devices which have low power and

limited computation capability [1]. But the IoT only processing approach does not require

transferring a huge amount of data from the end device to the cloud, leading to less

latency in the end device only processing approach. DNN has huge structures and

requires a lot of computational resources such as memory and battery life to

accommodate them in the IoT devices. It takes a lot of time to process, so processing

should be conducted in the cloud servers for faster results. End devices generate data

faster than they can process the data. Computation can be performed at the end device

only if we have significant resources such as computational resources for handling large

amounts of data and enough battery life.

2



To address memory related problems of neural networks, different solutions have

been proposed such as pruning to change the structure of existing neural networks [6] and

sparsification techniques [5]. In recent years quantization approaches have been used to

further improve the neural network structures to fit into the resource-constrained edge

devices [7]. These approaches did not perform well due to their performance degradation

and required a lot of retraining.

By considering both advantages and disadvantages of cloud and mobile

approaches, it is better to utilize both of them to minimize the latency, maximize the

accuracy and make the inference faster. That can be done with collaborative computing.

Collaborative computing [2] performs part of the processing in the edge device and the

rest in the cloud server. So it will reduce the burden on both the end device and the cloud

server by sharing the load between them. This increases the throughput of the overall

processing by keeping up the results compared to cloud only and mobile only approaches.

Deep neural networks are huge structures containing a series of layers, and the

layers at the early stage are especially heavy in terms of their features that take a large

amount of input and generate huge outputs. To make inference faster with less energy

consumption, DNN execution must be distributed properly across edge and cloud

clusters. They can be partitioned at any layer to perform processing both at cloud and

mobile which makes inference faster compared to cloud only approaches [3].

Collaborative Computing uses a split layer strategy to perform the execution of

heavy featured layers on resource constrained edge devices. It also uses partition

3



technique, where the input is divided into subparts. Overall, this improves the inference

by processing the heavy featured layers on edge then offloads the partial results to the

cloud.

In this thesis, we implement our proposed collaborative computing approach to

make inference faster on cloud and edge servers. We perform extensive experiments on

three neural networks Lenet-5, AlexNet and VGG-16, using real-world datasets such as

MNIST and IMAGENET. The purpose is to compare the results between partitioning and

without a partitioning strategy. Our proposed framework has the better results in terms of

faster inference and improved accuracy.

This thesis is organized in the following manner. In chapter 2, we elaborate the

cloud only processing problem as well as IoT only processing problem, how

collaboration can be done between cloud and IoT to make inference faster on IoT

devices. In chapter 3, we talk about previous work on cloud only processing methods,

IoT only processing methods, and collaborative computing methods. The proposed

collaborative computing with partitioning the neural network into parts and its

methodology, experimental scenarios, with their implementation, and related issues are

described and elaborated in chapter 4 and chapter 5. In chapter 6, we present extensive

experimental results. Analysis of results and discussions are discussed in chapter 7.

Chapter 8 is our thesis conclusion including possible future work.

4



Chapter 2

Background

In this chapter we describe the role of AI on IoT, challenges faced by IoT to

process the DNN, and how collaborative computing is used to handle issues with

memory, latency and increase overall accuracy. We also focus on some of the AI serving

applications and common serving frameworks, such as TFX, TF serving and NVIDIA

Triton inference server.

2.1 AI on IoT

The current trend in Artificial Intelligence (AI) is training large scale neural

network models using huge amounts of data, then deploying them in real time to tackle

even more complex tasks and challenging applications [16]. The challenge of complex AI

applications is that there exists a gap between the huge amount of data and deep learning

neural networks. There should be a connection from the edge input to the cloud server.

Generally data is collected through edge devices, and machine learning outputs are

communicated to users. Very vast structures of DNN makes it difficult to store them on

low power edge devices due to the edge devices limited computation capability.

Moreover, deep learning models are growing larger extensively, so storing them on

resource constrained edge devices is even more challenging.

There is a huge demand for deep neural networks with Deep Learning (DL)

Technology. The diversity and rapid proliferation of deep learning algorithms and models

were developed to help us in various complex tasks [12] such as computer vision tasks
5



[13], natural language processing and machine translation [14], and speech recognition

where Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN)

were widely used [11]. There are also revolutionary advancements in the fields of IoT,

autonomous driving and robotics. AI and Internet of Things (IoT) devices over the past

ten years have transformed the way we live [10]. There are a lot of new techniques

emerging in Deep Learning to enrich the growth of IoT.

The Collaboration of AI and IoT has significantly improved the quality of our day

to day lives [11]. The rapid development of DL makes it possible for IoT systems to run

complex artificial intelligent applications even though they have limited resources. DL

strongly promotes the growth of IoT, where IoT has a variety of sensors, cameras, radars,

LiDars, and microphones. This makes it more challenging to DNN. All the sensors are

responsible for continuously sensing the environment, and the edge device is responsible

for sending the data to the cloud servers for processing, where the cloud servers are

deployed with DNN to analyze the data and process it to extract the useful information

from it.

2.2 Challenges of Deploying DNN on IoT

The deployment of DNN’s in IoT devices have various challenges which need to

be addressed.

● Most IoT devices have limited computational power, memory, and battery life.

DNNs are computationally intensive, and therefore, they may not be able to run

efficiently on IoT devices. To overcome this challenge, several optimization

6



techniques can be used, such as pruning, quantization, and compression, which

can reduce the size and complexity of the DNN model.

● IoT devices typically have limited data storage capacity, which may pose a

challenge for storing large DNN models and their associated parameters. One way

to address this issue is to use cloud-based solutions, where the DNN models can

be stored and accessed remotely.

● IoT devices are often deployed in dynamic and unpredictable environments,

which may lead to fluctuations in network connectivity and power supply. This

may affect the performance of DNN models.

● IoT systems consist of different numbers of sensors which are located in edge

devices, where the sensors stream high quality information to the cloud server.

This is a voluminous data transfer from the edge device to the cloud server, which

requires a good amount of bandwidth and high bit rate. IoT devices often have

limited communication bandwidth, which may make it challenging to transmit

large amounts of data between the devices and the cloud. This may affect the

overall running time of DNN models. If the network bandwidth is low, then there

could be a performance bottleneck, and low transmission speeds lead to an energy

bottleneck. Thus, it is really important to have an efficient approach that processes

the data at edge before sending the whole high quality data to the server, that

reduces the delay and makes the inference faster.

7



● Another problem is the inefficiency; that is, the lack of ability of IoT. If there is a

lot of data, IoT may not provide real time and high precision results [15], as they

are computationally resource constrained.

There are also techniques that can be used to overcome these challenges and

enable efficient and effective deployment of DNN on IoT devices.

2.3 Naive Computation Offloading (Cloud Only Processing)

Most of the inference tasks such as computer vision and video analysis have been

improved with the progress of deep learning along with data processing techniques such

as cloud computing.

Cloud computing has become increasingly popular for processing DNN, due to its

flexibility, scalability, and cost-effectiveness. Cloud computing has greatly helped in

achieving such tasks in a variety of fields, for example, automatic driving, where a

vehicle camera captures scenes from the surroundings and streams the large volumes of

data to the cloud server, which performs object detection and recognition for the vehicle.

The cloud only approach requires large data transmission from the edge device to cloud

servers, which incurs a lot of overhead, high latency and energy costs. Moreover,

performance depends on network status and availability of cloud, which is so

unpredictable. Cloud only computing suffers from privacy issues, as it involves

interaction between cloud and client devices.

8



Here, inference time is the total time required to transmit the data from the client

to the cloud server and cloud processing time. The transmission time depends on various

factors like bandwidth, network speed.

2.4 IoT Only Computing (On Device Mobile Only Computing)

Input to the various intelligent applications is often generated in the mobile

devices. Traditionally, the data collected through low power devices at the client is

offloaded to the cloud server for processing. Sending data from client to cloud is always

not a good idea, because it results in a lot of transmission costs and end to end delays.

Sometimes it is even preferable to execute DNN on mobile devices (IoT). There are

different problems with this kind of solution. As DNN have huge architectures and have

various layers it is quite difficult to deploy them on mobile devices which are really

resource limited. There have been an abundance of compression techniques used to

deploy DNN on resource-constrained mobile devices, such as pruning, optimization, and

sparsification. These, however, are flawed, because they involve excessive overhead and

spend a lot of time retraining the neural networks to fit them to the mobile devices.

In recent times, on-device mobile computation has proved significant advantages

in terms of its scalability and maintaining privacy of data. It ensures good performance if

it has a relatively good amount of resources to process data.

2.5 AI Serving Applications

AI serving applications refers to a software system designed to serve and manage

deep learning models in a production environment. These applications are typically used
9



in scenarios that require real-time or near-real-time decision making, such as for IoT

devices. AI serving application for DNN is a process of deploying a trained DNN model

into production to provide real-time prediction or decision-making capabilities. Here are

some examples of AI serving applications:

DNN models can be trained to recognize objects, people, or activities in images

and videos. These models can be used by AI-serving applications to offer real-time

picture and video recognition capabilities, such as object detection for autonomous

vehicles or facial recognition for security.

DNN models may be trained to comprehend and produce natural language using

natural language processing. These models can be used by AI serving apps to deliver

real-time experiences, including chatbots or speech recognition.

DNN models can be taught to spot fraudulent activity in financial transactions.

These models can be used by AI serving apps to offer real-time fraud detection

capabilities, such as flagging questionable transactions for examination.

Based on sensor data, DNN models can be taught to forecast when equipment is

likely to break down. These models can be used by AI systems to offer real-time

predictive maintenance features, such as notifying maintenance teams when equipment

needs to be maintained.

10



2.5.1 TensorFlow Extended

A platform for creating complete deep learning (DL) pipelines, including data

validation, preprocessing, training, and serving, is called TFX (TensorFlow Extended)

[28]. TensorFlow, a Google-developed open-source machine learning framework, is

intended to work with it. Developers may deploy and serve TensorFlow models in

production environments thanks to TFX's TFX Serving service. It offers a unified and

integrated method to control the entire procedure, from model deployment to data

preparation. It can speed up the development process and guarantee that DNN models are

deployed effectively and dependably in real-world settings.

Pros:

● Provides an integrated and unified way to manage the entire DL pipeline.

● Easy to integrate with other TFX components.

● Provides efficient and low-latency inference.

● Supports both gRPC and REST APIs.

Cons:

● Requires some knowledge of TFX and TensorFlow.

● Steep learning curve.

● Limited support for non-TensorFlow models.

11



To help developers deploy and serve their TensorFlow models in real-world

settings, TFX offers a number of AI serving applications. Some of the AI serving

applications offered by TFX are listed below:

● TensorFlow Serving: TFX incorporates TensorFlow Serving. Through a gRPC or

REST API, it offers a mechanism to install and serve TensorFlow models in

real-time production settings. TensorFlow models can be exported and deployed

to TensorFlow Serving using built-in components from TFX.

● TFX Model Analysis: TFX Model Analysis offers a way to keep track of how

TensorFlow models are doing in real-world settings. It gives developers the ability

to use visualization tools to assess the fairness, accuracy, and other metrics of

their models.

● TFX Metadata: In production situations, TFX Metadata offers a means to

manage the metadata of TensorFlow models. To ensure the reproducibility and

traceability of their ML pipelines, it enables developers to track the provenance,

versioning, and other metadata of their models.

● Kubeflow Pipelines: An AI serving platform for designing and deploying ML

workflows, Kubeflow Pipelines is built on Kubernetes. Since TFX is linked with

Kubeflow Pipelines, developers may use Kubeflow Serving to deploy their

TensorFlow models.

Developers may deploy and maintain TensorFlow models in production

environments with these AI serving applications offered by TFX, ensuring the scalability,

dependability, and performance of their ML operations.
12



2.5.2 NVIDIA Triton Inference Server

An open-source platform called NVIDIA Triton Inference Server [27] is used to

provide deep learning models created with a variety of frameworks, including

TensorFlow, PyTorch, and ONNX. It offers a highly effective and scalable method for

deploying and managing deep learning models in real-time settings. It offers an adaptable

and expandable framework for serving DNN models quickly and with little latency. The

following are the main characteristics of the Triton Inference Server for DNN:

Advantages:

● Supports various deep learning frameworks, including TensorFlow.

● Provides a scalable and high-performance way to serve models.

● Easy to integrate with other NVIDIA libraries and platforms.

● Supports both gRPC and REST APIs.

Disadvantages:

● Requires some knowledge of NVIDIA hardware and software.

● Limited support for non-NVIDIA environments.

● May require specialized hardware for optimal performance.

Organizations seeking to offer DNN models with high speed and low latency

frequently use it because of its flexibility, scalability, and optimization capabilities.

13



2.5.3 KFServing

A Kubernetes-based system called KFServing [26] is used to serve deep learning

models created with a variety of deep learning frameworks, including TensorFlow.

Advantages:

● Provides a scalable and portable way to deploy and manage machine learning

models.

● Supports various ML frameworks, including TensorFlow.

● Easy to integrate with Kubernetes and other cloud platforms.

● Provides efficient and low-latency inference.

Disadvantages:

● Requires some knowledge of Kubernetes and machine learning.

● Steep learning curve.

● Limited support for non-Kubernetes environments.

14



Chapter 3

Literature Review

To find the solution of making inference faster, different approaches were

proposed. One of them is the IoT only approach. Since the end device is the primary

source of input data, this approach executes DNN at the edge. This forces the entire DNN

to fit into the edge device itself, which may lead to serious loss of accuracy due to its

limited set of resources such as bandwidth, transmission speed, memory constraints, and

processing speed [17].

The second approach is distributed processing, which distributes DNN models

across edge and cloud. There are several approaches to distributed processing, including

cloud only processing, cascading edge cloud processing, multi edge approach, and

collaborative computing.

The cloud only processing approach performs the inference only at the cloud,

which requires the high volume of high resolution data to be transferred to the cloud

server. The data transfer introduces overhead as it consumes a lot of network resources

and additional processing power. It also introduces high transmission cost and end-to-end

latency, if there are any bandwidth limitations. As this approach involves transferring

data, this may also impose privacy related problems. The approach of cascaded edge

cloud computing divides the tasks into subtasks where half of the tasks are executed in

edge . The edge generated outputs are transferred to cloud to run the rest of the subparts.

15



The other solutions are DNN-split computation offloading and collaborative

computing with 2*2, 3*3 and 4*4 partition computation offloading. In DNN-split

computation offloading, the neural network is divided into 2 parts and executes half of it

in the local end device and forwarding the results to the cloud for further processing. This

solution gives good inference time as it does not need to send the raw data to the cloud.

Instead it performs half of the computation in the end device and then transmits partial

results to the cloud by reducing the burden on the cloud. cloud takes the results and

processes them to get the complete result.

The other solution which makes the inference even faster is collaborative

computing, where we partition the input and split the neural network. Rather than

processing the entire input, the collaborative computing approach allows us to partition

the input into some parts. Possible parts are 2*2, 3*3 or 4*4. These parts are then given to

the neural network for processing. If the partitioning strategy is 2*2, then there are 4

parts. Each part has some common overlapped information.

In DNN-split with 2*2, 3*3 and 4*4 partition computation offloading, DNN is

split at a particular convolution layer. Let us say if the split point is layer 2 (second

convolution layer), up to that split point all the early layers are computed at IoT/end

device, and later layers are computed in the cloud. Therefore, in a DNN-split with 2*2

partition offloading, the input is partitioned into four parts. All the four parts are given to

the first layer of the DNN, which executes the parts simultaneously; the results of all the

parts are subsequently given to next layers of DNN till a particular split point later results

are concatenated. DNN continues to perform the ongoing computation if there is any.
16



Finally it does the classification task. Among all the possible solutions, collaborative

computing gives better results by making the inference faster.

3.1 Mobile Edge Computing

Several proposals for Mobile Edge Computing (MEC) have been made [20], [21].

In order to execute tasks and deliver services, MEC pushes computing, caching and

networking functions towards the network edges, reducing needless transmission delay

[22], [23], [24]. However, due to the communication between the cloud server and end

devices, which results in additional transmission overhead and a delay, MEC introduces

additional transmission overhead and delays that cannot be ignored due to MEC’s slow

transmission speed and large amount of data (such as video) .

3.2 Computation Offloading Strategies

With advantages and disadvantages of both cloud only processing and mobile

device only processing, it is a good idea to use the benefits of both techniques to make

inference faster without the loss of accuracy. Unlike cloud only processing, computation

offloading offloads data partially to the cloud by partially processing in the IoT (local

mobile device). In simple terms, the resource-constrained mobile device performs some

computation at its end and then offloads the result to the cloud server, where it does the

rest of the processing. Deep neural networks in general are huge architectures consisting

of various layers. Kang et al. [9].

Recent research has examined computation offloading, in which part of the task is

calculated on IoT end, to decrease the total run time of DNN [19]. The rest is offloaded to
17



the cloud server [19]. A DNN model is divided into layer-level subtasks for partial

offloading, which processes a model simultaneously in the cloud server and an IoT end

device according to the relevant processing dependencies. The DNN partial computation

offloading consists of three steps. The end device partially converts a DNN model into an

intermediate feature layer in the first stage. The end device's intermediate result from its

computation is transferred to the cloud server in the second stage. The third stage is

where the cloud server continues to run the DNN model and gets the results of the final

inference.

The intermediate DNN layers are substantially smaller in data size, and shorter

transmission times are the justifications for transmitting the intermediate feature layer

data rather than the raw data[19], [25]. As a result, partial computation offloading can

drastically cut down on the time required for DNN inference.

The inference time here is the sum of local processing time (IoT device

processing time), transmission time from IoT to cloud, and cloud processing time.

3.2.1 Collaborative Computing

Collaborative computing involves partitioning the input along with splitting the

DNN into some small sub-layers. The sub-layers work in parallel to each other. Here is

the detailed process: The input to the DNN is first divided into some partitions. The DNN

has several layers which can be further divided into numerous smaller subgroups at some

splitting point.

18



The partitioned input is given to the first convolution layer of the DNN where all

the partitions of the inputs are processed parallel to each other. The output of the first

layer is given as input to subsequent layers; i.e., layer l's output is the same as layer l+1's

input. Multiple layers can be integrated together in the sub-convolutions across layers to

operate as a single unit. The execution of this unit, which is referred to as a task, is

independent of all other tasks. For a consistent input and output, all tasks must use the

same sub convolutions. Each job also requires knowledge of each layer's individual

weights.

Each independent task can be offloaded to the cloud server for computing after

computing on the IoT device. That makes the full utilization of resources of edge device

and cloud server by minimizing the inference time.

The inference time here is the sum of local processing time and transmission time

from edge to cloud and cloud processing time. The difference between partial offloading

and collaborative computing is that the input in collaborative computing is divided into

some parts and processed parallely.

The following steps describes the general idea of collaborative computing

algorithm with advantages:

1. Collaborative computing splits the DNN into sub groups which are independent

of each other and processed in parallel to each other.

19



2. The split strategy performs the splits vertically in a grid form instead of horizontal

layers which reduces the memory footprint and overhead regardless of the number

of sub groups (partitions).

3. It is a parallel approach that does not rely on centralized data synchronization to

reduce overhead.

4. DNN takes the input, which is divided into partitions: 2*2, 3*3 or 4*4. The

partitions here are overlapped that maximizes the reuse of data between adjacent

partitions to make inference faster and improve the performance.

5. Partitions are distributed between cloud and edge servers and processed . The

results are gathered to make the prediction at the cloud server.

20



Chapter 4

Problem Setting

This chapter details how offloading is done by considering various factors at the

end device and cloud server. This also elaborates the neural network architectures we

considered for validating the results and other computation offloading methods for

comparisons.

4.1 Neural Network Architecture

What is a neural network and how does it work?

Neural networks are a subset of deep learning algorithms that model the structure

and function of the human brain. It consists of a collection of interconnected neurons

organized in layers, each neuron receiving inputs from other neurons and computing a

weighted sum of those inputs, followed by a nonlinear activation function. The output of

each neuron is then passed to other neurons in the next layer, creating a hierarchy of

representations that progressively transforms the input data into more abstract and useful

features. A layer in a neural network is a collection of neurons that perform the same type

of computation. For most of the neural networks the information flows from input layer

to output layer through hidden layers. There can be any number of hidden layers in a

neural network. Each hidden layer consists of multiple neurons, each neuron computing a

weighted sum of the outputs of the previous layer's neurons, followed by a nonlinear

activation function. The weights and biases of the neurons in each layer are learned

21



during the training process using an optimization algorithm such as stochastic gradient

descent.

An example of image classification can be used to illustrate how neural networks

work. In this case, the input to the neural network is a pixel image, where each pixel

represents a numeric value. The first layer of the network consists of neurons that take

pixel values   as inputs and perform linear transformations on the inputs. The output from

this layer is passed to the next layer, which consists of neurons that learn to recognize

simple patterns such as edges and corners. Subsequent layers learn to recognize

increasingly complex patterns, such as shapes and textures, until the last layer produces a

classification output that indicates the object category of the input image [30].

The Neural networks we used in our thesis include Lenet-5, AlexNet and

VGG-16. These are famous convolutional neural network (CNN) architectures which

have been effectively carried out to perform various computer vision tasks such as image

classification, object detection, and segmentation. Here are the terms which we use in

below architectures:

● Convolution: Convolution is a fundamental operation in CNN that allows the

network to learn spatial features from input images. There are a set of filters

where a filter is convolved with the input image to produce a feature map. The

output feature map is computed as an element-wise multiplication of the filters

and local regions of the input image followed by summation [30].

22



● Stride: The stride is the number of pixels the filter moves over the input image.

The larger the step, the smaller the output feature map and the coarser the

representation of the input image.

● Padding: Padding is the process of adding extra pixels to the edges of the input

image to maintain the spatial dimension of the output feature map after

convolution. Padding is often used to prevent information loss at the edges of the

input image.

● Pooling: Pooling is a downsampling operation that reduces the spatial size of the

input image by grouping information into local regions. The pooling operations

are average, max and min. Most common is max pooling, which keeps the

maximum value for each local region and discards the rest.

● Activation Function: The activation function is a nonlinear function applied to

the neuron's output. Introducing nonlinearity into the network, allowing it to learn

complex relationships between inputs and outputs.

● Fully Connected Layer: A fully connected layer is a traditional neural network

layer in which each neuron is connected to each neuron in the previous layer. It is

often used as an output layer in CNN to produce classification output.

The architectures of Lenet-5, AlexNet and VGG-16 are given below.

23



Figure 1

Lenet-5 Architecture

Note. The source: https://www.datasciencecentral.com/lenet-5-a-classic-cnn-architecture/

Figure 2

AlexNet Architecture

Note. The source: https://datahacker.rs/deep-learning-alexnet-architecture/

24

https://www.datasciencecentral.com/lenet-5-a-classic-cnn-architecture/
https://datahacker.rs/deep-learning-alexnet-architecture/


Figure 3

VGG-16 Architecture

Note. The source: https://neurohive.io/en/popular-networks/vgg16/

4.2 System Model

In this section we present the problem statement we are going to address along

with the proposed solution, namely, collaborative computing, which can be used to

enable parallel processing. We see the problem formulation in detail.

25



4.2.1 Collaborative Computation Offloading

A collaborative computing technique is proposed to model parallelism, making

inference faster than other traditional approaches. Collaborative computing divides the

input as well as the DNN into a separate set of layers and accelerates DNN inference

locally at IoT devices. The key idea is to take the advantage of IoT resources by

executing the DNN locally and parallelly. Since IoT devices have limited resources, we

cannot execute the entire DNN at the IoT end; instead, we offload results to the cloud

server for getting the final results. Knowing the point/layer where to divide the DNN is

important for this entire approach. In collaborative computing we take convolution layers

of the model to split the DNN. It could be the first convolution layer, or it could be any

number of layers except the last convolution layer (we should have at least one

convolution to offload to the server side to make it different from IoT only processing).

Figure 4

No Computation Offloading

26



Figure 5

DNN-Split with 2*2 Partition Computation Offloading (Layer 1 Split Point)

27



Figure 6

DNN-Split with 2*2 Partition Computation Offloading (Layer 2 Split Point)

28



4.3 Problem Formulation

In contrast to the existing approach; no computation offloading (IoT only

processing), we propose a DNN-split with input partition computation offloading model

also called collaborative computing with parallel computation for accelerating DNN

inference without the loss of accuracy. No computation offloading approach does not

offload any data to the cloud server. But our model divides the DNN into an independent

sequence of layers for offloading. Each independent layer’s computation is offloaded to

the cloud server after partial computation on the IoT end. This kind of collaborative

computing approach fully utilizes the resources of both the end device and the cloud to

accelerate the DNN inference time.

The inference time is the total time taken by the DNN to be executed in the edge

device, offloaded time and cloud processing time. We can denote the DNN inference time

with T, local processing time t1, transfer time t2 and cloud processing time t3.

DNN inference time = Local processing time (IoT processing) + Transfer time (IoT to

cloud) + cloud processing time.

T = T1
IoT + T2

tr +T3
cloud

Here, the local processing time is the time required by the resource-constrained

IoT device to execute its layers of the DNN. The transfer time is the time required to

transmit the partially computed results from IoT to the cloud. The cloud processing time

is the time required by the cloud server to process the remaining layers of the DNN.

29



Let us see the computation process of existing and proposed approach:

Figure 4 shows a three layer DNN with its computation: The sizes of each layer

and kernel respectively are: 6x6, 4x4, 2x2 and 3x3. The computation is done by

multiplying and adding the input layer with the kernel. Figure 4 the value of the second

layer at position (1,1) is 4, which is calculated by 1((1,1) position of input) * 1((1,1)

position of kernel) + 0((1,2) of input) * 0((1,2) of kernel) + 1((1,3) position of input) *

1((1,3) position of kernel) + 2((2,1) position of input) * 0((2,1) position of kernel) +

((2,2) position of input) * 1((2,2) position of kernel) + 1((2,3) position of input) * 0((2,3)

position of kernel) + 1((3,1) position of input) * 1((3,1) position of kernel) + 0((3,2)

position of input) * 0((3,2) position of kernel) + 1((3,3) position of input) * 0((3,3)

position of kernel) [ 1*1 + 0*0 + 1*1 + 2*0 + 1*1 + 1*0 + 1*1 + 0*0 + 1*0 ].

Figure 5 shows a similar 3 layer DNN inference computation with collaborative

computing i.e DNN-split with 2*2 partition computation offloading, where input of size

6x6 is partitioned into 2*2 generates 4 parts with row stride = column stride =1, each of

which is denoted by four colors and processed independently in parallel to each other,

since we assumed two layer split points the results are gathered at the end. From the input

feature layer 5x5 is extracted as the first part and convolved with the kernel to get the

second layer of 3x3 again convolved with the kernel to get 15 as a resultant.

Generally, for any layer the value at a position (x,y) is determined by the values of

previous layers and kernel weights:

((x - 1) * g + 1 , (y - 1) * g + 1),

30



(x - 1) * g + 1, (y - 1) * g + r ),

((x - 1 ) * g + r, (y - 1) * g + 1),

(x - 1) * g + r, (y - 1) * g + r),

Where r and g denote the kernel size and step size respectively.

Figure 5 shows a set of layers, which can be processed independently. It is clear

that figure 5 uses 2*2 partition strategy and has 4 different inputs to process, It is also

possible to partition the input to 3*3 and 4*4 with 9 and 16 parts of the input. All the

parts are processed in parallel to each other and independently, Therefore reducing the

computation overhead. In order to obtain the DNN inference time we first need to get the

size of each partitioned part of the input (for 2*2, 3*3 and 4*4), computation time and

transfer time of neural network layers. Once we have them , we need to obtain the split

point of the neural network to offload to the cloud server.

Figure 6 is different from figure 5 in terms of the split point. Figure 6 explains

splitting the neural network for the first 2 layers, where figure 5 splits only one layer of

the neural network.

The following diagrams describes all the approaches: No computation offloading

(IoT only processing), DNN-split computation offloading, and collaborative computing

with 2*2, 3*3 and 4*4 partitions with different split points.

31



Figure 7

DNN Inference Time for No Computation Offloading

Figure 7 shows the input, neural network with 4 layers and the output. This

approach runs the entire DNN at IoT devices itself; there is no offloading to cloud

servers. Here, we first get the size of the input and we find the total time by the DNN to

process the input at the end devices side.

DNN inference time for no computation offloading T = TIoT

32



Figure 8

Inference Time for DNN-Split Computation Offloading

Figure 8 describes the DNN-split computation offloading, where the four layer

neural network is divided into two parts. We obtain the size of the input, which will be

given to the starting layer of the neural network of the first part (initial 2 layers). To

process them at the IoT end, it takes TIoT time, then partially processed results are taken to

the cloud in Ttr time and Tcloud is then taken by the cloud to produce the output.

DNN inference time for DNN-split computation offloading T = T1
IoT + T2

tr +T3
cloud

33



Figure 9

DNN-2*2 Partition with Layer 1 Split Computation Offloading

The figure 9 describes the collaborative computing with 2*2 input partition and

layer 1 split computation offloading. As we choose our split point at layer 1, the four

layer neural network is divided into 2 parts; the first part has only one layer and the rest

of the layers are included into the second portion. The first part is executed at the end

devices side, and the rest of the layers are run at cloud servers.

34



The 2*2 partition strategy has created 4 parts; each part is individually given to

L1 of the neural network, and all the parts are run in parallel to each other, which reduces

the computation time as they are executed independently. The run time at IoT is T1
IoT and

transfer time is the ‘t’. Since it is parallel processing we consider only one t even though

there are 4 t's that can be represented as T2
tr. The partially processed results of layer 1 are

merged and given to L2 of the neural network, which is located in cloud servers. The

output of L2 is given as input to L3 and output of L3 is given as input to L4. Finally

output is generated. The time it takes to process the inputs is T3
cloud. DNN inference time

T for a 2*2 partition with layer 2 split computation offloading = T1
IoT + T2

tr +T3
cloud

Figure 10

DNN-2*2 Partition with Layer 2 Split Computation Offloading

35



The difference between figure 9 to figure 11 is the split point we choose. In figure

10 the split point is after layer 2, so till layer 2 we run the DNN at the IoT side and then

we transmit them to the cloud for further processing. In figure 11 the split point is after

layer 3, so there is only one layer at the cloud servers end .

In both the cases DNN inference time is: DNN inference time T = T1
IoT + T2

tr +T3
cloud

Figure 11

DNN-2*2 Partition with Layer 3 Split Computation Offloading

36



Problem statement with input partition and DNN split layer:

The main advantage of our proposed method is that it allows for the parallel

processing of the data, reducing the overall inference time. However it requires careful

partitioning of the input and splitting the neural network. One of the main challenges is

partitioning the input image; where the input image data is partitioned among the

multicores/processors. It is also important to ensure that each processor has an equal part

of the input to process. If the input data is not distributed equally among the processors

that leads to load balancing problems.

Which partition strategy is best?

Choosing the appropriate partitioning strategy is very difficult. The input

partitions we assumed in the proposed method are 2*2, 3*3 and 4*4. The 2*2 input

partitioning approach divides the input into 4 equal size partitions with stride value 1 or

more. This approach may have lower communication overhead as it has 4 parts involving

4 processors and requires less communication between the processors [13]. The 3*3 input

partition strategy divides the input into 9 equal sized parts with some overlapped rows

and columns (depends on the stride) and processed individually and parallelly in

multicores/processors. As compared to 2*2, 3*3 needs more processors as it has more

partitions to process. 3*3 can potentially reduce inference time compared to 2*2 but it

may suffer with more computation overhead than 2*2 [31]. The 4*4 input partition

strategy partitions the input into 16 small subsets of the data and needs 16 processors

results in more computation overhead than 2*2 and 3*3 [32], may even reduce the

37



inference time of the DNN. Therefore, choosing a particular input partition strategy

definitely depends on the configuration of the IoT devices we have.

Which splitting point is best?

Splitting the DNN refers to dividing the DNN model into two parts. Essentially

we divide the convolutional layers of the DNN to divide the computation between the IoT

devices and cloud servers. We can split the DNN at any layer until the last but one; that is

because we have to do offloading. The best splitting point is the one which gives the least

inference time. There is no such best splitting point; it depends on the configuration of

the IoT we work with. Sometimes if the IoT devices exhibit high bandwidth in such a

case, we can split the later layers of the DNN or if the client processing speed is the

parameter in that case, splitting the early layers of the DNN reduces the inference time.

Therefore, the best splitting point varies with the parameter (configuration) we consider

for the IoT devices.

Partition strategy with splitting point: When we partition the input, the input

image is divided into smaller sub parts based on the input partition strategy. In this thesis

we divide the input into 2*2, 3*3 or 4*4 parts. Here multiple processors work together to

process the input very quickly. Each processor processes the input data and multiple

results are generated from each processor; finally, results are combined to produce one

output.

38



Where to combine the results?

The point at which the results should be combined depends on the split layer we

choose. For example, if we choose layer 2 split point, before layer 2 the input

computation is done at the IoT side. Before we offload the partially processed results to

the cloud, the multiple results from the multicores should be combined as one.

39



Chapter 5

Experiment Design

In this chapter, we present the experiment design and its results on the proposed

methodology for collaborative computing. The experiments include MNIST and

IMAGENET datasets with various partition strategies and different splitting points

performed on three different neural networks: Lenet-5, AlexNet and VGG-16.

5.1 Dataset Description

5.1.1 MNIST

A collection of handwritten numbers can be found in the MNIST database

(Modified National Institute of Standards and Technology database) (introduced by

LeCun et al.[29]). There are 60,000 examples in the training set and 10,000 examples in

the test set. It is a subset of two larger NIST Special Databases, Special Database 1

(which contains handwritten digits written by high school students) and Special Database

3 (which contains handwritten digits produced by US Census Bureau personnel). The

digits have been centered in a fixed-size image and size-normalized. To fit in a 20x20

pixel box while maintaining their aspect ratio, the original black and white (bilevel)

photographs from NIST were size normalized. As a result of the normalization

algorithm's anti-aliasing approach, the final photos have grayscale images with a size of

28x28 pixels.

40



5.1.2 IMAGENET

The WordNet hierarchy is used to annotate 14,197,122 images in the ImageNet

collection. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

(introduced by Jia Deng et al. in ImageNet: A large-scale hierarchical image database

[18]), a benchmark in picture classification and object recognition, has been using the

dataset since 2010. A group of hand annotated training photos is included in the dataset

that was made available to the public. Additionally, a set of test photos is made available

without the manual annotations. There are two types of ILSVRC annotations: (1)

Image-level annotation with a binary label indicating whether an object class is present in

the image or not, such as "there are vehicles in this image" but "there are no tigers," and

(2) object-level annotation of a tight bounding box and class label around an instance of

an object in the image, For instance, "there is a screwdriver with a width of 50 pixels and

a height of 30 pixels, centering at position (20,25)". Because the images in the ImageNet

project are not its property, just thumbnails and URLs are given.

5.2 Dataset Preprocessing

The neural networks used in the experiments are Lenet-5, AlexNet and VGG-16.

Here Lenet-5 and AlexNet were using MNIST dataset and VGG-16 using IMAGENET

dataset. These datasets are directly imported from the TensorFlow library then fed into

the neural network directly. MNIST input size is 28x28 of gray scale, but Lenet-5 takes

32x32 input of gray scale, so the input from MNIST is resized to fit into the neural

network. In the same way, AlexNet takes input of the shape 227x227 RGB. Since

41



MNIST input image (28x28) is not in the required input shape and in grayscale it is then

converted to RGB by replicating the single dimension into 3 dimensions to get an RGB

image and then resized to feed into the first layer of AlexNet. VGG-16’s input size is

224x224 of RGB. IMAGENET inputs are RBG but they are of different sizes from

VGG-16 input, so they have been sized to fit into the first layer of the neural network.

5.3 Experimental Setup

The experiments we run include 3 different approaches. In general neural

networks take an input, process it and generate an output. In the first approach we give

the input to the Lenet-5, AlexNet and VGG-16, and we run the entire neural network on

the local device which is the client. We get the inference time from it.

The second approach we used is edge computing, which is DNN-split

computation offloading. In this scenario, we split the neural network into two parts. The

first part is the client, and the second part is the server. The first half of the neural

network is processed locally in the client, which gives us the local processing time.The

output is then transmitted to the server for further processing. Here we calculate the

transmission time, the rate at which output from the client is transferred to the server.

Then the server receives the output from the client as input and continues processing

remotely, giving us the server processing time. Here the run time is the sum of local

processing time (at client side), transmission time (output from client to server) and

remote processing time (at server side).

42



The third approach is partial offloading with partitions. This approach is similar to

the second approach: we split the neural network the same as method 2, but we also

partition the input. Here the first input is partitioned into some parts, namely 2*2, 3*3 and

4*4 parts. We give the partitioned input to a neural network where the neural network is

split down to different layers at some splitting point. The splitting point is a particular

convolution layer of the network. The first half of the partitioned input is processed

locally at the client, and the second half is processed remotely at the server. The main

difference between second approach and third approach is that, in the third approach all

the partitioned inputs are processed parallel to each other on the client and output from

each part is collected and combined then transferred to the server for processing.

Inference time is calculated by considering client processing time,transmission time and

server processing time.

We then compare and analyze all the results from three approaches using three

neural networks: Lenet-5, AlexNet, and VGG-16 .

5.4 Experimental Parameters

The experimental parameters used are bandwidth (MBps), client speed (MHz),

DNN inference time (ms), partition strategy (DNN split with 2*2, 3*3 and 4*4), splitting

point (convolution layer 1,2,etc..) and transfer time.

● Bandwidth: It refers to the amount of data that can be transferred in a given

amount of time. This can have an impact on the overall inference time of DNN

that depends on transmitting large amounts of data such as images. In particular,

43



the bandwidth of the connection between the IoT and cloud server can affect the

speed at which the model can process the data. If the bandwidth is high, the model

may take less time to transfer data from IoT device to cloud server.

❖ It is measured in MB/s.

● Client speed: Client speed is an important factor in determining the performance

of DNN. It indicates the number of clock cycles that the processor can execute in

one second. In general, a higher clock speed means that the processor can execute

more instructions per second, leading to faster computation times. For

computation offloading, the client speed is useful as the client device performs

part of the computation before offloading the rest to a cloud server. The faster the

client device, the more computation it can perform before offloading, which can

reduce the overall inference time.

❖ For no computation offloading, the client device performs all the

computation locally. In this case, the client speed directly affects the

inference time, since a faster client device can execute the DNN more

quickly and accelerate the inference time.

❖ It is measured in MHz

● Transfer time: Transfer time refers to the amount of time it takes for moving data

from IoT to cloud server. It has a significant impact on the overall performance of

the model. High transfer times may lead to slower inference times. Minimizing

transfer time is very important for achieving high performance models in edge

computing environments where data transfer can be a significant bottleneck.

44



● DNN Inference time: DNN Inference time refers to the amount of time it takes

for a DNN model to process the input and predict/generate the results. Inference

time is an important metric to evaluate the overall performance of the model. In

the context of collaborative computing, the inference time of DNN is affected by

various factors such as bandwidth, split point, partition strategy, and size and

complexity of input data.

❖ It is measured in milliseconds

● Partition Strategy: Input partition strategy is a technique in which the input

image to the DNN model is divided into smaller partitions and processed in

parallel across IoT devices.The output from each part is then combined to

generate the final result of the model. The partition strategy is used to improve the

efficiency and scalability of DNN models, particularly for complex models that

require significant computational resources. By dividing the input data into

smaller partitions and processing them in parallel across multiple devices, input

partition strategy can reduce the inference time of the model.

❖ In collaborative computing, we use 2*2, 3*3 and 4*4 partition

computation offloading.

● Splitting point: Splitting point in DNN refers to the point at which the neural

network architecture is divided into multiple parts. In general, splitting points can

be placed at various layers of the DNN. In collaborative computing, we split the

DNN at various convolution layers (split points). By using splitting points, it is

45



possible to improve the accuracy and efficiency and inference time of models

with complex tasks.

5.5 Performance Measures

The main goal of this thesis is to make the inference faster. So, we use inference

time as a measure to evaluate the performance of each model Lenet-5, AlexNet and

VGG-16. All the models are tested on different scenarios : 1) local processing, 2) edge

computing with dividing the neural network into two parts and 3) collaborative

computing with partitioning the input with 2*2, 3*3 and 4*4 strategies and splitting the

neural network at different layers.

5.6 Experimental Design and Implementation

To run the experiments, we first train the models Lenet-5, AlexNet and VGG-16

to get the kernel weights. The best alternative way is getting the pre-trained weights

directly from Tensorflow libraries. We then create the same neural network architecture

as with the models we chose, using the same set of layers and pre-trained kernel weights .

We give one (some set of inputs) of the inputs from the training dataset to run the model

and then finally we test it to see the results. We calculate the inference time for each

scenario to see which approach is giving the best results.

Inference time is calculated by considering the different factors: Bandwidth, client

speed, server speed, partitioning strategy and splitting point. Finally we compare the

inference time of models to see which model has the highest inference time on varying

various factors.
46



Chapter 6

Empirical Results

This chapter elaborates the evaluation and comparison results of existing and

proposed approaches with 3 different neural network architectures. First we focus on

showing the inference time (running time) by varying the factors such as bandwidth,

client speed, partition strategy and splitting point. Later performances of the models are

shown.

The description of the methods are as follows:

● Naive computation offloading: Everything from IoT devices is offloaded to

cloud servers; the entire computation is only done at cloud server.

● DNN-split computation offloading: DNN is divided into two parts, first part is

computed at the IoT side, partial results are transferred to the cloud server for

complete computation.

● No computation offloading: There are no data transfers from IoT devices to the

cloud servers; the entire computation is done at the end devices.

● DNN-split with 2*2 partition computation offloading: DNN is divided at

various split points and input is partitioned into 2*2. Early layers till the split

point we choose are computed at the end devices; results are offloaded to the

cloud servers for further computation.

● DNN-split with 3*3 partition computation offloading: DNN is divided at

various split points and input is partitioned into 3*3. Early layers till the split
47



point we choose are computed at the end devices; results are offloaded to the

cloud servers for further computation.

● DNN-split with 4*4 partition computation offloading: DNN is divided at

various split points and input is partitioned into 4*4. Early layers till the split

point we choose are computed at the end devices; results are offloaded to the

cloud servers for further computation.

6.1 Lenet-5 Results

Figure 12

Lenet-5 Impact of Bandwidth on DNN Inference Time

This plot describes how bandwidth affects the DNN inference time. As we

increase the bandwidth there is a considerable decrease in inference time with

48



computation offloading techniques. The reason behind reducing the inference time is that

offloading techniques require huge data transfers between end devices and cloud. As we

increase the bandwidth, transfer time between the end devices to the cloud gradually

reduces. High transfer rates with low transfer times accelerate inference time.

The plot shows DNN-split with 4*4 partition computation offloading at layer 2

split has a better inference time than other approaches because 4*4 divides input into

smaller parts than 2*2 and 3*3, and because it runs 2 convolution layers at the IoT side

which makes less data transmission to the cloud server than layer1 split computation

offloading. As the input size is low, both at client side and server side, it runs faster than

other approaches.

Figure 13

Lenet-5 Impact of Split Point on DNN Inference Time

49



This plot describes the inference time of the Lenet-5 model with layer 1 and layer

2 split points. Here is the general idea, for split point 1: first layer of the neural network

executed at client and semi-processed results are transmitted to the cloud with some

transmission speed, where next layers are processed. For split point 2: first two layers are

run at client then again semi-processed results taken to the cloud for getting the final

output. The reason for the best results at layer 2 split point is because the size of

semi-processed results is less than the size of semi-processed results at layer 1 split. Less

size leads to reduced transfer times as well as reduced processing time. From the results,

it shows different strategies have different impacts on the performance.

Figure 14

Lenet-5 Effect of Input Partition Strategy on DNN Inference Time

50



As the results show, different input partition strategies have different impacts on

the overall running time of the DNN. On an average 4*4 input partition strategy has the

best runtime results compared to other input partitions 2*2 and 3*3. For 2*2 the input has

4 partitions, 3*3 the input has 9 partitions and 4*4 the input has 16 partitions where the

size of the input for 4*4 is smaller for processing and leads to less time for computation.

Figure 15

Lenet-5 Impact of Client Speed on DNN Inference Time

The figure 15 shows DNN inference time vs client speed for Lenet-5 architecture

with layer 1 and layer 2 split point offloading along with three different input partition

strategies where we assume constant bandwidth.

Generally, the higher the clock speed the better the processor performance,

leading to faster computation times. The client speed is an important factor for
51



computation offloading techniques, as part of it is performed at the client devices before

offloading the rest to the cloud server. The faster the client device, the more computation

it performs before offloading, which can reduce the overall inference time. For no

computation offloading, the client device performs all of its computation at IoT devices

locally. In this case, the client speed directly affects the inference time, increasing in the

client speed accelerates the inference time.

The plot clearly shows that increase in the client speed gradually reduces the

inference time for all of the approaches. Input 4*4 partition has the least size amongst all,

resulting in a faster inference time. DNN split layer 1 performs better than split layer 2

since for split layer 2 requires 2 layers of computation at IoT which is more time than

cloud side processing.

52



Table 1

The Detailed View of Best Results of Lenet-5

Parameter Strategy Inference Time(ms)

Bandwidth

No offloading 114.2927

Naive offloading 151.6260

DNN-split computation offloading 117.3351

DNN-split 2*2 input

partition offloading

layer1 135.5248

layer2 47.5477

DNN-split 3*3 input

partition offloading

layer1 75.6832

layer2 44.9920

DNN-split 4*4 input

partition offloading

layer1 59.0688

layer2 43.0815

Split layer

Bandwidth

150 MB/s

Layer 1

2*2 104.4848

3*3 44.6432

4*4 28.0288

Layer 2

2*2 16.5077

3*3 13.9520

4*4 12.04159

53



Parameter Strategy Inference Time(ms)

Client

speed:

50,100,150,

200,250,300

,350 MHz

Server

speed:

500MHz

Bandwidth:

10MB/s

No offloading 105.3257

Naive offloading 102.406

DNN-split computation offloading 109.8605

DNN-split 2*2 input

partition offloading

layer1 96.1714

layer2 96.9428

DNN-split 3*3 input

partition offloading

layer1 83.7760

layer2 84.4480

DNN-split 4*4 input

partition offloading

layer1 72.2354

54



6.2 AlexNet Results

Figure 16

AlexNet Bandwidth Impact on DNN Inference Time

This plot describes how bandwidth affects the DNN Inference time. As we

increase the bandwidth there is a considerable decrease in inference time with

computation offloading techniques. The reason behind reducing the inference time is that

offloading techniques require the data transfers between end devices and cloud. As we

increase the bandwidth, transfer time between the end devices to the cloud gradually

reduces. High transfer rates with low transfer times accelerate inference time.

The plot depicts the DNN-split with a 4*4 partition for computation offloading at

layer 3. This approach exhibits superior inference time compared to other methods due to

55



its ability to divide the input into smaller parts than the 2*2 and 3*3 approaches.

Additionally, it performs computation for 3 convolution layers at the IoT side, resulting

in reduced data transmission to the cloud server compared to layer 1 split point and layer

2 split. The relatively small input size on both the end devices side and server sides

contributes to its faster execution in comparison to alternative approaches.

Why does split point 4 take more time than split point 3?

Running 4 parts of DNN at IoT and only one part at cloud makes it take much

time (where 3 layer split point runs 3 parts at IoT and 2 parts at cloud) as it takes more

time to run 4 parts of DNN at resource constrained IoT. The difference between the

semi-processed results of layer 3 and layer 4 is negligible; thus it takes approximately as

much time as layer 3 to transfer them to cloud.

Figure 17

AlexNet Impact of Split Point on DNN Inference Time

56



This shows how split point affects the inference time of DNN. Since AlexNet has

five convolution layers, there are 4 layer split points as there should be at least one

convolution layer to be offloaded to the cloud server. DNN-split with 4*4 partition

computation offloading has the best inference time with layer 3 split point. As later layers

of the neural network take more time to compute than initial layers so layer 4 split point

spent much more time than layer 3.

Figure 18

AlexNet Input Partition Strategy Effect on DNN Inference Time

The plots above show how partition strategy has a significant impact on the

inference time of DNN. When we partition the input image into certain parts , each part

57



has a size, Comparing 2*2, 3*3 and 4*4 partitions, the 4*4 partition has a smaller size

than 2*2 or 3*3, so it can take less time to process and transmit over the IoT device to

the cloud server. Therefore the run time of DNN-split 4*4 partition computation

offloading has best results for every split point.

Figure 19

AlexNet Client Speed Impact on DNN Inference Time

Generally, the higher the clock speed the better the processor performance,

leading to faster computation times. The client speed is an important factor for

computation offloading techniques, as part of it is performed at the client devices before

offloading the rest to the cloud server. The faster the client device, the more computation

it performs before offloading, which can reduce the overall inference time. For no

computation offloading, the client device performs all of its computation at IoT devices

58



locally. In this case, the client speed directly affects the inference time, increasing in the

client speed accelerates the inference time.

Among all available strategies DNN-layer 1 split with 4*4 partition computation

offloading has the best results with less time in computation and transfer than others. As

the server has better processing times than the client, it is better to run more layers of

DNN in the cloud than the client to get the best performance. That is the reason layer 1

split point has the least inference time with 4*4 partition strategies.

Table 2

The Detailed View of Best Results of AlexNet

Parameter Strategy Inference time(ms)

Bandwidth

1,1.50,2,2.50,3,3.5

0,4,4.50 MB/s

No offloading 679.23

Naive offloading 716.5633

DNN-split computation offloading 511.3316

DNN-split 2*2 input partition

offloading Layer 1
267.6133

DNN-split 3*3 input partition

offloading Layer 3
237.1815

DNN-split 4*4 input partition

offloading

Layer 3 229.2974

59



Parameter Strategy Inference time(ms)

Split layer

(Bandwidth 150

MB/s)

Layer 1 4*4 205.7398

Layer 2 4*4 233.7425

Layer 3 4*4 189.4055

Layer 4 4*4 200.1807

Client speed

(50,100,150, 200,

250,300,350

MHz)

Server speed

(500MHz)

bandwidth

(10MB/s)

No offloading 315.9771

Naive offloading 337.9199

DNN-split computation offloading 344.5028

DNN-split 2*2 input partition

offloading Layer 1 299.3142

DNN-split 3*3 input partition

offloading Layer 1 260.736

DNN-split 4*4 input partition

offloading Layer 1 224.8182

60



6.3 VGG-16 Results

Figure 20

VGG-16 Impact of Bandwidth on DNN Inference Time

From the results, it shows different strategies have different impacts on the

performance. The above results shows 2*2 input partition strategy has the least inference

time compared to 3*3 and 4*4. Breaking the input into more parts requires more

overhead, leading to higher inference times. DNN later layers are computation expensive

so splitting early layers gives less run time. Therefore DNN-split point 3 with 2*2

partition strategy is the best of all.

61



Table 3

VGG-16 Bandwidth Impact on Inference Time

Parameter Strategy Inference time (ms)

Bandwidth

(1,1.50,2,2.50,3,3.50,4,4.50

MB/s)

No offloading 1000.6500

Naive offloading 1037.9833

DNN-split computation

offloading 610.4408

2*2 layer3 379.0766

3*3 layer1 520.7565

4*4 layer1 499.2789

Figure 21

VGG-16 Split Point Impact on DNN Inference Time

62



The plot shows the run time of DNN for each split point with DNN-2*2, 3*3, and

4*4 partition strategy. The figure above clearly shows that run time of layer 1 split is

small in 2*2 partition strategies.

Why not 3*3 or 4*4?

In this case, making more partitions results in more computation overhead, which

was negligible for Lenet-5 and AlexNet.

Figure 22

VGG-16 Input Partition Strategy Impact on DNN Inference Time

The plots above show how partition strategy has a significant impact on the

inference time of DNN. When we partition the input image into certain parts , each part

has a size, Comparing 2*2, 3*3, and 4*4 partitions, the 4*4 partition has a smaller size
63



than 2*2 or 3*3, so it should take less time to process and transmit over the IoT device to

the cloud server. However, more partitions leads to more multiprocessing which directly

imposes computation overhead. Therefore the run time of DNN-split 4*4 partition

computation offloading has not good results. 2*2 has better performance with less

overhead.

The following table shows the DNN inference time for each layer split:

Table 4

Inference Time for Different Split Point

Split Point Partition Strategy DNN Inference Time(ms)

Layer 1 2*2 404.1094

3*3 488.7565

4*4 467.2789

Layer 2 2*2 405.7331

3*3 626.4088

4*4 617.6377

Layer 3 2*2 347.0766

3*3 630.3700

4*4 667.1933

64



Split Point Partition Strategy DNN Inference Time(ms)

Layer 4 2*2 356.2839

3*3 632.7393

4*4 660.4998

Layer 5 2*2 370.7124

3*3 607.5539

4*4 658.3654

Layer 6 2*2 357.3813

3*3 614.6451

4*4 715.2903

Layer 7 2*2 390.9538

3*3 608.7121

4*4 742.7341

Layer 8 2*2 380.7037

3*3 683.1017

4*4 717.0797

Layer 9 2*2 383.4481

3*3 692.4016

4*4 729.9399

65



Split Point Partition Strategy DNN Inference Time(ms)

Layer 10 2*2 384.3097

3*3 626.6142

4*4 652.2294

Layer 11 2*2 389.8605

3*3 631.7893

4*4 625.6396

Layer 12 2*2 356.0254

3*3 629.1194

4*4 630.2382

Figure 23

VGG-16 Client Upload Speed Impact on DNN Inference Time

66



The plot illustrates a gradual decrease in inference time for all approaches as

client speed increases. The 4*4 partition input has the smallest size, resulting in the

shortest inference time. Split layer 1 of DNN outperforms other split layers as the latter

requires more layers of computation at IoT, which takes more time than processing on the

cloud side.

Table 5

VGG-16 Impact of Client Speed on Inference Time

Parameter Strategy Inference time (ms)

Client speed

(500,1000,1500, 2000,

2500,3000,3500

MHz)

Server speed (5000MHz)

Bandwidth (10000Mb/s)

No offloading 574.1568

Naive offloading 906.4256

DNN-split computation

offloading
496.7424

2*2 layer1 411.8734

3*3 layer1 404.4857

4*4 layer1 397.1648

67



Chapter 7

Analysis and Discussion

Table 6

Comparison of Best Results of Lenet-5, AlexNet, and VGG-16

Model Parameter No

offloading

DNN-split

Computation

Offloading

2*2 3*3 4*4

Lenet-5 Bandwidth 114.2927 117.3351 47.5477

(layer2)

44.9920

(layer2)

43.0815

(layer2)

Splitting

point

- -

16.5077

(layer2)

13.9520

(layer2)

12.0415

(layer2)

Partition

Strategy

- - 16.5077

(layer2)

13.9520

(layer2)

12.0415

(layer2)

Client

speed

105.3257 109.8605 96.1714

(layer1)

83.7760

(layer1)

72.2354

(layer1)

68



Model Parameter No

offloading

DNN-split

Computation

Offloading

2*2 3*3 4*4

AlexNet Bandwidth 679.23 511.3316 267.613

(layer1)

237.1815

(layer3)

229.297

(layer4)

Splitting

point

- - 226.188

(layer1)

196.974

(layer3)

189.405

(layer3)

Partition

Strategy

- - 226.188

(layer1)

196.974

(layer3)

189.405

(layer3)

Client

speed

315.9771 344.5028 299.314

(layer1)

260.736

(layer1)

224.818

(layer1)

VGG-16 Bandwidth 1000.6500 610.4408 379.07

(layer3)

520.756

(layer1)

499.278

(layer1)

Splitting

point

- - 347.076

(layer3)

488.756

(layer1)

467.278

(layer1)

Partition

Strategy

- - 347.07

(layer3)

488.7565

(layer1)

467.278

(layer1)

Client

speed

574.1568 496.7424 411.873

(layer1)

404.4857

(layer1)

397.164

(layer1)

69



Chapter 8

Conclusion and Future Work

In this thesis, we presented collaborative computing to accelerate DNN inference

time. We partitioned the DNN in three different ways (2*2 , 3*3 and 4*4) and divided the

DNN computation so that some work was done by the IoT device and the remaining

work was done by cloud servers. We investigated and computed the effectiveness of these

methods on three different DNN architectures Lenet-5, AlexNet and VGG-16 and

compared these results with already existing approaches. Collaborative computing with

2*2, 3*3 and 4*4 input partitions have demonstrated significant advantages over

traditional approaches due to its limited computational capabilities. Therefore,

collaborative computing leverages the collective power of IoT devices and cloud servers

to distribute the workload and ensure faster inference without the loss of accuracy.

The performance results demonstrated that our proposed method with three

approaches can reduce the DNN inference time compared to other methods. Among the

three methods, DNN-split with 4*4 partition computation offloading performed better for

Lenet-5 and AlexNet. DNN-split with 2*2 partition computation offloading performed

better for VGG-16.

One area of future work will be to determine the best input partition strategies and

best split points to use in various situations, based on the characteristics of the data and

the available resources of particular IoT devices.

70



References

1. N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar, “An early
resource characterization of deep learning on wearables, smartphones and
Internet-of-Things devices,” in Proc. Int. Workshop Internet Things Towards
Appl. (IoT-A), 2015, pp. 7–12.

2. Swarnava Dey, Arijit Mukherjee, Arpan Pal, and P Balamuralidhar. 2018,
“Partitioning of CNN models for execution on fog devices,” In Proceedings of the
1st ACM International Workshop on Smart Cities and Fog Computing. 19–24.

3. J. Mao, X. Chen, K. W. Nixon, C. Krieger and Y. Chen, "MoDNN: Local
distributed mobile computing system for Deep Neural Network," Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne,
Switzerland, 2017, pp. 1396-1401, doi: 10.23919/DATE.2017.7927211.

4. Jihong Park, Sumudu Samarakoon, Mehdi Bennis, and Merouane Deb-bah,
“Wireless network intelligence at the edge,” Proceedings of the
IEEE,107(11):2204-2239, 2019.

5. S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep learning
layers for constrained resource inference on wearables,” in Proc. ACM Conf.
Embedded Netw. Sensor Syst. (SenSys), 2016, pp. 176–189.

6. S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “DeepIoT: Compressing
deep neural network structures for sensing systems with a compressor-critic
framework,” in Proc. 15th ACM Conf. Embedded Netw. Sensor Syst. (SenSys),
2017, pp. 1–14.

7. X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely efficient
convolutional neural network for mobile devices,” arXiv preprint
arXiv:1707.01083, 2017.

8. Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer,
“DeepThings: Distributed adaptive deep learning inference on resource
constrained IoT edge clusters,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2348–2359, 2018.

9. Y. Kang, J. Hauswald, J. Mars, C. Gao, and A. Rovinski, 1143 “Neurosurgeon:
Collaborative intelligence between the cloud and 1144 mobile edge,” in Proc. Int.
Conf. Archit. Support Program. Lang. 1145 Oper. Syst., 2017, pp. 615–629.

71



10. Lin, H.; Zeadally, S.; Chen, Z.; Labiod, H.; Wang, L, “A survey on computation
offloading modeling for edge computing,” J. Netw. Comput. Appl. 2020, 169,
102781.

11. H. Qiu, Q. Zheng, T. Zhang, M. Qiu, G. Memmi, and J. Lu, “Toward secure and
efficient deep learning inference in dependable IoT systems,” IEEE Internet
Things J., vol. 8, no. 5, pp. 3180–3188, Mar.2021.

12. H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. M. Leung, “Deep reinforcement
learning for energy-efficient computation offloading in mobile edge computing,”
IEEE Internet Things J., vol. 9, no. 2,pp. 1517–1530, Jan. 2022.

13. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” in Proc. Int.Conf. Neural Inf. Process., 2012, pp.
1097–1105.

14. C. Ronan and W. Jason, “A unified architecture for natural language processing:
Deep neural networks with multitask learning,” in Proc. Int. Conf. Mach. Learn.,
2008, pp. 160–167.

15. Zhou, H., Li, M., Wang, N., Min, G., & Wu, J. (2023), “Accelerating deep
learning inference via model parallelism and partial computation offloading,”
IEEE Transactions on Parallel and Distributed Systems, 34(2), 475–488.

16. Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang, Yong
Zhang, “Auto-Split: A General Framework of Collaborative Edge-Cloud AI ”,
KDD '21: the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, August 2021.pages 2543-2553.

17. Y. Cheng, D. Wang, P. Zhou, and T. Zhang. 2017, “A survey of model
compression and acceleration for deep neural networks,” arXiv:1710.09282
(2017).

18. J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” 2009 IEEE Conference on Computer
Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248-255, doi:
10.1109/CVPR.2009.5206848.

19. N. Wang, Y. Duan, and J. Wu, “Accelerate cooperative deep inference via
layer-wise processing schedule optimization,” in Proc. IEEE Int. Conf. Comput.
Commun. Netw., 2021, pp. 1–9.

72

https://arxiv.org/search/cs?searchtype=author&query=Banitalebi-Dehkordi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Vedula%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Pei%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Xia%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Wang%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+Y


20. H. Zhou, Z. Wang, N. Cheng, D. Zeng, and P. Fan, “Stackelberg game-based
computation offloading method in cloud-edge computing networks,” IEEE
Internet Things J., vol. 9, no. 17,pp. 16 510–16 520, Sep. 2022.

21. H. Zhou, Z. Zhang, D. Li and Z. Su, “Joint Optimization of Computing
Offloading and Service Caching in Edge Computing-based Smart Grid,” in IEEE
Transactions on Cloud Computing, doi: 10.1109/TCC.2022.3163750.

22. K. Jiang, C. Sun, H. Zhou, X. Li, M. Dong, and V. C. M. Leung,
“Intelligence-empowered mobile edge computing: Framework, issues,
implementation, and outlook,” IEEE Netw., vol. 35, no. 5, pp. 74–82, Sep./Oct.
2021.

23. A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, “A novel framework for
mobile-edge computing by optimizing task offloading,” IEEE Internet Things J.,
vol. 8, no. 16, pp. 13 065–13 076, Aug. 2021.

24. Y. M. Saputra, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “A novel mobile
edge network architecture with joint caching-delivering and horizontal
cooperation,” IEEE Trans. Mobile Comput., vol. 20, no. 1, pp. 19–31, Jan. 2021.

25. Y. Duan and J. Wu, “Joint optimization of DNN partition and scheduling for
mobile cloud computing,” in Proc. Int. Conf. Parallel Process., 2021, pp. 1–10.

26. KServe. (n.d.). Kubeflow. https:///docs/external-add-ons/kserve/

27. Nvidia Triton Inference server. Triton - NVIDIA Triton Inference Server. (n.d.).
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/inde
x.html

28. Serving Models | TFX | TensorFlow. (n.d.). TensorFlow.
https://www.tensorflow.org/tfx/guide/serving

29. LeCun, Yann, Corinna Cortes, and Chris Burges. “MNIST handwritten digit
database.”(2010): 18.

30. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

31. Zhang, S., Zhang, C., Qi, G. J., Xiao, B., & Zhai, E. (2018). Interleaved group
convolutions. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 4367-4375).

32. Chen, J., Zhang, X., Du, T., & Liu, X. (2016). Supervised parallelism for deep
neural networks. In Proceedings of the 2016 ACM SIGPLAN International

73



Conference on Systems, Programming, Languages and Applications: Software for
Humanity (pp. 97-111).

74


	COMPUTATION OFFLOADING DESIGN FOR DEEP NEURAL NETWORK INFERENCE ON IoT DEVICES
	Recommended Citation

	Thesis on Computation offloading

