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Abstract

Glenn Dawson
A GENERAL MODEL FOR NOISY LABELS IN MACHINE LEARNING

2022-2023
Robi Polikar, Ph.D.

Doctor of Philosophy

Machine learning is an ever-growing and increasingly pervasive presence in every-

day life; we entrust these models, and systems built on these models, with some of our most

sensitive information and security applications. However, for all of the trust that we place

in these models, it is essential to recognize the fact that such models are simply reflections

of the data and labels on which they are trained. To wit, if the data and labels are suspect,

then so too must be the models that we rely on—yet, as larger and more comprehensive

datasets become standard in contemporary machine learning, it becomes increasingly more

difficult to obtain reliable, trustworthy label information. While recent work has begun to

investigate mitigating the effect of noisy labels, to date this critical field has been disjointed

and disconnected, despite the common goal. In this work, we propose a new model of

label noise, which we call “labeler-dependent noise (LDN).” LDN extends and generalizes

the canonical instance-dependent noise model to multiple labelers, and unifies every pre-

ceding modeling strategy under a single umbrella. Furthermore, studying the LDN model

leads us to propose a more general, modular framework for noise-robust learning called

“labeler-aware learning (LAL).” Our comprehensive suite of experiments demonstrate that

unlike previous methods that are unable to remain robust under the general LDN model,

LAL retains its full learning capabilities under extreme, and even adversarial, conditions of

label noise. We believe that LDN and LAL should mark a paradigm shift in how we learn

from labeled data, so that we may both discover new insights about machine learning, and

develop more robust, trustworthy models on which to build our daily lives.

v
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Chapter 1

Introduction

In 1641, mathematician and philosopher René Descartes grappled with the problem

of epistemic systematic doubt [1]. In particular, he examined the concepts of belief and

certainty, and how either come to be known. Descartes imagined an evil demon, of

“utmost power and cunning,” who has employed all of its energy in order to deceive him.

The demon, having absolute command over sensory information, would be able to shape

Descartes’ experiences and perceptions such that he could no longer be certain of any beliefs

based on empirical observation. Descartes supposed that while it may be perhaps unlikely

that all of his beliefs may have been based on deception, the mere possibility that any beliefs

may be so predicated was enough to cast all of them into doubt.

In general, humans learn concepts and beliefs through the guided instruction of

perceived authorities [2]. For example, children learn such ideas as colors, numbers, and

letters via their parents or teachers telling them the names of each color, number, or letter.

To a naı̈ve child, these authorities are unquestionable, as the child has no inherent ability

to cross-reference these facts against other knowledge sources. Typically, it is assumed that

a child’s parents or teachers will not actively conspire to mislead their students; however,

such a possibility might exist, alongside less-malicious possibilities (such as the authorities

collectively believing a falsehood to be true, and passing that belief along to the child). In

these scenarios, the parents or teachers, acting as unquestioned authorities, would (perhaps

unwittingly) fulfill the role of Descartes’ demon; if the authorities taught the child into

believing that the color red were actually called “blue,” then the child, being naı̈ve and

guileless to the misinformation, would have no recourse but to accept that red were actually
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blue. With no frame of reference to dispel the deception, the child will believe with all their

heart that red is blue, and moreover be completely unaware that they have been misled.

Just as a child may learn false beliefs from adult authorities, so too may a machine

learning model learn false beliefs from the unquestioned authority that is its training data.

Even the most powerful models are beholden to the datasets on which they are trained—

datasets that are collected and provided by authorities, who may or may not be trustworthy.

Similarly to the deceived child, if a machine learning model were to be trained on data

suggesting that red were actually blue, then the model would have no choice but to learn

that incorrect belief, and would have no way of knowing—or even suspecting—that not

only was what it believed to be “blue” actually “red,” but even that it had been tricked at

all. Throughout most of the history of machine learning research, it has been assumed

that the data and labels provided by the training dataset are reliable representations of

genuine ground truth. However, investigation into learning from noisy labels has examined

what happens when these assumptions do not hold. From early work on stochastic label

flipping to more recent work on adversarial data poisoning attacks, learning from noisy

labels has grown into a critical field of fundamental research, revealing many weaknesses

and instabilities that have been overlooked in otherwise powerful algorithms.

1.1 Motivation

Machine learning methods in general, and deep neural networks in particular, have

recently gained immense popularity, due to their extraordinary capabilities in applications

such as computer vision [3], natural language processing [4], finance [5], self-driving cars

[6] and medicine [7]. However, despite the success of machine learning in solving these
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problems in ideal cases, the problem of noisy labels remains outstanding [8]. Especially

in cases where datasets may be large and costly to verify, models trained naı̈vely on such

unreliable data are vulnerable to overfitting to any incorrect labels that may be present in the

training dataset [9]. The development of algorithmic frameworks that are robust to noisy

labels is a critical element of future machine learning research, particularly in sensitive

applications, in order to both harden our models against malicious (or even unintentional)

false labels, as well as to further broaden our fundamental understanding of machine

learning.

1.2 Problem Statement

In the standard scenario of supervised machine learning, it is generally assumed

that—regardless of the characteristics of any particular training example—the observed la-

bel associated with a given example is its the true class. This assumption allows algorithms

to perform parameter optimization using loss functions, which minimize the error between

the model’s predictions and the ground truth labels. However, in the case of noisy labels,

the observed label may not be the true class for the associated sample. In such a scenario,

training models via conventional loss function minimization leads to degradation in gen-

eralization performance, as the models overfit to the false labels. In real-world settings,

where curated datasets may not be available, it is naı̈ve—if not negligent—to assume that

the provided data labels are always accurate. To wit, a machine learning model cannot

assume a priori that any label for any particular training instance is accurate; there is

always a nonzero probability that, unknown to the model, any label may be incorrect. Faced

with such uncertainty, the goal of learning from noisy labels is to design a robust training
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scheme that is secure against inaccurate labeling, whether the inaccuracies are unintentional

or, worse, malicious.

1.3 Contributions and Scope of Dissertation

This dissertation provides an overview of past and contemporary work on machine

learning from noisy labels, including learning from crowds, class-conditional label transi-

tion matrices, and instance-dependent noise modeling. We proceed to generalize the con-

cept of instance-dependent label noise, extending it to consider multiple, non-homogeneous

labeling processes that each contribute to the training dataset. This generalization, called

“labeler-dependent noise” (LDN), models labels to be a function not only of the data features,

but also of the specific labeler making the dataset contribution, which may exhibit different

degrees or characteristics of labeling errors compared to other labelers. In particular, we

present two models for labeler-dependent noise: a simple hammer-spammer framework that

wraps a beta-binomial label selection process around the soft labels generated by a single

instance-dependent model, and a more sophisticated framework that considers each labeler

to be an independent instance-dependent process. We also show theoretically how LDN

is a valid generalization of previous label noise models, including class-conditional label

noise, instance-dependent label noise, and learning from crowds.

With the LDN model defined, we first tackle learning from crowds as a special case

by developing the OpinionRank algorithm. OpinionRank is a nonparametric, graph-based

spectral method for ranking the relative reliabilities of an ensemble of imperfect labelers,

whose ranking schemes can be used to integrate noisy labels from multiple labelers into

a single, more-accurate label. However, despite the success of OpinionRank in outper-
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forming other, more computationally expensive approaches, it has a potential limitation in

that it requires overlapping, redundant labels from the labeling ensemble—such redundant

labels may not always be available in many applications. To address this shortcoming,

we introduce a robust framework for machine learning under LDN, called “labeler-aware

learning” (LAL), which improves upon OpinionRank by utilizing semi-supervised learning

to generate synthetic labels in order to achieve the requisite label redundancy. LAL is a

high-level, modular, abstract framework for learning under label uncertainty, and can be

applied in a wide variety of learning environments. In this work, we illustrate the necessity

of LAL in response to the general LDN model by empirically demonstrating how LAL

outperforms existing state-of-the-art approaches when placed in an LDN environment. We

also consider the possibility of labeler awareness providing for defenses against malicious

data injection attacks from adversarial labelers, and show how LAL can be used as a filtering

method against label-based poisoning attacks.

In summary, the main scientific contributions of this dissertation are as follows:

1. Labeler-dependent noise (LDN), a generalization of previous models of label noise

that considers heterogeneous noise characteristics;

2. OpinionRank, a fast, nonparametric algorithm for ranking the relative reliability of a

set of labelers;

3. Labeler-aware learning (LAL), a general learning framework that reliably filters label

noise from multiple noisy labelers; and

4. Consideration of the adversarial perspective of label noise, as well as investigation
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into how LAL may be used as a proactive defensive measure to train models robust

against adversarial labels.

1.4 Organization of the Dissertation

Chapter 1 provides an introduction, motivating the problem of learning from noisy

labels and framing the problem within the contexts of human and machine learning. Chapter

2 provides important preliminary materials and background knowledge about supervised

machine learning and approaches for modeling noisy labels that are important for contextu-

alizing the latter portions of the dissertation. In Chapter 3, related works on learning from

noisy labels and learning from crowds are discussed, and contemporary state-of-the-art

methods are considered in detail. Chapter 4 introduces the first primary contribution of

this dissertation, the labeler-dependent noise (LDN) model, both discussing the high-level

abstract framework as well as a more concrete example that is used in our demonstrative

experiments. Chapter 5 introduces OpinionRank as a solution for learning from crowds,

which is a common special case of LDN. In Chapter 6, we extend OpinionRank to the

full labeler-aware learning (LAL) paradigm. Chapter 7 introduces the threat of adversarial

labelers, first as extreme versions of merely poor-quality labelers, and then as more sophis-

ticated agents using insidious backdoor injections. Chapter 8 presents the results of our

experiments for both OpinionRank and LAL compared to previous state-of-the-art methods

under the LDN setting, as well as the adversarial robustness of LAL under the threat models

discussed in Chapter 7. Finally, Chapter 9 concludes the dissertation, summarizing the

work presented herein and outlining the broader impacts that this work may have on future

machine learning research.
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Chapter 2

Background

2.1 Notation

For clarity and consistency, we first present the nomenclature used in this dissertation

in Table 1.

Table 1

Variables and Symbolic Notation Used in this Dissertation

Variable Description

𝑖, 𝑗 , 𝑘, ℓ Indexing variables.

𝛼, 𝛽, `,𝜎 Parameters of distributions.

𝑥 A data instance.

𝑦 The true label for instance 𝑥.

X ∗ The set of all data forming the fiber of Y∗ under F∗.

Y∗ The set of all class labels represented in a learning problem.

F∗ The set of optimal functions mapping each 𝑥 ∈ X ∗ to the correct 𝑦 ∈ Y∗.

𝑓 ∗ An element of F∗.

X The subset of X ∗ observable during the training process.

Y The subset of Y∗ observable during the training process.

D The set of data {X ,Y} observable during the training process.

𝑓\ A function obtained through a machine learning training process.

\ The model parameters of 𝑓\ , such as neural network weights.
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Variable Description

𝑁 The cardinality of X .

𝐾 The cardinality of Y .

𝐽 The total number of labelers.

�̂� The observed label of 𝑥 (as opposed to true label 𝑦).

𝑝𝑘,ℓ The class-conditional probability Pr{�̂� = ℓ | 𝑦 = 𝑘}.

𝑇 A class-conditional transition matrix. The 𝑘 th row corresponds to 𝑝𝑘,ℓ.

ℎ An instance-dependent model. Produces a probability distribution over Y .

H The set of all possible instance-dependent models, ℎ ∈H.

𝑦′ The target class of an adversary performing an adversarial backdoor attack.

[(𝑦′) The adversarial backdoor trigger associated with the target class 𝑦′.

𝑥′ An adversarial data instance that has been modified by applying [(𝑦′).

𝛿 An indicator function indicating the presence of [(𝑦′).

v The dominant eigenvector of an ergodic Markov chain.

C A corroboration matrix obtained via OpinionRank.

W Weighted class membership scores produced by OpinionRank.

2.2 Supervised Learning

For a given classification problem, let Y∗ be the set of desired class labels, and let

X ∗ be the set of all possible data belonging to the classes in Y∗, such that

F∗ : X ∗→ Y∗ (2.1)
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represents a set of surjective functions mapping each example 𝑥 ∈ X ∗ to its correct label

𝑦 ∈ Y∗. Then, the problem of supervised learning can be expressed as attempting to find

a function 𝑓 ∗ ∈ F∗, given some observed subset X ⊊ X ∗ with associated observed labels

Y ⊆ Y∗. Typically, this goal is achieved by finding an approximate function 𝑓\ ≈ 𝑓 ∗, such

that

𝑓\ (𝑥 ∈ X ∗) = {𝑦 ∈ Y∗ | 𝑓 ∗(𝑥) = 𝑦} (2.2)

where \ (X ,Y) represents the parameters of 𝑓\ . Typically, these parameters are found

using a technique called loss function optimization, where the parameters \ are obtained by

iteratively comparing the outputs of 𝑓\ to the observed labels Y and procedurally updating

\ such that the error between 𝑓\ (X ) and Y becomes small. Loss functions take the form

L(X ,Y , \), and some common examples of loss functions are presented in Table 2.

Table 2

Examples of Common Loss Functions

Name L(X ,Y , \)

Mean-squared error 1
𝑁

∑𝑁
𝑖=1 [𝑦𝑖 − 𝑓\ (𝑥𝑖)]2

Hinge loss 1
𝑁

∑𝑁
𝑖=1 max [0,1− 𝑦𝑖 𝑓\ (𝑥𝑖)]

Cross-entropy loss − 1
𝑁

∑𝑁
𝑖=1

∑𝐾
𝑘=1 𝑦𝑖𝑘 log [ 𝑓\ (𝑥𝑖𝑘 )]

The mean-squared error loss is commonly used in statistical analysis, though this

choice is often made arbitrarily [10]. The general motivating principle behind the mean-
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squared error is that it represents the variance of an unbiased estimator, and as such

minimizing the mean-squared error also minimizes the variance. Thus, using the mean-

squared error as the loss function seeks to obtain the parameters that obtain the best unbiased

estimator of the true parameters of the observed data. It is important to note, however, that

a biased estimator (such as one obtained via shrinkage methods such as 𝐿𝑝 regularization)

may yield smaller mean-squared error.

The hinge loss is designed to produce a “maximum-margin” classifier, i.e. one whose

decision function has the property of having the maximum distance from observed data on

either side of the decision boundary. This property is most notably desirable for support

vector machines, and so the hinge loss is sometimes called the “SVM loss”. For predictions

| 𝑓\ (𝑥𝑖) | ≥ 1 where sgn[ 𝑓\ (𝑥𝑖)] = sgn(𝑦𝑖) (i.e. the prediction is correct with high confidence),

the hinge loss becomes zero. Otherwise, the hinge loss increases linearly with 𝑓\ (𝑥𝑖). A

disadvantage of hinge loss is that it does not differentiate between different data points that

are correctly classified with high confidence, so it does not continue to optimize for these

points.

The cross-entropy loss is the most commonly used loss function when training neural

networks. Cross-entropy loss arises probabilistically as the log likelihood of observing

a positive or negative instance, so using the cross-entropy loss represents a maximum

likelihood estimation for the parameters of the optimal classifier. Minimizing the cross-

entropy loss can also be interpreted as minimizing the Kullback-Leibler divergence between

an “optimal” class distribution (where, for 𝑥𝑖, the probability mass over Y is concentrated

entirely on 𝑦𝑖) and the normalized class scores produced by a classifier. Unlike hinge loss,

which focuses entirely on producing the highest possible accuracy on the training data, the
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cross-entropy loss provides a better probabilistic estimation of the parameters approximating

𝑓 ∗ ∈ F∗.

2.2.1 Semi-Supervised Learning

Supervised learning is the most common and well-studied type of machine learning.

However, in the context of modern machine learning in the era of big data, it is not always

feasible to obtain labels for every sample in the training dataset. In the case where the

training dataset is split into a labeled subset and an unlabeled subset, the paradigm shifts

to semi-supervised learning. Observing the scope of this dissertation, we eschew the

theoretical underpinnings that drive semi-supervised learning techniques1. Instead, we

focus on the expanded capabilities afforded to the machine learning practitioner by the

existence of semi-supervised techniques. In particular, while the fundamental objective

of semi-supervised learning remains the same as that of fully supervised learning (that

is, to find 𝑓\ ≈ 𝑓 ∗ ∈ F∗), the extension to include unlabeled data allows for more creative

engineering solutions for problems such as data mining and learning from noisy labels.

Two such solutions include DivideMix [12] (discussed in detail in Section 3.2.1), and the

labeler-aware learning framework proposed in this dissertation (Chapter 6).

2.3 Noisy Labels

Loss function optimization is powerful, and has been proven to be effective both

theoretically and empirically. However, learning from labeled data using loss function

optimization relies on the availability of accurate labels; if observed labels do not represent

1For a more formal treatment and presentation of semi-supervised learning, we refer the reader to the
excellent textbook Semi-Supervised Learning by Chapelle, Scholkopf, and Zien [11].
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the true classes, then loss function optimization may produce undesirable functions as the

method overfits to false label information.

In modern contexts, obtaining accurate labels on large datasets is costly, sometimes

prohibitively so [13, 14]; these costs have led to crowdsourcing as an attractive and cost-

effective solution for distributed label gathering [15, 16]. Unfortunately, the labels obtained

via crowdsourcing are of unreliable veracity, and models trained naively on such unreliable

data are vulnerable to overfitting on noisy labels [17]. Thus, learning in the presence of

noisy labels has emerged as an area of active research [18, 19].

2.3.1 Class-Conditional Label Noise (CCN)

Label noise is commonly treated as a class-conditional phenomenon, where the

noisy labels are considered to be strictly a function of the true label [20]. Under this

treatment, label corruption is modeled by assuming that given a sample 𝑥 with a true label

𝑦𝑘 , the observed label may be flipped to a false label �̂�ℓ with some probability 𝑝𝑘,ℓ. The

full set of these probabilities for all 𝑘, 𝑙 then forms a transition matrix, often denoted as 𝑇

[21]. Thus, a class-conditional noisy label for data instance 𝑥𝑖 is produced by following a

categorical distribution over the label space,

�̂�𝑖 ∼ Cat[Y | 𝑇𝑦𝑖 ] (2.3)

where �̂�𝑖 is the observed noisy label, and 𝑇𝑦𝑖 represents the transition probabilities corre-

sponding to the (unobserved) true label 𝑦𝑖.

Two common forms of 𝑇 used in studying learning from noisy labels are symmetric

and asymmetric label noise [22]. Under symmetric noise, each row of 𝑇 follows a uniform
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distribution, with each label 𝑦𝑘 having an equal probability of corruption to any other

label 𝑦ℓ [23]. In contrast, under asymmetric noise 𝑇 is artificially constructed to place

higher probabilities on classes heuristically similar to 𝑦𝑘 [24]. Examples of symmetric and

asymmetric class-conditional transition matrices are shown in Figure 1.

Figure 1

Examples of Class-Conditional Transition Matrices

2.3.2 Instance-Dependent Label Noise

Class-conditional label noise is an attractive scheme for studying label noise, as it

allows for precise control over the amount of label noise injected into the training dataset.

However, CCN approaches fail to consider the data-driven dependencies of label generation
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processes, and produce unrealistic data-label distributions. More realistic models include

early work on feature-dependent label noise [25], and, more recently, instance-dependent

noise [26]. One common approach generates instance-specific noise by training a deep

neural network on the clean training dataset and using its noisy outputs; some authors use

the entire set of noisy labels generated by the network [27], while others retain only a

percentage of the noisy labels [28]. Another method involves projecting each instance onto

a randomly-sampled set of 𝐾 vectors and sampling from a combination of this projection

with the clean label to generate a noisy label [29]. The polynomial margin diminishing

noise introduced in [30] extends confidence-based noise to stochastically flip labels based

on the outputs of a neural network trained on clean labels.

All instance-dependent models can be summarized abstractly as producing an

instance-dependent probability distribution over the label space Y as a function of the

data features 𝑥𝑖. Thus, an instance-dependent noisy label is produced by following

�̂�𝑖 ∼ Cat[Y | ℎ(𝑥𝑖)] (2.4)

where �̂�𝑖 is the observed noisy label for the data instance 𝑥𝑖, and ℎ represents an instance-

dependent model (which may involve arbitrary parameters) belonging to H, the set of all

possible instance-dependent models. Notably, there is wide variation in the expression of

ℎ, and indeed ℎ may be parameterized arbitrarily (for example, as the decision function of

a deep neural network).

Note the similarities between Equation 2.3 and Equation 2.4. In particular, instance-

dependent noise generalizes class-conditional noise, since any class-conditional transition

matrix may be expressed as an instance-dependent model where all instances belonging
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to the same class have identical transition probabilities, i.e. if ℎ(𝑥) = 𝑇𝑦𝑖 for all instances

{𝑥 ∈ X | 𝑓 ∗(𝑥) = 𝑦𝑖}. A similar generalization argument will be used in Chapter 4 to show

that any instance-dependent noise model may be expressed as a special case of labeler-

dependent noise.

2.3.3 Noisy Labels from Crowdsourcing

Both class-conditional and instance-dependent noise models assume that the noisy

labels are generated by a single process for the entire training dataset. This is an unrealistic

assumption in the context of big data, where labels may be gathered via distributed methods

such as crowdsourcing. Crowdsourcing has emerged as an appealing, inexpensive tool

for distributed collection of label information for large-scale datasets. For example, the

widely used ImageNet dataset is annotated using crowdsourcing from Amazon Mechanical

Turk [31]. Crowdsourcing is also widely used to annotate datasets in natural language

processing [32, 33] and data mining [34, 35]. However, crowdsourcing suffers from the

problem of inexpert—and therefore unreliable—labeling. The very property of widespread

contribution that gives crowdsourcing its power also results in the significant drawback of

relying on the opinions of “experts” (sometimes referred to as labelers, annotators, workers,

or label sources) who may have little or no domain knowledge. Furthermore, there may

be differences of opinion between labelers with contrasting expertise: one labeler may

provide a label (which could be considered correct from one perspective) that disagrees

with a different label (which could be considered correct from a different perspective).

For example, recent works that have analyzed the ImageNet dataset found that using the

crowdsourced labels as a gold standard may be flawed [36, 37].
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Addressing unreliable labels has long been a fundamental objective of learning from

crowds, and can be traced to Dawid and Skene’s seminal work on modeling the accuracy of

each labeler as a hidden confusion matrix [38]. The generative model of labels, abilities, and

difficulties (GLAD) model adds instance-specific dependence by modeling the difficulty of

correctly labeling each instance alongside each labeler’s expertise [39]. A multidimensional

parameterization assuming that labels are generated from a Gaussian mixture model was

proposed in [40]. In general, noisy label models based on crowdsourcing attempt to

describe the label generation process as a parameterized set of latent variables, with the

various models in the literature differing only in how these parameters are expressed.

2.4 Adversarial Machine Learning

The scenario most similar to Descartes’ evil demon—mentioned in Chapter 1—is

that of adversarial machine learning. Adversarial machine learning is the field of machine

learning concerned with studying the robustness of machine learning models to maliciously-

designed inputs, which may force the models to produce unpredictable or undesirable

outputs, or to learn incorrect beliefs about the data on which they are trained. Broadly

speaking, adversarial attacks against machine learning models fall into one of two categories:

evasion attacks, which aim to force the model to produce misclassification of perturbed test

(inference) samples [41], and poisoning attacks, which inject the training dataset with

malicious examples (of deliberately incorrect labels) in order to induce poor generalization

performance [42]. Of these two categories, learning from noisy labels is most strongly

associated with the latter, as poisoning attacks target the training process directly, while

evasion attacks are typically designed and executed against pretrained models.
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2.4.1 Backdoor Attacks

One particularly insidious type of hybrid attack (combining elements of both evasion

and poisoning attacks) is the backdoor attack [43], which seeks to force misclassification

only in the presence of a backdoor trigger, while otherwise allowing the network to operate

unimpeded. Such a strategy is especially difficult to detect or defend against, as the victim

of such an attack will have no indicators of any unusual behavior until the targeted attack is

executed in deployment. Backdoor attacks have been proposed as potentially catastrophic

vulnerabilities in sensitive applications such as self-driving cars [44] and facial recognition

security systems [45].

An adversary who wishes to force a trained model to misclassify specific test samples

as a target class 𝑦′ ∈ Y can corrupt a training example 𝑥 ∈ X by

𝑥′ = 𝑥 +[(𝑦′) (2.5)

where [(𝑦′) represents a backdoor pattern associated with class 𝑦′. In doing so, the adversary

attempts to force \ to be learned such that

𝑓\ (𝑥′) = 𝑥\ [𝑥 +[(𝑦′)]

= (1− 𝛿)𝑥\ (𝑥) + 𝛿 𝑓\ [[(𝑦′)]

= (1− 𝛿)𝑦 + 𝛿𝑦′

(2.6)

where 𝛿 represents an indicator function that takes the value of 1 if [(𝑦′) is present, otherwise

0. A visual example of applying Equation 2.6 is shown in Figure 2.
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Figure 2

Examples of Applying Backdoor Attacks

18



Chapter 3

Related Work

While learning from noisy labels is a relatively recent field (compared to supervised

learning from clean labels) there is still an existing—and growing—body of literature

investigating the subject. In this chapter, we review prior art on label noise models, as well

as a representative selection of approaches for learning under these models.

3.1 Assuming the Existence of Clean Validation Data

Before introducing any specific models of label noise, it is important to address a

common misunderstanding regarding the learning environment under noisy labels. Some

works assume the existence of a clean validation dataset and leverage this information against

the noisy labels (for example, [46–49]). This assumption relies on the observation that while

it may be costly and inefficient to obtain curated labels for the entire training dataset, it may

be less prohibitive to obtain such labels for a smaller subset of the training data. Hence,

these methods use validation data, which boasts—in theory—perfectly accurate labels, as a

seed from which the uncertain, noisy labels in the larger training dataset may be refined.

However, the assumption of clean data is flawed. In general, there is no such

thing as a perfectly accurate classifier; even human experts cannot provide 100% accuracy

with their labels in all scenarios. More abstractly, given a classifier 𝑓\ (which may be a

human or machine labeler), the error of 𝑓\ on the universal set X ∗ must necessarily be

greater than zero; a perfectly-trustworthy oracle does not exist, as there is always some

nonzero uncertainty in the accuracy of the labels provided by 𝑓\ 1. Thus, the notion

1In the field of uncertainty quantification, these uncertainties are sometimes referred to as “aleatoric and
epistemic uncertainty”. These concepts are interesting, and worthy of deeper investigation, but lie beyond the
scope of this dissertation.
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that it is even possible to obtain a validation dataset whose labels are clean with 100%

confidence is unreasonably optimistic. Furthermore, in forward-thinking applications such

as autonomous continual learning agents and independent AI free from human influence,

the noisy nature of unstructured data in uncontrolled environments renders these approaches

unreliable.

3.2 Class-Conditional Label Noise

As discussed in Section 2.3.1, class-conditional label noise (CCN) takes the form

of a transition matrix, 𝑇 . As one of the simplest approaches for modeling the incidence

of label noise, CCN is consequently one of the most popular models in machine learning

literature for studying label noise. Accordingly, there is a wide range of angles of attack

that have been taken toward tackling CCN.

Some works have attempted to exploit model confidence with small losses to weight

the importance of each instance during parameter updates [24, 50, 51]. Multiple methods for

correcting noisy labels based on loss modeling have been proposed [52, 53]. Meta-learning

has been proposed as a method for increasing robustness to noisy labels [13, 54, 55].

In all cases, label noise is treated strictly as a function of the true label, meaning that

the probability of label flipping for any instance of a particular class is shared across all

instances.

In this dissertation, we give special consideration to the most notable, popular

algorithm for learning from noisy labels under class-conditional label noise: DivideMix

[12].
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3.2.1 DivideMix

DivideMix is motivated by the key insight that deep neural networks tend to exhibit

smaller losses for data with clean labels compared to data with noisy labels [56]. Following

this observation, DivideMix uses the expectation-maximization algorithm to fit a Gaussian

mixture model to the per-sample loss distribution of the training data after each training

epoch, under the assumption that the loss distribution will be bimodal (with cleanly-labeled

data clustered with small losses, and noisy labeled data clustered with large losses). Hence,

the training dataset is split into two subsets: one with theoretically mostly-clean labels, and

one with theoretically mostly-noisy labels.

In order to avoid self-reinforcing confirmation bias, DivideMix actually trains two

networks simultaneously, in a strategy called “co-teaching” [24]. During each training

epoch, the output loss distribution of one of the networks is used to generate the training

data splits for the other network. Then, these splits are used in a semi-supervised manner

to train the other network by stripping the labels from the mostly-noisy subset, and treating

this subset as an unlabeled dataset (alongside the labeled dataset with mostly-clean labels).

The authors use a hand-crafted modification of the MixMatch algorithm [57] to perform

semi-supervised learning under noisy labels. They also incorporate a “warm up” period

during the first several training epochs where no loss modeling is performed, and apply a

confidence penalty to the networks’ outputs during the warm up period in order to flatten

the initial loss distribution.
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3.3 Instance-Dependent Label Noise

As outlined in Section 2.3.2, instance-dependent label noise (IDN) seeks to update

the incorrect assumption of CCN, that noisy labels are generated purely as a function of

the true labels. Instead, IDN considers that each unique instance in the training dataset

may have a concordantly unique probability of flipping to any other label, independently

from the other instances (even those belonging to the same class). Unlike CCN, there are

many different proposed models for IDN, each of which are accompanied by hand-crafted

approaches for learning under their proposed frameworks.

The bounded instance- and label-dependent noise approach attempts to extract sam-

ples with the same labels as those produced by a Bayes optimal classifier based on the

implicit or explicit knowledge of the upper bounds of the noise rates [29]. Part-dependent

transition matrix estimation assumes that the instance-specific transition matrices can be

learned by exploiting clean samples [26]. Covariance-assisted learning utilizes second-

order statistics to make the peer loss (proposed in [58]) invariant to instance-dependent

noise [59].

In this dissertation, we give special consideration to two recent, powerful methods

proposed for learning under instance-dependent noisy labels: progressive label correction

and self-evolution average label. Both methods have been shown to be effective at mitigating

the effects of instance-dependent label noise (under their respective assumptions about the

label noise model).
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3.3.1 Progressive Label Correction

Progressive label correction (PLC) [30] seeks to address the authors’ proposed

polynomial margin diminishing noise (PMD) model by performing iterative label correction

according to a threshold on the prediction confidences. Under the assumption that the label

noise present in the training data follows the PMD model, PLC asserts that there exists

a “pure region” in which the confidence of a neural network is high, and in which the

prediction of the network is consistent with a theoretical Bayes optimal classifier trained on

(hypothetical) clean labels. Thus, any prediction with a suitably high confidence is treated

as correct, and if the observed label �̂�𝑖 differs from the prediction 𝑓\ (𝑥𝑖), then �̂�𝑖 is changed

to the predicted class.

PLC starts with a high confidence threshold, and trains the neural network until

there are no further label corrections. Then, the confidence threshold is lowered by some

small amount and the training process is repeated. These two steps are alternated until

training reaches convergence. The authors prove that under the assumption of PMD noise,

and given certain conditions regarding the hypothesis class of the machine learning model

as well as the underlying data distribution 𝑃X ∗ , the PLC algorithm produces a classifier

whose empirical risk asymptotically approaches the true risk of a Bayes optimal classifier

in the limit of infinite data.

3.3.2 Self-Evolution Average Label

The self-evolution average label (SEAL) algorithm stores the running average of

a classifier’s predictions over training, and then iteratively retrains using the averages as
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soft labels [28]. SEAL operates under the assumption that there exists a latent optimal

distribution describing the true label 𝑦𝑖 for each instance 𝑥𝑖, and that this distribution can

be considered as the output of an oracle classifier. Then, under this assumption, the label

corrections obtained by taking the average classifier output over a complete training process

have both lower bias and lower variance than the observed noisy labels compared to the

latent optimal distribution. The authors claim that by iteratively retraining by replacing the

original noisy labels with the average labels obtained from the previous training iteration,

SEAL gradually approaches the latent optimal distribution in expectation. SEAL’s most

notable advantage over previous methods that have attempted to use label correction is

that it does not require any special hyperparameters beyond those required for the chosen

classifier.

3.4 Learning from Crowds

Perhaps the earliest work on characterizing the collective decision of a set of inexpert

opinions is the Condorcet jury theorem [60], which states that for a group of independent

voters with a homogeneous probability of correctness 𝑝, the probability of their majority

vote being correct on a binary decision increases with the size of the group if 𝑝 > 0.5.

Kazmann showed that the assumption of homogeneous voters can be relaxed by assuming

that the heterogeneous voter correctness probabilities follow a symmetrical distribution

about a mean 𝑝 [61]. Grofman demonstrated that the group’s collective accuracy can

increase even if the added members are less competent than the group’s previous average

[62]. Owen, Grofman, and Feld removed the distribution restrictions, generalizing the

theorem to depend only on 𝑝 > 0.5 [63]. List and Goodin extended this result to problems
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with more than two classes, showing that for a 𝐾-class problem, the average voter reliability

needs only to exceed 1/𝐾 for the majority vote decision to be increasingly more accurate

as the number of voters increases. [64].

Beyond simple majority vote analysis, and the associated large body of ensemble-

based approaches, much research has gone into investigating crowdsourcing algorithms.

Dawid and Skene proposed a model based on the well-known expectation-maximization

(EM) algorithm, attempting to estimate each labeler’s respective expertise as a confusion

matrix [38]. From their application, a rich body of work has sprouted, with many im-

provements, alterations, and theoretical bounds on the performance of generative models

based on the EM approach [65–67]. Aside from EM-based approaches, Ghosh et al. [68]

and Dalvi et al. [69] proposed sparse matrix algorithms based on singular value decom-

position. Other approaches have investigated Bayesian inference [40, 70]. An intriguing

line of investigation by Goldberger examined the problem of “soft” labels, which take the

form of a distribution over the class space [71]. More recently, the success of deep neural

networks has prompted work on deep generative models [72–74]. Regardless of the specific

approach, nearly all work in this area attempts to model either the parameters of labelers’

reliabilities, or the confusion matrices associated with each labeler.

In this dissertation, we give special consideration to three models for learning from

crowds. The first two settings are well-established and widely cited, and can be considered

to be canonical models; while more recent work has proposed some additions to these

models, the fundamental idea of highly parameterized probabilistic dynamics is consistent

across the literature. The third model adds a new layer of complexity to the label generating

process that cannot be easily incorporated into the previous models.
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3.4.1 Generative Model of Labels, Abilities, and Difficulties

We first consider the setting proposed by Whitehill et al. [39], which models the

labeling process as not only a function of the expertise of the labeler, parameterized by

𝛼 ∈ (−∞,∞), but also as the difficulty of labeling a data instance, parameterized by 1/𝛽 ∈

[0,∞). When 1/𝛽 = ∞, an instance is deemed very difficult to label for even the most

expert labeler, whereas 1/𝛽 = 0 represents a trivial instance, so obvious that anyone would

label it correctly irrespective of expertise. The range of values for 𝛼 describes expertise

from “perfectly wrong” (when 𝛼 = −∞) to “perfectly accurate” (when 𝛼 =∞), with 𝛼 = 0

representing random guessing. The probability of the label �̂�𝑖 𝑗—assigned by labeler 𝑗 on

instance 𝑖—being the correct label 𝑦𝑖 ∈ [0,1] is then modeled as

Pr( �̂�𝑖 𝑗 = 𝑦𝑖 |𝛼 𝑗 , 𝛽𝑖) =
1

1+ 𝑒−𝛼 𝑗 𝛽𝑖
(3.1)

which allows the log odds for the label being correct to be expressed as

log
[ Pr( �̂�𝑖 𝑗 = 𝑦𝑖)
1−Pr( �̂�𝑖 𝑗 = 𝑦𝑖)

]
= 𝛼 𝑗 𝛽𝑖 . (3.2)

From this formulation, the authors develop an EM-based algorithm called GLAD

(Generative model of Labels, Abilities, and Difficulties), which—under the assumptions of

the labeling model—is able to recover 𝑦, 𝛼, and 𝛽 for all data and labelers.

To our knowledge, Whitehill et al. were the first to extend the work of Dawid

and Skene (who assumed that labels were generated only by parameters over the labelers’

expertise [38]) such that the generative model also included parameters for the difficulty of

assigning the correct label. While adding a small amount of complexity, Whitehill et al.

sought to keep their model as simple as possible, assigning only a single hidden parameter
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for each instance and labeler.

3.4.2 Multidimensional Parameterization of Label Generation

In contrast to the GLAD model, Welinder et al. considered the labeling process to be

a high-dimensional system, with both instance difficulty and labeler ability being governed

by many parameters [40]. For their formulation, the authors suggest that the dynamics can

be described as a Gaussian mixture model. For the 𝑖th instance, with ground truth label

𝑦𝑖 ∈ [0,1], the presentation 𝑥𝑖 of instance to labeler 𝑗 is modeled by

𝑥𝑖 ∼N (`𝑧,𝜎2
𝑧 )

`𝑧 =


−1 if 𝑦𝑖 = 0

1 if 𝑦𝑖 = 1

(3.3)

where 𝜎𝑧 is a parameter describing the variability in the difficulty of correctly labeling

instance 𝑥𝑖. The 𝑗 th labeler sees a version of instance 𝑥𝑖 modeled as 𝑥𝑖 𝑗 = 𝑥𝑖 +𝑛𝑖 𝑗 , where 𝑛𝑖 𝑗

is the labeler- and instance-specific “noise”, such as differences in labeler attention, acuity,

direction of gaze, etc. The noise statistics vary from labeler to labeler, and are modeled

as a parameter 𝜎𝑗 ; the authors assume Gaussian noise, i.e. 𝑥𝑖 𝑗 ∼N (𝑥𝑖,𝜎2
𝑗
). The labeler-

assigned label �̂�𝑖 𝑗 is then chosen deterministically as 𝑥𝑖 𝑗 = I(⟨�̂� 𝑗 , 𝑥𝑖 𝑗 ⟩ ≥ 𝜏𝑗 ), where I(·) is

the indicator function and �̂� 𝑗 is a weighting vector that encodes each labeler’s expertise.

The authors draw the decision threshold according to 𝜏𝑗 following a zero-mean Gaussian,

and sample the noise parameter 𝜎𝑗 from a gamma distribution. The authors then apply

Bayesian maximum a posteriori estimation to maximize the posterior on the parameters.

They solve this optimization using gradient ascent by alternating between fixing 𝑥 and
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optimizing over (𝑤,𝜏), and fixing (𝑤,𝜏) and optimizing 𝑥, assuming Gaussian priors on 𝑤 𝑗

and 𝜏𝑗 , respectively.

The generative model proposed by Welinder et al. is highly parameterized and

considerably more complex than the model suggested by Whitehill et al. Later models build

on this idea, adding even more parameterization in the form of latent variables; these more

complicated models are intractable for EM algorithms, leading to the usage of deep neural

networks for approximating these more complex environments [72–74]. Each of these

models, however, shares lineage with the work of Welinder et al., and the general class of

multidimensional label generation dynamics is well-represented by their work.

3.4.3 Soft Observations of Labeler Opinions

Goldberger introduced the notion of soft opinions, where categorical label assign-

ment of the 𝑗 th labeler on the 𝑖th data instance (with true label 𝑦𝑖) is not a one-hot encoding,

but rather a probability distribution [71]. He simplified the initial annotation process com-

pared to the previous models, assuming only that the labeler’s initial opinion 𝑞𝑖 𝑗 is assigned

following

Pr(𝑞𝑖 𝑗 |𝑧𝑖 = 𝑎; 𝑝 𝑗 ) =


𝑝 𝑗 , if 𝑦𝑖 = 𝑎

1− 𝑝 𝑗
|𝐴| −1

, if 𝑦𝑖 ≠ 𝑎

 , ∀𝑎 ∈ 𝐴, (3.4)

where 𝑝 𝑗 is the labeler’s probability of providing the correct label, and 𝐴 is the set of possible

labels. Similarly to class-conditional models, Goldberger assumed that each labeler has an

identical reliability across all classes, and that an incorrect label is assigned following a

uniform distribution across the incorrect classes.

Goldberger’s most notable contribution is that he extends the uncertainty in observed
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labels beyond that of the labeler’s label generation model. He assumes that the observed

version of the labeler opinion, �̂�𝑖 𝑗 , is not an indicator, but rather a probability distribution

over all visible labels:

�̂�𝑖 𝑗 (𝑏) = Pr(𝑦𝑖 𝑗 = 𝑏), ∀𝑏 ∈ 𝐴. (3.5)

In this way, Goldberger accounts for a layer of obfuscation between the labels as

provided by the labelers and the labels as seen by the observer. This consideration is intrigu-

ing, and adds an important contribution that is missing from the previous models, extending

the assumption of unreliability from simply the generation of labels to the observation of

the labels. Goldberger handles this obfuscation by developing an extended EM algorithm.
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Chapter 4

Labeler-Dependent Label Noise

In this chapter, we introduce one of the primary contributions of this dissertation:

labeler-dependent label noise (LDN). In Chapter 5, we will address the common problem

of learning from crowdsourced labels as a special case of LDN with the OpinionRank

algorithm. Then, in Chapter 6 we will extend the capabilities of OpinionRank to be able

to handle the full LDN model. Afterward, in Chapter 7 we will discuss the implications of

adversarial perspectives of the LDN model, and demonstrate how the LDN model can be

used to describe real-world adversarial settings.

As previously shown, instance-dependent label noise (IDN) models represent an

important improvement over unrealistic class-conditional approaches (CCN). However,

while there are many proposed models for IDN, to date all such models are assumed to be

applied homogeneously across the entire dataset. This assumption is severely limiting in

the case of modern datasets, where the characteristics of label noise may vary based on not

only the data features, but also on the specific labeler providing the noisy label. Similarly,

while methods for learning from crowds have attempted to consider both instance- and

labeler-dependent noise, these methods require unrealistic label redundancy, and rely on

overly-specific parameterizations based on assumptions about the label generation process.

We propose a cross-disciplinary approach to modeling label noise by combining

the strengths of single-process IDN models with the multiple-labeler paradigm of learning

from crowds. We will show in Chapter 6 how this extension of IDN to account for multiple

labelers eliminates the weaknesses of both IDN and learning from crowds by developing a

robust learning framework.
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We introduce our LDN model as a generalization of IDN by adding a labeler index

to the instance-dependent form:

�̂�𝑖 𝑗 ∼ Cat[Y | ℎ 𝑗 (𝑥𝑖)] (4.1)

where ℎ 𝑗 ∈H for all labelers 𝑗 = 1, . . . , 𝐽. While seemingly simple, the addition of the labeler

index 𝑗 creates complications in analytically determining the properties of label noise. In

particular, it is very unlikely that all labelers will follow the same instance-dependent process

ℎ—that is, ℎ 𝑗 ≠ ℎℓ for 𝑗 ≠ ℓ—so considering 𝐽 labelers introduces another dimension of

parameters, which has not been previously considered. We note that every single-process

IDN model (as described by Equation 2.4) can be recovered as a special case of LDN

(Equation 4.1) by assuming the (unlikely) scenario where ℎ 𝑗 = ℎ for all 𝑗 , or by assuming

that the entire dataset is provided by a single labeler (i.e., the number of labelers 𝐽 = 1,

so ℎ 𝑗 = ℎ1 = ℎ). Furthermore, Equation 4.1 holds without loss of generality regardless of

the characteristics of any ℎ 𝑗 , or indeed regardless of the number of labelers 𝐽. The ideal

case of perfect, non-noisy labels can also be recovered, by assuming that ℎ 𝑗 = ℎ∗ for all

labelers, where ℎ∗(𝑥𝑖) = 𝑦𝑖 is an oracle function that universally provides the correct label.

The relationship of LDN as a generalization of IDN is similar to the relationship between

IDN and CCN; hence, the tiers of generalization form a hierarchy of models. This hierarchy

is illustrated in Figure 3.
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Figure 3

Hierarchy of Label Noise Models

In this dissertation, we consider a hammer-spammer model of labeler-dependent

noise. In particular, we assume that for a given instance 𝑥𝑖, the set of all possible classes

to which 𝑥𝑖 may belong are ordered by relative likelihood of correctness, and that this

ordering may be estimated by an instance-dependent process ℎ. Given such an ordering, the

noisy label may be selected probabilistically from the set of possible classes, with hammers

having a high probability of providing the highest-ordered label, and spammers having

a low probability of providing the highest-ordered label. Unlike previous works, which

used either uniformly-distributed noisy label distributions or heuristic, handcrafted label

flipping probabilities, we choose the beta-binomial distribution to describe the probability

of the observed label �̂�𝑖 taking the value of a particular class in Y given the data features

𝑥𝑖. The beta-binomial distribution is especially useful for describing distributions over
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discrete values (here, classes in Y) that follow smooth probabilistic ordering (here, sorting

by most-to-least likelihood of observation). Hence, the labeler-dependent model ℎ 𝑗 (𝑥𝑖) is

described by

ℎ 𝑗 (𝑥𝑖) = BetaBinom[ℎ(𝑥𝑖) | 𝛼 𝑗 , 𝛽 𝑗 ] (4.2)

where 𝛼 𝑗 and 𝛽 𝑗 represent the parameters of the beta-binomial distribution describing

the class selection likelihoods of the 𝑗 th labeler. In particular, by fixing 𝛼 𝑗 = 1, and

allowing 𝛽 𝑗 ∈ [1,∞), we define a spectrum in which a potential labeler behaves, with 𝛽 𝑗 = 1

representing a completely random labeler and 𝛽 𝑗 = ∞ representing a perfectly-accurate

labeler. Figure 4 demonstrates two examples of such labelers, with a hammer defined as

𝛽 𝑗 = 200, and a spammer as 𝛽 𝑗 = 10 (over ten total classes). Note that a hammer has a high

probability of assigning the true label to an instance, and a low (but nonzero) probability of

assigning any other label (with decreasing monotonicity according to the instance-dependent

class likelihoods). In contrast, the probability mass for the spammer is distributed more

broadly across the class space Y . Most importantly, for both types of labelers the incorrect

labels are distributed with decreasing probability according to instance-dependent class

likelihoods.
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Figure 4

Examples of Class Label Selection Probabilities

4.1 Illustration of Labeler-Dependent Noise

Visual examples of instance-dependent noise violating the class-conditional as-

sumption for label noise by generating feature-dependent labels can be found in previous

works, such as [28]. Here, we extend these illustrations, presenting labeler-dependent noise

as a generalization of instance-dependent noise by demonstrating how different labelers

may provide heterogeneous labels. We generated instance-dependent class ordinals by in-

tentionally overfitting a neural network on the training data of the MNIST dataset and, for

each instance, sorted the set of classes by the class probabilities produced by the neural

network. Then, for each of seven hammers and three spammers, we randomly selected a

class label following the respective beta-binomial distributions over the ordered classes.
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Table 3 shows how the labels produced by each labeler vary, depending on the

hammer-spammer characteristics of each labeler. Each column corresponds to the labels

provided for the specific instance shown at the top of the column, and the labels in each row

were provided by the same labeler. We observe that even within just the pool of hammer

labelers, there is wide variability between the labelers with respect to both the incidence and

classes of incorrect labels. These variations illustrate the necessity of labeler-dependent

noise modeling; if label noise were simply instance-dependent, then we would expect to

see the same incorrect labels–on any given instance–provided by all labelers. The fact

that this is not observed suggests that noisy labels have labeler dependence. Indeed, while

the incorrect labels in each column tend toward a most-common incorrect class (i.e., the

second-highest probability class ordinal), each labeler’s unique characteristics adds label

noise heterogeneity across both the instance and labeler dimensions.
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Table 3

Examples of Labeler-Dependent Noisy Labels on MNIST

True label 0 1 2 3 4 5 6 7 8 9

Hammers

1 1 2 3 9 5 2 3 8 9

0 1 6 3 4 5 0 7 8 4

0 4 2 8 4 6 6 4 4 9

4 8 2 3 4 5 8 7 8 3

0 1 0 3 2 5 6 7 9 7

0 1 2 7 4 5 8 9 8 9

7 8 2 3 4 5 6 7 8 7

Spammers

5 8 9 2 4 7 0 5 9 9

6 6 9 7 9 6 6 8 9 7

7 1 6 1 1 6 2 9 1 7
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Chapter 5

OpinionRank

In this chapter we consider the problem of learning from crowds as a special case

of labeler-dependent noise. As discussed in Section 3.4, methods for learning from crowds

typically view the label generation process as a highly-parameterized latent variable model,

and attempt to estimate these parameters in order to obtain clean labels. However, parameter

estimation methods depend highly upon the correct parameterization of the system, and can

fail in alternative environments. Even worse, techniques such as expectation-maximization

and variational deep neural networks demand substantial computational requirements to

converge to their estimates of the system dynamics.

To address these drawbacks, we propose OpinionRank, a spectral algorithm for

labeler ranking and weighted voting. Instead of attempting to estimate the true reliability

parameters of each labeler in the ensemble, we propose to estimate the relative reliability

of each labeler with respect to others. Furthermore, we do so using a nonparameterized

approach: given only the observed labels (of unknown reliability) provided by each labeler,

we compute our estimation of the labelers’ relative expertise by comparing the frequency

of agreement between each pair of labelers. An agreement between two labelers can

be interpreted as a soft “recommendation” between them: given that they have provided

the same label for the same instance, it is reasonable to expect that one labeler would

recommend the other at least some of the time. Under the Condorcet criterion that the

average expertise of the ensemble of labelers exceeds random guessing [64], this system of

mutual recommendations builds a network of trust. This network of trust reflects recent

research into the characteristics of early childhood knowledge acquisition: information
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sources that have been shown to agree with other information sources are viewed more

favorably and with greater trust than those who have not [75].

We formulate the ensemble of labelers as a fully connected graph, with each labeler

functioning as a node. The edges of each node correspond to the number of times that each

labeler 𝑖 agrees with (recommends) each other labeler 𝑗 (a labeler always recommends itself).

We consider the probabilistic interpretation of the frequency of labeler 𝑖 recommending

any other labeler 𝑗 ; the edges leading outward from any labeler 𝑖 can be transformed

into a probability distribution via normalization. We interpret the graph of interlabeler

agreements as a Markov chain representing the scenario of the model asking each labeler to

recommend the opinion of any other labeler. Hence, the long-run steady-state probabilities

of this Markov chain represent the probability that the model will “trust” the opinion of

any particular labeler. The edge probabilities of recommendation form a dense transition

matrix, which we call a corroboration matrix. We choose the partition function

𝑍 =
∑︁
𝑖

𝑒𝑥𝑖 (5.1)

as a normalization term, transforming each row into a Gibbs measure and thus guaranteeing

that the corroboration matrix is ergodic.

The Perron-Frobenius theorem guarantees that the corroboration matrix—being

real, square, and positive—will have a unique, positive eigenvector [76]; this dominant

eigenvector represents the steady-state probabilities of the corroboration matrix, which we

use to describe the relative reliabilities of each labeler. The dominant eigenvector v can

be computed using the well-known power iteration method, taking the limit of the matrix

power of the transformed corroboration matrix C and multiplying by an elementary vector
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e:

v = lim
𝑃→∞
(C𝑃)⊺e. (5.2)

In practice, it is sufficient to iterate powers of 𝑃 such that convergence is achieved; com-

putational efficiency can be obtained by manually selecting an arbitrarily large value for

𝑃.

The use of the Perron-Frobenius eigenvector as a ranking tool is most often associ-

ated with the PageRank algorithm [77], though its use in this application goes back even

further [78, 79]. Recent theoretical work has shown that under mild assumptions about

the underlying properties of the objects being ranked, the spectral method of eigenvector

ranking is equally optimal as maximum likelihood estimation approaches [80]. Here, we

interpret the probabilities of the eigenvector as a scheme for weighting the votes of each

labeler. For each instance, we take the dot product between the binary vector of labeler

opinions on class membership and the relative reliability vector to produce a scalar value

𝑤 ∈ [0,1] representing the weighted ensemble opinion on the class membership of the

example. Optionally, we can choose to treat the eigenvector as a strict ranking, and retain

only the top-𝑛 labelers. We summarize OpinionRank in Algorithm 1; a visual diagram

outlining the algorithm’s flow is shown in Figure 5.
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Algorithm 1 OpinionRank: A Model-Free, Graph-Based Spectral Method for Extracting
Labels from Multiple Unreliable Labelers
Input: Y , a set of 𝐾-class membership opinions on 𝑛 total examples from 𝐽 labelers.
Input: 𝑃, the number of matrix power iterations
Input: 𝑛 ∈ [1, 𝐽], the number of labelers to retain from the dominant eigenvector
Output: W , a 𝐾 ×𝑁 matrix of weighted class membership scores.

1: Initialize 𝐾 ×𝑁 matrix of class scores, W
2: for each class ℓ = 1 to 𝐾 do
3: Obtain 𝐽 ×𝑁 matrix of class-ℓ membership opinions,

K← checkEqual(Y , ℓ)
4: C← Initialize 𝐽 × 𝐽 corroboration matrix
5: for each labeler 𝑖 = 1 to 𝐽 do
6: for each labeler 𝑗 = 1 to 𝐽 do
7: C𝑖 𝑗 ←

∑
checkEqual(K𝑖,K 𝑗 )

8: end for
9: C𝑖← softmax(C𝑖/𝑁)

10: end for
11: Obtain dominant eigenvector, v← (C𝑃)⊺e
12: Obtain top-𝑁 eigenvector indices, I← argsort(v, 𝑛)
13: for all 𝑘 ∈ K do
14: 𝑘← 0.5 if 𝑘 is missing
15: end for
16: Wℓ←K⊺

𝐼
v𝐼

17: end for
18: return W
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Figure 5

Block Diagram of OpinionRank
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The OpinionRank algorithm is highly flexible, and is easily adaptable to any labeling

paradigm. In the case of binary categorical labeling problems, OpinionRank can be applied

directly. For multinomial and multilabel problems, the labeler-provided class labels can be

transformed into binary encodings (one-hot labels for the multinomial case), with Opin-

ionRank being applied across each class. In these scenarios, OpinionRank estimates the

class-conditional reliability ranking of each labeler, on the observation that some labelers

may have more or less expertise with respect to some classes compared to others.

For binary problems, label predictions are obtained by thresholding the weighted
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class scores at 0.5. In the multilabel case, the same rule can be applied to each class

independently to obtain binary label vectors for each instance. Multinomial decisions are

made by choosing the class corresponding to the argmax of the class membership scores.
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Chapter 6

Labeler-Aware Learning

Although OpinionRank has proven to be a powerful tool for extracting ground truth

from redundant labels (obtained via crowdsourcing, for example), the algorithm’s weakness

is its requirement that it cannot handle the scenario where the labels provided by the multiple

labelers are non-overlapping. This scenario arises naturally whenever a dataset is collected

in a streaming scenario, such as when users contribute to a collective database. Here, the

corroboration matrix has no values, since there do not exist any instance-wise classification

agreements (as each instance has only one label). Furthermore, we cannot simply combine

each labeler’s contributions into a single dataset, as doing so would destroy the information

contained in the labeler associations.

To address this failure mode, we propose a multi-stage, labeler-aware framework

for robust learning from noisy labels called “labeler-aware learning” (LAL). Generally,

previous formulations for learning from labeled data have assumed that the training dataset

takes the form of a single homogeneous bucket of data, D = {X ,Y}. However, our labeler-

dependent noise model introduces the concept of labeler awareness, whereby the learner

retains information regarding which training dataset contributions were provided by which

labeler. Thus, we propose “labeler-aware learning” by considering the set of partitioned

subsets of noisily-labeled data provided by 𝐽 heterogeneous labelers, D = {D1, . . . ,D𝐽},

where each D 𝑗 = {X 𝑗 , Ŷ 𝑗 } and 𝑥ℓ ∉X 𝑗 for any 𝑥ℓ ∈ Xℓ≠ 𝑗 . Our model is illustrated in Figure

6; each training data subset X 𝑗 ∼ 𝑃X ∗ is labeled by the 𝑗 th labeler (whose labeler-dependent

dynamics are described by ℎ 𝑗 ), who provides the observed labels Ŷ 𝑗 .
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Figure 6

Graphical Model of Labeler-Aware Learning

We would like to leverage our labeler awareness to refine our observed labels.

However, because each labeler 𝑗 provides labels only on X 𝑗 , and each X 𝑗 is disjoint from

every other Xℓ≠ 𝑗 , we cannot directly use methods for learning from crowds (which rely

on multiple label redundancy) to exploit our labeler-aware knowledge. To overcome this

limitation, we draw inspiration from modern social learning theory [81, 82], and impute

the labels that would have been provided by labeler 𝑗 on the subset Xℓ≠ 𝑗 by training a

representative model, \ 𝑗 . To accomplish this task, we first observe that while the labels

Ŷℓ≠ 𝑗 from all labelers ℓ ≠ 𝑗 are uninformative for estimating ℎ 𝑗 , the data Xℓ≠ 𝑗 can very well

be informative, and can be exploited under the reasonable assumption that each X 𝑗 is drawn

from the same underlying distribution 𝑃X ∗ 1. Hence, we leverage semi-supervised learning

(SSL) to train each \ 𝑗 by treating the data-label pairs {X 𝑗 , Ŷ 𝑗 } as labeled data, and the

union X𝑈
𝑗
= {⋃ℓXℓ≠ 𝑗 } as unlabeled data. We place no restrictions on which SSL methods

1Note that under the labeler-agnostic paradigm, this assumption is taken implicit, as the entire training
dataset is considered to be drawn from the same distribution. Here, we are merely partitioning this training
dataset, with no other modifications, so the same assumption holds.
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may be used, maintaining modularity in anticipation of future advances in semi-supervised

learning. It is also not essential for any \ 𝑗 to achieve high accuracy on test data; in this stage,

we are interested only in estimating, as closely as possible, the parameters ℎ 𝑗 that describe

the label generation dynamics of each labeler 𝑗 , regardless of generalization performance.

In fact, if labeler 𝑗 turns out to be a low-quality labeler, then it is expected that \ 𝑗 would be

similarly low-quality, with poor generalization capabilities.

Once \ 𝑗 is obtained, we then simply query \ 𝑗 on the unlabeled data to obtain

synthetic labels as 𝑓\ 𝑗 (X𝑈
𝑗
). Combining these synthetic labels (queried from \ 𝑗 ) with the

genuine, labeler-provided labels Ŷ 𝑗 (generated by ℎ 𝑗 ), we now have a full set of labels for

each 𝑥𝑖 ∈ X , as would have been provided by labeler 𝑗 . Repeating this process 𝐽 times (for

each of 𝐽 labelers), we obtain a full set of 𝐽 redundant, labeler-dependent labels for the

entire dataset. Hence, we can use learning from crowds (LFC) to integrate the redundant

noisy labels into a single filtered label per instance.

As before, we place no restrictions on which methods for learning from crowds may

be utilized, allowing our method to stand as a modular, model-agnostic learning framework.

However, we note that many methods for learning from crowds are unsuitable for our

framework: while we have remained intentionally agnostic regarding the parameters of

ℎ 𝑗 and \ 𝑗 (in order to maintain generality), a considerable drawback of commonly-used

approaches such as expectation-maximization [39, 83] or Bayesian inference [40] is their

dependence upon the correct modeling of the precise parameters being estimated. For

this reason, we suggest using nonparametric approaches, such as weighted majority voting

[16, 84] or OpinionRank (Chapter 5). The complete algorithmic framework for labeler-

aware learning is shown in Algorithm 2.
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Algorithm 2 Modular Framework for Labeler-Aware Learning
Input: D = {D1, . . . ,D𝐽}, the set of data-label pairs provided by each labeler 𝑗 ∈ [1, . . . , 𝐽]
Input: SSL, a semi-supervised classification algorithm

1: Training stage:
2: Θ← Initialize an empty set of trained models
3: for each labeler 𝑗 = 1 to 𝐽 do
4: X 𝐿

𝑗
,Y𝐿

𝑗
←D 𝑗 (Gather labeled data from labeler 𝑗)

5: X𝑈
𝑗
← {⋃ℓ≠ 𝑗 Xℓ} (Gather unlabeled data from all other labelers ℓ ≠ 𝑗)

6: \ 𝑗 ← SSL(X 𝐿
𝑗
,Y|

𝐿 ,X𝑈
𝑗
)

7: Θ← {Θ∪ \ 𝑗 }
8: end for

Output: Θ, a predictive ensemble of SSL models

Input: X ⊊ X ∗, the data seen during inference
Input: LFC, an algorithm for learning from crowds

9: Inference stage:
10: Y← Initialize an empty set of predictions for X
11: for each 𝑥 ∈ X do
12: 𝑤← Initialize an empty set of intermediate predictions for 𝑥
13: for each model \ 𝑗 ∈ Θ do
14: 𝑤← {𝑤∪F\ 𝑗 (𝑥)}
15: end for
16: 𝑦← LFC(𝑤) (Integrate intermediate predictions into ensemble prediction for 𝑥)
17: Y← {Y ∪ 𝑦}
18: end for
Output: Y , the set of classification predictions for X
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Chapter 7

Adversarial Labelers

While the discussion of noisy labels presented in Chapter 4 considers merely inci-

dental label noise (as presented by good-faith, though perhaps inept, labelers), the noisy

labeler paradigm can be extended to its logical extreme by considering adversarial labelers

as bad-faith actors. In this chapter, we address adversarial label noise by considering three

types of adversarial attacks against multiple-labeler data pipelines: data flooding, multiple

adversaries, and backdoor attacks.

7.1 Adversarial Labels from Bad-Faith Labelers

The good-faith labeler model can be extended to describe adversarial labelers. We

posit that an intelligent adversary will present the learner with a false label based on not

only its own best guess as to the correct label, but also its second best guess. This behavior

captures the idea that the second-most-likely class is that which is most likely to be confused

for the correct class, and so therefore presenting this second-most-likely class as correct will

cause maximum confusion during the learning process. We define the function arg2max as

identical to the argmax function, except that arg2max(𝐴) returns the index of the element

of 𝐴 with the second highest value instead of the maximum (with ties broken arbitrarily).

An adversarial labeler therefore provides noisy labels following

�̂�𝑖 𝑗 = arg2max𝑘 ℎ 𝑗 (𝑥𝑖). (7.1)

The labels that an adversary presents are representative of the adversary’s best guess

about the false labels that are most likely to be confused with the correct labels. This

approach is similar to that in [30], where the label of the second most-confident category is
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integrated into the noise model. Note that the adversary may itself have an incorrect belief

about the true class, and in its attempt to provide a false label may accidentally provide

a correct label. We mark the similarities between this approach and that of Goldberger

(Section 3.4.3), where there exists a layer of obfuscation between the observed labels

presented by a labeler and that labeler’s actual belief about the true class. We also note

that the arg2max function can be considered as a special case of the beta-binomial model

described in Equation 4.2 where the entire probability mass is centered on the second-most-

likely class ordinal.

Following the labeler-dependent noise paradigm, we assume that the label gathering

process draws from a pool of labelers containing a mixture of both good-faith (but imperfect)

labelers and malicious, adversarial labelers. Accordingly, the characteristics of both types

of label noise—unintentional and/or adversarial—will vary from labeler to labeler, and even

when adversarial noise is absent there may be variations in the levels and characteristics of

the natural error associated with each labeler (Chapter 4).

7.2 Multiple-Labeler Adversarial Attack Vectors

We define two general vectors of adversarial poisoning attacks that should form the

basis of future work on adversary-aware learning from noisy labels:

• A data flooding attack occurs when a single adversary provides an overwhelming

quantity of adversarial labels relative to the quantity of labels provided by the good-

faith labelers.

• A multiple adversaries attack occurs when multiple bad-faith labelers invade the

labeling process; unlike the data flooding attack, each adversarial labeler need not
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provide large quantities of labels.

Both attacks exploit vulnerabilities in distributed label collection, especially in crowdsourc-

ing and online learning scenarios, and have the capability to introduce large amounts of

adversarial noise into the training data.

There is real-world precedent for the types of attacks we describe: Microsoft’s

infamous Twitter chatbot Tay [85], its successor Zo [86], and even commonplace home

assistant tools such as Google Home and Amazon Echo [87] have all been subject to

malicious data flooding attacks from multiple adversaries. By codifying these threats

and proposing methods for addressing them, this work serves as a preliminary effort in

proactively establishing robust defensive measures against adversarial label attacks.

7.3 Adversarial Backdoor Attacks

In addition to the general attack vectors described above, we also consider the

potential for labeler-aware learning to provide robust defenses against adversarial backdoor

attacks (Section 2.4.1). While backdoor attacks deliberately avoid injecting large amounts

of data into the training dataset, their precision and power despite their stealthiness makes

them a high-priority target for defensive research.

7.3.1 Rethinking Backdoor Threat Modeling Under Labeler Awareness

The most common backdoor threat model assumes that the attacker is in control of

the training process, with the victim having either outsourced the training of their network

to a malicious actor, or allowed an adversary privileged access to their training pipeline

[43, 88, 89]. These models allow the attacker to precisely craft backdoor patterns that
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will have maximal impact against specific network architectures. However, in practice

it is unreasonable to assume that the attacker has such privileged access, and any real-

world scenario where such access is available would be a catastrophic failure of operational

security. Furthermore, the setting of an outsourced training provider injecting backdoor

triggers into models is unrealistic, both because such outsourcing is rare in practice, and

because the service providers that do exist would suffer irreparable harm to their reputations

if they were to perform such an attack.

Other threat models weaken the attacker by removing the attacker’s knowledge of

the training details of the target network. Under these models, the typical approach is to

craft full-image masks using adversarial perturbations [90, 91]. However, the practical use

cases of such attacks are limited, as the sensors used in systems where backdoor attacks

would be most impactful are not capable of adding such specific, precise perturbations to

their entire inputs, making it infeasible to trigger the backdoor during inference.

While previous adversarial settings consider a worst-case scenario, we contend

that such settings are ill-posed, as they depend upon unrealistic assumptions about the

capabilities of an attacker in both the training and inference stages. Furthermore, previous

approaches have assumed a helpless defender that has no control over their own data

collection process, which is also an unrealistic constraint in the context of modern data

collection.

7.3.2 A More Realistic, Practical Threat Model

We pose the setting where the defender wishes to gather a large amount of data from

multiple users into a single database. Here, an adversary may realistically gain ingress to
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the training data simply via making a contribution to the common database. We note that

the presence of an adversary implies the existence of multiple users, as any adversary must

be contrasted with a non-adversarial data source. As the database comprises contributions

from multiple (potentially adversarial) labelers, we allow the defender to have access to

(possibly anonymous) metadata associating each data instance to its labeler. For example,

any contribution to the training database may be associated with a tag corresponding to

the user who made the contribution, allowing labeler-wise data grouping. Such tags are

commonplace and standard practice for image databases, and are trivially implemented in

ways that preserve user privacy and anonymity. We claim that by allowing this labeler

awareness to the defender, the defender is able to train an adversarially-robust classifier

without needing to explicitly detect any backdoor patterns themselves, or even to remove any

malicious samples. This pattern-agnostic approach constitutes a broad defensive strategy

against any kind of adversarial backdoor trigger.

Under this more practical and realistic threat model, we consider a set of disjoint

data subsets D = {D1,D2, . . . ,D𝐽}, with each D 𝑗 provided by one of 𝐽 labelers. Each subset

comprises D 𝑗 = {X 𝑗 ⊊ X ∗,Y 𝑗 ⊆ Y∗}, such that {𝑥ℓ ∈ Xℓ} ⊈ X 𝑗 for any ℓ ≠ 𝑗 . Without loss

of generality, we assume that unknown to the defender, any dataset D𝑘 = {X ′𝑘 ,Y
′
𝑘
} may be

provided by an adversary, following Equation 2.5. Under the conventional, labeler-agnostic

learning framework, these disjoint subsets would be concatenated into a single dataset

D =
⋃
𝑗D 𝑗 , so the adversary’s poisoned data and labels would be mixed into the common

dataset, with the labeler identification information being lost. Standard labeler-agnostic

training therefore allows the backdoor patterns to be learned by the classifier, and the attack

is easily triggered after model deployment.
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The vulnerability of such conventional training is shown in Figure 7. First, the

training dataset D is collected from 𝐽 labelers to a common database (a). Adversaries who

inject backdoor patterns may be among the labelers (red), and hide amidst the clean labelers

(green). Standard training protocol (b, top) treats D =
⋃
D 𝑗 as a single dataset, and trains a

network on the entire D. In contrast, labeler-aware training (b, bottom) exploits information

about the source of each subset of the training data to train a robust model. During inference

(c), clean images are classified correctly by both the standard network and the labeler-aware

model (green). However, backdoor patterns on test data trigger force misclassifications

from the standard network, while the labeler-aware model is unaffected (red).
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Figure 7

Training Pipeline With Backdoor Threats
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7.3.3 Labeler-Aware Defense Against Adversarial Backdoor Attacks

Previous methods for defending against backdoor attacks focus primarily on de-

tecting samples containing backdoor trigger patterns and removing these samples from the

dataset [92–95]. However, these approaches are reactive, and discard useful information

that might be utilized in order to build more effective models (since 𝑥′ contains useful feature

information 𝑥). We propose to use labeler-aware learning (LAL) as a proactive defensive

strategy, which is capable of exploiting the full characteristics of the entire training data,

without introducing adversarial label associations.

We observe that even under the assumption that some data provided by an adversarial

labeler 𝑘 may be corrupted following Equation 2.5, the semi-supervised strategy utilized

by LAL destroys the association between [𝑘 (𝑦′) and 𝑦′, as 𝑦′ is not present in the labeled

dataset for any labeler 𝑗 ≠ 𝑘 . As a result, [𝑘 (𝑦′) is treated as uninformative noise on 𝑥.

Therefore, for any model \ 𝑗≠𝑘 the functional response to an adversarial input will be

𝑓\ 𝑗≠𝑘 (𝑥′) = 𝑓\ 𝑗≠𝑘 [𝑥 +[𝑘 (𝑦′)] = 𝑓\ 𝑗≠𝑘 (𝑥) = 𝑦. (7.2)

Notably, we still do not know which labelers are adversarial, or which data contain

backdoor triggers. Furthermore, while Equation 7.2 shows that 𝑓\ 𝑗≠𝑘 (𝑥′) = 𝑦 for any labeler

𝑗 ≠ 𝑘 , we still have that 𝑓\𝑘 (𝑥′) = 𝑦′, as we have taken no steps to detect or remove adversarial

samples. Fortunately, we do not actually need to identify adversarial examples: because

the intermediate predictions provide label redundancy for any arbitrary example, we are

able to leverage OpinionRank (Chapter 5) in order to filter the adversarial false labels.

Thus, while the adversary is successful in forcing a single classifier to produce a false

prediction, the ensemble prediction is robust against the adversary’s backdoor trigger, as
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our proposed approach effectively shields every other member of the ensemble from the

false label associations of the adversarial inputs.

The defensive capabilities of labeler-aware learning are illustrated in Figure 8.

During the training of each representative model, any individual model may be vulnerable

to backdoor triggers (a). However, because each trigger affects only a single model in the

ensemble, the vulnerable model’s forced misclassification is outweighed by the unaffected

predictions from the rest of the ensemble (b). Note that in general, even if a model is

vulnerable to a particular backdoor trigger, it will not be vulnerable to a different backdoor

trigger, so attacks from multiple different adversaries will be defeated.
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Figure 8

Labeler-Aware Training Produces Robust Ensembles

Labeler-aware training of predictive ensembles therefore produces a classification

model that is secure against backdoor threats, without requiring, or even attempting, to

perform identification of either the adversaries or the poisoned samples. A further advantage

of the proposed strategy is that whereas other defensive approaches remove the poisoned

samples from the training dataset upon detection, our method does not discard any training

data. This is desirable, because each 𝑥′ contains salient feature information 𝑥 that can be
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used to further train a classifier. Depending on the fraction of data that is poisoned, as well

as the success rate of backdoor identification, detect-and-remove strategies may ultimately

throw out substantial amounts of the training data. In contrast, our approach retains and

utilizes the entire training data to train a robust classifier, even in the (unknown) presence

of large fractions of adversarial samples.
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Chapter 8

Experiments

In this chapter, we present our experimental findings, analyze the results, and provide

a discussion of the comparative benefits of the proposed methods.

8.1 Metrics

The baseline metric of interest is classification accuracy on a held-out testing dataset.

At no point during the model selection or training process is any of the testing data visible to

any of the models under test. Accuracy is measured as the percentage of correctly-predicted

labels compared to the total number of labeled data.

However, while raw accuracy is used as the baseline metric, for the purposes of

learning from noisy labels we are primarily interested in measuring the robustness of the

models under test against increasing amounts of label noise. We observe that the term

“robustness” is overloaded in machine learning literature; here, we define “robustness” to

refer to an algorithm’s capacity to maintain its accuracy performance as the fraction of

training data with noisy labels increases. For example, while the most favorable learning

environment will include no label noise (i.e. 100% clean labels), a robust algorithm will

exhibit little to no reduction in performance as more noise is introduced. A weak algorithm,

however, will be heavily compromised by increasingly noisy labels, and its performance

will be negatively impacted.

Therefore, while most of the algorithms studied in this section boast the ability

to achieve reasonably strong accuracy in the absence of noisy labels (or under only small

amounts of label noise), the robustness of these algorithms must be evaluated by interpreting
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the accuracy trends in response to the presence of varying amounts of noisy labels.

8.2 Evaluating OpinionRank for Learning from Crowds

In order to objectively evaluate and compare our proposed algorithm, we reproduce,

as faithfully as possible, experiments from the three settings for learning from crowds

discussed in Chapter 3. We test the OpinionRank algorithm (Chapter 5) under the hand-

crafted conditions for the models of the original authors. We also perform a wall clock

runtime analysis of OpinionRank to demonstrate the algorithm’s speed and computational

efficiency.

8.2.1 Generative Model of Labels, Abilities, and Difficulties

We implemented three experiments under the same conditions described in Whitehill

et al. [39]. These experiments evaluate the OpinionRank algorithm’s performance under

the conditions of the authors’ labeling model (as described in Section 3.4.1), its ability to

handle “difficult” images, and its stability under varying starting conditions.

8.2.1.a Labeling Model. The first experiment simulates the labeler accuracy as

𝛼 𝑗 ∼N (1,1), and the inverse-difficulty of labeling a data instance as 𝛽𝑖 ∼ Lognormal(1,1).

The observed label of an instance 𝑖 provided by labeler 𝑗 is sampled according to Equation

3.1. The algorithms are evaluated by the proportion of accurate class labels, with the amount

of total data set to 𝑁 = 200. Whitehill reported the average of 40 experiments; we report

the mean of 50,000 experiments (Figure 9). Baseline results are reproduced from Figure 2

in [39].
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Figure 9

Test Accuracy on Whitehill’s Labeling Model

Both OpinionRank and GLAD considerably outperform majority voting, and con-

verge to greater than 99% accuracy as the number of labelers increases. Because the

parameters of the experiment ensure that the average reliability of the pool of labelers is

greater than 0.5, these results are expected (from the generalized Condorcet jury theorem).

Notably, OpinionRank outperforms GLAD at lower numbers of labelers, suggesting that

eigenvector-based reliability ranking is robust even for small pools of labelers.

8.2.1.b Modeling Image Difficulty. The second experiment considers a pool of 50

labelers, each labeling the same set of 𝑁 = 1000 instances, with half of the instances

considered “easy” and the other half considered “hard”. The labelers labeled the “easy”
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images correctly with 100% accuracy. The labelers labeled the “hard” images correctly

according to whether they were “good” (𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = .95) or “bad” (𝑝𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = .54). The ratio

of “good” to “bad” labelers is 25:1. The score is measured as the proportion of correctly

estimated labels, reported as the error rate, 𝑒𝑟𝑟𝑜𝑟 = 1− 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. Whitehill reported the

average of 20 experiments; we report the mean of 50,000 experiments (Table 4).

Table 4

Mean Error Rate When Modeling Image Difficulty

Method Error

Majority vote 11.2%

Dawid & Skene 8.4%

GLAD 4.5%

OpinionRank 0.0%

In the image difficulty modeling experiment, OpinionRank is able to recover the

correct label in 100% of cases. This is due to the parameters of the experiment. The “easy”

images, being labeled with 100% reliability, are heuristically irrelevant to the performance

of the OpinionRank algorithm, as all voters will provide the same (correct) label. Therefore,

regardless of the relative reliability eigenvector, the weighted sum will always be the correct

label. The “hard” images, on the other hand, are also simple for OpinionRank, due to the

labeling schema. With such a large majority of the labelers being “good”, OpinionRank

builds very strong recommendation relations between the “good” labelers, so the “bad”

labelers are overruled when they are wrong (the 5% of the time that the “good” labelers are
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wrong is also easily ignored).

Whitehill’s experiment was heavily biased toward “good” labelers (a reasonable sce-

nario in the context of human labelers). We extended the experiment to smaller proportions

of “good” to “bad” labelers; with 25, 40, and 50 (out of 50) labelers being “bad”, we found

error rates of 0%, 1%, and 14%, respectively. These results suggest that OpinionRank is

robust even against labeler pools with high densities of unreliable labelers.

8.2.1.c Stability Under Various Starting Points. The third experiment simulates

the labeling of 𝑁 = 2000 instances by 20 labelers following Equation 3.1, with 𝛼𝑖 ∼𝑈 [0,4]

and log(𝛽 𝑗 ) ∼ 𝑈 [0,3]. Under the assumptions of the authors’ generative model, these

parameters represent a large variance in the difficulty-expertise spectrum, and so the exper-

iment tests algorithmic stability across a broad range of starting conditions. The scores are

reported as the mean and standard deviation of label accuracy scores. Whitehill reported

the mean and standard deviation over 50 experiments; we report the mean and standard

deviation over 50,000 experiments.

Similarly to the second experiment, OpinionRank achieves a perfect score on the

authors’ stability test (compared to mean of 85.84% and standard deviation of 0.024% for

GLAD). Because the test draws the labeler expertise from 𝛼 ∼ 𝑈 [0,4], all labelers have

expertise greater than random guessing. With a pool of 20 labelers, OpinionRank is able to

consistently discover the best labelers, even within this pool of above-average labelers, and

extract the correct labels. Notably, it achieves this performance without the computationally

costly need to estimate the precise parameters of each labeler. OpinionRank demonstrates

that only the relative expertise is needed, as long as the Condorcet criterion is obeyed and
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the average expertise is greater than random chance [63].

8.2.2 The Multidimensional Wisdom of Crowds

We also implemented two experiments from Welinder et al. [40]. The first ex-

periment evaluates the OpinionRank algorithm on the authors’ proposed label generation

model; the second experiment evaluates OpinionRank on a real-world dataset of human

annotations.

8.2.2.a Multidimensional Label Generation Model. We reproduce the conditions

of Welinder’s modeling experiment by generating data following the assumptions of the

model (as described in Section 3.4.2). Following the experimental setup in [40], we:

• set the number of data instances as 𝑁 = 500.

• assign 𝑤 𝑗 = 1 with probability .99 and 𝑤 𝑗 = −1 with probability .01, to simulate

adversarial labelers.

• draw 𝜏𝑗 ∼N (0,𝜎 = 0.5).

• draw the noise parameter 𝜎𝑗 ∼ Gamma(1.5,0.3).

• set the generative parameter 𝜎𝑧 = 0.51.

Welinder reported the average over 40 experiments; we report the mean of 50,000

experiments (Figure 10). Baseline results are reproduced from Figure 3(c) in [40] The

annotation model of Welinder et al. is considerably more complex than that of Whitehill

1Welinder, P., “Caltech UCSD Binary Annotation Model,” Github, 2012. Available at
https://github.com/welinder/cubam.
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et al. Despite this complexity, OpinionRank achieves accuracy above 94% across all

experiments. We note that while all of the algorithms being compared eventually converge

to accuracies greater than 96%, OpinionRank strongly outperforms the other algorithms at

lower numbers of labelers.

Figure 10

Test Accuracy on Welinder’s Label Generation Model

8.2.2.b Waterbirds Dataset. We evaluate OpinionRank on the real-world Water-

birds dataset constructed by Welinder et al. Using Amazon Mechanical Turk, the authors

asked 53 human labelers to provide labels on a set of 240 images. The images consisted of
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50 photographs each of Mallards, American Black Ducks, Canadian Geese, and Red-necked

Grebes, as well as 40 additional images featuring no birds. The labelers provided binary

labels according to whether, in their opinion, each image contained a picture of a duck

(only Mallards and American Black Ducks are positive classes). Of the 53 labelers, only

25 provided labels for all images; the other 28 labelers omitted between 40 and 200 labels.

On this real-world dataset, OpinionRank predicts the correct label for 86.7% of the

images (Table 5). OpinionRank outpaces majority vote at 68.3% accuracy, GLAD at 60.4%

accuracy, and the authors’ own Bayesian generative model at 75.4% accuracy [40].

Table 5

Percent Accuracy on the Waterbirds Dataset

Method Percent Correct

Majority voting 68.3%

GLAD 60.4%

Welinder 75.4%

OpinionRank 86.7%
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8.2.3 Combining Soft Decisions of Several Unreliable Labelers

We reproduced the soft-decision modeling experiment under the same conditions

described in Section 3.4.3. Following [71], 𝑁 = 200 instances are generated and assigned

random labels drawn from a pool of three classes. For each labeler 𝑗 , its reliability is sampled

uniformly on the interval [0.4,0.7]. After each labeler’s opinion 𝑞𝑖 𝑗 is modeled (following

Equation 3.4), their opinions are obfuscated by first sampling a multinomial distribution

𝑈𝑖 𝑗 from the flat Dirichlet distribution, before transforming 𝑞𝑖 𝑗 into𝑈𝑖 𝑗 following

�̂�𝑖 𝑗 = argmax
𝑎∈𝐴

𝑈𝑖 𝑗 [(𝑞𝑖 𝑗 + 𝑧− 𝑎) mod |𝐴|], ∀𝑎 ∈ 𝐴, (8.1)

where 𝑧 ∈ 𝐴 is randomly sampled from 𝑈𝑖 𝑗 . Because OpinionRank requires “hard” labels,

we utilized Goldberger’s hard-decision process, which takes the argmax of the soft label

information over the set of classes, before providing the labels to the algorithm.

Goldberger reports the mean of 100 experiments; we report the mean of 50,000

experiments. As seen in Figure 11, OpinionRank outperforms Goldberger’s extended EM

algorithm by a considerable margin, achieving at least 49% accuracy (with only 5 labelers),

climbing monotonically up to 55% accuracy (with 9 labelers). soft-EM, soft-maj, hard-EM,

and hard-maj results reproduced from Figure 1 in [71].
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Figure 11

Test Accuracy on Goldberger’s Three-Class Soft Opinions Model

8.2.4 Empirical Runtime Analysis

We have also performed an empirical study of the wall clock runtime of the Opin-

ionRank algorithm. We parameterized the experiment over 𝐽, the number of (unreliable)

labelers, and 𝑁 , the total number of data instances. We vary 𝐽 between 1 and 100 la-

belers, and 𝑁 between 10 and 1000 instances. All experiments were performed on a

consumer-grade AMD Ryzen 3900X 3.8 GHz 12-core processor with 32 GB of memory.

Each experiment occurred on a single processing thread.
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Figure 12

Wall Clock Runtime Analysis of the OpinionRank Algorithm

We generated an arbitrary 𝐽 × 𝑁 binary array of randomly generated class mem-

bership opinions. This array is passed to the OpinionRank algorithm, and we measure the

time required for the algorithm to return its array of weighted class membership scores. We

repeated this procedure 100 times for each set of parameters, whose average runtimes are

depicted in Figure 12. We observe that the runtime of OpinionRank scales linearly with the

amount of data, and quadratically with the number of labelers. We note that the worst-case

runtime, with 𝐽 = 100 and 𝑁 = 1000, is only 16.684 milliseconds. Scaling the amount of

data up to 1 million instances only increased the average runtime to 17.712 seconds.
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8.3 Testing Labeler-Aware Learning Under the Full LDN Model

We have shown that OpinionRank is a powerful, model-free algorithm for learning

from crowdsourced data, which is a special case of the general labeler-dependent noise

(LDN) model. However, as discussed in Chapter 6, OpinionRank has a limitation in that

it requires multiple redundant labels per instance, which may not generally be guaranteed.

Hence, we developed labeler-aware learning (LAL) in order to comprehensively handle the

general LDN model. Our experiments seek to demonstrate the impact of considering the

full LDN model. In particular, we show that current state-of-the-art methods for learning

from noisy labels are unable to learn under the general LDN model, and are therefore

insufficient. In contrast, the LAL framework is robust against label noise, even in cases of

extreme spammer presence where previous approaches fail.

8.3.1 Experimental Setup

Due to the limitations of the historical development of machine learning dataset

compilation, labeler-aware datasets are not readily available [96]. Therefore, to evaluate

our labeler-aware noise we simulated the effect of labeler-aware label noise by synthetically

corrupting the ground truth labels provided by curated benchmark datasets. In particular,

we performed experiments on the MNIST [97], SVHN [98], and CIFAR-10 [99] datasets,

each of which are commonly used in this way for studying noisy label learning.

Following Equation 4.1, we first generated instance-dependent class likelihoods by

intentionally overfitting a deep neural network, ℎ(X ), on the training dataset. Then, for

a set of 𝐽 labelers, we selected 𝐽ℎ hammers and 𝐽𝑠 spammers, such that 𝐽ℎ + 𝐽𝑠 = 𝐽, and
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the training dataset was partitioned into even subsets between all labelers (regardless of

labeler quality). For each type of labeler, we defined a beta-binomial distribution such

that the instance-dependent highest-likelihood class, max(ℎ(𝑥𝑖)), would be selected with

95% or 50% probability for hammers and spammers, respectively, following standard

practices for hammer-spammer models in previous literature [100]. Furthermore, our

experiments feature our novel integration of instance-dependent noise modeling by selecting

incorrect labels not based on transition matrices, but with decreasing probability according

to instance-dependent class likelihoods. The experimental beta-binomial parameters for

labeler-dependent label selection over instance-dependent class likelihoods used in our

experiments are listed in Table 6.

Table 6

Experimental Hammer-Spammer Beta-Binomial Parameters

Type Hammer Spammer

𝛼 𝑗 1 1

𝛽 𝑗 200 10

Pr(max(ℎ(𝑥𝑖))) 0.95 0.50

Our experiments focused on parameterizing over the ratio of hammers to spammers.

Table 7 shows how controlling this ratio can be converted into effective label noise percent-

ages (for the hammer-spammer distribution parameters used in our experiments), which

are more common in literature on learning from noisy labels. Label noise percentages are

reported as the average label noise present over all experiments performed on a given dataset
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with a given hammer-spammer ratio; percentages are not exact due to small inaccuracies in

the instance-dependent neural network.

Table 7

Converting Hammer-Spammer Ratios to Experimental Label Noise

𝐽ℎ : 𝐽𝑠 % label noise (MNIST) % label noise (SVHN) % label noise (CIFAR-10)

10 : 0 4.5 4.8 5.0

9 : 1 8.8 9.1 9.5

8 : 2 13.6 13.5 13.6

7 : 3 17.3 17.7 18.0

6 : 4 21.5 21.6 22.3

5 : 5 25.9 26.1 26.4

4 : 6 30.2 30.2 30.4

3 : 7 34.7 34.8 34.8

2 : 8 39.1 39.2 39.2

1 : 9 43.3 43.3 43.5

0 : 10 47.6 47.4 47.5

Because our labeler-aware learning framework is modular with respect to the semi-

supervised learning and learning from crowds component algorithms, the selection of

such components is an important hyperparameter. For our experiments, we selected the

FixMatch2 algorithm [101] to be used for semi-supervised learning, and we selected Opin-

2FixMatch is a recent, powerful improvement on the MixMatch algorithm selected by DivideMix (Section
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ionRank3 (Chapter 5) for learning from crowds. We compared our method against a naı̈ve

deep neural network trained with cross entropy loss, as well as DivideMix (Section 3.2.1),

progressive label correction (PLC) (Section 3.3.1), and self-evolution average label (SEAL)

(Section 3.3.2). All algorithms were trained using the default parameters recommended by

the original authors4.

Importantly, we are not concerned with the absolute performance of any particular

algorithm. Instead, we are interested in the robustness of each algorithm against increasing

numbers of spammers, and in turn the amount of labeler-dependent noise present in the data.

A weak algorithm will exhibit a steep decrease in performance as the number of spammers

increases, whereas a robust algorithm will demonstrate comparatively little degradation.

We repeated all experiments five times, with uncontrolled random seeds, and we present the

results as an average over all five runs. Standard deviations were very small, and so were

omitted from Figure 13 and Figure 14; we report standard deviations in Table 8.

8.3.2 Empirical Results

Table 8 shows the results of our experiments using the MNIST dataset, presented

as means and standard deviations over five experimental runs. While all algorithms are

capable of learning in the presence of only hammers, the introduction of spammers causes

rapid degradation in the performance of the labeler-agnostic methods. Naı̈ve cross-entropy

3.2.1). In practice, any semi-supervised learning algorithm may be used, including future algorithms that
improve upon FixMatch.

3Similarly, while we propose and utilize OpinionRank in this dissertation as the most powerful and efficient
method for learning from crowds, future algorithms for learning from crowds may be used for LAL if they
are found to be better than OpinionRank.

4Default parameters and implementations were obtained using the open-source code published by the
original authors, cross-referenced with the details present in each algorithm’s respective publication.
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fails almost immediately, and the state-of-the-art methods, while somewhat robust to small

amounts of spammers, perform increasingly worse as the fraction of spammers increases.

Only labeler-aware learning is able to retain robust performance over the entire experimental

suite, with only a small decrease in performance even when 100% of the labelers are

spammers.
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The results of our experiments using the SVHN dataset are shown in Figure 13.

Similarly to the MNIST results, all methods demonstrate a reasonable capability to correctly

learn the problem when exposed to zero, or only small amounts of spammers. However,

as the ratio of spammers increases, all competing approaches suffer considerable losses

in accuracy compared to labeler-aware learning. Specifically, by 10 spammers SEAL,

PLC, DivideMix, and naı̈ve cross entropy training have lost 3%, 7%, 15%, and 35%

more accuracy compared to labeler-aware learning, respectively. In contrast, labeler-aware

learning is nearly unaffected by spammers, and in fact is able to leverage the heterogeneous

characteristics of labeler-dependent noise in order to achieve robust performance even when

every labeler is a spammer.
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Figure 13

SVHN Test Classification Accuracy in the Presence of 𝐽𝑠 Spammers

The inability of previous methods to handle labeler-dependent noise is illustrated

most starkly on the more challenging CIFAR-10 dataset, with the results shown in Figure

14. Labeler-aware learning retains over 90% accuracy even if 60% of the labelers are

spammers, and nearly 80% accuracy even if 100% of the labelers are spammers. In contrast,

every other algorithm exhibits sharply-decreasing performance as soon as spammers are

introduced. Even the algorithms tailored for instance-dependent noise based on noisy labels

produced by neural network outputs (i.e., PLC and SEAL) exhibit considerable degradation

in accuracy in response to an increasing presence of spammers compared to labeler-aware

learning.
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Figure 14

CIFAR-10 Test Classification Accuracy in the Presence of 𝐽𝑠 Spammers

Labeler-aware learning outperformed all other algorithms on all datasets, and the

difference in robustness between labeler-aware learning and previous approaches only grew

larger as the datasets became more challenging.

8.4 Measuring Adversarial Robustness Against Label Poisoning Attacks

We extend the previous labeler-dependent noise model to account for adversarial

labelers by assuming that the adversary will provide the label that it believes is most likely to

be confused with the correct label. We use the MNIST [97] and SVHN [98] datasets, both

commonly-used benchmark datasets for learning from noisy labels. We evaluate against the

DivideMix [12], progressive label correction (PLC) [30], and self-evolution average label

77



(SEAL) [28] algorithms, representing the current state-of-the-art in learning from noisy

labels under both class-conditional and instance-dependent noise models.

8.4.1 Experimental Setup

We parameterize each experiment by the amount of data provided by adversarial

labelers. For data flooding attacks, we fix the amount of data provided by good-faith

labelers, and vary the amount of data provided by a single adversarial labeler. For multiple

adversaries attacks, we fix the amount of data provided by each labeler, and vary the number

of adversarial labelers.

For each experiment, we modeled 𝐽 labelers by training 𝐽 neural networks ℎ 𝑗

on small subsets D𝑡𝑟
𝑗

, drawn without replacement from the training dataset D. Each

labeler 𝑗 then provided labels on randomly-partitioned subsets X 𝑗 of the remainder of the

training data, with
⋃
𝑗 X 𝑗 = {X \ {

⋃
𝑗 X 𝑡𝑟

𝑗
}}. Good-faith labelers provided labels following

�̂�𝑖 𝑗 = argmax𝑘 ℎ 𝑗 (𝑥𝑖), while adversarial labelers followed �̂�𝑖 𝑗 = arg2max𝑘 ℎ 𝑗 (𝑥𝑖) (Equation

7.1). For the MNIST dataset, we set 𝐽 = 10, 𝑁𝑡𝑟 = 200, and each ℎ 𝑗 was a randomly-

initialized ResNet-18 [102], producing approximately 7.5% natural error. For the SVHN

dataset, we set 𝐽 = 5, 𝑁𝑡𝑟 = 20,000, and each ℎ 𝑗 was a randomly-initialized Wide ResNet-50

[103], producing approximately 9% natural error. Our noise simulation process is shown

in Algorithm 3.
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Algorithm 3 Simulating Labeler-Dependent Noise on a Cleanly-Labeled Dataset
Inputs: 𝐽, the number of label sources; 𝐴, the number of adversarial labelers; 𝑁𝑡𝑟 , the

number of data on which to train each source; 𝑁 𝑗 , the number of data on which labels
were provided by each source 𝑗 ∈ 𝐽; D = {X ,Y}, the full training dataset with ground
truth labels; ℎ, the labeler model architecture

1: D𝐿← Initialize the set of noisy label datasets
2: for each labeler 𝑗 = 1 to 𝐽 do
3: Sample D𝑡𝑟

𝑗
⊂ D with |D𝑡𝑟

𝑗
| = 𝑁𝑡𝑟

4: D← {D \D𝑡𝑟
𝑗
} (remove labeler training data from pool)

5: Train ℎ 𝑗 on D𝑡𝑟
𝑗
= {X 𝑡𝑟

𝑗
,Y 𝑡𝑟

𝑗
}

6: Sample D 𝑗 ⊂ D with |D 𝑗 | = 𝑁 𝑗

7: D← {D \D 𝑗 } (remove labeler’s provided data from pool)
8: if 𝑗 ∉ 𝐴 then
9: Ŷ 𝑗 ← argmax𝑘 ℎ 𝑗 (X 𝑗 ) (select most confident class as good-faith label)

10: else
11: Ŷ 𝑗 ← arg2max𝑘 ℎ 𝑗 (X 𝑗 ) (select the second most confident class as adversarial

label)
12: end if
13: D𝐿← {D𝐿 ∪ {X 𝑗 , Ŷ 𝑗 }}
14: end for
Output: D𝐿

Once the noisy labels were generated by each labeler, the noisily-labeled data were

passed to the learning algorithm under test. For our labeler-aware approach, we provided

each labeler’s data-label pairs {X 𝑗 , Ŷ 𝑗 } as separate datasets. For the labeler-agnostic ap-

proaches, we combined the data-label pairs from each source into a single dataset (i.e. as

they would be observed under labeler-agnostic assumptions). We repeated each experiment

ten times for MNIST and five times for SVHN, and we report the results as the mean

classification accuracies in response to increasing adversarial noise, bounded by their 95%

confidence intervals based on the two-sided Student’s 𝑡-test.

79



8.4.2 Model Selection and Hyperparameter Tuning

Due to modular nature of the labeler-aware learning framework, the selections for

the semi-supervised learning and learning from crowds algorithms to use for each stage

constitute its main high-level hyperparameters. We note that the framework’s modularity

allows for the seamless replacement of any or all of these algorithmic choices; we demon-

strate this modularity by selecting different SSL algorithms for each experiment. For the

MNIST dataset, we use auxiliary deep generative models as our SSL algorithm due to its

small parameter footprint [104]; for the SVHN dataset, we chose the FixMatch algorithm as

representative of the current state-of-the-art for semi-supervised learning [105]. For both

datasets, we used OpinionRank (Chapter 5) as our learning from crowds algorithm.

Since we cannot assume the presence of a clean validation set (as discussed in

Section 3.1), we do not perform any ground truth-based hyperparameter tuning or model

selection, similarly as was done in [53]. Instead, the hyperparameters for each component of

our modular framework, as well as those of the algorithms against which we are comparing,

were selected based on the suggestions of the original authors of each algorithm, available in

their publicly-available online implementations. We made only minor adjustments in order

to accommodate differences in intended datasets, and in all cases we tested our changes in

the non-adversarial setting to ensure fair comparison.

Due to this lack of any fine-tuning, we are likely reporting conservative results for all

algorithms, including our own. However, we are emphatically not presenting our results as

benchmark scores; rather, we are interested in the overall trends of behavior that characterize

the vulnerabilities of each algorithm to increasing intensities of adversarial attacks. While
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it may be possible to obtain minor improvements through extensive hyperparameter tuning

on a clean validation dataset, we argue that because we cannot assume the existence of such

a set, such tuning would constitute invalidating data leakage. More importantly, however,

we believe that such minor improvements would not change the overall structure of our

results with respect to the characteristics of each algorithm’s vulnerability to adversarial

label noise.

8.4.3 Data Flooding Experiments

For the MNIST dataset, nine good-faith labelers each provided 𝑁 𝑗 = 1,000 data

featuring only natural labeling error, and a single adversarial labeler provided an amount of

noisy data varying between 0 and 49,000 with maximally-confusing labels. For the SVHN

dataset, four good-faith labelers each provided 𝑁 𝑗 = 20,000 data featuring only natural

labeling error, and a single adversarial labeler provided an amount of noisy data varying

between 0 and 424,000 with maximally-confusing labels. For data flooding experiments,

the total amount of data visible to the learner varied with the size of the adversary, with the

total amount of good-faith labeled data remaining fixed.

Figure 15 and Figure 16 show the classification accuracies of each algorithm in

response to increasing amounts of label noise from a single adversary on the MNIST and

SVHN datasets. We observe that all three state-of-the-art algorithms for learning from

noisy labels fail under increasing levels of adversarial noise. In contrast, our labeler-aware

approach remains robust even under extreme adversarial label noise. These results indicate

that recognizing the multiple-labeler paradigm of label gathering is critical in designing

robust algorithms for learning from noisy labels.
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Figure 15

Test Accuracy Under Data Flooding Attacks on MNIST

Note. Shaded regions show the 95% confidence intervals based on the two-sided Student’s

𝑡-test. Left: Horizontal axis scaled to the adversarial attack size. Right: Horizontal axis

scaled to the approximate label noise rate.
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Figure 16

Test Accuracy Under Data Flooding Attacks on SVHN

Note. Shaded regions show the 95% confidence intervals based on the two-sided Student’s

𝑡-test. Left: Horizontal axis scaled to the adversarial attack size. Right: Horizontal axis

scaled to the approximate label noise rate. Vertical grey bars indicate standard deviation

about the mean of experimental noise rates.

8.4.4 Multiple Adversaries Experiments

For the MNIST dataset, each of the ten labelers provided 𝑁 𝑗 = 5,800 data, and the

number of adversaries 𝐴 was varied between 0 and 9. For the SVHN dataset, each of the

five labelers provided 𝑁 𝑗 = 100,000 data, and 𝐴 was varied between 0 and 4. For multiple

adversaries experiments, the total amount of data visible to the learner is fixed.

Figure 17 and Figure 18 show the classification accuracies of each algorithm in

response to increasing amounts of adversarial noise caused by multiple adversaries. We

observe that our labeler-aware framework remains robust against larger fractions of adver-
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sarial labelers compared to other methods. Naturally, all algorithms, including ours, fail

under extreme numbers of adversarial labelers; this phenomenon is a well-known result

from ensemble learning that can be traced back to the Condorcet jury theorem [60] and its

modern extensions [62, 64].

Figure 17

Test Accuracy Under Multiple Adversaries Attacks on MNIST

Note. Shaded regions show the 95% confidence intervals based on the two-sided Student’s

𝑡-test. Left: Horizontal axis scaled to the adversarial attack size. Right: Horizontal axis

scaled to the approximate label noise rate.
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Figure 18

Test Accuracy Under Multiple Adversaries Attacks on SVHN

Note. Shaded regions show the 95% confidence intervals based on the two-sided Student’s

𝑡-test. Left: Horizontal axis scaled to the adversarial attack size. Right: Horizontal axis

scaled to the approximate label noise rate. Vertical grey bars indicate standard deviation

about the mean of experimental noise rates.

8.5 Adversarial Backdoor Defense

Because adversarial backdoor attacks constitute a serious threat to sensitive real-

world applications, such as autonomous vehicles, we conduct a set of experiments to

determine the effectiveness of labeler-aware learning as a proactive defensive strategy

against such attacks. We conduct our experiments using three standard benchmark datasets:

MNIST [97], CIFAR-10 [99], and the German Traffic Sign Recognition Benchmark (GT-

SRB) dataset [106]. Due to ethical concerns, we deliberately do not perform experiments on

facial recognition datasets [107]; however, we recognize and acknowledge that our research
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is relevant and may be applied in this area without our knowledge or consent.

For each dataset, we assumed that the training dataset was built from non-overlapping

contributions from 5 total labelers. We performed experiments on all datasets for a number

of adversaries ranging from 1 to 3, and each adversary was assumed to have contributed

10% of the total training dataset. Each adversary’s objective was to force the classifier to

misclassify test images as belonging to a particular target class. For all datasets, these target

classes were fixed at class ordinals 0, 7, and 4 for adversaries 1, 2, and 3, respectively;

these choices were made arbitrarily for the purposes of statistical analysis over repeated

experiments, and our results extend beyond these choices without any loss of generality.

After the adversaries’ data splits were apportioned, the remaining training data were divided

evenly among the remaining (good-faith) labelers. All data splits were performed randomly,

without fixing the random seed.

Because our defensive strategy does not attempt to perform any kind of data cleaning

or backdoor pattern detection, we permitted the adversaries to use their strongest possible

attacks, i.e. clearly-visible, high-intensity patterns such as those proposed by BadNets [43].

Each adversary injected their backdoor pattern into 100% of their contribution to the training

database, corresponding to 10% of the total training dataset, and flipped all of their training

labels to their desired target class. Thus, under three adversaries, a total of 30% of the

training data have backdoor patterns and false labels.

For each backdoor trigger–target class pair, we verified the effectiveness of the attack

by training a baseline classifier and confirming both that the classifier’s performance on

clean test data was unimpeded and that the backdoor trigger forced the classifier to output

the target class. For both the baseline classifier as well as our defensive strategy, our testing
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procedure consisted of two steps:

1. Evaluate the model accuracy on the clean test data (without backdoor triggers). In

this stage, we are merely verifying that the model performs reasonably well on clean

data; we are not attempting to obtain state-of-the-art performance.

2. For each adversary, construct an adversarial test set by applying the corresponding

backdoor trigger to the entire clean testing dataset, and evaluate the model accuracy

on the adversarial test data.

Combining both stages, a backdoor attack is considered successful if it can force the model

to misclassify most or all of the adversarial test data as the target class, while also allowing

the model to correctly classify the clean test data when the backdoor trigger is absent, thus

demonstrating that the misclassification is solely due to the presence of the backdoor trigger.

All experiments were repeated over 5 runs, and we report the average metrics along with

the 95% confidence intervals calculated using the two-sided Student’s 𝑡-test.

8.5.1 Baseline Classifier

For all datasets, the baseline classifier was a randomly-initialized PreAct ResNet-18,

which was trained for 30 epochs. The optimizer was stochastic gradient descent (SGD),

with a learning rate of 0.02, momentum of 0.9, and weight decay of 5× 10−4. For the

GTSRB dataset, the training and testing images were resized to a standard size of 32×32,

and the learning rate was annealed by a factor of 0.1 at epochs 15 and 25. For the CIFAR-10

and GTSRB datasets, the training images were augmented using RandAugment [108].

The experiments on the baseline classifier verified that the backdoor attack was

87



effective with pinpoint precision. While the samples in the clean test dataset were classified

correctly with expected performance, the introduction of the backdoor trigger into the test

dataset caused nearly universal misclassification of all test samples into the classes targeted

by each adversary.

8.5.2 MNIST Experiments

For the MNIST experiments, adversaries injected a backdoor pattern into one of

the corners of the sample. For the semi-supervised predictive ensemble, we trained one

randomly-initialized auxiliary deep generative model (ADGM) [104] for each of the five

subsets of the training data (corresponding to the five labelers to the dataset). After the

ADGMs were trained, they were independently tested on the clean testing data as well as

the malicious test data with backdoor triggers. The outputs of each ADGM were integrated

into a single label per instance using OpinionRank (Chapter 5).

8.5.3 CIFAR-10 Experiments

For the CIFAR-10 experiments, adversaries injected a backdoor pattern into one of

the corners of the sample. We trained one randomly-initialized Wide ResNet-28 for each of

the five subsets of the training data using the FixMatch algorithm [105]. After all FixMatch

models were trained, they were independently tested on the clean testing data as well as

the malicious test data with backdoor triggers. The outputs of each FixMatch model were

integrated into a single label per instance using OpinionRank.
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8.5.4 GTSRB Experiments

For the GTSRB experiments, adversaries placed a backdoor pattern at a randomly-

chosen location within the region of interest of the sample (ground truth for this region

is provided by the dataset). This strategy most closely represents our updated threat

model: for example, a malicious actor wishing to attack autonomous vehicles could place

stickers featuring the backdoor patterns on physical street signs. We trained one randomly-

initialized Wide ResNet-28 for each of the five subsets of the training data using the

FixMatch algorithm. The outputs of each FixMatch model were integrated into a single

label per instance using OpinionRank.

8.5.5 Analysis of Results

Table 9 shows the performances of both the baseline classifier, as well as that of

labeler-aware training, against a single adversary, on all three datasets; results are reported

as means and 95% confidence intervals over 5 runs. As discussed in Section 8.5.1, the

baseline classifier exhibited a catastrophic failure in accuracy as the adversary forced the

classifier to produce the target output.
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Table 9

Test Accuracy Against a Single Adversary

Baseline Classifier

Dataset Clean Adversarial

MNIST 99.03±0.23 9.81±0.01

CIFAR-10 87.28±0.43 12.29±0.39

GTSRB 93.50±1.84 0.48±0.00

Labeler-Aware Training

Dataset Clean Adversarial

MNIST 97.58±0.06 97.14±0.09

CIFAR-10 93.40±0.17 93.41±0.25

GTSRB 98.06±0.06 97.59±0.10

Even worse, the baseline classifier was vulnerable not only to a single adversary, but

to multiple simultaneous adversaries: Table 10 shows how any adversary who contributes

to the training database is able to compromise a naı̈ve classifier. Note that the test examples

from the target classes were not removed from the test set, so the baseline classifier retains

a lower bound for performance corresponding to the intersection of the target class columns

with the diagonal of the confusion matrix (see Figure 19).
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In contrast, both Table 9 and Table 11 show that labeler-aware training produces

models that are robust to adversarial backdoor triggers. In the single-adversary scenario,

even though the adversary contributed 10% of the training database, the model was still

able to produce correct classifications in the presence of the adversary’s backdoor trigger,

exhibiting no meaningful change in performance. Even against multiple simultaneous

adversaries, the models produced by labeler-aware training remain resilient against all

backdoor attacks.

92



Ta
bl

e
11

Te
st

Ac
cu

ra
cy

Ag
ai

ns
tM

ul
tip

le
Ad

ve
rs

ar
ie

s–
La

be
le

r-
Aw

ar
e

Tr
ai

ni
ng

Tw
o

A
dv

er
sa

rie
s

Th
re

e
A

dv
er

sa
rie

s

D
at

as
et

C
le

an
A

dv
.1

A
dv

.2
C

le
an

A
dv

.1
A

dv
.2

A
dv

.3

M
N

IS
T

97
.6
±

0.
1

97
.2
±

0.
2

97
.3
±

0.
1

95
.1
±

5.
8

93
.9
±

6.
5

95
.7
±

1.
8

95
.0
±

2.
4

C
IF

A
R-

10
93
.4
±

0.
1

93
.5
±

0.
1

93
.4
±

0.
2

92
.6
±

0.
2

92
.6
±

0.
3

92
.6
±

0.
2

92
.5
±

0.
2

G
TS

R
B

97
.8
±

0.
2

97
.4
±

0.
2

97
.4
±

0.
2

97
.5
±

0.
2

96
.9
±

0.
2

97
.0
±

0.
2

97
.0
±

0.
3

93



Figure 19 highlights the improvement of labeler-aware training over the agnostic

baseline classifier. The four columns correspond to test data: (a) with clean labels, (b) with

a backdoor trigger targeting class 0, (c) with a backdoor trigger targeting class 7, and (d)

with a backdoor trigger targeting class 4. Shown in the top row are confusion matrices

produced by a labeler-agnostic PreAct ResNet-18; while the performance of the classifier

on clean data is strong, any adversary may force the classifier to produce their desired label

by applying their backdoor trigger. In contrast, the confusion matrices in the bottom row are

produced by labeler-aware training; the labeler-aware model is completely robust against

all adversaries, and the backdoor triggers have been rendered ineffective.

Figure 19

Confusion Matrices for Accuracy Performance on GTSRB
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8.6 Summary and Discussion of Overall Experimental Results

The results across our entire experimental suite confirm that previous methods for

modeling label noise and attempting to mitigate its detrimental impacts are incomplete

and insufficient. Beginning with the crowdsourcing paradigm as a special case of labeler-

dependent noise, we have shown that the overparameterized models proposed in previous

works fail to generalize outside of their laboratory settings. Furthermore, the hand-crafted

parameter estimation algorithms designed specifically to solve these models are defeated

by OpinionRank, even in the environments for which these algorithms were specifically

parameterized.

Proceeding to the general labeler-dependent noise model further emphasizes the

need for the more general noise model. We have shown that the methods proposed in earlier

works are unable to maintain robustness against label noise in the general model, implying

that the class-conditional and instance-dependent models motivating these methods’ designs

are incomplete. In contrast, we have shown that by explicitly considering the multiple labeler

paradigm, it is possible to exploit the information present in the labeler-aware metadata in

order to design robust training frameworks.

Finally, we considered several scenarios of extreme label noise, i.e. false labels

presented by an adversarial labeler. Unlike the previous state-of-the-art methods, our

labeler-aware learning framework is strongly robust against most kinds of adversarial attacks

in the multiple labeler setting. The only scenario in which labeler-aware learning failed to

be robust was in the extraordinary (and extraordinarily unlikely) case where greater than

70% of all labelers were adversarial; however, this is a known limitation from ensemble
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learning, and we believe that under the generalized Condorcet jury theorem it is not possible

to improve upon this result in the general case. Despite this limitation, the exploitation of

labeler awareness allowed labeler-aware learning to remain more robust than the alternative

algorithms under extreme fractions of adversarial labelers. Furthermore, labeler-aware

learning was not negatively impacted at all in the other scenarios; both data flooding

attacks and backdoor attacks, despite their attractiveness to potential malicious agents, are

comprehensively defeated by using labeler-aware learning. Hence, labeler-aware learning

is effective as a proactive defensive strategy against the always-looming threat of adversarial

attacks.
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Chapter 9

Conclusions

Label-based supervised and semi-supervised learning requires trust in the veracity of

the label information accompanying training datasets. However, noisy labels are ubiquitous

in real-world data, a fact that is reflected in the increasingly large body of work focused on

mitigating their effects. While conventional models of class-conditional label noise have

made great strides in analyzing label noise, recent work on instance-dependent noise has

rightfully pointed out that real-world noise is not necessarily class-conditional.

9.1 Contributions

By considering real-world modern data collection procedures, we extended the

observation of feature-awareness to labeler-awareness, and formulated a general model of

label noise, called labeler-dependent noise (LDN). We demonstrated that under the general

LDN model, previous state-of-the-art methods for learning from noisy labels are unable to

maintain robustness against increasing levels of label noise. In response, we proposed a

modular framework for labeler-aware learning (LAL)—inspired by contemporary research

in psychology of learning—that succeeds in remaining robust against extreme fractions

of noisy labelers. Furthermore, we considered several adversarial scenarios, including the

timely threat of backdoor trigger injection, and demonstrated that LAL serves as an effective

tool for proactive defenses against such malicious attacks.

9.2 Future Work

We foresee that our work may be of great benefit for industrial applications, where

large volumes of noisily-labeled data are commonplace. We also envision our framework
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seamlessly integrating into future work on continual or online learning, as autonomous

agents require the ability to synthesize information from multiple unreliable data sources.

Future development of the labeler-dependent noise model should include explor-

ing different models for describing the hammer-spammer dynamics. In particular, while

in this dissertation we have focused on the beta-binomial distribution (as a principled

distribution over ordered class likelihoods), a more general method may be to use the

Dirichlet-multinomial distribution. Even within the beta-binomial distribution, while we

fixed the alpha parameter at 𝛼 = 1 (so as to ensure monotonicity), it may be interesting to

investigate other parameterizations that shift the probability mass to the right (which may

describe adversarial labelers).

Furthermore, while the labeler-aware learning framework was developed in response

to the multiple-labeler dynamics of the LDN model, the framework may be used as an

ensemble method even in the absence of multiple labelers. For example, it may be intriguing

to experiment with applying labeler-aware learning in a setting where labeler IDs are not

available by synthetically partitioning the observed data (either randomly, or following a

selection rule). This approach may be beneficial in diluting the effect of label noise by

“spreading” the noisy labels between the partitions in a heterogeneous manner, after which

LAL may be used to eliminate their effects.

Most importantly, we hope to initiate an awareness and a shift in how labeled

data are gathered, with datasets retaining information about which data are labeled by

which labelers, so that labeler-aware learning may be leveraged in more and more general

scenarios and applications. Such metadata can be trivially obtained, and can be stored

in ways that maintain the privacy and anonymity of the dataset contributors. Previous
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datasets, even those which were gathered via distributed methods, discarded any labeler

information as irrelevant; we wish to correct this mentality and encourage future dataset

collectors to preserve this critical and versatile information, so that it may be studied and

utilized to develop more robust algorithms and learning frameworks, as well as deepen our

understanding of the fundamental nature of machine learning.
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