
Rowan University Rowan University

Rowan Digital Works Rowan Digital Works

Theses and Dissertations

5-23-2023

DEVELOPMENT OF A MODULAR AGRICULTURAL ROBOTIC DEVELOPMENT OF A MODULAR AGRICULTURAL ROBOTIC

SPRAYER SPRAYER

Paolo Rommel P. Sanchez
Rowan University

Follow this and additional works at: https://rdw.rowan.edu/etd

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Sanchez, Paolo Rommel P., "DEVELOPMENT OF A MODULAR AGRICULTURAL ROBOTIC SPRAYER" (2023).
Theses and Dissertations. 3115.
https://rdw.rowan.edu/etd/3115

This Dissertation is brought to you for free and open access by Rowan Digital Works. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of Rowan Digital Works. For more
information, please contact graduateresearch@rowan.edu.

https://rdw.rowan.edu/
https://rdw.rowan.edu/etd
https://rdw.rowan.edu/etd?utm_source=rdw.rowan.edu%2Fetd%2F3115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=rdw.rowan.edu%2Fetd%2F3115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://rdw.rowan.edu/etd/3115?utm_source=rdw.rowan.edu%2Fetd%2F3115&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:graduateresearch@rowan.edu

DEVELOPMENT OF A MODULAR AGRICULTURAL ROBOTIC SPRAYER

by

Paolo Rommel P. Sanchez

A Dissertation

Submitted to the
Department of Mechanical Engineering

College of Henry M. Rowan College of Engineering
In partial fulfillment of the requirement

For the degree of
Doctor of Philosophy in Mechanical Engineering

at
Rowan University

April 4, 2023

Dissertation Chair: Hong Zhang, Ph.D., Associate Professor, Department of Mechanical
Engineering

Committee Members:
Shen-Shyang Ho, Ph.D., Associate Professor, Department of Computer Science
Shreekanth Mandayam, Ph.D., Vice President for Research, University Research

Foundation, Division of Research, Texas State University
Mitja Trkov, Ph.D., Assistant Professor, Department of Mechanical Engineering

Wei Xue, Ph.D., Associate Professor, Department of Mechanical Engineering

© 2023 Paolo Rommel P. Sanchez

Dedications

For my family, Eden and Pi.

Acknowledgements

I express my deepest gratitude to Dr. Hong Zhang for his guidance and help

throughout this research. The experiences, skills, and knowledge that I have gained are

things that I will take with me into my next professional endeavor.

I also express my sincerest appreciation to Professor Shen-Shyang Ho for his guid-

ance in developing and implementing this research’s machine-learning components. I

would also like to thank Dr. Shreekanth Mandayam, Dr. Mitja Trkov, and Dr. Wei Xue for

sharing their knowledge and expertise and serving on my dissertation committee.

I also express my sincerest gratitude to the Engineering Research and Development

for Technology under the Department of Science and Technology of the Republic of the

Philippines for providing full financial assistance to pursue my degree. My sincerest thanks

are also expressed to the University of the Philippines Los Baños, especially to the Agri-

biosystems Machinery and Power Engineering Division of the Institute of Agricultural and

Biosystems Engineering, for their support in my study.

I thank the Filipino community in New Jersey, especially my dear friend Father

Philip, for their assistance in my stay in the United States.

I also express my forever gratitude to my mother. Thank you for all your prayers

and motivation. You are always a pillar that keeps me standing in the face of adversity.

Finally, I want to thank my wife, Eden, for her unwavering love and support through

this endeavor. And to my son, Pi, I thank you for always being a source of joy in my life.

iv

Abstract

Paolo Rommel P. Sanchez
DEVELOPMENT OF A MODULAR AGRICULTURAL ROBOTIC SPRAYER

2022-2023
Hong Zhang, Ph.D.

Doctor of Philosophy in Mechanical Engineering

Precision Agriculture (PA) increases farm productivity, reduces pollution, and min-

imizes input costs. However, the wide adoption of existing PA technologies for complex

field operations, such as spraying, is slow due to high acquisition costs, low adaptability,

and slow operating speed. In this study, we designed, built, optimized, and tested a Modu-

lar Agrochemical Precision Sprayer (MAPS), a robotic sprayer with an intelligent machine

vision system (MVS). Our work focused on identifying and spraying on the targeted plants

with low cost, high speed, and high accuracy in a remote, dynamic, and rugged environ-

ment. We first researched and benchmarked combinations of one-stage convolutional neu-

ral network (CNN) architectures with embedded or mobile hardware systems. Our analysis

revealed that TensorRT-optimized SSD-MobilenetV1 on an Nvidia Jetson Nano provided

sufficient plant detection performance with low cost and power consumption. We also

developed an algorithm to determine the maximum operating velocity of a chosen CNN

and hardware configuration through modeling and simulation. Based on these results, we

developed a CNN-based MVS for real-time plant detection and velocity estimation. We

implemented Robot Operating System (ROS) to integrate each module for easy expansion.

We also developed a robust dynamic targeting algorithm to synchronize the spray operation

with the robot motion, which will increase productivity significantly. The research proved

to be successful. We built a MAPS with three independent vision and spray modules. In

the lab test, the sprayer recognized and hit all targets with only 2% wrong sprays. In the

field test with an unstructured crop layout, such as a broadcast-seeded soybean field, the

MAPS also successfully sprayed all targets with only a 7% incorrect spray rate.

v

Table of Contents

Abstract . v

List of Figures . xi

List of Tables . xvii

Chapter 1: Introduction . 1

1.1 Background of the Study . 1

1.2 Motivation of the Study . 4

1.2.1 Plant Detection System . 5

1.2.2 Valve Control System . 8

1.2.3 Physical Configurations . 8

1.2.4 Problem Statements . 9

1.3 Significance of the Study . 10

1.3.1 Hypothesis 1: Distributed and Parallel Processing with Cluster of
Low-Power Devices . 10

1.3.2 Hypothesis 2: Vision-Based Velocity Estimation and VTD Valve Con-
trol for In-Motion Spray . 11

1.4 Objectives of the Study . 12

1.5 Research Organization . 15

1.6 Research Highlights. 16

1.7 Research Contribution . 17

1.8 Published Works . 18

Chapter 2: Literature Review . 20

2.1 Introduction . 20

2.2 Field Agricultural Machinery . 20

2.3 Agricultural Field Robots . 21

vi

Table of Contents (Continued)

2.4 Precision Sprayers . 23

2.4.1 Non-Real-Time Precision Sprayers . 25

2.4.2 Real-Time Precision Sprayers . 26

2.5 MVS-CNN . 39

2.5.1 One- and Two-Stage CNN Architectures. 41

2.5.2 SSD MobileNet . 42

2.5.3 YOLO . 45

2.5.4 MVS-CNN in Weed Detection . 47

2.6 Modularity . 50

2.6.1 Module-Based Hardware. 51

2.6.2 Robotics Software Framework. 52

2.6.3 Modular Agricultural Robots . 54

2.7 Review Summary . 59

Chapter 3: Materials and Methods . 61

3.1 Overview . 61

3.2 Development of CNN-Based Vision Module . 62

3.3 Development of the MAPS . 63

3.3.1 Modular Hardware and Software Architecture . 65

3.3.2 Vision-Based Velocity Estimation . 70

3.3.3 Valve Control by Queuing of VTDs . 71

3.3.4 Specification and Cost Summary . 71

3.4 Field Testing. 74

3.5 CNN Model Development . 75

3.5.1 CNN Hardware . 76

vii

Table of Contents (Continued)

3.5.2 Dataset Preparation . 76

3.5.3 Training and Validation . 79

3.5.4 TensorRT Optimzation . 80

3.5.5 Detection Performance . 80

3.6 Statiscal Analysis . 85

Chapter 4: Benchmarking of One-Stage CNN Object Detection Models for Weed
Detection . 86

4.1 Introduction . 86

4.2 Methodology . 88

4.2.1 Dataset Preparation . 88

4.2.2 Training and Validation . 91

4.2.3 Performance Testing. 92

4.3 Results and Discussion . 92

4.3.1 Training of Weed Detection Models . 92

4.3.2 Detection Performance . 95

4.3.3 Processing Time in Different Hardware Setups . 102

4.3.4 Cost Analysis . 107

4.3.5 Performance Summary . 109

Chapter 5: Simulation-Aided Development of a Modular MVS-CNN for Plant De-
tection: Effect of Travel Velocity, Inference Speed, and Camera Config-
urations . 113

5.1 Introduction . 113

5.2 Materials and Methods. 115

5.2.1 Concept . 115

5.2.2 Field Map Modeling. 120

viii

Table of Contents (Continued)

5.2.3 Motion Modeling . 121

5.2.4 Detection Algorithm . 122

5.2.5 Experimental Design . 124

5.2.6 Vision Module Development . 125

5.3 Results and Discussion . 130

5.3.1 Sensitivity Analysis . 131

5.3.2 Effects of Travel Velocity and Inference Speed . 132

5.3.3 Effect of Increasing S or Multiple Cameras . 137

5.3.4 Vision Module Simulation and Testing Performance . 139

5.3.5 Proposed Reference Chart . 141

Chapter 6: Development a CNN-Based Precision Sprayer with Vision-Based Ve-
locity Estimation and Valve Control Using Variable Time Delay 144

6.1 Introduction . 144

6.2 Materials and Methods. 145

6.2.1 Scalable Unit . 145

6.2.2 CNN Model Development . 157

6.2.3 Testing of Vision-Based Velocity Estimation . 158

6.2.4 Sprayer Performance Testing . 159

6.3 Results and Discussion . 163

6.3.1 Velocity Measurement Calibration . 163

6.3.2 Effect of Plant Height Factor . 165

6.3.3 Effect of Tracking Distance Threshold . 167

6.3.4 Spraying Performance . 168

6.3.5 Summary of Observations . 175

ix

Table of Contents (Continued)

Chapter 7: Field Evaluation of a CNN-Based Modular Precision Sprayer 176

7.1 Introduction . 176

7.2 Materials and Methods. 177

7.2.1 Overview of the MAPS . 177

7.2.2 Experimental Field . 179

7.2.3 SSD-MB1 Training and Validation . 180

7.2.4 Field Testing . 181

7.3 Results and Discussion . 184

7.3.1 CNN Model Performance . 184

7.3.2 Targeting Performance . 186

7.3.3 Spray Volume Reduction . 190

7.3.4 Performance Summary . 192

Chapter 8: Conclusion and Future Works. 193

8.1 Conclusion . 193

8.1.1 MVS-CNN Benchmarking . 193

8.1.2 MVS-CNN Modeling . 194

8.1.3 MAPS Development . 195

8.1.4 Field Testing . 196

8.2 Future Works . 197

Appendix A: List of Acronyms, Abbreviations, Units, and Symbols 199

Appendix B: Vision Module Velocity Estimation Raw Calibration Data 206

Appendix C: Precision Sprayer Components . 212

x

List of Figures

Figure Page

Figure 1. The Objectives of the Research with Respect to Identified Problems
and Formulated Hypotheses. 14

Figure 2. Types of Controls in Crop Protection . 24

Figure 3. Common Weed Control Mechanisms (Adapted from [118]): (a) Tor-
sion, (b) Finger, and (c) Pneumatic Blower . 24

Figure 4. Examples of Agricultural Sprayers: (a) Knapsack Sprayer [81] and
(b) Tractor-Drawn Precision Boom Sprayer [120] . 25

Figure 5. Some Weed Detection Techniques Using UAV for Patch Spraying:
(a) Segmentation [127], and (b) Bounding-Box [128] 26

Figure 6. Common Precision Sprayer Framework. 27

Figure 7. Some Existing Vision-Based Precision Sprayers: (a) [120], (b) [133],
(c) [59], (d) [79], (e) [75], (f) [73], (g) [135], (h) [137], (i) [102], and
(j) [86], and (k) [76] . 31

Figure 8. Distribution of Technology Types for Weed Detection from 16 Re-
viewed Studies . 32

Figure 9. Types of Nozzle Layout with Respect to the Sensors 33

Figure 10. Distribution of Sensors Technologies for Location and Motion Sens-
ing of Precision Sprayers from 16 Reviewed Studies 36

Figure 11. Distribution of Targeting and Spraying Algorithms for Weed Control
from 16 Reviewed Studies . 38

Figure 12. Convolutional Neural Network for Object Classification. 40

Figure 13. General Architecture of a Modern CNN for Object Detection 42

Figure 14. Summary of mAP and Inference Speed of Selected Object Detection
Architectures on COCO 2017 Dataset [151] . 44

Figure 15. Comparison of YOLO Architectures with Other Object Detection
Architectures . 46

xi

List of Figures (Continued)

Figure Page

Figure 16. A Generic Three-Level Modular Hardware Architecture. 52

Figure 17. The Synchronous Communication of ROS Nodes Using Port Mech-
anism . 53

Figure 18. The Asynchronous Communication of ROS Nodes Through the Topic
Mechanism. 54

Figure 19. Flowchart of the Development Process of the Modular Agricultural
Robotic Sprayer. 61

Figure 20. The Steps in the Benchmarking of Selected CNN Models on Differ-
ent Hardware. 62

Figure 21. Steps in Modeling the Detection Rate of an MVS-CNN for Plant
Detection . 63

Figure 22. The Precision Sprayer Prototype with the Push-Type (a) Base Unit
and (b) Extended Configuration . 64

Figure 23. The Specific Steps in the Development of the MAPS 65

Figure 24. Hardware Schematic of the Vision-Based Precision Sprayer with
Modular Components . 66

Figure 25. The Bottom View of the MAPS. 66

Figure 26. General Software Architecture of the MAPS . 67

Figure 27. Graphical User Interface of the MAPS . 69

Figure 28. The Relative Positions of the Detection, Velocity Estimation, and
Spray Regions of the MAPS . 71

Figure 29. Cost Distribution of Each Component of the MAPS 73

Figure 30. The Broadcast-Seeded Soybean Field . 74

Figure 31. Field Testing Flowchart . 75

Figure 32. CNN Development Flowchart . 76

xii

List of Figures (Continued)

Figure Page

Figure 33. Sample Dataset Annotation Using LabelImg . 77

Figure 34. Sample Raw Images from the Three Datasets Used in the Develop-
ment of the MAPS . 78

Figure 35. The General Procedure on CNN Model Optimization Using Ten-
sorRT in Nvidia Jetson Platform . 80

Figure 36. Image Level Processing Times. 83

Figure 37. Application Level Processing Times . 84

Figure 38. Onion Plant Beds with Black Polyethylene Mulch . 88

Figure 39. Cropped Image of a Mulched Onion Bed with Class Annotations 89

Figure 40. Training and Validation Losses of Tested CNN Models with the Ver-
tical Broken Lines Representing the Epoch at Overfitting. 93

Figure 41. A Sample Detections Using the Trained CNN Object Detection Mod-
els on a Mulched Onion Plot . 96

Figure 42. Average (a) mAP0.5 and (b) mAP0.5:0.95 of Tested CNN Models on
the Test Dataset . 97

Figure 43. The Loading Time, in Seconds, of Trained CNN Models in Test
CUDA Devices . 103

Figure 44. The Inference Time, in Seconds, of Trained CNN Models in Test
CUDA Devices . 105

Figure 45. The Average Inference Speeds, in fps, of Trained CNN Models in
Test CUDA Devices . 107

Figure 46. Comparison of Cost Efficiency, in fps Per USD, of Trained CNN
Models in Test CUDA Devices . 109

Figure 47. Camera Mounting Location and Orientation in a Boom (Not Drawn
in Scale) . 116

xiii

List of Figures (Continued)

Figure Page

Figure 48. Cases of Gaps and Overlaps in Vision-Based Plant Detection at Dif-
ferent Values of ro . 118

Figure 49. Illustration of Multiple Adjacent Cameras for Plant Detection at
nvis = 2 or Se f f = 2S . 120

Figure 50. Virtual Field with Map and Motion Modeling Parameters 121

Figure 51. Software Framework of the Vision Module . 128

Figure 52. Laboratory Test Setup of the CNN-Based Vision Module 130

Figure 53. The Theoretical (Solid) and Simulated (Broken-Line) Detection Rates
of the Virtual Vision Module. 131

Figure 54. Simulated Plant Hill Detection Rates of the Vision Module Different
Velocities . 133

Figure 55. Simulated Plant Hill Detection Rates of the Vision Module Different
Inference Speeds. 133

Figure 56. Detected and Undetected (Broken Red Lines) Plant Hills on Each
Frame and Detection Pattern (Blue Broken Lines) . 136

Figure 57. Theoretical Maximum Travel Velocity to Prevent Missed Detections
at Different Number of Cameras and Inference Speeds 137

Figure 58. Detected and Undetected (Broken Red Lines) Plant Hills on Each
Frame Along the First 10 m at f ps = 2.4 . 138

Figure 59. Sample Real-Time Inferencing Using Trained SSD MobileNetV1
Model and Optimized in TensorRT . 139

Figure 60. Proposed Reference Chart in Designing an MVS-CNN for Plant De-
tection . 142

Figure 61. Workflow of an SU of the MAPS . 145

Figure 62. The Bottom View of the Sprayer Showing the SU Components 146

Figure 63. Sample Weed and Crop Detections Using SSD-MB1 147

xiv

List of Figures (Continued)

Figure Page

Figure 64. Distances Used in Tracking Plants. 148

Figure 65. Sample Image of Crop and Weed with Detections, Velocity Mea-
surements, and Extents of the Location and Velocity Estimation Re-
gion (Red Line) . 150

Figure 66. Distance Nomenclature Illustrating for LCR Calculation 152

Figure 67. The Workflow of the Targeting Algorithm of the MAPS Showing the
Three Sub-Processes . 154

Figure 68. Distance Nomenclature of Targeting Algorithm Showing the ith De-
tected Plant at the kth Captured Frame . 155

Figure 69. Sample Annotated Images of Artificial Weeds and Crops in (a) Lab-
oratory and (b) Outdoor Settings . 157

Figure 70. Laboratory Setup for Velocity Calibration and Preliminary Spraying
Performance Testing of the SU . 159

Figure 71. The Two Field Experimental Setups . 162

Figure 72. Sample Recorded Spray Instances of the Precision Sprayer 163

Figure 73. The Measured Frame Velocity of the MVS-CNN Against Different
Ranges of Test Velocities. 164

Figure 74. Comparison of the MAEs of Velocity Estimates Using Regression
and Analytical Models . 165

Figure 75. The MAEs of Velocity Estimates at Different PHF Using the Ana-
lytical Approach . 166

Figure 76. The MAEs Using Analytical Approach at Different Tracking Dis-
tance Thresholds . 167

Figure 77. Comparison of the MAEs from 0.04 to 0.53 m/s at Different Track-
ing Distance Thresholds . 168

Figure 78. Sample Detections of the (a) Left, (b) Middle, and (c) Right SUs of
the MAPS . 169

xv

List of Figures (Continued)

Figure Page

Figure 79. Workflow and Communication of the SU of the MAPS 178

Figure 80. The Developed MAPS with Labeled Components in the Experimen-
tal Field . 179

Figure 81. Sample Images of Target Weeds: (a) Horseweed, (b) Purslane, (c)
Carpet Weed, (d) Cut-Leaved Evening Primrose, (e) Hairy Fleabane,
(f) Goosegrass, (g) Ragweed, (h) Lambquarter, and (i) Thistle 180

Figure 82. (Weed and Soybean Distributions in the Three Test Rows with Val-
ues Enclosed in Parenthesis Represent Soybean Plants Without Ad-
jacent Weeds . 182

Figure 83. The Precision-Recall Curve of the SSD-MB1 Model on Detecting
Soybean and Weeds at 0.5 IOU Threshold . 185

Figure 84. Soybean and Weed Detections of SSD-MB1 at 0.5 Confidence Thresh-
old . 185

Figure 85. Spray Rate of Weeds and Soybeans . 188

Figure 86. Sample Detection Scenarios During the Experiment with Labeled
Targets Weeds (Yellow) and Non-Target Soybeans (Green). 189

Figure 87. The Weed Population, Spray Instances Ratio, and Spray Volume Re-
ductions . 191

xvi

List of Tables

Table Page

Table 1. Reviewed Articles on Agricultural Robots . 23

Table 2. Summary of Previous Research on Real-Time Precision Spraying of
Weeds . 28

Table 3. Past MVS-CNN Applications in Agricultural Field Operations 47

Table 4. Examples of Past MVS-CNN Applications in Real-Time Precision
Spraying . 49

Table 5. List of Agricultural Robots with Modular Sub-Components 55

Table 6. List of Fully-Modularized Agricultural Robots . 56

Table 7. The Rated Voltages and Currents of Individual Components of the
MAPS . 70

Table 8. The Technical Specification of the MAPS with Three SUs 72

Table 9. Detailed Cost of Each Component of the MAPS. 73

Table 10. Reference URLs of the CNN Algorithms. 79

Table 11. Class Distribution of Samples in the Unbalanced Dataset 90

Table 12. Class Distribution of Samples in the Balanced Dataset 91

Table 13. Average Resource Consumption of the Tested Object Detection Mod-
els During Training . 95

Table 14. One-Way ANOVA Tests of the mAP0.5 and mAP0.5:0.95 of Tested Ob-
ject Detection Models on Unbalanced and Balanced Datasets 99

Table 15. Tukey’s HSD Tests of the mAP0.5 and mAP0.5:0.95 of the Tested CNN
Object Models Trained on an Unbalanced Dataset . 100

Table 16. Tukey’s HSD Tests of the mAP0.5 and mAP0.5:0.95 of the Tested CNN
Object Models Trained on an Balanced Dataset . 101

xvii

List of Tables (Continued)

Table Page

Table 17. The Paired T-Test of the mAP0.5 and mAP0.5:0.95 of Tested CNN Mod-
els on Unbalanced and Balanced Datasets . 102

Table 18. Summary of the Component Price of the Jetson Nano Test System. 108

Table 19. Summary Performance Comparison of Each Test Configuration. 111

Table 20. The Complete Factorial Design for Vision Module Simulation and
Theoretical Analyses. 125

Table 21. Summary of Vision Module Hardware . 126

Table 22. Summary of Vision Module Software . 127

Table 23. Output Parameters of the Vision Module with Their Description 128

Table 24. Theoretical and Simulation Performance at S= 0.5m at Different Travel
Velocities and Inference Speeds . 132

Table 25. Theoretical and Simulation Performance of the Developed Vision Mod-
ule Different Test Velocities . 140

Table 26. The Detection Performance of the CNN-Based Vision Module 141

Table 27. Parameters in the Performance Testing of the Precision Sprayer 160

Table 28. Calculated Performance Metrics of the Precision Sprayer 161

Table 29. The Detection Performance of the MAPS at Different FSF (low and
high), spraying duration (200, 350, and 500 ms), and 1.03 ±0.16 m

s
(3.71 ±0.57 km

h) . 170

Table 30. The Targeting Performance of the MAPS at Different FSF (low and
high), spraying duration (200, 350, and 500 ms), and 1.03 ±0.16 m

s
(3.71 ±0.57 km

h) . 171

Table 31. The Detection Performance of the MAPS with Three SUs at Low-
Level Spray Schedule Filtering, 200 Spraying Duration, and 0.87 ±
0.14 m

s (3.14 ±0.49 km
h) . 173

xviii

List of Tables (Continued)

Table Page

Table 32. The Targeting Performance of the MAPS with Three SUs at Low-
Level Spray Schedule Filtering, 200 Spraying Duration, and 0.87 ±
0.14 m

s (3.14 ±0.49 km
h) . 174

Table 33. Soybean and Weed Detection Performance at 0.5 Threshold IOU of
SSD-MB1 . 186

Table 34. Targeting Performance of the MAPS at 0.69 ± 0.13 m
s 187

Table 35. Spray Volume Reduction of the MAPS at 0.69 ± 0.13 m
s and 15-

Second Average Traverse Time . 191

xix

Chapter 1

Introduction

1.1 Background of the Study

Providing food for the growing global population in the presence of increasing ur-

banization, decreasing amount and quality of natural resources, and changing climate is

the primary challenge of modern agriculture. In the next 30 years, the United Nations es-

timates that the global population shall rise to 9.7 billion from its current 7.9 billion [1],

while studies predict a 70 to 100% increase in global food demand [2]. Concerns regarding

the adverse environmental effects of conventional farming practices have increased over

the past years. For instance, the over-consumption of groundwater due to extensive farm-

ing lowers water tables, affecting the water supply surrounding communities [3]. Excessive

pesticide use also caused the accumulation of heavy metals beyond safe levels in soils [4].

Likewise, the over-application of fertilizer resulted in large quantities of synthetic chemical

residues in groundwater [5].

Further, many farms worldwide face workforce unavailability due to declining rural

populations and aging rural demographics [6]. The percentage of the total economically

active population engaged in agriculture has been decreasing from 51% in 1980 to 39.08%

in 2012 [7]. Traditional farming or any agricultural-related employment is unappealing to

the modern youth. Most young people perceive farming as a low-skilled, low-technology,

arduous, hazardous, and unsustainable employment [8, 9].

These modern challenges inspired researchers to re-evaluate current agricultural

practices, develop new technologies, and recommend policies that promote sustainable

farming and food security [10, 11, 12]. Meeting the growing food demand while facing

environmental, economic, and social issues requires innovating from traditional agricul-

tural expansion and intensification [13]. Studies suggest that data-driven technologies and

policies are needed to make food production systems more efficient and reduce food waste

1

during distribution [13, 14]. Likewise, new technology-based approaches to farming should

be highly adaptable and transferable in under-yielding nations where most of the growth in

food production is expected to come [15].

Nonetheless, developing and adopting sustainable farming technologies and prac-

tices remain slow. Farmers adopt sustainable practices when the enabling technologies

are accessible, affordable, and effective. This situation was evident in the case of conserva-

tion agriculture (CA). CA implements the principles of minimum physical soil disturbance,

permanent soil cover, and crop diversification to promote sustainability and increase crop

yield [16, 17]. Compared to traditional land preparation, conservation tillage can signifi-

cantly decrease overall labor cost [18] and fuel consumption without significantly reduc-

ing yield [19]. Further, zero-tillage, residue retention, crop rotation, and inter-cropping

can improve soil organic matter and consequently increase yield [20]. However, studies

showed that CA practices were only adopted when an affordable and effective technology

was accessible. In Africa and South Asia, conservation tillage only became popular with

the development and successful commercialization of a low-cost two-wheel tractor imple-

ment that integrated conservation tillage, seeding, and fertilizer application in a single pass

[21]. Likewise, minimum or zero-tillage became widely practiced with the introduction of

glyphosate-based herbicide and glyphosate-resistant crops [20, 18, 19]. However, with the

decreased effectiveness of glyphosate in recent years, significant reductions in conservation

tillage fields have also been observed [22].

Another modern agricultural principle that aims to increase production through

modern technologies sustainably is precision agriculture (PA). PA uses robots, intelligent

automation systems, and remote sensing technologies for the site- and time-specific appli-

cation rates of farm inputs [23, 24]. These modern farming technologies resulted in efficient

use of farm resources, increased yield, and improved environmental quality [25, 26]. For

example, equipping tractors with robotic navigation systems reduced fuel consumption by

41%, 13%, and 5% during weed spraying, plowing and weed control, and fumigation, re-

2

spectively [27]. Collaborative agricultural robots increased the detection rate of stressed

plants during plant surveys by 71.88% compared to manual plant surveys [28]. Variable

rate application of fertilizer using computer vision also increased application accuracy by

up to 3.19% versus manually measured application [29]. Additionally, PA technologies can

reduce labor costs, enable farm workers to safely operate in hazardous field environments,

and reduce the impact of physically demanding, mundane, and arduous jobs [30, 31]. Fur-

ther, robots, autonomous systems, and smart farming tools can potentially solve rural aging

and population outflow challenges by increasing worker productivity and offsetting farm

labor requirements [32].

Combining PA and CA can also achieve higher levels of sustainability and produc-

tion than individual applications of each farming principle. For example, using wheat yield

maps to identify areas with low yields enabled the execution of site-specific conservation

practices, thereby increasing yield by 71% [33]. Compared to traditional land leveling, pre-

cision laser leveling in a zero-tilled rice-wheat production reduced water usage by 15.9%

and increased yield by 3.6 to 10.3% [34]. Using auto-steering, CO2 emissions in conser-

vation tillage were reduced by approximately 10% [35]. Finally, optoelectronic sensors

for detecting weeds enabled mechanical-based tillage at 90% weed control efficiency in

conservation cropping systems, [36].

Nonetheless, despite the potential benefits of using PA technologies compared to

traditional agricultural machines, the high acquisition cost, complex design requirements,

and low durability during field operations remain the major barriers to adoption [31, 37,

38]. As a result, most commercially available PA technologies are for crop monitoring and

farm information management, which require easier hardware implementation than robots

for real-time field operations [39].

In real-time field operations, the varying nature of farming environments and cul-

tural practices in growing various crops require specialized machines with complex func-

tional requirements [40]. Integrating mechatronic systems into traditional agricultural ma-

3

chines commonly satisfies these functional requirements. However, with the integration of

complex mechatronic systems that require a multidisciplinary approach to develop, mod-

ern agricultural machines are more expensive to produce and maintain than their traditional

counterparts [41]. Thus, bigger farms are more likely to invest in PA technologies than

smaller farms by leveraging the economy of scale [42, 43]. For instance, autonomous har-

vest machinery is fewer in specialty crops than in field crops due to the economic and tech-

nical challenges [44]. Another research also showed that the area needs to be sufficiently

large to offset the high cost of robotic sprayers through chemical cost savings [45].

Nonetheless, a significant amount of farms in the world are small. About 84% of

the estimated 570 million farms globally are less than 2 ha and occupy approximately 40%

of the total global agricultural area [46]. Due to the lack of access to new technologies,

small farms also produce less yield despite using more fertilizer [47] and pesticides [48]

compared to large farms. This situation necessitates research that will lower the cost and

overcome the technical barriers of PA technologies to make them a feasible alternative to

traditional farm equipment for small and large farms.

In summary, sustainable farm practices, such as CA and PA, are among the poten-

tial components of the complex set of solutions to the intricate problem of food security

in the changing global conditions. Nevertheless, the limited availability and accessibil-

ity to affordable and technically feasible CA and PA technologies negatively influence the

wide adoption and acceptability of sustainable farming practices. In the case of PA tech-

nologies, more work must be done to reduce cost, increase performance, and improve

machine reliability.

1.2 Motivation of the Study

Precision spraying is among the PA technologies that interest many researchers due

to its potential to increase farm net revenue and reduce environmental risks through effi-

cient liquid chemical application. These sprayers target specific plants and deliver specific

4

rates of pesticides and fertilizers through plant detection and sprayer valve control systems.

Through the years, various approaches were developed for robust plant detection and valve

control systems. The following sub-sections briefly discussed these approaches to iden-

tify existing technical challenges. An exhaustive discussion of the current approaches is

provided in Chapter 2.

1.2.1 Plant Detection System

Differentiating and locating target plant species in field conditions proved to be a

challenging task due to the high variation in plant morphology at different growth stages

[49], coupled with varying field lighting [50] and object occlusion [51]. Various meth-

ods have been explored in the past to locate target plants accurately, as summarized in the

review papers of [49], [52], [53], and [54]. These proposed approaches include spectro-

metric, optical, distance, and image-based sensors. However, the high variation in spectral

characteristics of weeds and crops at different growth stages and weather conditions makes

differentiating between plant species using spectrometric and optoelectronic sensors dif-

ficult [55]. Additionally, spectral-based sensing with current approaches cannot reliably

identify weeds at sufficiently low weed densities due to inadequate differences between the

field spectral characteristics of weed and crop [56].

On the other hand, image-based sensing delivered promising results. However,

increasing the robustness of plant detection algorithms using complex approaches, such as

machine-learning-based segmentation and classification, for image-based sensing generally

increases computational cost [57, 49]. For example, a precision sprayer for targeting weeds

between carrot rows by color-based thresholding of normalized difference vegetation index

images could operate up to 4.17 m
s , but without differentiating between weeds and crops

[58]. A recent precision sprayer utilized a support vector machine (SVM) to classify shape,

texture, and color feature vectors from a 4-megapixel RGB-IR camera for in-row weed

targeting in carrots. Still, processing RGB-IR images using SVM limited the operation to

5

0.8 m
s . [59].

Recently, machine vision systems with convolutional neural networks (MVS-CNN)

for plant detection have been gaining popularity due to their high detection reliability in

dense agricultural environments [60]. CNN is a deep-learning approach that utilizes in-

tricate feature extraction and inferencing layers to classify and locate objects in digital

images [61]. Many studies have demonstrated the effectiveness of CNN for plant classifi-

cation and localization. This situation has likely been catalyzed by the wide availability of

state-of-the-art CNN architectures in public repositories in recent years [62, 52], including

single-shot multibox detector (SSD) [63], MobileNets [64], You Only Look Once (YOLO)

[65], and Region-based CNN (RCNN) [66].

Nonetheless, despite high accuracy, the large computational power requirement of

CNN limits its application in real-time operations [61]. As a result, most MVS-CNN ap-

plications in agriculture were primarily employed in non-real-time scenarios. Presently,

various studies demonstrated the robustness of CNN for non-real-time object detection in

dense agricultural scenes [67, 52, 68, 69, 62, 60, 54, 70]. For example, a study that sur-

veyed CNN-based weed detection and plant species classification reported 86-97% and

48-99% precisions, respectively [68]. Similarly, research on fruit classification and recog-

nition using CNN showed 77-99% precision [68, 71, 72].

On the other hand, field-tested MVS-CNN precision sprayers were very few. Like

other agricultural robots, developing complete systems requires a fusion of knowledge in

machine learning, control systems, vision systems, mechanical design, and machine fabri-

cation [40]. Among the occasional complete systems, much of the recent work focused on

targeted weed spraying for different crops. These studies include precision weed sprayers

for strawberries [73], potatoes [74], and sugar beets [75]. Other MVS-CNN demonstrated

targeted application of pesticides to crops, including cabbages [76] and citrus trees [77].

Still, the slow inference speed of MVS-CNN causes weeds to be missed at high

travel velocity (−→v travel). In the study of Liu et al. (2021) [73], the variable rate agro-

6

chemical sprayer with MVS-CNN for targeted weeds control in strawberry crops equipped

with a 1080TI showed increasing missed detections as −→v travel increases regardless of CNN

architecture (VGG-16, GoogleNet or AlexNet). At 1, 3, and 5 km
h , their system missed

5-9%, 6-10%, and 13-17% of the targeted weeds, respectively. Thus, few studies focused

on increasing the fps of CNN. However, reducing the size of CNN for faster fps decreased

detection performance. For instance, the study of Chechliński et al. (2019) [78] that used a

CNN based on combinations U-Net, MobileNets, DenseNet, and ResNet on a Raspberry Pi

3B+ resulted in only 60.2% precision at 10.0 fps. Thus, most systems rely on a fast Graph-

ics Processing Unit (GPU) to achieve fast inference speed and prevent missed sprays. For

example, the robotic sprayer of Partel et al. (2019) [79] with YOLOv3 missed 43% of the

plants using an Nvidia Jetson TX2 as compared to 8% missed plants when using Nvidia

1070TI.

Nonetheless, despite using fast GPUs, the developed system had to operate below

the average speed of hand-held spraying (3.4 km
h) [80, 81, 82] and boom spraying (5.76 km

h)

[83, 84, 85] to be accurate. While other systems reported a high targeting performance of

70 to 96%, operating velocities were not quantified [79, 75]. In contrast, some systems

only reported high velocities at 5 km
h but did not quantify spraying accuracy [86].

A high-power GPU will have a short operation time for mobile applications and can

easily fail due to limited power supply and vibrations [87]. In addition, desktop- or laptop-

grade GPUs are expensive [88]. Thus, low-power and inexpensive devices such as Nvidia

Jetson Nano, Nvidia Jetson TX2, and Raspberry Pi are continuously explored as substitutes

for discrete GPUs. However, as previously described, due to limited computational power,

low-power devices were used for non-real-time applications [89], had high missed plants

for real-time spraying [79], had to sacrifice accuracy for fps gain [78], or operate at slow

−→v travel [76].

Recently, TensorRT-based optimization that eliminates unused paths in the network

without affecting model accuracy became available [90]. For instance, in non-real-time

7

weed detection, Olsen et al. (2019) [91] applied TensorRT to optimize and increase the

inference speed of ResNet-50 from 5.5 to 18.7 fps in an Nvidia Jetson TX2 without af-

fecting the 95.1% precision. Nonetheless, precision sprayers with low-power devices and

TensorRT-optimized CNN models are yet to be demonstrated.

1.2.2 Valve Control System

Most MVS-CNN sprayers open the valves when the targeted plants are within a

specific region of interest (ROI) in a captured frame [92] after a fixed-time delay (FTD)

[73]. However, FTD-based valve triggering may result in missing the target plant or in-

correctly spraying non-targets at high velocity. Thus, other precision sprayers integrate

motion sensors, such as real-time kinematics and a global positioning system (RTK-GPS),

to trigger the valve using a variable time delay (VTD). However, RTK-GPS accuracy is

limited by the availability of nearby base stations [93, 94]. Further, high-resolution RTK-

GPS receivers are expensive [95]. Given that the high cost of entry is among the main

barriers to PA technology adoption [42], alternative low-cost velocity estimation methods

are needed. Wheel encoders can be used for odometry-based valve triggering [59, 76] but

were demonstrated be prone to wheel skidding [76].

1.2.3 Physical Configurations

In addition to being reliant on RTK-GPS, the fixed configurations of agricultural

robots limit their adaptability to various farm conditions. Further, most systems can only

perform specific field operations, providing farmers with an unattractive value proposition.

An approach in machine design to minimize production costs and shorten the lead time of

customized products is module-based design [96]. A module can be defined as a repeatable

and reusable machine component that performs partial or full functions and interact with

other machine components, resulting in a new machine with new overall functionalities

[97].

8

Modular systems are also a long-time established and cost-effective strategy in agri-

cultural mechanization to address the need for a highly adaptable and reusable machine for

different farm operations. For example, tractors provide power and navigation, while the

different implements offer various functionalities. However, the modular design approach

is rarely implemented on agricultural robots. Almost all robotic systems in agriculture

employ fixed configurations and are non-scalable [98, 99, 100, 101]. Among recently de-

veloped precision sprayers, none were reconfigurable or scalable.

1.2.4 Problem Statements

Past studies showed that MVS-CNN is a robust method for weed detection com-

pared to non-optical-based sensing, traditional image processing techniques, and more sim-

ple machine learning algorithms. Past studies also showed that RTK-GPS was commonly

used for sensing the motion of an MVS-CNN precision sprayer. Further, existing preci-

sion sprayers lack adaptability to varying crop layouts. In summary, similar to identified

limitations of PA technologies, MVS-CNN precision sprayers suffer from high cost, slow

velocities, not interchangeable components, and low adaptability in unstructured field en-

vironments. These specific problems of current MVS-CNN precision sprayers are outlined

as follows:

1. Problem 1: MVS-CNN precision sprayers utilize expensive GPUs with high power

requirements and can easily fail in agricultural field environments.

2. Problem 2: Existing MVS-CNN precision sprayers have fixed configurations, which

limits their reconfigurability and scalability for varying farm layouts and cropping

systems.

3. Problem 3: Despite utilizing fast GPUs, existing MVS-CNN precision sprayers op-

erate below average hand-held or boom spraying velocities, resulting in low field

capacities.

9

4. Problem 4: Using RTK-GPS to estimate the motion of precision sprayers is expen-

sive and requires developed infrastructure for RTK reference base stations.

1.3 Significance of the Study

This study proposes that a modular design approach can increase the feasibility

of MVS-CNN for real-time precision spraying. First, we demonstrated that a modular

design approach could potentially reduce the component cost and power requirement of

MVS-CNN precision sprayers by distributing the high computation load of CNN among

parallel low-cost and energy-efficient devices. Further, in case of failure, each device can

be easily replaced. Second, each vision module was utilized for localized vision-based ve-

locity estimation. Compared to RTK-GPS, localized vision-based velocity estimation can

provide a faster update of velocity readings and reduce cost by eliminating the need for

auxiliary motion sensors. Third, modular architecture represented the hardware and soft-

ware components as virtual nodes, simplifying the development process. A dedicated node

used detection and velocity estimates from the MVS-CNN to queue multiple VTDs and

control solenoid valves. The valves were positioned at an offset distance from the RGB

cameras, which enabled fast field operating velocities compared to previous MVS-CNN

precision sprayers. Finally, a modular agricultural robot is highly adaptable to different

farm conditions and operations through reconfigurability, scalability, and reusability. De-

spite the advantages of modular designs, there is a lack of research on modular precision

sprayers with MVS-CNN.

1.3.1 Hypothesis 1: Distributed and Parallel Processing with Cluster of Low-Power

Devices

Using multiple low-power and low-cost computers for MVS-CNN precision sprayers

can provide sufficient computation performance as a single powerful computer while en-

10

abling reconfigurability, decreasing the cost, and lowering energy consumption

The high computational requirement of MVS-CNN, despite having high detection

performance and robustness in a dense agricultural scene, hinders its wide adoption for

real-time precision spraying [55]. However, this study claims that low-power and low-

cost devices can be used for MVS-CNN precision spraying despite their low computation

capability. Past studies that utilized Jet with GPU-accelerated machine learning either used

the low-power device to process high-resolution stitched images from multiple cameras

[79] or did not implement TensorRT optimization on the CNN model [88, 102, 76, 103].

This research is the first to implement a dedicated CUDA-capable low-power device in

each camera and utilize a TensorRT-optimized CNN model for inferencing. Further, this

research is also the first to utilize modular hardware and software architecture to integrate

multiple low-power devices into a single CNN-based precision sprayer.

Past studies also did not model the process of vision-based plant detection as af-

fected by fps, −→v travel , and camera field of view S. If the precision sprayer travels too fast

relative to the inference speed of the CNN, gaps can occur between consecutive frames

causing certain plants to be missed. This research aims to provide a model that describes

the minimum fps for a given −→v travel and S for real-time plant detection during field op-

erations. Similarly, the model can also be used to determine the maximum −→v travel for a

given fps and S. This way, designs can be optimized toward the applicability of low-cost

and energy-efficient devices as computational hardware for MVS-CNN.

1.3.2 Hypothesis 2: Vision-Based Velocity Estimation and VTD Valve Control for In-

Motion Spray

Accurate spot spraying at fast travel velocities can be achieved using individual

vision and sprayer modules for vision-based velocity estimation and for queuing and

11

dynamic filtering of VTDs.

The long processing time between image capture and valve actuation may cause late

valve opening at fast travel velocities. Aside from using fast GPUs, existing MVS-CNN

offset the nozzle location away from the camera and utilized RTK-GPS or wheel encoders.

MVS-CNN determines the target plant location, and motion sensors (RTK-GPS or wheel

encoders) estimate the travel velocity or the relative position of the target plant to the nozzle

[59, 102, 76, 103]. The target plant locations and velocity estimates were then utilized

to schedule valve actuation using VTDs or odometry (nozzle-to-plant relative distance).

This study suggests that MVS-CNN can estimate accurate velocity using plant detection

bounding boxes as a reference. Adding velocity estimation capability to the MVS-CNN

allows multiple VTDs to be calculated without relying on auxiliary systems for motion

estimation. Consequently, the proposed method can simplify the overall design and reduce

the total system cost of vision-based precision sprayers.

This study is also the first to utilize vision-based velocity estimation for precision

spraying. Traditionally, vision-based velocity estimation was mostly applied in transporta-

tion, as summarized by [104] in their comprehensive review of the different vision-based

velocity estimation methods. [105] estimated the distance traveled using a tractor-drawbar-

mounted camera, and the travel distance was calculated from consecutive images using a

k-nearest neighbor. Their vision-based system achieved lower errors (≈ 3 mm) than wheel-

encoder-based measurements (≈ 7 mm) on soil tests. Nonetheless, vision-based velocity

estimation for precision spraying remains unexplored.

1.4 Objectives of the Study

To demonstrate that the proposed approaches can reduce the cost and improve the

performance of MVS-CNN precision sprayers, this dissertation aims to develop a mod-

ular agrochemical precision sprayer (MAPS) with MVS-CNN. Specifically, this main

objective is divided as follows:

12

1. MVS-CNN Benchmarking. Compare the performance in different hardware of one-

stage CNN object detection models for weed detection;

2. MVS-CNN Modeling. Develop theoretical and simulation methods in determining

the effect of fps, −→v travel , and S on missed plant detections of an MVS-CNN;

3. Modular Architecture Design. Design the modular software and hardware archi-

tectures for a precision sprayer with MVS-CNN;

4. Fabrication. Fabricate scaled model and prototype of the MAPS;

5. Performance Testing. Evaluate the laboratory and field performance of a modular

precision sprayer.

Figure 1 illustrates the relationships of the recognized problems, formulated hy-

potheses, and set objectives of the research. The first two and last objectives aim to prove

the first hypothesis that low-cost and energy-efficient devices can substitute computers with

discrete GPUs for CNN-based weed detection without compromising performance. The

last three objectives demonstrate the second hypothesis that the multiple low-power devices

integrated by a modular software framework can perform accurate spot spraying using the

proposed velocity estimation and valve control approaches in simulated and actual field

environments.

13

Fi
gu

re
1

Th
e

O
bj

ec
tiv

es
of

th
e

R
es

ea
rc

h
w

ith
R

es
pe

ct
to

Id
en

tifi
ed

P
ro

bl
em

s
an

d
Fo

rm
ul

at
ed

H
yp

ot
he

se
s

M
ai

n
P

ro
bl

em
 o

f M
V

S
-C

N
N

 P
re

ci
si

on
 S

pr
ay

er
s

H
ig

h
C

os
t,

S
lo

w
 V

el
oc

ity
, a

nd
 L

ow
 A

da
pt

ab
ili

ty

D
es

kt
op

 G
PU

s
in

 m
ob

ile

ap
pl

ic
at

io
n

Pr
ob

le
m

 1

O
ve

ra
rc

hi
ng

 H
yp

ot
he

si
s:

M
od

ul
ar

 D
es

ig
n

A
pp

ro
ac

h
ca

n
lo

w
er

 c
os

t,
in

cr
ea

se
 p

ro
du

ct
iv

ity
, a

nd

im
pr

ov
e

ad
ap

ta
bi

lit
y

H
yp

ot
he

si
s

1:
D

is
tri

bu
te

d
an

d
P

ar
al

le
l

P
ro

ce
ss

in
g

w
ith

 C
lu

st
er

 o
f

E
dg

e
D

ev
ic

es

Lo
w

er
s

C
os

t,
E

ne
rg

y
C

on
su

m
pt

io
n,

E

na
bl

es
 R

ec
on

fig
ur

ab
ili

ty
 a

nd
 S

ca
la

bi
lit

y,

In
cr

ea
se

s
O

pe
ra

tin
g

Ve
lo

ci
ty

H
yp

ot
he

si
s

2:
Vi

si
on

-b
as

ed
 V

el
oc

ity

E
st

im
at

io
n

an
d

V
TD

 V
al

ve
 C

on
tro

l f
or

in

-M
ot

io
n

S
pr

ay

Lo
w

er
s

C
os

t,
In

cr
ea

se
s

O
pe

ra
tin

g
Ve

lo
ci

ty
, I

m
pr

ov
es

 S
pr

ay
in

g
A

cc
ur

ac
y

M
ai

n
O

bj
ec

tiv
e:

D
ev

el
op

 a
 M

od
ul

ar
 P

re
ci

si
on

S

pr
ay

er
 w

ith
 M

V
S

-C
N

N

O
bj

ec
tiv

e
1:

 M
V

S
-C

N
N

B

en
ch

m
ar

ki
ng

O
bj

ec
tiv

e
2:

 M
V

S
-C

N
N

 M
od

el
in

g

O
bj

ec
tiv

e
3:

 M
od

ul
ar

A
rc

hi
te

ct
ur

e
D

es
ig

n

O
bj

ec
tiv

e
4:

 F
ab

ric
at

io
n

O
bj

ec
tiv

e
5:

 P
er

fo
rm

an
ce

 T
es

tin
g

Fi
xe

d
so

ftw
ar

e
an

d
ha

rd
w

ar
e

de
si

gn
s

Pr
ob

le
m

 2

Sl
ow

 o
pe

ra
tin

g
ve

lo
ci

ty

Pr
ob

le
m

 3

H
ig

h
co

st
 a

nd
 lo

ca
tio

n-
sp

ec
ifi

c
si

gn
al

 a
va

ila
bi

lit
y

of
 R

TK
-G

PS

Pr
ob

le
m

 4

14

1.5 Research Organization

This dissertation was divided into eight chapters. Chapter 2 summarizes the impor-

tant concepts and past studies related to the development of the MAPS. Chapter 3 outlines

the general research methods and techniques followed in the study. Specific details of the

methodologies and a discussion of the results were presented in the succeeding chapters:

1. Chapter 4 presents the benchmarking of popular one-stage CNN object detection

models, such as YOLO and SSD with MobileNet (SSD-MB), on different mobile

platforms. Scaled-YOLOv4-CSP, YOLOv5s, SSD-MB1, and SSD-MB2 were tested

for weed detection in mulched onions plots running on fast discrete computational

hardware (Nvidia RTX 2080 Super) and low-power device (Nvidia Jetson Nano

2GB). Chapter 4 aimed to determine which among the tested CNN architectures had

the best balance of inference speed and detection performance.

2. Chapter 5 presents the analytical modeling of the plant detection of a vision module

as affected by travel velocity, inference speed, and camera configuration. The model

was then verified using simulation and actual performance testing of a developed

vision module.

3. Chapter 6 presents the prototyping of the MAPS utilizing the developed vision mod-

ule in Chapter 5. The chapter also explains the conceptualization, implementation,

performance testing, and parameter optimization of the novel vision-based travel ve-

locity estimation method and out-of-frame targeting under controlled conditions.

4. Chapter 7 presents the performance testing of the MAPS in broadcast-seeded soybean

plots to determine the system performance in actual agricultural field conditions.

Finally, Chapter 8 summarizes the conclusions, generalizations, and future direc-

tions of the research based on the results from Chapters 4 to 7.

15

1.6 Research Highlights

1. SSD-MB1-TRT on Jetson Nano is a compelling MVS-CNN configuration for

energy-efficient and low-cost weed detection. Benchmarking of selected one-stage

CNN object detection architectures showed a TensorRT-optimized SSD-MB1 (SSD-

MB1-TRT) on a Jetson Nano was the most compelling configuration for the MAPS

due to high detection accuracy and fast inference speed in low-power hardware. Fur-

ther, SSD-MB1-TRT and Jetson Nano combinations provided better cost-effectiveness

than an expensive laptop with RTX 2080 Super. This observed performance of SSD-

MB1-TRT on a Jetson Nano directly addresses the current concerns of MVS-CNN

precision sprayers, potentially solving the high cost of PA technologies and low pro-

ductivity of MVS-CNN precision sprayers.

2. Based on the verified model, the developed CNN-based vision module has suffi-

cient inference speed and field of view for real-time precision spraying at stan-

dard operating velocity. The results of the simulation aided in understanding the

effects of combinations of −→v travel , fps, and S on missed plant detections of an MVS-

CNN. A dimensionless parameter, called overlapping rate (ro), was derived as a the-

oretical predictor of gaps between processed frames as a function of the mentioned

parameters. ro is the ratio of the product of S and fps to −→v travel . The results of simu-

lation and using existing values of −→v travel , fps, and S from existing systems showed

that missed detection due to gaps occurs when ro < 1. Using this concept, a ref-

erence chart (Figure 60) in determining the minimum fps for specific −→v travel and S

was developed. Plotting the actual fps and S of the developed MVS-CNN showed

that SSD-MB1-TRT and Jetson Nano combinations have sufficient performance in

preventing gaps between processed frames. For spraying operations at 1.6 m
s (5.76

km
h), the developed MVS-CNN had sufficient fps and field of view to evaluate a scene

approximately 7.9 times.

16

3. The designed and fabricated modular CNN-based precision sprayer sprayed

simulated plant rows at high accuracy. A precision sprayer (MAPS) prototype

with the previously developed MVS-CNN for detection and velocity estimation was

successfully designed, fabricated, and tested. The application of Euclidean-based

tracking, buffer regions in the captured frame, and derived analytical method to cal-

culate LCR resulted in a reliable way of velocity estimation at mean absolute errors

of 0.036 m
s (0.13 km

h). Performance testing showed that the proposed velocity esti-

mation and targeting algorithms, based on queuing and dynamic filtering of VTDs,

had high accuracy within the identified and designed operating conditions. Missed

detections and sprays were absent at the optimum performance, which only resulted

in 2% wrong sprays.

4. Field testing on broadcast-seeded soybean showed accurate spraying of weeds

at three times faster velocity than similar CNN-based precision sprayers. Fi-

nally, the developed modular precision sprayer was tested in broadcast-seeded soy-

bean to obtain actual spraying performance. The SSD-MB1-TRT model achieved

76% mAP0.5 at 19 fps for weed and soybean detection in a broadcast-seeded field.

Further, the sprayer targeted all weed samples at up to 48.89% spray volume reduc-

tion with a typical walking speed up to 3.0 km
h , three times faster than similar systems

with known targeting performance. With these results, the study demonstrated that

CNN-based precision spraying in a complex broadcast-seeded field could achieve

increased velocity at high accuracy without needing powerful and expensive compu-

tational hardware using modular designs.

1.7 Research Contribution

1. A summary of the current weed detection and valve control techniques for precision

spraying

2. Annotated image datasets of mulched onion and broadcast-seeded soybeans for train-

17

ing CNN models for weed detection

3. A comparison of the different performance and cost-effectiveness of several one-

stage CNN object detection models (SSD-MB1, SSD-MB2, Scaled-YOLOv4-CSP,

and YOLOv5s) on a laptop with high-power GPU (RTX 2080 Super) and a low-

power single embedded board (NVIDIA Jetson Nano 2GB) in detecting weeds in

mulched onion fields

4. The introduction of the dimensionless parameter ro and development of analyti-

cal and numerical models to predict the presence of gaps between two consecutive

frames of an MVS-CNN vision module for plant detection as a function of −→v travel ,

fps, and S

5. The development of a low-cost, low-power, reusable, and scalable CNN-based vision

module for plant detection and velocity estimation based on ROS and Jetson Nano

platform

6. The development of a targeting algorithm based on queuing and dynamic filtering of

VTDs for accurate spot spraying at up to 1.19 m
s (4.28 km

h)

7. The development of a modular hardware and software architecture for distributed

and parallel processing of weed detection and valve control of a precision sprayer

8. Field evaluation of the spraying accuracy and spray volume reduction of a precision

sprayer under a broadcast-seeded condition

1.8 Published Works

1. P. R. Sanchez, H. Zhang, S.-S. Ho, and E. D. Padua, “Comparison of one-stage object

detection models for weed detection in mulched onions,” 2021 IEEE International

Conference on Imaging Systems and Techniques (IST), pp. 1–6, Aug. 2021.

18

2. P. R. Sanchez and H. Zhang, “Simulation-aided development of a cnn-based vision

module for plant detection: Effect of travel velocity, inferencing speed, and camera

configurations,” Applied Sciences, vol. 12, p. 1260, 3 Jan. 2022, ISSN: 2076-3417.

3. P. R. Sanchez and H. Zhang, “Evaluation of a CNN-based modular precision sprayer

in broadcast-seeded field,” Sensors, vol. 22, p. 9723, 24 Dec. 2022, ISSN: 1424-

8220.

4. P. R. Sanchez and H. Zhang, “Precision spraying using variable time delays and

vision-based velocity estimation,” Smart Agricultural Technology, p. 100253, May

2023, ISSN: 27723755

19

Chapter 2

Literature Review

2.1 Introduction

An agricultural robot operating in an unstructured agricultural environment is a

multifaceted machine. Its development inevitably requires integrating concepts in agricul-

tural mechanization, mechatronics, modular robotic systems, and machine learning. Thus,

the review was divided into sections providing an overview of these multidisciplinary con-

cepts.

The first section of this chapter presents an overview of field agricultural machinery.

The second section briefly examines general robot concepts and classification in relation

to robots for agricultural field operations. The third section discusses current techniques in

precision spraying. The fourth section provides an overview of deep-learning approaches

in weed detection. The fifth section reviewed the module-based design and past agricultural

robots implementing a modular design approach. Finally, the last section summarizes the

findings of the literature review.

2.2 Field Agricultural Machinery

Agricultural mechanization is the application of any machine to accomplish an op-

eration involved in agricultural production, aiming to reduce human effort and increase op-

erational efficiency. Professional and standardizing organizations, countries, and the United

Nations Food and Agriculture Organization classify agricultural machines based on field

operations [106]. For example, the International Commission of Agricultural Engineering

(CIGR) categorizes field agricultural machines into (1) two-wheel tractors for wetland or

dryland farming; (2) four-wheel tractors; (3) tillage machinery, (4) seeders and planters; (5)

fertilizer distributors; (6) pest control equipment; and (7) harvesters and threshers [107].

Similarly, countries and professional organizations draft and implement standards

20

to promote the safety of users, provide a common measure and method of performance

rating, and enable compatibility of machines between different manufacturers. The Inter-

national Organization for Standardization (ISO), through its technical committee on trac-

tors and machinery for agriculture and forestry (ISO/TC 23), publishes specifications and

performance standards for agricultural machines. These standards include design safety

requirements, specifications, and test methods for tractors and implements, including the

electronic and electrical aspects [108].

The drafting and adoption of ISO standards are facilitated by collaborating standard

organizations from different countries. For example, in the case of field machinery in the

United States, the American National Standards Institute (ANSI) works with the American

Society of Agricultural and Biological Engineers (ASABE), the Society of Automotive

Engineers (SAE), and ISO in establishing standards for agricultural machinery.

2.3 Agricultural Field Robots

A robot is an actuated mechanism programmable in two or more axes with a degree

of autonomy, moving within its environment to perform intended tasks [109]. Unlike field

agricultural machines, which are generally classified based on operations, robots can be

classified in numerous ways. For example, based on motion control, a robot can be fully

autonomous, semi-autonomous, teleoperated, remote-controlled, or automated [110].

In addition, robots can also be classified by (1) type of base or mount or positioning;

(2) environment at which robots operate; (3) mechanism of interaction with the environ-

ment; (4) application field; and (5) level of autonomy [111, 112]. Since the development

of robots started from industrial applications, ISO classifies robots as either industrial or

service robots [109]. All robots not used for industrial applications fall under the service

robot category of ISO. Based on this classification scheme, agricultural robots are consid-

ered service robots.

Like agricultural machinery classification, the Institute of Electrical and Electronic

21

Engineers (IEEE) also classifies robots based on the application field [113]. These cate-

gories are (1) aerospace, (2) consumer, (3) disaster response, (4) drones, (5) education, (6)

entertainment, (7) exoskeletons, (8) humanoids, (9) industrial, (10) medical, (11) military

and security, (12) research, (13) self-driving cars, (14) telepresence, and (15) underwater.

Various research reviewed the current status of agricultural robot development for

field operations. These studies were summarized in Table 1. Many recent developments

focused on mechanical or chemical weed control and harvesting. Commonly identified

limitations of agricultural robots for field operations from the review articles are (1) low

productivity and robustness in unstructured environments, (2) high cost, and (3) lack of a

standard framework to integrate subsystems. Xie et al. (2022) [114] stated that developed

systems lacked scalability and versatility. These findings also agree with the identified

problems presented in Chapter 1.

22

Table 1

Reviewed Articles on Agricultural Robots

Operations Identified Problems Reference

Weed control, seeding, disease and
insect detection, crop monitoring,
spraying, fruit picking

Low productivity and detection
accuracy

[115]

Weed control, spraying, field
scouting

Lack of database, low accuracy, and
productivity

[116]

Navigation, transplanting and
seeding, pruning and thinning,
weed control and disease
monitoring, harvesting

Lack of standard framework for
subsystem integration, low
performance in unstructured
environments, low productivity and
high-cost of developed systems

[38]

General (Navigation and software
infrastructure)

Costly connectivity and software
infrastructure

[100]

General (Sensor and actuator
technologies)

Need to increase scalability,
versatility, operate in an
unstructured environment, a
standard framework to integrate
sub-systems

[114]

2.4 Precision Sprayers

Precision sprayers are robotic agricultural equipment that applies site-specific rates

of liquid chemicals, including pesticides and fertilizers. Sprayers are widely used for crop

protection. Crop protection methods and technologies aim to provide an environment free

from weeds, pests, and diseases to crops [106]. These methods and technologies can be

implemented using biological, cultural, ecological, physiological, and engineering control

Figure 2.

23

Figure 2

Types of Controls in Crop Protection

Crop Protection

Cultural

Biological

Ecological

Physiological

Engineering
Chemical

Flame

Mechanical

Engineering control can be divided into mechanical, chemical, and flame control.

Mechanical weeders are hand tools or tractor-drawn implements that eliminate weeds from

agricultural land by uprooting or cutting [106]. They are highly effective in controlling

weeds between plant rows, as shown in Figure 3, but can damage closely spaced crops for

intra-row weed control [117]. Due to this limitation of mechanical weeders, chemical weed

control remain popular among farmers.

Figure 3

Common Weed Control Mechanisms (Adapted from [118]): (a) Torsion, (b) Finger, and (c)
Pneumatic Blower

A B C

A chemical sprayer is a machine for applying liquid plant protection products and

fertilizer by atomization into the form of droplets [119]. Figure 4 illustrates examples of

24

agricultural sprayers. Knapsack sprayers are commonly used for handheld spraying. Boom

sprayers with nozzles at 0.5-m spacing commonly apply pesticides [117]. Nonetheless,

recent concerns regarding the over-application of chemicals through uniform spraying have

encouraged the development of precision sprayers.

Figure 4

Examples of Agricultural Sprayers: (a) Knapsack Sprayer [81] and (b) Tractor-Drawn
Precision Boom Sprayer [120]

A B

ISO has several standards for spraying equipment, but particular standard specifi-

cations and test methods for precision sprayers are unavailable [106]. A general method of

nozzle sprayer calibration is presented in ASAE EP367.2 MAR1991 (R2017) [121]. Simi-

larly, the only standard specification and test methods for hand-held spraying equipment are

standard specifications (PAES 112:2000) [122] and testing (PAES 113:2000) [123] knap-

sack sprayers in the Philippine Agricultural Engineering Standard.

2.4.1 Non-Real-Time Precision Sprayers

During the early stages of development, precision sprayers target weeds using pre-

generated weed maps. These weed maps contain global coordinates (latitude and longitude)

of target weeds and were often generated using remote sensing, such as satellite images

25

[124, 125]. Recently, unmanned aerial vehicles (UAV) became attractive options because

of the higher spatial resolution images [126]. Using UAV images, a more detailed field

stratification can be employed than satellite images [127, 128]. Figure 5 illustrates exam-

ples of weed maps generated using UAV. Ground-based or UAV sprayers are then equipped

with GPS with or without RTK to determine when the nozzle coincides with the specified

weed location in the pre-uploaded map [129]. Nonetheless, non-real-time precision spray-

ing suffers from the temporal differences between weed maps and field conditions during

spray application.

Figure 5

Some Weed Detection Techniques Using UAV for Patch Spraying: (a) Segmentation [127],
and (b) Bounding-Box [128]

A B

2.4.2 Real-Time Precision Sprayers

Real-time precision sprayers perform on-site weed detection and spraying in a sin-

gle pass. Slaughter et al. (2008) [130], Allmendinger et al. (2022) [67], and Meshram et

al. (2022) [131] reviewed existing methods for precision spraying. In general, real-time

precision sprayers employ two additional systems in addition to the components of conven-

tional sprayers. These additional systems include (1) weed detection and (2) spray control

systems, illustrated in Figure 6. Additionally, Table 2 summarizes the weed detection and

spray control systems of precision sprayers from previous studies.

26

Fi
gu

re
6

C
om

m
on

P
re

ci
si

on
Sp

ra
ye

r
Fr

am
ew

or
k

R
ea

l-T
im

e
Pr

ec
is

io
n

Sp
ra

ye
r

Sp
ra

y
C

on
tr

ol
 S

ys
te

m

W
ee

d
D

et
ec

tio
n

Sy
st

em

C
on

ve
nt

io
na

l S
pr

ay
er Pl
at

fo
rm

 fo
r M

ob
ili

ty
●

G
ro

un
d-

ba
se

d
(h

an
d-

he
ld

, t
ra

ct
or

-d
ra

w
n,

 s
el

f-p
ro

pe
lle

d)
●

A
er

ia
l (

te
le

op
er

at
ed

 o
r a

ut
on

om
ou

s)

M
ac

hi
ne

 L
oc

at
io

n
an

d
M

ot
io

n
Se

ns
in

g
●

G
lo

ba
l P

os
iti

on
in

g
S

ys
te

m
 w

ith
 R

ea
l-t

im
e

K
in

em
at

ic
s

●
R

ot
ar

y
E

nc
od

er
s

Pl
an

t S
en

si
ng

●
P

ro
xi

m
ity

 s
en

so
rs

 (u
ltr

as
on

ic
 o

r L
iD

A
R

)
●

S
pe

ct
ro

ra
di

om
et

er
 (m

ul
ti-

sp
ec

tra
l o

r h
yp

er
sp

ec
tra

l)
●

Im
ag

e-
ba

se
d

se
ns

in
g

(R
G

B
, m

ul
ti-

sp
ec

tra
l,

hy
pe

r-
sp

ec
tra

l)

A
ct

ua
to

rs
●

S
ol

en
oi

d
va

lv
e

●
P

re
ss

ur
e

re
gu

la
tin

g
va

lv
e

●
Fl

ow
m

et
er

Sp
ra

yi
ng

 A
lg

or
ith

m
●

Va
ria

bl
e-

ra
te

 te
ch

no
lo

gy
 (P

re
ss

ur
e

re
gu

la
tio

n)
●

O
n-

O
ff

sy
st

em
 (F

ix
ed

 o
r v

ar
ia

bl
e

tim
e

de
la

y)

D
et

ec
tio

n
A

lg
or

ith
m

●
B

in
ar

y
de

ci
si

on
 tr

ee
●

Fu
zz

y
lo

gi
c

●
M

ac
hi

ne
 L

ea
rn

in
g

(S
up

po
rt

Ve
ct

or
 M

ac
hi

ne
 o

r C
on

vo
lu

tio
na

l N
eu

ra
l

N
et

w
or

k)

Sp
ra

yi
ng

 E
qu

ip
m

en
t

●
C

he
m

ic
al

 ta
nk

●
P

um
p

Ta
rg

et
in

g
A

lg
or

ith
m

●
Im

m
ed

ia
te

 (N
on

-o
ffs

et
 N

oz
zl

es
)

●
D

el
ay

ed
 (O

ffs
et

 N
oz

zl
es

)

●
In

er
tia

l M
ea

su
re

m
en

t U
ni

t
●

Vi
si

on
 S

ys
te

m
s

●
S

pr
ay

 n
oz

zl
e

●
P

re
ss

ur
e

re
gu

la
to

r
●

B
y-

pa
ss

 v
al

ve

27

Ta
bl

e
2

Su
m

m
ar

y
of

P
re

vi
ou

s
R

es
ea

rc
h

on
R

ea
l-

Ti
m

e
P

re
ci

si
on

Sp
ra

yi
ng

of
W

ee
ds

C
ro

p
L

oc
at

io
n

an
d

M
ot

io
n

Se
ns

or
s

Pl
an

t
Se

ns
or

s
C

om
pu

ta
tio

n
H

ar
dw

ar
e

D
et

ec
tio

n
A

lg
or

ith
m

N
oz

zl
e

Po
si

tio
n

Sp
ra

yi
ng

A
ct

ua
to

rs
Sp

ra
yi

ng
A

lg
or

ith
m

Sp
ra

y
Pa

tt
er

n
R

ef
er

en
ce

Si
m

ul
at

ed
cr

op
ro

w
s

Sp
ee

d
Se

ns
or

C
C

D
C

am
er

a
In

te
lC

el
er

on
C

om
pu

te
r

G
ab

or
Fi

lte
r

us
in

g
Fo

ur
ie

r
Tr

an
sf

or
m

O
ff

se
t

(O
do

m
et

ry
)

E
le

ct
ro

-
pn

eu
m

at
ic

va
lv

e

V
ar

ia
bl

e
V

al
ve

O
n/

O
ff

Sp
ot

[1
20

]

B
lu

eb
er

ry
V

el
oc

ity
fr

om
G

PS
U

ltr
as

on
ic

In
te

li
7

C
om

pu
te

r
D

is
ta

nc
e-

ba
se

d
T

hr
es

ho
ld

in
g

O
ff

se
t(

FT
D

)
So

le
no

id
va

lv
e

Fi
xe

d
V

al
ve

O
n/

O
ff

(V
ar

ia
bl

e
Fl

ow
ra

te
)

Sp
ot

[1
32

]

Si
m

ul
at

ed
fie

ld
N

/A
R

G
B

C
am

er
a

R
as

pb
er

ry
Pi

3B
C

ol
or

-b
as

ed
T

hr
es

ho
ld

in
g

N
on

-O
ff

se
t

(F
T

D
)

Pu
m

p
w

ith
ou

t
va

lv
e

Fi
xe

d
V

al
ve

O
n/

O
ff

Sp
ot

[1
33

]

C
ar

ro
t

G
PS

M
ul

tis
pe

ct
ra

l
C

am
er

a
In

du
st

ri
al

C
om

pu
te

r
N

D
V

I-
ba

se
d

T
hr

es
ho

ld
in

g
N

on
-O

ff
se

t
(F

T
D

)
So

le
no

id
va

lv
e

Fi
xe

d
V

al
ve

O
n/

O
ff

(V
ar

ia
bl

e
Fl

ow
ra

te
)

Pa
tc

h
[5

8]

C
ar

ro
t

W
he

el
en

co
de

r
R

G
B

C
am

er
a

N
vi

di
a

Je
ts

on
T

K
1

SV
M

O
ff

se
t

(O
do

m
et

ry
)

So
le

no
id

va
lv

e
Fi

xe
d

V
al

ve
O

n/
O

ff
Sp

ot
[5

9]

28

C
ro

p
L

oc
at

io
n

an
d

M
ot

io
n

Se
ns

or
s

Pl
an

t
Se

ns
or

s
C

om
pu

ta
tio

n
H

ar
dw

ar
e

D
et

ec
tio

n
A

lg
or

ith
m

N
oz

zl
e

Po
si

tio
n

Sp
ra

yi
ng

A
ct

ua
to

rs
Sp

ra
yi

ng
A

lg
or

ith
m

Sp
ra

y
Pa

tt
er

n
R

ef
er

en
ce

B
lu

eb
er

ry
G

PS
R

G
B

C
am

er
a

In
te

li
7

C
om

pu
te

r
C

ol
or

-b
as

ed
T

hr
es

ho
ld

in
g

O
ff

se
t(

FT
D

)
So

le
no

id
va

lv
e

Fi
xe

d
V

al
ve

O
n/

O
ff

Sp
ot

[1
34

]

Si
m

ul
at

ed
cr

op
ro

w
s

R
T

K
-G

PS
R

G
B

C
am

er
a

N
vi

di
a

G
T

X
20

80
/J

et
so

n
T

X
2

Y
O

L
O

v3
O

ff
se

t
(V

T
D

)
So

le
no

id
va

lv
e

Fi
xe

d
V

al
ve

O
n/

O
ff

Sp
ot

[7
9]

Su
ga

rb
ee

ts
R

T
K

-G
PS

R
G

B
C

am
er

a
N

vi
di

a
Te

sl
a

M
10

G
PU

Y
O

L
O

v3
N

on
-O

ff
se

t
(F

T
D

)
So

le
no

id
va

lv
e

Fi
xe

d
V

al
ve

O
n/

O
ff

Sp
ot

[7
5]

St
ra

w
be

rr
y

N
/A

R
G

B
C

am
er

a
N

vi
di

a
G

T
X

10
80

A
le

xN
et

,
V

G
G

-1
6,

G
oo

gl
eN

et

N
on

-O
ff

se
t

(F
T

D
)

So
le

no
id

va
lv

e
Fi

xe
d

V
al

ve
O

n/
O

ff
Sp

ot
[7

3]

Si
m

ul
at

ed
fie

ld
N

/A
R

G
B

C
am

er
a

R
as

pb
er

ry
Pi

3B
C

ol
or

-b
as

ed
T

hr
es

ho
ld

in
g

N
on

-O
ff

se
t

(F
T

D
)

So
le

no
id

va
lv

e
Fi

xe
d

V
al

ve
O

n/
O

ff
Sp

ot
[1

35
]

So
yb

ea
n

N
/A

R
G

B
C

am
er

a
N

vi
di

a
G

T
X

10
50

Y
O

L
O

v3
an

d
Fa

st
er

R
-C

N
N

N
on

-O
ff

se
t

(F
T

D
)

So
le

no
id

va
lv

e
Fi

xe
d

V
al

ve
O

n/
O

ff
Sp

ot
[1

36
]

So
yb

ea
n

an
d

M
ai

ze
N

/A
W

ee
d-

it
Sp

ec
tr

om
et

er
U

nk
no

w
n

Sp
ec

tr
an

ce
-

ba
se

d
T

hr
es

ho
ld

in
g

N
on

-O
ff

se
t

(F
T

D
)

So
le

no
id

va
lv

e
Fi

xe
d

V
al

ve
O

n/
O

ff
Pa

tc
h

[1
37

]

29

C
ro

p
L

oc
at

io
n

an
d

M
ot

io
n

Se
ns

or
s

Pl
an

t
Se

ns
or

s
C

om
pu

ta
tio

n
H

ar
dw

ar
e

D
et

ec
tio

n
A

lg
or

ith
m

N
oz

zl
e

Po
si

tio
n

Sp
ra

yi
ng

A
ct

ua
to

rs
Sp

ra
yi

ng
A

lg
or

ith
m

Sp
ra

y
Pa

tt
er

n
R

ef
er

en
ce

Si
m

ul
at

ed
ta

rg
et

w
ee

ds

N
/A

R
G

B
C

am
er

a
N

vi
di

a
Je

ts
on

N
an

o
D

ee
pl

ab
V

3
w

ith
M

ob
ile

N
et

N
on

-O
ff

se
t

(C
ar

te
si

an
)

So
le

no
id

va
lv

e
Fi

xe
d

V
al

ve
O

n/
O

ff
Sp

ot
[8

8]

W
in

te
rP

ea
IM

U
St

er
eo

R
G

B
C

am
er

a
N

vi
di

a
Je

ts
on

X
av

ie
rA

G
X

Y
O

L
O

v5
an

d
SO

R
T

O
ff

se
t

(O
do

m
et

ry
)

So
le

no
id

va
lv

e
Fi

xe
d

V
al

ve
O

n/
O

ff
Sp

ot
[1

02
]

Po
ta

to
A

na
lo

g
sp

ee
do

m
e-

te
r

R
G

B
C

am
er

a
N

vi
di

a
G

T
X

10
50

Y
O

L
O

v3
N

on
-O

ff
se

t
(F

T
D

)
So

le
no

id
va

lv
e

Fi
xe

d
V

al
ve

O
n/

O
ff

Sp
ot

[8
6,

74
]

C
ab

ba
ge

W
he

el
en

co
de

r
R

G
B

C
am

er
a

N
vi

di
a

Je
ts

on
X

av
ie

rN
X

Y
O

L
O

v5
O

ff
se

t
(O

do
m

et
ry

)
So

le
no

id
va

lv
e

V
ar

ia
bl

e
V

al
ve

O
n/

O
ff

Sp
ot

[7
6,

10
3]

30

Figure 7

Some Existing Vision-Based Precision Sprayers: (a) [120], (b) [133], (c) [59], (d) [79],
(e) [75], (f) [73], (g) [135], (h) [137], (i) [102], and (j) [86], and (k) [76]

A B C

D E F

G H I

J K

31

2.4.2.1 Weed Detection System. The weed detection system (WDS) determines

the presence of a single target plant or patch of target plants within its effective sensing

region. Past studies often used image-based (e.g. RGB and multi-spectral cameras) or non-

image-based (e.g. ultrasonic, optical, or spectral) sensors [52, 49]. A detection algorithm

then processes the sensed data.

Figure 8a shows that image-based sensors (87%) were commonly used for weed de-

tection than non-image-based sensors (13%). This situation can be mainly attributed to the

complex and unstructured characteristics of agricultural field environments, which makes

non-image-based sensors challenging to implement. Further, Figure 8b shows that most

precision sprayers utilized fast desktops or laptops (63%) to process the sensor data and

minimize the time delay for real-time spraying. In contrast, low-power devices were only

used by 6 systems (37%) and were mostly implemented with threshold-based detection al-

gorithms. Finally, as illustrated in Figure 8c, machine-learning-based detection algorithms

were mostly employed due to the complex nature of agricultural field environments.

Figure 8

Distribution of Technology Types for Weed Detection from 16 Reviewed Studies

(a) Sensors (b) Computation hardware (c) Detection algorithm

2.4.2.1.1 Non-Image Sensors. Non-image-based sensors often utilize decision

tree structures by comparing measured values of the sensor with a pre-determined threshold

32

value [132, 137]. The main advantage of this approach is its simplicity, which only requires

short processing times. Thus, the detection and nozzle spray regions often coincide (non-

offset), as shown in Figure 9a.

Figure 9

Types of Nozzle Layout with Respect to the Sensors

Nozzle
Spray

Region

Sensor
Detection
Region

Nozzle
Sensor

(a) Non-Offset

Nozzle
Spray

Region

Sensor
Detection
Region

Nozzle
Sensor

Offset Distance

(b) Offset

Due to the short overall processing time equal to a fixed-time delay (FTD), solenoid

valves can be triggered immediately when a target plant is detected. However, Table 2

showed increasing use of image-based sensing and machine-learning algorithms for weed

detection in recently developed precision sprayers. Research showed that spectro-metric-

and optoelectronic-based systems were challenging to implement in field scenarios due to

high variability in spectral characteristics of plants at different growth stages and weather

conditions [55, 56]. Further, proximity sensors could only discriminate plant species when

significant height differences among target and non-target plants are present [132].

2.4.2.1.2 Image Sensors. Image-based sensing provides more information, as

measured color or spectra can be associated with a spatial coordinate. However, real-time

image-based detection requires complicated and computationally expensive algorithms,

33

such as machine-learning-based algorithms, for robust plant discrimination [57]. For exam-

ple, a study comparing the performance of different deep-learning techniques in detecting

weed and lettuce showed that R-CNN had the highest precision but a relatively higher

variable inference time than YOLOv3 and SVM [138]. Traditional image processing tech-

niques for weed detection, such as color-based thresholding with a decision tree or fuzzy

logic algorithm, proved to be only effective when discriminating between soil and vegeta-

tion [58].

Due to limited computational power, the compromise between detection accuracy

and speed presents a challenge in deploying real-time weed detection models. Thus, de-

spite the increase in computational power of portable computers and a large number of re-

search in applying CNN for weed and crop discrimination, most real-time robotic weeders

still use color-based thresholding techniques, resulting in faster but less precise classifica-

tion than CNN models [139, 140, 49]. As summarized by Table 2, image-based precision

sprayers with machine learning algorithms employ GPU-accelerated computation, while

image-processing sprayers utilize CPU-based computation.

Similar to precision sprayers with non-image-based sensors, some image-based

sprayers utilize a non-offset nozzle layout. A trigger signal is sent to the microcontroller of

the solenoid valve when a weed is detected in a specified image region of interest (ROI).

From Table 2, most precision sprayers that utilized image sensors and non-offset nozzle

layout implemented color-based thresholding [98, 58, 135] for shorter processing times

compared to machine-learning approaches. Although [86] also utilized a non-offset noz-

zle layout, they did not quantify their targeting accuracy. [73] similarly used a non-offset

layout but had their precision sprayer operate at 1 km
h to perform accurate spraying.

When stationary, the ROI represents the effective spray area of the nozzle [92].

However, the spray area may not completely overlap ROI when the sprayer is moving

due to the long processing times of the detection algorithm. This situation worsens with

increasing speed. Thus, other vision-based precision sprayers mount the nozzle at a certain

34

offset distance from the camera (Figure 9b) to increase the allowable time delay.

The main advantage of image over non-image sensors is the availability of plant

coordinates in the image frame. The plant frame coordinates can be used for the delayed

valve triggering or targeting, as shown in various past systems in Table 2. Although Zaman

et al. (2011) [132] described that ultrasonic could be used for delayed valve triggering, they

did not report the targeting accuracy of their system. Thus, the effectiveness of proximity

sensors for delayed valve triggering could not be determined.

2.4.2.1.3 Location and Motion Sensing. In delayed targeting, nozzles can be

offset from the detection region and the instance when the target plant is within the noz-

zle spray region can be estimated [79, 103]. To estimate this instance, precision sprayers

typically use GPS with or without RTK (Figure 10) for estimating the global coordinate

(latitude and longitude) of target weed plants or patches [67, 49]. Nonetheless, RTK-GPS

is utilized for position and velocity estimations because of their accuracy. For example,

Akkamis et al. (2021) [94] compared low-cost GPS for velocity measurements at 1 to 7 Hz

update frequencies and obtained 0.07 to 0.09 m
s error at 1.55 to 4.36 m

s constant velocities,

respectively. However, the accuracy of RTK-GPS relies on the differential correction data

transmitted by the reference base stations, which are not always available in rural areas.

Without a reference signal, location estimates using GPS can vary from RTK-corrected

measurements by 0.5-m on average [93].

35

Figure 10

Distribution of Sensors Technologies for Location and Motion Sensing of Precision
Sprayers from 16 Reviewed Studies

Further, high-resolution RTK-GPS receivers are expensive, ranging from 1300 to

4500 USD for a single antenna and 8700 to 12,500 USD for a double antenna [95]. Low-

cost GPS receivers with RTK, such as NEO-M8P, can provide centimeter-level position

measurements, but this accuracy was achieved under open-sky conditions [141]. Given

that the high cost of entry is among the main barriers to PA technology adoption [42], al-

ternative low-cost velocity estimation methods are needed. Other vision-based precision

sprayers employed wheel encoders to predict the instance that the target plant would co-

incide with the nozzle spray region [59, 76], most likely by counting the required encoder

ticks before opening and closing the nozzle. However, one limitation of wheel encoders is

wheel skidding, which has been shown to cause early nozzle opening in the study of [76].

Other vision-based precision sprayers employed wheel encoders to predict the in-

stance that the target plant would coincide with the nozzle spray region [59, 103, 76] by

counting the required encoder ticks before opening and closing the nozzle. Next to GPS-

36

based motion sensing, wheel encoders were the most common sensors used for motion

estimation of precision sprayers (Figure 10). However, one limitation of wheel encoders is

wheel skidding, which has been shown to cause early nozzle opening in the study of Fu et

al. (2022) [76]. Also, odometry-based prediction of valve triggering does not account for

the time delay caused by image processing and valve actuation, which was also shown by

Fu et al. (2022) [76] to cause spraying inaccuracies.

Vision-based velocity estimation is also an alternative method. Traditionally, this

approach was mostly applied in transportation, as summarized by [104] in their comprehen-

sive review of the different vision-based velocity estimation methods. One of the earliest

examples of vision-based velocity estimation was demonstrated by [142]. They imple-

mented monocular vision and traditional image processing to estimate vehicle velocity as

it moves across the camera frame, achieving less than 2% errors. In another study, [143]

estimated the velocity of a toy train as it moves toward the camera using two convex mirrors

to simulate stereoscopic vision. Object detection was performed through background sub-

traction, scale-invariant feature transform (SIFT), and speed-up robust feature (SURF). The

system had 0.28% to 1.44% error at 0.09 to 0.135 second processing time. Nonetheless,

precision sprayers with vision-based velocity estimation are yet to be implemented.

2.4.2.2 Spray Control System. Figure 11a shows that a majority of existing

precision sprayers utilized FTD (63%) when triggering the solenoid valves due to the sim-

plicity of implementation. FTD-based valve triggering was followed by odometry (25 %).

Further, only Partel et al. [79] implemented valve triggering using VTD. On the other hand,

Figure 11b showed that solenoid valves with fixed time On-Off intervals (87%) were the

most common control system among precision sprayers. Zaman et al. [132] and Dammer

et al. 2016 [58] integrated flow metering with the fixed-time opening of the nozzle to ac-

count for velocity variations. Among past studies, only Bossu et al. 2007 [120], Fu et al.

2022 [76], and Zheng et al. 2023 [103] used variable spraying duration through odometry.

37

Figure 11

Distribution of Targeting and Spraying Algorithms for Weed Control from 16 Reviewed
Studies

(a) Targeting Algorithms

(b) Spraying Algorithms

38

From these results, much of the research gaps in precision spraying are within valve

control. This situation may be due to the wide technical scope of precision sprayer design,

which currently focuses on weed detection systems. Thus, using a non-offset nozzle layout

and FTD valve triggering became the most common method for valve control.

2.5 MVS-CNN

CNN is a particular DL technique defined as a deep, feed-forward artificial neural

network (ANN) with deeper layers into the network and various convolutions [68]. CNN

has better feature representation compared to other machine learning techniques, such as

Support Vector Machines (SVM) and Random Forests, due to its capability to extract fea-

tures from raw data at hundreds of feature layers linked by millions of learnable parameters

to map the input predictors to the output class labels [144].

A simple CNN object detection architecture is composed of three types of layers:

(1) convolutional, (2) pooling, and (3) fully connected layers [145]. Figure 12 illustrates

a typical architecture of CNN for classification. The function of the convolutional layer

is to perform dot-matrix operations between the inputs and weights, resulting in a feature

score. For example, in the case of RGB images, the input image is a three-layered matrix or

tensor with each dimension representing the color channel, x-dimension, and y-dimension.

The tensor is sampled using a 3D filter or kernel that applies weights on each element of

the tensor [145]. The initial weight values are usually randomly generated. However, pre-

trained models for specific applications have recently become widely available. Transfer

learning is the process of using CNN models with initial weight values as starting points

for training. Transfer learning is often used to greatly reduce the training times during the

development of CNN models for other applications during training [61].

39

Figure 12

Convolutional Neural Network for Object Classification

Input Layers Convolution
+ ReLuConvolution
+ ReLu

Pooling

Convolution
+ ReLu

Pooling

Convolution
+ ReLu

Pooling +
ReLu

Fu
lly

 C
on

ne
ct

ed
 M

LP

S
im

pl
ifi

ed
 M

od
el

 th
ro

ug
h

M
ac

hi
ne

 L
ea

rn
in

g
Te

ch
ni

qu
es

Score

The feature map is generated by sliding each kernel from left to right and then

top to bottom, usually with a stride size of one, resulting in a matrix with the same di-

mension as the input image or layer. The process is repeated per feature, resulting in a

three-dimensional feature map per convolution. Commonly, a series of convolutions are

performed, using the result of each convolution as input to the next convolution layer. The

number of convolutions depends on the architectural design of the detection model. At the

end of each set of convolutions is a ReLu activation function.

At the end of each set of convolutional layers is a pooling layer. The pooling layer

aims to reduce the size of the feature map. Usually, a 2x2 pooling kernel with a stride the

same size as the pooling kernel and max-pooling is used, resulting in a feature map with re-

duced width and height and the same depth (the features are retained). Then, depending on

the architecture, sets of convolution and pooling are performed. These operations are per-

formed until the feature space is reduced to a small width and height but with considerable

depth.

The final layer is a fully connected multi-layer perceptron and a ReLu activation

function to reduce the final three-dimensional feature map into a feature vector. Finally,

machine learning techniques such as Softmax regression or SVM are performed on the

feature vector to generate the object classification [71].

On the other hand, a modern object detector comprises a backbone, optional neck,

40

and head [146]. The backbone generates feature maps through convolutions and pooling

[147]. Modern detectors with a neck also feed the feature map before pooling it into a

fully connected network to generate feature models. This process minimizes the loss of

features during pooling. On the other hand, the head calculates a final prediction box out

of the hundreds of prediction boxes generated based on each feature model from the neck.

The complicated structure of CNN requires sizeable computational power. Hence, most

accurate modern CNNs do not operate in real-time and need several Graphics Processing

Units (GPUs) for training [146].

A study that compared the performance of different deep-learning techniques in

weed and lettuce detection showed that R-CNN had the highest precision but a relatively

higher variable inference time than YOLOv3 and SVM. [138]. A paper in detecting patches

of weeds using aerial images using SSD and Faster R-CNN with Inception V2 as feature

extractors showed relatively the same precision and inference time [128].

2.5.1 One- and Two-Stage CNN Architectures

Object detectors can be classified into one- or two-stage, as shown in Figure 13.

The CNN directly examines the entire image in one-stage object detectors, such as SSD

and YOLO, resulting in shorter calculation times [63, 65]. On the other hand, two-stage

object detectors, such as the Region-based Convolutional Neural Network (R-CNN), ini-

tially extract fix number of regions (region proposals) from the original image in the first

stage and classify each region using CNN in the second stage [66, 148].

41

Figure 13

General Architecture of a Modern CNN for Object Detection
H
ead

N
eck

B
ackbone

Input Layers Convolution
+ ReLuConvolution
+ ReLu

Pooling

Convolution
+ ReLu

Pooling

Convolution
+ ReLu

Pooling
+ ReLu

Feature
Model

Feature
Model

Feature
Model

Feature
Model

Bounding
Box

Predictions

Bounding
Box

Predictions

Bounding
Box

Predictions

Bounding
Box

Predictions

Final Bounding Box Predictions

Each object detector has its advantages and disadvantages [149]. One-stage sen-

sors are commonly used in applications that require fast processing time despite limited

detection performance. In contrast, two-stage object detectors are used in high-accuracy

and non-real-time applications. A study using YOLOv3 for weed detection demonstrated

that the availability of multiple frames in real-time weed detection enabled their system to

detect 96% of the weeds despite only detecting 57% of the weeds in their dataset [75].

2.5.2 SSD MobileNet

SSD performs bounding box predictions using a default set of bounding boxes with

different aspect ratios at different feature map resolutions [63]. Specifically, the predic-

tion is implemented using three critical concepts: (1) using a convolutional feature layer

and generating multi-scale feature maps to detect an object of a specific class at various

sizes; (2) utilizing convolutional predictors to generate scores for the presence of object

42

and shape offsets for the default bounding box; and (3) employing multiple default boxes

and aspect ratios at each feature map to efficiently approximate the possible output box

size and location for an object. Bounding boxes for objects with a probability of less than

the threshold are disregarded. Finally, non-maximum suppression is implemented to the

remaining bounding boxes so that only the bounding box with the maximum probability

for an object of a particular class remains.

SSD was initially implemented with VGG-16 as its feature extractor [63] but later

switched to MobileNet due to approximately 3% computational cost VGG-16 [61]. Mo-

bileNet, currently known as MobileNetV1 (MB1), was designed for mobile and embedded

vision applications and implemented a depthwise separable filter, resulting in 9 times less

computational cost than standard convolution filters [64]. In a depthwise separable filter,

the standard convolution filter is replaced by depthwise and pointwise convolution. The

standard convolution filter, which has Dk ×Dk ×M dimensions for N channels, is replaced

by M number of Dk ×Dk ×1 depthwise convolution and N number of 1×1×M pointwise

convolution.

Aside from a depthwise separable filter, MB1 also uses two hyperparameters, width

(α) and resolution (ρ) multipliers, to further adjust the network size and reduce the com-

putational cost of the MB1 architecture. This network size adjustment is implemented by

multiplying α to M and N and ρ to the feature map size, Dk. In the study of Huang et

al. in 2017 [61], their results showed that models that used MB1 exhibited the fastest in-

ference times. Furthermore, they demonstrated that SSD with MobileNet (SSD-MB1) had

the quickest inference time among the different architecture and feature extractor combina-

tions.

A recent modification of MB1, named MobileNetV2 (MB2), implemented point-

wise before depthwise convolution, expanded the resulting layers by a factor called ex-

pansion ratio (t), and added a third pointwise-like convolution without ReLu activation

function for its convolution filter [150]. The introduction of the third convolution filter and

43

expansion ratio stemmed from a linear bottleneck layer and expansion of the output layer

sizes of the depthwise and pointwise convolutions, respectively. Using a modified version

of SSD, known as SSDLite, they showed that MB1 and MB2 had relatively the same mAP,

but the MB2 was 25% faster than MB1 on SSDLite.

Figure 14 shows the mAP and speed of different object detection architectures when

evaluated on COCO 2017 dataset. The graph shows that two-stage networks, such as

Faster-RCNN, are slower than one-stage networks, such as SSD and CenterNet. The fig-

ure also indicates that CenterNet with MobileNetV2 FPN feature extractor was the fastest,

followed by SSD with MobileNetV2 (SSD-MB2). SSD-MB1-FPN had a relatively higher

mAP but was 2.5 times slower than SSD-MB2. However, the larger 640×640 image input

for SSD-MB1-FPN compared to the 320×320 of SSD-MB2 likely caused the higher mAP

but longer inference time.

Figure 14

Summary of mAP and Inference Speed of Selected Object Detection Architectures on
COCO 2017 Dataset [151]

44

2.5.3 YOLO

YOLO detects objects in a single forward pass by dividing the input image into

S×S grid cells and employing a predicting vector to each cell [65]. Parameters for predict-

ing object presence, sizing B amount of bounding boxes, and classifying objects compose

the predicting vector. These parameters include the object center probability being inside

the cell (PrOb ject), the bounding box center relative to the grid cell origin (x,y), and the

bounding box dimensions relative to the image size (w,h). Each bounding box per cell has

these five parameters resulting in B×5 elements. The remaining C number of elements of

the predicting vector comprise conditional probabilities of the object class in the bound-

ing box (PrClassi|Ob ject). Hence, the final predicting layer of YOLO is S×S× (B×5+C)

tensor.

Later, YOLO9000, also known as YOLOv2, improved the detection performance

of YOLO by incorporating batch normalization, high-resolution classifier, convolutional

anchor boxes, dimension clusters, fine-grained features, and multi-scale [65]. YOLOv3

further improved YOLO9000 by implementing (1) logistic regression objectness score pre-

diction for each bounding box; (2) logistic classifiers instead of softmax; (3) cross-entropy

loss; (4) FPN-like algorithm for scaling; and (5) increased depth of the Darknet feature

extractor from 19 to 53 convolutional layers [152]. At present, the two most recent variants

of YOLO are YOLOv4 [146] and YOLOv5 [153], which are derivatives of YOLOv3.

In the study of Wang et al. in 2020 [154], they incorporated Scaling Cross Stage

Partial Network to YOLOv4 (Scaled-YOLOv4-CSP) and compared their model with other

object detection models. Figure 15a compares the performance of YOLO with other object

detectors using COCO 2017. The graph shows that YOLOv4 models have significantly

higher mAP than EfficientDet at 512 network size. On the other hand, Figure 15b shows

that most YOLOv5 models were faster and had higher mAP than EfficientDet. Using the

performance of EfficientDet as the baseline, we infer that YOLOv5 is faster than YOLOv4,

45

while YOLOv4 has better detection performance than YOLOv5. Among the fast YOLOv4

models, Scaled-YOLOv4-CSP has the highest accuracy. On the other hand, YOLOv5s is

the fastest among the YOLOv5 models.

Figure 15

Comparison of YOLO Architectures with Other Object Detection Architectures

(a) YOLOv4 [154]

(b) YOLOv5 [153]

46

2.5.4 MVS-CNN in Weed Detection

Table 3 summarizes the performance of different CNN models for weed monitoring.

A review article on using convolutional neural networks in agriculture showed that CNN

models yielded 86.20-97% accuracy in identifying weeds [68]. On the other hand, studies

comparing the performance of CNN models with other DL techniques showed that CNN

models performed better than random forest and support vector machines [155, 138].

Table 3

Past MVS-CNN Applications in Agricultural Field Operations

Plant CNN Architecture
Performance

Reference
Measure Value

Soybean and weeds R-CNN F1 66% [128]

SSD F1 67%

ConvNets Precision 99.50% [155]

Lettuce and weeds Mask R-CNN F1 94% [138]

YOLOV3 F1 94%

Turfgrass and weeds Detectnet F1 99% [156]

VGGNet F1 85-86%

GoogleNet F1 75%

Crop and weeds VGG16 F1 81.6-85.1% [157]

Various weed species ResNet Accuracy 88-97.2 [91]

47

2.5.4.1 Effect of Dataset Size. There is also a considerable variation in the

dataset size and class distribution used for training object detection models. Research on

weed and crop detection using 375 training samples of UAV multispectral images had weed

and crop class distributions of 64.80% and 35.20%, respectively [157]. On the other hand,

in a study on weed and carrot detection using Random Forest as a classifier, 494 training

samples composed of 67.21% weeds and 32.79% carrots were used [158]. The weed detec-

tion study in turfgrass utilized 4,550 training class samples, having 42.41% with weeds and

57.59% without weeds [156]. Evaluating the cited studies showed that models trained on

datasets with low sample sizes and significant class imbalance showed lower performance

than models trained on more samples and balanced class sample distribution.

Class imbalance can be reduced by either downsizing the class with more samples

or upsizing the one with few counts. A study comparing performances of different DL

algorithms to detect soil, broadleaves, and soybeans showed that a model train using an

unbalanced but larger dataset has higher overall precision than a downsized, balanced, but

smaller-sized dataset [155].

2.5.4.2 Spraying Accuracy and Operating Velocity. Due to limited compu-

tational power, the compromise between detection accuracy and inference speed presents

a challenge in deploying CNN models for real-time precision spraying. Thus, as shown

in Table 4, despite the increase in computational power of computers and a large number

of research in applying CNN for weed and crop discrimination, most real-time precision

sprayers had to operate at walking velocities. Farooque et al. (2023) tested their system at

5.0 km
h but the accuracy of their sprayer was not specified.

48

Ta
bl

e
4

E
xa

m
pl

es
of

Pa
st

M
V

S-
C

N
N

A
pp

lic
at

io
ns

in
R

ea
l-

Ti
m

e
P

re
ci

si
on

Sp
ra

yi
ng

C
ro

p
Pl

an
tin

g
L

ay
ou

t
H

ill
Sp

ac
in

g,
m

H
ar

dw
ar

e
Tr

av
el

Sp
ee

d,
m s

(km h
)

W
ee

d
Sp

ra
yi

ng
A

cc
ur

ac
y

W
ro

ng
Sp

ra
y

R
at

e
R

ef
er

en
ce

St
ra

w
be

rr
y

R
ow

1
G

T
X

10
80

(D
es

kt
op

)
0.

28
(1

.0
)

94
%

0%
[7

3]

So
yb

ea
n

R
ow

U
ns

pe
ci

fie
d

G
T

X
10

50
(D

es
kt

op
)

0.
5

(1
.8

)
78

%
U

ns
pe

ci
fie

d
[1

36
]

Po
ta

to
R

ow
U

ns
pe

ci
fie

d
G

T
X

10
50

(D
es

kt
op

)
1.

39
(5

.0
)

U
ns

pe
ci

fie
d

U
ns

pe
ci

fie
d

[8
6]

Su
ga

rb
ee

ts
R

ow
0.

19
Te

sl
a

M
10

(S
er

ve
r)

U
ns

pe
ci

fie
d

96
%

3%
[7

5]

Si
m

ul
at

ed
Fi

el
d

R
ow

1
G

T
X

10
70

Ti
(D

es
kt

op
)

U
ns

pe
ci

fie
d

78
%

8%
[7

9]

W
in

te
rP

ea
R

ow
0.

2
Je

ts
on

X
av

ie
r

A
G

X
0.

4
(1

.4
4)

U
ns

pe
ci

fie
d

U
ns

pe
ci

fie
d

[1
02

]

C
ab

ba
ge

R
ow

0.
4

Je
ts

on
X

av
ie

r
N

X
0.

7
(2

.5
2)

98
.9

1%
U

ns
pe

ci
fie

d
[7

6]

49

The published research also showed few studies investigating small computational

board performance in real-time weed detection. Among these few studies is on the de-

velopment of weed-detecting robots in sugarcane fields [159]. This robot used Raspberry

Pi to implement a fuzzy real-time classifier on processed images to detect weeds at high

accuracy and short processing time. On the other hand, a robotic farm implement used a

Raspberry Pi 3B+ to implement a custom feature extractor based on U-Net, MobileNets,

DenseNet, and ResNet showed short inference time but low detection rates (≈ 60%) [78].

Finally, a study that developed a real-time sprayer using YOLOv3 on Nvidia Jetson TX2

showed about 40% missed spray due to slow inference speed [79]. The most promising

configuration was demonstrated by Fu et al. 2022 ([76]) on targeted spraying of cabbage

using YOLOv5 on an Nvidia Jetson Xavier NX. Their system sprayed 98.91% of cabbage

at 0.7 m
s .

2.6 Modularity

Based on system reconfigurability, robots can be fixed or modular. In robotics,

modularity refers to a set of characteristics that allow systems to be separated into dis-

crete components and recombined into a larger system [160]. Other standard definitions of

concepts in modular service robots can be found in ISO 22166-1:2021 [160].

The concept of modularity is not new in robotics. Currently, classification schemes

based on the geometry of modular robotic systems are already being proposed [97, 161].

Various modular software frameworks for different types of robots are also existing. The

goals of these frameworks are to minimize redundancy in development and provide a stan-

dard scheme for component organization and communication [162]. A widely used robotics

software framework (RSF) that focuses on mobile robot navigation, depth perception, and

planning is Robot Operating System or ROS [163, 164]. Likewise, Yet Another Robot

Platform or YARP is a popular software framework with modular components designed for

humanoid robotics [165].

50

2.6.1 Module-Based Hardware

ISO defines a module as a component or assembly of parts with defined interfaces

accompanied by property profiles to facilitate system design, integration, interoperability,

and reuse [160]. Modular robots can be classified as chains, lattices, trusses, and vari-

able shape systems [97, 161]. Others have proposed a three-classification system: chains

or trees, lattice, and hybrid [166]. However, these classification schemes were based on

experimental robotic systems with only mechanical linkages and had no specific functions.

A study by Gauss et al. [96] proposed a design framework for module-based ma-

chinery. They have divided the engineering design process into three stages: (1) planning,

(2) concept development, and (3) system-level design. Planning aims to establish target

specifications based on identified functional requirements (FR) of different hierarchical

importance. On the other hand, concept development aims to identify the different design

modules represented in a hierarchical tree. Finally, the system-level design phase selects

the appropriate design modules, configuration structure, and details.

The resulting modular configuration structure is often called a system or hardware

architecture [167, 168]. It is typical for hardware architecture to be represented in a hierar-

chical tree with each level corresponding to a degree of modularity, as shown in Figure 16.

In agricultural machinery, a basic module is a mechanical or robotic unit that performs a

specific agricultural field operation. Several basic modules can then be combined using a

tree structure to create a modular robotic implement or self-propelled agricultural robot.

51

Figure 16

A Generic Three-Level Modular Hardware Architecture

Module Level:

Basic Module 1 Auxiliary Module 3

Module-based
Machine

Sub-module 3.1

Sub-module 3.2

Sub-module 1.1

Sub-module 1.2

Sub-module 1.2

Basic Module 2

Level I

Level II

Level III

ISO identified six types of modules based on function: (1) actuator; (2) communi-

cation; (3) computing module; (4) infrastructure; (5) sensing; (6) and supervisor modules

[160]. Modules with or without sub-components are called compound or primitive mod-

ules, respectively [96]. Basic modules are the main components that deliver critical FRs,

while auxiliary modules represent components with non-critical FRs. Modules are physi-

cally connected through a mechanical interface. A mechanical interface is a physical means

of connecting with other modules to transmit physical forces and facilitate module function

and configuration [160].

2.6.2 Robotics Software Framework

A Robotics Software Framework (RSF) is a set of software tools and libraries that

provide a virtual component model, communication middleware, and protocol to manage

the state and the life cycle of the components [169]. RSF is often referred to as middleware

in robotics despite providing management, development, simulation, modeling tools, and

hardware driver and algorithms on top of communication architecture [163, 170]. Well-

52

known open-source RSFs targeting industrial and service robotics include Player, Orca,

Orocos, ROS, YARP, Open Robotic Technology Middleware, Open Platform for Robotic

Services, Open Robotic Development Kit, SmartSoft, and Robotic Construction Kit [169].

The central aspect of RSF is the implementation of distributed architecture that al-

lows synchronous or asynchronous communication of nodes [170]. In ROS, a node is a

virtual representation of a component. Synchronous communication is facilitated by send-

ing or receiving messages from other nodes through ports or services. Each ROS node has

an in-port and out-port, which allow nodes to synchronously read and write messages, re-

spectively (Figure 17). These ports are dynamic communication buffers that can be created

or destroyed. Messages can be read by the receiving port synchronously through polling

or asynchronously through callback functions. On the other hand, ROS services employ an

on-demand request and response model. A server node is a global procedure with specific

arguments. A client node sends a request message to a server node. After completing the

procedure, the server node sends a response message to the client node.

Figure 17

The Synchronous Communication of ROS Nodes Using Port Mechanism

Node D

Node A A1

A2

Node B

Node C

B1

D1

D2C1

B2

On the other hand, ROS implements asynchronous communication using topic or

event communication mechanisms Figure 18. A topic is a specific channel for a particular

type of message. If a node is a sensor module, the node sends sensor readings as messages

under the “sensor reading” topic. Other components subscribed to the “sensor reading”

53

topic, such as a controller or actuator, can read published messages. Finally, nodes in the

events mechanism directly post their messages to subscribed nodes using a communication

buffer, and subscribed nodes read messages through callbacks.

Figure 18

The Asynchronous Communication of ROS Nodes Through the Topic Mechanism

Node D

Node A Node B

Node C

Topic 1

Topic 2

Topic 4

Topic 3

2.6.3 Modular Agricultural Robots

A review of past studies shows very few agricultural robots implement a modular

approach. The developed robots can be divided into two categories: (1) partial and (2) fully

modular. Robots with partial modular components usually have a modularized manipulator

design, as shown in Table 5. These designs implement a replaceable tooling system or vary

the degrees of freedom of the robotic manipulator.

On the other hand, fully modularized designs have distinct parts that perform spe-

cific functions, as shown in Table 6. The degree of modularization varies from each study

using the system presented in Figure 16. In Thorvalds II, which is the most mature among

the modular agricultural robots, the system had up to level 3 of modularization, as each dis-

tinct function is a module. The rest of the studies employed up to level 2 modularization.

54

Ta
bl

e
5

Li
st

of
A

gr
ic

ul
tu

ra
lR

ob
ot

s
w

ith
M

od
ul

ar
Su

b-
C

om
po

ne
nt

s

D
es

cr
ip

tio
n

Fi
xe

d
C

om
po

ne
nt

s
M

od
ul

ar
C

om
po

ne
nt

So
ft

w
ar

e
Fr

am
ew

or
k

In
te

rf
ac

es

M
od

ul
ar

an
d

m
ul

tif
un

ct
io

na
l

ag
ri

cu
ltu

ra
lr

ob
ot

sy
st

em
fo

r
sp

ec
ia

lty
cr

op
s

[1
71

]

Po
w

er
su

pp
ly

,c
on

tr
ol

un
it,

pr
ec

is
io

n
sp

ra
ye

r,
se

ns
in

g
un

it

M
an

ip
ul

at
or

R
O

S
C

A
N

,
A

D
-C

on
ve

rt
er

s,
et

he
rn

et

Te
le

op
er

at
ed

ro
bo

tic
sy

st
em

w
ith

m
od

ul
ar

en
d

ef
fe

ct
or

s
fo

r
gr

ee
nh

ou
se

w
at

er
m

el
on

[1
72

]

R
F

da
ta

m
od

em
,

w
ir

el
es

s
im

ag
e

pr
oc

es
si

ng
sy

st
em

,
tr

an
sf

er
un

it,
co

nt
ro

l
un

it
(P

L
C

)

M
an

ip
ul

at
or

C
us

to
m

so
ft

w
ar

e
D

ig
ita

lI
/O

,R
F

si
gn

al

M
od

ul
ar

ag
ri

cu
ltu

ra
lr

ob
ot

[1
73

]
Pl

at
fo

rm
an

d
st

ee
ri

ng
To

ol
s

(s
en

so
rs

,
co

nt
ro

lle
r,

co
m

m
un

ic
at

io
n,

G
PS

)

C
us

to
m

so
ft

w
ar

e
U

A
R

T,
G

PI
O

,U
SB

R
ec

on
fig

ur
ab

le
ag

ri
cu

ltu
ra

l
ro

bo
tf

or
or

ch
ar

d
[1

74
]

N
av

ig
at

io
n

pl
at

fo
rm

M
an

ip
ul

at
or

C
us

to
m

so
ft

w
ar

e
W

ir
ed

co
nn

ec
tio

n
(n

o
sp

ec
ifi

c
de

sc
ri

pt
io

n)

55

Ta
bl

e
6

Li
st

of
F

ul
ly

-M
od

ul
ar

iz
ed

A
gr

ic
ul

tu
ra

lR
ob

ot
s

D
es

cr
ip

tio
n

M
od

ul
es

Su
b-

co
m

po
ne

nt
s

So
ft

w
ar

e
Fr

am
ew

or
k

C
on

ne
ct

io
n

In
te

rf
ac

es

A
ut

on
om

ou
s

fie
ld

ro
bo

tf
or

in
di

vi
du

al
pl

an
t

ph
en

ot
yp

in
g

[1
68

]

N
av

ig
at

io
n

co
nt

ro
lle

r,
R

T
K

-G
PS

C
us

to
m

fr
am

ew
or

k
ba

se
d

on
L

in
ux

O
pe

ra
tin

g
Sy

st
em

U
SB

,R
S2

32
,

E
th

er
ne

t,
A

D
-C

on
ve

rt
er

s
ph

en
ot

yp
in

g
co

nt
ro

ls
ys

te
m

G
ig

ab
it

sw
itc

h,
co

nt
ro

lu
ni

t

Sp
ee

d
an

d
st

ee
ri

ng
co

nt
ro

l
G

ig
ab

it
sw

itc
h,

co
nt

ro
lu

ni
t,

m
ot

or
/h

yd
ra

ul
ic

s,
ru

bb
er

w
he

el
s

Se
ns

or
s

G
ig

ab
it

sw
itc

h,
E

th
er

ne
tI

/O
,P

C
,c

am
er

a,
N

IR
,T

ri
an

gu
la

tio
n

se
ns

or
s,

L
ig

ht
cu

rt
ai

n

C
om

m
un

ic
at

io
n

W
L

A
N

,R
ou

te
r

M
ul

tif
un

ct
io

na
l

ag
ri

cu
ltu

ra
l

ro
bo

tic
pl

at
fo

rm
fo

r
up

la
nd

[1
75

]

Se
ns

or
U

ni
t

G
PS

,C
am

er
a,

IM
U

C
us

to
m

fr
am

ew
or

k
U

A
R

T
(R

F)
,

C
A

N
,G

PI
O

N
av

ig
at

io
n

U
ni

t
D

riv
er

,m
ot

or
,r

ub
be

rh
ee

ls

W
or

ki
ng

U
ni

t
D

riv
er

,M
ot

or
,T

oo
l

56

D
es

cr
ip

tio
n

M
od

ul
es

Su
b-

co
m

po
ne

nt
s

So
ft

w
ar

e
Fr

am
ew

or
k

C
on

ne
ct

io
n

In
te

rf
ac

es

C
on

ce
pt

ua
l

m
ul

tif
un

ct
io

na
l

ag
ri

cu
ltu

ra
l

ro
bo

tf
or

st
ra

w
be

rr
y

fie
ld

[1
76

]

C
en

tr
al

U
ni

t
C

om
pu

ta
tio

na
lu

ni
t,

m
ot

or
dr

iv
er

,R
C

re
ce

iv
er

,c
on

tr
ol

un
it

C
us

to
m

so
ft

w
ar

e
ru

nn
in

g
on

L
in

ux
O

pe
ra

tin
g

Sy
st

em

E
th

er
ne

t,
W

iF
i,

U
SB

Po
w

er
so

ur
ce

24
V

D
C

B
at

te
ry

C
om

m
un

ic
at

io
n

R
C

tr
an

sm
itt

er
,W

iF
i,

B
lu

et
oo

th

M
ul

ti-
fu

nc
tio

na
l

m
od

ul
ar

an
d

re
co

nfi
g-

ur
ab

le
A

gr
ic

ul
tu

ra
l

R
ob

ot
(T

ho
rv

al
d

II
)

[1
77

]

D
riv

e
M

ot
or

an
d

tr
an

sm
is

si
on

C
us

to
m

so
ft

w
ar

e
E

th
er

ne
t,

U
SB

St
ee

ri
ng

D
C

m
ot

or
,t

ra
ns

m
is

si
on

,t
w

o-
ch

an
ne

lm
ot

or
co

nt
ro

lle
r

M
ot

or
co

nt
ro

lle
r

W
ea

th
er

-p
ro

of
ca

se
,t

w
o-

ch
an

ne
lm

ot
or

co
nt

ro
lle

r

Pa
ss

iv
e

w
he

el
C

as
te

rw
he

el
s,

ru
bb

er
w

he
el

s

Su
sp

en
si

on
Sh

oc
k

ab
so

rb
er

s

Se
ns

or
in

te
rf

ac
e

Se
ns

or
at

ta
ch

m
en

t

Se
ns

or
m

ou
nt

in
g

A
lu

m
in

um
m

ou
nt

in
g

fr
am

e

Fr
am

e
Tu

be

57

D
es

cr
ip

tio
n

M
od

ul
es

Su
b-

co
m

po
ne

nt
s

So
ft

w
ar

e
Fr

am
ew

or
k

C
on

ne
ct

io
n

In
te

rf
ac

es

M
od

ul
ar

ro
bo

tic
to

ol
ca

rr
ie

r[
17

8]

Tr
ac

k
m

od
ul

e
C

on
tr

ol
le

r,
el

ec
tr

ic
m

ot
or

,t
ra

ns
m

is
si

on
,

ru
bb

er
tr

ac
ks

Fr
ob

om
in

d
ba

se
d

on
R

O
S

R
Sx

xx
,U

SB
,

E
th

er
ne

t,
C

A
N

Po
w

er
m

od
ul

e
B

at
te

ry
(4

8V
10

0A
h)

,e
le

ct
ri

ca
lg

en
er

at
or

Fr
am

e
M

et
al

ba
rs

M
od

ul
ar

ag
ri

cu
ltu

ra
l

ro
bo

tic
sy

st
em

[1
79

]

W
he

el
m

od
ul

e
St

ee
ri

ng
,d

riv
e,

pa
ss

iv
e

R
O

S
R

S2
32

,U
SB

Su
sp

en
si

on
m

od
ul

e
Sh

oc
k

ab
so

rb
er

s

Po
w

er
M

od
ul

e
m

od
ul

e
B

at
te

ry
(1

2
pc

s.
of

38
.4

V
60

-A
h)

,b
at

te
r

m
an

ag
em

en
ts

ys
te

m

C
on

tr
ol

le
rm

od
ul

e
N

vi
di

a
Je

ts
on

X
av

ie
r

Fr
am

e
m

od
ul

e
A

lu
m

in
um

ex
tr

us
io

ns
,3

D
-p

ri
nt

ed
co

m
po

ne
nt

s
(P

L
A

)

Se
ns

or
in

te
rf

ac
e

Se
ns

or
at

ta
ch

m
en

t

A
ct

ua
to

ri
nt

er
fa

ce
A

ct
ua

to
ra

tta
ch

m
en

t

58

The standard connection interfaces used for communication were Universal Serial

Bus (USB), ethernet, Wireless Fidelity (WiFi), or CAN. Most of the studies also imple-

mented a custom software framework that is not publicly released. Some studies utilized

ROS as a base software framework to develop their custom-made software framework, such

as in the study of Xu et al. (2022) [179], Oberti et al. (2014) [180] and Jensen et al. (2014)

[181]. However, none of the studies incorporated a CNN-based object detection model in

their framework.

There is also a confusing nomenclature to name each component. For example, the

navigation unit comprised the RTK-GPS for a modular plant phenotyping robot [168]. In

another study, the navigation unit referred to the wheels and motors [175]. Other studies

refer to wheels, transmission, and motor assembly as the drive or track units. Hence, this

situation requires the need to have a standardized naming system for agricultural compo-

nents.

2.7 Review Summary

This chapter reviewed recent design approaches and techniques for precision spray-

ing. Overall, the review of recent research and developments in precision spraying showed

a growing direction toward using image-based sensors and CNN models for the real-time

detection of weeds. Specifically, the following findings were identified:

1. Existing CNN-based precision sprayers employed fixed configuration and utilized

fast, high-energy-consuming, and expensive GPUs.

2. To increase the feasibility of CNN-based object detection, one-stage object detection

models and optimization using TensorRT was shown to effectively reduce the com-

putational cost of CNN while providing high detection accuracy in agricultural field

environments. However, despite these improvements, most CNN-based precision

sprayers have lower productivity than standard boom spraying operations.

59

3. Non-offset nozzle layout and FTD-based valve actuation offer the simplicity of im-

plementation but require fast processing speed to prevent missed spray at high veloc-

ities. Thus, this method was mainly employed on non-image-based or image-based

sensors that utilized traditional image processing for segmentation. As a result, CNN-

based systems that used Non-offset nozzle layout and FTD-based valve actuation had

high missed sprays, were tested at low velocities, or did not quantify targeting accu-

racy.

4. Offset nozzle layouts and delayed valve triggering were commonly employed for

vision-based CNN sprayers but required auxiliary sensors for motion estimation. On

the other hand, precision sprayers mostly use RTK-GPS for motion sensing. How-

ever, as mentioned in the previous chapter, RTK-GPS for motion sensing is not an

attractive method in under-yielding countries due to the expensive cost of the tech-

nology.

5. A modular precision sprayer with MVS-CNN remains unexplored. Most past studies

on modular agricultural robots developed mobile platforms without specific func-

tions. Early studies utilized custom software frameworks, while recently developed

systems use a custom software framework based on ROS.

60

Chapter 3

Materials and Methods

3.1 Overview

The development of the MAPS was divided into four phases: (1) performance

benchmarking of one-stage CNN object detection models for weed detection on different

hardware; (2) modeling of MVS-CNN for plant detection; (3) development of the MAPS;

and (4) field testing. Figure 19 illustrates the three main phases of the study and sub-

components. The first two steps aim to develop a CNN-based vision module that is low-

cost, energy efficient, and reusable. Thus, benchmarking and modeling of MVS-CNN were

implemented to gain an understanding of the factors affecting detection performance.

Figure 19

Flowchart of the Development Process of the Modular Agricultural Robotic Sprayer

Development of a CNN-based Vision Module

Modeling of MVS-CNN

Development of a Modular Agrochemical Precision Sprayer

Field testing

Benchmarking of CNN Models

The third phase integrated a sprayer module, vision-based velocity estimation, and

valve control based on queuing and dynamic filtering of variable time delays (VTD) to

the previously developed vision module to form the scalable unit (SU) of the MAPS. The

vision-based velocity estimation and valve control parameters of the SUs were optimized

61

in simulated field conditions. Finally, after tuning, the MAPS was tested in the field dur-

ing the fourth phase to obtain its actual performance. A separate section on CNN model

development was dedicated as a recurring step in all phases of the research.

3.2 Development of CNN-Based Vision Module

The combinations of one-stage CNN object detection models and different hard-

ware systems for weed detection were initially evaluated (Figure 20). Cost-effective CNN

architecture and hardware combinations for weed detection were identified based on ease

of (1) data preparation, (2) training, (3) detection performance, and (4) processing time.

Scaled-YOLOv4-CSP, YOLOv5s, SSD-MB1, and SSD-MB2 were trained and tested on

the collected image dataset of a mulched onion field. The loading time, inference time, and

cost efficiency of the selected models on a mobile laptop with a powerful GPU and a low-

power embedded device were evaluated. The results were finally compared to determine

which combination was best suitable for our application.

Figure 20

The Steps in the Benchmarking of Selected CNN Models on Different Hardware

Benchmarking of CNN Models

Dataset Preparation

Training of One-Stage CNN Object Detection Models

Performance Comparison on Fast GPU and Edge Device

CNN Architecture and Hardware Combinations

62

After determining the suitable combination of CNN architecture and hardware for

weed detection, a CNN-based vision module was developed. Its feasibility for real-time

precision spraying was evaluated based on theoretical and simulation models (Figure 21).

The derived analytical models and computer simulations are discussed in detail in Chapter

4.

Figure 21

Steps in Modeling the Detection Rate of an MVS-CNN for Plant Detection

Modeling of MVS-CNN

Derivation of Analytical Models

Development of Virtual Computer Models

Development of Design Reference Chart

Comparison of Model Prediction with Actual Performance of Developed MVS-CNN

Computer Simulation at Different Velocities, Inference Speeds, and Field of View

Development of MVS-CNN

CNN-based Vision Module

3.3 Development of the MAPS

Figure 22 shows a render of the developed MAPS. Three key innovations were

implemented in the design to increase −→v travel while using low-cost and energy-efficient

63

devices for CNN-based plant detection: (1) modular hardware and software architecture;

(2) vision-based velocity estimation; and (3) valve control through queuing of variable-

time delays (VTD). The detailed list of components and assembly drawings are included in

Appendix C. A prototype was then developed by following the steps in Figure 23.

Figure 22

The Precision Sprayer Prototype with the Push-Type (a) Base Unit and (b) Extended Con-
figuration

(a) Base unit

(b) Extended configuration

64

Figure 23

The Specific Steps in the Development of the MAPS

Development of a Modular Agrochemical Precision Sprayer

Design of Hardware and Software Architectures

Re-training of CNN Model

Laboratory Testing

Fabrication of Scalable Unit

Development of Valve Control based on Queuing of Variable Time Delays

MAPS Prototype

Development of Vision-based Velocity Estimation

3.3.1 Modular Hardware and Software Architecture

The design of the MAPS implemented modular hardware and software to enable

component reuse and system reconfiguration. Four hardware modules (vision, sprayer,

central, and power), as detailed in Figure 24, were held together by a push-type frame to

form a base unit. The components of the scalable unit are shown in Figure 25.

65

Figure 24

Hardware Schematic of the Vision-Based Precision Sprayer with Modular Components

Frame

Scalable Unit 3

Scalable Unit 2

Scalable Unit 1

Sprayer Module

Vision Module

Central Module

DC Solenoid
Valve

Micro-controller
 (Arduino Nano)

Sprayer Nozzle
(Fan-type)

Power Module

LAN Router
(TP-Link N450
WiFi Router)

Custom Voltage
Regulator

Supply tank with Diaphragm Pump and
Relief Valve

LiPo
Battery
(12VDC)

Relay Module

LCD
Touch
Screen

110VAC to 5VDC, 3A

110 VAC to 5VDC 4A

110AC to 9VDC, 0.6A

12VDC, 6.5A

12VDC

5VDC VCC and
Trigger Signal

12VDC, 1.5A

12VDC,
1.5A

USB 3.0 Ethernet

Ethernet USB 3.0

HDMI

Hose Connection

Hose
Connection

USB 3.0

Connection Lines:
Communication
Power
Liquid

Portable Power
Supply (12VDC and

110VAC)

RGB Camera
(Logitech

StreamCam)

Vision Compute
Unit

(nVidia Jetson Nano
4GB)

Central
Compute Unit
(Raspberry Pi

4B 4GB)

Figure 25

The Bottom View of the MAPS

Vision
Compute Unit

Micro-controller
and Relay
Assembly

RGB Camera

Spray Nozzle

Scalable Unit

Multiple SUs can be mounted on the base unit through extension structures for

broader field coverage, as illustrated in Figure 22b. The number of SUs is only limited

66

by the structure design and the capacity of the central and power modules. The current

manually pushed prototype in the test was limited to three modules with the consideration

of human power. The same design can be easily expanded to unlimited modules as long

as the power and maneuverability are allowed by the prime mover, such as a tractor or

unmanned vehicle.

The software architecture (Figure 26) follows a modular structure based on the

Robot Operating System (ROS Melodic Morenia). The scripts for each ROS node were

written in Python 2.7. Asynchronous data communication between nodes was implemented

through the publisher and subscriber model of ROS. The subscriber nodes execute a call-

back function when a new message is published in a specific ROS topic. Each callback

function had a dedicated processing thread that allowed nodes to fetch messages from mul-

tiple topics asynchronously.

Figure 26

General Software Architecture of the MAPS

Scalable Unit 3

Scalable Unit 2

Scalable Unit 1

Sprayer Module Sprayer Node

Vision Module

/sprayer/trigger_
feedback

Central Module

GUI Node

roscore
Vision Node

Targeting Node

/vision/weed_
coordinates_px

/vision/crop_
coordinates_px

/sprayer/trigger_
commands

/vision/images

/vision/velocity_
mps

/vision/
fps_effective

67

3.3.1.1 Vision Module. The vision module was composed of a webcam (Log-

itech StreamCam) connected to a CUDA-capable low-power device (Nvidia Jetson Nano

4GB), serving as the vision computing unit via Universal Serial Bus (USB). The webcam

captures 1280 px× 720 px image at 30 f ps and streams in real-time to the Jetson Nano,

which hosts the vision and targeting nodes. The vision node publishes the pixel weed and

crop coordinates, −→v travel , effective FPS (f pse f f ective), and the processed image showing

detected plants in their respective ROS topic using tracking and velocity estimation algo-

rithms. The targeting algorithm is hosted in the targeting node. It subscribes to the weed

coordinates, travel velocity, and f pse f f ective topics and publishes trigger commands to an-

other ROS topic. On the other hand, processed images showing plant detections can be

resized to minimize the transmission size of image data displayed in the Graphical User

Interface (GUI).

3.3.1.2 Sprayer Module. The sprayer module communicates with the vision

module through USB. It was composed of an Arduino Nano micro-controller (ATmega328P),

a 5-VDC relay module (Arceli KY-019), a 12-VDC solenoid valve (US Solid USS2-00006),

and a fan-type sprayer nozzle (Solo 4900654-P). Each solenoid valve was connected to a

centralized power sprayer (NorthStar Spot Sprayer) with a 10-gallon capacity, 12-VDC

diaphragm pump, and a relief/back-flow valve to maintain an operating pressure of 550

kPa.

The Arduino Nano hosted the sprayer node, interfacing with the communication

network via ROSserial, and subscribed to the trigger command topic. It closed the Nor-

mally Open (NO) terminal of the relay module when a value of 1 was published to the trig-

ger command topic. Closing the circuit and opening the solenoid valve for a fixed spraying

duration. After each spray event, the Arduino Nano checked for the new published value

in the trigger command topic.

68

3.3.1.3 Central Module. The central module was composed of a network hub

(TP-Link N450 WiFi Router TL-WR940N), a central computing unit (Raspberry Pi 4B

4GB), and a touchscreen (EVICIV 7-Inch Portable USB Monitor). The network hub served

as the connection interface among the edge computing devices that comprised the MAPS.

The Raspberry Pi hosted the roscore and GUI nodes that facilitated the launching, monitor-

ing, and terminating of each SU. Figure 27 shows the prototype GUI to control the MAPS.

Launching and closing of the slave nodes were accomplished through roslaunch.

Figure 27

Graphical User Interface of the MAPS

3.3.1.4 Power Module. The power module comprised a dedicated 20-Ah 12-

VDC LiPo battery (Miady LFP16AH) to power the diaphragm pump and a 296-Wh portable

power supply (NEXPOW Portable Power Station) to power the rest of the components. Ta-

69

ble 7 summarizes the power consumption of each system component. With three SU, the

MAPS had a peak power consumption of 160W. Each SU consumed a maximum of 25W

during spraying and 4W when nodes were not running. The central module was consuming

9.3W during operation and 3W when idle. On the other hand, the power sprayer consumed

a maximum of 75W when the pump was enabled.

Table 7

The Rated Voltages and Currents of Individual Components of the MAPS

Device Rated Voltage, VDC Rated Current, A

Raspberry Pi 4B+ 4GB 5 3.0

Wireless Router 5 0.6

Jetson Nano 4GB 5 4.0

Solenoid Valve 12 1.5

Diaphragm Pump 12 6.5

3.3.2 Vision-Based Velocity Estimation

The vision modules used the virtual crop and weed detection bounding box to es-

timate the travel velocity in a local coordinate system. In this "what you see is what you

detect" approach, the vision module can combine plant detection and velocity estimation.

It can also easily correct any spraying error with real-time feedback from the incoming

video streams based on queuing of variable time delays for valve actuation. Compared

with wheel encoders [59] or global positioning systems with real-time kinematics [79], the

vision module could be potentially more accurate, faster in obtaining feedback, and more

capable of accommodating uneven terrain. The development of the vision-based velocity

70

estimation algorithm is discussed in detail in Chapter 6.

3.3.3 Valve Control by Queuing of VTDs

The effective spray regions covered by the nozzles were positioned away from the

velocity estimation region (Figure 28). This approach will decrease the need for computing

power while increasing the permissible time delay between detection and spraying to allow

for a higher sprayer moving speed than when the detection, velocity estimation, and sprayer

regions coincide. However, since the travel velocity can vary during actual field operation,

valve control using VTD was implemented. The details of this approach were similarly

discussed in Chapter 6.

Figure 28

The Relative Positions of the Detection, Velocity Estimation, and Spray Regions of the
MAPS

3.3.4 Specification and Cost Summary

Table 8 summarizes the technical specification of the MAPS. The prototype had

three SUs, separated by 0.5 m and mounted on a push-type frame. The overall cost of

71

all components of the sprayer was approximately USD 2,100. Figure 29 summarizes the

cost distribution of each component of the MAPS. The detailed cost of each component is

summarized in Table 9.

Table 8

The Technical Specification of the MAPS with Three SUs

Description Value Unit

Fluid Pressure 550 kPa

Nozzle Delivery Rate 1.6 L
min

Nozzle Spraying Time 0.2 s

Nozzle Spray Pattern Width 1.08 m

Nozzle Height 0.45 m

Nozzle Spacing 0.5 m

Effective Spray Width 2.08 m

Max. Ground Speed 3.54 m
s

Theoretical Field Capacity 2.65 ha
h

Camera Resolution 1280 × 720 px

Average Inferencing Rate 19 fps

Power Consumption 160 W

Min. Operating Time 1.85 h

72

Figure 29

Cost Distribution of Each Component of the MAPS

Table 9

Detailed Cost of Each Component of the MAPS

Module Cost per Module, USD Unit Cost, USD

Vision 261.73 3 785.19

Sprayer 103.54 3 310.61

Power 339.18 1 339.18

Central 421.11 1 421.11

Other Components (tank, pump,
fasteners, paint)

233.77 1 $233.77

Total Cost $2,089.86

73

3.4 Field Testing

Field testing was performed on a soybean field with a broadcast-seeded layout Fig-

ure 30 and each step is summarized in Figure 31. Images of soybeans and weeds were

collected to form the training and validation dataset of the CNN model for field testing.

The spraying accuracy and spray volume reduction of the MAPS on rows with different

weed populations were then evaluated.

Figure 30

The Broadcast-Seeded Soybean Field

74

Figure 31

Field Testing Flowchart

Field testing

Dataset Preparation

Field Testing

Re-training of CNN Model

Actual Field Performance

3.5 CNN Model Development

Figure 32 summarizes the general steps for the CNN model development. These

steps were (1) dataset preparation, (2) training and validation, and (3) testing. In dataset

preparation, sample images of the objects in the operating were collected and annotated.

The annotated dataset was split into training, validation, and test sub-datasets. The dataset

was then fed to known CNN object detection model architectures and the model was trained

until overfitting. Overfitting was determined when the validation loss increased and ex-

ceeded the training loss. Finally, the performance of each trained model was determined

using the test dataset.

75

Figure 32

CNN Development Flowchart

3. Testing

2. Training and Validation1. Dataset Preparation

Start Raw Data Training
Dataset

Validation
Dataset

Test
Dataset

Initialize Training
Parameters (batch
size, learning rate,

epochs)

Intermediate
CNN Model

Validation
Loss >=
Training
Loss?

Validation
Loss

Training Validation

Training
Loss

Overfitting Test

No

Yes

Optimum
CNN ModelTestingCNN

PerformanceEnd

Pre-processing
(frame

extraction from
video,

cropping,
augmentation)

3.5.1 CNN Hardware

A laptop (ThinkPad T15g Gen 1 laptop) and a low-power device (Jetson Nano)

were used to benchmark the processing time of each CNN model. The laptop had a 10th

Gen Intel Corei7 10750H (6-core Comet Lake CPU @ 2.60 to 5.0 GHz), 16GB DDR4-

3200 (SK Hynix), Nvidia GeForce RTX 2080 SUPER Max-Q (3,072-core Turing GPU

@ 735 to 975 MHz, 8GB GDDR6, 80W TDP). The Nvidia Jetson Nano had an ARM

A57 CPU (4-core @ 1.43 GHz), a shared 2GB DDR4 memory, and a 128-Core Nvidia

Maxwell GPU (10W TDP). As mentioned, this study aimed to identify combinations of

CNN architecture and hardware configurations suitable for field robotics. Hence, Nvidia

Jetson Nano 2GB was selected due to the available CUDA cores, allowing low-cost and

energy-efficient GPU-based inferencing.

3.5.2 Dataset Preparation

Three datasets were prepared for the development of the MAPS. Each dataset was

annotated in YOLO format using labelImg [182], as shown in Figure 33. Since CNN

was used for detecting weeds, a general binary classification was implemented among the

76

datasets. The datasets were then divided into training, validation, and test datasets.

Figure 33

Sample Dataset Annotation Using LabelImg

The first dataset, composed of field images of mulched onion plots (Figure 34a),

was used for preliminary benchmarking of existing one-stage object detection models for

weed detection. Onion plants growing through the holes of the polyethylene mulch were

labeled as "with weeds" or "without weeds".

77

Figure 34

Sample Raw Images from the Three Datasets Used in the Development of the MAPS

(a) Onion Dataset

(b) Artificial Plant Dataset

(c) Soybean Dataset

78

Artificial plant images then composed the second dataset, as shown in Figure 34b.

The grass and broad-leaf artificial plants were annotated as "weed" and "crop", respectively.

This second dataset was used to simulate and prototype the vision and sprayer modules.

Finally, field images of soybeans composed the third dataset (Figure 34c). Soybean plants

were annotated as soybean, while all non-soybean plants were annotated as "weed". The

soybean dataset was then used in the field testing of the MAPS.

3.5.3 Training and Validation

The research explored four one-stage CNN architectures as potential models for

weed detection due to their fast inference speed. These CNN models include (1) Scaled-

YOLOv4-CSP, (2) YOLOv5s, (3) SSD-MB1, and (4) SSD-MB2. Scaled-YOLOv4-CSP,

YOLOv5s, and SSD-MB1 were trained, validated, and implemented using PyTorch ma-

chine learning framework [183]. On the other hand, TensorFlow2 [184] was used for SSD-

MB2. Table 10 summarizes the reference links of the CNN algorithms used. Each code

was implemented in Google Colab.

Table 10

Reference URLs of the CNN Algorithms

CNN Architecture Training Algorithm URL

Scaled-YOLOv4-CSP https://github.com/WongKinYiu/ScaledYOLOv4

YOLOv5s https://github.com/ultralytics/yolov5

SSD-MB1 https://github.com/dusty-nv/pytorch-ssd

SSD-MB2 https://github.com/tensorflow/models

79

https://github.com/WongKinYiu/ScaledYOLOv4
https://github.com/ultralytics/yolov5
https://github.com/dusty-nv/pytorch-ssd
https://github.com/tensorflow/models

3.5.4 TensorRT Optimzation

The Nvidia Jetson platform has a native API for object detection, known as jetson-

inference [185]. Jetson inference provides high-level GPU-accelerated functions for CNN-

based object detection that runs on CUDA, cudnn, and GStreamer. These functions include

optimizing supported CNN object detection models using TensorRT, connecting to video-

capture devices through gstreamer, and CNN-based inference using the tensorRT-optimized

model. TensorRT is a CUDA- and cudnn-based neural network inference acceleration en-

gine from Nvidia [90]. Jetson inference requires a supported CNN model to be in ONNX

format and automatically optimizes the ONNX-format CNN model into a tensorRT (*.en-

gine) when the CNN model is initially used. The workflow of using jetson-inference API

for object detection is shown in Figure 35.

Figure 35

The General Procedure on CNN Model Optimization Using TensorRT in Nvidia Jetson
Platform

Start CNN Model
(*.onnx)

Load model
using DetecNet

API

Is the
TensorRT

Engine
available?

No

Yes

Optimize model
using

TensorRT

End
CNN Model in

TensorRT Engine
(*.engine)

Load TensorRT
Engine

Inference using
DetectNet

RGBA
frame

Detections

Image frames can be
accessed using Detectnet,

openCV, or any available
library for video or image

capture

3.5.5 Detection Performance

Ruigrok et al. (2020) [75] recommended (1) image-level and (2) application-level

evaluations when testing the weed detection performance of a CNN model for weed detec-

tion. Image-level evaluation represents the common method of determining CNN detection

80

performance by standard datasets, as described in the papers of Padilla et al. 2021 [186].

This method is commonly used during non-real-time evaluation. Image-level uses anno-

tated images, specifically the validation and test datasets. A sample count is equal to an

instance in an image. For example, an object is accounted twice when present in two dis-

tinct images in the dataset.

On the other hand, application-level evaluation is commonly used by precision

sprayers with MVS-CNN [79, 73, 74, 75, 86, 76]. Unlike image-level, evaluation is based

on the real-time detection of plants. During real-time detection, a sample plant can be de-

tected multiple times in several frames. However, a plant is only accounted for once despite

being present in multiple images.

3.5.5.1 Image-Level Evaluation. Precision (p) is a measure of classification

performance. It is defined as the ratio of the number of true positive (T P) detections and

the sum of true and false positive (FP) detections, as shown below:

p =
T P

T P+FP
(1)

Recall (r) is an indicator of the detection rate of the model. It quantifies the ratio of

the number of correctly detected objects and all detections, which include both correct and

incorrect detections, as expressed below:

r =
T P

T P+FN
(2)

Intersection over Union (IoU) measures the correctness of the predicted bounding

box (PBB) in detecting each object class. It is the ratio of the area covered by the intersec-

tion and union of the predicted bounding box and actual bounding box (T BB) in the sample

images, as shown by the following equation:

81

IoU =
area(PBB∩T BB)
area(PBB∪T BB)

(3)

Average Precision at IoU (APIoU) is the average of the area under the precision-

recall curve at a particular IoU threshold. APIoU was calculated using the definition of

Common Object in Context (COCO) performance metrics [187]. The total sampling points

of recalls and precision, I, is the number of spikes in the curve. A spike in a curve is

considered whenever the maximum precision value drops. The area is then calculated as

the product of the difference between the recalls at the new spike, ri+1, and the previous

spike, ri, and the precision where the latest spike, pinterp(ri+1), occurred. APIoU can be

expressed mathematically as:

APIoU =
I

∑
i
(ri+1 − ri)pinterp(ri+1) (4)

APIoU is a performance metric for a specific category or class, n. Therefore, mean

average precision at a threshold IoU (mAPIoU) is calculated to represent the performance

for all detection classes and expressed as:

mAPIoU =
1
N

I

∑
i

APIoU
n ;∈ {class 1,class 2, ...,class N} (5)

Similarly, mAP0.5:0.95 is the average of mAPIoU at IoU from 0.5 to 0.95 at a 0.05

interval. Mathematically, mAP0.5:0.95 can be expressed as:

mAP0.5:0.95 =
1

11 ∑
IoU∈{0.5,0.55,...0.95}

mAPIoU (6)

Based on existing CNN detection algorithms [154, 153], image-level inference time

(Equation 7), in seconds, was measured before (t2) and after (t3) applying CNN-based

82

detection (Figure 36).

∆tin f erence = t3 − t2 =
1

f psimage
(7)

Figure 36

Image Level Processing Times

CNN Model
loading Image loadingStart Inferencing Append bounding box

detections to image End

t0 t1 t2 t3 t4

3.5.5.2 Application-Level Evaluation. Application-level evaluation evaluates

the precision (pd) and recall (rd) of the MVS-CNN on the total number of samples. A

subscript was added to the symbols representing precision and recall to distinguish the

application from image-level detection performance. Equation 1 and Equation 2 were sim-

ilarly used to calculate pd and rd , respectively. Detected and correctly classified plants

were considered true positives (T P), while detected and incorrectly classified plants were

categorized as false positives (FP). Undetected plants of a different class were considered

true negatives (T N). Finally, missed detections were classified as False Negatives (FN).

The following rules were also adapted from Ruigrok et al. (2020) [75] in counting T P,

T N, FP, and FN:

1. Each plant counts as one detection, even if represented in multiple images.

2. If a single bounding box covers multiple plants of the correct class, each of these

plants is a TP.

3. If a single bounding box overlaps with one or multiple plants of incorrect class, each

83

incorrectly detected plant is counted as FP.

4. If a plant is detected as multiple smaller correctly classified plants, it is only counted

as one T P

5. If a plant is incorrectly detected as one or multiple potato plants, it is only counted

as one FP.

Additionally, application-level inference speed (fps) was the rate of processing an

entire loop composed of (1) fetching a frame from the video stream, (2) inferencing, and

(3) auxiliary processes, as summarized in Figure 37. In this study, the auxiliary processes

include vision-based velocity estimation, calculation and queuing valve opening schedules,

and processed image transmission.

Figure 37

Application Level Processing Times

CNN Model
loading

Fetch Video
FramesStart Inferencing Auxiliary Processes End

t0 t1 t2 t3 t4

The application-level or effective inference speed (f pse f f ective) was then calculated

using the following equation:

f pse f f ective =
1

t4 − t1
(8)

84

3.6 Statiscal Analysis

R Software was used for statistical analyses. Analysis of Variance and T-tests were

used to compare the significant difference among means. When the differences were sig-

nificant, the means and variance of treatments were compared using Tukey’s Honestly Sig-

nificant Difference (THSD). All statistical analyses were compared at a 95% confidence

interval.

85

Chapter 4

Benchmarking of One-Stage CNN Object Detection Models for Weed Detection1

4.1 Introduction

In this chapter, we evaluated combinations of one-stage CNN object detection mod-

els and different hardware systems for weed detection. We collected images of mulched

onion (Allium cepa L.) plots to serve as our dataset in our tests.

Farmers commonly use mulches in combination with mechanical weed or herbicide

spraying to minimize weed growth in onion plots [189, 190]. Weeds compete with crops

for water, nutrients, light, and space, inhibiting crop growth and development [191]. If left

unmanaged, these unwanted plants have the highest capacity to reduce yield [192]. Further,

weeds can obstruct humans and farm machinery during operations, reducing field operation

efficiency and harvest quality [193].

A robot commonly implements weed detection through a machine vision system

(MVS) that utilizes cameras and image processing to recognize plant image features [50].

Current developments in robotic weed control focus on targeted herbicide spraying and

mechanical weeding through robotic systems [194, 101]. However, the varying field con-

ditions make weed detection using MVS using traditional image processing techniques

difficult [125]. Unlike industrial settings, agricultural production systems are subjected to

variable weather, ecological, and topographic conditions. Moreover, the intricate morpho-

logical and texture features at different growth stages of plants introduce additional levels

of complexity [49].

In recent years, research and development in deep learning resulted in abundant

convolutional neural network (CNN) architectures for object detection [61]. This situation

enabled and promoted the application of CNN in image analysis problems in agriculture

[52, 62]. Nonetheless, the complicated structure of CNN requires sizeable computational

1Some parts of this chapter were published in [188].

86

power. Hence, most accurate modern CNNs do not operate in real-time and need very high

computing power to operate [146].

The need for real-time CNN object detection models led to the development of one-

stage object detection architectures. Unlike two-stage object detectors that extract region

proposals as input to the CNN [148, 66], one-stage object detectors use the entire image

to perform dense predictions, resulting in shorter inference time but at lower detection

accuracy [63, 148]. However, despite these accomplishments, most agricultural robots

utilizing one-stage CNN architectures for plant detection operate below standard operating

velocities and field capacity to be accurate [78].

Further, existing studies on weed and crop image classification using machine learn-

ing techniques showed a considerable variation in the dataset size and class distribution

used in training object detection models. Dataset size varied from 375 to 4550 total sam-

ples while weed and crop distribution varied from approximately 7:3 to 1:1 ratios from

past studies [157, 158, 156]. Nonetheless, models trained on datasets with low sample

sizes and significant class imbalance showed lower performance than models trained on

more samples and balanced class sample distribution.

Therefore, this chapter presents our work identifying cost-effective CNN architec-

ture and hardware combinations with optimum detection performance and processing time

for weed detection. The effect of using data augmentation to reduce class imbalance on

the detection accuracy of the trained model was also evaluated. Four one-stage CNN ob-

ject detection models (Scaled-YOLOv4-CSP, YOLOv5s, SSD-MB1, and SSD-MB2) were

trained, and their performance on a mobile laptop with a powerful GPU (Nvidia RTX2080

Super Max-Q) and a low-power embedded device (Nvidia Jetson Nano 2GB) were evalu-

ated. The training, detection performance, loading time, inference time, and cost efficiency

of the four CNN models were compared and assessed to determine which combination was

best suitable for our application.

87

4.2 Methodology

4.2.1 Dataset Preparation

Figure 38 shows the perspective view of the mulched onion plots in Baybay, Leyte,

Philippines, intercropped with eggplants. The RGB images of mulched onion plots were

captured 51 to 60 days after planting on February 11, 2021, using a Nikon D5200 DSLR

hand-held at 1-m height to capture the top view of the field. A total of 292 images at 6000

x 4000 image resolution were collected. Removing duplicates reduced the number of raw

images to 153.

Figure 38

Onion Plant Beds with Black Polyethylene Mulch

A Python script was written to partition and resize the raw images into four sections

at 512 x 512 image resolution. The resulting images were annotated with bounding boxes

using LabelImg [182]. In addition, the classes “with weeds” and “without weeds” were

assigned to holes having and not having the presence of weeds, respectively. Figure 39

88

shows a sample of the processed image with class annotations.

Figure 39

Cropped Image of a Mulched Onion Bed with Class Annotations

In this study, two datasets were prepared using the processed images to determine

the effect of data imbalance on the performance of the models. The first dataset was com-

posed of the processed images randomly divided into training, validation, and test groups,

consisting of approximately 60%, 15%, and 25% of the cropped images, respectively. The

resulting class distribution for the training dataset with weeds and without weeds were ap-

proximately 70% and 30%, respectively, and was highly unbalanced. Table 11 summarizes

the count and distribution of these classes as stratified into training, validation, and test

samples.

89

Table 11

Class Distribution of Samples in the Unbalanced Dataset

Group Image Count
Class

Group Total
With Weeds Without Weeds

Training 382 1524 640 2164

Validation 96 397 149 546

Test 131 622 199 821

Class imbalance can be reduced by either (1) downsizing the class with more sam-

ples or (2) upsizing the class with fewer counts. For example, a study comparing per-

formances of different deep learning algorithms to detect soil, broadleaves, and soybeans

showed that using an unbalanced but larger dataset increased overall precision than down-

sizing to a more balanced but smaller dataset [155]. However, the study did not demonstrate

the effect on performance using a balanced model through upsizing.

This study performed data augmentation by image rotation, flipping, and random

exposure adjustments to generate additional 192 images and reduce the class imbalance

in the first dataset. These new images were added to the training and validation group

to create a second dataset. To observe changes in detection performance by reducing the

class imbalance, the same set of test images from the first dataset was used to test the sec-

ond dataset. The second dataset then had training, validation, and test group distributions

of approximately 65%, 17%, and 18%, respectively. The resulting class distribution for

the training dataset for “with weeds” and “without weeds” was about 55% and 45%, re-

spectively. Table 12 shows the detailed distribution of samples after reducing the dataset

imbalance.

90

Table 12

Class Distribution of Samples in the Balanced Dataset

Group Image Count
Class

Group Total
With Weeds Without Weeds

Training 533 1662 1324 2986

Validation 137 465 326 791

Test 131 622 199 821

4.2.2 Training and Validation

Scaled-YOLOv4-CSP [154], YOLOv5s [153], SSD-MB1 [195], and SSD-MB2

[196] were trained for weed detection due to their short inference times. PyTorch was used

for training Scaled-YOLOv4-CSP, YOLOv5s, and SSD-MB1 models while TensorFlow 2

was used to train SSD-MB2.

The initial annotations in YOLO format were used to create the tfrecords for train-

ing the SSD-MB2 in TensorFlow 2. In detail, the YOLO annotations (*.txt) were first

converted to Pascal VOC (*.xml). The XML annotations were then converted into CSV

using a Python script. CSV was the required annotation format of TensorFlow 2 in creating

the tfrecords (*.record). All scripts for conversion can be found in a GitHub repository

[197].

Pre-trained models on Common Objects in Context (COCO) 2017 from each meta-

architecture were starting models in the transfer learning. A cloud computer with an Nvidia

Tesla V100 SXM2 GPU with 16GB VRAM and a dual-core Intel Xeon at 2.0GHz with

13.3 GB of RAM was used for training and validation. 24 images per batch were used.

Default values of the learning rate and momentum, as set in the respective code reposito-

91

ries of the CNN architectures, were utilized. Overfitting tests were performed to determine

the maximum number of epochs used for each combination of the dataset and CNN archi-

tecture. Three replications of training and validation were then performed for each CNN

architecture and dataset combination.

4.2.3 Performance Testing

4.2.3.1 Detection Performance. In this chapter, an image-level evaluation of

the detection performance of the trained CNN models was performed. The mAP0.5, and

mAP0.5:0.95, as described in detail in Chapter 4 and COCO website [187], were used to

quantify the overall precision and recall of the tested CNN models. The mAP0.5 and

mAP0.5:0.95 were evaluated using the default validation Python scripts provided in each

model’s respective repositories.

4.2.3.2 Processing Time. The loading and inference times were evaluated in

two different hardware systems capable of Compute Unified Device Architecture (CUDA)

for accelerated machine learning (Lenovo ThinkPad T15g Gen 1 laptop and Jetson Nano).

Loading time was measured from the initial time of loading the model to the processing of

the first frame, as initial testing showed that the loading time of the first frame was longer

than the rest of the test frames.

4.3 Results and Discussion

4.3.1 Training of Weed Detection Models

Figure 40 summarizes the training and validation losses of the models. In Fig-

ure 40a, the Scaled-YOLOv4-CSP model started to overfit after 170 epochs. The validation

losses for both datasets remained increasing while the training losses continued decreasing,

an overfitting indicator. Thus, we considered the trained model 170 epochs as the optimum

92

model for the testing.

Figure 40

Training and Validation Losses of Tested CNN Models with the Vertical Broken Lines Rep-
resenting the Epoch at Overfitting

(a) Scaled-YOLOv4-CSP (b) YOLOv5s

(c) SSD-MB1 (d) SSD-MB2

The training of the YOLOv5s model showed that the validation loss started to in-

crease at 250 epochs for the balanced and unbalanced datasets, as illustrated in Figure 40b.

Continuing the training showed that the losses converged at 310 epochs, after which the

training losses started to be less than the validation losses. Thus, we considered that the

model started to overfit, and the models at 310 epochs were used during testing.

93

Figure 40c illustrates the losses of training SSD-MB1 over 350 epochs. The graph

illustrates that losses converged at about 200 epochs. However, the validation loss contin-

ually decreased and plateaued at about 250 epochs for both datasets. On the other hand,

the training loss continually decreased. Thus, we considered model overfitting at this point

and used the trained model at 250 epochs for the testing.

Finally, Figure 40d shows the training and validation losses of the SSD-MB2 model

over 750 epochs using balanced and unbalanced datasets. Overfitting was not observed in

the first 500 epochs, as both losses continued to decrease. However, after 550 epochs, the

validation loss was observed to plateau, whereas the training loss continually decreased.

This continued decrease in the training loss increased the difference between the training

and validation losses and is an indicator of overfitting. Therefore, the model at 550 epochs

was used during performance evaluations of the selected models.

Based on the training results of each model, it can be inferred that the epoch where

overfitting started to occur was not highly affected by the ratio of class samples but mainly

depended on the object detection architecture. However, it can also be said from the results

that after overfitting, running more epochs during training would not increase and may

result in a slight decrease in performance.

Table 13 shows the training time and resource consumption of the tested object

detection models. The results showed that Scaled-YOLOv4-CSP required the most GPU

memory during training and generated the largest model file size since the algorithm ex-

tracts more features than the other algorithms. Nonetheless, in general, YOLO-based mod-

els took the shortest time to train. On the other hand, the resource consumption of the two

SSD-based models was similar. However, SSD-MB2 required the longest training time as

more epochs were needed to arrive at an optimum model.

94

Table 13

Average Resource Consumption of the Tested Object Detection Models During Training

Model
Unbalanced Balanced

Training
Time, h

GPU
Memory,
GB

File
Size,
MB

Training
Time, h

GPU
Memory,
GB

File
Size,
MB

Scaled-
YOLOv4-
CSP

0.284 10.70 105.50 0.360 10.70 105.50

YOLOv5s 0.259 2.78 14.40 0.379 2.78 14.40

SSD-MB1 0.670 3.99 26.45 0.887 3.99 26.45

SSD-MB2 0.740 4.00 27.50 1.031 4.00 27.50

The file size of the model and GPU memory consumption during training were not

affected by the number of training samples since the training loads the specified batch of

images per training step. Still, they depended on the type of object detection algorithm,

as extensive networks extract more features than object detectors with a smaller network.

However, in general, increasing the dataset increased the total training time due to the

increased number of steps per epoch. In addition, the models of the same family have

similar training times. Overall, the YOLO-based models were faster to train than the SSD-

based models.

4.3.2 Detection Performance

The trained models were then used to perform detections on the test dataset. Fig-

ure 41 illustrates a sample test image with manual annotations and detections from the

trained models. For weed spraying, the main objective is to determine if weeds were present

95

in the openings in the polyethylene mulch, accurately size the bound box, and effectively

transmit the center coordinate of the bounding box with weed presence to the targeting al-

gorithm. For these reasons, weed recognition and bounding box size and location should

be as accurate as possible. Furthermore, the inference time should be as low as possible to

prevent missed regions and maximize the forward travel velocity of the robot sprayer.

Figure 41

A Sample Detections Using the Trained CNN Object Detection Models on a Mulched Onion
Plot

(a) Manual annotations (b) Scaled-YOLOv4-CSP (d) YOLOv5s

(d) SSD-MB1 (e) SSD-MB2

Figure 42 summarizes the average weed detection performance in mulched onion

plots of the three models trained on unbalanced and balanced test datasets. For the balanced

dataset, Figure 42a revealed that YOLOv5s had the highest mAP0.5 at 0.899 followed by

SSD-MB1 (0.0.840) and SSD-MB2 (0.825). Scaled-YOLOv4-CSP had the lowest mAP0.5

96

at 0.825. Similarly, Figure 42a also showed that the YOLOv5s model had the highest

mAP0.5 among the tested models when trained on the balanced dataset.

Figure 42

Average (a) mAP0.5 and (b) mAP0.5:0.95 of Tested CNN Models on the Test Dataset

(a) mAP0.50

(b) mAP0.50:0.95

However, there was no improvement in the mAP0.5 of YOLOv5s at 0.895 despite

97

training on a balanced dataset. In contrast, the mAP0.5 of Scaled-YOLOv4-CSP (0.885) and

SSD-MB1 (0.882) improved greatly, resulting in a minimal difference with the YOLOv5s

model. SSD-MB2 had minimal improvement despite training on a balanced dataset, result-

ing in the lowest mAP0.5 (0.827) among the models.

We observed the same order of performance among the models at the 0.5 to 0.95

IoU threshold (Figure 42b). YOLOv5s still had the highest mAP0.5:0.95 among the tested

CNN models in the unbalanced and balanced datasets. Again, there was no improvement

observed in the mAP0.5:0.95 of YOLOv5s, which remained at 0.634 despite using a bal-

anced dataset. SSD-MB2 still had the lowest performance in the balanced dataset, and

the improvement was also minimal, from 0.522 to 0.527. Scaled-YOLOv4-CSP also had

the lowest mAP0.5:0.95 (0.518) in the unbalanced dataset. YOLOv5s was still followed by

SSD-MB1 (0.571) and SSD-MB2 (0.522) in the unbalanced dataset. Similarly, a substan-

tial increase in mAP0.5:0.95 in Scaled-YOLOv4-CSP was observed, increasing to 0.602 and

surpassing SSD-MB1 (0.586), when trained on the balanced dataset.

Overall, YOLOv5s had the highest mAP among the models. YOLOv5s and SSD-

MB2 did not benefit from data augmentation and using a balanced dataset. We also ob-

served minimal differences at mAP0.5 among the performance of Scaled-YOLOv4-CSP,

YOLOv5s, and SSD-MB1 when the models were trained on a balanced dataset. Nonethe-

less, YOLOv5s exhibited a high mAP0.5:0.95 compared to other tested models in either

dataset. This result shows that the bounding boxes generated by YOLOv5s were more

accurate compared to the other models. However, in reference to field robotics, a high

mAP0.5:0.95 is only important for operations that require very accurate targeting due to the

small effective region of the robotic tool. Examples of these operations could be laser-based

or point-spraying. However, for field spraying operations with large effective regions, using

fan- or cone-type nozzles, mAP0.5 would be acceptable.

Analysis of variance (ANOVA) was performed to determine if the observed differ-

ences in the mAP among the trained CNN models were statistically significant. Table 14

98

shows the one-way ANOVA results and indicates that the differences in mAPs of the CNN

models trained on unbalanced datasets were statistically significant.

Table 14

One-Way ANOVA Tests of the mAP0.5 and mAP0.5:0.95 of Tested Object Detection Models
on Unbalanced and Balanced Datasets

Dataset
mAP0.5 mAP0.5:0.95

F-value Probability (>F) F-value Probability (>F)

Unbalanced 6.361 0.0164* 13.14 0.0019*

Balanced 5.863 0.0203* 16.93 0.0008*

* Statistically different at 5% confidence level.

Tukey’s Honestly Significant Difference (HSD) was performed to determine which

CNN models trained on balanced (Table 15) or unbalanced (Table 16) datasets were sta-

tistically different. Tukey’s HSD results in Table 15 show that the higher performance of

YOLOv5s than the rest of the trained models on unbalanced datasets was only statistically

different from Scaled-YOLOv4-CSP and SSD-MB2. In addition, in Table 16, augmenting

the dataset and reducing class sample imbalance reduced the mAP difference of YOLOv5s

and Scaled-YOLOv4-CSP to levels that the difference was no longer statistically signifi-

cant. The test also showed the minimal mAP increase of SSD-MB2, despite training on

the balanced dataset, was statistically lower than the rest of the trained models. In general,

the statistical analysis showed that YOLOv5s only had a statistically significant advantage

against Scaled-YOLOv4-CSP and SSD-MB2 but not with SSD-MB1.

99

Table 15

Tukey’s HSD Tests of the mAP0.5 and mAP0.5:0.95 of the Tested CNN Object Models Trained
on an Unbalanced Dataset

Compared Models
p-value

mAP0.5 mAP0.5:0.95

SSD-MB1 — Scaled-YOLOv4-CSP 0.288 0.132

SSD-MB2 — Scaled-YOLOv4-CSP 0.570 0.997

YOLOv5s — Scaled-YOLOv4-CSP 0.012* 0.003*

SSD-MB2 — SSD-MB1 0.929 0.175

YOLOv5s — SSD-MB1 0.169 0.068

YOLOv5s — SSD-MB2 0.073* 0.003*

* Statistically different at 5% confidence level.

100

Table 16

Tukey’s HSD Tests of the mAP0.5 and mAP0.5:0.95 of the Tested CNN Object Models Trained
on an Balanced Dataset

Compared Models
p-value

mAP0.5 mAP0.5:0.95

SSD-MB1 — Scaled-YOLOv4-CSP 0.999 0.709

SSD-MB2 — Scaled-YOLOv4-CSP 0.047* 0.005*

YOLOv5s — Scaled-YOLOv4-CSP 0.943 0.253

SSD-MB2 — SSD-MB1 0.060* 0.021*

YOLOv5s — SSD-MB1 0.884 0.056

YOLOv5s — SSD-MB2 0.022* 0.001*

* Statistically different at 5% confidence level.

Table 17 summarizes the t-test to determine the significant effect of data augmen-

tation on the mAP of the trained models. The results show that only Scaled-YOLOv4-CSP

had a statistically significant increase in mAP. Statistically, training on a balanced dataset

improved only the mAP0.5 of SSD-MB1. Further, the results show that YOLOv5s and

SSD-MB2 did not benefit from data augmentation. Hence, it can be inferred that data aug-

mentation is no longer needed for weed detection in mulched onions plots when training

CNN object detection models using YOLOv5s and SSD-MB2 architectures to achieve opti-

mum detection performance. This condition can make the dataset preparation significantly

less tedious since the additional steps to perform data augmentation and annotate the new

set of images can be eliminated.

101

Table 17

The Paired T-Test of the mAP0.5 and mAP0.5:0.95 of Tested CNN Models on Unbalanced and
Balanced Datasets

Model
mAP0.5 mAP0.5:0.95

t Mean
Difference

p-value t Mean
Difference

p-value

Scaled-
YOLOv4-CSP

4.325 0.0953 0.04951* 5.2372 0.0800 0.0346*

YOLOv5s -0.3779 -0.0067 0.7418 0.3780 0.0033 0.7418

SSD-MB1 13.104 0.0417 0.0058* 2.644 0.0146 0.1182

SSD-MB2 -0.1368 0.0067 0.8600 0.1525 0.0033 0.8928

* Statistically different at 5% confidence level.

Overall, despite having a higher mAP of YOLOv5s compared to the tested mod-

els, the performance of YOLOv5s was not statistically different from SSD-MB1. Thus,

YOLOv5s and SSD-MB1 deliver the best mAP among the tested models.

4.3.3 Processing Time in Different Hardware Setups

Figure 43 summarizes the loading times of the tested CNN models in the two test

hardware. The loading times were measured before loading the model and after process-

ing an initial frame. In the RTX2080 laptop, SSD-MB1 and SSD-MB2 had the fastest

(2.68 s) and slowest (20.26 s) loading speeds, respectively. Scaled-YOLOv4-CSP and

YOLOV5s took about twice the time to load than SSD-MB1 in TensorRT. Similarly, in

the Jetson Nano, the SSD-MB1 optimized in TensorRT (SSD-MB1-TRT) was the fastest

to load (13.02 s), while SSD-MB2 remained the slowest (135.92 s). Scaled-YOLOv4-CSP

took four times the loading time (53.80 s) of SSD-MB1-TRT while YOLOv5s (85.82 s)

102

and SSD-MB1 (81.36 s) initialized about 6 times that of SSD-MB1-TRT.

Figure 43

The Loading Time, in Seconds, of Trained CNN Models in Test CUDA Devices

(a) Nvidia RTX 2080 Super Max-Q (80W TDP)

(b) Nvidia Jetson Nano 2GB (10W TDP)

Comparing the loading performance between the two hardware, SSD-MB1 without

TensorRT optimization loaded 30 times slower in the Jetson Nano than in the RTX2080. In

contrast, SSD-MB1-TRT was only about 5 times slower to load in a Jetson Nano than in an

RTX2080. Except for the SSD-MB1-TRT, which required approximately 13.2 s to load, the

103

rest of the tested models took approximately 1 to 2 minutes in a Jetson Nano. Conversely, in

the RTX2080, all tested models took less than 5 seconds loading time except for SSD-MB2,

which required 20 seconds. In reference to field operations, long loading times could be an

annoyance to the operator and a source of delays during operation. Thus, when selecting an

appropriate CNN model for field operations, the testing showed that Scaled-YOLOv4-CSP,

YOLOv5s, and SSD-MB1 in an RTX2080 and SSD-MB1-TRT in a Jetson Nano exhibited

compelling loading times.

Figure 44 shows the inference time of each detection model running in the two

test hardware systems. Inference times were measured before and after detection. Scaled-

YOLOv4-CSP, YOLOv5s, SSD-MB1, and SSD-MB2 had mean inference times of 31.81,

13.01, 13.64, and 37.20 ms, respectively, in the RTX 2080 Super. On the other hand, the

Scaled-YOLOv4-CSP, YOLOv5s, SSD-MB1, SSD-MB1-TRT, and SSD-MB2 had mean

inference times of 613.73, 112.37, 116.17, 25.33, and 83.18 ms, respectively, in the Jetson

Nano. These results showed that YOLOv5s and SSD-MB1 were the fastest, on average,

among the four tested models in RTX2080. However, TensorRT optimization of SSD-

MB1 resulted in SSD-MB1-TRT being about 4.4 times faster than YOLOv5s in the Jetson

Nano. On the other hand, Scaled-YOLOv4-CSP had the highest performance loss when

running on low-power hardware. Scaled-YOLOv4-CSP took 21 times longer inference

time, on average, in the Jetson Nano than in the RTX2080 compared to only 8.5 times

that of SSD-MB1 and 1.9 times that of SSD-MB1-TRT. This longer inference time of the

Scaled-YOLOv4-CSP than the other models in the Jetson Nano was most likely due to the

limited 2GB RAM. As presented in Table 13, Scaled-YOLOv4-CSP required 2 to 4 times

the GPU memory of the other tested CNN models during training. Thus, the 2GB shared

memory of the Jetson Nano was most likely insufficient to run the trained Scaled-YOLOv4-

CSP model.

104

Fi
gu

re
44

Th
e

In
fe

re
nc

e
Ti

m
e,

in
Se

co
nd

s,
of

Tr
ai

ne
d

C
N

N
M

od
el

s
in

Te
st

C
U

D
A

D
ev

ic
es

(a
)N

vi
di

a
R

TX
20

80
Su

pe
r

M
ax

-Q
(8

0W
TD

P
)

(b
)N

vi
di

a
Je

ts
on

N
an

o
2G

B
(1

0W
TD

P
)

105

Figure 45 compares the image-level inference speed (f psimage) of the tested CNN

models on the RTX2080 and Jetson Nano. The chart illustrates that SSD-MB1-TRT (39.48

fps) on a Jetson Nano was faster than the rest of the configurations except for SSD-MB1

(73.32 fps) and YOLOv5s (76.87 fps) on the RTX2080. YOLOv5s on the RTX2080 pro-

vided the fastest inference speed. However, most weed detection applications in agriculture

utilized RGB-imaging systems that had a 30-fps framerate [79, 73, 74, 78]. Thus, CNN

and hardware combinations with inference speeds above 30 fps have more than enough

speeds to process all of the frames from these imaging systems. Nonetheless, the fps ac-

counted only for the inference process on 512× 512 frames and will be slower at higher

frame resolutions. The measured values also did not account for the processing times of

auxiliary processes that utilized the inference results. These processes may include algo-

rithms for controlling actuators, monitoring the operations, and reading data from other

sensors. Nonetheless, these additional processes shall most likely be CPU-based. Thus, the

inference speed presented offers a valid reference to compare the computing capability of

the GPUs of the tested hardware on different CNN architectures.

106

Figure 45

The Average Inference Speeds, in fps, of Trained CNN Models in Test CUDA Devices

With respect to processing times, YOLOv5s and SSD-MB1 on an RTX2080 pro-

vided the best performance. However, we consider the combination of SSD-MB1-TRT on a

Jetson Nano to be a compelling configuration due to its short average loading time of 13.2s

and more than 30 fps inference speed at low power requirement. Although SSD-MB1 and

YOLOv5s on the RTX2080 were about 1.86 times faster than SSD-MB1-TRT on a Jetson

Nano, the Jetson Nano using SSD-MB1-TRT achieved this performance with just 12.5%

of the TDP of the RTX2080 test hardware.

4.3.4 Cost Analysis

We procured the laptop with RTX2080 for USD 2626.74 and the Jetson Nano with

peripherals for USD 286.60 (Table 18), resulting in the RTX2080 test system costing 9.17

times that of Jetson Nano test system. Figure 46 illustrates the ratio of the inference speed

of each CNN model to each test hardware system. Our analysis showed that SSD-MB1 and

107

YOLOv5s only benefitted from using a low-cost device, such as Jetson Nano, instead of a

power RTX2080 laptop. However, the increased cost efficiency using a Jetson Nano 2GB

for SSD-MB1 without optimization and YOLOv5s was minimal at only 1.35 times the fps

per USD than on an RTX2080.

Table 18

Summary of the Component Price of the Jetson Nano Test System

Component Cost, USD

Nvidia Jetson Nano 2GB Developer Kit 62.91

5VDC PWM 40-mm Cooling Fan 7.31

AOC 24B1XHS Monitor 95.95

Logitech K400 Plus Keyboard-Touchpad 21.19

5VDC 4A USB Type-C Power Adapter 12.60

Acrylic Case for Jetson Nano 11.65

Samsung EVO Plus 128GB Micro SDXC 16.99

Total 228.60

108

Figure 46

Comparison of Cost Efficiency, in fps Per USD, of Trained CNN Models in Test CUDA
Devices

The chart revealed that SSD-MB1-TRT on the Jetson Nano test hardware had the

highest fps per USD. Furthermore, the chart also showed that SSD-MB1-TRT had the high-

est benefit in increased cost efficiency (6.17 times) when changing from an RTX2080 to a

Jetson Nano due to TensorRT optimization. Finally, Scaled-YOLOv4-CSP and SSD-MB2

showed a decreased cost efficiency when running on a Jetson Nano from the RTX2080 test

hardware. These results demonstrate the highest benefit when using a low-power embed-

ded device, such as a Jetson Nano, relative to cost can be attained when optimizing the

CNN model with TensorRT.

4.3.5 Performance Summary

In this chapter, we have benchmarked the performance of Scaled-YOLOv4-CSP,

YOLOv5s, SSD-MB1, and SSD-MB2 CNN models on high- and low-power hardware

109

systems. Table 19 summarizes the combinations of CNN architecture and test hardware

against specific performance criteria during the test. Results showed that SSD-MB1-TRT

on the Jetson Nano fulfilled all requirements with high mAP and fast processing times at

a minimal cost. In contrast, SSD-MB2 proved to be the least compelling architecture in

both test hardware, as it exhibited statistically lower mAP and slower loading and inference

speed compared to other tested models. Further, except for cost efficiency, the combina-

tions of Scaled-YOLOv4-CSP, YOLOv5s, and SSD-MB1 on RTX2080 satisfied the out-

lined performance requirements. As technology progresses and the cost of these powerful

systems lowers, we expect that RTX2080 would be a compelling option.

110

Ta
bl

e
19

Su
m

m
ar

y
Pe

rf
or

m
an

ce
C

om
pa

ri
so

n
of

E
ac

h
Te

st
C

on
fig

ur
at

io
n

Pe
rf

or
m

an
ce

R
T

X
20

80
Su

pe
r

M
ax

-Q
(8

0W
)

Je
ts

on
N

an
o

2G
B

(1
0W

)

Sc
al

ed
-

Y
O

L
O

v4
-C

SP
Y

O
L

O
v5

s
SS

D
-

M
B

1
SS

D
-

M
B

2
Sc

al
ed

-
Y

O
L

O
v4

-C
SP

Y
O

L
O

v5
s

SS
D

-
M

B
1

SS
D

-
M

B
1-

T
R

T

SS
D

-
M

B
2

1.
M

ea
n

av
er

ag
e

pr
ec

is
io

n
✓

✓
✓

✓
✓

✓
✓

2.
Fa

st
lo

ad
in

g
Ti

m
e

✓
✓

✓
✓

3.
Fa

st
in

fe
re

nc
e

tim
e

✓
✓

✓
✓

4.
C

os
te

ffi
ci

en
cy

✓
✓

✓

111

In the Jetson Nano platform, our tests revealed that model optimization was neces-

sary to satisfy our performance requirements. All models had long processing times when

moving from RTX2080 to Jetson Nano despite having acceptable mAP. Thus, Jetson Nano

provides a cost-effective solution provided that the CNN model can be optimized to reduce

processing time.

The next chapter discusses the simulation of plant detection at different inference

speeds, travel velocities, and camera configurations. This chapter and the next served as the

foundation for designing the modular agrochemical precision sprayer with a CNN-based

MVS in the rest of the dissertation.

112

Chapter 5

Simulation-Aided Development of a Modular MVS-CNN for Plant Detection: Effect

of Travel Velocity, Inference Speed, and Camera Configurations1

5.1 Introduction

Machine vision systems (MVS) are integral components of field agricultural robots

due to the large amount of information that can be extracted from an image scene [50].

MVS was often used to recognize, classify and localize plants accurately for precision

spraying [134, 79], mechanical weeding [49], solid fertilizer application [29], and harvest-

ing [199, 70]. However, robust and accurate plant detection using traditional image pro-

cessing techniques proved challenging due to the vast number of features needed to model

and differentiate plant species [29] and work at various farm scenarios [49]. Soil types,

crop types, and layouts may deviate significantly among farms while lighting changes ac-

cordingly with the weather condition and time of day [98]. Plants also have intricate mor-

phological and texture features at different growth stages that present additional complexity

levels [49].

In the last decade, the major developments in deep learning resulted in abundant

available state-of-the-art convolutional neural network (CNN) architectures for object de-

tection [61]. Furthermore, pre-trained models and various tools and platforms, such as

TensorFlow, PyTorch, and Caffe, have become easily accessible [68]. These conditions

enabled and promoted CNN application in image analysis problems in agriculture [62, 52].

However, despite high classification and detection performance, the sizeable computational

power requirement of CNN limits its application in real-time operations [61]. As a result,

most CNN applications in agriculture were primarily employed in non-real-time scenarios

[71, 72, 68] and utilized desktop computer components [74, 73].

Existing MVS-CNN precision sprayers suffer from unoptimized combinations of

1Some parts of this chapter were published in [198].

113

CNN model, computer hardware, camera configuration, and −→v travel to prevent missed de-

tections. Modeling and simulation are common techniques in engineering to understand

the relationship of design parameters and consequently optimize designs. Computer sim-

ulations could also save time and cost in robot development as it allows testing of robot

software and hardware in a virtual environment [200, 201]. Furthermore, depending on

the complexity of the robot simulations, the model can also be implemented using general

programming languages and aided by simulation software [202, 203, 201, 204].

Computer simulations were also often used in past studies to characterize the effect

of design and operating parameters on the overall performance of agricultural machines

for field operations. For example, the simulation of a 2-wheel tractor as a function of

engine type, transmission configuration, wheel design, frame structure, and soil mechani-

cal properties allowed researchers to optimize the tractive efficiency [205]. Modeling and

simulation were also employed to minimize the vibration of an agricultural boom by op-

timizing the open-loop gain of a control system for leveling [206]. Computer simulations

were also used to estimate the required sprayer spatial resolution of a boom sprayer with

MVS-CNN, as influenced by boom section weeds, nozzle spray patterns, and spatial weed

distribution [203]. Wang et al. (2018) [201] implemented a computer model to simulate

and identify potential problems of a robotic apple-picking arm and developed an algorithm

to improve the performance by 81%. Finally, Lehnert et al. (2019) [207] developed a

novel multi-perspective visual servoing technique to detect the location of occluded pep-

pers based on a computer-simulated robot-arm-mounted MVS. However, the simulation of

an MVS-CNN to illustrate the effect of fps, −→v travel , and camera field of view (S) on actual

detection performance (rd) is yet to be demonstrated.

Chapter 4 evaluated the accuracy and inference speed of popular one-stage CNN

architectures for weed detection and showed that a TensorRT-optimized SSD MobileNetV1

(SSD-MB1-TRT) on an Nvidia Jetson Nano provides compelling performance with respect

to cost and power consumption. With this previous result, this chapter aims to determine

114

the feasibility of using SSD-MB1-TRT and Jetson Nano for plant detection.

Initially, the process of plant detection as affected by travel inference speed (fps),

travel velocity (−→v travel), and field of view (S) was modeled. We introduced a dimension-

less parameter called overlapping rate (ro). ro was used to theoretically predict the plant

detection rate (rd,th) of an MVS as a function of −→v travel , fps, and S. To validate rd,th, we

developed a computer simulation of an MVS for detecting plants in a row-planted field.

Simulated plant detections were then performed using published values of −→v travel and fps

from existing systems. The obtained simulated plant detection rates rd,sim were then com-

pared to the predicted rd,th and reported detection rates of existing studies.

We then plotted our theoretical model with ranges of −→v travel of different operations.

The generated chart summarizes the applicability of different combinations of −→v travel , fps,

and S to various agricultural field operations. A reusable and scalable vision module for

plant detection based on SSD-MB1-TRT and Jetson Nano platform was developed and

tested. The rd of the developed vision module were compared with rd,th and rd,sim. Fi-

nally, the theoretical maximum −→v travel was calculated to determine the feasibility of the

developed vision module for precision spraying operations.

5.2 Materials and Methods

5.2.1 Concept

Cameras for plant detection are typically mounted on a boom of a sprayer or fer-

tilizer spreader [134, 79, 49], as illustrated in Figure 47. They are oriented so that their

optical axis is perpendicular to the field and captures top-view images of plants [208].

115

Figure 47

Camera Mounting Location and Orientation in a Boom (Not Drawn in Scale)

Depending on the distance between the camera lens and captured plane, lens proper-

ties, and sensor size, the field of view equals a linear distance. The linear length of the side

of a field of view of a frame parallel to the direction of travel was denoted as S, in m
f rame .

For complete visual coverage of the traversed width of the boom, the maximum spacing

between adjacent cameras is equal to the length of the side of a field of view perpendicular

to the travel direction, denoted as W , in meters per frame [134].

During motion, the traverse distance between two consecutive frames of the camera

(d f), in meters, is equal to the product of −→v travel , in m
s , and the time between the frames

(1
fps), in seconds, shown in Equation 9.

d f =
−→v travel ×

1
fps

(9)

The ratio of S to d f is proposed as the overlapping rate (ro), a dimensionless param-

116

eter, and is represented by Equation 10.

ro =
S
d f

(10)

With a single camera, ro describes the presence of overlap or gap between frames.

Depending on ro, certain regions in the traversed field will be uniquely captured, captured in

multiple frames, or completely missed, as shown in Figure 48 and summarized as follows:

• Case 1: ro = 1. When S and d f are equal, the extents of each consecutive processed

frame are side by side. Hence, both gaps and overlaps are absent.

• Case 2: ro > 1. The vision system accounted for all regions in the traversed field, but

there is an overlap between the frames. The vehicle can run faster if the mechanical

capacity allows it.

• Case 3: ro < 1. Gaps will occur between each pair of consecutive frames, and the

camera will miss certain plants. The length of each gap is d f −S and the gap rate (rg)

the gap rate is calculated as follows:

rg =
d f −S

d f
= 1− ro (11)

117

Figure 48

Cases of Gaps and Overlaps in Vision-Based Plant Detection at Different Values of ro

(a) No Overlap or Gap (ro = 1)

(b) With Overlaps (ro > 1)

(c) With Gaps (ro < 1)

118

5.2.1.1 Theoretical Coverage Ratio. The maximum detection rate or the theo-

retical coverage ratio (rd,th) can be defined as min(1,ro), shown in Equation 12. The rd,th

was also a dimensionless parameter.

rd,th = min

1, ro > 1

ro, ro < 1
(12)

5.2.1.2 Maximizing Travel Velocity. Setting ro = 1 in Equation 10 will yield

Equation 13, which is similar to the equation used by Esau et al. (2018) [134] in calcu-

lating the maximum travel velocity of a sprayer. However, equation (5) only describes the

maximum forward velocity −→v travel,max that a vision-equipped robot can operate to prevent

gaps while traversing the field as a function of S and fps.

−→v travel,max = S× fps (13)

5.2.1.3 Increasing Maximum Travel Velocity. A consequence of Equation 13

is that increasing S at the same frame rate fps will increase −→v travel,max. Hence, raising

the camera mounting height or using multiple adjacent synchronous cameras along a sin-

gle plant row can increase the effective S of a system. This situation, then, shall increase

−→v travel,max without needing powerful hardware for a faster inference speed. When ro < 1,

the number of vision modules (nvis) to prevent missed detection can be calculated using

Equation 14. Since ro represents the fraction of the field a single camera can cover, the

inverse of ro represents the number of adjacent cameras that will result in 100% field cov-

erage. The calculated inverse was rounded up, as cameras are discrete elements.

nvis =

⌈
1
ro

⌉
(14)

119

The effective actual ground distance (Se f f), in meters, captured side-by-side by

identical and synchronous vision modules without gaps and overlaps is equal to the product

of nvis and S, as shown in Equation 15. This configuration will then allow the use of less

powerful devices while operating at the required −→v travel of an agricultural field operation

such as spraying as illustrated in Figure 49.

Se f f = S×nvis (15)

Figure 49

Illustration of Multiple Adjacent Cameras for Plant Detection at nvis = 2 or Se f f = 2S

camera 1 camera 2

Seff

Travel Direction

S S

5.2.2 Field Map Modeling

A virtual field was prepared to test the concepts that were presented. A 1,000-

m field length (dl) with crops planted in hills at 0.2-m hill spacings (dh) was used. The

number of hills (nh) in the entire length of the field and plant hill locations (Xi), in meters,

120

were calculated using equations Equation 16 and Equation 17, respectively. A section of

the virtual field is presented in Figure 50. The frame at k = 0 is the starting frame just

outside the virtual field. The frame at k = 1 represents the first frame that entered the

virtual field

nvis =

⌊
dl

dh

⌋
(16)

Xi = I ×dh; i ∈ 1,2, ...nh (17)

Figure 50

Virtual Field with Map and Motion Modeling Parameters

df

Xi,k

Xi+1,k

do,k

Travel Direction

dh

i = 2i = 3

ds,kFrame Origin

dl

i = 5i = 6i = nh i = nh - 1

Kth
 fr

am
e

at
 t k

k
=

0

k
=

1

k
=

2

Fi
el

d
O

rig
in

ca
m

er
a

i = 4 i = 1

Fi
el

d
En

d

5.2.3 Motion Modeling

The robot was assumed to move from right to left of the field during the simulation,

as shown in Figure 50. Therefore, the right border of the virtual area was the assumed field

origin. The total number of frames (K) throughout the motion of the vision system then

becomes the number of d f -sized steps to completely traverse dl , as shown Equation 18.

121

K =
dl

d f
(18)

The elapsed time after several frame steps (tk), in seconds, was calculated by divid-

ing the number of elapsed frames (k) by the inference speed, as shown in Equation 19. tk

was then used to calculate the distance of the left (do,k) and right (ds,k) borders of the virtual

camera frame concerning the field origin, in meters, using a kinematic equation as shown

in Equation 20 and Equation 21, respectively. In Equation 21, S was subtracted from do,k

due to the assumed right-to-left motion of the camera.

tk = k× 1
fps

=
k

fps
;k ∈ 1,2, ...K (19)

do,k =
−→v travel × tk (20)

ds,k = do,k −S (21)

5.2.4 Detection Algorithm

The simulation was implemented using two Python scripts, which were publicly

available on GitHub. The first script, called “settings.py”, was a library that defined the

“Settings” object class. This object contained the properties of the virtual field, kinematic

motion, and camera parameters for detection. The second script, “vision-module.py”, was

a ROS node that published only the horizontal centroid coordinates of the plant hills within

the virtual camera frame. The central aspect of ROS was implementing a distributed archi-

tecture that allows synchronous or asynchronous communication of nodes [170]. Hence,

the ROS software framework was used so that the written simulation scripts for the vision

system can be used in simulating the performance and optimizing the code of a precision

spot sprayer that was also being developed as part of the future implementation of this

122

study.

When “vision-module.py” was executed, it initially loaded the “Settings” class and

fetched the required parameters, including Xi, from “settings.py”. The following algorithm

was then implemented for the detection:

1. Create an empty NumPy vector of detected hills.

2. For each kth frame in K total frames:

(a) tk, do,k and ds,k were calculated.

(b) For each i within the number of hills nh:

i. All Xi within the left border, do,k, and the right border, ds,k, were plant hills

within the camera frame

(c) Append detected hill indices to list

3. The number of detected hills (nd) was then equal to the number of unique detected

hill indices in the list.

In step 1, an empty vector was needed to store the indices of the detected plant hills.

In step 2, each kth frame represents a camera position as the vision system traverses along

the field. Step 2a calculated the elapsed time and the left and right border locations of

the frame. The specific detection method was performed in Step 2b, which compared the

current distance locations of the left and right bounds of the camera frame to the plant hill

locations. The plant hill indices that satisfied Step 2b-i were then appended to the NumPy

vector. The duplicates were filtered from the NumPy vector in Step 3, and the remaining

elements were counted and stored in the integer variable nd . Finally, the simulated de-

tection rate (rd,sim) of the vision system was then the quotient of nd and nh, as shown in

Equation 22.

rd,sim =
nd

nh
(22)

123

5.2.5 Experimental Design

A laptop (Lenovo ThinkPad T15g Gen 1) with Intel Core i7-10750H, 16GB DDR4

RAM, and Nvidia RTX 2080 Super was used in the computer simulation. The script

was implemented using Python 2.7 programming language and ROS Melodic Morenia in

Ubuntu 18.04 LTS operating system.

The simulation was performed at S = 0.5m, based on the camera configuration of

Chechliński et al. (2019) [78]. Sensitivity analysis was performed at dl values of 1, 10,

100, 1000, and 10,000 m. Literature review showed that 20,000 m was used in the study

of Villette et al. 2021 [203]. However, the basis for the dl used in their study was not

explained. Hence, sensitivity analysis was performed in this study to establish the sufficient

dl that would not affect rd,th and rd,sim. The resulting values of rd,sim were compared to rd,th.

inference speed of 2.4fps and travel velocity of 2.5 m
s were used for the sensitivity analysis

to have an ro < 1 at S = 0.5m. If a faster inference speed or slower travel was used, ro could

be equal to or greater than 1. This result will fall into Case 1 or 2 and could not be used for

sensitivity analysis.

The model was then simulated at different values of −→v travel and fps as shown in

Table 20 to estimate the detection performance of combinations of CNN model, hardware,

and −→v travel . Forward walking speeds using a knapsack sprayer typically ranged from 0.1 to

1.78m
s [80, 81, 82]. On the other hand, the travel velocities of boom sprayers ranged from

0.7 to 2.5 m
s [83, 84, 85]. Solid fertilizer application using a tractor-mounted spreader, on

the other hand, operated at 0.89 to 1.68 m
s [29, 204]. Finally, a mechanical weeder with

rotating mechanisms worked at 0.28-1.67 m
s [36, 209]. The literature review showed that

0.1 m
s was the slowest [210] and 2.5 m

s was the highest [85] forward velocities found. On

the other hand, the mid-point velocity of 1.3 m
s approximates the typical walking speed

using knapsack sprayers [80, 81, 82] and forward travel velocities of boom sprayers and

124

fertilizer applicators [83, 84, 85, 210].

Table 20

The Complete Factorial Design for Vision Module Simulation and Theoretical Analyses

Levels
Parameter

−→v travel ,m
s fps

Low (-1) 0.1 2.4

Standard (0) 1.3 12.2

High (+1) 2.5 22

On the other hand, 2.4 and 22 fps were the inference speeds of YOLOv3 running

on an Nvidia TX2 embedded system and a laptop with Nvidia 1070TI discrete GPU as

described in the study of Partel et al. (2019) [79]. Finally, 12.2 fps characterized the infer-

encing time of a custom CNN architecture or SSD MobileNetV1 CNN model optimized in

TensorRT and implemented an embedded system [91, 78].

The effect of increasing S using multiple camera modules in preventing missed

detection was also performed on treatments falling under Case 3.

5.2.6 Vision Module Development

The development of the vision module was divided into three phases: (1) hardware

and software development; (2) dataset preparation and training of the CNN model; and (3)

simulation and testing.

5.2.6.1 Hardware and Software. Table 21 summarizes the list and function of

the hardware components used to develop the vision module. Nvidia Jetson Nano with

4GB RAM was used to perform inferencing on a 1280 x 720 at 30 fps video from a USB

125

webcam (Logitech StreamCam Plus). Powering the whole system is a power adapter that

outputs 5VDC at 4A.

Table 21

Summary of Vision Module Hardware

Hardware
Model

Logitech StreamCam Plus Realtime video capture

Vision Compute Unit Nvidia Jetson Nano 4GB Image inferencing

Communication Bus USB 3.0 Communication with USB
devices

Power Adapter 5VDC 4A Power Adapter Supplies power to the vision
compute unit

Table 22 summarizes the software packages used to develop the software frame-

work of the vision module. The software for the vision module was written in Python

2.7. The detectnet object class of the Jetson Inference Application Programming Interface

(API) was used to develop the major components of the software framework. Detectnet ob-

ject facilitated connecting to the webcam using GStreamer, optimizing the PyTorch-based

SSD MobileNetV1 model into TensorRT, loading the model, performing inferences on the

video stream from the webcam, image processing for drawing bounding boxes onto the

processed frame, and displaying the frame. OpenCV is an open-source computer vision

library focused on real-time applications. It was used to display the calculated speed of the

vision module and convert the detectnet image format from red-green-blue-alpha (RGBA)

to blue-green-red (BGR), which was the format needed by ROS for image transmission.

126

Table 22

Summary of Vision Module Software

Software Package Function

Nvidia Jetson Inference
API

Facilitates camera connection, training of object detection
model, converting to TensorRT, loading of object detection
model, inferencing, and image processing

Python General programming language to implement the
algorithms

OpenCV Image processing

Robot Operating System
(ROS)

Image data, plant coordinate, and processing time
transmission

Ubuntu 18.04 ARM The operating system for Jetson Nano and hosts the other
software packages

To enable modularity, the software framework, as illustrated in Figure 51, was also

implemented using ROS version Melodic Morenia, which was the version compatible with

Ubuntu 18.04. The vision module node required two inputs: (1) RGB video stream from

a video capture device and (2) TensorRT-optimized SSD MobileNetV1 object detection

model. It calculates and outputs four parameters, namely: (1) weed coordinates, (2) crop

coordinates, (3) processed images, and (4) total delay time. Each parameter was published

into its respective topics. Table 23 summarizes the datatype and the function of these

outputs.

127

Figure 51

Software Framework of the Vision Module

Table 23

Output Parameters of the Vision Module with Their Description

Parameter Datatype Description

Weed coordinates, px Integer Array of integers representing the
x-coordinate of all detected weed per
frame

Crop coordinates, px Integer Array of integers representing the
x-coordinate of all detected crops per
frame

Images CvBridge Image data with detections

Time delay, s Float Total delay time of the vision module as
a result of inferencing, image
processing, calculation, and data
transmission

5.2.6.2 Dataset Preparation and Training of the CNN Model. Using the Jet-

son Inference library, a CNN model for plant detection was trained using SSD MobileNetV1

object detection architecture and PyTorch machine learning framework. 2,000 sample im-

128

ages of artificial potted plants at 1280 x 720 composed of 50% weeds and 50% plants were

prepared. 80% and 20% of the datasets were used for CNN model training and validation,

respectively. A batch size of 4, a base learning rate of 0.001, and a momentum of 0.90 were

used to train the model for 100 epochs (5,000 iterations).

5.2.6.3 Testing and Simulation. The performance requirement for the vision

module was to avoid missed detections for spraying operations at walking speeds, which

was 0.1 m
s at minimum [80, 81, 82]. The Jetson Nano and webcam were mounted at a height

where S = 0.79 m (Figure 52). S was determined so that the top projections of the potted

plants were within the camera frame. The camera and plants would not collide during

motion. A conveyor belt equipped with a variable speed motor was used to reproduce the

relative travel velocity of the vision system at 0.1, 0.2, and 0.3 m
s . A maximum of 0.3 m

s

was used. Beyond this conveyor speed, consistent dh at 0.2 m was difficult to maintain

despite three people performing the manual loading and unloading, as the potted artificial

plants were traveling too fast.

129

Figure 52

Laboratory Test Setup of the CNN-Based Vision Module

A total of 60 potted plants were loaded onto the conveyor for each conveyor speed

setting. The detection was done at a minimum conference threshold of 0.5. Detected and

correctly classified plants were considered true positives (TP), while detected and incor-

rectly classified plants were categorized as false positives (FP). Missed detections were

classified as False Negatives (FN). The application-level precision (pd) and recall (rd) of

the vision module were then determined using Equation 1 and Equation 2, respectively.

5.3 Results and Discussion

The sensitivity of rd,th and rd,sim to the total traversed distance was first determined

to establish the dl used in the experimental design. The influence of −→v travel and fps at

specific S on rd,th and rd,sim were then compared and analyzed. Finally, the results of

performance testing the vision module were compared to theoretical and simulation results.

130

5.3.1 Sensitivity Analysis

As illustrated in Figure 53, the sensitivity analysis results showed that rd,th and

rd,sim converged at a 10-m traversed distance. The 20% difference of rd,th from rd,sim

can be attributed to the different variables considered to determine each parameter. rd,th

used inference speed, travel velocity, and capture width to theoretically calculate the gaps

between consecutive processed frames related to the detection rate.

Figure 53

The Theoretical (Solid) and Simulated (Broken-Line) Detection Rates of the Virtual Vision
Module

On the other hand, rd,sim determined the detection rate using the number of detected

unique plants as influenced by traversed distance, hill spacing, inference speed, travel ve-

locity, and capture width (Sections 2.2 to 2.4). Results showed that simulation better ap-

proximated the detection rate than theoretical approaches at less than a 10-m traversed

distance. These results infer that at very short distances, rd,sim approximates the detection

131

rate more accurately than rd,sim. However, for long traversed distances, the influence of hill

spacing on the detection rate was no longer significant, and rd,th can be used to calculate

the detection rate.

5.3.2 Effects of Travel Velocity and Inference Speed

Table 24 summarizes the theoretical and simulation. Comparing the rd,th to rd,sim

for any combinations of the tested parameters showed that detection rates were equal. Re-

sults also showed that there were no missed detections at any −→v travel when the inference

speeds were at 12.2 and 22 fps (Case 2), as illustrated in Figure 54 and Figure 55.

Table 24

Theoretical and Simulation Performance at S = 0.5m at Different Travel Velocities and
Inference Speeds

Treatment No. −→v travel , m
s fps d f ,

m
f rame ro Case rg rd,sim rd,th

1 0.1 2.4 0.0417 12.00 2 0.00 1.00 1.00

2 0.1 12.2 0.0082 61.00 2 0.00 1.00 1.00

3 0.1 22 0.0045 110.00 2 0.00 1.00 1.00

4 1.3 2.4 0.5417 0.92 3 0.08 0.92 0.92

5 1.3 12.2 0.1066 4.69 2 0.00 1.00 1.00

6 1.3 22 0.0591 8.46 2 0.00 1.00 1.00

7 2.5 2.4 1.0417 0.48 3 0.52 0.48 0.48

8 2.5 12.2 0.2049 2.44 2 0.00 1.00 1.00

9 2.5 22 0.1136 4.40 2 0.00 1.00 1.00

132

Figure 54

Simulated Plant Hill Detection Rates of the Vision Module Different Velocities

Figure 55

Simulated Plant Hill Detection Rates of the Vision Module Different Inference Speeds

133

These results infer that one-stage object detection models, such as YOLO and SSD,

running on a discrete GPU such as 1070TI, have sufficient inference speed to avoid detec-

tion gaps in typical ranges of travel velocities for agricultural field operations. The result

was also comparable to the 92% precision of the CNN-based MVS with 22 fps inference

speed in the study of Partel et al. (2019) [79]. Therefore, these results infer that using a

one-stage CNN model such as YOLOv3 on a laptop with at least Nvidia 1070TI can pro-

vide sufficient inference speed to avoid gaps in different field operations. However, the

study did not report the travel velocity and field of view length of their setup. Thus, only

an estimated performance comparison can be made.

The results also agree with other studies with known S, −→v travel , and fps. In the study

of Chechliński et al. (2019) [78], their CNN-based-vision spraying system had S = 0.55m,

−→v travel = 1.11m
s , and fps = 10.0. Applying these values to equation (2) also yields ro > 1

(Case 2), which correctly predicted their results of full-field coverage. In the study of Esau

et al. (2018) [134], their vision-based spraying system had S = 0.28m, −→v travel = 1.77m
s ,

and fps = 6.67 and also falls under Case 2. Similarly, the vision-based robotic fertilizer

application in the study of Chattha et al. (2018) [29] had a S = 0.31m, −→v travel = 0.89m
s ,

and fps = 4.76. Again, calculating ro yielded Case 2, which also agrees with their results.

At 2.4 fps, the simulated MVS failed to detect some plant hills when −→v travel was

1.3 (Treatment 4) or 2.4 m
s (Treatment 7). In contrast, missed detections were absent at

0.1m
s (Treatment 1). As mentioned in Section 5.2.5, treatments 1, 4, and 7 represent typical

inference speeds of CNN models, such as YOLOv3 running in an embedded system, such

as Nvidia TX2 [79]. From these results, it can be inferred that unless CNN object detection

models were optimized, as illustrated in previous studies [78, 211], MVS with embedded

systems shall only apply to agricultural field operations at walking speeds.

Figure 56 illustrates the detected hills per camera frame along the first 10-m tra-

versed distance at 2.4 fps (treatments 1, 4, and 7). From Figure 56, three pieces of in-

134

formation can be obtained: (1) the absence of vertical gaps between consecutive frames;

(2) horizontal overlaps among consecutive frames; and (3) the detection pattern. In Fig-

ure 56a, the absence of vertical gaps at 0.1m
s infers that all the hills were captured as the

vision moved along the field length. The horizontal overlaps among consecutive frames

also illustrate that a plant hill was captured by more than one processed frame. Finally,

a detection pattern was repeated every 24 consecutive frames or approximately every 1-m

length. The pattern length was the product of the total frames to complete a cycle and d f .

In contrast, the vertical gaps in some consecutive frames at 1.3 m
s , shown in Fig-

ure 56b, illustrated the missed detections. Horizontal overlaps were also absent. Hence, the

detected plant hills were only represented in the frame once. The vision module traveled

too fast and processed the captured frame too slowly at the set capture width, as demon-

strated by the detection pattern of one missed plant hill every seven consecutive frames or

approximately every 3.8-m traversed distance.

Similar results were also observed at 2.5 m
s travel velocity, as shown in Figure 56c.

However, due to faster travel speed, the vertical gaps were more extensive than Figure 56b.

Observing the detection pattern showed that 14 plant hills were being undetected by the

vision system every five frames or approximately every 5.21-m traversed distance. This

pattern that forms every 5.21 m further explains the difference in the rd,th and rd,sim in the

sensitivity analysis when the traversed distance was only 1 meter. A complete detection

pattern was already formed when the distance was more than 10 meters, resulting in better

detection rate estimates.

From these results, two vital insights can be drawn. First, at ro < 1, rd,th shall have

a margin of error when the length of the detection pattern is less than the traversed distance.

Second, object tracking algorithms, such as Euclidean-distance-based tracking [212] that

require objects to be present in at least two frames, would not apply when ro ≤ 1. Hence,

the importance of ro > 1 in MVS designs is further emphasized.

135

Figure 56

Detected and Undetected (Broken Red Lines) Plant Hills on Each Frame and Detection
Pattern (Blue Broken Lines)

(a) 0.1 m
s

(b) 1.3 m
s

(c) 2.5 m
s

136

5.3.3 Effect of Increasing S or Multiple Cameras

In cases where ro < 1 (Case 3), a practical solution to increase −→v travel,max is to

raise the camera mounting height, which in effect, shall increase S. However, if raising

the camera mounting height is inappropriate, as doing so shall also decrease object details,

using multiple cameras can be a viable solution.

Figure 57 illustrates the effect of increasing the effective S or using multiple cam-

eras on the calculated values of −→v travel,max for the three levels of inference speeds (2.4,

12.2, and 22 fps) simulated at S = 0.5m. The results showed that treatments with missed

detections exceeded the allowable −→v travel,max. For treatments 4 and 7, the permissible travel

velocity was only 1.2m
s using a single camera module, which was less than the simulated

−→v travel of 1.3 and 2.5m
s , respectively.

Figure 57

Theoretical Maximum Travel Velocity to Prevent Missed Detections at Different Number of
Cameras and Inference Speeds

Calculating nvis using Equation 14 for treatments 4 and 7 showed that 2 and 3 vision

modules, respectively, were required to prevent missed detections. Thus, using two vision

137

modules for treatment 4 prevented missed detections, as shown in Figure 58. The 6th, 20th,

and 34th frames captured by the second camera detected the plants undetected by the first

camera.

Figure 58

Detected and Undetected (Broken Red Lines) Plant Hills on Each Frame Along the First
10 m at f ps = 2.4

(a) 1.3 m
s at ncam = 2

(b) 2.5 m
s at ncam = 3

As predicted, a two-vision-module configuration for treatment 7 was insufficient

in preventing missed detections since the simulated −→v travel of 2.5 m
s of the vision system

was still higher than the increased −→v travel,max. As illustrated in Figure 58a, the two-camera

configuration would still result in an undetected hill on the 16th frame without a third

camera.

Based on these simulated results, the problem of missed detection due to the slow

138

inference speed of embedded systems could be potentially solved by using multiple, ad-

jacent, non-overlapping, and colinear cameras along the traversed row when raising the

height of the camera is unwanted.

5.3.4 Vision Module Simulation and Testing Performance

Figure 59 shows the sample detection of the vision module. Results showed that

using a TensorRT-optimized SSD MobileNetV1 to detect plants in 1280×720 images on an

Nvidia Jetson Nano 4GB had an average inference speed of 45 fps. This average inference

speed only represented the elapsed time to inference on an already loaded frame. However,

due to calculation overheads caused by additional data processing and transmission, the

average effective inference speed of the vision module was only 16 fps.

Figure 59

Sample Real-Time Inferencing Using Trained SSD MobileNetV1 Model and Optimized in
TensorRT

139

The results using the theoretical approach and simulation for the vision module are

shown in Table 25 Using equation (2), the configuration of the laboratory setup falls under

Case 2 since ro > 1. Then, using Equation 12, rd,th was calculated to be equal to 1.00.

Applying Equation 13 yields −→v travel,max = 12.64 m
s , which was highly sufficient for the

target 0.3 m
s and inferred that multiple vision modules were not required to prevent missed

detections. Theoretical prediction of the performance of the vision module showed that the

configuration was sufficient to prevent missed detection. Likewise, the theoretical result

was confirmed by the simulation results that showed no missed detections (rd,sim = 1.00)

for both crops and weeds among the simulated −→v travel .

Table 25

Theoretical and Simulation Performance of the Developed Vision Module Different Test
Velocities

−→v travel,
m
s d f ,

m
f rame ro Case rg rd,th rd,sim

0.1 0.0063 126.40 2 0.00 1.00 1.00

0.2 0.0125 63.20 2 0.00 1.00 1.00

0.3 0.0188 42.13 2 0.00 1.00 1.00

Table 26 summarizes the precision and recall of the trained CNN model in detecting

potted plants at different relative travel velocities of the conveyor. Results showed that the

combination of an optimized SSD-MB1-TRT running in a Jetson Nano 4GB has robust

detection performance, and incorrect or missed detections were absent despite increasing

travel velocity. Furthermore, the detection rates were equal when comparing the value of

rd to rd,th and rd,sim. The recall was used for comparison instead of precision since the

former is the ratio of the correctly detected plants to the total sample plants. This definition

of rd in Equation 2 is equivalent to the definition of rd,sim in Equation 22. Since the rd ,

140

rd,th and rd,sim were equal, these results proved the validity of the theoretical concepts

and simulation methods presented in this study. Hence, rd,th and rd,sim can be used to

theoretically determine the detection rate of a vision system in capturing plant images as a

function of −→v travel and fps with known S.

Table 26

The Detection Performance of the CNN-Based Vision Module

−→v travel,
m
s TP FP FN pd rd

0.1 60 0 0 1.00 1.00

0.2 60 0 0 1.00 1.00

0.3 60 0 0 1.00 1.00

5.3.5 Proposed Reference Chart

Figure 60 illustrates the proposed reference chart in designing an MVS-CNN for

plant detection based on the results of simulations and actual systems. The horizontal and

vertical axes represent textitfps of the MVS-CNN and −→v travel , respectively. On the other

hand, the diagonal lines represent the S. Figure 60a shows the plot of the treatments in the

simulation run. Identical to the simulation results, the plot indicates that treatments above

the S = 0.5 m diagonal lines for the selected test fps had missed detections.

141

Figure 60

Proposed Reference Chart in Designing an MVS-CNN for Plant Detection

(a) Test Simulations

(b) Actual Systems

142

On the other hand, Figure 60b shows the plot of existing systems and the ranges

of −→v travel depending on the field operation. Based on Figure 60b, the developed vision

module with S = 0.79 m and 16 fps has adequate performance for any field operation.

Nonetheless, a certain degree of overlap is desired (ro > 1) when implementing MVS-

CNN for plant detection to increase the number of inferencing attempts. For example, the

developed system could examine a scene approximately four times for a spraying operation.

Lastly, the graph could be a reference chart when selecting hardware and CNN ar-

chitecture combinations for specific field operations. Using a reference −→v travel of a desired

field operation and probable S, the minimum fps of MVS-CNN can be determined. For

example, for boom spraying at an average of 2 m
s and desired field of view of S = 0.5 m,

a minimum of 4 fps is required to prevent gaps between processed frames at ro = 1. If a

higher ro is desired, the minimum effective inference speed is multiplied by ro. For exam-

ple, if an ro of 2 is desired, the effective inference speed from the previous example is 8

fps.

In the next chapter, we extended the functionality of the developed MVS-CNN to

include vision-based velocity estimation and plant targeting. Further, the developed MVS-

CNN was connected to a sprayer module, and the overall system was tested for accuracy

for real-time precision spraying.

143

Chapter 6

Development a CNN-Based Precision Sprayer with Vision-Based Velocity Estimation

and Valve Control Using Variable Time Delay 1

6.1 Introduction

Motion estimation plays an important role in the operation of precision agricul-

tural equipment. Traditionally, RTK-GPS or wheel encoders are used to determine the

position and velocity of precision sprayers. In this chapter, the plant bounding box detec-

tions of the MVS-CNN were tracked, and the Euclidean distances traveled by the plants

in frame sequences were used to estimate the relative velocity of a precision sprayer. Tra-

ditionally, MVS applications in precision agriculture (PA) focus on object detection [49]

and navigation guidance [214]. Very few studies used MVS for motion estimation of PA

equipment. [105] estimated the distance traveled using a tractor-drawbar-mounted camera,

and the travel distance was calculated from consecutive images using a k-nearest neigh-

bor. Their vision-based system achieved lower errors (≈ 3 mm) than wheel-encoder-based

measurements (≈ 7 mm) on soil tests.

Nonetheless, vision-based velocity estimation for precision spraying remains un-

explored. We demonstrate that accurate spot spraying can be achieved using vision-based

velocity estimation combined with VTD queuing and dynamic filtering.

Vision-based velocity estimation and plant targeting algorithms were added to the

previously developed MVS-CNN in Chapter. By adding velocity estimation capability to

the MVS-CNN, VTDs can be calculated without relying on auxiliary systems for motion

estimation. Further, a sprayer module was connected to the MVS-CNN to utilize VTD

queuing and dynamic filtering. The result was a reconfigurable design called a modular

agrochemical precision sprayer (MAPS). Potentially, the proposed method can simplify

the overall design and reduce the total system cost of vision-based precision sprayers.

1Some parts of this chapter were published in [213].

144

6.2 Materials and Methods

6.2.1 Scalable Unit

A sprayer module was integrated with the developed vision module from Chapter

5 to form a Scalable Unit (SU). The SU represents the fundamental working unit of the

precision sprayer. The main functions of the SU were implemented as virtual nodes and

communicated using Robot Operating System (ROS). An overview of this workflow is

summarized in Figure 61.

Figure 61

Workflow of an SU of the MAPS

Sprayer Module
S

pr
ay

er

N
od

e

Vision Module

Vi
si

on

N
od

e
Ta

rg
et

in
g

N
od

e

Filter Valve Opening Schedule

Stream RGB Image CNN-based Detection Track Detected Plants Estimate Velocity

Calculate Variable
Time Delays

Send Scheduled
Trigger Commands

Open Valve Close Valve Send
Feedback

Que Valve Opening Schedule

Spray for a Specific
Duration

To start the process, an RGB camera (Logitech StreamCam) streams 1280 px ×

720 px images at 30 fps to a vision computing unit (Nvidia Jetson Nano 4GB) via a

universal serial bus (USB). The vision computing unit hosts two virtual nodes: (1) vision

and (2) targeting nodes. Each node has specific functions. The vision node handles image

streaming, CNN-based detection, tracking, and velocity estimation. On the other hand,

145

the targeting algorithm calculates VTDs, issues valve trigger commands, and filters valve

opening schedules. The details of each step executed by the vision and targeting nodes are

discussed in the succeeding subsections.

An Arduino Nano microcontroller (ATmega328P) receives the valve trigger com-

mands from the vision module via USB. It then sends a 5V signal to a relay (Arceli KY-019)

that opens the 12VDC solenoid valve (US Solid USS2-00006). A fan-type sprayer nozzle

(Solo 4900654-P) then sprays a target plant at a specified fixed spraying duration (tspraying)

and rate of 1.6 L/min. The nozzle was positioned such that it was horizontally aligned to

the center of the camera frame (Figure 62). At the end of each spraying event, the micro-

controller sends feedback to the Jetson Nano, which filters valve opening schedules based

on the velocity, spraying duration, and filter size factor (FSF).

Figure 62

The Bottom View of the Sprayer Showing the SU Components

Sprayer Nozzle
Solenoid Valve

RGB Camera

146

6.2.1.1 CNN-Based Detection. The vision module implements the same soft-

ware architecture from Chapter 5 (Figure 51). The TensorRT-optimized SSD-MB1 (SSD-

MB1-TRT) generates bounding boxes around detected objects. It also generates parameters

such as the object class and frame coordinates in pixels (Figure 63). When the MVS-CNN

detects a crop in the current frame, the center coordinates of the generated bounding boxes

are stored in a list. On the other hand, when a weed is detected, the right-side (wx,r) and

center coordinates of the bounding box are recorded in another list. The targeting algorithm

wx,r is the reference start position for the opening of the solenoid valve. On the other hand,

the centers (xi, yi) were used in the tracking algorithm. All coordinates were in pixels, and

the top-left corner of the frame served as the frame origin.

Figure 63

Sample Weed and Crop Detections Using SSD-MB1

6.2.1.2 Tracking Algorithm. The vision node implemented Euclidean-distance-

based tracking for each plant class. Thus, plants and weeds can be counted separately. Fig-

ure 64 super-imposes two consecutive frames, which were labeled for reference. Suppose

147

there were a total of I and J detected plants of a class in the current and previous frames,

respectively, the Euclidean distances (de|i, j), in px, between the centers of bounding box

detections in the current (xi, yi) and (x j, y j) previous frames, for each i ∈ I to all j ∈ J, were

calculated using equations Equation 23, Equation 24, and Equation 25.

dx|i, j = xi − x j (23)

dy|i, j = yi − y j (24)

de|i, j =
√

d2
x|i, j +d2

y|i, j (25)

Figure 64

Distances Used in Tracking Plants

(xj, yj)
(xi, yi)

dx | i, j
dy | i, j

previous bounding box
current bounding box

travel direction

If de|i, j ≤ de|thresh, a pre-determined tracking threshold, then we could determine

that (xi, yi) and (x j, y j) represented the same object in the current and previous frames.

148

Note that de|thresh was tuned with respect to frame rate and operating velocity. The full

tracking algorithm was implemented as follows:

1. Sort i from highest to lowest x-coordinate (xi) to start at the right-most plant.

2. If the previous frame J is empty, then assign a unique tracking index to each i ∈ I.

3. Else, for each i ∈ I:

(a) Calculate de|i, j for the current i for all j ∈ J.

(b) Assign tracking index of j with min(de|i, j ≤ de|thresh) to i and delete j ∈ J. In

detail, this step will transfer the indices of repeated objects from the previous

frame to the current one by generating a tracking index lists (x j,y j, Index j) and

(xi,yi, Indexi). Then, if min(de|i, j ≤ de|thresh), we let Indexi = Index j.

(c) Assign new tracking index to i if all calculated de|i, j > de|thresh as they are new

objects in the current frame.

6.2.1.3 Velocity Estimation Algorithm. The vision module estimates velocity

at the frame center and assigns buffer regions (sbu f f er) at the left and right sides of the

frame (Figure 65). Each buffer region was arbitrarily set to be 30% of the horizontal camera

resolution (sx) and parallel to the travel direction. This way, we can avoid partially formed

bounding boxes when only a portion of the plant was within the camera frame. Further, we

can also minimize the effect of lens distortions at the edge.

149

Figure 65

Sample Image of Crop and Weed with Detections, Velocity Measurements, and Extents of
the Location and Velocity Estimation Region (Red Line)

(a) Crop

(b) Weed

Knowing the horizontal frame displacement (dx|i, j) from the tracking algorithm and

the frame time difference of consecutive processed frames (∆tvision|k), the frame travel ve-

150

locity of each plant (−→v f rame), in px/s, was estimated using the following equation:

−→v f rame =
dx|i, j

∆tvision|k
= dx|i, j × f pse f f ective (26)

Note that ∆tvision|k is the total time needed to perform CNN-based inferencing, ob-

ject tracking, and data transmission. k represents the frame index since the capture starts.

The inverse of ∆tvision|k equals f pse f f ective. The travel velocity (−→v travel), in m/s, was then

estimated using the following equation:

−→v travel =
−→v f rame ×LCR (27)

The linear capture resolution (LCR), in m/px, is the conversion factor from pixel to

meter depending on the capture device and mounting height. A moving average with three

sample sizes was then applied to the −→v travel for smoothing.

6.2.1.3.1 Estimating LCR. Preliminary tests showed that due to the height of

the plant, the detection plane was situated at an offset distance from the ground. This offset

distance was represented as a fraction of the height of the plant, denoted as plant height

factor (PHF), as illustrated in Figure 66.

151

Figure 66

Distance Nomenclature Illustrating for LCR Calculation

PHF was then used to calculate an adjusted field of view (Se f f ective) along the travel

direction. Se f f ective is the size of the field of view, in meters, based on the location of the

bounding box plane. Using similar triangles, shown in Equation 28, Se f f ective was then

calculated as a function of the camera mounting height from the ground (hcam), in meters;

plant height (hplant), in meters; actual field of view (Sx) along the travel direction at ground

level, in meters; and PHF.

Se f f ective = [hcam − (hplant ×PHF)]× Sx

hcam
(28)

Finally, LCR can be calculated using Equation 29. sx was 1280 px in the setup since

the long side of the image was parallel to the travel direction.

152

LCR =
Se f f ective

sx
(29)

6.2.1.3.2 Maximum Measurable Velocity. Since the decision for tracking an ob-

ject requires de|i, j ≤ de|thresh, the dx|i, j can only have a maximum value equal to de|thresh.

This situation can occur when there is no y-component of the frame displacement, as il-

lustrated in Figure 64, while the inference speed and travel velocity perfectly match [198].

Thus, substituting de|thresh to dx|i, j to equations Equation 26 and Equation 27 yields the

following equation:

−→v travel|max = de|thresh ×LCR× f pse f f ective (30)

where −→v travel|max is the theoretical maximum measurable travel velocity of the

MVS, in m/s. However, imperfect camera mounting, vibrations, and fluctuations in the

size of the bounding box may cause the actual −→v travel|max be less than the theoretical value

in Equation 30.

6.2.1.4 Targeting Algorithm. The targeting algorithm has three sub-processes

that manage the list of valve opening schedules (ti,k). The sub-processes include (1) popu-

lating the valve opening schedule list, (2) sending trigger commands to the sprayer module,

and (3) filtering the list of valve opening schedules for elapsed entries. The detailed steps

for each subprocess are shown in Figure 67.

153

Figure 67

The Workflow of the Targeting Algorithm of the MAPS Showing the Three Sub-Processes

Sub-Process 1
(Populating)

Sub-Process 3
(Filtering)

Sub-Process 2
(Sending)

From Sprayer Module

To Sprayer Module

Start

New set of
weed

coordinates
(wx,r|i,k, i ∈

I)

● Fetch absolute
system time (tk),
vision (Δtvision|k)
and spray time
delays (Δtsprayer),
and configurations
(LCR, ds, sx)

● Calculate
instantaneous
weed distance
(di,k) from sprayer
nozzle

di,k Δti,k

● Fetch
instantaneous
velocity

● Calculate travel
time (Δti,k)

Append
ti,k to
spray

schedule
list

End

Δtvision|k+ Δtsprayer

ti,k ≤
tsystem

No
Send “Wait”
Command to

Sprayer Module

Send “Trigger”
Command to

Sprayer Module

Yes

“0.0”

“1.0”

End

Start “1.0”
● Fetch tsystem
● Calculate filter

kernel (tfilter)
● Check each ti,k

ti,k ≤ tfilter
Delete ti,k from

List

Start

Yes
End

List
of ti,k

tsystem

● Fetch
system
time
(tsystem)

● Check
each ti,k

tk
Calculate VTDi,k and valve opening

schedules (ti,k)
ti,k

6.2.1.4.1 Sub-Process 1: Populating. When the vision node publishes a new

set of weed coordinates (wx,r|i,k), the right-side coordinate of the bounding boxes of i ∈ I

number of detected weeds, the instantaneous distances from the sprayer (di,k), in meters,

of each i detected weed (i ∈ I) at frame k were calculated using Equation 31, as illustrated

in Figure 68. Note that the spray nozzle was mounted 0.45 m from the ground and had an

elliptical spray pattern 0.15 m and 1.08 m. The shorter axis was parallel to the direction

of travel. During this instance, the targeting algorithm stored the absolute time (tk) when

the weed coordinates were received. The distance (ds) between the nozzle and sprayer was

0.41 m.

di,k = ds − [(wx,r|i,k −
sx

2
)×LCR] (31)

154

Figure 68

Distance Nomenclature of Targeting Algorithm Showing the ith Detected Plant at the kth

Captured Frame

The targeting node then used the most recent published values of −→v travel to calculate

the required travel time (∆ti,k), in seconds, for the target to reach the effective spray region

of the nozzle (Equation 32).

∆ti,k =
di,k

−→v travel
(32)

The valve trigger delay (VTD) for each i detected weed at the current k frame was

then calculated using Equation 33. Image processing and transmission time (∆tvision|k) was

then subtracted from ∆ti,k to represent the actual instance of image capture. Similarly, the

sprayer latency time ∆tsprayer was also deducted from ∆ti,k to compensate for the unavoid-

able time delay by the sprayer mechanism. Preliminary tests recorded 9.50 ±2.62 ms la-

tency for the Jetson Nano to send a triggering command to the Arduino Nano. The response

155

time of the solenoid valve was approximately 95 ms based on preliminary tests. Hence a

105ms total spraying latency (∆tsprayer) was used. These calculated values of V T Di,k were

then appended to the list of valve opening schedules at 1 ms resolution. Finally, the trigger

schedule (ti,k) of each detected weed at frame k was calculated in Equation 34.

V T Di,k = ∆ti,k − (∆tvision|k +∆tsprayer) (33)

ti,k = tk +V T Di,k (34)

6.2.1.4.2 Sub-Process 2: Sending. Since ti,k has 1 ms resolution, sub-process 2

monitors the valve opening schedule list at 100 Hz. If a time value in the spray schedule

elapsed, i.e. a ti,k is less than the system time (tsystem), the targeting algorithm publishes

a value of 1.0 to the trigger command topic; otherwise, a value of 0.0 is published. We

reserve the values between 0.0 and 1.0 for future improvements where the nozzle can be

partially opened.

6.2.1.4.3 Sub-Process 3: Filtering. When feedback is received from the sprayer

module, sub-process 3 checks each ti,k in the list, and any ti,k within the effective spray

region were deleted to prevent unnecessary multiple sprays. This step is performed by

comparing ti,k to a reference filter time (t f ilter) that was calculated using Equation 35. tsystem

was the previous spraying reference time measured by sub-process 2. Any ti,k ≤ t f ilter are

deleted.

t f ilter = tsystem +FSF ∗ tspraying (35)

The filter size factor (FSF) dictates the intensity of filtering. It scales the spraying

duration (tspraying) and defines the allowable overlap between consecutive sprays.

156

6.2.2 CNN Model Development

1,643 sample images at 1280 px× 720 px with 1,694 potted artificial crops and

1,967 potted artificial weeds were captured using Logitech StreamCam in laboratory and

field settings. The images were annotated using LabelImg [182]. Figure 69 shows samples

of annotated images. The dataset was then randomly stratified into 80% and 20% training

and validation sets, respectively.

Figure 69

Sample Annotated Images of Artificial Weeds and Crops in (a) Laboratory and (b) Outdoor
Settings

(a) Indoor

(b) Outdoor

157

The SSD-MB1 model was trained using NVidia Jetson Nano 4GB and Pytorch-

SSD [195]. A batch size of 4, a base learning rate of 0.001, and a momentum of 0.90

were used to train the model. First, the training was performed for 115 epochs using a

pre-trained model from a previous study of the authors [198]. Second, the trained model

was converted to ONNX format using the conversion script in Pytorch-SSD [195] and then

optimized using TensorRT [185].

6.2.3 Testing of Vision-Based Velocity Estimation

The tests were performed by comparing the estimated −→v travel using the proposed

vision-based approach against the actual measured travel velocity (−→v actual) of sample crop

and weed. The mean absolute error or MAE (Equation 36) was used for evaluating the

accuracy of measurements. The significant differences among MAEs were compared using

ANOVA and Tukey’s HSD at 95% confidence level test (N = 30 for each treatment).

MeanAbsoluteError =
1
N

N

∑
n=1

|−→v travel|n −−→v actual|n| (36)

The test was implemented using a laboratory setup in Figure 70. The setup was

composed of a single SU attached to a fixed frame and had a vision module that transmitted

processed images at 1280 px× 720 px and 9 f ps. A potted artificial crop and weed with

0.33- and 0.34-m heights, respectively, were used as test samples. The average height of

the two samples was used.

158

Figure 70

Laboratory Setup for Velocity Calibration and Preliminary Spraying Performance Testing
of the SU

Micro-controller +
Relay Assembly

Vision Compute
Unit

RGB Camera

Sprayer Nozzle

Light Indicator

Conveyor Belt

A de|thresh equal to 100 px was initially used to determine the effect of different

PHFs (0.1 to 1.0 at 0.1 intervals) on the accuracy of the proposed approach. Then, the

system was tested at different tracking thresholds (50, 100, and 150 px) using the optimum

PHF to determine the effect of de|thresh on the accuracy of the system. The tests were

performed at ten-speed settings (10% to 100% at 10% intervals) of the electric conveyor

motor and three trials. The −→v actual at the different conveyor motor power settings ranging

from 0.04 to 0.53 m/s (0.14 to 1.91 km
h). The MVS was tested up to de|thresh of 150 px in the

laboratory since a significant change in the measured error was no longer observed despite

increasing de|thresh.

6.2.4 Sprayer Performance Testing

This section outlines the performance parameters, hardware setup, and field exper-

iments to optimize and characterize the performance of the sprayer. The metrics used are

presented first and followed by the experiments conducted.

159

6.2.4.1 Performance Metrics. A set of metrics, similar to the studies of [79]

and [73], were used to characterize the performance. Table 27 summarizes the detection

and spraying parameters observed during the field experiments.

Table 27

Parameters in the Performance Testing of the Precision Sprayer

Parameters
Description

Symbol Name

T P True Positive Number of weeds correctly identified as weeds
by the vision system

FP True Positive Number of crops incorrectly identified as weeds
by the vision system

T N True Negative Number of crops correctly identified as crops by
the vision system

FN False Negative Number of weeds incorrectly identified as crops
by the vision system

A1 Single Spray, Full
Coverage

Number of weeds completely sprayed with a
single triggering of the solenoid valve

A2 Multiple Spray, Full
Coverage

Number of weeds completely sprayed with
multiple triggering of the solenoid valve

B Partial Coverage Number of weeds partially sprayed with a single
triggering of the solenoid valve

C Miss Spray Number of weeds missed sprayed due to early or
delayed opening of the solenoid valve

D Wrong Spray Number of crops fully sprayed due to early
opening or delayed closing of the solenoid valve

E No Spray Number of weeds not sprayed

160

The performance metrics are then summarized in Table 28. The application-level

detection precision (pd) measures the fraction of the positive detections correctly identified

as weeds. On the other hand, the application-level detection recall (rd) was the fraction of

correctly detected weed samples over the total number of weed samples.

Table 28

Calculated Performance Metrics of the Precision Sprayer

Symbol Description Formula

pd Detection Precision pd = T P/(T P+FP)

rd Detection Recall rd = T P/(T P+FN)

T T Total Targets T T = A+B+C+E

T S Total Sprayed T S = A+B+C+D

FS1 Single Full Spray Rate FS1 = A1/T T

FS2 Multiple Full Spray Rate FS2 = A2/T T

FS Full Spray Rate FS = FS1 +FS2

PS Partial Spray Rate PS = B/T T

MS Miss Spray Rate MS =C/T T

WS Wrong Spray Rate WS = D/T S

NS No Spray Rate NS = E/T T

ps Spraying Precision ps = 1−WS

rs Spraying Recall rs = 1− (MS+NS)

The total targets (T T) were the number of weed samples during the test. On the

161

other hand, the total sprayed (T S) was the total number of crops and weeds that were

sprayed. The rate of each spray type was then classified as full (FS), partial (PS), miss

(MS), or no sprays (NS). On the other hand, the wrong spray (WS) described the fraction

of the sprays which incorrectly targeted a crop. The rates of correct spray attempts that

targeted the weeds were then expressed as the spraying precision (ps). Finally, the spraying

recall (rs) was the fraction of the targets that were either fully or partially sprayed.

6.2.4.2 Field Experiments. Two experiments were performed to optimize and

characterize the overall performance of the sprayer (Figure 71). All experiments were

performed at walking speeds. The videos of each run showing the nozzle spray and the

plants were recorded to evaluate and characterize the spraying instances (Figure 72). The

vision modules were set to transmit processed images at a reduced size of 569 px×320 px,

resulting in an average detection speed of 19 f ps. Each camera was mounted at 0.71 m

from the ground and had a field of view of 0.956 m (Sx) parallel to the travel direction. This

setting resulted to a 0.6854-m Se f f ective and 0.5354 ×10−3-m/px LCR.

Figure 71

The Two Field Experimental Setups

(a) Field Experiment 1 (b) Field Experiment 2

The first experiment (Figure 71a) tested a single SU at two levels of ti,k filtering

(low and high) and three levels of tspraying (200, 350, and 500 ms). A low level of ti,k

162

filtering would only delete valve opening schedules that were within half spraying dura-

tion (FSF = 0.5). In contrast, a high level of ti,k filtering would delete all ti,k that were

within the full spraying duration (FSF = 1.0). 30 potted crops and 30 weeds were ran-

domly positioned along a 0.50-m wide plant row at 0.30-m hill spacing. For the second

experiment (Figure 71b), the sprayer with three SUs was tested using the derived optimum

FSF and tspraying from the first experiment. 10 potted crops and 10 weeds were randomly

positioned along three plant rows. Each run was performed three times, and the average

of the recorded parameters, as described in Table 27 were used to calculate detection and

spraying performance.

Figure 72

Sample Recorded Spray Instances of the Precision Sprayer

(a) Single Scalable Unit (b) Three Scalable Units

6.3 Results and Discussion

6.3.1 Velocity Measurement Calibration

Figure 73 summarizes the measured −→v actual against measured −→v f rame of the MVS-

CNN. The broken and solid lines represent the prediction using linear regression and pro-

posed analytical models, respectively. The slope of the lines represents the calculated LCR

of each model. In general, the data showed a strong linear relationship between −→v actual

163

against measured −→v f rame (R2 > 0.98).

Figure 73

The Measured Frame Velocity of the MVS-CNN Against Different Ranges of Test Velocities

(a) Crop (b) Weed

The test results also showed variations of −→v f rame measurements within test veloc-

ities, which can be attributed to the random size fluctuations of the bounding box gener-

ated by the CNN among consecutive frames. Comparing the converted values of −→v f rame

(px/s) to −→v travel (m/s) showed that the analytical approach tends to have more variation in

the mean average errors of the velocity estimates than using the regression equation (Fig-

ure 74). However, in general, there are no significant difference in the mean average errors

using ANOVA and Tukey’s HSD test at 95% confidence level.

164

Figure 74

Comparison of the MAEs of Velocity Estimates Using Regression and Analytical Models

Crop−Analytical Crop−Regression Weed−Analytical Weed−Regression

0.00

0.05

0.10

0.15

M
ea

n
A

ve
ra

ge
 E

rr
or

, m
/s

0.038 a 0.038 a 0.035 a 0.034 a

6.3.2 Effect of Plant Height Factor

Figure 75 compares the mean absolute errors across the test velocities when the PHF

of the analytical model was adjusted. The results showed that, on average, the minimum

mean absolute error was attained at 0.6 PHF for the crop (Figure 75a) and 0.5 PHF for the

weed (Figure 75b). Comparing the mean absolute errors showed no significant difference

at 0.4 to 0.6 PHF (95% confidence level using ANOVA and Tukey’s HSD test 30 samples

for each treatment). The bounding box plane tends to be at about half the plant height. In

general, as the assumed bounding box plane location moves away from half of the plant

height, the means and variations of the absolute errors increase. These results infer that

in future applications, measuring the height of reference plants and applying 0.5 PHF can

yield good velocity estimates using the proposed analytical model. This way, the calibration

method can be simplified by minimizing the amount of data that needs to be collected.

165

Figure 75

The MAEs of Velocity Estimates at Different PHF Using the Analytical Approach

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Plant Height Factors

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
A

ve
ra

ge
 E

rr
or

, m
/s

0.07

0.056
0.046

0.04 0.037 0.04
0.051

0.066

0.085

0.105

abc

ab
ab a a a

ab

abc

bc

c

(a) Crop

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Plant Height Factors

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
A

ve
ra

ge
 E

rr
or

, m
/s

0.091

0.072

0.054
0.041 0.035 0.034 0.04

0.055

0.074

0.094
bd

abcd

abc
ac c c ac

abc

abd

d

(b) Weed

166

6.3.3 Effect of Tracking Distance Threshold

Figure 76 details the absolute errors at 0.5 PHF and different tracking distance

thresholds. Results showed a sudden rise in absolute errors when a certain velocity was

reached at 50 and 100 px de|thresh. These results verify the behavior of the system as pre-

dicted by Equation 30. At a detection speed of 9 f ps and de|thresh equal to 50 px, the

theoretical −→v travel|max was only 0.252 m/s. Thus, proper object tracking could not be estab-

lished beyond −→v travel|max during the test, resulting in inaccurate measurements. Increasing

de|thresh to 100 px increased −→v travel|max to 0.504 m/s. Similarly, the errors started to in-

crease at around the calculated maximum velocity. Finally, since the test velocities were

lower than the theoretical −→v travel|max of 0.756 m/s at the 150-px threshold, a sudden rise in

absolute errors was not observed.

Figure 76

The MAEs Using Analytical Approach at Different Tracking Distance Thresholds

(a) Crop (b) Weed

Further, Figure 76 also illustrates that the mean average error tends to be lower at

low than high test velocities for all tested values of de|thresh. This might have been caused

by the blurring of the objects at higher velocities, as shown previously in the sample test

image (Figure 65).

Finally, comparing the mean average errors using ANOVA and Tukey HSD showed

167

that the errors using 50-px were significantly different than at 100 and 150 px thresholds

(Figure 77). On average, the proposed vision-based approach to estimate the velocity had a

mean absolute error of 0.036 m/s in measurements within the theoretical −→v travel|max. Note

that the theoretical −→v travel|max can still be increased by using a larger de|thresh and faster

f pse f f ective. However, using a f pse f f ective is potentially better than a larger de|thresh. When

the distance between reference plants is small, using a large de|thresh can potentially result in

incorrect tracking. Nonetheless, despite the mentioned limitations, the tests demonstrated

the potential of the proposed method in measuring velocity using CNN bounding boxes.

Figure 77

Comparison of the MAEs from 0.04 to 0.53 m/s at Different Tracking Distance Thresholds

50 100 150 50 100 150
Crop Weed

Threshold Distance,px

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
A

ve
ra

ge
 E

rr
or

, m
/s

0.128 b

0.038 a 0.029 a

0.122 b

0.034 a 0.043 a

6.3.4 Spraying Performance

Figure 78 shows sample detections of each of the SU that were streamed at 320 px to

the GUI of the central module. Despite being captured in motion, significant blurring in the

168

images was not observed, and the CNN model had very high confidence in the detections.

Figure 78

Sample Detections of the (a) Left, (b) Middle, and (c) Right SUs of the MAPS

(a) Left (b) Middle (c) Right

The results showed that the system was very accurate in detecting both targets and

non-targets, as summarized in Table 29. Incorrect (Pd = 1.0) or missed (Rd = 1.0) detec-

tions were absent at the tested walking speeds of 1.03 ± 0.16 m/s (3.71 ± 0.57 km/h) in

all of the test runs. These results agree with our predictions that the inference speed (19

fps) of the MVS-CNN was sufficient to prevent gaps between process frames at the tested

velocities and camera field of view [198].

169

Table 29

The Detection Performance of the MAPS at Different FSF (low and high), spraying dura-
tion (200, 350, and 500 ms), and 1.03 ±0.16 m

s (3.71 ±0.57 km
h)

Spray
Schedule
Filtering

Spray
Duration, ms

T P FP T N FN pd rd

Low

200 30 0 30 0 1.00 1.00

350 30 0 30 0 1.00 1.00

500 30 0 30 0 1.00 1.00

High

200 30 0 30 0 1.00 1.00

350 30 0 30 0 1.00 1.00

500 30 0 30 0 1.00 1.00

The results of targeting performance are then summarized in Table 30. The system

was initially tested with a high level of spray schedule filtering (FSF = 1.0), which resulted

in only 1% wrong spray at 200 ms spray duration. The rate of the wrong spray then in-

creased to 4% (350 ms) and 13% (500 ms), caused by the longer area that was covered by

each spray when the spray duration was increased. At the tested −→v travel , 200, 350, and 500

ms covered a distance of 0.21, 0.36, and 0.52 m, respectively. Since hill spacing was only

0.30 m, the 350 and 500 ms spraying duration resulted in the adjacent plants being either

partially or fully sprayed. The minimum partial sprays were achieved at 500 ms (3%),

which was expected as the long spray duration was sufficient to spray a plant fully.

170

Ta
bl

e
30

Th
e

Ta
rg

et
in

g
Pe

rf
or

m
an

ce
of

th
e

M
A

P
S

at
D

iff
er

en
tF

SF
(l

ow
an

d
hi

gh
),

sp
ra

yi
ng

du
ra

tio
n

(2
00

,3
50

,a
nd

50
0

m
s)

,a
nd

1.
03

±
0.

16
m s

(3
.7

1
±

0.
57

km h
)

FS
F

t s
pr

ay
in

g,
m

s
T

T
T

S
F

S 1
F

S 2
F

S
P

S
M

S
W

S
N

S
p s

r s

0.
5

20
0

30
.0

0
32

.3
3

0.
92

0.
07

0.
99

0.
01

0.
00

0.
07

0.
00

0.
93

1.
00

35
0

30
.0

0
43

.0
0

1.
00

0.
00

1.
00

0.
00

0.
00

0.
30

0.
00

0.
70

1.
00

50
0

30
.0

0
48

.6
7

1.
00

0.
00

1.
00

0.
00

0.
00

0.
38

0.
00

0.
62

1.
00

1.
0

20
0

30
.0

0
29

.3
3

0.
91

0.
01

0.
92

0.
04

0.
00

0.
01

0.
03

0.
99

0.
97

35
0

30
.0

0
29

.0
0

0.
81

0.
00

0.
81

0.
08

0.
00

0.
04

0.
11

0.
96

0.
89

50
0

30
.0

0
31

.0
0

0.
87

0.
00

0.
87

0.
03

0.
00

0.
13

0.
10

0.
87

0.
90

171

Nonetheless, the high spray schedule filtering also deleted time schedules of the

adjacent weed that were within the previous spray duration, resulting in partial and no

spray. The lowest no-spray rate was observed at 200 ms (3%), where a short spray duration

did not cause the succeeding valve opening schedule to be deleted. Overall, the initial

results fall within expectations. Longer spraying duration results in more full sprays than

shorter duration. However, it also causes an unintentional spray of adjacent plants. Shorter

spray duration results in a more precise spray than a longer duration. However, early nozzle

opening with short spray duration can also result in partial or missed sprays.

The results using the full spraying duration to filter the valve opening schedule

motivated the researchers to test the system at 0.5 FSF. This approach would theoretically

prevent the succeeding valve opening schedule from being deleted. The results showed that

the approach was effective in preventing no sprays on the tested spray duration. However,

the 0.50 FSF also increased the rate of multiple sprays (FS2), from 1% to 7%, at 200 ms.

Note that multiple sprays were only observed at 200 ms spray duration for both tested

values of FSF and also caused the wrong sprays. Most likely, the small size of the filter

did not delete succeeding valve opening schedules for the same target weed. To some

extent, this observation can also be beneficial as multiple sprays often occur on large target

plant samples. Depending on the degree of random fluctuations of weed coordinates and

velocity estimates, some valve opening schedules, for the same weed can be outside the

filter, resulting in multiple sprays.

On the other hand, the 0.5 FSF at 350 and 500 ms spraying duration did not prevent

the adjacent non-targets from being covered by the previous spraying. Further, it also

resulted in the second spray, when two succeeding weeds were present, being triggered

late. These two scenarios resulted in a high rate of the wrong spray for the 350 ms (30%)

and 500 ms (38%). Overall, the performance testing showed that the combination of the

developed targeting algorithm and method for estimating −→v travel using CNN-based MVS

resulted in a very high spraying precision (93%) and recall (100%) at the optimum settings

172

(low-level spray schedule filtering and 200 ms spray duration).

The performance testing with three SUs was then conducted at 0.87 ± 0.14 m
s

(3.14 ± 0.49 km
h), which was slower than the first experiment due to the additional effort

to keep each SU aligned to each designated row. Table 31 then summarizes the detection

performance of each of the SUs in the second experiment and shows no difference with

the first experiment despite the difference in −→v travel since the experiment was within the

identified allowable operating condition.

Table 31

The Detection Performance of the MAPS with Three SUs at Low-Level Spray Schedule
Filtering, 200 Spraying Duration, and 0.87 ±0.14 m

s (3.14 ±0.49 km
h)

Scalable Unit T P FP T N FN pd rd

Left 12 0 8 0 1.00 1.00

Middle 10 0 10 0 1.00 1.00

Right 8 0 12 0 1.00 1.00

The targeting performance with three scalable units and optimum values of tspraying

and FSF are then summarized in Table 32. The obtained performance was similar to the

first experiment at the same tspraying and FSF. However, due to a slower −→v travel than in

the first experiment, there were higher rates of multiple sprays (16%) caused by a smaller

filter and partial (7%) sprays caused by a shorter effective spray distance. Similarly, the

slower −→v travel also slightly reduced the rate of wrong sprays (2%) due to the smaller spray

distance than the first experiment.

173

Ta
bl

e
32

Th
e

Ta
rg

et
in

g
Pe

rf
or

m
an

ce
of

th
e

M
A

P
S

w
ith

Th
re

e
SU

s
at

Lo
w

-L
ev

el
Sp

ra
y

Sc
he

du
le

Fi
lte

ri
ng

,2
00

Sp
ra

yi
ng

D
ur

at
io

n,
an

d
0.

87
±

0.
14

m s
(3
.1

4
±

0.
49

km h
)

Sc
al

ab
le

U
ni

t
T

T
T

S
F

S 1
F

S 2
F

S
P

S
M

S
W

S
N

S
p s

r s

L
ef

t
12

.0
0

12
.3

3
0.

92
0.

06
0.

97
0.

03
0.

00
0.

03
0.

00
0.

97
1.

00

M
id

dl
e

10
.0

0
10

.0
0

0.
67

0.
27

0.
93

0.
07

0.
00

0.
00

0.
00

1.
00

1.
00

R
ig

ht
8.

00
8.

33
0.

71
0.

17
0.

88
0.

13
0.

00
0.

04
0.

00
0.

96
1.

00

A
ll

30
.0

0
30

.6
7

0.
76

0.
16

0.
93

0.
07

0.
00

0.
02

0.
00

0.
98

1.
00

174

In general, the performance using a single or multiple SUs at the optimum condition

had a minimal difference, and variations were mainly caused by the difference in −→v travel .

However, the system can still be improved by developing an algorithm that will calculate a

variable instead of a fixed spray duration due to the limitations of the latter method. Using a

lower −→v travel than what was used in the tests, as demonstrated in the experiment with three

SUs, would result in higher rates of partial and multiple sprays. In contrast, using a higher

−→v travel , smaller weed samples, or closer hill spacing than what was utilized experiment

would result in higher wrong sprays or over-application.

6.3.5 Summary of Observations

This chapter demonstrated that vision-based velocity estimation combined with

VTD queuing and dynamic filtering could achieve accurate spot spraying without using

auxiliary velocity measurement systems. In the next chapter, the spraying performance

of the developed precision sprayer is tested in a broadcast-seeded crop. Precision sprayer

designs can be potentially simplified with the results, and total system costs can consequen-

tially be reduced.

175

Chapter 7

Field Evaluation of a CNN-Based Modular Precision Sprayer 1

7.1 Introduction

This chapter presents the field test methods and results of the MAPS. The targeting

performance and spray volume reduction (SVR) of the MAPS in broadcast-seeded soybean

(Glycine max L.) were evaluated.

Farmers commonly plant soybeans in rows [216, 217, 218]. However, in recent

years, growers have also been adopting conservation practices and broadcast seeding to

reduce labor at the cost of minimal yield loss [219, 220]. Still, the absence of distinct row-

spacing in broadcast-seeded fields and risks of crop damage by mechanical weed control

compel farmers to spray herbicide [59].

Various attempts have already been made in the past to recognize weeds in soybean

fields using MVS-CNN for the purpose of precision spraying. For example, past studies

showed that CNN-based weed detection could achieve 65% to 99.5% precision [128, 221].

Nonetheless, the developed CNN-based precision sprayer for soybean had low targeting

accuracy, ranging from 20% to 78% [136]. In addition, the precision sprayer operated only

at 0.5m
s [136], compared to 5.6 m

s using spectrometric sensors [137] and 1.17 m
s using MVS

with traditional image processing [57].

The high computational requirement of CNN-based detection using image sensors,

despite having high detection performance and robustness compared to spectrometric, op-

tical, and distance sensors, hinders its wide adoption for real-time precision spraying [55].

To solve the high computational cost of CNN, various CNN architecture designs and opti-

mizations were proposed and showed promising results. Some of these techniques include

using single-stage architectures such as Single Shot MultiBox Detector (SSD) [63] and

You Only Look Once (YOLO) [65], implementing depth-wise separable convolutions [64,

1Some parts of this chapter were published in [215].

176

222], reducing feature reuse within convolution [223] and optimizing trained CNN model

using TensorRT [90].

In this chapter, the previously developed modular agrochemical precision sprayer

(MAPS), which localized the computational load of TensorRT-optimized SSD-MB1 (SSD-

MB1-TRT) among multiple low-power and low-cost hardware for precision spraying, was

tested for actual field performance. The modular design approach, in effect, would increase

the operating travel velocity of CNN-based precision sprayers without the need for power-

ful desktop- or server-grade systems by having dedicated computational hardware for each

capture device.

7.2 Materials and Methods

7.2.1 Overview of the MAPS

Figure 79 summarizes the general workflow of each scalable unit (SU). The pro-

cess starts by capturing a top view of the soybean plot using an RGB camera (Logitech

StreamCam). Then, the vision module (Nvidia Jetson Nano 4GB) performs CNN-based

inferencing. This process detects and generates bounding boxes of soybeans and weeds in

the image. The vision module then stores the frame coordinates of soybeans and weeds

in separate lists. The detection algorithm then analyzes the list to track and estimate the

distance traveled by plants between two consecutive frames.

The velocity estimation algorithm then estimates the relative velocity of the sprayer

using the elapsed time and the distance traveled by tracked plants. Finally, knowing the

instantaneous distance of the weeds from the sprayer nozzle and travel velocity, the target-

ing algorithm calculates the variable time delays to schedule the time to trigger the sprayer.

These time schedules were then stored in a spray schedule list. Note that the vision module

appends spray schedules whenever a weed is detected in a frame. Thus, the vision module

clears elapsed spray schedules within the effective spray region of the previous spraying

whenever it receives a successful valve opening and closing feedback from the sprayer

177

module. This step filters the spray schedules in the list to prevent multiple spraying on

already sprayed weeds.

Figure 79

Workflow and Communication of the SU of the MAPS

Scalable Unit 3

Scalable Unit 2

Scalable Unit 1

Vision Module

CNN-based
Inferencing Solenoid trigger time

calculation

Weed and soybean
coordinate estimation

Travel velocity
estimation

Send spray command

Raw RGB Image Bounding Box Detection

Coordinates List

Instantaneous Velocity

Valve Trigger
Schedules List

Sprayer Module
Valve Control

Open
valve

Central Module

Scalable unit management and control

Graphical User Interface

Weed Spraying

Send triggered signal

Display spray
count

Spray count

Display average
velocity

The spraying algorithm runs as a parallel process in the vision module to regularly

check the list for elapsed spray schedules. The process then publishes a trigger signal to

a ROS topic if a time value in the spray schedule has been reached. A USB-connected

microcontroller (Arduino Nano), subscribed to the trigger signal topic, closes the relay

178

switch (Arceli KY-019) when a trigger signal is published. This event causes the solenoid

valve (US Solid USS2-00006) to open for 0.2 s and delivers liquid to a fan-type nozzle

(Solo 4900654-P). The microcontroller then publishes a signal to a feedback ROS topic

to indicate that the valve was triggered. The central and vision modules then finally read

this message to update the spray count and clear any spray schedules that were within the

previous spraying time.

7.2.2 Experimental Field

The image dataset collection and field testing were performed in the agricultural

field in South Jersey Technological Park of Rowan University, Glassboro, New Jersey,

USA. Figure 80 illustrates the test field on June 30, 2022, with the MAPS. The farm, lo-

cated at 39°43’08.1"N and 75°08’52.5"W, was broadcast-seeded with Pioneer-brand soy-

bean variety during the first week of June 2022 at approximately 395,000 seeds per hectare.

Figure 80

The Developed MAPS with Labeled Components in the Experimental Field

Nozzle

Camera

Supply TankTouchscreen

Scalable Unit
Scalable Unit

Control Assembly

Solenoid Valve

Power and Central Modules
Assembly

179

7.2.3 SSD-MB1 Training and Validation

Several videos were recorded from June 30 to July 8, 2022, at approximately 4-day

intervals, using two video capture devices (Apple iPhone 11 and Logitech StreamCam).

877 RGB images were extracted from the captured videos and then annotated as "soybean"

and "weed" using LabelImg [182]. Figure 81 illustrates sample weeds in the test field.

The final dataset contained 5,080 and 6,934 instances of soybeans and weeds, respectively,

divided randomly into 80% training and 20% validation.

Figure 81

Sample Images of Target Weeds: (a) Horseweed, (b) Purslane, (c) Carpet Weed, (d) Cut-
Leaved Evening Primrose, (e) Hairy Fleabane, (f) Goosegrass, (g) Ragweed, (h) Lam-
bquarter, and (i) Thistle

a b c

d e f

g h i

180

The SSD-MB1 model was trained using an Nvidia Jetson NX Xavier for about

4,000 epochs at an initial learning rate of 0.005, base learning rate of 0.0005, momentum

of 0.9, weight decay of 0.00005, and batch size of 24. The performance of the trained

CNN model was then evaluated using PASCAL VOC 2007 metrics, including precision

(P), recall (R), average precision per class (AP), and mean average precision (mAP) at 0.5

intersection over union (IOU) threshold. It was then optimized using TensorRT on the

Nvidia Jetson Nano.

7.2.4 Field Testing

Fields tests were performed on July 11, 2022 (28.9 ◦C, 11.1 km
h wind speed, 42-44%

relative humidity) on three adjacent 0.5 m × 10 m rows of broadcast-seeded soybeans with

randomly growing weeds. A video of the test plots was recorded and analyzed per frame

to construct the 1-meter resolution maps for the distribution and location of the weeds and

samples in each test row. Figure 82a illustrates the weed distribution for each row at ap-

proximately 5.00, 13.48, and 8.94 weeds
m2 on the left, middle, and right test rows, respectively.

30 target weeds (Nw) and 30 non-target soybeans (Ns) were randomly selected among the

test rows, as shown in Figures Figure 82b and Figure 82c, respectively. 10 soybeans had

no adjacent weeds (Figure 82c), also referred to as soybean without weeds (Ns|wow). The

performance testing was then performed in three trial runs.

181

Figure 82

(Weed and Soybean Distributions in the Three Test Rows with Values Enclosed in Paren-
thesis Represent Soybean Plants Without Adjacent Weeds

(a) Weed Population

(b) Weed Sample Distribution

(c) Soybean Sample Distribution

182

7.2.4.1 Targeting Performance. Target weeds and non-target soybeans were

labeled for visual reference during the evaluation. In weed spraying, correctly sprayed

weeds were considered True Positives (T P). Incorrectly sprayed soybeans were consid-

ered False Positives (FP). Unsprayed soybeans were True Negatives (T N), and unsprayed

weeds were False Negatives (FN). Spraying precision (ps) and recall (rs) were then calcu-

lated using equations Equation 37 and Equation 38, respectively. The wrong spraying rate

(WS) was calculated using Equation 39. Lastly, due to the proximity of soybean samples to

weeds, the non-targeting rate (NT) or the fraction of unsprayed soybeans without adjacent

weeds was also determined using Equation 40.

ps =
T P

T P+FP
(37)

rs =
T P

T P+FN
(38)

WS =
FP

T N +FP
(39)

NT =
T N

Ns|wow
(40)

7.2.4.2 Spray Volume Reduction. The average variable spray volume in each

row (Qrow|variable) was estimated by calculating the product of the average number of actu-

ation of the solenoid valve (Nvalve|row), nozzle flowrate (Qnozzle), in L
min , and nozzle opening

time (tspraying), in seconds, as shown in equation Equation 41.

Qrow|variable = Nvalve|row ×Qnozzle × tspraying (41)

The sprayer was pre-calibrated and tested the flowrate of each nozzle using ASAE

183

EP367.2 MAR1991 (R2017) standard [121], yielding Qnozzle of 1.6 L
min . The average uni-

form spray volume for each row (Qrow|uni f orm) was then the product of the Qnozzle and

spraying trial time (ttrial), as shown in equation Equation 42. Finally, based on the pre-

calibrated flow rate of the nozzle, the spray volume reduction (SVR) was calculated using

equation Equation 43.

Qrow|uni f orm = Qnozzle × ttrial (42)

SV R =
Qrow|uni f orm −Qrow|variable

Qrow|uni f orm
(43)

7.3 Results and Discussion

7.3.1 CNN Model Performance

Results showed that the model detected soybean better than weeds (Figure 83).

For instance, at 68% recall and 0.5 IOU threshold, the trained model had 71% and 90%

precisions in detecting weeds and soybeans, respectively. Our results were slightly higher

than the 65% precision, at the same recall and IOU threshold, obtained by [128] using SSD

to detect weed patches in row-planted soybeans. Figure 84 shows that most small soybeans

and weeds were undetected at a 0.5 confidence threshold. However, this situation was not

consequential in actual spraying scenarios, as small weeds would have difficulty competing

with large soybeans for resources.

184

Figure 83

The Precision-Recall Curve of the SSD-MB1 Model on Detecting Soybean and Weeds at
0.5 IOU Threshold

Figure 84

Soybean and Weed Detections of SSD-MB1 at 0.5 Confidence Threshold

Table 33 then summarizes the detection performance of the trained model. Com-

pared to a sprayer with YOLOv3-tiny running on an Nvidia GTX 1050 mini PC [86], our

185

design (76.0% mAP0.5 and 19 fps) at approximately 30% the hardware cost had similar

detection performance (76.4% mAP0.5) but 40% slower (31.5 fps).

Table 33

Soybean and Weed Detection Performance at 0.5 Threshold IOU of SSD-MB1

Class AP0.5, % mAP0.5, % Inference Speed, fps

Soybean 81.4
76.0 19.0

Weed 70.6

7.3.2 Targeting Performance

We observed that the MAPS successfully sprayed all sampled target weeds, as sum-

marized in Table 34, and can be mainly attributed to queuing multiple spray schedules and

operating within the maximum velocity. Despite a mAP0.5 of 76%, traversing at 0.69 m
s and

19 fps enabled inferencing on multiple frames. Our weed targeting algorithm only required

a single frame with correct weed detection and velocity estimate to calculate an accurate

spray schedule. If a weed was incorrectly detected in a frame, the weed can still be possibly

detected in succeeding frames.

186

Table 34

Targeting Performance of the MAPS at 0.69 ± 0.13 m
s

Trial T P T N FP FN Ns|wow ps, % rs, % WS, % NT , %

1 30 7 23 0 10 56.66 100.00 76.67 70.00

2 30 7 23 0 10 56.66 100.00 76.67 70.00

3 30 9 21 0 10 58.82 100.00 70.00 90.00

Average 30 8 22 0 10 57.32 100.00 74.44 76.67

Comparing the results with other studies, our system had a higher weed spraying

recall than a precision sprayer for soybeans that targeted 78% of weeds using Mask R-

CNN [136]. Similarly, the high spraying recall despite low detection performance was

also observed in [75]. Despite having 57% precision and 84% recall, their system still

achieved 96% average spraying recall by needing only a single correct detection among

the processed frames. However, the 4 fps effective inference speed of their system was

approximately four times slower than that of our configuration. This situation resulted

in more frames available in our system for inferencing and most likely contributed to the

higher spraying recall than [75].

On the other hand, the average spraying precision (57.32%) of the MAPS was rel-

atively low compared to the results of [79] at 78% and [224] at 96.67%. However, their

precision sprayers were tested on plants arranged in distinct rows with only 30 weeds,

compared to our test site with a broadcast-seeded layout and six times the weed popula-

tion. Evaluating the results, the wide coverage of the nozzle, unintended sprays, and the

natural proximity of targets and non-targets caused the low spraying precision.

As described in Figure 82c, only 10 soybeans, or 33% of the non-targets, had no

adjacent weeds. This high rate of FP of the sprayer caused by coarse nozzle resolution

187

and proximity of non-targets to targets was also observed in [75]. Their system sprayed

50% of non-targets on a row-seeded field, on average, due to proximity to targets [75].

On the other hand, our precision sprayer has approximately sprayed 74% of non-targets

on a broadcast-seeded layout, compared to the theoretical 67% wrong spray rate. This

theoretical wrong spray rate represented the percentage of soybean with adjacent weeds

during the test as summarized in Figure 85. Nonetheless, despite low precision due to

coarse nozzle resolution, only a 7% increase against the theoretical wrong spray rate was

observed.

Figure 85

Spray Rate of Weeds and Soybeans

The sprayer successfully avoided spraying 76.67% of soybeans without adjacent

weeds, on average. Still, due to inaccuracy and extreme fluctuations in weed location and

travel velocity estimates, the multiple spread-out spraying schedules for a weed and in-

correct detections also caused unintentional spraying of 10% to 30% of soybeans without

adjacent weeds. If soybean is incorrectly detected as weed, this situation results in incor-

rect targeting. Moreover, the algorithm measures the distance traveled by a detected plant

between two consecutive frames. If a wrong detection occurs in the succeeding frame, the

error contributes to inaccurate velocity estimates and may cause the valve to open when

188

soybeans are directly below the nozzle.

Figure 86 illustrates sample detection scenarios showing the labeled target and non-

targets during the experiment. An ideal scenario is shown in Figure 86a, where the weed at

the center of the frame only had another weed in proximity along the horizontal axis of the

frame. Furthermore, the soybeans at the bottom of the frame also had no adjacent weeds,

resulting in them not being sprayed. This case was also observed in Figure 86c, where the

soybeans at the top of the frame were not sprayed. Figure 86b, on the other hand, shows

a non-target soybean in the middle of the frame with weeds growing on its left side. This

non-target soybean was unintentionally sprayed. Lastly, Figure 86d shows a non-target

soybean detected as a weed causing it to be sprayed.

Figure 86

Sample Detection Scenarios During the Experiment with Labeled Targets Weeds (Yellow)
and Non-Target Soybeans (Green)

a b c d

Finally, the MAPS at 0.69 m
s (2.5 km

h), on average, traveled up to three times that

of similar CNN-based sprayers with known targeting performance. The lowest and highest

recorded velocities during the test were 0.53 m
s (1.9 km

h) and 0.83 m
s (3.0 km

h), respectively,

and varied due to the rough terrain of the field. Theoretically, each SU could spray at

189

3.54 m
s (12.7 km

h). However, the current push-type configuration limited the test velocity

to walking speeds. Compared to other systems, [224] reported 0.28 m
s (1.0 km

h). [136]

tested their sprayer at 0.5 m
s (1.8 km

h) but had 20% to 78% targeting accuracy. On the other

hand, [86] reported 1.38 m
s (5.0 km

h) on the field test of their developed sprayer, but the field

targeting performance was not quantified.

7.3.3 Spray Volume Reduction

Table 35 showed that the average count of the solenoid valve opening tends to in-

crease with the weed population, an indicator of the variable spraying capability. The left

row (row 3) had the lowest weed population (33) and the lowest spray instances (38). Sim-

ilarly, the middle row (row 1) with the highest weed population (89) had the highest spray

count (57). Considering the middle row (row 2), the average number of spray instances

was less than double the left row despite the former having tripled the weed population of

the latter. The spray instances tend to increase at a diminishing rate as the weed population

increases (Figure 87a). In addition, the SVR decreases as the weed population increases

(Figure 87b). Theoretically, the 0.2 s spray duration and 0.69 m
s velocity would result in

a maximum of 73 spray instances for a 10-m row fully covered with weeds. However,

the area where weeds could grow was limited, causing additional weeds to be within an

effective region of a single nozzle spray after a certain weed population level.

190

Table 35

Spray Volume Reduction of the MAPS at 0.69 ± 0.13 m
s and 15-Second Average Traverse

Time

Row Nw|total Nvalve|row
Nvalve|row
Nw|total

Qrow|variable
a, L SV Rb,

%

Left 33 38.33 ± 7.72 1.16 0.204 ± 0.012 48.89

Middle 89 57.33 ± 11.09 0.64 0.306 ± 0.0.059 23.56

Right 59 41.67 ± 10.21 0.71 0.222 ± 0.051 44.44

All 181 137.33 ± 22.54 0.76 0.732 ± 0.120 38.96
a Calculated at 0.2 s spray duration.; b Calculated at 1.2 L

s continuous nozzle delivery rate.

Figure 87

The Weed Population, Spray Instances Ratio, and Spray Volume Reductions

(a) Weed-Spray-Ratio (b) Spray Volume Reduction

The results also demonstrated that the sprayer had an average spray volume re-

duction of 38.96%, most likely representing the bare soil and soybean-only regions in the

experimental field. The highest spray reduction was observed in the left row (48.89%),

191

where the weed population was also the lowest. Consequently, the middle row had the

lowest volume reduction (23.56%), having the lowest weed population. However, direct

comparisons with developed precision sprayers in other studies were difficult as the weed

population of their test area was not reported. In [137], their spectral-sensor-based sprayer

recorded 24.21% to 63.15% SVR on the post-emergence spray. On the other hand, [86]

calculated 50.8% to 52.5% SVR using their CNN-based precision sprayer.

7.3.4 Performance Summary

In this study, we demonstrated that a modular precision sprayer with multiple low-

cost and low-power devices could increase the operating velocity of CNN-based precision

sprayers without needing powerful and expensive computational hardware. Our method of

queuing multiple spray schedules by analyzing multiple frames enabled accurate targeting

of weeds during our tests. The performance testing also demonstrated the variable spraying

functionality of our design when the number of spray instances of each SU increases at a

diminishing rate as the weed population in the test rows increases.

192

Chapter 8

Conclusion and Future Works

8.1 Conclusion

The dissertation demonstrated that the modular precision sprayer with vision-based

velocity estimation and VTDs could potentially reduce the cost, increase adaptability, and

increase the operating velocity in agricultural field environments. SSD-MB1 optimized

using TensorRT and running on an NVIDIA Jetson Nano was identified as a low-cost and

energy-efficient configuration for running real-time weed detection CNN models. During

the study, the total cost of the developed vision module was USD 261.73.

Further, unlike past designs with landscape camera orientations and fast GPUs, the

developed models showed that a portrait camera orientation and a Jetson Nano with SSD-

MB1-TRT could provide sufficient performance for precision spraying at typical −→v travel

of spraying operations. A reconfigurable and scalable precision sprayer with CNN-based

MVS was fabricated based on the designed modular hardware and software architectures.

The prediction of the model was verified by demonstrating in the tests the absence of missed

detections at tested velocities up to 1.19 m
s (4.28 km

h), which was above average walking

velocities of hand-held spraying and near the average velocities of boom spraying. The tests

also showed that the developed precision sprayer could target plants accurately at 2% and

7% incorrect sprays of non-target plants during the laboratory and field tests, respectively.

8.1.1 MVS-CNN Benchmarking

The performance in different hardware of one-stage CNN object detection models

for weed detection was compared. In general, YOLO-based models were faster to train

than SSD-based models. Further, the YOLOv5s model exhibited the highest mAP, particu-

larly at 0.5 to 0.95 IoU thresholds, among the tested CNN models. Despite high processing

speeds in the laptop with RTX2080, YOLOv5s was limited by its slow loading and infer-

193

ence speeds in the Jetson Nano. On the other hand, the optimized SSD-MB1-TRT model

on the Jetson Nano had statistically similar mAP0.5 and mAP0.5:0.95 to YOLOv5s while

providing sufficient inference speed at the highest cost efficiency among tested configu-

ration. These characteristics of SSD-MB1-TRT on a Jetson Nano directly addressed the

current concerns of PA and CNN-based MVS technologies, which are: (1) the high cost

of PA technologies and (2) the low-productivity of CNN-based MVS for field robotics.

Therefore, SSD-MB1-TRT on a Jetson Nano was the most compelling configuration for

our application.

The study also demonstrated that data augmentation and a balanced dataset would

not always improve the detection performance of the one-stage CNN models, as only SSD-

MB1 and Scaled-YOLOv4-CSP demonstrated statistically significant improvement. Thus,

we recommend that data augmentation is unnecessary when training YOLOv5s and SSD-

MB2. In addition, using the generated image dataset of mulched onion, we verified the

results of past studies that one-stage CNN object detection architectures could be utilized

to identify and locate weeds in a dense agricultural environment. We demonstrated that the

processing speeds of tested CNN architectures in a laptop with high-performance discrete

graphics were sufficient. However, model optimization is recommended to utilize low-cost

and low-power hardware, such as Jetson Nano, for real-time CNN-based weed detection.

8.1.2 MVS-CNN Modeling

Theoretical and simulation methods in determining the effect of fps, −→v travel , and S

on missed plant detections of an MVS-CNN were also developed. We introduced the di-

mensionless parameter ro as a theoretical predictor of the application-level detection recall

or rd . The reliability of ro in predicting the rd of a vision system as a function of inference

speed and travel velocity was successfully demonstrated by having no margin of error com-

pared to simulated and actual MVS at a sufficient traversed distance (≥ 10 m). In addition,

a set of Python scripts for simulating the performance of a vision system for plant detection

194

was also developed. Computer simulations at different fps and −→v travel showed no margin

of error compared to the rd of actual MVS. This set of scripts was made publicly available

to verify the results of this study and provide a practical tool for developers in optimizing

design configurations of a vision-based plant detection system.

The mechanism of missed detection was also successfully illustrated by evaluating

each simulated frame in detail. Using the concept of ro, simulation, and detailed assessment

of each processed frame, the mechanism to prevent missed plant hills by increasing the

effective S through synchronous multi-camera vision systems in low-frame processing rate

hardware was also successfully presented.

Furthermore, a CNN-based vision module was also successfully developed and

tested. Performance testing showed that the rd,th and rd,sim accurately predicted the rd

of the vision module with no margin of error. The script for the vision module was also

made available in a public repository where future improvements shall be uploaded.

A reference chart was also developed to aid in selecting the minimum inference

speed depending on the camera field of view and operating velocity of the desired field

operation. Based on simulations and the performance of actual systems, the proposed ref-

erence chart was shown to be a reliable tool in the development of MVS-CNN for plant

detection in field operations.

8.1.3 MAPS Development

A modular software framework and hardware architectures for a precision sprayer

with MVS-CNN were also designed. Based on these frameworks, a prototype of a precision

sprayer with MVS-CNN for detection and velocity estimation was successfully fabricated

and tested. The application of Euclidean-based tracking, buffer regions in the captured

frame, and derived analytical methods to calculate LCR resulted in a reliable method of

velocity estimation.

Performance testing showed that the proposed velocity estimation and targeting

195

algorithms, based on queuing and dynamic filtering of VTDs, had high accuracy within the

identified and designed operating conditions. The results showed that the velocity estimates

agreed with actual measurements with a mean absolute error of 0.036 m
s (0.13 km

h). Further,

testing the targeting algorithm on rows of artificial crops and weeds at different levels of

spraying duration and filter size factor (FSF) showed that short spraying duration and small

FSF increase overall spraying accuracy. Finally, testing the MAPS using the optimum

settings at up to 1.19 m
s (4.28 km

h) successfully sprayed all targets. Further, only 2% to 7% of

non-targets were sprayed at the low and high test velocities, respectively. With these results,

this study suggests that vision-based velocity estimation combined with VTD queuing and

dynamic filtering can be an accurate and low-cost solution for targeted spraying without

using auxiliary velocity measurement systems.

8.1.4 Field Testing

Finally, the developed precision sprayer with CNN-based MVS and modular archi-

tecture demonstrated its capability to target weeds and reduce spray volume in a broadcast-

seeded soybean field. By using multiple low-power devices to run the CNN model, the

vision system achieved 19 f ps and 76% mAP0.5, at similar targeting accuracy, spraying

performance, and faster average velocity of up to 0.82 m
s (3.0 km

h) than other field CNN-

based precision sprayers. Furthermore, the field test also verified the variable spraying

capability of the modular design, reducing spray volume by up to 48.89% in the experi-

ments. Nonetheless, direct comparisons with existing CNN-based precision sprayers were

difficult due to differences in the experimental setups and the unavailability of weed distri-

bution. As demonstrated in our results, high weed density lowers spraying precision and

spray volume reduction. When weed density is high, the likelihood that weeds are next to

a crop is also very high, causing non-target crops to be unintentionally sprayed. Similarly,

as the weed population increases, the number of spray instances of a precision sprayer also

increases at a diminishing rate as it approaches the maximum spray instances equivalent to

196

uniform spraying.

Nonetheless, the broadcast-seeded layout and high weed density presented a chal-

lenging scenario for precision spraying. Despite these conditions, our CNN-based plant

detection and vision-based velocity estimation proved to be doing well during operation

regarding weed spraying recall and spray volume reductions. The spraying errors became

secondary compared to the indirect spray caused by the wide effective spray region of the

nozzle used in the test. Up to 90% soybean samples without adjacent weeds were not

sprayed during our trials. In contrast, all soybean samples with adjacent weeds were un-

intentionally sprayed. The former errors were caused by inaccurate plant detection and

velocity estimation, while the latter could be attributed to the coarse resolution of the noz-

zle.

8.2 Future Works

Despite accomplishing the set objectives in this research, the dissertation encoun-

tered limitations that shall be improved in the future. The coarse nozzle resolution re-

sulted in low overall spraying precision due to the proximity of targets with non-targets

in a broadcast-seeded layout. Velocity estimation inaccuracy and incorrect detections also

contributed to unintended sprays on non-targets. Further, the MVS-CNN can also be poten-

tially extended for mechanical weed control and fertilizer application. For these reasons,

this study recommends pursuing the following future directions:

1. Use the crop as the only reference for travel velocity estimation of the MVS-CNN

due to the higher detection reliability and more regular distribution of crops than

weeds.

2. Explore more effective signal-filtering techniques to minimize drastic fluctuations of

readings and integrate deep-learning-based tracking for velocity estimation.

3. Test the system for liquid fertilizer application.

197

4. Increase the number of nozzles per SU, as most incorrect sprays were due to wide

nozzle coverage.

5. Implement a variable spraying duration to accommodate the varying size of the plant

or the travel velocity of the sprayer.

6. Integrate the developed MVS-CNN on a robotic frame with autonomous navigation

for fully automated spraying.

7. Test the system with the aforementioned improvements at standard spraying velocity

as a tractor implement or smart attachment for an agricultural robot with autonomous

navigation.

8. Integrate the developed MVS-CNN for mechanical weed control.

198

Appendix A

List of Acronyms, Abbreviations, Units, and Symbols

Table A1

List of Units and Symbols

α Width Hyperparameter

A1 Number of Fully-Sprayed Target Plant (Single Spray)

A2 Number of Fully-Sprayed Target Plant (Multiple Sprays)

B Number of Partially-Sprayed Target Plant

C Number of Miss-Sprayed Target Plant

D Number of Wrong Sprays on Non-Target Plant

de|i, j Bounding Box Centroid Euclidean Travel Distances in

Consecutive Frames

de|thresh Threshold Travel Distance

di,k Instantaneous Distance Between Detected Plant and Nozzle

do,k Bounding Box Left Border and Nozzle Center Distance

do,k Bounding Box Right Border and Nozzle Center Distance

d f Frame Displacement

dh Plant Hill Spacing

Dk Width of Filter

dl Field Length

ds Camera-Nozzle Distance

E Number of Not-Sprayed Target Plant

FN False Negative

FP False Positive

f ps Frames per Second

199

f pse f f ective Application-Level or Effective Inference Speed

FS Total Rate of Fully-Sprayed Target Plant

FS1 Rate of Fully-Sprayed Target Plant (Single Spray)

FS2 Rate of Fully-Sprayed Target Plant (Multiple Sprays)

h hour

hcam Camera Height

I Total Number of Sampling Points

i Sampling Point or Plant Instance in Current Frame

IoU Intersection Over Union

J Total Detected Plants in Previous Frame

j An Instance of a Detected Plant in Previous Frame

K Total Number of Frames

k Frame Instance

km
h Kilometer per Hour

L Liter

M Depth of Filter

m Meter

m
s Meter per Second

mAP Mean Average Precision

mAP0.5:95 Mean Average Precision at 0.5 to 0.95 Intersection Over Union

mAP0.5 Mean Average Precision at 0.5 Intersection Over Union

min Minute

MS Rate of Miss-Sprayed Target Plant

nvis Number of Vision Modules

nd Number of Detected Plant Hills

N Depth of Input Network

200

NS Rate of Not-Sprayed Target Plant

NT Non-Targeting Rate

p Image-Level Detection Precision

pd Application-Level Detection Precision

ps Spraying Precision

PS Rate of Partially-Sprayed Target Plant

px Pixel

Qnozzle Nozzle Flow Rate

Qrow|uni f orm Uniform Sprayed Volume per Row

Qrow|variable Variable Sprayed Volume per Row

r Image-Level Detection Recall

R2 Goodness of Fit

rd,sim Simulated Application-Level Detection Rate

rd,th Theoretical Application-Level Detection Rate

rd Application-Level Detection Recall/Rate

rg Gap Rate

ro Overlapping Rate

rs Spraying Recall

ρ Resolution Hyperparameter

S, Sx Field of View Parallel to Travel Direction

sbu f f er Horizontal Camera Width of the Buffer Region

Se f f Effective Field of View Parallel to Travel Direction

sx Horizontal Camera Resolution

Sy Field of View perpendicular to Travel Direction

sy Vertical Camera Resolution

t Time

201

t f ilter Filter Time

tk Elapsed Time at Frame k

∆t Time Difference

∆ti,k Instantaneous Plant Travel Time to Reach Nozzle

∆tin f erence Image-Level Inference Time

∆tsprayer Solenoid Valve Actuation Delay

∆tvision|k Processing Time of the Vision Module

T N True Negative

T P True Positive

−→v f rame Plant Travel Velocity in Pixel per Second

−→v travel,max Maximum Travel Velocity

−→v travel Travel Velocity

W Watt

W Distance Between Nozzles

WS Rate of Wrong Sprays on Non-Target Plant

Xi Plant Hill Field Horizontal Coordinate

xi X-coordinate of a Detected Plant in the Current Frame

x j X-coordinate of a Detected Plant in the Previous Frame

yi Y-coordinate of a Detected Plant in the Current Frame

y j Y-coordinate of a Detected Plant in the Previous Frame

202

Table A2

List of Acronyms and Abbreviations

ANN Artificial Neural Network

ANOVA Analysis of Variance

ANSI American National Standards Institute

ASABE American Society of Agricultural and Biological Engineers

CA Conservation Agriculture

CAN Control Area Network

CCD Charge-Coupled Device

CIGR International Commission of Agricultural Engineering

CNN Convolutional Neural Network

CSP Scaling Cross Stage Partial Network

DC Direct Current

DL Deep-Learning

DSLR Digital Single-Lens Reflex

FPN Feature Pyramid Network

FR Functional Requirements

FSF Filter Size Factor

FTD Fixed-Time Delay

GB Gigabyte

GPS Global Positioning System

GPU Graphics Processing Unit

GUI Graphical User Interface

I/O Input-Output

IEEE Institute of Electrical and Electronic Engineers

IMU Inertial Measurement Unit

203

IR InfraRed

ISO International Organization for Standardization

LCR Linear Capture Resolution

LiPO Lithium Polymer

MAE Mean Average Error

MAPS Modular Agrochemical Precision Sprayer

MB1 MobileNet Version 1

MB2 MobileNet Version 2

MVS Machine Vision System

NDVI Normalized Difference Vegetative Index

NIR Near-InfraRed

NO Normally Open

PA Precision Agriculture

PC personal Computer

PWM Pulse-Width Modulation

RC Radio Communication

RCNN Region-based Convolutional Neural Network

ReLu Rectified Linear Unit

ResNet-50 Residual Network with 50 Convolutional Layers

RF Radio Frequency

RGB Red-Green-Blue

ROI Region of Interest

ROS Robot Operating System

RS232 Recommended Standard 232

RSF Robot Software Framework

RSxxx Recommended Standard xxx

204

RTK Real-Time Kinematics

SAE Society of Automotive Engineers

SIFT Scale Invariant Feature Transform

SSD Single-Shot Multibox Detector

SU Scalable Unit

SURF Speed-Up Robust Feature

SVM Support Vector Machine

THSD Tukey’s Honestly Significant Difference

TRT TensorRT

UART Universal Asynchronous Receiver-Transmitter

UAV Unmanned Aerial Vehicles

USB Universal Serial Bus

USD United States Dollar

VDC Direct-Current Voltage

VGG-16 Visual Geometry Group with 16 Convolutional Layers

VTD Variable-Time Delay

WiFi Wireless Fidelity

WLAN Wireless Local Area Network

YOLO You Only Look Once

YOLOv3 You Only Look Once Version 3

YOLOv4 You Only Look Once Version 4

YOLOv5 You Only Look Once Version 5

205

Appendix B

Vision Module Velocity Estimation Raw Calibration Data

Table B1

Hardware Configurations of the Different Calibration Setup of the Vision Module for Ve-
locity Estimation

Parameter
hcam, m

0.680 0.705 0.730

Sx , m 0.920 0.940 0.981

hcrop, m 0.330 0.330 0.330

hweed , m 0.340 0.340 0.340

hplant 0.335 0.335 0.335

PHF 0.500 0.500 0.500

Se f f ective, m 0.693 0.717 0.756

sx, px 1280 1280 1280

LCR, m/px 0.000542 0.00056 0.000591

206

Table B2

Raw Calibration Data of the Vision Module for Velocity Estimation at hcam = 0.690 m and
de|thresh = 100 px

Motor
Setting Trial

Crop Weed
Actual
Velocity, m

s

MVS Frame
Velocity, px

s

Actual
Velocity, m

s

MVS Frame
Velocity, px

s

10
1 0.049 147.00 0.050 102.00
2 0.049 145.00 0.050 108.00
3 0.050 133.00 0.050 100.00

20
1 0.115 253.00 0.117 299.00
2 0.116 281.00 0.115 273.00
3 0.117 228.00 0.115 235.00

30
1 0.198 293.00 0.198 365.00
2 0.198 419.00 0.204 347.00
3 0.203 398.00 0.200 377.00

40
1 0.259 470.00 0.287 490.00
2 0.254 516.00 0.254 492.00
3 0.258 565.00 0.258 436.00

50
1 0.312 531.00 0.305 525.00
2 0.317 597.00 0.316 486.00
3 0.311 653.00 0.310 557.00

60
1 0.362 501.00 0.362 623.00
2 0.317 673.00 0.362 474.00
3 0.372 745.00 0.370 423.00

70
1 0.435 661.00 0.400 779.00
2 0.422 679.00 0.424 708.00
3 0.400 632.00 0.412 607.00

80
1 0.435 699.00 0.437 793.00
2 0.433 608.00 0.435 611.00
3 0.446 765.00 0.424 725.00

90
1 0.524 694.00 0.524 699.00
2 0.505 720.00 0.505 769.00
3 0.521 726.00 0.505 746.00

100
1 0.524 792.00 0.508 729.00
2 0.524 687.00 0.543 705.00
3 0.541 696.00 0.505 706.00

207

Table B3

Raw Calibration Data of the Vision Module for Velocity Estimation at hcam = 0.705 m and
de|thresh = 100 px

Motor
Setting Trial

Crop Weed
Actual
Velocity, m

s

MVS Frame
Velocity, px

s

Actual
Velocity, m

s

MVS Frame
Velocity, px

s

10
1 0.045 34.00 0.047 61.00
2 0.045 70.00 0.047 88.00
3 0.048 65.00 0.049 83.00

20
1 0.118 267.00 0.122 248.00
2 0.123 200.00 0.120 300.00
3 0.121 240.00 0.123 250.00

30
1 0.191 400.00 0.186 408.00
2 0.190 336.00 0.190 394.00
3 0.196 384.00 0.191 396.00

40
1 0.254 440.00 0.258 474.00
2 0.258 528.00 0.258 455.00
3 0.254 544.00 0.242 391.00

50
1 0.311 483.00 0.312 603.00
2 0.305 579.00 0.304 617.00
3 0.306 659.00 0.299 624.00

60
1 0.370 636.00 0.338 747.00
2 0.353 676.00 0.372 759.00
3 0.353 576.00 0.370 712.00

70
1 0.413 774.00 0.400 772.00
2 0.424 808.00 0.435 728.00
3 0.435 779.00 0.402 701.00

80
1 0.476 693.00 0.448 882.00
2 0.461 830.00 0.459 831.00
3 0.461 895.00 0.448 812.00

90
1 0.490 747.00 0.508 823.00
2 0.505 709.00 0.505 817.00
3 0.476 777.00 0.508 833.00

100
1 0.508 783.00 0.508 828.00
2 0.524 759.00 0.490 775.00
3 0.543 773.00 0.565 747.00

208

Table B4

Raw Calibration Data of the Vision Module for Velocity Estimation at hcam = 0.730 m and
de|thresh = 100 px

Motor
Setting Trial

Crop Weed
Actual
Velocity, m

s

MVS Frame
Velocity, px

s

Actual
Velocity, m

s

MVS Frame
Velocity, px

s

10
1 0.044 141.00 0.043 86.00
2 0.043 85.00 0.043 98.00
3 0.043 103.00 0.043 100.00

20
1 0.114 244.00 0.116 212.00
2 0.116 272.00 0.115 246.00
3 0.114 241.00 0.116 232.00

30
1 0.195 362.00 0.198 361.00
2 0.191 410.00 0.193 364.00
3 0.200 408.00 0.198 302.00

40
1 0.258 441.00 0.258 504.00
2 0.263 500.00 0.272 256.00
3 0.254 528.00 0.263 521.00

50
1 0.312 539.00 0.311 582.00
2 0.305 593.00 0.324 592.00
3 0.309 630.00 0.312 586.00

60
1 0.353 601.00 0.362 698.00
2 0.362 694.00 0.353 765.00
3 0.353 692.00 0.355 645.00

70
1 0.435 649.00 0.400 784.00
2 0.422 757.00 0.391 782.00
3 0.412 759.00 0.422 733.00

80
1 0.476 747.00 0.461 855.00
2 0.448 804.00 0.433 812.00
3 0.463 843.00 0.446 730.00

90
1 0.488 613.00 0.490 787.00
2 0.508 676.00 0.474 734.00
3 0.490 789.00 0.521 726.00

100
1 0.505 735.00 0.508 836.00
2 0.524 826.00 0.543 813.00
3 0.524 846.00 0.524 808.00

209

Table B5

Raw Calibration Data of the Vision Module for Velocity Estimation at hcam = 0.705 m and
de|thresh = 50 px

Motor
Setting Trial

Crop Weed
Actual
Velocity, m

s

MVS Frame
Velocity, px

s

Actual
Velocity, m

s

MVS Frame
Velocity, px

s

10
1 0.053 0.053 0.072 129.00
2 0.052 0.052 0.055 99.00
3 0.053 0.053 0.067 120.00

20
1 0.120 0.120 0.143 255.00
2 0.124 0.124 0.133 237.00
3 0.124 0.124 0.162 290.00

30
1 0.191 0.191 0.208 372.00
2 0.188 0.188 0.207 370.00
3 0.192 0.192 0.188 336.00

40
1 0.246 0.246 0.203 362.00
2 0.258 0.258 0.221 395.00
3 0.262 0.262 0.222 396.00

50
1 0.311 0.311 0.205 366.00
2 0.312 0.312 0.215 384.00
3 0.311 0.311 0.224 400.00

60
1 0.353 0.353 0.228 408.00
2 0.372 0.372 0.228 408.00
3 0.372 0.372 0.233 416.00

70
1 0.410 0.410 0.239 427.00
2 0.410 0.410 0.240 429.00
3 0.412 0.412 0.240 429.00

80
1 0.461 0.461 0.251 449.00
2 0.490 0.490 0.251 449.00
3 0.476 0.476 0.251 449.00

90
1 0.524 0.524 0.251 449.00
2 0.508 0.508 0.251 449.00
3 0.474 0.474 0.251 449.00

100
1 0.524 0.524 0.250 447.00
2 0.508 0.508 0.250 447.00
3 0.508 0.508 0.250 447.00

210

Table B6

Raw Calibration Data of the Vision Module for Velocity Estimation at hcam = 0.705 m and
de|thresh = 150 px

Motor
Setting Trial

Crop Weed
Actual
Velocity, m

s

MVS Frame
Velocity, px

s

Actual
Velocity, m

s

MVS Frame
Velocity, px

s

10
1 0.054 148.00 0.047 84.00
2 0.054 461.00 0.067 119.00
3 0.052 131.00 0.086 153.00

20
1 0.123 272.00 0.163 291.00
2 0.128 284.00 0.156 278.00
3 0.127 268.00 0.142 254.00

30
1 0.198 419.00 0.216 386.00
2 0.195 357.00 0.234 418.00
3 0.198 414.00 0.207 369.00

40
1 0.262 476.00 0.231 413.00
2 0.297 462.00 0.341 609.00
3 0.304 498.00 0.314 560.00

50
1 0.312 582.00 0.357 638.00
2 0.311 648.00 0.391 698.00
3 0.311 611.00 0.409 730.00

60
1 0.380 793.00 0.424 758.00
2 0.362 676.00 0.406 725.00
3 0.355 685.00 0.401 717.00

70
1 0.391 774.00 0.464 828.00
2 0.412 751.00 0.467 834.00
3 0.400 813.00 0.352 628.00

80
1 0.463 840.00 0.103 184.00
2 0.463 892.00 0.331 591.00
3 0.410 895.00 0.503 898.00

90
1 0.505 863.00 0.534 953.00
2 0.474 872.00 0.553 987.00
3 0.490 559.00 0.557 995.00

100
1 0.541 972.00 0.554 989.00
2 0.508 983.00 0.559 999.00
3 0.524 956.00 0.584 1043.00

211

Appendix C

Precision Sprayer Components

Figure C1

Multiview Projections of the MAPS Assembly

(a) Top View

(b) Front View (c) Right-Side View

212

Figure C2

Vision Compute Unit and Valve Control Assembly

Valve Controller

Vision Compute Unit

Figure C3

Central and Power Modules Assembly

12V LiPo Battery

Raspberry Pi 4B

Wireless Ethernet
Router

5V Voltage Regulator

Portable Power Supply

213

Figure C4

Solenoid Valve and Spray Nozzle Assembly

Adapter

Solenoid valve

Nozzle

Figure C5

Camera Assembly

RGB Camera

Height
Adjustment

214

Figure C6

Frame Module

Table C1

Cost of Each Module of the Modular Precision Sprayer

Module Cost per Module Unit Cost % Cost

3 Vision Modules 261.73 3 $785.19 37.57%

3 Sprayer Modules 103.54 3 $310.61 14.86%

Power Module 339.18 1 $339.18 16.23%

Central Module 421.11 1 $421.11 20.15%

Other Components (tank,
pump, fasteners, paint)

233.77 1 $233.77 11.19%

Total Cost $2,089.86 100.00%

215

Ta
bl

e
C

2

D
et

ai
le

d
C

om
po

ne
nt

an
d

Pa
rt

Li
st

s
of

th
e

M
od

ul
ar

A
gr

oc
he

m
ic

al
P

re
ci

si
on

Sp
ra

ye
r

M
od

ul
e

Pa
rt

D
es

cr
ip

tio
n

Q
ua

nt
ity

U
ni

t
Pr

ic
e,

U
SD

V
is

io
n

M
od

ul
e

L
og

ite
ch

St
re

am
C

am
R

G
B

ca
m

er
a

fo
rI

m
ag

e
C

ap
tu

re
1

pc
.

16
9.

99

N
vi

di
a

Je
ts

on
N

an
o

D
ev

el
op

er
K

it
D

ee
p

le
ar

ni
ng

co
m

pu
ta

tio
n

ha
rd

w
ar

e
1

pc
.

84
.9

9

5V
D

C
40

m
m

x
40

m
m

PW
M

Fa
n

C
oo

lin
g

1
pc

.
6.

75

Sp
ra

ye
rM

od
ul

e
A

rd
ui

no
N

an
o

(A
tm

eg
a3

28
P)

M
ic

ro
co

nt
ro

lle
r

1
pc

.
10

.9
9

A
rd

ui
no

N
an

o
Sc

re
w

Te
rm

in
al

Sh
ie

ld
C

on
ne

ct
in

g
w

ir
es

1
pc

.
2.

93

5V
D

C
A

rc
el

li
R

el
ay

M
od

ul
e

A
ct

ua
tin

g
so

le
no

id
va

lv
e

1
pc

.
1.

60

12
V

D
C

3/
8"

So
le

no
id

V
al

ve
(U

S

So
lid

U
SS

2-
00

00
6)

C
on

tr
ol

lin
g

sp
ra

y
ap

pl
ic

at
io

n
1

pc
.

31
.4

9

Fa
n-

ty
pe

N
oz

zl
e

(S
ol

o
49

00
65

4-
P)

D
el

iv
er

y
of

ch
em

ic
al

to
pl

an
t

1
pc

.
15

.9
9

3/
8"

B
ar

b
x

3/
8"

N
PT

M
al

e
Pi

pe

B
ra

ss

C
on

ne
ct

in
g

no
zz

le
to

ho
ze

1
pc

.
5.

00

3/
8"

H
ea

vy
D

ut
y

R
ei

nf
or

ce
d

V
in

yl

H
os

e

C
on

ne
ct

in
g

no
zz

le
to

pu
m

p
2.

5
m

7.
00

3/
8"

-5
/8

"
H

os
e

C
la

m
p

Fa
st

en
in

g
th

e
ho

se
s

2
pc

.
0.

80

216

M
od

ul
e

Pa
rt

D
es

cr
ip

tio
n

Q
ua

nt
ity

U
ni

t
Pr

ic
e,

U
SD

3/
8"

N
PT

B
ra

ss
Q

ui
ck

D
is

co
nn

ec
t

H
yd

ra
ul

ic
C

ou
pl

er
Se

t

Q
ui

ck
re

le
as

e
of

sp
ra

ye
rm

od
ul

e
1

pc
.

22
.7

5

3
w

ay
s

C
on

ne
ct

or
3/

8"
M

al
e

x
3/

8"

Fe
m

al
e

x
3/

8"
M

al
e

N
PT

D
iv

id
in

g
liq

ui
d

flo
w

1
pc

.
5.

00

Po
w

er
M

od
ul

e
W

ir
e

Te
rm

in
al

s
W

ir
e

co
nn

ec
tio

n
1

bo
x

38
.9

9

1
to

3
Po

w
er

sp
lit

te
r

A
dd

iti
on

al
ou

tle
t

1
pc

.
15

.9
9

12
V

8A
h

D
ee

p
C

yc
le

L
iF

eP
O

4

B
at

te
ry

Sp
ot

Sp
ra

ye
rP

ow
er

Su
pp

ly
1

pc
.

39
.9

9

29
6W

h
Po

rt
ab

le
Po

w
er

Su
pp

ly
M

ai
n

po
w

er
so

ur
ce

1
pc

.
18

9.
99

1/
2"

W
ir

e
O

rg
an

iz
er

O
rg

an
iz

in
g

w
ir

es
3

m
7.

63

6-
w

ay
12

V
B

la
de

Fu
se

B
lo

ck
Se

t
C

ir
cu

it
Pr

ot
ec

tio
n

1
se

t
15

.9
9

V
ar

ia
bl

e
B

uc
k

M
od

ul
e

Vo
lta

ge
re

gu
la

tio
n

1
pc

.
13

.9
9

16
A

W
G

St
ra

nd
ed

C
op

pe
rW

ir
e

W
ir

in
g

1
ro

ll
16

.6
1

217

M
od

ul
e

Pa
rt

D
es

cr
ip

tio
n

Q
ua

nt
ity

U
ni

t
Pr

ic
e,

U
SD

C
en

tr
al

M
od

ul
e

R
as

pb
er

ry
Pi

4G
B

K
it

C
en

tr
al

co
m

pu
te

m
od

ul
e

1
se

t
11

9.
99

45
0

M
b

W
iF

iR
ou

te
r(

T
P-

L
in

k)
R

ou
te

r
1

pc
.

24
.9

9

W
ir

el
es

s
K

ey
bo

ar
d

In
pu

tD
ev

ic
e

1
pc

.
21

.1
9

10
ft

E
th

er
ne

tC
ab

le
C

om
m

un
ic

at
io

n
1

ro
ll

8.
79

Fr
am

e
12

x
17

5
L

aw
n

M
ow

er
W

he
el

So
il

an
d

fr
am

e
co

nt
ac

t
4

pc
s.

89
.0

4

1/
2"

C
ol

la
r

Su
pp

or
tf

or
w

he
el

an
d

sh
af

t
8

pc
s.

26
.5

0

2"
4-

w
ay

PV
C

Fi
tti

ng
pi

pe
co

nn
ec

tio
n

6
pc

s.
65

.9
4

#7
1-

5/
8"

D
ou

bl
e

L
oc

k
T

hr
ea

d
Sc

re
w

Fa
st

en
er

1
bo

x
13

.6
8

15
"

x
30

"
x

1/
8"

A
cr

yl
ic

Sh
ee

t
C

as
in

g
2

Sh
ee

ts
56

.5
6

A
cr

yl
ic

Pl
as

tic
C

em
en

t
Fa

st
en

in
g

ac
ry

lic
1

ca
n

10
.9

9

1/
2"

x
12

"
A

lu
m

in
um

R
od

W
he

el
Sh

af
t

4
pc

s.
21

.5
6

4’
x8

’x
1/

2"
Pl

yw
oo

d
Su

pp
or

tf
or

ta
nk

1
Sh

ee
t

39
.9

8

1-
1/

2"
x

8’
PV

C
Pi

pe
Sc

h.
40

Fr
am

e
1

pc
.

6.
56

2"
x

8’
PV

C
Pi

pe
Sc

h.
40

Fr
am

e
4

pc
s.

35
.3

6

2"
Te

e
PV

C
Pi

pe
Fi

tti
ng

Sc
h.

40
Fr

am
e

4
pc

s.
9.

80

2"
90

°
E

lb
ow

PV
C

Pi
pe

Fi
tti

ng
Sc

h.

40

Fr
am

e
8

pc
s.

19
.4

4

218

M
od

ul
e

Pa
rt

D
es

cr
ip

tio
n

Q
ua

nt
ity

U
ni

t
Pr

ic
e,

U
SD

2"
C

ro
ss

PV
C

Pi
pe

Fi
tti

ng
Sc

h.
40

Fr
am

e
2

pc
s.

25
.7

0

O
th

er
s

N
or

th
St

ar
A

T
V

Sp
ot

Sp
ra

ye
r-

10
-G

al
lo

n
C

ap
ac

ity
,1

.1
G

PM
,1

2

Vo
lt

C
he

m
ic

al
st

or
ag

e
an

d
pu

m
p

1
pc

.
12

4.
99

1.
75

m
m

PL
A

Fi
la

m
en

t
C

as
in

g
an

d
el

ec
tr

on
ic

s
3

ro
lls

56
.9

7

M
2

Sc
re

w
s

an
d

St
an

do
ff

Se
t

Fa
st

en
in

g
1

B
ox

11
.9

9

M
3

Sc
re

w
s

an
d

St
an

do
ff

Se
t

Fa
st

en
in

g
1

pc
.

12
.8

8

W
hi

te
Sp

ra
y

Pa
in

t
Pa

in
tin

g
6

ca
ns

26
.9

4

219

	DEVELOPMENT OF A MODULAR AGRICULTURAL ROBOTIC SPRAYER
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Background of the Study
	Motivation of the Study
	Plant Detection System
	Valve Control System
	Physical Configurations
	Problem Statements

	Significance of the Study
	Hypothesis 1: Distributed and Parallel Processing with Cluster of Low-Power Devices
	Hypothesis 2: Vision-Based Velocity Estimation and VTD Valve Control for In-Motion Spray

	Objectives of the Study
	Research Organization
	Research Highlights
	Research Contribution
	Published Works

	Literature Review
	Introduction
	Field Agricultural Machinery
	Agricultural Field Robots
	Precision Sprayers
	Non-Real-Time Precision Sprayers
	Real-Time Precision Sprayers

	MVS-CNN
	One- and Two-Stage CNN Architectures
	SSD MobileNet
	YOLO
	MVS-CNN in Weed Detection

	Modularity
	Module-Based Hardware
	Robotics Software Framework
	Modular Agricultural Robots

	Review Summary

	Materials and Methods
	Overview
	Development of CNN-Based Vision Module
	Development of the MAPS
	Modular Hardware and Software Architecture
	Vision-Based Velocity Estimation
	Valve Control by Queuing of VTDs
	Specification and Cost Summary

	Field Testing
	CNN Model Development
	CNN Hardware
	Dataset Preparation
	Training and Validation
	TensorRT Optimzation
	Detection Performance

	Statiscal Analysis

	Benchmarking of One-Stage CNN Object Detection Models for Weed Detection
	Introduction
	Methodology
	Dataset Preparation
	Training and Validation
	Performance Testing

	Results and Discussion
	Training of Weed Detection Models
	Detection Performance
	Processing Time in Different Hardware Setups
	Cost Analysis
	Performance Summary

	Simulation-Aided Development of a Modular MVS-CNN for Plant Detection: Effect of Travel Velocity, Inference Speed, and Camera Configurations
	Introduction
	Materials and Methods
	Concept
	Field Map Modeling
	Motion Modeling
	Detection Algorithm
	Experimental Design
	Vision Module Development

	Results and Discussion
	Sensitivity Analysis
	Effects of Travel Velocity and Inference Speed
	Effect of Increasing S or Multiple Cameras
	Vision Module Simulation and Testing Performance
	Proposed Reference Chart

	Development a CNN-Based Precision Sprayer with Vision-Based Velocity Estimation and Valve Control Using Variable Time Delay
	Introduction
	Materials and Methods
	Scalable Unit
	CNN Model Development
	Testing of Vision-Based Velocity Estimation
	Sprayer Performance Testing

	Results and Discussion
	Velocity Measurement Calibration
	Effect of Plant Height Factor
	Effect of Tracking Distance Threshold
	Spraying Performance
	Summary of Observations

	Field Evaluation of a CNN-Based Modular Precision Sprayer
	Introduction
	Materials and Methods
	Overview of the MAPS
	Experimental Field
	SSD-MB1 Training and Validation
	Field Testing

	Results and Discussion
	CNN Model Performance
	Targeting Performance
	Spray Volume Reduction
	Performance Summary

	Conclusion and Future Works
	Conclusion
	MVS-CNN Benchmarking
	MVS-CNN Modeling
	MAPS Development
	Field Testing

	Future Works

	Appendix List of Acronyms, Abbreviations, Units, and Symbols
	Appendix Vision Module Velocity Estimation Raw Calibration Data
	Appendix Precision Sprayer Components

