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Human activity recognition and prediction systems are crucial to the safety of 

autonomous vehicles. While much research has been conducted to improve these systems, very 

little has been done to address the important task of differentiating between adult and child 

pedestrians. Failure to correctly identify the type of pedestrian can lead to accidents.  

In this thesis, a novel multiple object tracking system for autonomous vehicles is 

proposed that overcomes the challenges of differentiating between adult and child pedestrians. 

To increase the system’s robustness, it is also capable of identifying and tracking 51 different 

animal types that are commonly encountered on roads around the world. The proposed system 

uses modern machine learning methods for object detection and tracking to identify the type 

of pedestrian or animal, and also measure various characteristics of their behavior, such as 

speed and trajectory. Experimental results indicate effectiveness in accomplishing these tasks, 

demonstrating the potential of the multiple object tracking system to improve the safety and 

performance of autonomous vehicles. 
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CHAPTER 1: INTRODUCTION 
 
 

The first section of this chapter provides a brief introduction to autonomous vehicles 

and their interactions with the environment around them. The second section of this chapter 

discusses the application of machine learning in these vehicles, specifically on the common 

computer vision tasks of object detection and tracking. 

 

1.1 Autonomous Vehicles 

Though autonomous vehicles (AVs) have long been present in science fiction media, 

high expenditures have kept manufacturers from meaningful AV production until fairly 

recently (Fagnant, 2015). However, as AV technology becomes cheaper and more advanced, 

there have been widespread pushes from traditional car manufacturers such as BMW, 

Mercedes-Benz, Nissan, and General Motors to ramp up production of AVs, partly to ward 

off competition from new entrants into the field such as Google (Bagloee, 2016). It is 

estimated that in 2021, the global market demand for AVs was 51.6 thousand units, with that 

number expected to grow by 53.6% by 2030 (Autonomous, n.d.). 

Despite the increasing prevalence of AVs on roads around the world, public opinion 

is contentious. Surveys show that the majority of U.S. drivers are worried about sharing the 

road with these vehicles, do not want to ride in one, and favor policies restricting their use 

(Smith, 2019). The reason for this public weariness likely comes from the fact that traditional 

vehicles have been on roads for over a hundred years, allowing the public to become 

acclimated to them and learn how to react around them. Such acclimation does not yet exist 

for AVs, signaling the importance for them to function well enough that they are 

indistinguishable from vehicles driven by humans.  

An AV’s architecture consists of three layers: the perception layer, the decision layer, 

and the action layer (Wang, 2020). The perception layer collects data from exterior sensors 
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(Ilas, 2013), which is processed in the decision layer to make decisions and pass information 

to the action layer (Ha, 2020). The action layer controls actions that mimic a human driver 

(Lee, 2020). Errors in any of these layers can lead to accidents. 

Studies show that the majority of accidents involving AVs are caused by third parties 

such as pedestrians (Favarò, 2017). The perception and decision-making capabilities of the 

vehicle are most likely to be affected by these parties (Wang, 2020; Sarmento, 2017). This 

demonstrates the necessity for AVs to be able to adapt to different pedestrian behaviors. 

For example, children are less likely to pay attention when crossing a road (Lee, 

2020), are less capable of judging the speed of oncoming traffic (Clay, 1995), and are more 

likely to behave unpredictably than adults (Holland, 2007). To address this, a machine 

learning model for detecting and classifying pedestrians according to whether they are an 

adult or child is presented in this thesis, so that their movements can be accurately tracked 

and predicted by AVs to avoid accidents. 

1.2 Machine Learning 

  
    Belonging to the encompassing field of artificial intelligence, machine learning 

(ML) is an increasingly important technology in the modern world. ML algorithms seek to 

teach computers how to perform certain tasks and make predictions and decisions at or above 

the level of humans. Deep learning (DL) algorithms seek to further increase the level of 

knowledge a computer can obtain and the type of activities they can perform. They do this by 

trying to computationally simulate how the human brain operates. ML has many applications, 

including computer vision. 

 
1.2.1 Computer Vision 

 

 Computer vision (CV) is an application of ML that focuses on extracting information 

from a scene when presented with image or video input. This input can be considered as a 

discrete array of numbers representing brightness or color values at a discrete grid of points 



3 

 

in the image plane. This grid of points is more commonly referred to as pixels (Rosenfield, 

1988). 

 CV techniques are extremely important to modern AVs, specifically in their 

perception capabilities. In terms of perception, CV aids the performance of AVs in multiple 

ways, including vision-based driver assistance systems and environment perception tasks 

such as lane detection, traffic sign/light recognition, and vehicle tracking (Wang, 2020; Ilas, 

2013; Janai, 2020). There are many applications of CV, but generally, CV tasks can be 

classified as either object detection or object tracking tasks. 

1.2.1.1 Object Detection 

 Object detection (OD) is a CV task that deals with detecting objects such as humans, 

animals, or cars in digital images or videos (Zou, 2023). OD has been employed for many 

tasks, such as autonomous driving, robot vision, and video surveillance (Zou, 2023). OD 

algorithms have come a long way since the early days of hand-crafted features and sliding 

window techniques, with the most recent DL-based methods achieving state-of-the-art 

performance on a variety of datasets. As research in CV increases, there is a growing interest 

in developing more efficient and accurate object detection algorithms, with a focus on real-

time applications and novel network architectures. 

 Traditional methods of performing OD include Viola-Jones detectors, histogram of 

oriented gradients (HOG) detectors, and deformable part-based models (DPM) (Zou, 2023). 

Viola-Jones detectors were first introduced in 2001 to quickly discard background regions 

and focus on object-like regions, operating based on what was then a novel image 

representation technique called the “integral image”, a learning algorithm based on AdaBoost 

that selects critical visual features, and a cascading methods for combining classifiers (Viola, 

2001). The HOG approach was proposed in 2005 and outperformed existing feature sets for 

human detection using fine-scale gradients, fine orientation binning, relatively coarse spatial 
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binning, and high-quality local contrast normalization in overlapping descriptor blocks 

(Dalal, 2005). DPM was developed as an extension of HOG, using a margin-sensitive 

approach for data mining hard negative examples with a formalism called latent SVM 

(Felzenszwalb, 2008). 

 Since 2012, most of the research surrounding OD techniques has been based on 

convolutional neural networks (CNN), in either one or two stages (Zou, 2023). Two-stage 

CNN approaches include regions with CNN features (R-CNN), spatial pyramid pooling 

networks (SPP-net), Fast R-CNN, Faster R-CNN, and feature pyramid networks (FPN). The 

most popular one-stage approach today is You Only Look Once (YOLO), proposed in 2015. 

 When it was proposed, R-CNN broke through the plateau in OD research by using 

high-capacity CNNs to bottom-up region proposals and localize and segment objects, while 

using supervised pre-training and domain-specific fine-tuning to improve performance 

(Girshick, 2014). The first improvement on the R-CNN method was SPP-net, which 

implemented spatial pyramid pooling into a CNN to remove the requirement for a fixed-size 

input image, which had been negatively impacting OD performance up to that point (He, 

2015). The next improvement to R-CNN came in the form of Fast R-CNN in 2015, with 

much faster training and testing time, as well as increased OD accuracy (Girshick, 2015). 

Faster R-CNN improved the speed and accuracy even further and shared full-image 

convolutional features with the detection network, enabling nearly cost-free region proposals 

(Ren, 2017). YOLO, one of the most popular and accurate OD methods available today, was 

a new approach to OD, and reframed OD as a regression problem to spatially separate 

bounding boxes and associated class probabilities (Redmon, 2016). 

1.2.1.2 Object Tracking 

 Object tracking, specifically multiple object tracking (MOT) is an important task in 

CV research, as it provides an extension on OD that can enable real-world applications of 
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these methods. For the use case of pedestrian detection for AVs, simply detecting the 

presence of a pedestrian would not be useful to the AV in avoiding an accident, but when the 

detection is combined with tracking capabilities, the AV can learn how to react to the 

pedestrian’s behavior. MOT algorithms can generally be classified according to their 

initialization method, processing mode, and type of output (Luo, 2021). Each of these areas 

has two general classes that the MOT models can fall into. For the initialization method, an 

MOT model can either be detection-based or detection-free, for processing mode, the 

tracking can occur either online or offline, and for type of output, the model can be either 

stochastic or deterministic (Luo, 2021). 

 Detection-based tracking first detects objects and then links them to trajectories, 

while detection-free tracking requires manual initialization of fixed number of objects in the 

first frame, then localizes them in subsequent frames (Luo, 2021). In online tracking, the 

image sequence is handled in a stepwise manner, while offline tracking uses batches of 

frames to process the data (Luo, 2021). Stochastic tracking methods have varying results, 

whereas the results from deterministic tracking algorithms remains constant (Luo, 2021). 

 The general architecture of MOT models can be given as containing: An appearance 

model, a motion model, an interaction model, an exclusion model, occlusion handling, and 

inference capabilities (Luo, 2021). Modern appearance models are based on visual 

representation, which describes an object based on its features, and statistical measuring, 

which deals with the affinity between two observations (Luo, 2021). Motion models can 

handle either linear motion or non-linear motion, with linear motion models typically 

capturing an object’s dynamic behavior, and non-linear motion models explain the dynamics 

of the object (Luo, 2021). Types of interaction models include social force models, where 

each object is considered to be dependent on other objects and environmental factors, and 

crowd motion pattern models which are designed to track individual objects within a crowd 
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(Luo, 2021). There are two types of exclusion models: detection-level exclusion modeling 

and trajectory-level exclusion modeling. Occlusion handling is done in either a part-to-whole 

strategy, where it is assumed that part of an object is still visible when an occlusion happens, 

a hypothesize-and-test strategy, where proposals are hypothesized and tested according to the 

observations at hand, or a buffer-and-recover strategy, which remembers states of objects of 

before occlusion (Luo, 2021). Inferences can be either probabilistic or deterministic, where 

probabilistic inference represents the state of objects as a distribution with uncertainty, and 

deterministic inferences aims to find the maximum a posteriori solution to MOT (Luo, 2021). 

1.2 Research Goals & Objectives for Detection and Tracking Systems 

 This research focuses on the use of ML algorithms to create robust OD and OT 

systems for AVs. Due to the lack of meaningful research in the area of differentiating 

between adult and child pedestrians, this research work aims to create an OD and OT system 

that is capable of not only detecting adult and child pedestrians, but also tracking them 

through a scene, measuring characteristics about their behavior such as their estimated speed 

and predicted trajectory. In addition, in order to make the system more practical for real-

world use, the system is expanded past adults and children, to also consider 51 classes of 

animals that are commonly encountered on roads around the world. Twelve main objectives 

were considered during the creation of this system. 

• Creation of a custom dataset containing images of adult and child pedestrians. 

• Development of a custom ML-based model that is capable of detecting and 

differentiating between adult and child pedestrians. 

• Implementation of a ML-based OT algorithm to track the detected pedestrians. 

• Development of a mathematical model for accurately estimating the speed of the 

detected pedestrians. 
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• Implementation of ML-based regression models for predicting the trajectory of 

detected pedestrians. 

• Test the pedestrian detection and tracking systems on real-world scenarios. 

• Creation of a custom dataset containing images of 51 different commonly encountered 

animals on the road around the world. 

• Development of a custom ML-based model that is capable of differentiating and 

detecting each of the 51 animals. 

• Implementation of a ML-based OT algorithm to track the detected animals. 

• Implementing the created mathematical model to estimate the speed of the detected 

animals. 

• Implementing the chose ML-based regression model to predict the trajectory of the 

detected animals. 

• Test the animal detection and tracking systems on real-world scenarios. 
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CHAPTER II: LITERATURE REVIEW 

 The first section of this chapter provides a review of different systems focused on the 

differentiation between adult and child pedestrians. The second section provides a review of 

different systems for detecting animals on the road.  

2.1 Adult vs. Child Pedestrian Detection and Tracking Systems 

 The struggle for AVs to properly detect a child in the road as well as it can an adult in 

the same situation is well documented. In a study comparing 33 OD methods for pedestrian 

detection on the commonly used INRIA dataset (Dalal, 2005) and the Caltech Pedestrian 

Detection Benchmark (Dollar, 2009), it was found that in 27 of the 33 methods, the miss rates 

for child pedestrians were much higher, with all of the 24 best performing models showcasing 

this reduced detection capability (Brandão, 2019). This represents a definitive age bias in the 

OD algorithms used by modern AVs that needs to be addressed.  

 One of the most common methods for differentiating between adult and child 

pedestrians is to detect the head and body separately, then use relative size measurements to 

make the prediction (Ince, 2014; Ince, 2015; Ince, 2017; Reyes-Garcia, 2019). This approach 

makes use of the Haar cascade method proposed by Paul Viola and Michael Jones in their 

seminal work on OD (Viola, 2001). A major limitation of this method is that it relies on the 

height of the pedestrian, which is difficult to estimate in digital images (Ince, 2014; Ince, 2015). 

This can lead to misclassification of shorter adults or taller children. 

 Even though accurate estimation of object height based on digital images is a challenge, 

there have been studies that have used this approach to create OD systems that differentiate 

between adults and children. A 2021 study presented an approach based on human body 

morphology and the YOLO algorithm to measure the height of a detected person to determine 

if they are an adult or child (Sedgh-Gooya, 2021). This approach was found to be effective in 

identifying whether a person was an adult or child in a variety of different circumstances, 
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including if the person was sitting, had their back to the camera, were bent over, or were 

covered by an article of clothing (Sedgh-Gooya, 2021).  

 Another common technique for differentiating between adult and child pedestrians is 

the use of so-called “regions of interest” within an image. This is a very similar approach to 

the “integral image” in the Haar cascade method. A 2017 study used this “region of interest” 

approach combined with HOG and support vector machines (SVM) to identify adult and child 

pedestrians within a scene (He, 2017). A similar approach was employed in another study that 

divided input images into sections and compared them to other images in order to decide 

whether a pedestrian was an adult or a child (Balbuzanov, 2019). 

Aside from the ratio and region-based approaches that have been discussed, another 

way to handle differentiation between adults and children is to use appearance descriptors 

rather than relative measurements. This approach involves detecting the entire figure of the 

pedestrian, rather than making separate detections for the head and body. The Haar cascade 

method is decades old, and modern object detection methods, such as those based on CNNs, 

often use appearance descriptors as the basis for their class predictions (Han, 2015; Simo-Serra, 

2015; Zagoruyko, 2015; Balntas, 2016; Heo, 2021; Kogure, 2022; Sharma, 2022). 

CNNs are commonly used for image processing tasks such as pattern recognition. They 

consist of three main types of layers: convolutional layers, pooling layers, and fully connected 

layers. These layers transform the input image and produce class scores that can be used for 

classification and regression (O’Shea, 2015). In contrast, the Haar cascade method uses an 

“integral image” to evaluate the aspects of the original image that coincide with the elements 

to be detected and predict their classes. This is done by continuously eliminating sections of 

the image that are considered to be background (Viola, 2001). Studies show that CNN 

predictions are more accurate than those given by Haar cascade (Andrie Asmara, 2021). 
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Computer vision is a rapidly evolving field in computer science, and the YOLO 

architecture is currently one of the most popular, robust, and accurate CNN-based models.  

Several studies have applied YOLO to adult and child pedestrian classification, with some 

(Manikandan, 2019; Lin, 2022) using a head to body ratio scheme similar to (Ince, 2014; Ince, 

2015; Ince, 2017; Reyes-Garcia, 2019) and others considering the whole body of the pedestrian 

(Heo, 2021). However, these studies are outdated because they use older versions of YOLO, 

and their classification accuracy and robustness can be improved. One study combines the 

object detection process with other tasks such as lane detection and object tracking but does 

not include important features for a robust autonomous vehicle system such as speed estimation 

and trajectory prediction (Heo, 2021).  

OT is a natural extension of OD methods, as it allows computers to track detected 

objects across a given scene (Soleimanitaleb, 2022). Whereas YOLO is a prominent object 

detection method, Simple Online and Realtime Tracking with a Deep Association Metric 

(DeepSORT), an extension of the Simple Online and Realtime Tracking (SORT) algorithm 

proposed in (Bewley, 2016), is one of the most popular, robust, and accurate multiple object 

tracking models. DeepSORT uses an offline pre-training stage with a deep association metric 

and appearance information to reduce identity switches and computational complexity 

compared to the original SORT algorithm (Wojke, 2017). YOLO and DeepSORT methods 

have been combined by many for various MOT tasks, including pedestrian tracking (Mohideen 

Meera Sha, 2021). 

Alternative methods for implementing OT into pedestrian detection models have been 

discussed. One study used CV techniques to analyze correlated, scale invariant locomotion 

properties to classify different styles of walking, which was then used to differentiate children 

from adult walkers based on relative stride length and stride frequency (Davis, 2001). Another 

study proposed a novel ML algorithm to detect moving pedestrians in real-time from a 
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stationary camera based on eigenflow, which are the eigenvectors derived from applying 

principal component analysis (PCA) to the optimal flow of moving objects (Goel, 2007). 

Overall, there have been a number of research works that apply YOLO-based models 

to the subject of adult and child pedestrian detection. However, these studies are largely 

outdated, not robust, or do not implement OT into their systems. For this reason, we propose a 

pedestrian detection model based on the latest version of YOLO, YOLOv8, and combine the 

output of that model with the DeepSORT OT algorithm. This system is then expanded with a 

custom mathematical model for speed estimation, and ML-based regression models to predict 

the trajectory of the pedestrian. 

2.2 Animal Detection and Tracking Systems 

 Traffic incidents involving animals have long been an issue, especially as there are 

more and more vehicles traversing roads all over the world. High animal mortality rates are 

one of the most visible negative impacts of roads and traffic flows on nature (Jaarsma, 2006). 

This problem has gotten more attention as the development of AVs has increased, and the 

unpredictability of animals moving into the path of an AV has been used by researchers as 

evidence that there still needs to be some element of human control in these vehicles 

(Szénási, 2020). Despite this, there has been much research into how to improve the 

capability of AVs to detect different types of animals in the road. 

 Many different methods have been applied to animal-in-road detection, but the 

research area of most interest to this thesis is the application of DL to this problem. Many 

studies have employed DL for animal detection (Matuska, 2016; Prabhakar, 2017; Sharma, 

2017; Yudin, 2019; Hans, 2020; Protopapadakis, 2020; Levering, 2021; Santhanam, 2021; 

Mowen, 2022; Kahlon, 2023) to great effect. Some studies focused on only detecting a single 

type of animal in the road, such as cows (Sharma, 2017; Kahlon, 2023) and deer (Hans, 

2020). Other studies focus on the detection of multiple animal types (Matuska, 2016; 



12 

 

Prabhakar, 2017; Yudin, 2019), and some studies focus on the detection of accidents that 

have already occurred that involved animals (Levering, 2021).  

 As with human pedestrian detection, the HOG technique has found application in the 

area of animal detection. A 2016 study trained a ML model using LBP-AdaBoost to detect 

animals up to 200 meters away from a car, and then combined this model with a HOG-SVM 

approach to identify only moose (Matuska, 2016). Another study employed HOG and the 

Haar cascade method to detect the presence of cows in the road in India and found that the 

HOG method performed better than the Haar cascade, with an accuracy of 82.5% compared 

to 78.1% (Sharma, 2017). 

 By far the most common approach to performing animal-in-road detection is the 

applications of CNNs. One study utilized a CNN to detect unsigned physical road incidents, 

including those caused by animals (Levering, 2021), and another used a CNN to detect 

animals in the road and trigger an alert 3 seconds before the point of impact to make the 

driver of the vehicle aware of the danger (Santhanam, 2021). A 2D-CNN was employed in 

another study with thermal image input to determine the risk imposed by a certain animal in a 

specific pose to vehicles at night (Mowen, 2023). 

 A two-class CNN was applied to differentiate a deer from its background in (Hans, 

2020). A multi-label CNN was used to identify animals, debris, road defects, fire, fog, 

flooded areas, and humans in (Protopapadakis, 2020). A region-based CNN was used for the 

detection and classification of on-road obstacles such as vehicles, pedestrians, and animals in 

(Prabhakar, 2017).  

 YOLO-based models have also been applied to animal-in-road detection. A study in 

2019 compared the YOLOv3 model to RetinaNet R-50-FPN, Faster R-CNN R-50-FPN, and 

Cascade R-CNN R-50-FPN and found that YOLOv3 demonstrated the highest accuracy on 

classifying animals from ten classes (Yudin, 2019). Another study used YOLOv4 to achieve 
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95.10% accuracy to identify the status of cattle on the road (Kahlon, 2023). Several of the 

aforementioned studies have combined their OD models with OT approaches as well 

(Matuska, 2016; Prabhakar, 2017; Sharma, 2017). 

 In the next chapter, a method for animal-in-the road detection and tracking is 

proposed. The system will be able to identify and track 51 different types of animals that are 

commonly encountered in roads around the world. Like the adult and child pedestrian 

detection and tracking system, this system will be based on the YOLOv8 OD model and the 

DeepSORT OT model and supplemented with the speed estimation model and the ML 

regression model for trajectory prediction. 
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CHAPTER III: PROPOSED METHODOLOGIES 

3.1 Research Methodology for Pedestrian Detection and Tracking System 

Figure 1 shows the block diagram of the proposed aged-based multiple object 

detection and tracking system. It starts with the collection of the data, followed by the 

detection of objects within the images. Once the objects are detected, they are classified. 

Human subjects will be classified based on their predicted class as either an adult or a child. 

Also, as a result of the detection and classification, the objects are given unique identifiers, so 

that they and their characteristics can be tracked throughout a scene. A customized version of 

the YOLOv8 algorithm is used for the object detection system. 

For the tracking system, DeepSORT is used. This algorithm is capable of tracking 

each uniquely identified object through a scene, reidentifying them if they exit and then 

reenter a scene. Using this tracking system, the ID and starting and ending x and y positions 

are output to a separate file. This position history can then be used to estimate the speed and 

trajectory of the objects. A diagram showing how YOLO and DeepSORT work together is 

shown in Figure 2. 

 

Figure 1 The block diagram of the proposed pedestrian detection and tracking system. 
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Figure 2 Diagram showing the combined process of YOLOv8 and DeepSORT. 

3.1.1 Data Collection for Adult and Child Pedestrian Detection 

Many datasets for AVs are publicly available, such as Berkely DeepDrive (Yu, 2020), 

Oxford Robotcar (Maddern, 2016; Barnes, 2020), and ApolloScape (Huang, 2018), but there 

are very few datasets that are adequate for the training of custom object detection models of 

pedestrians. Of the ones that do exist, it is even harder to find adequate samples for both 

adults and children crossing roadways together or separately. Because of this, a custom 

dataset was developed for this research project. 

Image samples were taken from open-source websites, with the focus being on mixtures 

of adults and children crossing the road in various circumstances. In some cases, other 

notable objects, such as vehicles, were present in the scene, and in other cases the focus was 

solely on the pedestrians. Because of the intensive computation processing challenges of 
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large datasets, the curation of the custom set revolved around finding high-quality images, so 

that the overall number of samples could be lower but maintain good scalability on larger 

testing datasets. 

The dataset used in this research was compiled using an online tool called Roboflow  

(Dwyer, 2022), and consisted of 150 high-definition images, that were an average size of 

0.17 megapixels. When classified by median width and median height, there are 100 medium 

images, 25 large images, and 25 jumbo images. There were 634 total annotations across the 

images, with an average annotation per image of 4.2 across the two classes. The breakdown 

of annotations was 451 adults and 183 children, representing a slight under-representation of 

the children class. 

Figure 3 shows the class balance of the pedestrian dataset. Figure 4 shows the dimension 

insights of the pedestrian dataset, including the size distribution and the aspect ratio 

distribution. Figure 5 shows a comparison between the heatmaps of the annotations of the 

adult and child classes.  

 

Figure 3 The class balances in the pedestrian dataset. 
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Figure 4 Dimension insights of the pedestrian dataset. 

Adult Heatmap 

 

Child Heatmap 

 

 

Figure 5 Comparison of the heatmaps between the adult and child classes. 
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3.1.2 Data Collection for Animal Detection and Tracking 

 As with the data collection process for the adult and child pedestrian detection and 

tracking system, a custom dataset was built for the proposed animal detection and tracking 

system using images collected from open-source websites and compiled with Roboflow. 

There are many datasets available that focus on enabling OD for animals, but many of these 

datasets are not as robust as the proposed dataset. The proposed dataset presented in this 

thesis consists of 51 classes of animals that are commonly encountered on roads around the 

world, as identified by (Knutson, 2006). All of the animals that are present in the dataset can 

be seen in Figure 6. 

 The animal dataset consists of 510 high-definition images, that were an average size 

of 0.93 megapixels. When classified by median width and median height, there are four small 

images, 116 medium images, 154 large images, and 236 jumbo images. Figure 6 shows the 

class balances of the animal dataset. Figure 7 shows the dimension insights of the animal 

dataset, including the size distribution and the aspect ratio distribution. 

 

Figure 6 The class balances in the animal dataset. 
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Figure 7 Dimension insights of the animal dataset. 

3.1.3 Data Preprocessing 

 When an image is captured, it contains metadata that specifies the orientation in 

which the image should be displayed in relation to the arrangements of pixels on the disk. 

This metadata is saved in an exchangeable image file format (EXIF) orientation field and aids 

image encoding during capture. By following the directives given by the metadata, cameras 

can efficiently sample data from their sensors without creating undesirable artifacts. As a 

result, regardless of whether the camera is in portrait or landscape mode, most cameras save 

image pixels in the same manner. 

 Nevertheless, when a program displaying the images is unaware of the metadata and 

fails to follow the EXIF orientation, problems can occur. This is a common mistake that 
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easily occurs and is one of the most commonly encountered bugs in CV projects. An example 

scenario of this problem in action is if images with differing pixel configurations, such as (x, 

y) vs. (y, x) are saved on a disk, a user may train a ML model with inaccurate information 

without realizing it, leading to reduced model performance. 

 To avoid this issue, the images in the dataset undergo an auto-orientation process 

during the data preprocessing phase. This step will ensure that the ordering of pixels is 

uniform across all of the images. Studies show that data preprocessing goes a long way 

towards fixing any problems and is an important step when preparing to work with data in 

any capacity (Famili, 1997). Roboflow offers many different forms of data preprocessing 

techniques, and a comparison of their various effects on the pedestrian detection and tracking 

systems proposed in this research is given in a later section of this thesis. 

3.1.4 Data Augmentation 

 As with data preprocessing, data augmentation is another process that can be 

undertaken prior to training a given ML model. Especially with deep CNN-based CV tasks, 

good generalization of the model can be challenging (Shorten, 2019). The reason that 

generalization is important to the model is because if a model has poor generalization, 

overfitting can occur, when can learn to a high training and validation error (Shorten, 2019). 

Data augmentation is a very powerful method that often reduces overfitting when applied to a 

model (Shorten, 2019). 

For the purposes of this research, one data augmentation technique was used: mosaic 

augmentation. Roboflow enables many different data augmentation techniques, and this was 

determined to be the most beneficial to improving the proposed model. A comparison of all 

of the augmentation techniques provided by Roboflow and their various effects on the 

pedestrian detection and tracking systems proposed in this research is given in a later section 

of this thesis. 



21 

 

The mosaic data augmentation technique integrates four source images into a single 

output image (Hao, 2020). The simulation of random cropping of input images while keeping 

the relative size of items in relation to the overall image helps OD models deal with instances 

where object occlusion or translation has occurred (Hao, 2020). Another benefit of mosaic 

augmentation is that groupings of object classes that may not exist together in the training 

dataset can be created (Hao, 2020). A sample image from the pedestrian dataset after mosaic 

augmentation has been applied is shown in Figure 8. After this method was applied, the size 

of the dataset for pedestrian detection grew to 312 images, and the dataset for animal 

detection grew to 1,324 images. 

 

Figure 8 Sample image from the pedestrian dataset after mosaic augmentation. 
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3.1.5 Convolutional Neural Network 

 The YOLOv8 model used in this research is an example of a CNN-based approach to 

CV. Like other artificial neural networks (ANNs), CNNs are inspired by biological 

processes, specifically the neurons of the visual cortex. CNNs are primarily used for CV 

tasks such as image and video recognition, classification, and segmentation.  

 A feedforward CNN is a CNN where the connections between the nodes do not form 

a cycle. CNNs consist of convolutional layers, pooling layers, and fully connected layers.  

These layers are visualized in Figure 9. 

 

Figure 9 Convolution neural network architecture 

 Filters, also known as kernels, transform input data in the convolutional layers 

(O’Shea, 2015). Each kernel produces a unique activation map, which is passed through an 

activation function and combined to create the convolutional layer’s final output (O’Shea, 

2015). The pooling layers use a technique called max pooling or average pooling to reduce 

the dimensionality of the input data by taking the maximum or average value respectively of 

a small region of the data (O’Shea, 2015). Pooling makes the CNN less computationally 

expensive and easier to train (O’Shea, 2015). 

 Neurons form the fully connected layer, where each neuron is connected to every 

neuron in the previous layer (O’Shea, 2015). The flattened output of the pooling layer is the 

input to the fully connected layer, which also uses the features extracted by the convolutional 

and pooling layers, which then uses them to make a prediction (O’Shea, 2015). The fully 
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connected layer is processed using weights and biases to produce the final output of the CNN 

(O’Shea, 2015). 

3.1.6 YOLOv8 

 At the time of this research YOLOv8 is the most current version of the YOLO OD 

algorithm. As this algorithm is in iterative development, the architecture of the model has 

undergone many changes since it was first introduced. This section will detail the general 

architecture of the YOLO family of OD algorithms and will discuss changes in the 

architecture leading up to the development of YOLOv8. 

 When it was first introduced in 2016, YOLO was revolutionary in its approach to OD. 

What was previously multiple components that enabled OD was combined into one single 

CNN (Redmon, 2016). YOLO used features from the entire input image to predict the 

bounding boxes, predicting them simultaneously across all classes (Redmon, 2016). This 

architecture enabled end-to-end training and real-time speed while maintaining high average 

precision (Redmon, 2016). 

 The CNN employed by the original YOLO algorithm was made up of 24 

convolutional layers followed by two fully connected layers (Redmon, 2016). The alternating 

convolutional layers helped reduce the feature space from the previous layers (Redmon, 

2016). The convolutional layers were pretrained on the ImageNet (Deng, 2009) classification 

task at half-resolution, before the resolution was doubled when making the final detection 

(Redmon, 2016). 

 The first improvement to the YOLO algorithm was in the form of YOLOv2 and 

YOLO9000, which were introduced in 2017. YOLOv2 made the following improvements on 

the original algorithm: batch normalization, use of a higher resolution image classifier, 

removal of the fully connected layers from YOLO in favor of anchor boxes, dimension 

clusters, direct location prediction, fine-grained features, multi-scale training, use of a new 
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base classification model, improved training processes, hierarchical classification, multiple 

dataset combination using WordTree, and joint classification and detection (Redmon, 2017). 

YOLO9000 was an expansion of the detection capabilities of YOLO, upping the number of 

object categories that could be detected to over 9000 (Redmon, 2017). 

 YOLOv3, proposed in 2018, makes some changes to the bounding box prediction 

system used in YOLO9000, in that YOLOv3 predicts an objectness score for each bounding 

box using logistic regression (Redmon, 2018). The YOLOv3 system predicts, in three levels 

of detail, where objects are in images by dividing the image into grids and predicting the 

location, size, and category of each object in each grid cell (Redmon, 2018). The final 

improvement offered by YOLOv3 over its predecessors is a new CNN for performing feature 

extraction that has 53 convolutional layers (Redmon, 2018). 

 YOLOv4, introduced in 2020, offered expansive improvements on the YOLOv3 

architecture. YOLOv4 utilized a bag of freebies and bag of special approach for the backbone 

of the model, which included CutMix and mosaic data augmentation, DropBlock 

regularization, class label smoothing, mish activation, cross-stage partial connections, and 

multi-input weighted residual connections (Bochkovskiy, 2020). For the detector, YOLOv4 

again used a bag of freebies and bag of specials approach, which included CIoU-loss, cross 

mini-batch normalization, DropBlock regularization, mosaic data augmentation, self-

adversarial training, eliminated grid sensitivity, multiple anchors for a single ground truth, a 

cosine annealing scheduler, optimal hyper-parameters, random training shapes, mish 

activation, an SPP-block, a spatial attention model block, a path aggregation network path-

aggregation block, and DIoU-NMS (Bochkovskiy, 2020). 

 The architecture of YOLOv5 is very similar to the architecture of YOLOv4, except 

YOLOv5 was the first YOLO model to break away from the Darknet backbone that formed 

the basis for the previous versions of the model. Instead, YOLOv5 operated fully in PyTorch, 
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which offered both speed and accuracy improvements (Jocher, 2020). Many components of 

YOLOv6 improved on YOLOv5, including network architecture, label assignment, loss 

function, data augmentation, industry-friendly changes, and quantization and deployment (Li, 

2022). 

 The network structure of YOLOv6 consists of a backbone, neck, and head (Li, 2022). 

For large and small models respectively, the backbone is based on CSPStackRep and 

RepVGG blocks (Li, 2022). The neck employs a PAN topology with RepBlocks or 

CSPStackRep blocks for increases performance (Li, 2022). For efficiency, the head has been 

simplified (Li, 2022).  

 The label assignment approach for YOLOv6 is TAL (Li, 2022). For its loss function, 

YOLOv6 employs VariFocal loss for classification and SIoU/GIoU Loss for regression (Li, 

2022). In terms of industry-friendly changes that were made to the algorithm, self-distillation 

and longer training epochs were implemented (Li, 2022). YOLOv6 is also trained with 

RepOptimizer to obtain PTQ-friendly weights in order to increase performance during 

quantization and deployment (Li, 2022). 

 At the same time YOLOv6 was being developed, YOLOv7 also entered the market. 

The authors of YOLOv7 designed several trainable bag-of-freebies methods to enable 

accurate real-time object detection without increasing the inference cost (Wang, 2022). They 

also identified and proposed methods to address issues regarding how the re-parameterized 

model replaces the original model and how the dynamic label assignment strategy deals with 

assignment to different output layers (Wang, 2022). Additionally, they proposed “extend” 

and “compound scaling” methods for the real-time object detector that effectively used 

parameters and computation, and finally, they proposed a method to effectively reduce an 

estimated 40% of necessary parameters and 50%  of computations (Wang, 2022). 
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 As of March 2023, YOLOv8 is the latest version of the YOLO OD algorithm. 

YOLOv8 expands on the features of all previous versions of the algorithm, offering 

improvements for the performance, flexibility, and efficiency of the algorithm. Such 

innovations include a new backbone network, a new anchor-free split head, and new loss 

functions. These improvements maintain the compact size and quick speed of the algorithm, 

while delivering super results. 

The custom YOLOv8 implementation in this research project is designed to reduce 

unnecessary object detections and refine the algorithm for use in AVs, with a focus on 

pedestrian detection and tracking. To achieve this, we use a custom training data file. By 

default, YOLO models are trained on Microsoft's COCO dataset, which consists of images 

with 91 objects that are easily recognizable by a four-year-old (Lin, 2014). 

The custom training data reduces the number of detected classes from 80 to 2, adults 

and children, enabling differentiation between adult and child pedestrians. Additionally, 

custom training data allows the object detection model to focus only on relevant objects for the 

task at hand. For example, an autonomous vehicle system would not need to identify a banana 

or carrot, both of which are included in the COCO data set. 

The architecture of the YOLOv8 model used in this research consists of seven 

convolutional layers, eight cross stage partial (CSP) bottleneck layers with two convolutions 

(C2f), one spatial pyramid pooling – fast (SPPF) layer, two upsampling layers, four 

concatenation layers, and one segmentation layer.  

The convolutional layers use a Sigmoid-weighted Linear Unit (SiLU) activation 

function, with two forward methods: forward and forward fuse. The forward technique applies 

the convolutional operation to the input tensor, followed by batch normalization and the 

activation function. The forward fuse method applies the activation function to the result of a 

transposed convolution on 2D data. 
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The C2f layers use two convolutions to improve the efficiency and accuracy of 

YOLOv8’s CSPDarknet backbone. The forward pass of the C2f layers consists of multiple 

steps. Firstly, the input tensor is passed through a 1x1 convolution layer with double the 

number of hidden channels. The output is then divided into two equal chunks along the channel 

dimension. The first chunk is used as the primary input for further processing, while the second 

chunk is saved for later concatenation. The primary input is then routed through a series of 

bottlenecks, which use the hidden channels as both input and output channels. Finally, the 

outputs of the bottlenecks are concatenated with the previously stored chunk and fed through 

another 1x1 convolutional layer to generate the final output tensor. The C2f layers also use a 

forward split method to apply spatial attention to the input tensor before it is processed by the 

bottlenecks. The forward split works essentially the same way as the forward pass, with the 

exception that it applies spatial attention before concatenating the outputs with the stored 

chunk. 

In the SPFF layer, the forward pass begins with a 1x1 convolution to cut the number of 

input channels in half. Then, to collect contextual information at several scales, max pooling 

is applied twice. The result of the first and second max pooling operations are then 

concatenated with the original input feature map. The concatenated feature map is then sent 

through another 1x1 convolution to get the final output feature map. 

The upsampling layers enable efficient and accurate resizing of input data. The 

concatenation layers provide a convenient and efficient way to combine tensors along a specific 

dimension. The segmentation layer provides essential functionality for incorporating mask-

based segmentation in the YOLOv8 object detection framework, enabling accurate and 

efficient segmentation of objects in images. The full architecture of YOLOv8 can be visualized 

in Figure 10. 
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Figure 10 Architecture of the YOLOv8 model. 

3.1.7 Instance Segmentation 

 Image segmentation is an important component of CV systems that involves 

partitioning image or video inputs into multiple segments and objects and has many 

applications, including pedestrian detection for AVs (Minaee, 2021). There are two main 

forms of image segmentation: semantic segmentation and instance segmentation. Semantic 

segmentation gives fine inference by predicting labels for every pixel in the image. Instance 

segmentation, on the other hand, gives different labels for separate instances of objects 

belonging to the same class (Hafiz, 2020). 

 For the purposes of this research, instance segmentation was implemented during the 

labeling process of the input images. Instance segmentation was chosen for several reasons, 

the chief reason among them being that YOLOv8 natively supports this process for training 

purposes. It was determined that instance segmentation should be used for the particular use 

cases of adult vs. child pedestrian detection as well as the animal detection because the goal 

of this research is to provide meaningful information to an AV about objects that cross its 
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path on the road. Because instance segmentation assigns different labels for every instance of 

an object in the scene, this can enable the proposed OD and OT system to provide 

information about every distinct object, so that each object can be tracked uniquely. Another 

consideration is that because instance segmentation detects an object based on its actual form, 

the detection will be more accurate than a bounding box approach because there will be less 

unnecessary background detected. 

3.1.8 DeepSORT  

This research project uses the DeepSORT algorithm for pedestrian tracking. 

DeepSORT is an extension of the SORT algorithm introduced in (Bewley, 2016). The 

architecture of DeepSORT consists of track handling and state estimation, assignment 

problem, matching cascade, and deep appearance descriptor (Wojke, 2017).  

DeepSORT's track handling and state estimation system uses a mathematical model to 

predict the location of an object in subsequent frames based on its current location and 

movement between frames (Wojke, 2017). Considered are the object’s location on the screen, 

its size, and its shape (Wojke, 2017). When a new frame is processed, the model is updated 

using a Kalman filter, which helps to correct for any prediction errors (Wojke, 2017). Given 

lack of new information about the object, predictions will be based on the previous frame 

(Wojke, 2017). 

DeepSORT extends the traditional method of solving the association between 

predicted Kalman states and newly arrived measurements by using the Hungarian algorithm 

and squared Mahalanobis distance (Wojke, 2017). The Mahalanobis distance measures the 

standard deviations between the detection and the mean track location, considering the 

uncertainty of the state estimation (Wojke, 2017). DeepSORT also uses a CNN to compute 

bounding box appearance descriptors (Wojke, 2017). 
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DeepSORT's matching cascade algorithm addresses subproblems such as uncertainty 

about the location of an obstructed object, which is increased by Kalman filter predictions 

and can lead to a spread in probability mass and a decrease in peakedness of the observation 

likelihood (Wojke, 2017). It also handles situations where two tracks compete for the same 

measurement, which can result in track fragmentation (Wojke, 2017).  

The matching cascade algorithm works as follows: a set of track and detection indices 

as well as the maximum age are given as input, the association cost matrix and admissible 

associations matrix are calculated, and a linear assignment problem for tracks of increasing 

age is solved (Wojke, 2017). Tracks that have not been associated with a detection past a 

certain point are then selected and the linear assignment between these tracks and unmatched 

detections is solved (Wojke, 2017). Finally, it updates the set of matches and unmatched 

detections and runs intersection over union (IoU) association on unconfirmed and unmatched 

tracks past a certain age to account for sudden appearance changes (Wojke, 2017). 

The final part of the DeepSORT algorithm is the deep appearance descriptor, which 

uses a pre-trained CNN for deep metric learning in a people tracking context (Wojke, 2017). 

This descriptor is trained offline, before the online tracking application, and employs simple 

nearest neighbor queries without further metric learning (Wojke, 2017). 

3.1.9 Speed Estimation 

The algorithm for speed estimation can be optimized by only using calculations from 

a subset of the video. Two areas are designated in the video, so that when an object enters the 

first area, the timestamp of the video at that point, A_E, and the object's position, A_P, are 

recorded. Similarly, the timestamp at which the object enters the second area, B_E, and its 

position, B_P, are recorded. To estimate the object's speed, the elapsed time, T, from its entry 

to its exit must be calculated. 

𝑇 = 𝐵_𝐸 − 𝐴_𝐸                                                              (1) 
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One of the biggest challenges when attempting to estimate the speed of a tracked 

object is measuring the actual time that passes between the object entering and exiting an 

area. If done improperly, the estimated speed will not be accurate, and will be tied to the 

processing speed of the computer. The method proposed in this research aims to prevent this 

by taking the processing speed of the frames themselves into the calculation. At the start of 

processing, the timestamp is logged, S, as well as at the end of processing, E. A running total 

for the processing time, PT, is kept, and both timestamps for an object’s entry, N, and exit, X, 

into an area are logged. The difference between these two variables is incremented to the 

running total. 

𝑃𝑇+= (𝑋 − 𝑁)                                                               (2) 

 At the end of processing, the total time, TT, taken is calculated: 

𝑇𝑇 = (𝐸 − 𝑆) − 𝑃𝑇                                                           (3) 

 As well as the distance, D, the object has traveled: 

𝐷 = 𝐵_𝑃 − 𝐴_𝑃                                                              (4) 

The average feet or meters traveled per second, V, must be calculated in order to 

estimate the speed. This calculation uses both T and D. The formula works for both the 

Imperial system and the metric system. Both units of measurement are considered. 

𝑉 =
𝐷

𝑇
                                                                       (5) 

 If the estimated speed, ES, is measured in miles per hours, it is converted from V 

using the constant value of 1.467: 

𝐸𝑆 =
𝑉

1.467
                                                                 (6) 

 If ES is measured in kilometers per hour, it is converted from V using the constant 

value of 3.6: 

𝐸𝑆 = 𝑉 × 3.6                                                                 (7) 
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3.1.10 Trajectory Prediction 

To predict the trajectory of pedestrians, historical position data from the DeepSORT 

implementation is logged. This data is then split into training and testing sets using an 80-20 

split. The training set is used to fit a k-Nearest Neighbors (k-NN) regression model, while the 

test set is used to evaluate the accuracy of the model’s predictions. 

The k-NN regressor algorithm is a type of supervised learning algorithm used for 

regression tasks, where the goal is to predict a continuous numeric value, rather than a class 

label. The k-NN regressor algorithm is based on the principle that similar data points tend to 

have similar output values. The working process for the k-NN regressor is described in the 

following paragraph. 

Based on the position data exported from DeepSORT, a value for k is chosen. For the 

purposes of this research, a k value of two was used. After the value of k was selected, the 

distance between a given data point and all of the other points in the training set was 

calculated based on Euclidean distance. Once the distances have been calculated, the nearest 

neighbors are determined. Once the neighbors have been identified, the average value of the 

output variable for the k nearest neighbors is calculated, and becomes the predicted output 

value for the new data point. This process is repeated until all predictions are complete. 

3.1.11 Performance Evaluation 

It is important to evaluate the classification process and measure the performance of 

the custom YOLOv8 implementation. YOLOv8 has several built-in metrics to evaluate its 

performance, involving the use of true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN) values. These metrics are defined as: 

1) Precision (P): The percentage of correctly classified positive cases relative to the 

cases classified as positive. 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                         (8) 
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2) Recall (R): The percentage of positive cases that were successfully classified as 

positive. 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                         (9) 

3) mean Average Precision (mAP): The average precision (AP) of each class over a 

number of classes (n). 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

                                                     (10) 

 To evaluate the performance of the k-NN regressor at accurately predicting trajectory, 

the following metrics are used: 

1) Mean Squared Error (MSE): The average squared difference between the estimated 

values (Y) and the actual values (Ŷ). 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − Ŷ𝑖)

2
                                             (11)

𝑛

𝑖=1

 

2) Coefficient of Determination (R2) Score: The proportion of variation in the dependent 

variable that is predictable from the independent variables, which is measured by the 

residual sum of squares (SSres) and the total sum of squares (SStot). 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                                                      (12) 
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CHAPTER IV: EXPERIMENTAL RESULTS 

The first part of this chapter discusses the experimental results of the proposed 

adult vs. child pedestrian detection and tracking system. The second part of this chapter 

discusses the experimental results of the proposed methodology for the proposed animal 

detection and tracking system. 

4.1 Experimental Results for the Pedestrian Detection and Tracking System 

 Because of the wide number of YOLO models that are available to the public, the 

proposed adult and child pedestrian detection system was tested on several of the most 

popular models: YOLOv3, YOLOv4, YOLOv5, YOLOv6, YOLOv7, and YOLOv8. The 

results of these experiments are shown in Table 1. The experiments show that the 

YOLOv8 model performs the best compared to the previous YOLO models for the task 

of adult and child pedestrian detection when the detection was being performed using the 

bounding box method.  

The P of YOLOv8 is given as 79.3% overall, with adults having 85.1% P and 

children having 73.6%. The overall R is 79.7%, representing 74% for adults and 85.4% 

for children. The mAP for an intersection-over-union (IoU) threshold of 50% (mAP50) is 

83.5% overall, 84.5% for adults, and 82.5% for children. When the IoU threshold is 

changed to measure all thresholds from 50% to 95% at an interval of 5% (mAP50-95), 

the mAP becomes 49.9% overall, 50.8% for adults, and 48.9% for children. 

Once it was determined that of the tested YOLO models, YOLOv8 performed the 

best, instance segmentation was introduced into the model, changing the results slightly. 

With segmentation added, the overall P was 78.7%, 67.8% for adults, and 89.5% for 

children. The overall R became 78.6, with the R for adults becoming 96.7%, and 60.4% 

for children. The mAP50 score changed to 82.2% overall, 91.2% for adults, and 73.3% 

for children. Finally, the mAP50-95 score changed to 71.9% overall, 79.5% for adults, 
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and 64.3% for children. From these observations, it is noted that adding segmentation to 

the model improved the P for children, the R and mAP50 for adults, and in every 

category for mAP50-95. However, segmentation reduced the values for the other 

categories. Because the number of improved categories is evenly split between base 

YOLOv8 and YOLOv8 with segmentation, and because the added merits of 

implementing instance segmentation have already been discussed in this thesis, for the 

further tests of the algorithm, YOLOv8 with instance segmentation was used. 

Table 1 Comparison of YOLO models for adult and child pedestrian detection. 

Class Images Instances P R mAP50 mAP50-95 

YOLOv5 

Overall 45 140 83.1% 72% 78.7% 45.7% 

Adult 45 92 84.3% 66.3% 76.9% 44.8% 

Child 45 48 82% 77.8% 80.5% 46.6% 

YOLOv7 

Overall 45 140 15.7% 30% 14.3% 3.42% 

Adult 45 92 21.3% 39.1% 22.4% 5.1% 

Child 45 48 10.1% 20.8% 6.3% 1.73% 

YOLOv8 

Overall 45 140 79.3% 79.7% 83.5% 49.9% 

Adult 45 92 85.1% 74% 84.5% 50.8% 

Child 45 48 73.6% 85.4% 82.5% 48.9% 

YOLOv8 + Segmentation 

Overall 45 140 78.7% 78.6% 82.2% 71.9% 

Adult 45 92 67.8% 96.7% 91.2% 79.5% 

Child 45 48 89.5% 60.4% 73.3% 64.3% 
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 Once the appropriate model that was to be used for the adult and child pedestrian 

detection system was determined, tests were conducted to determine the effectiveness of 

augmenting the training data of the model. The results of these tests are reported in Table 

2. The data augmentation techniques that were studied are as follows: horizontal flipping, 

90T rotation clockwise and counterclockwise, random cropping by 20%, random rotation 

by 15°, horizontal and vertical random shearing at 15°, grayscale conversion of 25%, hue 

changes of 25°, saturation changes of 25%, brightening and darkening by 25%, exposure 

changes of 25%, 10px blurring, noisiness of 5%, three 10% cutouts, and mosaic 

augmentation. 

 The experiments show that adding 5% of noise to the training data offers the 

highest R for adults, 95.7%, while flipping horizontally and rotating clockwise and 

counterclockwise by 90° both give the highest R for children, 95.8%. In terms of P, 

rotating clockwise and counterclockwise by 90° offers the highest P across all categories, 

with 95.6% overall, 97.7% for adults, and 93.6% for children. However, in terms of mAP 

values, the mosaic data augmentation offers the highest values for mAP50 and mAP50-

95 across all categories. The mAP50 values are 97.2% overall, 97.9% for adults, and 

96.6% for children. The mAP50-95 values, comparatively, are 89.6% overall, 91.9% for 

adults, and 87.3% for children. Because the mosaic data augmentation offers the most 

improvements overall to the original YOLOv8 and instance segmentation model, all 

future experiments were conducted with this augmentation added. 

Table 2 Comparison of data augmentation techniques for adult and child pedestrian detection. 

Class Images Instances P R mAP50 mAP50-95 

Saturation 

Overall 45 140 83.8% 75.6% 84.4% 71.4% 

Adult 45 92 88.8% 80.4% 86% 73.9% 
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Child 45 48 78.8% 70.8%. 82.9% 68.9% 

Noise 

Overall 45 140 82.1% 79.6% 85.4% 73% 

Adult 45 92 75.8% 95.7% 92.3% 80.4% 

Child 45 48 88.4% 63.6% 78.5% 65.6% 

Brightness 

Overall 45 140 79.7% 81.4% 85.7% 74.1% 

Adult 45 92 82.2% 85.3% 90.8% 80.9% 

Child 45 48 77.2% 77.6% 80.6% 67.4% 

Shear 

Overall 45 140 82.5% 78.4% 87.4% 69.7% 

Adult 45 92 80% 90.2% 92% 74.7% 

Child 45 48 85% 66.7% 82.7% 64.7% 

Grayscale 

Overall 45 140 83.7% 81.1% 87.4% 72.8% 

Adult 45 92 89.9% 87.3% 91.8% 77.2% 

Child 45 48 77.5% 75% 83% 68.4% 

Cutout 

Overall 45 140 82.5% 82.8% 87.9% 75.7% 

Adult 45 92 86% 86.5% 91.1% 79.1% 

Child 45 48 79% 79.2% 84.7% 72.4% 

Exposure 

Overall 45 140 85.2% 82.7% 88% 73.6% 

Adult 45 92 87.7% 85.6% 91.6% 78.2% 
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Child 45 48 82.7% 79.7% 84.4% 69% 

Hue 

Overall 45 140 78.6% 86.2% 88.9% 74.6% 

Adult 45 92 77.3% 89.1% 92.1% 78.7% 

Child 45 48 80% 83.3% 85.7% 70.5% 

Crop 

Overall 45 140 82.9% 87% 88.9% 75.1% 

Adult 45 92 79.2% 93.5% 91.1% 80.6% 

Child 45 48 86.6% 80.6% 86.7% 69.7% 

Blur 

Overall 45 140 89.6% 78.3% 89.5% 75.3% 

Adult 45 92 89.9% 87.2% 92.2% 79.9% 

Child 45 48 89.3% 69.4% 86.7% 70.8% 

Random Rotate 

Overall 45 140 81.7% 89.7% 89.5% 75.3% 

Adult 45 92 87.5% 88% 91.6% 79.2% 

Child 45 48 75.8% 91.3% 87.4% 71.5% 

Flip 

Overall 45 140 91.9% 94.1% 95.2% 88.3% 

Adult 45 92 95.5% 92.4% 97% 90.9% 

Child 45 48 88.3% 95.8% 93.3% 85.7% 

Rotate by 90° 

Overall 45 140 95.6% 94% 96.3% 87.2% 

Adult 45 92 97.7% 92.2% 97.2% 90.4% 
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Child 45 48 93.6% 95.8% 95.5% 83.9% 

Mosaic 

Overall 45 140 93.3% 91.9% 97.2% 89.6% 

Adult 45 92 93.5% 94.3% 97.9% 91.9% 

Child 45 48 93% 89.6% 96.6% 87.3% 

 

The YOLO algorithm has several parameters that can affect its performance. Image 

size, batch size, the number of epochs, and the weights used are examples of these changeable 

parameters. Several experiments were conducted to determine which parameter configuration 

offered the best performance. Table 3 shows the results of the custom object detection method 

using the best configuration settings of an image size of 1280, batch size of 4, 300 epochs, and 

YOLOv8x6 weights. 

The final results of the proposed adult and child pedestrian detection system are 

described. The overall P is 95.8% with the adult class having a P of 96.5% and the children 

class having a P of 95.1%. The overall R is 93.4%, with the adult class having a R of 88.9% 

and the children class having an R of 97.9%. The mAP50 values are 98.4% overall, 97.9% for 

adults, and 98.9% for children. The mAP50-95 values are 89.1% overall, 91.5% for adults, and 

86.7% for children. 

Table 3 Final results of the adult and child pedestrian detection system. 

Class Images Instances P R mAP50 mAP50-95 

Overall 45 140 95.8% 93.4% 98.4% 89.1% 

Adult 45 92 96.5% 88.9% 97.9% 91.5% 

Child 45 48 95.1% 97.9% 98.9% 86.7% 
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 Since this proposed adult and child pedestrian detection system is designed to be 

implemented for use in AVs, it is critical that the algorithm operates in real-time. Table 4 

shows an analysis of different speed metrics for the algorithm. The preprocessing speed of 

the algorithm is 4.3 ms, the inference speed is 28.3 ms, there is a loss of 0.0 ms, and the 

postprocessing per image takes 1.1 ms. These values show that the proposed adult and child 

pedestrian detection system is capable of operating in real-time, which signals that it can be 

implemented into AVs effectively. 

Table 4 Analysis of the speed of the proposed adult and child pedestrian detection system. 

Speed 

Preprocessing Inference Loss Postprocessing per Image 

4.3 ms 28.3 ms 0.0 ms 1.1 ms 

 

 In addition to this raw data that is generated by YOLOv8, there are many other 

metrics that can be used to evaluate the performance of the algorithm. Figure 11 shows a 

sample of six images after the algorithm has been run, showing the predicted class for each 

detected object. Table 5 shows the confusion matrix for the system. Figure 12 shows the F1-

confidence curve for the adult and child pedestrian detection system. Figure 13 shows the PR 

curve for the proposed detection system. Figure 14 shows the P-confidence curve for the 

system. Figure 15 shows the R-confidence curve. Figure 16 shows several visualizations of 

the data labels in the proposed system. Figure 17 shows the correlogram for the data labels in 

the proposed system. Figure 18 shows several performance metrics for the algorithm given 

by scatter plots. 
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Figure 11 A sample of the results of the adult and child pedestrian detection system. 

Table 5 Confusion matrix for the adult and child pedestrian detection system. 
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Figure 12 The F1-confidence curve for the adult and child pedestrian detection system. 

 

Figure 13 The precision-recall curve for the adult and child pedestrian detection system. 
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Figure 14 The precision-confidence curve for the adult and child pedestrian detection system. 

 

Figure 15 The recall-confidence curve for the adult and child pedestrian detection system. 
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Figure 16 Visualizations of the data labels in the adult and child pedestrian detection system. 

 

Figure 17 The correlogram for the data labels in the adult and child pedestrian detection system. 
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Figure 18 Scatter plots of various measures of performance for the adult and child pedestrian detection system. 

 Once the custom YOLOv8 model has been trained, the generated weights file is then 

fed into the DeepSORT OT model. An example of the combined YOLOv8 + DeepSORT 

model for adult and child pedestrian tracking is shown in Figure 19. 

 

Figure 19 Sample results of the adult and child pedestrian tracking system. 

4.2 Experimental Results for the Animal Detection and Tracking System 

Table 6 shows the results of the YOLOv8 segmentation model with the mosaic 

augmentation applied. The training settings for the algorithm are the same as for the adult and 

child pedestrian detection and tracking system. Figure 20 shows a sample of sixteen images 

after the algorithm has been run, showing the predicted class for each detected object. Figure 
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21 shows the confusion matrix for the system. Figure 22 shows the F1-confidence curve for 

the animal detection system. Figure 23 shows the PR curve for the proposed detection system. 

Figure 24 shows the P-confidence curve for the system. Figure 25 shows the R-confidence 

curve. Figure 26 shows several visualizations of the data labels in the proposed system. Figure 

27 shows the correlogram for the data labels in the proposed system. Figure 28 shows several 

performance metrics for the algorithm given by scatter plots. 

Table 6 Results of the proposed animal detection system. 

Class Images Instances P R mAP50 mAP50-95 

Overall 103 104 86.5% 97% 99.5% 93.2% 

Alligator 103 2 98.4% 100% 99.5% 89.5% 

Armadillo 103 2 83.3% 100% 99.5% 99.5% 

Badger 103 2 100% 95.9% 99.5% 99.5% 

Barn Owl 103 2 82.2% 100% 99.5% 99.5% 

Bat 103 2 82.7% 100% 99.5% 99.5% 

Bison 103 2 82.6% 100% 99.5% 92.2% 

Bull Snake 103 2 83.4% 100% 99.5% 99.5% 

Chimney Swift 103 2 81.8% 100% 99.5% 99.5% 

Chipmunk 103 2 84.2% 100% 99.5% 99.5% 

Cow 103 2 82.6% 100% 99.5% 99.5% 

Crow 103 2 86.9% 100% 99.5% 94.6% 

Deer 103 2 82.4% 100% 99.5% 99.5% 

Desert 

Tortoise 
103 2 79.5% 100% 99.5% 99.5% 

Elk 103 2 100% 90.8% 99.5% 90.1% 

Garter Snake 103 2 85.6% 100% 99.5% 94.6% 
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Gopher 

Tortoise 
103 2 83.1% 100% 99.5% 99.5% 

Green Snake 103 2 82.5% 100% 99.5% 79.7% 

Groundhog 103 2 85% 100% 99.5% 92.1% 

Herring Gull 103 2 78.1% 100% 99.5% 99.5% 

Hognose 

Snake 
103 2 100% 96.5% 99.5% 70.6% 

House 

Sparrow 
103 2 89% 100% 99.5% 60.7% 

Jackrabbit 103 2 77.2% 100% 99.5% 99.5% 

Marmot 103 2 70.6% 100% 99.5% 99.5% 

Meadowlark 103 2 83.6% 100% 99.5% 94.5% 

Moose 103 2 89.4% 100% 99.5% 75% 

Mouse 103 2 100% 77.2% 99.5% 94.6% 

Muskrat 103 2 73.3% 100% 99.5% 94.5% 

Northern 

Oriole 
103 2 84.3% 100% 99.5% 64.8% 

Opossum 103 2 97% 100% 99.5% 99.5% 

Painted Turtle 103 2 100% 54.8% 99.5% 99.5% 

Pigeon 103 2 81.8% 100% 99.5% 94.6% 

Porcupine 103 2 86.7% 100% 99.5% 79.9% 

Rabbit 103 2 81.1% 100% 99.5% 94.5% 

Raccoon 103 2 86.9% 100% 99.5% 88.7% 

Rat 103 2 82.6% 100% 99.5% 99.5% 

Rattlesnake 103 2 88% 100% 99.5% 75.5% 

Red-headed 

Woodpecker 
103 2 93.9% 100% 99.5% 99.5% 

Red-winged 

Blackbird 
103 2 81.2% 100% 99.5% 99.5% 
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Ring-necked 

Pheasant 
103 2 85.6% 100% 99.5% 89.8% 

Ring-necked 

Snake 
103 2 82.8% 100% 99.5% 94.6% 

Roadrunner 103 2 79.9% 100% 99.5% 99.5% 

Robin 103 2 84.2% 100% 99.5% 99.5% 

Skunk 103 2 100% 69.2% 99.5% 94.7% 

Snapping 

Turtle 
103 2 100% 96.9% 99.5% 99.5% 

Snowshoe 

Hare 
103 2 100% 90.7% 99.5% 82.2% 

Softshell 

Turtle 
103 2 82.9% 100% 99.5% 99.5% 

Squirrel 103 2 100% 76.6% 99.5% 89.5% 

Starling 103 2 81.7% 100% 99.5% 94.6% 

Toad 103 2 87.3% 100% 99.5% 99.5% 

Vole 103 2 74.9% 100% 99.5% 99.5% 

Yellow-shafted 

Flicker 
103 2 83.6% 100% 99.5% 99.5% 

 

 

Figure 20 A sample of the results of the animal detection system. 
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Figure 21 The confusion matrix of the proposed animal detection system. 

 

Figure 22 The F1-confidence curve for the proposed animal detection system. 
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Figure 23 The PR curve for the proposed animal detection system. 

 

 Figure 24 The P-confidence curve for the proposed animal detection system. 
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Figure 25 The R-confidence curve for the proposed animal detection system. 

 

Figure 26 Visualizations of the data labels in the proposed animal detection system. 
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Figure 27 The correlogram for the data labels in the proposed animal detection system. 

 

Figure 28 Scatter plots of various measures of performance for the proposed animal detection system. 
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 As with the tracking system for adult and child pedestrians, once the OD model has 

been trained with the animal data, the generated weights are fed into the DeepSORT model. 

A sample result of an animal from the dataset, a bison, being tracked is shown in Figure 29. 

 

Figure 29 Samples results of the proposed animal tracking system, showing the tracking of a bison. 

4.3 Experimental Results for the Proposed Speed Estimation Technique 

 The estimated speed for several pedestrians is shown in Table 3. These results are in 

line with the average walking speed of a human, as the slower pedestrian was an elderly 

woman, and the two faster pedestrian were adult men, with one walking at a slightly faster pace 

than the other. 
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Table 7 Results of the proposed speed estimation technique. 

Pedestrian Elapsed Time (s) m/s Distance (m) Mph Kmph 

1 4 2.875 3.5 1.957 3.15 

2 3 3.833 3.5 2.6 4.2 

3 2 6.3 3.5 3.914 6.3 

 

4.4 Experimental Results for the Proposed Trajectory Prediction Technique 

 Similarly to the comparison between members of the YOLO family of OD 

algorithms, another set of experiments was conducted to determine the most suitable ML 

regression model to perform trajectory prediction. The following regression models were 

compared: Partial Least Squares (PLS), AdaBoost, Bagging, ExtraTrees, Gradient 

Boosting, Random Forest, Stacking, Voting, Histogram-Based Gradient Boosting, 

Isotonic, Ridge, Stochastic Gradient Descent (SGD), Linear, ElasticNet, Least Angle 

Regression (LARS), LassoLARS, ARD, Bayesian Ridge, k-NN, Radius Neighbors, Nu 

Support Vector Regression (NuSVR), SVR, and Decision Tree. The results of these 

experiments are shown in Table 6.  

It was determined that the k-NN regression model was the most accurate for 

trajectory prediction. This approach has an MSE of 0.019195935 and an R2 score of 

0.980804065. The accuracy of the k-NN regressor in accurately predicting the trajectory 

of a pedestrian is shown in Figure 30. 

Table 6 Comparison of ML regressors for trajectory prediction. 

Regressor MSE R2 

SGD 0.456198266 0.543801734 

ElasticNet 0.452185514 0.547814486 

LassoLARS 0.43861302 0.56138698 
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Linear 0.438202932 0.561797068 

LARS 0.438202932 0.561797068 

Ridge 0.438139723 0.561860277 

ARD 0.437786109 0.562213891 

PLS 0.430287031 0.569712969 

BayesianRidge 0.430045613 0.569954387 

HistGradientBoosting 0.167656004 0.832343996 

Radius Neighbor 0.074559773 0.925440227 

NuSVR 0.070928902 0.929071098 

SVR 0.059189278 0.940810722 

Bagging 0.057164319 0.942835681 

Voting 0.056655007 0.943344993 

AdaBoost 0.042503271 0.957496729 

DT 0.038852635 0.961147365 

Stacked 0.036594574 0.963405426 

Gradient Boosting 0.035567388 0.964432612 

Random Forest 0.035467849 0.964532151 

ExtraTrees 0.023344438 0.976655562 

Isotonic 0.023119719 0.976880281 

k-NN 0.019195935 0.980804065 
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Figure 30 The actual position of a pedestrian compared to their k-NN regressor predicted position. 
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CHAPTER V: CONCLUSION AND FUTURE RESULTS 

5.1 Conclusion 

 This thesis proposed techniques for a pedestrian detection and tracking system for 

AVs that differentiated between adult and child pedestrians. This system was then expanded 

to also detect and track 51 classes of commonly encountered animals around the world. In 

addition to the detection and tracking of these objects, a novel speed estimation technique 

was developed to estimate the speed of these objects, and trajectory prediction algorithms 

were implemented to make the system even more robust. 

 For the problem of differentiating between adults and children, a custom dataset was 

developed that was meant to address the lack of adequate data for this purpose in existing AV 

datasets. This custom dataset underwent preprocessing where the images were auto oriented, 

and was also augmented using mosaic augmentation, to make the model less susceptible to 

missed detections due to object occlusion. Once the custom dataset was developed, a custom 

implementation of the YOLOv8 algorithm with instance segmentation added was trained, and 

the subsequent weights file that was generated was used to train the DeepSORT OD model. 

 For the animal detection and tracking system, another custom dataset was developed, 

aiming to be the most robust dataset for animal detection on the roads available. This dataset 

consisted of samples from 51 types of mammals, birds, amphibians, and reptiles. This dataset 

was then used in a training process identical to the one used for pedestrian detection and 

tracking. 

 A novel speed estimation mathematical model based on the elapsed time of an object 

entering and exiting an area was devised. The novelty of this speed estimation technique 

comes down to the fact that it aims to provide a more accurate measure of the estimated 

speed compared to existing methods, as it aims to address issues related to the processing 

speed of the computer in determining accurate speed of the tracked object. In addition to the 
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speed estimation technique, the k-NN ML regressor was used to predict the trajectory of the 

objects. 

5.2 Future Work 

 For future work on this proposed OD and OT system for AVs, further testing needs to 

be done to numerically evaluate the DeepSORT tracking model. Further consideration could 

also be paid to the speed estimation technique, to ensure it is even more accurate in 

estimating the speed of detected objects. The k-NN regression model used for trajectory 

prediction needs to be analyzed further, to see how it performs with different shapes of 

position data. Research could also be done to see how the k-NN model could be combined 

with other regressors or techniques for better performance. 

 Future work could also include implementing an approach for tasks such as lane 

detection, road sign detection, and collision prediction and prevention. Another interesting 

avenue that could be explored is methods to teach an AV to try and predict future events 

based on certain scene characteristics, for example, if there is a sports ball rolling across the 

road, it could be likely that a child is close behind, and the AV needs to be more aware. 

Another consideration could be analyzing detection and tracking performance based on the 

gender of the detected pedestrian. 
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