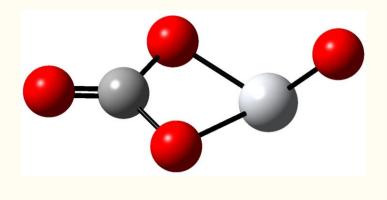
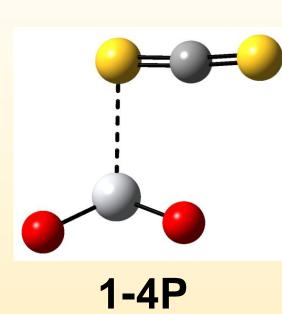
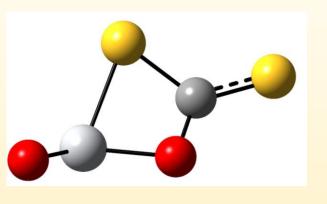

Predicting the Reactions of CS₂ with Group IV and Group VI Transition Metal Oxides Marissa Blair¹, David A. Dixon², and Zachary R. Lee^{1*}


Overview

- Electronic structure methods are being used to study the addition of CS_2 to $Group CS_2$ IV $(MO_2)_n$ and Group VI $(MO_3)_n$ (n = 1, 2, 3) nanoclusters, beginning with the N and MO_3 monomers according to a "bottom-up" approach.
- Physisorption is a process in which molecules bind through Van der Wa interactions. The enthalpies of these reactions are rather low, and the interactions are usually favored at lower temperatures.
- Chemisorption is adsorption in which chemical bonds are broken and/or form therefore, an entirely new chemical species is formed.
- CS_2 absorbed clusters of TiO₂ and CrO₃ were first optimized with harmo vibrational frequencies calculated at the B3LYP/DZVP2 level to quickly prov good starting structures for more accurate optimizations/frequencies at B3LYP/aD level.
- The preliminary density functional theory (DFT) calculations in this study prov structures and vibrational frequency thermodynamic corrections for la expanding upon by way of single point correlated molecular-orbital theory (N calculations, mainly CCSD(T), to study the structures and energies which co arise from Lewis acid-base addition (physisorption) and formation of COS (chemisorption) of CS_2 to these clusters will be predicted.
- All LBE Values reported in kcal/mol..

CO₂ + Group IV MO₂ Monomers

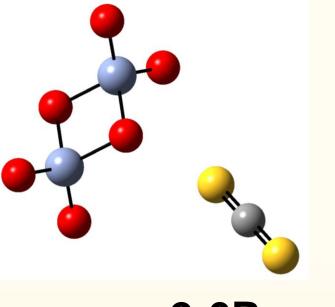

1-4P

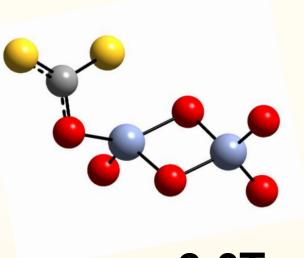


1-4T

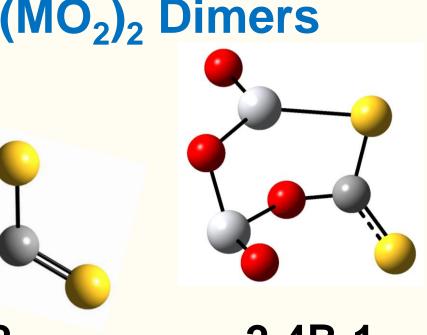
Cluster	B3LYP ΔH _{298K}	CCSD(T) ΔH _{298K}			CCSD(T) ΔG _{298K}	
	aD	aD	aT	aQ	CBS	CBS
1-4P						
TiO ₂	-14.2	-17.3	-16.4	-16.0	-15.8	-7.4
ZrO ₂	-13.2	-15.9	-15.0	-14.5	-14.2	-6.1
1-4T						
TiO ₂	-28.5	-30.9	-31.6	-31.3	-31.1	-20.0
ZrO ₂	-32.1	-34.7	-34.6	-34.3	-34.1	-23.4
HfO ₂	-39.6	-42.2	-43.3	-43.2	-43.0	-32.2

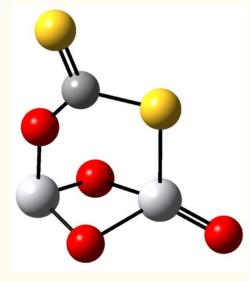
CS₂ + Group IV MO₂ Monomers

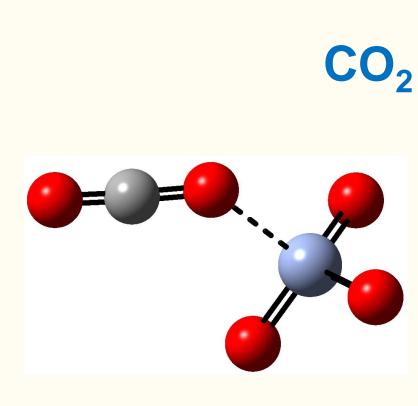

1-4T


Cluster	B3LYP ΔH _{298K}	CCSD(T) ΔH _{298K}			CCSD(T) ΔG _{298K}	
	aD	aD	aT	aQ	CBS	CBS
	1-4P					
TiO ₂	-12.6	-19.3	-19.0	-18.7	-18.6	-10.9
ZrO ₂	-11.3	-22.0	-24.2	-24.6	-24.8	-17.1
HfO ₂	-15.2	-26.6	-28.5	-29.0	-29.3	-21.2
	1-4T					
TiO ₂	-33.0	-40.8	-41.5	-41.9	-42.1	-31.8
ZrO ₂	-36.4	-42.2	-42.1	-42.4	-42.5	-32.2
HfO ₂	-44.0	-54.7	-57.5	-58.7	-59.3	-48.9

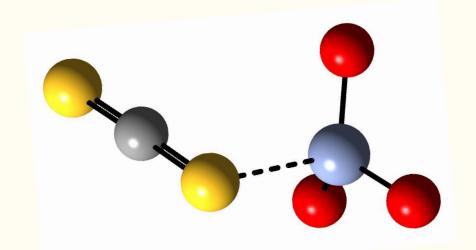
¹Department of Biology and Chemistry, Morehead State University ²Department of Chemistry and Biochemistry, The University of Alabama


	C	S ₂ + Group IV	(MO ₂) ₂ Dimers		
2-4P	2-4T-1	2-4T-2	2 2-4B	S-1 2-4	
		LBEs	CO ₂ LBEs		
Cluster	Β3LYP ΔH _{298K}	B3LYP ΔG _{298K}	CCSD(Τ) ΔH _{298K}	CCSD(T) ΔG _{298K}	
	aD	aD	aT	aT	
	1	2-4P		1	
Ti ₂ O ₄	-12.5	-4.9	-17.2	-9.9	
Zr ₂ O ₄	-10.9	-3.5	-14.4	-6.5	
Hf ₂ O ₄	-13.8	-6.0	-16.3	-9.4	
	•	2-4T- 1			
Ti ₂ O ₄	-24.4	-14.2	-24.2	-13.7	
Zr ₂ O ₄	-31.3	-21.3	-30.5	-20.1	
Hf ₂ O ₄	-37.3	-27.2	-38.4	-28.0	
		2-4T-2	2		
Ti ₂ O ₄	-24.1	-13.9	-24.2	-13.7	
Zr ₂ O ₄	-30.9	-20.9	-30.5	-20.1	
Hf ₂ O ₄	-37.0	-27.0	-38.4	-28.0	
		2-4B-1			
Ti ₂ O ₄	-6.1	4.1	-15.7	-5.2	
Zr ₂ O ₄	-9.6	0.4	-17.6	-7.1	
Hf ₂ O ₄	-8.7	1.5	-17.8	-7.3	
		2-4B-2	2		
Ti ₂ O ₄	-15.3	-4.3	-	-	
Zr ₂ O ₄	-21.5	-10.7	-	-	
Hf ₂ O ₄	-25.8	-14.9	_	-	





	2-6P	2-6	Γ	2-6B			
Cluster	CS ₂ I	LBEs	CO ₂ LBEs				
Cluster	B3LYP ΔH _{298K}	B3LYP ΔG _{298K}	CCSD(T) ΔH _{298K}	CCSD(T) ΔG _{298K}			
	aD	aD	aT	aT			
	2-6P						
Cr ₂ O ₆	0.7	2.7	-1.6	1.8			
Mo ₂ O ₆	0.1	5.2	-2.4	4.6			
W ₂ O ₆	-7.3	0.7	-9.3	-1.5			
	2-6T						
Cr ₂ O ₆	14.4	24.3	24.8	35.1			
Mo ₂ O ₆	7.3	17.7	11.1	21.6			
W ₂ O ₆	1.1	11.5	1.4	11.8			
2-6B							
Cr ₂ O ₆	-1.1	8.2	5.4	14.9			
Mo ₂ O ₆	-0.6	8.6	0.1	9.0			
W ₂ O ₆	-4.7	4.8	-5.1	3.8			



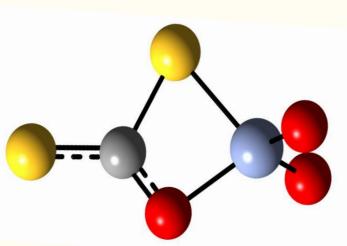
2 6 D

	1-6T					
Cluster	B3LYP ΔH _{298K}	CCSD(T) ΔH _{298K}			CCSD(T) ΔG _{298K}	
	aD	aD	aT	aQ	CBS	CBS
	1-6P					
CrO ₃	-19.3	-22.2	-22.2	-21.7	-21.4	-13.5
MoO ₃	-18.9	-21.4	-20.9	-20.5	-20.3	-12.6
WO ₃	-21.2	-24.6	-24.4	-24.0	-23.7	-15.9
	1-6T					
CrO ₃	-12.5	-9.8	-12.0	-11.7	-11.4	-0.6
MoO ₃	-17.6	-17.8	-19.5	-19.3	-19.0	-7.4
WO ₃	-21.5	-23.8	-25.5	-25.3	-25.1	-13.6

1-6P


Cluster	B3LYP ΔH _{298K}	CCSD(T) ΔH _{298K}			CCSD(T) ΔG _{298K}	
	aD	aD	aT	aQ	CBS	CBS
	1-6P					
CrO ₃	-23.5	-30.4	-16.2	-16.2	-16.7	-8.8
MoO ₃	-23.6	-30.3	-29.3	-27.4	-26.2	-16.5
WO ₃	-27.7	-35.1	-34.2	-33.6	-33.2	-23.5
	1-6T					
CrO ₃	-25.0	-30.3	-18.4	-19.4	-20.5	-10.2
MoO ₃	-28.1	-33.5	-33.8	-34.0	-34.1	-23.9
WO ₃	-32.8	-39.6	-39.9	-40.1	-40.2	-30.1

- surface.
- oxide clusters.
- metal oxides.



CO₂ + Group VI MO₃ Monomers

CS₂ + Group VI MO₃ Monomers

I-6T	

Conclusions and Future Work

Both physisorption and chemisorption of CS₂ to Group IV and Group VI are heavily favorable, not likely indicative of adsorption to the bulk metal oxide

DFT results for the monomers only show reasonable agreement with CCSD(T), suggesting a need for correlated MO methods when using metal

The preliminary DFT results for CS₂ adsorption to Group IV and VI are consistent with previously published results for CO₂ in that chemisorption is heavily favored for the Group IV clusters whereas no mode of CS₂ adsorption is exhibiting thermodynamic favorability for the Group VI oxides. For future work, CS₂ dimer and trimer LBEs will be compared to established CO₂ and CS₂ bulk adsorption results in the literature and correlated against experimental and computational trends in the binding of acid gases to these