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Abstract
Major traits defining the life history of organisms are often not independent from each other,
with most of their variation aligning along key axes such as the pace-of-life axis. We can de-
fine a pace-of-life axis structuring reproduction and development time as a continuum from
less-fecund, longer-developing ”slow” types tomore-fecund, shorter-developing ”fast” types.
Such axes, along with their potential associations or syndromes with other traits such as dis-
persal, are however not universal; in particular, support for their presence may be taxon and
taxonomic scale-dependent. Knowing about such life-history strategies may be especially
important for understanding eco-evolutionary dynamics, as these trait syndromes may con-
strain trait variation or be correlated with other traits. To understand how life-history traits
and effective dispersal covary, we measured these traits in controlled conditions for 28 lines
from five species of Trichogramma, which are small endoparasitoid wasps frequently used
as a biological model in experimental evolution but also in biocontrol against Lepidoptera
pests. We found partial evidence of a pace-of-life axis at the interspecific level: species with
higher fecundity also had faster development time. However, faster-developing species also
were more likely to delay egg-laying, a trait that is usually interpreted as ”slow”. There was
no support for similar covariation patterns at the within-species line level. There was limited
variation in effective dispersal between species and lines, and accordingly, we did not detect
any correlation between effective dispersal probability and life-history traits.Wediscuss how
expanding our experimental design by accounting for the density-dependence of both the
pace of life and dispersal might improve our understanding of those traits and how they in-
teract with each other. Overall, our results highlight the importance of exploring covariation
at the ”right” taxonomic scale, or multiple taxonomic scales, to understand the (co)evolution
of life-history traits. They also suggest that optimizing both reproductive and development
traits to maximize the efficiency of biocontrol may be difficult in programs using only one
species.
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Introduction 

Life history describes the life cycle of an organism, how fast and how much it grows, reproduces, and 
survives. It is the direct product of a collection of phenotypic traits, called life-history traits (Flatt & Heyland, 
2011). Those traits include growth and mortality rates, survival, reproductive investment or even the 
lifespan, and can be age- or stage-specific. When all life-history traits and the values they can take are 
combined, many pathways can lead to evolutionary success, resulting in the high diversity of what are 
called life-history strategies, the covariation through time and space of different traits, found across the 
tree of life. This high diversity can be observed at multiple taxonomic levels, from the phylum level to within 
species (Gaillard et al., 1989; Olsen et al., 2018; Healy et al., 2019). Yet, resource limitation means not all 
strategies are possible: indeed, analyses of life-history traits across taxa and hierarchical levels often reveal 
that a large part of the variation in organisms’ life histories can be summarised on a small number of key 
axes, which often reflect trade-offs between life-history components. It is generally accepted that those 
life-history-trait correlations arise from trade-offs between allocating a certain amount of acquired 
resources into one trait or another, with limitations arising from a limited pool of resource to draw from, 
physiological constraints, and from the influence of the environment, resulting in a variety of strategies 
maximizing fitness (Stearns, 2000; Laskowski et al., 2021). 

One specific axis has been termed the pace of life and corresponds to a correlation between life-history 
traits sorting organisms along a fast-slow continuum (Stearns, 1983; Braendle et al., 2011). Many trait 
combinations can be used to characterize a pace-of-life axis (Gaillard et al., 2016), discriminating low 
reproduction, long development and long lifespan (slow types) on one side from high reproduction, short 
development, and short lifespan (fast types) on the other. Pace-of-life axes have been identified in multiple 
comparative analyses across taxonomic ranks (Williams et al., 2010; Auer et al., 2018; Healy et al., 2019) 
although the traits that cluster to form this axis are not always the same (Bielby et al., 2007). But despite 
its conceptual appeal and simplicity, the pace-of-life axis should not be assumed as the one unique axis 
structuring life histories: the proportion of variance explained by such an axis varies between taxa (Healy 
et al., 2019), and in many cases, alternative axes structuring variation also emerge (Mayhew, 2016; 
Bakewell et al., 2020; Wright et al., 2020). Moreover, it seems the narrower the taxonomic focus (from 
tree of life-wide analyses to within-species comparisons), the harder it is to find the presence of a pace of 
life, and the way life-history variation is structured in one species/taxon cannot always be generalized to 
others. Adding complexity to the correlations of life-history traits, the pace-of-life syndrome hypothesis 
supposes that the pace of life can co-evolve with one or many other phenotypic traits. They can be 
physiological (Ricklefs & Wikelski, 2002; Auer et al., 2018), behavioural (Wolf et al., 2007; Réale et al., 
2010), or associated with other traits like dispersal. 

Dispersal can be described as any movement potentially leading to a flux of genes or individuals across 
space (Ronce, 2007), and is a key component influencing both ecological and evolutionary dynamics, so 
much that it is sometimes described as a life-history trait in its own right (Saastamoinen et al., 2018). 
Dispersal often covaries with other traits, including other life-history traits (Clobert et al., 2012), in so-called 
dispersal syndromes (Ronce, 2012). Dispersal syndromes have been observed and compared at multiple 
taxonomic levels, both across (Stevens et al., 2012, 2014) and within species (Jacob et al., 2019). Therefore, 
it is not surprising that many works have been dedicated to the integration of dispersal along the main life-
history axes, and the derivation of ecological and evolutionary implications. This includes, for instance, the 
idea of a trade-off between competition and colonization where species that are good at colonizing, with 
high fecundity or dispersal, are in return poor competitors between or among species (Yu & Wilson, 2001; 
e.g. Calcagno et al., 2006), and other studied links between dispersal and fecundity (Crossin et al., 2004; 
Gu et al., 2006; Karlsson & Johansson, 2008; Bonte & De La Peña, 2009). Rather than idiosyncratic 
correlations between dispersal and specific life-history traits, the pace-of-life syndrome hypothesis 
suggests dispersal, among others, to be a risky trait linked to the pace of life itself (Cote, Clobert, et al., 
2010; Réale et al., 2010). In plants for instance, there is a relation between seed dispersal abilities and the 
fast-slow continuum, where a high capacity to disperse is correlated with faster life histories at the species 
level (Beckman et al., 2018). While many studies found a positive correlation between the pace of life and 
short-scale movement, like the exploration of a continuous patch, or the activity level within an arena 
(Rádai et al., 2017; Gangloff et al., 2017; Lartigue et al., 2022), directly transposing short-scale conclusions 
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like exploration or activity, to longer-scale metrics, like dispersal rates or the decision to disperse in discrete 
landscapes, is not always relevant (Cote, Fogarty, et al., 2010; Harrison et al., 2015; Pennekamp et al., 
2019). Dispersal/life-history syndromes can lead to different ecological and evolutionary results from when 
traits are considered as independent. Correlation between traits, but also the strength or shape of this 
relationship can impact both the ecological and evolutionary dynamics of a population (Maharjan et al., 
2013; Ochocki et al., 2020). 

In that context, we explored first the presence of a pace-of-life axis and then the relationship between 
the pace of life and effective dispersal in five species of Trichogramma wasps. Trichogramma 
(Hymenoptera: Trichogrammatidae) are small (< 1 mm when adult) parasitoids that develop inside the eggs 
of their hosts, mainly Lepidoptera. They are also model species in ecology and invasion biology studies 
thanks to their small size, rather short development time (13-15 days, at 22 °C), or also the fact that lines 
can be either sexual or asexual. The goal of this study is therefore to improve our knowledge of life-history 
trade-offs specifically in Trichogramma for future studies of eco-evolutionary dynamics, but also more 
generally in insects, which are under-represented in both pace-of-life (but see Blackburn 1991) and pace-
of-life syndromes studies (38 invertebrate species vs 141 vertebrates in Royauté et al., 2018). Potential 
reasons for this under-representation include a lack of data (Bakewell et al., 2020) or the difficulty to study 
and compare insect parasitoids, as their life-history traits are also subject to their host ecology (Mayhew, 
2016). Using lab-reared lines belonging to five species of Trichogramma, we measured female fecundity, 
effective dispersal, and development time under experimental conditions, and analysed the line- and 
species-level covariation between these traits using multivariate Generalized Linear Mixed Models 
(Dingemanse & Dochtermann, 2013; Careau & Wilson, 2017). While this study is mostly exploratory, we 
can make some hypotheses: based on previous experiments that analysed trait variation between 
Trichogramma lines (Lartigue et al., 2022), or species (Özder & Kara, 2010), we can expect to observe trade-
offs between fecundity and development time at the interline or interspecies level. In addition, as a 
relationship was found between activity and fecundity in Lartigue et al. (2022), there is a possibility that 
one or several life-history traits are linked to effective dispersal in a dispersal syndrome at a species or line 
level. 

Materials and methods 

Biological material 
Trichogramma are endoparasitoids, which means that females lay their eggs inside their hosts, where 

the larvae will develop by feeding on the host and ultimately killing it, as opposed to ectoparasitoids, who 
lay their eggs and develop outside their host. As some of Trichogramma hosts are Lepidopteran pest 
species, several Trichogramma species are used as biological control agents, and have shown to work well 
(Smith, 1996). For instance, T. brassicae is used on a large scale against Ostrinia nubilalis, the European 
corn borer (Mertz et al., 1995), and T. evanescens, T. cacoeciae, or a mix of the two species can be used 
against Cydia pomonella, an apple pest (Sigsgaard et al., 2017). In addition to their interest as laboratory 
model species to investigate the pace of life, the identification of correlations between life-history traits in 
Trichogramma could open up new avenues to improve their efficiency as biocontrol agents, through the 
optimization of their rearing or field performance (Consoli et al., 2010; Akbari et al., 2012). 

For this experiment, 32 different lines of Trichogramma were originally selected among the collection 
from the Biological Resource Center (BRC) “Egg Parasitoid Collection”(CRB EP-Coll, Sophia Antipolis; 
Marchand et al., 2017). We restricted our choice to the only five sexual species where at least three lines 
were available. Within each species, we selected at random at least three lines per species and up to ten, 
with a total target of 32 lines for feasibility. Four lines did not correctly synchronize during preparation and 
could not be used, resulting in 28 lines in the actual experiment (Table 1). The Biological Resource Center 
rears lines on eggs of the Mediterranean flour moth Ephestia kuehniella (Lepidoptera: Pyralidae) at 18 °C, 
70 % ± 10 % relative humidity, L:D 16:8. Most lines were founded from a single original clutch each, mostly 
collected between 2013 and 2016 in different parts of France, and one line comes from a crossing of three 
single-clutch lines made in 2019 (Supplemental Table S1-1). With approximately 15 generations per year 
under those rearing conditions, lines from the BRC collection are expected to have a very low genetic 
variance at the time of the experiment (as seen for Trichogramma brassicae in the supplemental material 
of Dahirel, Bertin, Haond, et al., 2021). Little is known about the genetic diversity in the wild, but it is 
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expected to be low as a survey in France and Spain collected only two to three haplotypes for 
T. evanescens, T. semblidis and T. brassicae (Muru, 2021). After collecting the lines from the BRC, we kept 
them on E. kuehniella eggs at 22 °C, 70 % ± 10 % relative humidity, L:D 16:8 for two to three generations 
before starting the experiment. Host eggs were irradiated with UV for 15 minutes before use; this 
sterilization method kills the embryo while keeping it viable as a wasp host (St-Onge et al., 2014). Each 
female used for the experiment was isolated randomly from the rest of the population 24 hours after 
emerging, as Trichogramma start mating as soon as individuals emerge from host eggs (Doyon & Boivin, 
2006). Therefore, all females during the experiment were between 24 to 48 hours old. 

Table 1 - Summary of the Trichogramma species and lines used in the experiment, among the total 
number of lines available in the BRC at the time. 

Species Species authority Number of lines used (number available in the BRC) 

T. bourarachae Pintureau & Babault, 1988 4 (4) 
T. brassicae Bezdenko, 1968 9 (22) 
T. evanescens Westwood, 1833 7 (21) 
T. principium Sugonjaev & Sorokina, 1976 3 (4) 
T. semblidis (Aurivillius 1898) 5 (5) 

 

Experimental design 
We used both single- and two-vial systems to measure life-history traits (Fig. 1). In single-vial systems 

(12 replicates per line), we placed one randomly selected mated Trichogramma female between 24 to 48 
hours old into a plastic vial (5 cm diameter, 10 cm height). We also added a non-limiting quantity of 
irradiated Ephestia kuehniella eggs on a paper strip (hundreds of host eggs in approximatively 1.4 × 1 cm, 
see Supplemental Figure S2-1). This system was used to measure development time and fecundity traits. 
In two-vial systems (20 replicates per line), the setup was similar to the previous one, with the exception 
that a see-through 40 cm long plastic pipe (5 mm of internal diameter, large enough for species of less than 
a millimetre in size) connected the first vial (where the wasp was deposited) to another one with the same 
dimensions, also containing a non-limiting quantity of irradiated eggs. The ends passed through the centre 
of the foam plugs without protruding from them. While little is yet known about how females locate host 
eggs (Consoli et al., 2010), this setup was inspired by previous studies on experimental expansions on 
Trichogramma (Dahirel, Bertin, Calcagno, et al., 2021; Dahirel, Bertin, Haond, et al., 2021) and allowed us 
to estimate effective dispersal probability in conditions similar to previous experimental expansions. Even 
though fecundity and development-time data could also be collected in this second setup, we refrained 
from analysing them here due to the complexities of accounting for the effects of dispersal and dispersal 
costs, compared to the single-vial setup. Females were left in those vials for 48 h under standardized 
conditions: 22 °C, 70 % relative humidity, L:D 16:8. After 48 h, the egg strips were isolated in glass vials 
(1 cm diameter, 4 cm height), and kept under the same standardized conditions. Please note that even if 
plasticity can be observed in Trichogramma (Pinto et al., 1989; Krishnaraj, 2000), we focused our study on 
the presence or not of a pace-of-life under the standard conditions used in experimental expansions on 
Trichogramma, allowing us to make more direct links between our results in this study and future results 
in experimental expansions. 

Phenotyping 
For endoparasitoids, the body size is highly dependent on the host size. In our case, all species were 

maintained and experimented using E. kuehniella as host eggs, which are small enough to allow only one 
viable descendent (Corrigan et al., 1995) and were provided in high enough quantity to avoid 
superparasitism (as multiple eggs within one host might affect the viable descendent size). Therefore, we 
assumed that size variance was probably highly limited, with little to no correlations between hind tibia 
length (one proxy of individual size) and other traits (Pavlík, 1993) and did not measure size. 

4 Chloé Guicharnaud et al.

Peer Community Journal, Vol. 3 (2023), article e57 https://doi.org/10.24072/pcjournal.294

https://doi.org/10.24072/pcjournal.294


 

Figure 1 - Summary of the experimental design used for measuring fecundity, effective dispersal, and 
development time. Inset (bottom right): picture of parasitized host eggs, in black, easily visible among 
the off-white unparasitized hosts, one week after the experiment. 

Fecundity and dispersal 
A week after isolation, parasitoid larvae were developed enough to blacken the host egg, allowing the 

visual identification of successfully parasitized eggs (picture in Figure 1). Egg strips (one for single vial, two 
for two-vial systems) were then photographed (resolution: 6016 × 4016 pixels, for a real field of view size 
of around 12 × 8 cm) using a Nikon D750 camera (lens: AF-S Micro NIKKOR 60 mm f/2.8 G ED) fixed above 
the strips. 

Fecundity was measured by manually counting the number of blackened eggs in each picture using 
ImageJ (Schneider et al., 2012). Even though superparasitism (more than one parasitoid egg laid per host) 
is frequent for Trichogramma, it tends to be avoided when an unlimited number of unparasitized eggs are 
present for single females (in T. chilonis, Wang et al., 2016). As in Özder & Kara (2010), the mean fecundity 
in Trichogramma on E. kuehniella was at best around a hundred, and each of our host egg strips counted 
several hundreds of eggs, we can assume that our study was indeed done in a non-limiting context. 
Furthermore, in general, only one adult emerges from E. kuehniella eggs in the end (Klomp & Teerink, 1966; 
Corrigan et al., 1995). 

Egg retention by refusing to oviposit was previously observed in T. principium and T. brassicae (Fleury 
& Boulétreau, 1993; Reznik et al., 1998, 2001). Therefore, egg retention may be present in all of the studied 
species and may affect fecundity measures in the timeframe of our experiment; see below for how this 
possibility was accounted for in the context of Data analyses. 

In two-vial systems, effective dispersal (i.e. movement between patches leading to actual gene flow) 
was measured as a binary response, where one female is considered to have successfully dispersed if at 
least one parasitized egg was found on the strip present in the second plastic vial. 

Development time 
After taking the pictures for fecundity, each isolated host egg strip was checked every day at around 

9:00 a.m., 12:00 p.m., and 4:00 p.m. for the presence of emerged individuals. The development time of 
one replicate was considered to be the number of days between the female in the plastic vial starting to 
lay eggs and the emergence of the first offspring. Note that the true time is only known to a precision of 
two days, because of uncertainty in when precisely eggs were laid during the 48 h window after 
introduction in the system (see Data analyses for how this is accounted for). 
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Data analyses 
Data were then analysed with Bayesian multivariate multilevel/mixed models, using the brms R 

package, version 2.17.0 (Bürkner, 2017a), a front-end for the Stan language (Stan Development Team, 
2022). The code was tested on R versions 4.1.2 to 4.2.0 (R Core Team, 2021). 

The multivariate model architecture was made of four connected Generalized Linear Mixed sub-
models, one for each response that are effective dispersal, development time, and fecundity divided into 
two components: 

Effective dispersal (the probability that the female successfully laid eggs in the arrival patch) was 
modelled with a Bernoulli distribution (with a logit link). 

Development time was modelled with a Log-Normal distribution, often chosen for time-to-event data. 
Because of the 48 h time period where the female was allowed to reproduce, development times were 
interval censored (with 48 h wide intervals); 

For fecundity, initial models showed evidence of both potential zero inflation and overdispersion, 
therefore a Zero-inflated Negative binomial distribution was used. This effectively separates the response 
variable into two components, “structural zeroes” and counts, each with a valid biological meaning (Blasco‐
Moreno et al., 2019): 

On one hand, the zero-inflated part of the distribution, similar to a Bernoulli model, modelled an excess 
of non-parasitized replicates compared to a negative binomial model. Given that egg retention is common 
in Trichogramma species, leading to delays in egg-laying of up to several days commonly (Reznik et al., 
2001), a biologically plausible reading of these structural zeroes component is the probability of retention 
in the 48 h of the experiment; 

On the other hand, a Negative binomial component (with a log link) was interpreted as the fecundity 
of individuals that did not perform egg retention. From now on, we will use “fecundity without retention” 
to refer to this fecundity component (i.e. the effectively egg-laying individuals only), and “overall fecundity” 
will refer to the mean number of eggs laid by all individuals, including those potentially doing retention. 

We used the model architecture described above for two multivariate models. The two multivariate 
models were fitted to observe how variance in traits and the covariance between traits are partitioned at 
the inter- and intra-specific levels. The first model incorporated both line and species-level effects, 
structuring the variance into intra- and inter-specific levels. The second model only had line effects as 
predictors, and therefore assumed that individuals from two conspecific lines do not resemble each other 
more than individuals from two randomly selected lines. In both cases, the same predictors were used for 
all four responses. 

The first model included species-level effects as a fixed effect, mostly due to the low number of species 
studied, and line identity was coded as a random effect, while the second model only included line-level 
random effects. To account for line-level correlations between the response variables, line-level random 
effects for the two models were modelled as drawn from a shared variance-covariance matrix (Bürkner, 
2017b).  

While phylogenetic comparative methods could be used in this context, as some of the variations could 
be explained by shared ancestry (Felsenstein, 1985), there is no phylogenetic tree available for all lines 
used we could include (Hadfield & Nakagawa, 2010). Our first model, splitting variation into species and 
line components is nonetheless similar to the “taxonomic model” suggested in these cases where tree data 
are absent (Hadfield & Nakagawa, 2010). 

The model formulas and the priors used (mostly weakly informative priors based on or modified from 
McElreath, 2020) are described in detail in Supplementary Material S3. The models were run with four 
chains during 4500 iterations each, with the first 2000 iterations for each chain used as warmup. This led 
to good chain convergence and sample size, as checked using the statistics proposed by Vehtari et al (2021). 
Model outputs were then checked using posterior predictive checks to compare predictions with empirical 
dataset (as suggested by Gabry et al., 2019). See the “Data and code availability” section for links to an 
archived version of the annotated model code. 

Results 

Trichogramma bourarachae had lower fecundity without retention and higher development time than 
Trichogramma brassicae, while T. semblidis only had a lower development time than T. bourarachae but 
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no clear difference in fecundity without retention (Table 2, Figure 2B, C). There were no other clear species 
differences (based on 95 % intervals of pairwise differences) in fecundity or development time. We did not 
find any evidence for between-species differences in effective dispersal probabilities (Table 2, Figure 2A). 
T. brassicae and T. semblidis both had higher egg retention probabilities than T. bourarachae (pairwise 
differences of 0.20 [0.00; 0.40] and 0.29 [0.05; 0.53] respectively, Figure 2D). 

Table 2 - Mean posterior values and 95 % posterior highest density intervals per species, of single 
female fecundity in the absence of egg retention, said egg retention probability to occur during the 
experiment, the development time of the first offspring and effective dispersal probability. For a 
given trait, two species with no index letters in common are considered to have “significant” pairwise 
comparison differences. 

  T. bourarachae T. brassicae T. evanescens T. principium T. semblidis 

Effective dispersal probability 
0.09 a 
[0.03; 0.16] 

0.14 a 
[0.08; 0.19] 

0.11 a 
[0.05 ; 0.17] 

0.1 a 
[0.03; 0.18] 

0.18 a 
[0.1; 0.27] 

Development time 
13.3 a 
[12.64; 13.97] 

11.79 b 
[11.4; 12.2] 

12.47 ab 
[11.94; 12.96] 

12.69 ac 
[11.95; 13.42] 

11.97 bc 
[11.39; 12.52] 

(Fecundity|no retention) 
17.42 a  
[12.77; 22.5] 

35.24 b 
[27.71 ; 42.7] 

24.31 ac 
[18.43 ; 30.49] 

20.49 ac 
[13.83 ; 27.71] 

30.02 bc 
[21.42 ; 39.2] 

Retention probablility 
0.17 a 
[0.05 ; 0.32] 

0.38 b 
[0.24; 0.51] 

0.28 ab 
[0.14; 0.43] 

0.32 ab 
[0.13; 0.53] 

0.47 b 
[0.27; 0.65] 

 
Correlations between traits at the line level were analysed through the random effect 

correlation/covariance matrix. In the first model, differences across species were modelled with a fixed 
effect, so they were not included in random effect correlations, while the second model included both 
species- and line-level random effects. Therefore, any qualitative difference between the two models can 
be interpreted as an effect at the species level. 

The only detectable correlations among traits were between fecundity without retention and 
development time (Table 3, Figure 3). There was a negative correlation between these two traits at the 
line level in the model where species effects were not partitioned out (-0.62 [-0.92; -0.28], see Table 3 
bottom, see also the overall pattern Figure 3). However, when looking at the model where species 
differences are partitioned out into fixed effects (Table 3 top), this random effect negative correlation 
mostly vanishes (-0.22 [-0.76; 0.38]). This reflects the fact that the overall correlation highlighted in Table 
3 top is mostly driven by between-species differences in both fecundity and development time (see Figure 
2 and species averages in Figure 3). 

Table 3 - line-level random effect correlations among measured traits, represented by means and 
95 % higher posterior density intervals. (top) Between-lines trait correlations, from the partitioned 
covariance model (species differences are excluded as fixed effects); (bottom) between-lines trait 
correlations from the model without fixed species effects. Intervals without 0 inside are presented in 
bold. 

  Effective dispersal probability (Fecundity|no retention) Retention probability 

Within-species, among-line correlations (after excluding between-species differences as fixed effects) 

(Fecundity|no retention) 0.04 [-0.66; 0.72]   

Retention probability 0.04 [-0.65; 0.73] -0.22 [-0.85; 0.4]  

Development time 0.12 [-0.58; 0.79] -0.22 [-0.76; 0.38] 0.2 [-0.37; 0.71] 

Overall among-line correlations, inclusive of between-species differences  

(Fecundity|no retention) 0.19 [-0.46; 0.82]   

Retention probability 0.15 [-0.52; 0.81] 0.08 [-0.48; 0.61]  

Development time -0.08 [-0.71; 0.59] -0.62 [-0.92; -0.28] -0.17 [-0.64; 0.31] 
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Figure 2 - Posterior values as a function of the Trichogramma species for A) the probability of effective 
dispersal, B) the development time in days of the first offspring, C) the number of parasitized eggs 
for a single female when no retention occurred, and D) the probability for a female to perform egg 
retention during the experiment. 95 % posterior highest density intervals per line for each species 
are displayed in grey. Black dots represent posterior means and bars the 95 % intervals, while the 
posterior density distributions of fixed (species) effect predicted means are coloured depending on 
the species. For a given trait, two species with no index letters in common are considered to have 
“significant” pairwise comparison differences (i.e. the 95 % highest density interval of the difference 
does not include 0). White dots represent observed means per species, presented for illustrative 
purposes only (as they are calculated assuming all observed zeroes in egg numbers were attributable 
to retention, and using the midpoint of the 48 h interval for development time).  
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Figure 3 - Posterior development time of Trichogramma species as a function of posterior fecundity 
in the absence of egg retention. Coloured crosses represent species 95 % posterior higher posterior 
density intervals for development time and fecundity, while coloured symbols represent species 
posterior means; line-level posterior means are displayed in grey and line-level posterior 95 % 
intervals are displayed in the colour of their corresponding species but more transparent. 

Discussion 

Identification of one interspecific Pace-of-Life axis in Trichogramma 
We found a negative between-line correlation between development time and fecundity in this subset 

of five Trichogramma species, with high fecundity without retention, fast development time on one side, 
and low fecundity, slow development on the other (Figures 2, 3, Table3). This correlation, which matches 
the classical pace-of-life axis (Healy et al., 2019) is mainly or only due to species-level differences: species 
with higher fecundity also had faster development times (Figures 2, 3), and the line-level correlation 
vanishes when species differences are partitioned out (Table 3). We note that even if there is no statistically 
significant correlation when the variance is structured within species and among lines, the sign of this 
correlation remains negative (Table 3 top), following a similar tendency to the interspecific negative 
correlation observed in Table 3 bottom. Having relatively similar patterns of interspecific and intraspecific 
correlation may result from close genetic correlations between development time and fecundity in 
Trichogramma, through pleiotropy or other strong genetic architecture, constraining the evolution of this 
trade-off among lines and species (Peiman & Robinson, 2017). It is also possible that at the metabolic level, 
resource acquisition and allocation may favour longer development times at the expense of fecundity or 
the opposite (Stearns, 2000; Jørgensen & Fiksen, 2006; Agrawal, 2020). The fact that a pace of life was 
found at the between-species level but not conclusively at the within-species level is in line with the existing 
literature, in which consistent pace-of-life axes are considered increasingly difficult to find as the taxonomic 
level narrows down, possibly due to scale-dependent mechanisms (Simons, 2002; Agrawal, 2020). 
Correlations at the species level act over a longer macroevolutionary timescale, where divergent positions 
on the pace-of-life axis of each species may represent long-term trade-offs and selection pressure over a 
wider environmental range than at lower levels, like lines. For lower levels, such as lines or individuals, 
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traits may be more responsive to direct environment variation through phenotypic plasticity, and a shorter 
evolutionary timescale may lead to lower variation range compared to a higher level (Siefert et al., 2015). 

However, this pace-of-life finding is based on splitting fecundity into what we interpret as egg retention 
and fecundity without retention components. While a significant negative correlation with development 
was found on the latter component of overall fecundity, results are more complex for retention 
probabilities. Indeed, there is no evidence for the line-level correlation between egg retention and other 
life-history traits (Table 3). Furthermore, at the species level, faster species (lower development time and 
higher fecundity in the absence of retention) were also the species with the highest retention probabilities 
(Figure 2, Table 2). If we interpret retention rates as a trade-off between present reproduction and future 
opportunities, then high retention can be seen as a “slow” trait; its association with “faster” life history 
traits may then appear paradoxical. It might be that fecundity in the absence of retention and retention 
probabilities are not actually separate traits, and that the trait correlations described above derive from 
their “artificial” separation by the statistical model. However, previous studies indicate that in 
T. principium, except for prolonged periods of egg-retention, individuals manifesting egg retention had 
similar fecundities in their first days of actual egg-laying and similar lifetime fecundities than individuals 
that did not (Reznik et al., 1998, 2001). Still in T. principium, there are indications that individuals 
manifesting egg retention have longer mean lifespans than individuals that immediately oviposit (Reznik 
et al., 2003; Reznik & Vaghina, 2007). These results support the idea that egg retention is a separate trait, 
interpretable as a mark of delayed reproduction (thus typically “slow” life history) rather than merely a 
component of reduced reproduction. While the pace of life remains an important and valuable structuring 
pattern in life histories, our results would agree with other studies showing that deviations from naïve 
expectations, where all traits should be either “slow” or “fast”, can be frequent (Bielby et al., 2007; Wright 
et al., 2020). In Wright et al (2020), their eco-evolutionary model presented possibly unexpected but 
existing life-history strategies, like “slow” adult reproduction alongside “fast” offspring survival (that the 
authors likened to an oak tree life history) or the opposite (represented by mayflies). However, because 
egg-laying was restricted to a 48 h window in our experiment, we cannot yet confirm this interpretation. 
Further studies measuring lifetime reproductive success, longevity or the way reproductive effort is spread 
throughout the lifetime may shed more light on the way life history is structured in Trichogramma wasps.  

No evidence for a syndrome linking effective dispersal probability and the pace of life 
Effective dispersal probability varied the least among the four traits measured, with no evidence of 

between-species or even between-lines differences (Figure 2), and values were rather consistent with 
previous studies (Dahirel, Bertin, Calcagno, et al., 2021). There was also no correlation between effective 
dispersal and any of the other traits (Table 3), meaning that there is no evidence for dispersal/life-history 
syndromes at the line or species level in our set of Trichogramma species. Interestingly, this result on 
effective dispersal between patches completes previous studies on the activity of Trichogramma species. 
In Wajnberg & Colazza (1998), the authors showed a significant difference in the average area searched 
within one patch by T. brassicae isofemale lines while our results showed no differences in effective 
dispersal (Figure 2). In Reznik & Klyueva (2006), T. principium females manifesting egg retention had higher 
dispersal activity in a continuous environment than females that laid eggs beforehand. This discrepancy 
may be the result of a focus on different taxonomic levels: Reznik and Klyueva (2006)’s results deal with 
within-species and within-line covariation, versus between-lines and between-species in the present study. 
It may also result from differences in experimental designs and metrics used: the dispersal metrics used in 
Reznik and Klyueva (2006) are based on short-term (less than one day) and short-distance (up to 5 cm) 
movement on a continuous arena, compared to our experiment (two days and 40 cm between discrete 
patches). In that case, there may still exist in Trichogramma a pace-of-life syndrome linking life history to 
short-term activity and behaviour, but not effective dispersal. Indeed, correlations between short-term 
movement activity and life-history traits were also found in T. evanescens at the between-line level 
(Lartigue et al., 2022). While short-term activity metrics in uniform continuous environments are often 
considered valid proxies of longer-term dispersal between discontinuous patches (Pennekamp et al., 2019), 
this comparison of our study with the existing literature shows that this is not always the case. Dispersal is 
extremely context-dependent, including current resource availability (Fronhofer et al., 2018); there is 
furthermore evidence that correlations between dispersal and other traits can be altered depending on 
whether individuals disperse from high-resource or low-resource contexts (Cote et al., 2022), but also how 
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density can have an impact on both dispersal behaviour and its evolution (Poethke & Hovestadt, 2002; 
Clobert et al., 2009; Bitume et al., 2013; Poethke et al., 2016). 

The potential implications of context-dependence and especially density-dependence 
Building on this point, our study ignored this potential for context dependence, as every female tested 

for a given trait was tested under the same low-density conditions (alone in the experimental design with 
a non-limiting host supply). Dispersal syndromes (Ronce, 2012; Bonte & Dahirel, 2017; Cote et al., 2022) 
and also pace-of-life syndromes can be context-dependent. Behavioural types can be dependent of the 
dispersal status and predation risks (Bell & Sih, 2007; Cote, Clobert, et al., 2010). Pace-of-life syndromes 
and/or their constituent traits may also depend on resource acquisition through plastic responses 
(Montiglio et al., 2018; Laskowski et al., 2021) or quality. In Trichogramma for instance, host egg species 
and quality can influence life-history traits (Paul et al., 1981), and we used a substitution host in the present 
study. Recent works suggest that population density and density fluctuations, in particular, may also play 
a key role in shaping the presence of a pace of life in the first place (Wright et al., 2020) and its association 
with behaviours: fast individuals may have a higher reproductive rate in low-density contexts, but their 
lower intra-specific competition is a disadvantage when close to the carrying capacity of an environment, 
and therefore are more likely to disperse to escape to lower densities where this competition is lessened 
(Wright et al., 2019). This interaction between the pace of life and density may interact with the overall 
density dependence of dispersal (Clobert et al., 2009; Harman et al., 2020), altering syndromes linking 
dispersal and life history. Given that there is evidence for dispersal and/or fecundity being density-
dependent in several Trichogramma species (Trichogramma achaeae, T. chilonis and T. euproctidis, 
Zboralski et al., 2016; T. brassicae; Dahirel, Bertin, Calcagno, et al., 2021), further studies including density 
dependence may lead to more generalizable insights about pace of life and dispersal in Trichogramma. 

Implications for biocontrol improvement and perspectives 
While studies on trade-offs (Bennett et al., 2002; Reznik & Klyueva, 2006; Zboralski et al., 2016) or pace-

of-life syndromes (Lartigue et al., 2022) already existed in small biocontrol agents including Trichogramma, 
our results provide new insights on between-species comparisons and the taxonomic scales at which trait 
variation is important. Some species like T. evanescens, T. cacoeciae (Sigsgaard et al., 2017) or T. brassicae 
(Özder & Kara, 2010) are already well used as biocontrol agents. In that context, a choice might be needed 
between maximizing one trait or a set of traits of interest at the expense of the others. For Trichogramma, 
while having fast-developing and high-fecundity individuals can be beneficial to quick intervention and a 
higher number of host eggs parasitized, they are reared and released mainly at high densities, (Consoli et 
al., 2010) densities for which individuals with longer development time might fare better against the intra-
species competition (Wright et al., 2019). For inoculative releases, where a small population of biocontrol 
agents in the area of interest must establish itself and reach higher densities in further generations, both 
fecundity and competitive abilities are to be favoured for efficiency (Smith, 1996). Our results suggest that 
for some purposes, selecting different species might actually be more successful than attempting to select 
specific lines within one already used species.  
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