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Abstract
Chromosomal rearrangements have been largely described among eukaryotes, and may
have important consequences on evolution of species. High genome plasticity has been
often reported in Fungi, which may explain their apparent ability to quickly adapt to
new environments. Cryphonectria parasitica, causing the Chestnut blight disease, is an
invasive fungal pathogen species associated with several recent host shifts during its
successive introductions from Asia to North America and Europe. Previous cytologi-
cal karyotyping and genomic studies suggested several chromosomal rearrangements
which remains to be described in detail for this species. A serious limitation for valid
genome comparisons is the access to robust genome assemblies that usually contain ge-
nomic regions of low complexity. We present a new de novo whole-genome assembly
obtained from a new method of DNA extraction and long-reads sequencing Nanopore
technology obtained from a Japanese isolate sampled in the native area of the species.
The comparison with a recently published reference genome revealed stable gene and
transposable elements (TEs) repertoires. We also showed that the C. parasitica genome
is lowly compartmentalized, with a poor association between TEs and genes, such as
those potentially involved in host interactions (i.e., genes coding for small secreted pro-
teins or for secondarymetabolites). This genome comparison, however, detected several
large chromosomal rearrangements that may have important consequences in gene reg-
ulations and sexual mating in this invasive species. This study opens the way for more
comparisons of high-quality assembled genomes, and questions the role of structural
variations in the invasive success of this fungal pathogen species.
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Introduction 

Large structural variations of genome (i.e., translocation, insertion, deletions and inversions greater 
than 100kb) are more and more described in numerous organisms and may have important consequences 
on species adaptation (Alonge et al. 2020, Wellenreuther et al. 2019). Filamentous microorganisms (i.e., 
fungi and oomycetes) have generally small genome sizes, present a large diversity of lifestyles, and several 
of them can be easy to manipulate in laboratory to characterize their phenotype. These general 
characteristics make them especially interesting to study genomic evolution in eukaryotes and molecular 
mechanisms involved in genetic adaptation (Raffaele & Kamoun 2012, Chang et al. 2013, Wang et al. 2020, 
Yadav et al. 2020). For example, fungal genomic studies have investigated gene repertory associated with 
specific lifestyles (e.g. Spanu et al. 2010, Duplessis et al. 2011, Riley et al. 2014), evolution of sexual 
chromosomes (Badouin et al. 2015), signatures of selection along the genome (Badouin et al. 2017), 
recombination hot-spots (Croll et al. 2015, Laurent et al. 2018), speciation or host specialization (e.g. 
Stukenbrock & Bataillon 2012, Hou et al. 2014), and cryptic genetic exchanges among genetic lineages 
(Milgroom et al. 2014, Demené et al. 2019) or between species (Cheeseman et al. 2014, Dhillon et al. 2015). 
One of the major findings of these studies was the high genomic plasticity observed within and between 
closely related species, associated with various genetic mechanisms, such as intra- and inter-chromosomal 
rearrangements (Hou et al. 2014, Frantzeskakis et al. 2018, Plissonneau et al. 2016, Tsushima et al. 2019), 
gains or losses of genes (Yoshida et al. 2016, Hartmann et al. 2017), variation in chromosome numbers (Ma 
et al. 2010), or chromosome stretching (Grandaubert et al. 2014). Like single nucleotide polymorphisms, 
many of these genomic structural variations have been considered as fuel for genetic adaptation of fungal 
species (Raffaele & Kamoun 2012). 

These studies have also lead to the development of the « two-speed genome » concept (Grandaubert 
et al. 2014, Dong et al. 2015) also related to the “genomic island” concept (Fedorova et al. 2008), “genome 
compartmentalization” (Dutheil et al. 2016, Frantzeskakis et al. 2019), or genomes with “dynamic 
compartments” (Torres et al. 2020). The general idea behind these concepts is that the genomes of many 
fungal pathogens are composed of two distinct compartments. One compartment, often enriched in 
transposable elements (TE) and poor in genes, presents a high rate of structural variations, copy-number 
variations, genetic recombination, sequence polymorphisms or genes under strong positive selection 
(Wang et al. 2017, Faino et al. 2016, Laurent et al. 2018, Sánchez-Vallet et al. 2018, Eschenbrenner et al. 
2020, Torres et al. 2020). A second, rich in genes and poor in TEs, is considered less dynamic. Genes in close 
physical proximity to these TEs have often been described as genes encoding proteins potentially involved 
in plant pathogen interactions (Raffaele & Kamoun 2012). Their proximity with TEs has been considered as 
an advantage for rapid diversification and adaptation to new hosts species or genotypes, because of direct 
(gene or promoter disruption, introduction of regulatory information) and indirect (induced mutations, 
ectopic rearrangement mediation, or heterochromatin formation) effects of TEs on neighbour genes 
(Daboussi & Capy 2003, Seidl & Thomma 2017). Consequently, TEs may mediate gain or loss of genes 
involved in virulence against host (e.g. Castanera et al. 2016, Frantzeskakis et al. 2019). However, this 
hypothesis has been mainly proposed for fungal pathogens infecting crops for which a need of rapid 
adaption is often assumed (Brown & Tellier 2011, Raffaele & Kamoun 2012). There is less evidence that 
this genomic architecture, as well as important variations in gene contents, may be observed in fungal plant 
pathogens living in more natural ecosystems, and for which selective pressures probably differ (see for 
example Hartmann et al. 2018). Therefore, the role of TEs in genomic adaptation remains largely debated, 
certainly because of the scarcity of studies comparing multiple genomes at different evolutionary 
timescales and lifestyles (Muszewska et al. 2019). As a matter of fact, comparisons of whole-genomes 
sequences have been rather limited until recently, especially due to the difficulties to assemble regions of 
low complexity (including TE clusters; e.g. Badouin et al. 2015, Frantzeskakis et al. 2018). The recent 
emergence of the third generation of sequencing technology (e.g. Oxford Nanopore Technologies or Pacific 
Biosciences sequencing platforms), yielding sequences of several kilobases, allows to solve these 
limitations (Badouin et al. 2015, Plissonneau et al. 2018). These technological advances are becoming much 
more accessible for large numbers of taxa, opening new perspectives to investigate the extend and the 
molecular mechanisms at the origin of genomic structural variations, as well as their phenotypic effects in 
different ecological and evolutionary contexts (Alonge et al. 2020, Badet et al. 2020). 
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Cryphonectria parasitica is a devastating forest fungal pathogen infecting chestnut species (Castanea 
sp.) over the world (Anagnostakis 1987). The species originating from Asia has been introduced several 
times in North America and Europe where it caused serious outbreaks and resulted in the disappearance 
of the mature C. dentata in North America (Milgroom et al. 1996, Dutech et al. 2012). The invasive success 
observed in the two introduced areas, as well as the associated host shifts (C. crenata and C. molissima in 
Asia, C. dentata in North America and C. sativa in Europe, or oaks (Quercus sp.) in different countries), asks 
the question of the adaptative processes associated to these events. For example, change in reproductive 
mode, a common feature of fungal invasions (Gladieux et al. 2015), has been observed between native and 
introduced areas (Milgroom et al. 2008, Dutech et al. 2010). It is not clear whether this reproductive shift 
is a cause or a consequence of invasive success, and due to genetic incompatibilities among the introduced 
genetic lineages (Dutech et al. 2010). Recently, a high-quality reference genome of C. parasitica was 
published from the laboratory reference strain EP155, originally sampled in North-American from C. 
dentata (Crouch et al. 2020). This reference genome offers the opportunity to study genomic changes that 
may have occurred during the different introductions of C. parasitica. We previously noted that this first 
reference genome was, in some degrees, different from a new de novo genome assembly obtained from a 
French isolate (YVO003), using a long-reads sequencing technology (Demené et al. 2019). This result was 
consistent with a previous cytological karyotyping study comparing the strain of the reference genome 
(EP155) with other strains sampled in North America, that suggested several chromosomal rearrangements 
(Eusebio-Cope et al. 2009). Overall, these results suggest that C. parasitica genomes can be quite different, 
and these differences could be linked to its invasion history. However, the de novo genome assembly 
obtained on YVO003 was slightly shorter than the EP155 reference genome, suggesting that some parts of 
the genome were missing, and precluding an accurate comparison of the two genome assemblies. 

To study putative chromosomal rearrangements and other structural genomic variations which may 
have occurred between native and introduced C. parasitica genomes, we sequenced a whole-genome of a 
C. parasitica strain, sampled by Liu et al. (2003) in the native Japanese area, and compared the obtained 
de novo assembly to the EP155 North-American reference genome (Crouch et al. 2020). The new genome 
sequence of this strain was produced using a strategy of different sequencing technologies, mixing the use 
of Oxford Nanopore Technology (ONT) and Illumina sequencing, in order to obtain a robust assembly of 
regions of low complexity. DNA quality being crucial in the success of ONT sequencing, we developed a 
new protocol for extracting high molecular weight DNA. Using such a strategy, we produced a near-
chromosome level assembly, which have been manually curated, of the Japanese ESM015 C. parasitica 
isolate. We compared this assembly with the recently published reference EP155 genome (Crouch et al. 
2020) to estimate the importance of large structural variations between the two genomes. We produced 
a gene prediction on the new de novo assembly, and a manually curated set of TEs representative of both 
genome assemblies. We looked for possible changes in composition or TEs and gene repertoires which may 
have occurred during the recent host shift between the Asian Castanea species and the North American C. 
dentata species, and may have contributed to the invasive success of the species. 

Methods 

Sequenced isolate, extraction DNA protocol and sequencing 
The sequenced strain ES15 (called ESM015 in this study and in Demené et al. 2019) was sampled in the 

Japanese Esashi population in 1998 on C. crenata, and isolated from a single asexual spore (Liu et al. 2003). 
For this sequencing, this monosporous isolate was multiplied again on potato dextrose agar culture as 
described in Hoegger et al. (2000). To obtain high quality DNA required for long-run sequencing, a new 
protocol of DNA extraction was developed that aimed to deal with important contents in polysaccharides 
present in many fungal species (Möller et al. 1992). Briefly, a six-day-old cultivated mycelium (total weight: 
~0.4g) was grinded using liquid nitrogen and pre-chilled mortar and pestle. Extraction solution consisted of 
10 % Sodium Dodecyl Sulfate lysis buffer with 2 mg of proteinase K at 20 mg.mL-1 . Grinded mycelium was 
homogenized with the extraction buffer. No vortexing was applied for maximizing the chance of obtaining 
a high molecular weight DNA. Two steps of phenol chloroform isoamyl alcohol 25:24:1 were performed, 
with an addition of RNAse A for 2% of the final volume. Four ethanol (70%) washes of the DNA pellet have 
been carefully made to avoid breaking DNA. In order to remove the remaining polysaccharides, a final 
purification step was performed: the DNA solution was brought to 1.2M NaCl solution, and polysaccharides 
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were precipitated and isolated from DNA using a diethyl ether solution saturated with DNase-free water. 
The complete protocol is available in the supplementary data (Sup. Mat. 1, also available on 
dx.doi.org/10.17504/protocols.io.bzbdp2i6). DNA purification was performed using 1.0X magnetic beads 
(11% polyethylen glycol), followed by DNA size selection (>1kb) and cleaning, using an optimized solid-
phase reversible immobilization according to Fisher et al. (2011), and a bead mixture according to 
Schalamun et al. (2019). Then, 16µg of purified gDNA was sheared to approximately 40Kb using hydropore-
long and megaruptor II (Diagenode, Seraing, Belgium), end-repaired, purified and size selected over 20Kb 
by using four lanes of a High-pass plus 0.75% agarose-gel cassette and blue pippin instrument (Sage 
Science, Beverly, MA, USA) and then again purified. A 1D library preparation was performed according to 
Oxford Nanopore technology recommendations using SQK-LSK109 sequencing kit. Sequencing was 
performed with a R9.4.1 Flowcell on the GridION device using MinKNOW (version 2.2), and a dedicated 
basecaller guppy GridION version 1.8.5.1. (Oxford Nanopore technology, Cambridge, UK), at the Genome 
Transcriptome Facility of Bordeaux (PGTB, University of Bordeaux, France). For increasing the quality of the 
genome assembly, Illumina reads of the ESM015 isolate produced in Demené et al. (2019) were added to 
the analysis. These reads were trimmed and filtered using prinseq v0.20.4 (Schmieder & Edwards 2011). 
First, the fifth first 5’ nucleotides were trimmed due to skewed base composition introduced by sequencing 
preparation, and duplicate reads were removed. Reads with an overall mean Phred-scaled value less than 
30 were discarded. Remaining reads were further 3’ and 5’ trimmed for quality (Phred-scaled threshold of 
20). Finally, reads with size lower than 50bp or exceeding 280 bp were excluded. 

Comparison of genome assemblers 
To produce a high confidence de novo assembly genome, several pipelines based on different strategies 

were tested: 1) Assembly of short reads previously produced for this monosporous isolate (Demené et al. 
2019), followed by the mapping of long reads to close gaps of the assembly graph (HybridSPAdes using the 
De-Bruijn graph (DBG) algorythm; Antipov et al. 2016), 2) Assembly of long reads corrected using short 
reads (Ra using the Overlap Layout Consensus (OLC) algorythm; https://github.com/lbcb-sci/ra), or 3) 
Assembly of raw long reads followed by a polishing of the assembly using the short reads (Miniasm using 
the OLC algorythm; Li 2016). For HybriSPAdes, an optimized k-mer size has to be determined to close gaps, 
depending on the read length and depth. We tested six different K-mer values (33, 55, 77, 99, 111 and 127) 
and used Bandage (https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size) to identify the best k-
mer value (Marijon et al. 2019). We choose the k-mer size producing the assembly graph with the lowest 
complexity (lowest number of nodes and edges and highest nodes N50), while checking that the graph was 
not broken into too much disconnected parts as suggested on the Bandage user's manual 
(https://github.com/rrwick/Bandage/wiki/Effect-of-kmer-size). HybridSPAdes was ran on R1 and R2 
paired-end reads corrected with the short read error correction step (BayesHammer; Nikolenko et al. 
2013), the accurate mode on, and the Mismatch correction step. The Ra assembler was run on the 
complete ONT raw data, with the corrected unpaired R1 Illumina reads (having a higher quality than R2), 
and with basic parameters and option -x ont. For Miniasm, highly sensitive to sequencing errors, an hybrid 
correction step of the raw Nanopore long-reads with CoLoRMap (Haghshenas et al. 2016) has been added 
prior to runs. Miniasm was run on the complete set of corrected ONT reads with the parameters -ax ava-
ont. 

For each method, the following metrics were extracted to assess the quality of assemblies: N50, L50, 
genome size, total number of contigs, length of the largest contig, GC content. Completeness of genome 
assemblies was assessed by three methods: 1- searching for the 1,315 genes from the Ascomycota 
database using BUSCO (Simão et al. 2015), 2- performing a KAT plot for each assembly and estimating 
assembly completeness using the Kmer Analysis Toolkit (KAT) “comp” tool 
(https://kat.readthedocs.io/en/latest/index.html; Mapleson et al. 2017), and 3- mapping on each assembly 
the corrected paired-end reads Illumina libraries using Bowtie2 (Langmead & Salzberg 2012) with basic 
parameters. 

Manual curation of the new de novo genome assembly 
A manual curation step was done on the assembly yielding the best assembly metrics. First, a 

scaffolding of contigs was performed using npScarf (Cao et al. 2017), and small contigs (i.e. < 1000bp) were 
removed. Second, long reads were then mapped on the scaffolds using minimap2 (Li 2018), as well as short 
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reads using bowtie2 (Langmead & Salzberg 2012). Reads with a map quality of zero (i.e. mapped with an 
equal quality on at least two locations) were removed. Read depth (bamCoverage from Deeptools, Ramirez 
et al. 2016) and read quality (Samtools, Li et al. 2009) were then estimated to detect regions with less than 
two mapped long reads, long reads coverage higher than twice the mean coverage of the genome, and 
more than five mis-paired short reads. All these regions were manually checked using the Integrative 
Genomics Viewer (IGV, Thorvaldsdóttir et al. 2013), and manually cut when misassemblies were detected 
(i.e. regions with non-overlapping long reads, mis-pairing of Illumina reads, or with outliers for assembly 
metrics). When these putative chimeric regions were associated with mis-paired short-reads, the pairing 
information was used to reassemble the cut parts and to construct new scaffolds. Finally, we looked at 
each end of the scaffolds for mis-paired reads to perform an additional manual scaffolding using these 
information. Three cycles of scaffolding with this manual curation were performed to obtain the final 
reference genome assembly. Finally, we used BUSCO v3 (Simão et al. 2015) with the Ascomycota odb9 
single-copy orthologs set to re-assess genome assembly completeness. We mapped Illumina and Nanopore 
reads using Bowtie2 and minimap2 (see details in scripts). Coverage has been assessed using bamCoverage 
from Deeptools (Ramirez et al. 2016) with a RPKM normalization (Reads Per Kilobase per Million mapped 
reads) and a read filtering for a minimum mapping quality of 10. Telomeric regions were identified based 
on -TTAGGG- repeated sequences described for fungi (Casas-Vila et al. 2015), and of -TTAGGGCTAGGG- 
and -CTAGGG- known to be specifically associated to such regions in C. parasitica genome (Qi et al. 2013). 
Synteny between this assembly and the EP155 reference genome was assessed using nucmer (from 
MUMmer4, Marçais et al. 2018). Visualisation of the synteny was done using Circa 
(http://omgenomics.com/). Filtering of syntenic links > 10kb or with an identity < 95% has been made using 
the delta-filter program from MUMmer4. 

Prediction, annotation and curation of transposable elements 
For the TEs detection, the REPET pipeline (https://urgi.versailles.inra.fr/Tools/REPET) was used on the 

curated assembly, including Tedenovo for the consensus prediction (Flutre et al. 2011, Hoede et al. 2014) 
and TEannot for their annotation (Quesneville et al. 2005). A manual curation step was performed on the 
TEs consensus library following the instructions of the REPET pipeline. The percentage of genome coverage 
by TEs were compared between the two TEs libraries (i.e. the libraries obtained before and after curation) 
in order to check whether no information has been lost. Transposable elements sequences without at least 
one full length copy (FLC) found in the genome were considered doubtfull, and were removed from the 
libraries. These sequences were considered as duplications, and likely related to FLC consensus sequences 
obtained during annotation. Part of the TE sequences which have been inferred from only one high-scoring 
segment pair (HSP) were cut. Each TE identification was validated according to its repeated extremities and 
genes content using the Wicker’s classification (Wicker et al. 2007). Two TE databases were created: 
TEs_db1 for ESM015, the curated one, and TEs_db2 for EP155. A final TEs data base (TEs_db3) was then 
created by gathering the two first data bases. This data base was composed of the complete Tes_db1 plus 
the TEs of Tes_db2, and covering at least 0.05% of one of the two genomes (i.e. 22kb). TEs_db3 was then 
used to re-annotate both genomes. Details of the curation of the TE annotation are given in Sup. Mat. 2. 
Divergence among pairs of TEs sequences annotated in the ESM015 genome was estimated by aligning 
them to each consensus using nucmer (Marçais et al. 2018). 

In order to test whether a signal of repeat induced point (RIP) mutation, an active defense mechanism 
against the TE replication in fungi (Selker 1990), was present in the genome of C. parasitica, we first looked 
for the presence of AT-rich isochores in the ESM015 isolate genome, a typical feature of RIP-containing 
genomes (Gout et al. 2006). Second, we calculated two ratios of dinucleotides : 1) the “pre-RIP” ratio being 
the expected nucleotide ratio before the RIP mutation, and 2) the “post-RIP” ratio being the expected ratio 
of the product of the RIP mutation (i.e. (CpA+TpG)/(ApC+GpT) and TpA/ApT respectively; Margolin et al. 
1998, Selker 1990). Transposable element sequences with a pre-RIP index lower than the baseline 
estimated from the genomic sequences masked for TEs, and a post-RIP index higher than the baseline, 
indicate a bias in AT frequencies in agreement with a RIP mutation activity (Margolin et al. 1998, Selker 
1990). We also estimated a third index (CpG/GpC) specifically designed for C. parasitica, and measuring 
the depletion of the RIP on the basis of the preferential nucleotide targets in this species (see for details 
Clutterbuck 2011). Confidence intervals at 99.9% of the three baseline RIP indexes was estimated using a 
sliding window of 10kb over both masked genomes. 
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Genes, effectors, small-secreted proteins (SSPs) and secondary metabolites (SM) annotation, and 
comparison of the two genomes 

Gene prediction was performed on the curated genome using BRAKER v2.1.2 pipeline (Hoff et al. 2019). 
This pipeline first trained AUGUSTUS software (Stanke et al. 2008) using the gene Catalog 20091217 of the 
reference genome EP155 (Crouch et al. 2020). Three steps with default parameters were performed: 1) 
EP155 proteins aligned on the ESM015 genome assembly using GenomeThreader (Gremme et al. 2013), 2) 
Augustus training from the alignment file using NCBI BLAST (Altschul et al. 1990), and 3) Augustus gene 
prediction on the curated genome. Gene functions were predicted by i) searching for protein signatures on 
the different InterPro databases using Interproscan V5.29-68.0 (Jones et al. 2014) in cluster mode with 
standard parameters and ii) by comparing protein sequences with proteins described in the manually 
annotated SwissProt database (assessed the 18th of November 2020) using blastp (ncbi-blast-2.10.0+). 
Blastp results were mapped against the Gene Ontology Annotation Database using Blast2GO V5 (Götz et 
al. 2008). Annotations from InterproScan and BlastP were merged and annotated using Blast2Go V5. 
Secreted proteins were more specifically predicted using the deep neural network-based software SignalP 
version 5.0 (Armenteros et al. 2019). In this study, only the predictions with a likelihood of 0.5 or greater 
were considered as secreted proteins. In addition, genes encoding potential effectors (i.e. proteins or small 
molecules that are secreted from plant-associated organisms to the host and alter host-cell structure and 
function; Kamoun 2006) were predicted using all the secreted proteins predicted from SignalP (i.e. also 
including the proteins with a likelihood smaller than 0.5), and the machine learning based software 
EffectorP version 2.0 (Sperschneider et al. 2018). Only the effectors predicted with a likelihood of 0.6 or 
higher were considered. A set of candidate secreted effector proteins (CSEP) was also proposed by 
selecting the effectors from the set of the predicted secreted proteins having a likelihood greater than 0.5. 
Secondary metabolite biosynthesis gene clusters were identified and annotated using antiSMASH fungal 
version web tool (antiSMASH 5.0, Blin et al. 2019). 

The predicted proteins content between the previously annotated reference genome (Crouch et al. 
2020) and this new reference genome have been compared using OrthoFinder v2.4.0 (Emms & Kelly 2019) 
using default parameters. Differences in gene content were corrected for technical biases, mainly due to 
predictions using different tools in Crouch et al. (2020) and this study. The nuclear sequences of the 
predicted proteins showing no homologue in the other genome were searched on the other genome 
sequence using blastn (v2.9.0+). Using a conservative filter on these blast results, gene sequence 
alignments of the request were considered as non-functional either when starting after the start codon, 
aligning less than 80% in size with the target sequences, or showing alignments with nucleotide similarities 
< 80%. 

Results 

Comparison of the obtained assemblies for the ESM015 genome 
Two pooled DNA extractions yield a total of 66.0 μg of double-stranded DNA (estimated in 110 μL of 

final solution with Qbit). The DNA quality, estimated with the ND8000 nanodrop, was respectively 1.87 and 
1.45 for 260/280 and 260/230 ratio. The Nanopore sequencing produced 453,365 reads having a mean and 
median length of 9.40kb and 8.72kb respectively, N50 of 15.46kb, a mean quality of 8.0 (median 8.9), and 
a cumulative length of 4.26Gb (details on Sup. Mat. 3). Based on a 45Mb genome (Eusebio-Cope et al. 2009, 
Crouch et al. 2020), the estimated coverage of the genome is 94.7X. The Miniasm assembler using 
Nanopore reads led to an assembly size of 46.6Mb (N50 = 5.3Mb; L50 = 4), but the recovery rate for the 
1,315 genes using BUSCO was only 0.5%, only half (53.15%) of Illumina reads properly mapped on this 
assembly (Table S1), and the KAT estimated assembly completeness was only 20.75% (All KAT plots for 
different assemblers and curation steps are in Fig. S1). Adding a preliminary correction step of long reads 
using paired-end Illumina reads with CoLoRMap significantly improved the results with a genome size 
(43.6Mb) close to the EP155 genome (43.8Mb), a better completeness for gene contents (BUSCO genes 
recovery rate of 69.2%, Table S1), and a better KAT assembly completeness estimate (72.41%). Using Ra, 
we obtained the shortest genome assembly (42.4Mb; N50 = 2.8Mb; L50 = 6), with a higher GC rate than in 
EP155 (51.3% and 50.8%, respectively). The completeness estimates of this genome was high (98.6% of the 
BUSCO genes recovered, 94.61% Illumina reads mapped, and a KAT assembly completeness estimate of 
99.86%), but the de novo assembly was more fragmented than the assembly obtained with Miniasm (Table 
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S1). For HybriSPAdes, we finally selected 127 as the optimized kmer size (see Table S2 for details). Although 
this assembly was the most fragmented of all those produced in this study (i.e. 235 contigs, maximum 
length 3.2Mb and minimum length 129bp), it yielded good results considering together the basic genome 
statistics (genome size of 43.4Mb close to the EP155 assembly, N50 = 1.9Mb, L50 = 9, and GC rate similar 
to EP155; Table S1), BUSCO analysis (recovering 98.7% of the genes of the Ascomycota database), the 
alignment rate of Illumina reads (96.68%) (Table S1), and the estimated assembly completeness using KAT 
(99.92%). Although close to the statistics obtained with RA, this last genome assembly was chosen for the 
following analyses. 

Table 1. Assembly statistics for the genomes of the Cryphonectria parasitica isolates EP155, YVO003 
and ESM015 

Reference 
EP155 YVO003 ESM015 

Crouch et al. 2020 Demené et al. 2019 This study 

Assembler Arachne PbcR HybridSPAdes 

Data type Sanger 
PacBio and ONT and 

IonTorrent Illumina 

Coverage (x) 8.54X >100X 94.7X 

GC-count (%) 50.8 52.9 50.9 

Contigs 26 35 18 

Assembly length (bp) 43,870,411 39,261,148 43,305,322 

N50 (bp) 5,118,729 2,722,809 4,077,748 

L50 (#) 4 6 5 

N90 (bp) 1,008,593 170,449 2,847,727 

L90 (#) 11 26 10 

Max length (bp) 7,437,273 4,766,472 5,381768 
Min length (bp) 2,579 19,618 39,291 

Complete BUSCO (%) 98.6 98.7 98.7 

 
Detection and correction of several chimeric scaffolds through a manual curation 

The scaffolding step using npScarf with long reads on the hybridSPAdes assembly allowed to obtain a 
new assembly with 113 scaffolds for a total length of 43.46Mb (L50=4, N50=3.66Mb). Ninety-three small 
scaffolds (< 10,000bp) were removed (~ 150kb total length, 47.7 % GC). Twenty chimeric regions were cut, 
and 15 of which have been anchored to the corresponding part using paired-end reads information. Eight 
new bonds were also determined between ends of the scaffolds using the paired-ends information. We 
identified the 148kb mitochondrial genome on the basis of a high coverage of ~ 1000X with Nanopore 
reads, and ~4000X with Illumina paired-end reads. On this assumed mitochondrial contig, Mitos2 (Donath 
et al. 2019) identified several genes homologues to mitochondrial genes, such as cytochrome b and c 
oxydase, NADH dehydrogenase, ATP synthase and RNA polymerase (see Table S3 for details). The final 
assembly after two others similar steps of scaffolding and manual curation yielded 17 scaffolds (plus the 
mitochondrial genome) for a total length of 43.31Mb (L50=5, N50=4,1Mb, Figure 1, Table 1). After all the 
curation steps, the assembly completeness estimated using KAT remained high (99.88%). The Nanopore 
long reads were mapped again on this final assembly, and no break of mapping for these long reads was 
detected (Figure 1). The assembled scaffolds range from 39kb (ESM_16) to 5.38Mb (ESM_2). Fourteen 
telomeric regions were found at the end of ten scaffolds, with four scaffolds (ESM_2, ESM_3, ESM_4 and 
ESM_6) having telomeric motives on both ends, suggesting entire chromosomes (Figure 1). The 18S 
ribosomal coding DNA sequence (rDNA ITS) has been identified on the scaffold ESM_6 between 2,312kb 
and 2,322kb, in a locally enriched transposable elements (TEs) region of 100kb (20 TE copies, see TE section 
below, Figure 1). This region was covered at 2,292X due to the tandem duplication of the element that has 
been assembled in a single copy. The mating-type locus (MAT1-2-1 allele, GenBank accession: AF380364.1, 
McGuire et al. 2001) was located at the end of the scaffold ESM_7 (Figure 1). 
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Figure 1. Circular representation of the final genome assembly of the Cryphonectria parasitica isolate 
ESM015. First circle: ID scaffolds, telomeric motifs (orange triangle), mating type locus (dark purple 

triangle), genes mapped in Eseubio-Cope et al. (2009) are nam-1 (blue square), rDNA ITS (red square) and 
β-tubulin (green square). Second circle: Number of predicted genes using BRAKER (Hoff et al. 2019) per 

10kb. Color scale is shown in the top-right. Third circle: Number of transposables elements per 10kb. 
Color scale is shown in the top-right. Fourth circle: GC rate per 10kb, black lines represent 60%, 50%, and 
40%. Fifth circle: Illumina reads mapping coverage. Sixth circle: Nanopore reads mapping coverage. Black 
lines represent 0, 30 and 60X. Coverage of the mitochondria and the 20kb ITS rDNA region on the ESM_6 

scaffold has been excluded for clarity. 

Compartmentalization and gene landscape of the two reference genomes 
Gene prediction and annotation of the ESM015 genome assembly identified 12,015 gene models (Table 

S4). From these 12,015 models, 95% (n=11,461) were predicted to contain at least one protein domain on 
the different Interpro databases tested (Table S4), and 63% (n=7,564) show homology with a protein 
registered in the manually curated SwissProt database (Table S4). Gene ontology (GO) assignment based 
on these Interpro and SwissProt databases was successful for 67.3% of the total gene number (n=8,088). 
SignalP prediction resulted in 1,081 genes with a putative signal peptide, while EffectorP identified 1,117 
putative effectors. The combined predictions both with a likelihood greater than 0.5 yielded 88 CSEP (Table 
S4). A total of 47 predicted secondary metabolite (SM) clusters, containing between 5 to 53 genes, were 
annotated using antiSMASH. Near half (n = 23) of these clusters were categorized in the Type 1 polyketide 
synthase group. 
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Figure 2. Estimated intergenic distances between the predicted genes of the ESM15 genome. Density of 
genes for each pair of distances (3’ and 5’ intergenic distances) is given according to the legend on the 
right. White circles are the candidate secreted effector-proteins predicted (CSEP) using the combined 

predictions with a likelihood greater than 0.5, of EffectorP (Sperschneider et al. 2018) and SignalP 
(Armenteros et al. 2019). 

Finally, 3.1% of total gene number (n=372) failed to be assigned to any known protein domain or to any 
homologous proteins of known function (Table S4). Genes were separated by an average intergenic 
distance of 1.9kb (SE = 0.034). Only few genes (n=318) were separated by large intergenic distances 
indicating a low genomic compartmentalization (Figure 2). The 88 putative CSEP had a similar intergenic 
distance than the other genes (1.87 kb, SE=0.15, t-test, p-value = 0.44). Identical results were observed for 
both SignalP and EffectorP predictions (Fig. S2A and S2B). The SM clusters were located on all scaffolds, 
except for four small ones (ESM_11, ESM_12, ESM_15 and ESM_16), and were not preferentially located 
in gene sparse regions (Fig. S2C). 

Out of the 12,015 predicted genes, 92% (11,056) had at least one orthologous predicted in the EP155 
reference genome (Crouch et al. 2020; Table S5). After querying the missing gene models of ESM015 
against the EP155 genome assembly with Blastn, 611 (5.1% of all genes) of them were found with 100% of 
identity on their full length, and 308 (2.6%) had minimum 80% of identity on at least 80% of the alignment 
length. Only 40 predicted genes of the ESM015 genome were considered lost in EP155, due to a high 
divergence (sequence similarity smaller than 80%), an alignment overlap < 80%, an absence of the start 
codon, or a complete absence of the coding sequence (i.e. no hit: 3 genes). Considering these 348 lost or 
partial genes, most of them (269; 77.3 %) had not known function (i.e. no annotated GO function; Table 
S5). Eleven of these lost or partial genes were found in different secondary metabolites clusters, and two 
were predicted as CSEP. Conversely, out of the 11,609 genes predicted in EP155 (Crouch et al. 2020), 94.2 
% (10,932) had at least one orthologous, 1.1 % (133) were found in the ESM015 sequence but not predicted 
as a gene model, and 1.92 % (223) were divergent (between 80 and less than 100% of sequence similarity), 
or with an incomplete overlap (between 80 and less than 100%) (Table S6). Finally, 321 (2.7%) predicted 
genes in EP155 were considered lost in ESM15 generally because of a missing start codon. Only 11 were 
considered totally absent (no hit after searching in the ESM015 genome sequence with blastn). Out of the 
321 genes considered lost in ESM015, 279 (86.9%) had no annotated GO function, and nine were found in 
a SM cluster in EP155. Most of these lost genes were located within or close to a TE cluster (Fig. S4). 

Comparison of the TE repertoire between the two genomes and identification of RIP signatures 
The transposable element database, curated and representative of both ESM015 and EP155 genomes, 

contained 18 TEs consensus sequences (9 RNA TEs, 7 DNA TEs, one potential host gene and one unclear 
RNA/DNA TE). Annotation of the ESM015 and EP155 genomes led to 1,915 complete and incomplete TE 
copies (total length of 4.37Mb, 9.97% of the genome) and 2,116 copies (total length of 4.99 Mb, 11.37%; 
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Table 2) respectively. Class I retrotransposons were the most abundant TEs, counting respectively for 9.48% 
and 10.79% of each genome, while class II transposons represented only 0.38% and 0.44% (Table 2). The 
ESM015 assembly contains an average of 4.6 TEs per 100kb (CI95%=0.82), which are not randomly 
distributed along the genome (number of TE per 100kb, χ2=259.46, df=5, p-value < 2.2e-16; Fig. S3). Those 
TEs were usually found clustered at the end and, sometimes, in central position of the scaffolds (Figure 1, 
Fig. S4).

Table 2. Distribution of the different categories of transposable elements in the ESM015 and EP155 
genome assemblies 

 

ESM015 EP155 

N copies Load in kb 
% 

genome N copies Load in kb 
% 

genome 
Total 1915 4375 9.97 2116 4991 11.37 

LTR (class I) Gypsy invader 982 2708 6.17 1099 3140 7.15 
LTR (class I) COPYA 161 186 0.42 173 218 0.50 

LARD (class I) 463 1269 2.89 505 1379 3.14 
TIR (class II) Mariner  162 146 0.33 170 171 0.39 

Crypton (class II) Crypt1 34 27 0.06 46 43 0.10 
Helitron (class II) 49 13 0.03 53 12 0.03 

Chimeric LTR TIR (class I / class II) 18 7 0.02 20 9 0.02 
PotentialHostGene 46 18 0.04 50 19 0.04 

The most widely represented TE is a Gypsy like element (Class I), described as Metaviridae (Gypsy/Ty3 
elements) in EP155 (Crouch et al. 2020), which contains the five protein coding domains and the long 
terminal repeats (LTR) sequences needed for its duplication (Wicker et al. 2007). Its cumulative genome 
coverage represented more than 2.7Mb (982 copies, 6.17% of the genome) in the ESM015 genome and 
3.1Mb in the EP155 genome (1,099 copies, 7.15% of the genome, Table S7). The mating type locus, located 
on the scaffold ESM_7, is close to one of these regions rich in Gypsy elements (Figure 1), including fifty 
Gypsy copies out of the 95 incomplete or complete copies (270 kb total length). The difference in copies of 
TEs (mainly the Gypsy element) between the two genomes was likely due to the variability found in the 
mating-type region, sub-telomeric and telomeric regions that were all less well assembled (i.e., shorter) in 
the ESM015 than in the EP155 assembly. One identified Crypton DNA transposon was related to Crypt1, 
the only C. parasitica element that has been shown experimentally to be active (Linder-Basso et al. 2001). 
Five full length copies (FLC) of Crypt1 have been detected within the ESM015 genome and eight in the 
EP155 genome with a nucleotidic identity ranging from 95.5% to 99.8%. 

Relationships between CSEP genes and TEs was investigated in ESM015 genome. The average minimal 
distance between TEs and genes predicted to be effectors by EffectorP (63.16kb, SE = 2.07kb) was slightly 
significantly different from the mean distance of all the other predicted genes (67.36 kb, SE = 0.76kb; 
Wilcoxon rank test, W = 5425810, p-value =0.034), but not for secreted proteins predicted by SignalP (66.27 
kb, SE = 2.23kb; Wilcoxon rank test, W = 5115078, p-value = 0.49) (Fig. S5). By contrast, secondary 
metabolites (SM) clusters were found highly significantly closer to TEs than the other predicted C. parasitica 
genes (average minimal distance 46.03kb, SE = 1.96kb; Wilcoxon rank test, W = 3657390, p-value = 4.009e-
15, Fig. S5). Out of the 47 SM clusters predicted, ten were located inside a TE-rich region. Most of the 
nucleotide sequence divergences between TE copies and their consensus sequences was estimated 
between 15 and 25% in the ESM015 genome (Figure 3A). We did not detect any significant differences 
between the proportions of TE families identified between the two genomes (Table 2, Table S6). The 
presence of several AT-rich isochores (i.e. with a GC content <50%; Fig. S6) was also identified in some 
regions of the ESM015 genome. The detection of RIP activity showed different results depending of the RIP 
index used. According to the pre-RIP index, no RIP signature could be revealed for both the two genomes 
and the four tested groups of TEs (Crypt1; all DNA TEs, the Gypsy family and the remaining RNA TEs. 
Nonetheless, estimates of the two “post-RIP” indexes for the four classes of TEs were either significantly 
higher or lower than the two estimated baseline frequencies (0.67 and 0.82 for TpA/ApT and CpG/GpC 
respectively, Figure 3B), suggesting a RIP activity for both the two genomes. 
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 A.     B.  

 
Figure 3. Transposable elements (TEs) landscape of the ESM015 and EP155 genome. A. Nucleotidic 

divergence of TEs copies to their consensus, grouped by type of TEs. B. Inference of the signature of the 
repeat induced point (RIP) mutation. Three estimated indices are presented (CpA+TpG)/(ApC+GpT), 

TpA/ApT and CpG/GpC (see text for details). The dashed red line indicates the threshold values obtained 
from the genomic sequences without TE for the corresponding genome (ESM015 or EP155). Confidence 

intervals at 99.9% for the threshold values are indicated in grey. 

Major structural variations between the two genome assemblies 
Alignment length between the two genomes was 43.34Mb, with a mean nucleotide identity of 95.1%. 

This pairwise alignment revealed nine major synteny breaks (i.e. genomic translocation or inversion > 100 
kb; Figure 4). Out of these nine synteny breaks, six were inter-scaffold translocations involving seven 
scaffolds of EP155 (scaffolds 1, 2, 5, 6, 7, 10 and 11) and five for ESM015 (ESM_2, 4, 5, 7, 10) (Figure 4, 
details in Table S8). The three remaining major intra-scaffold translocations involved one extremity of the 
scaffold 2 of EP155 and ESM_11 and ESM_12 of ESM015, and the scaffold 6 of EP155 versus the scaffold 
ESM_6 of ESM015. The two detected major translocations on the scaffold 2 of EP155 are located in a region 
rich in TEs of about 1.7Mb between the MAT locus and a telomeric region (Fig. S7). 

All the detected translocations were associated with one break per scaffold, except for the scaffolds 2 
and 5 of EP155, and the scaffold ESM_2 of ESM015 with two breaks. All these rearrangements were 
confirmed by the visual inspection of reads mapped on the two assemblies. In the regions of the detected 
synteny breaks, Nanopore long reads generated in this study fully mapped on the new de novo ESM015 
genome assembly. However, in these same regions, they only mapped for one side on the previous 
published EP155 genome assembly (Fig. S8). Conversely, the Sanger reads generated in Crouch et al. (2020) 
fully mapped on the EP155 assembly for these regions, but not on the ESM015 genome assembly (Fig. S8). 
These results suggested that the identified chromosomal rearrangements were not chimeric assemblies 
for the two genomes. At the exception of the rearrangement between the scaffold 6 of EP155 and ESM_10 
of ESM15, and associated with the two class of TEs, Crypt1 and Crypt2 (Figure 4), chromosomal 
translocations were linked to regions poor in TEs and rich in predicted genes (Figure 4 and 5A). We 
observed that breaks are not included within homologous regions between the involved scaffolds (Figure 
5A). 
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Figure 4. Syntenic relationships and genomic rearrangements between the two Cryphonectria 

parasitica genomes of the isolates EP155 and ESM015. Circular representation of the syntenic 
relationships between the two genomes. Links are the syntenic regions higher than 10kb and with a 

similarity higher than (95%). Coloured scaffolds are scaffolds presenting chromosomal rearrangements 
between the two genomes. Yellow marks at the extremities of scaffolds are the identified telomeric 

motifs. Black marks of the second circle represents the density of TEs. Blue and red marks represent the 
location of the Crypt1 copies for EP155 and ESM015 genomes respectively. 

These results suggested that these chromosomal rearrangements were associated with non-
homologous end-joining events. Focusing on the four synteny breaks involving ESM_2, ESM_5 and ESM_7, 
three events would have led to gene disruptions, for which functional prediction were a transcription factor 
(g3531.t1 on scaffold ESM_2), and two MFS transporter (g7138.t1 scaffold ESM_5 and g9176.t1 on scaffold 
ESM_7; Figure 5B). Finally, the synteny break between the ESM_7 of ESM015 genome and the scaffolds 5 
and 2 of the EP155 genome occurred in a predicted SM cluster (T1PKS) (Figure 5B), a class of polyketide 
synthase putatively involved in mycotoxin and phytotoxin productions (Bills & Gloer 2016).
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A. 

B. 

Figure 5. Zoom on the syntenic relationships between the three scaffolds of ESM015 involved in two 
major inter-chromosomal translocations. A. Circular representation of the ESM015 scaffolds involved in 

the inter-chromosomal translocations. Transposable elements are shown in grey and genes in red. 
Synteny breaks are represented by the black broken lines. All syntenic links obtained with Nucmer are 

shown. B. Schematic representation of the 40kb genomic regions around the chromosomal breaks for the 
three translocation events. Positions of the break for each scaffold are given in red, and ID of genes and 
their position on the scaffolds are in black. The secondary metabolite cluster T1PKS is indicated by the 

rectangle in dotted line on the scaffold ESM_7 of the ESM015 isolate. 

Discussion 

Long reads Nanopore sequencing technology: an efficient method to obtain a near-chromosome level 
genome assembly in fungal species 

This study confirmed that long reads sequencing produced with Nanopore technology is well adapted 
to assembly small genomes such as found in fungal species, and for regions with low complexity 
(Rajarammohan et al. 2019). Our final assembly was close to a near-chromosome level assembly. Its total 
length was 43.3Mb, close to the 43.8Mb of the EP155 genome assembly (Crouch et al. 2020), and contained 
four putative chromosomes with both telomeric regions and six scaffolds with one telomeric region. This 
result is consistent with the number of chromosome and genome size estimated in a previous cytological 
and electrophoretic karyotyping study (i.e. 9 chromosomes and 50 Mb estimated in Eusebio-Cope et al. 
2009). The large quantity (66.0 μg) DNA obtained using the new DNA extraction protocol for fungal species 
was a key of this success. This protocol resulted in a DNA extraction highly concentrated in double-stranded 
DNA, which allowed to perform several steps of purifications and size selection. Another significant 
advantage of this protocol is the avoidance of using heavy and time-costly methods such as centrifugation 
on a caesium gradient and numerous purification steps (Cheeseman et al. 2014, Demené et al. 2019). The 
use of this new DNA extraction method should greatly help the assembly of new genomes at the 
chromosome level in other filamentous fungi. 
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In addition, the comparison of few methods of assembly was very useful to assess a valuable strategy 
to obtain a near-chromosome assembly without generating chimeric scaffolds. The comparison of three 
methods, and the estimate of various metrics, beyond the classic L50 and N50, greatly helped to identify 
the less fragmented and chimeric assemblies. HybridSPAdes (Antipov et al. 2016) is a hybrid method based 
on de Bruijn graph algorithm (the two others used in this study were based on overlap-layout-consensus, 
OLC, method). Associated with short reads and the npScarf scaffolding tool, it was considered as the most 
satisfactory method for assembling this genome using the recent Nanopore technology sequencing. In 
addition, our study confirmed the importance of performing several steps of manual curation, and 
identifying possible chimeric scaffolds (Courtine et al. 2020). However, several repeated regions along the 
genome could still be imperfectly assembled (estimated to 0.5 Mb, a little more than 1% of the genome). 
This result called for additional studies to better identify advantages and drawbacks of each method, 
according to the size, the genome content, and the sequencing technology used (Lu et al. 2016, Bayat et 
al. 2020). 

Stable transposable elements and CSEP repertoires between the native and the introduced C. parasitica 
genomes 

The proportion of TEs in the ESM15 genome was estimated to 10%, similar to the estimates performed 
on the EP155 reference genome (Crouch et al. 2020). More than two-third of TEs belong to the Gypsy 
family, the most abundant TE in the fungal kingdom (Muszewska et al. 2011). A high genetic divergence 
among most TEs sequences was estimated, suggesting ancient genomic duplications and subsequent 
accumulation of mutations. This high divergence could be due to an ancient burst of the main TE families 
which was stopped by a molecular mechanism such as RIP mutations, described in fungal species (Selker 
et al. 1987). Contrary to Crouch et al. (2020), we identified a signature of RIP mutation in the two C. 
parasitica genomes by comparing different dinucleotide ratio between TEs and other gene sequences. It 
was identified by estimating a higher TpA/ApT ratio in TEs, which is one of the products of RIP mutation 
(Margolin et al. 1998). By contrast, the more classical target considered in RIP analysis (CpA + TpG / ApC + 
GpT; Selker 1990) produced no robust proof of RIP signature for most TE families, as reported in Crouch et 
al (2020). However, the targets of RIP may differ significantly between fungal species (Ikeda et al. 2002). 
For example, the analysis of the Gypsy elements showed that CpG was the preferred target of the RIP 
mutation in C. parasitica (Clutterbuck 2011). By estimating a new index (CpG/GpC), depletion of this RIP 
target was identified in the two reference genomes for all TE families. Furthermore, a homologous protein 
of the RID gene of Neurosporora crassa (GenBank: AAM27408.1), the only gene experimentally proven to 
be necessary for RIP activity (Freitag et al. 2002), was identified in C. parasitica genome (blastp e-value 8e-
96, g9609.t1 with the same PFAM motif PF00145 known to be involved in RIP activity; Amselem et al. 2015). 
This supports that the RIP is active and repressed the TEs expansion in the genomes of C. parasitica. In 
addition, regular sexual reproduction that is necessary for the occurrence of RIP mutations (Selker 1990), 
has been described, or inferred, several times, although at different frequencies, in native and introduced 
areas in C. parasitica (e.g., Milgroom et al. 1996, Dutech et al. 2012, Demené et al. 2019). 

We also detected a slight gene compartmentalization in the C. parasitica genome, and, at the exception 
of secondary metabolites, no clear association between genes and TEs. Transposable elements were often 
found clustered in telomeric and sub-telomeric regions in C. parasitica, as well as the secondary metabolite 
(SM) clusters. The coding sequences predicted to produce effectors were slightly located closer to TEs than 
other genes, and no particular proximity with TEs has been found for putative secreted protein coding 
sequences. The concept of “two-speed genome”, assuming that genes involved in host-pathogen 
interaction like CSEPS, would be clustered together in regions having a rapid evolution due to the presence 
of active TEs in their neighborhood, is indeed widely debated in fungi (Frantzeskakis et al. 2019, Torres et 
al. 2020). Our analysis, more consistent with a low gene compartmentalization and stable CSEP and SM 
repertoires, is in agreement with Stauber et al. (2021) who have sequenced a hundred of C. parasitica 
samples in Europe using short-reads Illumina. These results have also been described in other plant fungal 
pathogens of natural ecosystems (Hartmann et al. 2018), and also for other fungal species infecting crops 
(Stam et al. 2018, Schwessinger et al. 2018). 

Comparison of the gene landscape between the two genomes also showed no major variation. Most 
of the predicted genes in one genome were present in the other one. The small number of missing genes 
either had unknown functions or did not have a start codon which may be due to sequencing or annotation 
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errors. More noteworthy, we did not detect any significant changes in the SM and CSEP gene repertoires 
between the two genomes. This small variation in gain and loss of genes confirmed the results obtained in 
Stauber et al. (2020, 2021) on the hundred of C. parasitica isolates sequenced with Illumina. Similar results 
were also obtained in Microbotryum sp., the causal agents of anther-smut diseases, for which the low 
number of gene gains and losses observed between a ten of pairs of isolates have been considered neutral 
or lowly deleterious (Hartmann et al. 2018). Large variations in gene repertoires, especially associated with 
effector gene candidates have been regularly described within fungal pathogen species or within genera 
infecting different host species, and considered as a signature of host specialization (e.g., Yoshida et al. 
2016, Wang et al. 2020). Such a signature was not detected between the EP155 genome infecting the 
American chestnut (C. dentata), and ESM015 infecting Asian chestnuts (such as C. mollisima and C. 
crenata). However, molecular interactions between C. parasitica and the Chestnut species may be more 
quantitative, and/or plastic, than qualitative, involving other metabolic pathways and regulations (Lovat & 
Donnelly 2019). Furthermore, the non-significant variation in host-virulence observed between native and 
introduced strains of C. parasitica against the European Chestnut also suggested that no or low selective 
pressure has affected the virulence traits of the fungus during the European introduction (Dennert et al. 
2019). 

Numerous inter-chromosomal translocations with putative important consequences on sexual 
reproduction of C. parasitica 

We detected six major inter-chromosomal translocations between the two genome assemblies, 
involving four scaffolds, and in some cases, comprising two events on the same chromosome. We cannot 
totally rule out that chimeric assemblies may explain the detected chromosomal rearrangement between 
the two de novo genome assemblies. However, we first observed that the genome assembly produced in 
this study for the ESM015 isolate had no identified major synteny breaks with the assembly produced in 
Demené et al. (2019), using another isolate (i.e., YVO003, an isolate sampled in France), and another 
sequencing technology (i.e. Pacific Bioscience technology). This congruence between the two de novo 
genome assemblies, added to the fully mapping of Nanopore long reads on the new genome assembly in 
the assumed regions of synteny breaks with the EP155 genome, gave a high credit on our results. Similarly, 
we checked the mapping of Sangers reads produced in Crouch et al. (2020), and observed that several of 
these reads passed through the regions of synteny breaks for the EP155 genome assembly (Fig. S8). In 
addition, this EP155 assembly was performed using several plasmid/fosmid subclone sequencing, targeted 
sequencing of genomic gaps and was validated by a genetic linkage map (Crouch et al. 2020). These results 
should discard the possibility of several chimeric assemblies, especially in the regions with no repeated 
element. By contrast, a small number of large intra-chromosomal inversions and duplications were 
detected from this genomic comparison, except close to the mating-type region. These differences in 
extend between the intra- and inter-chromosomal variations were less often described in the genomic 
studies at the species level; chromosomal inversions, duplication or a limited translocation of genes being 
more abundantly described in fungi (e.g. Chuma et al. 2011, Hane et al. 2011, Raffaele & Kamoun 2012, 
Plissonneau et al. 2018). Inter-chromosomal translocation were however several times identified between 
species of the same genus (e.g. Wang et al. 2020), between isolates of mainly asexual species (de Jonge et 
al. 2013, Olarte et al. 2019, Tsushima et al. 2019), but also in few cases, in partially sexual species, such as 
Saccharomyces cerevisiae (Hou et al. 2014, Chang et al. 2013). This low number of reports on inter-
chromosomal rearrangements may be explained by still a limited number of comparisons of genome 
assemblies at the near-chromosome level. We assume that the new sequencing technologies, such as those 
used in this study, will allow to obtain rapid and robust assemblies at the chromosome level for numerous 
genotypes within species, and would lead to more frequent report of such events in fungal species in a 
next future. 

The synteny breaks were not associated with homologous regions between the involved scaffolds, 
especially with no cluster of repeated sequences, such as TEs, in the proximity of the breakpoints. These 
results suggest that these inter-chromosomal translocations were associated with random double-break 
strands (DBS) of the chromosomes, and led to the repair of these DNA breaks by non-homologous end-
joining events. This process has been described in several Eukaryotes, and especially in fungi (e.g. Hou et 
al. 2014, Yadav et al. 2020). Double break strands may occur during episodic stresses, for example during 
some specific recombination events (Yadav et al. 2020), and have been described under laboratory 

Arthur Demené et al. 15

Peer Community Journal, Vol. 2 (2022), article e28 https://doi.org/10.24072/pcjournal.127

https://doi.org/10.24072/pcjournal.127


conditions (e.g. Dunham et al. 2002), and also under natural conditions (e.g. Chang et al. 2013). For C. 
parasitica, we cannot identify which conditions may have led to this extensive chromosome shuffling 
between the native ESM015 and the introduced EP155 genome. Additional comparisons of C. parasitica 
genomes sampled in the native and the introduced areas must be performed to reconstruct the origin of 
these chromosomal rearrangements. Our two genome assemblies (Demené et al. 2019, this study), 
suggested that the North-American EP155 strain would not be the standard karyotype of C. parasitica, as 
argued in Eusebio-Cope et al. (2009). Furthermore, the identification of another karyotype in this later 
study (i.e. the GH2 strain sampled in Michigan) also suggested that chromosomal rearrangements would 
have occurred several times during the world C. parasitica invasion. 

One of the consequences of these chromosomal rearrangements may be dramatic phenotypic changes 
among genotypes (e.g. Chang et al. 2013, Olarte et al. 2019). As discussed above, chromosomal 
rearrangements did not lead to major changes in the repertoire of genes between the two genomes. 
Nevertheless, the detected synteny breaks showed the disruption of three genes (one being included in a 
secondary metabolite cluster), and for which the phenotypic expression would be interesting to 
investigate. Chromosomal translocation may also change gene expression via, for example, change in DNA 
methylation or in proximity with some TEs (Castanera et al. 2016). The recent identification of changes in 
epigenetic marks between C. parasitica strains along the European gradient of colonization (Vukovic et al. 
2019) provide more rationale for investigating the role of these mechanisms in the putative adaptation of 
the species to these new environments. Another important consequence of these chromosomal 
rearrangements is the impact on the success of sexual reproduction between these genomes, and the raise 
of putative pre-zygotic barriers, leading to incipient speciation (Hou et al. 2014, Yadav et al. 2020). Inter-
chromosomal translocations lead to abnormal segregation of homologous chromosomes during meiosis 
(Kistler & Miao 1992), and possible acquisition of an incomplete repertoire of genes in the progenies of 
parents with different karyotypes (Yadav et al. 2020). Pre-zygotic barriers involving these rearrangements 
may actually explain the limited number of intermediate genotypes among the predominant genetic 
lineages observed in south-western Europe, and despite the regular presence of the two mating types 
within populations (e.g. Dutech et al. 2010). Usually, chromosomal rearrangements are strongly reduced 
in sexual species (Plissonneau et al. 2018). However, the specific context of introductions, associated with 
genetic bottleneck and new environmental conditions, and the occurrence of clonal reproduction in C. 
parasitica in introduced areas (Milgroom et al. 1992, Dutech et al. 2010) may have favoured the fixation of 
new genetic lineages in this invasive fungal species. With the emergence of long reads sequencing 
technology, this hypothesis can be now more easily investigated in the C. parasitica populations, and allows 
us to understand the role of large structural genomic variations in the adaptation of this invasive species. 
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Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) integrative Genomics Viewer (IGV), high-performance 
genomics data visualization and exploration. Briefings in Bioinformatics, 14, 178–192. 
https://doi.org/10.1093/bib/bbs017  

Torres DE, Oggenfuss U, Croll D, Seidl MF (2020) Genome evolution in fungal plant pathogens, looking 
beyond the two-speed genome model. Fungal Biology Reviews, 34, 136–143. 
https://doi.org/10.1016/j.fbr.2020.07.001  

Tsushima A, Gan P, Kumakura N, Narusaka M, Takano Y, Narusaka Y, Shirasu K (2019) Genomic Plasticity 
Mediated by Transposable Elements in the Plant Pathogenic Fungus Colletotrichum higginsianum. 
Genome Biology and Evolution 11, 1487–1500. https://doi.org/10.1093/gbe/evz087  

Vukovic R, Liber Z, Jezic M, Sotirovski K, Curkovic-Perica M (2019) Link between epigenetic diversity and 
invasive status of south-eastern European populations of phytopathogenic fungus Cryphonectria 
parasitica. Environmental Microbiology, 21, 4521–4536. https://doi.org/10.1111/1462-2920.14742  

Wang Q, Jiang C, Wang C, Chen C, Xu J-R, Liu H (2017) Characterization of the Two- Speed Subgenomes of 
Fusarium graminearum Reveals the Fast-Speed Subgenome Specialized for Adaption and infection. 
Frontiers in Plant Science, 8, 140. https://doi.org/10.3389/fpls.2017.00140  

Wang Q, Sun M, Zhang Y, Song Z, Zhang S, Zhang Q, Xu J-R, Liu H (2020) Extensive chromosomal 
rearrangements and rapid evolution of novel effector superfamilies contribute to host adaptation and 
speciation in the basal ascomycetous fungi. Molecular Plant Pathology, 21, 330–348. 
https://doi.org/10.1111/mpp.12899  

Wellenreuther M, Mérot C, Berdan E, Bernatchez L (2019) Going beyond SNPs: The role of structural 
genomic variants in adaptive evolution and species diversification. Molecular Ecology, 28, 1203–1209. 
https://doi.org/10.1111/mec.15066  

24 Arthur Demené et al.

Peer Community Journal, Vol. 2 (2022), article e28 https://doi.org/10.24072/pcjournal.127

https://doi.org/10.1093/bioinformatics/btv351
https://doi.org/10.1126/science.1194573
https://doi.org/10.1111/mpp.12682
https://doi.org/10.1093/gbe/evy240
https://doi.org/10.1093/bioinformatics/btn013
https://doi.org/10.1128/mSphere.00737-20
https://doi.org/10.7554/eLife.56279
https://doi.org/10.1371/journal.ppat.1002893
https://doi.org/10.1093/bib/bbs017
https://doi.org/10.1016/j.fbr.2020.07.001
https://doi.org/10.1093/gbe/evz087
https://doi.org/10.1111/1462-2920.14742
https://doi.org/10.3389/fpls.2017.00140
https://doi.org/10.1111/mpp.12899
https://doi.org/10.1111/mec.15066
https://doi.org/10.24072/pcjournal.127


Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud 
O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable 
elements. Nature Reviews Genetics, 8, 973–982. https://doi.org/10.1038/nrg2165  

Yadav V, Sun S, Coelho MA, Heitman J (2020) Centromere scission drives chromosome shuffling and 
reproductive isolation. Proceedings of the National Academy of Sciences of the United States of 
America 117, 7917–7928. https://doi.org/10.1073/pnas.1918659117  

Yoshida K, Saunders DGO, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, inoue Y, Chuma I, Tosa Y, Cano LM, 
Kamoun S, Terauchi R (2016) Host specialization of the blast fungus Magnaporthe oryzae is associated 
with dynamic gain and loss of genes linked to transposable elements. BMC Genomics, 17, 370. 
https://doi.org/10.1186/s12864-016-2690-6  

Arthur Demené et al. 25

Peer Community Journal, Vol. 2 (2022), article e28 https://doi.org/10.24072/pcjournal.127

https://doi.org/10.1038/nrg2165
https://doi.org/10.1073/pnas.1918659117
https://doi.org/10.1186/s12864-016-2690-6
https://doi.org/10.24072/pcjournal.127

