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Abstract
The breeding of resistant hosts based on the gene-for-gene interaction is crucial toaddress epidemics of plant pathogens in agroecosystems. Resistant host deploymentstrategies are developed and studied worldwide to decrease the probability of resis-tance breakdown and increase the resistance durability in various pathosystems. A ma-jor component of deployment strategies is the proportion of resistant hosts in the land-scape. However, the impact of this proportion on resistance durability remains unclearfor diploid pathogens with complex life cycles. In this study, we modelled pathogen pop-ulation dynamics and genetic evolution at the virulence locus to assess the impact ofthe ploidy (haploid or diploid) and the pathogen’s life cycle (with or without host alter-nation) on resistance durability. Ploidy has a strong impact on evolutionary trajectories,with much greater stochasticity and delayed times of resistance breakdown for diploids.This result emphasises the importance of genetic drift in this system: as the virulent alleleis recessive, positive selection on resistant hosts only applies to homozygous (virulent)individuals, which may lead to population collapse at low frequencies of the virulent al-lele. We also observed differences in the effect of host deployment depending on thepathogen’s life cycle. With host alternation, the probability that the pathogen popula-tion collapses strongly increases with the proportion of resistant hosts in the landscape.Therefore, resistance breakdown events occurring at high proportions of resistant hostsfrequently amount to evolutionary rescue. Last, life cycles correspond to two selectionregimes: without host alternation (soft selection) the resistance breakdown is mainlydriven by the migration rate. Conversely, host alternation (hard selection) resembles anall-or-nothing game, with stochastic trajectories caused by the recurrent allele redistri-butions on the alternate host.
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1. Introduction
Plant pathogens can quickly evolve (Perkins et al., 2013), and the loss of host genetic diversityin agroecosystems compared to natural ecosystems can enhance the spread of epidemics (Bur-don and Thrall, 2008; Garrett et al., 2009; Haas et al., 2011; Mundt, 2002; Ostfeld and Keesing,2012; Zhan et al., 2015). In this context, many plant protection strategies are developed andstudied worldwide (Bousset and Chèvre, 2013), particularly spatio-temporal host resistance de-ployment strategies (Bousset et al., 2018; Burdon et al., 2014; Djian-Caporalino et al., 2014;Fabre et al., 2015; Gilligan and Bosch, 2008; Mundt, 2002; Rimbaud et al., 2018b; Sapoukhinaet al., 2009). However these modelling studies seldom account for pathogen differences in lifecycle and ploidy levels.While quantitative resistance has gained interest (Pilet-Nayel et al., 2017), the breeding ofdisease resistant plants is still often based on the gene-for-gene interaction (Person et al., 1962;Zhan et al., 2015). In the simplest case of specific response, the result of the infection is deter-mined by the interaction between a locus in the plant (the resistance gene) and in the pathogen(the avirulence gene) (Flor, 1971). This interaction leads to an all-or-nothing response and there-fore such resistances are called qualitative. Qualitative resistances often rely on the recognitionof a specific pathogen molecule (an effector protein for instance) by a plant immune receptor(Lo Presti et al., 2015). If the pathogen is recognised by the plant, the infection is stopped andthe plant is called resistant. But the pathogen species evolves in multiple ways to escape hostrecognition (Rouxel and Balesdent, 2017).When a pathogen can infect a resistant host it is calledvirulent, as opposed to avirulent individuals. For avirulent individuals, if the product of the aviru-lence gene is not recognised by the plant, the infection occurs and the plant is called susceptible.
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Hence, virulent individuals can infect both susceptible and resistant hosts, while avirulent indi-viduals can only infect susceptible hosts. In its simplest cases, the avirulence gene exists in twoversions: the avirulent Avr allele and the virulent avr allele. The plant resistance can thus be over-come by a mutation of the Avr allele which modifies the pathogen recognition by the plant. The
Avr allele is then replaced by a virulent avr allele which leads to a virulent pathogen (Stukenbrockand McDonald, 2009a).In natural systems, the constant turnover of resistance and avirulence genes results froma strong coevolutionary interaction between both species (Zhan et al., 2014), represented bythe concept of arms-race (Brown and Tellier, 2011). On both sides, the most adapted allelecan spread in the population, sometimes replacing alleles conferring lower fitness to individuals(Brown and Tellier, 2011; Persoons et al., 2017). These genes are under strong selective pressureand at each selective event a selective sweep can occur and drastically reduce the genetic diver-sity of both species (Oleksyk et al., 2010; Terauchi and Yoshida, 2010). In natural populations,rare host genotypes can be maintained by negative frequency-dependent selection, resultingin the preservation of host polymorphism (Lewontin, 1958). In agroecosystems, however, purecrops of resistant hosts hinder this maintenance of polymorphism (Zhan et al., 2015). There-fore, the issue of such resistance deployments is often a resistance breakdown, i.e. the failingof the host to remain resistant to the pathogen, which can result in severe epidemics (Brownand Tellier, 2011; Burdon et al., 2016; Johnson, 1984; Pink and Puddephat, 1999). Such a resis-tance breakdown can occur more or less quickly, depending on the pathosystem considered andthe environmental conditions (Van den Bosch and Gilligan, 2003). This observation raises thequestion of resistance durability, which can be defined as the time until the virulent populationreaches a given threshold in the pathogen population. Definitions of resistance durability canhave diverse acceptations depending on the threshold considered (Brown, 2015; Carolan et al.,2017; Lof et al., 2017; Pacilly et al., 2018; Pietravalle et al., 2006; Rimbaud et al., 2021; Van denBosch and Gilligan, 2003). Considering several thresholds can help in capturing different stepsof the pathogen dynamics.Resistance durability becomes a major economical issue when epidemics impact crop yields.Therefore, it has often been studied through the modelling of epidemics spread in agriculturallandscapes (Rimbaud et al., 2021). Such models can couple epidemiological and evolutionaryprocesses, and often aim to study the influence of different biological parameters on the emer-gence of pathogens, their specialisation to the host plant, the evolutionary dynamics of virulence,or on the resistance durability (Van den Bosch and Gilligan, 2003). Virulence is defined here asthe ability for a pathogen individual to infect a resistant host, in accordance to the phytopathol-ogy literature (Flor, 1971; McDonald and Linde, 2002). These parameters can be specific to thehost plant (proportion of resistant host in the landscape, their spatial and temporal distribution)or to the pathogen (life cycle, mutation rate, dispersal) (Fabre et al., 2012, 2015; Papaïx et al.,2015, 2018; Soularue et al., 2017). These models often represent haploid pathogens with avirulent and an avirulent genotype, evolving purely asexually on a landscape composed of com-partments, gathering resistant or susceptible hosts (Lof et al., 2017; Lof and Werf, 2017; Pacillyet al., 2018; Pietravalle et al., 2006). Regarding the pathogen, high risks of resistance breakdownare observed for pathogen populations with high gene flow and mutation rates, large effectivepopulation sizes, and partially asexual reproductions (McDonald and Linde, 2002). Regardingthe host, the increase in the proportion of resistant hosts should increase the selection pressure,hence weakening the resistance durability (Pietravalle et al., 2006; Van den Bosch and Gilligan,2003). However, a large proportion of resistant hosts also reduces the initial size of the pathogenpopulation and thus the risk of resistance breakdown (Pacilly et al., 2018), partly because a smallpopulation size reduces the likelihood that a virulent individual will emerge through mutation.However, the impact of host resistance deployment on resistance durability remains unclearwhen the pathogen is diploid (like rust fungi, oomycetes, or nematodes). When the product ofthe avirulence gene is a specific molecule like an effector protein, the pathogen is virulent onlyif this product is not detected by the product of the corresponding resistance gene in the host(Stukenbrock and McDonald, 2009a). Therefore, for a diploid individual the pathogen is virulentonly if the products of both alleles avoid detection by the host. In other words, in the classical
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gene-for-gene interaction the virulent allele is recessive (Thrall et al., 2016). Consequently, aheterozygous Avr/avr individual is phenotypically avirulent, and the selective advantage of thevirulence is effective among homozygous avr/avr individuals only. At low frequency, avr allelesare then carried by heterozygous individuals and mostly subjected to drift.Diploid pathogens exhibit a large variability of life cycles (Agrios, 2005). We can especiallydistinguish autoecious pathogens, which complete their life cycle on a unique host species,from heteroecious pathogens which need two different and successive host species to com-plete their life cycle (Lorrain et al., 2019; Moran, 1992). This presence or absence of an alternatehost species could also affect the influence of host deployment strategy on resistance durability.Moreover, most studies focus on purely asexual pathogens, but the highest risks of resistancebreakdown were observed for mixed reproduction systems (McDonald and Linde, 2002), withthe best invaders combining high rates of asexual reproduction and rare events of sex (Bazinet al., 2014). Yet, the allelic redistribution resulting from a sexual reproduction event could havean even stronger impact on resistance durability when the pathogen is diploid.To study resistance durability and evolutionary forces shaping the system, the understandingof the evolution of gene and virulence allele frequencies is needed. Coupling epidemiology andpopulation genetics provides insights on both short and long time scales. It allows in particulardetailed analyses of transition periods (Bolker et al., 2010; Day and Gandon, 2007; Day andProulx, 2004), through variables like the pathogen population size, affecting both the diseaseincidence in epidemiology and the impact of genetic drift in population genetics (McDonald,2004). This approach is also crucial for highlighting transient effects like evolutionary rescue,i.e. the genetic adaptation of a population to a new environment, thus preventing its extinction(Alexander et al., 2014;Martin et al., 2013). Evolutionary rescue as a process leading to resistancebreakdown has not received consideration so far.The virulence of pathogens can be associated with a fitness cost on susceptible hosts (Bous-set et al., 2018; Laine and Barrès, 2013; Leach et al., 2001; Montarry et al., 2010; Nilusmas et al.,2020; Thrall and Burdon, 2003), sometimes referred to as the cost of pathogenicity (Sacristánand García-Arenal, 2008). This fitness cost has been shown to have a strong impact on resistancedurability (Fabre et al., 2012). However, depending on the avirulence gene considered, such afitness cost is not systematic (see Leach et al., 2001 for a review). Therefore, in the absence ofdata, it could be more conservative of the risk of breakdown not to consider fitness cost whilemodelling resistance durability.In this paper, we aim to broaden our understanding about the impact of the ploidy and thelife cycle of pathogens on resistance durability. We used a non-spatialised model coupling popu-lation dynamics and population genetics to simulate the evolution of pathogens on susceptibleand resistant hosts. We investigated the effects of resistant host deployment and pathogen de-mography on resistance durability, for a population of diploid and partially clonal pathogens, andcompared the results to those obtained for haploid pathogens. Two different life cycles wereimplemented specifically: with or without host alternation for the sexual reproduction of thepathogen population. We assessed the resistance durability in two steps. First we examined thedynamics of fixation of the virulent allele in the population, and considered in parallel the caseswhen the pathogen population could go extinct, to highlight evolutionary rescue events. Thenwe focused on the invasion and resistance breakdown events, and disentangle the relationshipbetween the durability of resistance and the dynamics of virulent populations after the invasionof the resistant plants.
2. Model description

2.1. Model overview.
The model is individual-based, forward-time and non-spatialised, and couples population dy-namics and population genetics to study the evolution of a population of pathogens for a suc-cession of generations. It allows us to follow the evolutionary trajectory of different genotypesat the avirulence locus of pathogens through time. We consider a life cycle usually found in tem-perate pathogen species, which alternate rounds of clonal reproduction with an annual event of
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(a) Without host alternation

(b) With host alternation

Figure 1 – Model representation for two different life cycles: (a) without or (b) with hostalternation. g corresponds to the total number of generations (asexual plus sexual) in ayear. Dashed arrows represent reproduction events, and solid arrows representmigrationevents occurring at each generation. asex stands for asexual reproduction events, and
sex for sexual reproduction events. avr denotes the virulent recessive allele, and Avr theavirulent dominant allele.

sexual reproduction (Agrios, 2005). This model is designed in four variants to represent haploidor diploid pathogens with two distinct life cycles: with or without host alternation for the sexualreproduction (Figure 1). Without host alternation, the model represents the evolution in time ofa population of pathogens on two static host compartments: a resistant compartment (R) and asusceptible compartment (S). Fixed carrying capacities of pathogens, KR and KS , are respectivelyassigned to R and S compartments and represent the maximum amount of pathogens that eachcompartment can contain. With host alternation, the alternate host compartment (A) is added,where the sexual reproduction takes place. This static compartment is assumed to be sufficientlylarge and thus with unbounded population size. Note that the life cycle with host alternation forhaploid pathogens was added for the sake of comparison but has no real biological meaning,because no haploid pathogen display this life cycle.
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2.2. Demographic evolution of the pathogen population.
2.2.1. Reproduction events. Each discrete generation corresponds to a reproduction event, ei-ther sexual or asexual. Each year is composed of g non-overlapping generations, with one an-nual sexual reproduction event followed by a succession of g − 1 asexual reproduction events.In our simulations, we considered a year composed of g = 11 generations. At each reproductionevent, parents give way to offspring and the new population is composed exclusively of newindividuals. The within-compartment dynamics of the pathogen population are provided by thefollowing equations:Before each sexual reproduction event, a proportion Reduct of pathogen individuals is pickedrandomly to form the parental population. We fixed Reduct = 0.2 to cope to pathogen life cyclesdisplaying drastic reduction in population size during sexual reproduction which usually takesplace in winter.For the sexual reproduction event itself, the population size is considered constant beforeand after the reproduction event:
(1) Nn+1 = Nn

With Nn+1 the population size at generation n + 1 and Nn the population size at generation n.Sexual offspring genotypes are obtained through random mating within the parental population.For the asexual reproduction following the sexual reproduction in the A compartment in thelife cycle with host alternation, the population growth is exponential, with the following relation:
(2) Nn+1 = r × Nn

With r the growth rate of the pathogen population.For each asexual reproduction in the R or S compartments, the population growth is logistic,with the following relation:
(3) Nn+1 = Nn + (r − 1) × Nn × (1 − Nn

K )

With K the carrying capacity of the compartment (KR or KS for R or S compartment respec-tively). For all clonal reproduction events, offspring genotypes are drawn randomly from theparental population, with replacement, considering the same reproduction rate for all pathogengenotypes.
2.2.2. Migration events. A regular two-way migration event takes place each generation beforethe reproduction event, between individuals evolving in the R and S compartments. The numberof migrant individuals is determined by a migration rate (mig ) multiplied by the number of indi-viduals on the compartment of origin. Migrant individuals succeed to invade the compartmentof arrival, even if the number of individuals on this compartment reached the maximum carryingcapacity. The population size on each compartment is restricted to the carrying capacity duringreproduction events only, and not during migration events. Thereby, this choice enables the im-migration of new pathogens regardless of the size of the population, as it is observed in naturalpopulations for plant pathogens.For the life cycle with host alternation, the annual sexual reproduction event coincides withthe obligate migration of the entire pathogen population to and from the alternate host. Thefirst migration event takes place once every year after g − 2 asexual reproduction events in theR and S compartments (Figure 1). For this migration event, an established proportion of individ-uals Reduct is picked randomly from R and S compartments to migrate to the A compartment.All remaining individuals die in the R and S compartments, because the sexual reproduction ismandatory to complete the life cycle. After the two reproduction events (sexual and asexual) inthe A compartment, the second migration event redistributes randomly all individuals from thecompartment A to R and S compartments, in proportion to the relative size of R and S compart-ments (Figure 1).
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2.3. Genetic evolution of the pathogen population.
To better highlight the effect of drift among other evolutionary forces, we did not considermutation, that is, there is no change by chance of allelic state. This amounts to study evolu-tion of the pathogen population from standing genetic variation (Barrett et al., 2008). The aviru-lence gene exists at two possible states: the Avr allele and the avr allele. For haploid pathogens,the Avr allele leads to avirulent individuals surviving only in the S compartment (and in the Acompartment in the case of host alternation), while the avr allele leads to virulent ones capa-ble to survive on all compartments without any fitness cost (Brown, 2015; Leach et al., 2001).For diploid pathogens, Avr is dominant and avr is recessive. Thus, individuals with genotypes

Avr/Avr , Avr/avr and avr/avr survive with equal fitness in the S and A compartments, while onlyindividuals with the virulent genotype avr/avr survive in the R compartment. Every avirulent in-dividual (Avr for haploids, and Avr/Avr or Avr/avr for diploids) migrating to the R compartmentdies before any subsequent migration or reproduction event.Besides the demographic evolution of pathogen populations, the model describes the evo-lution of allelic and genotypic frequencies through generations in each compartment. Repro-duction events can change allelic and genotypic frequencies. In particular, the annual sexualreproduction is the only event responsible for allele reshuffling in diploid individuals. For hap-loid pathogens, as only one locus is studied, the sexual reproduction event amounts to asexualreproduction, with differences in the size of the offspring population only.Resistance durability is evaluated at four steps representing different proportions of virulentindividuals in the population: (1) the time of apparition of the first virulent individual on the Rcompartment; (2) the time of invasion of the R compartment (1‰ of the R compartment occu-pied); (3) the time of resistance breakdown (1%of the R compartment occupied); and (4) the timeof fixation of the virulence (all individuals are virulent, i.e only avr alleles remain). The thresholdsof 1‰ and 1% were arbitrarily fixed to correspond to (i) the establishment of a pathogen popu-lation on the R compartment for the invasion and (ii) the detection of the virulent population onthe R compartment for the resistance breakdown, respectively.
2.4. Implementation of model analyses.

The model was implemented in Python (version 3.7, Rossum, 1995), with the package"simuPOP" (Peng and Kimmel, 2005). The starting point of each replicate simulated was a pop-ulation of 2000 individuals in the susceptible compartment. A proportion favr of virulent alleleswas introduced initially in the pathogen population at Hardy-Weinberg equilibrium, as standinggenetic variation. For diploid individuals, homozygous avr/avr individuals could therefore be ini-tially present, depending on favr . All simulations were run with a fixed total carrying capacity forthe host population size, K = KR + KS = 100 000, but a variable proportion of the size of the Rcompartment propR = KR
K .Preliminary analyses were carried out to study demographic and genetic outcomes with vary-ing parameters. These analyses enabled six variables of interest to be identified: the initial fre-quency of avr allele (favr ), the migration rate (mig ), the growth rate (r ), the proportion of resistanthosts in the landscape (propR ), the ploidy (Ploidy ) and the life cycle (Cycle). Statistical analyseswere performed on simulations with quantitative input parameters picked randomly from knowndistributions, resulting into a random simulation design (Table 1). The same simulation designwasrun four times, once for each combination of categorical input parameters (Ploidy and Cycle). Toinvestigate further the impact of the input parameters on the simulation outcome in specificcases and to present the model results in a more didactic form, a regular simulation design wasdeveloped to complement the random design (Table 1).This regular simulation design allowed us to present the results in a more conventional form.For both the random and the regular simulation design, simulations were run for each combi-nation of parameters for 100 years (1100 generations) with 100 replicates. During this period,nearly all replicates reached equilibrium (fixation of one allele or extinction of the population).A principal component analysis was performed on the data obtained with the random simu-lation design using R (R, 2018), on the following output variables: the frequency of extinction of
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population (freq_ext), the frequency of fixation of the Avr allele in the population (freq_fix_Avr ),the frequency of fixation of the avr allele (freq_fix_avr ) and the generation of fixation of avr(gen_fix_avr ). To study the influence of the six input parameters (Ploidy , Cycle, favr , mig , r , and
propR ) on the three main output variables selected (freq_ext , freq_fix_avr , and gen_fix_avr ), gen-eralized linear models (GLM) were performed on R. GLM on freq_ext and freq_fix_avr were per-formed with a Logistic link function, and the GLM on gen_fix_avr was performed with a Gammalink function.To analyse further the temporal dynamics of avr allele frequency and population size, simula-tions were run recording population size and allelic states over time. Because these simulationswere time- and memory-consuming, they were run on a restricted simulation design with only24 combinations of parameters (Table 1). The generation of fixation of the avr allele was thusdecomposed into two distinct output variables: the year of invasion of the R compartment andthe time elapsed between the invasion and the avr allele fixation in the population. The influenceof three parameters (propR , Ploidy and Cycle) on these two output variables was studied with1000 replicates for each combination through 1100 generations. For these two output variables,GLM were performed with a Gamma link function.For each general linear model developed, a dominance analysis was performed with the Rpackage "dominanceanalysis" (Bustos Navarrete and Coutinho Soares, 2020) to compare therelative importance of the input parameters on the five output variables described. Estimatedgeneral dominance were calculated using bootstrap average values with the corresponding stan-dard errors for each predictor with 100 bootstrap resamples, with McFadden’s indices (McFad-den, 1974).Calculations of a growth rate threshold r0 were carried out on Python for several parametercombinations. This value determines the growth rate below which the population goes extinctbefore the end of the simulation if there are no virulent individuals, therefore if the R compart-ment remains empty.
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3. Results
3.1. Model behaviour.

Since the model leads to stochastic outputs, we first analysed model behaviour in order toidentify sound output variables. We visualised both population size and allele frequency dynam-ics through generations. The trajectory of each simulation either lead to the extinction of theentire pathogen population or to the fixation of one allele, provided that simulations last longenough. An example of such model behaviour is illustrated in Annex B (Figure S2) with fourreplicates, assuming diploid pathogens with host alternation. In this example, population sizesdisplay cyclical dynamics due to the annual migration event on the A compartment. Three out offive replicates lead to population extinctions, while in the two other replicates, some pathogenindividuals succeed to invade the R compartment after the initial phase of population dynamicscollapse, leading to the fixation of the avr allele. These two dynamics with the survival of thepopulation following a genetic adaptation to harsh environment illustrates evolutionary rescue.Interestingly, all replicates succeed to invade the R compartment at some time, but - because ofhost alternation - the annual redistribution of individuals breaks the invasion dynamics of the Rcompartment. Therefore, invasion does not necessarily lead to avr fixation.In the following, we will summarise simulation results with four output variables, computedover replicates: the frequency of extinction, freq_ext; the frequency of fixation ofAvr or avr allele,
freq_fix_Avr or freq_fix_avr , respectively; and the generation of fixation of avr allele, gen_fix_avr .The later output variable provides insights on the durability of resistance.
3.2. Sensitivity analyses.

To identify the most significant parameters on the different output variables, we conducteda PCA analysis, general linear models and dominance analyses.The PCA analysis was performed on the four output variables, with the first and secondaxes accounting for 49.5% and 33.3% of the total variability respectively (Figure 2). The mostinfluential parameters of interest on the output variables were the growth rate r , negatively cor-relatedwith the frequency of extinction of population freq_ext . The initial frequency of avr allelesin the population favr was positively correlated with the frequency of fixation of the avr allele
freq_fix_avr . The migration rate mig and the proportion of resistant hosts in the landscape propRwere negatively correlated with both the frequency of fixation of the Avr allele freq_fix_Avr , andthe generation of fixation of the avr allele gen_fix_avr . The qualitative input parameters (Ploidyand Cycle) were studied by representing each of the combinations of parameters of the randomsimulation design colored according to its ploidy and life cycle (Figure 2.b). This PCA highlights ahigher frequency of extinctions of population for diploids with host alternation. Moreover, sim-ulations without host alternation lead to higher frequencies of fixation of Avr , and longer timesto avr fixation. The ellipses also illustrate that haploid individuals with host alternation lead toless variable outcomes and to higher frequencies of fixation of avr .Dominance analyses highlight the high impact of r on freq_ext (Figure 3.a), which is confirmedby the analysis of Sobol indices (Annex A Figure S1). For freq_fix_avr and gen_fix_avr , the influ-ence of model parameters is more balanced with a lower contribution of the input parameterson gen_fix_avr (Figure 3.b, c). Overall, this analysis points out that freq_ext and freq_fix_avr arerelatively well explained while gen_fix_avr is more stochastic.
3.3. Patterns of virulence fixation.

Three different and exclusive equilibria are observed: the extinction of the pathogen popu-lation, the fixation of the avr allele and the fixation of the Avr allele. The frequencies of theseoutputs among replicates are represented depending on favr , r , propR and Cycle, for haploids anddiploids (Figure 4, Annex B Figure S5). For both ploidy levels, there is an increase in the frequencyof fixation of the avr allele with the increase in favr and r . This representation also highlights theexistence of a growth rate threshold r0 above which there is fixation of either the avr allele orthe Avr allele, and below which there is instead either fixation of the avr allele or extinction ofthe population. In other words, for a growth rate below r0 the pathogen population only survives
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Figure 2 – Principal component analysis on four output variables: freq_ext , freq_fix_Avr ,
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Figure 3 – Estimated general dominance of each predictor calculated from general linearmodels applied to three output variables of the random simulation design: the frequencyof extinction of population, the frequency of fixation of the avr allele among replicateswith surviving populations, and the generation of fixation of the avr allele. For each pre-dictor the general dominance was estimated from bootstrap average values with thecorresponding standard error for 100 bootstrap resamples.

when virulent individuals invade the R compartment, which corresponds to evolutionary rescue.Evolutionary rescue is particularly noticeable for the life cycle with host alternation because inthis case, r0 increases with propR .Above r0, we observe a gradient between the predominant fixation of the two alleles depend-ing of favr , with slightly different patterns influenced by propR , Cycle and r for diploids (Figure4). The influence of the life cycle on the fixation pattern is the most noticeable for low values of
propR and r . The frequency of fixation of the avr allele appears maximal for intermediate valuesof propR .
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To examine further the influence of propR on the probability of fixation of the avr allele,we plotted the evolution of the frequency of fixation of the avr allele among all replicates ofthe regular simulation design depending on propR and r for a fixed value of favr (Figure 5). Forhaploid individuals with host alternation, the frequency of fixation of the avr allele increases veryslightly with propR . For haploids without host alternation, a plateau is observed for intermediatevalues of propR . For diploids, the distribution is shifted with a peak of maximal proportion of avrfixation for a slightly lower value of propR .
3.4. Variations in the speed of virulence spread.

To analyse in more details the dynamics of virulence spread, we examine two time points,reflecting two measures of resistance durability: the invasion of the R compartment and theresistance breakdown event. Invasion and resistance breakdown were defined as the first yearwhen at least 1‰ and 1% of the resistant compartment were occupied by pathogens, respec-tively. Distributions of these two measures of resistance durability were plotted for three valuesof propR , with and without host alternation, only for the replicates for which we observed even-tually a fixation of the avr allele. To broaden the picture, we monitored also the evolutionarytrajectory of the avr allele from the invasion of the R compartment. The dynamics of invasion ismainly driven by the ploidy level and the dynamics of virulence spread is mainly driven by propR(Annex B Figure S3).For haploid individuals resistance breakdown occur very rapidly: during the first or secondyear of simulation, regardless of the life cycle (figure not shown). There is a small delay in thetime of the resistance breakdown with the increase in propR , especially without host alternation.For diploid individuals, we observed longer periods before invasion and resistance breakdownand higher kurtosis. Assuming a strong migration rate, there are few differences between life cy-cles on the time of invasion. Both life cycles display an increase in kurtosis that goes hand inhand with the increase in propR . Without host alternation, distributions of the year of resistancebreakdown and invasion time are similar, but with a one-year lag. Conversely, with host alter-nation, there are strong changes in the distributions that flatten out when considering the yearof resistance breakdown (Figure 6). Assuming a low migration rate (i.e. for telluric pathogens),distributions of the year of invasion and resistance breakdown remain unchanged with host al-ternation, while these distributions flatten out considerably without host alternation (Annex BFigure S4). Note that in bothmigration regimes, with host alternationwe observe a bimodal distri-bution of invasion year for propR = 0.9, with many invasion events in the first year of simulations.Early invasion events result from the initial redistribution of pathogen individuals following sex-ual reproduction on the alternate host: it is all the more likely that a virulent individual arriveson the R compartment the more predominant it is in the landscape.In a last step, the evolution of the frequency of the avr allele in the population was studiedalong with the evolution of the population sizes through generations, from the invasion (Figure7, see Annex B Figure S6 for haploids). For both life cycles, we observe an increase in the speedof fixation of the avr allele with the increase in propR . Themedian speed of fixation is higher withhost alternation for haploids, and highly dependant of propR without host alternation for diploids(Annex B Figure S3). We also observe differences in stochasticity levels depending on the ploidyand the life cycle. For haploids, the dynamics of virulence fixation is almost deterministic. Fordiploids, the dynamics aremore variable, with a highly stochastic behaviour for the life cycle withhost alternation. Moreover, the results of GLM, the dominance analysis and the comparison ofboth figures show that independently of propR and of the life cycle, the increase in the proportionof avr allele is faster for haploid than for diploid individuals.Focusing on diploid simulations, Figure 7.b highlights the existence of an evolutionary rescueeffect, for the life cycle with host alternation and a high value of propR . The median populationsize decreases through time and almost reached 0 before the 20th generation following theinvasion, when an increase in the proportion of avr alleles lead to an increase in the populationsize in the R compartment, followed by an increase in the population size of the S compartment,preventing the extinction of the population.
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Figure 4 – For diploid pathogens, representation of the frequencies of population extinc-tion or fixation of alleles Avr or avr for each combination of four parameters: favr , r , propRand cycle, with mig = 0.05. On each graph the black line corresponds to the calculatedvalue of the growth rate threshold r0 below which the population dies if it does not ex-pand to the R compartment. The surface of each plotted result is proportional to thenumber of simulations, among the 100 replicates, for which an equilibrium was reachedat the end of the 1100 generations simulated.
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Figure 5 – Evolution of the frequency of fixation of the avr allele depending on propR for
r varying between 1.1 and 2.0, with favr = 0.0005. Simulations were performed withoutandwith host alternation, for haploid and diploid individuals, with 100 replicates for eachcombination of parameters. The plotted results correspond to the local regression on thefrequency of fixation of the avr allele with the 95% confidence intervals associated witheach regression. The vertical dotted lines correspond to the bounds of simulated valuesof propR for this regular experimental design.

Interestingly, the speed of invasion is mainly driven by the ploidy, while the speed of fixationof the avr allele from the invasion is mainly driven by the landscape composition propR (AnnexB Figure S3).
4. Discussion

4.1. Deep impact of the ploidy on resistance durability.
Lof et al. (2017) demonstrated that the pre-existence of virulent alleles in the pathogen pop-ulation could greatly diminish resistance durability. In the present study, we varied the initialfrequency of avr alleles in the population but focused only on cases where this allele was al-ready present at the beginning of the simulation, which corresponds to standing genetic variation(Alexander et al., 2014; Barrett et al., 2008). Our results illustrated a strong positive relationshipbetween the initial frequency of virulent alleles and the probability of invasion and resistancebreakdown. For haploid individuals, we found no stochasticity in the time of occurrence of theinvasion, which occurred in the first year of the simulation for all replicates. Thus, for simulationswith haploid pathogens, almost as soon as one virulent individual invaded the resistant compart-ment, it was selected and the resistance breakdown occurred. This result explains why a lot of
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Figure 6 – Histograms of (a) the year of invasion and (b) the year of resistance breakdowndepending on the life cycle of the diploid pathogen, for three values of propR . Simulationswere performed with favr = 0.02, mig = 0.05, and r = 1.5. The plotted results wereobtained from the restricted simulation design, and correspond to all simulations amongthe 1 000 replicates per combinations for which we observed a fixation of the avr allelein the population.
models on haploid individuals focus on the probability of apparition of the first virulent individ-ual, in particular by mutation (Fabre et al., 2015; Papaïx et al., 2015). Our results for simulationswith haploid pathogens also highlighted low stochasticity in the increase in the proportion ofvirulent alleles in the population after the invasion. The results obtained with haploids were con-sistent with previous studies on resistance durability (Pacilly et al., 2018), which permitted us toconsider this model as the reference model, in order to study the influence of the diploid stateon the system dynamics. Diploid individuals, however, display strongly different evolutionary tra-jectories. In particular, we observed higher stochasticities in the evolution of the virulent allelefrequency, both before and after the resistance breakdown. This is mainly caused by the reces-sivity of the avr allele, according to the gene-for-genemodel. Before the invasion, the avr allele israre and mostly at the heterozygous state, hence leading to phenotypically avirulent individuals.Therefore, the avr allele is poorly selected, and variations in its frequency are mostly driven bygenetic drift, which induces high stochasticity among replicates. This effect should be strength-ened in species with small effective population sizes, such as in cyst nematodes (Gracianne et al.,2016; Montarry et al., 2019).As a consequence, we observed lower frequencies of avr fixation and higher extinction ratesfor diploid individuals, independently of the life cycle and the host deployment strategy. More-over, simulations with diploid pathogens resulted in lower speeds of fixation of the virulent allele,that is, higher resistance durability. Because of the heterozygous Avr/avr state, avr alleles are
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Figure 7 – For diploid pathogens, evolution of the population size in the R and S com-partments (on the left scale) and of the frequency or avr alleles in the S compartment(on the right scale) through generations. Simulations were performed without and withhost alternation, for two values of propR : (a) 0.1 and (b) 0.9, with favr = 0.02, mig = 0.05,and r = 1.5. For each simulation, generation 0 corresponds to the generation at whichthe invasion occurred. For each combination of parameters, simulations were performedon 1 000 replicates. The plotted results correspond to the median results (frequency of
avr alleles or population size) for all simulations among the 1 000 replicates for which weobserved a fixation of the avr allele in the population. Coloured intervals correspond tothe 95% confidence intervals.

not necessarily selected and their presence in the population does not inevitably lead to an im-mediate resistance breakdown, as observed for haploid individuals. Thus, besides its impact onthe stochasticity of the results, the vulnerability of the virulent allele at the heterozygous stateis also responsible for an increase in resistance durability. The impact of the landscape composi-tion on resistance durability also differs with the ploidy. Consistently with the work of Van denBosch and Gilligan (2003) and Pietravalle et al. (2006), for haploid individuals the increase in
propR leads to a strong increase in the speed of fixation of the avr allele, thus decreasing theresistance durability. In all cases except for haploids with host alternation, this result was accom-panied in the present study by a maximum frequency of avr fixation for intermediate values of
propR . This non-linear relationship is similar to the one highlighted for haploids by Pacilly et al.(2018), and is caused by two distinct mechanisms. At low proportions of resistant hosts in thelandscape, the selective pressure on the avr allele is sufficiently low to limit the increase in thevirulence in the pathogen population. At high values of propR , the opposition between selectionand drift is magnified: on one hand the selective pressure is high and imposes a rapid pace ofadaptation; on the other hand the small size of the S compartment increases genetic drift and
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the risk of extinction of the avr allele, provided that the R compartment is not invaded. Hence, inmost cases the virulent allele is lost if it does not spread quickly enough in the population: either
r > r0 which lead to a fixation of the avirulent Avr allele, either r < r0 and the population goes ex-tinct. Therefore, it would be possible to reduce the probability of invasion for diploid pathogenswith either very low or very high proportions of resistant hosts in the landscape. However theincrease in the proportion of resistant hosts is at the risk of weaker resistance durability: if theresistance breakdown occurs, it occurs more rapidly. For haploid pathogens with host alterna-tion, we observed an almost constant and slightly increasing frequency of fixation of avr withthe increase in propR . In this case and contrary to diploids with host alternation, the increase inthe proportion of avr alleles on the resistant host is not counteracted by the allele reshufflingduring the sexual reproduction event on the alternate host. For diploids, this allelic reshufflingcauses a rise in the number of phenotypically avirulent Avr/avr heterozygous individuals, whichwill die if the redistribution following the sexual reproduction lead them on the resistant host.This can result in a drastic drop in the avr allele proportion while for haploids, the proportion ofresistant hosts in the landscape does not increase the mortality rate of individuals carrying thevirulent allele, because these haploid individuals are necessarily surviving on the resistant host.
4.2. Life cycles impose different selection regimes and lead to contrasted evolutionary trajec-tories.

The two different life cycles considered in this study - with or without host alternation - canbe assimilated to hard and soft selection respectively (Christiansen, 1975; Wallace, 1975). Softselection is expected to protect polymorphims, and hence promote local adaptation, while hardselection resembles an all or nothing game, that is to adapt to the encountered environment orto perish. Here host alternation can lead to faster evolution of allelic frequencies, with higherspeeds of virulence fixation, especially for high values of propR . Without host alternation on thecontrary, the evolution of virulence alleles are buffered, which result in more constrained dynam-ics. The increase in gene flow resulting from host alternation limits natural selection and localadaptation (Lenormand, 2002), especially because of the dispersal of non-adapted individuals onresistant hosts. The life cycle with host alternation is thus characterized by higher probabilitiesof population extinctions, and strong dependency of the growth rate threshold r0 and the land-scape composition propR . For diploids with host alternation, contrary to the local adaptationon each compartment without host alternation, the forced allelic reshuffling on the alternatehost is responsible for the increase in the number of Avr/avr heterozygous individuals. Becausethe avr allele is recessive, a large proportion of these newly-produced individuals die from theredistribution on the resistant compartment following the sexual reproduction. Noticeably, thereduction in virulence fixation at high proportions of resistant host discussed above hence re-sults from two mechanisms in diploids: impediment of local adaptation without host alternationor increase in selective pressure with host alternation.For diploid individuals, we also observed contrasting patterns of variation in the evolutionof the avr allele frequency before and after the invasion, depending on the life cycle. The timeof invasion is more stochastic without host alternation, while the speed of increase in the avrallele frequency from the invasion is far more stochastic with host alternation. The first steprelies essentially on the probability of encounter between a virulent individual and a resistanthost. Without host alternation the encounter is restrained to the probability that a virulent indi-vidual migrates from the susceptible to the resistant host during the vegetative season. The hostalternation reinforces gene-flow, with the annual migration event that redistributes pathogen in-dividuals among all host plants, thereby favoring the encounter. Interestingly, in the case of hostalternation, early infections of resistant host (invasion) does not readily translate into populationestablishment on that host (disease outbreak leading to resistance breakdown). At the end ofthe vegetative season and initial invasion, the sexual reproduction on alternate host reshufflesallele frequencies, and thus breaks virulent (homozygous) individuals into mostly avirulent (het-erozygous) individuals. These up and down selection phases amplify the effect of genetic driftand lead to nearly chaotic evolutionary trajectories, resulting in a resistance durability all themore difficult to predict. Without host alternation, virulent individuals mate with each others
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and the homozygous state is sheltered, which results in a strict time lag between initial invasionand population outbreak. Overall our model is in accordance with the framework proposed byMcDonald and Linde (2002) which highlights the importance of gene flow as an impediment toresistance durability. Our analysis completes this framework, taking into account the variationin life cycles.The life cycle also plays a role in the frequency of observation of evolutionary rescue effects.Carolan et al. (2017) highlighted the impact of the growth rate of the pathogen on resistancedurability, by presenting the limitation of the growth rate as a mean to increase resistance dura-bility. In accordance with this study, we displayed a growth rate threshold r0 below which thepathogen population goes extinct if it does not invade the resistant compartment. Hence, for agrowth rate below r0, the genetic adaptation of the pathogen population is the only way for thepopulation to survive, which is a classical example of evolutionary rescue. In the current study,
r0, and thus the observation range of evolutionary rescue, is highly dependent on the life cycle.Without host alternation, the redistribution of individuals between compartments and the mor-tality rate is limited, which leads to a quite low r0, independently of the proportion of resistanthosts in the landscape. With host alternation, however, the redistribution event occurring eachyear from the alternate host to the S and R compartments leads to a strong dependence of r0on the landscape composition, with an increase in the observation range of evolutionary rescuewith the proportion of resistant hosts.

5. Conclusion
Short-term epidemiological control is predicted to be optimal for a landscape composed ofa high proportion of resistant hosts in a low degree of spatial aggregation (Holt and Chancellor,1999; Papaïx et al., 2014b, 2018; Skelsey et al., 2010). However other authors also highlightedthat optimal resistance durability could be obtained by reducing the proportion of resistant hosts(Fabre et al., 2012; Papaïx et al., 2018; Pietravalle et al., 2006; Pink and Puddephat, 1999), thusminimising the selection pressure on the pathogen population. In the current study, the minimi-sation of the probability of fixation of the virulent allele for a diploid pathogen population wasobtained either at very low or very high proportions of resistant hosts in the landscape. In caseswhere the population does not go extinct and the virulent allele increases in proportion, however,the proportion of resistant hosts in the landscape strongly impacts the speed of increase, andthus the resistance durability. Consistently with Van den Bosch and Gilligan (2003), we displayedthat for a diploid pathogen population with standing genetic variation, the increase in the propor-tion of resistant hosts decreases resistance durability. In particular, with host alternation boththe invasion and the fixation of the virulent allele in the population can occur very quickly. How-ever, in such a case, the evolutionary trajectory of the virulent allele is all themore stochastic anddurability is thus difficult to predict. Without host alternation (i.e. for the majority of pathogenspecies) early detection and population control measures would increase resistance durability.However such prophylactic measures are made all the more difficult by the strong unpredictabil-ity of the invasion date. For the few species with host alternation, a massive intervention coulddurably control a population of pathogens, such as the eradication of the alternate host speciesBerberis vulgaris for wheat stem rust control (Peterson, 2018). Overall, the high stochasticity ofevolutionary trajectory impedes accurate forecasts of resistance durability for diploid organisms.

6. Perspectives
In the current study, we considered a single qualitative resistance gene. The combination ofseveral resistance genes is often studied and deployed to increase resistance durability (Djian-Caporalino et al., 2014; Djidjou-Demasse et al., 2017; Mundt, 2014; Rimbaud et al., 2018b).These combinations of resistances can occur at the plant scale with multiple resistance genes(pyramiding) inside one host genotype, or at the landscape scale with multiple resistance de-ployments in time or space (Mundt, 2002; Van den Bosch and Gilligan, 2003). Some resistantcultivars progressively introduced in the landscape are composed of different combinations ofqualitative resistance genes, resulting in an evolving selective pressure through time (Goyeau
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and Lannou, 2011). Building on our results, we can extrapolate on the impact of the ploidy andthe life cycle on resistance durability for these different strategies of deployment. Hence, rotat-ing cultures with different resistances would amount to force gene flow, favoring the encounterof pathogen individuals with new hosts without an actual migration. This would be comparableto the hard selection regime observed with host alternation, and we expect similar results. Withthe pyramiding of several resistance genes in same host, meanwhile, we would expect a highershort term efficiency than with a single resistance, but with a higher risk of rapid resistancebreakdown by multi-virulent individuals due to the inducing of a strong selective pressure. Thismay especially be true for pathogens with host alternation because of the increased probabilityof mating between pathogens with different virulent profiles when they meet on the alternatehost.
7. Data accessibility

Python simulation code and results, as well as R script for result analyses are available onZenodo repository: (DOI: 10.5281/zenodo.4892587).
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Annex A: Sobol indices
Sensitivity analyses were performedwith the calculation of Sobol indices (first-order, second-order and total-order) with the R package "sensitivity" (Iooss et al., 2021). Sobol indices were cal-culated to study the importance of each of the six parameters of interest on the output variable

freq_ext only (figure S1). These calculations were based on the results issued from the randomsimulation design.For the four remaining outputs (freq_fix , gen_fix , the year of occurrence of the invasion, andthe time elapsed between the invasion and the fixation of the avr allele), only the simulationsnot leading to extinction were retained for the sensitivity analyses. Thus, the input combinationsof parameters retained depended strongly on the results of the output variable freq_ext , theindependence hypothesis of the input parameters were then not verified and Sobol indices couldnot be calculated for these four remaining output variables. Further analyses would be necessaryto disentangle the effect of each parameter of interest on these remaining output variables.

Figure S1 – Sobol indices to evaluate the influence of six variables of interest on thefrequency of extinctions among simulations. Main effect correspond to first-order Sobolindices, and total effect correspond to total-order Sobol indices.
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Annex B: Supplementary figures

Figure S2 – Example of the simulated populations demographic (on the left) and virulentallele frequency (on the right) dynamics through time on S and R compartments. Themodel was run for four replicates with diploid individuals and host alternation, propR =
0.9, r = 1.5, favr = 0.025, and mig = 0.05. Each color represents a distinct replicate.
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Figure S3 – Estimated general dominance of each predictor calculated from general linearmodels applied to two output variables of the restricted simulation design: the year ofinvasion and the time elapsed between the invasion and the fixation of the avr allele.For each predictor the general dominance was estimated from bootstrap average valueswith the corresponding standard error for 100 bootstrap resamples.
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Figure S4 – Histograms of (a) the year of invasion and (b) the year of resistance break-down depending on the life cycle of the diploid pathogen, for three values of propR .Simulations were performed with favr = 0.02, mig = 0.001, and r = 1.5. The plottedresults were obtained from the restricted simulation design, and correspond to all sim-ulations among the 1 000 replicates per combinations for which at least 80% of the Rcompartment is occupied at the end of the simulation.
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