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Abstract
Dating the tree of life is a task far more complicated than only determining the evolu-tionary relationships between species. It is therefore of interest to develop approachesapt to deal with undated phylogenetic trees. The main result of this work is a methodto compute probabilities of undated phylogenetic trees under Markovian diversificationmodels by constraining some of the divergence times to belong to given time intervalsand by allowing diversification shifts on certain clades. If the diversification models con-sidered are lineage-homogeneous, the time complexity of this computation is quadraticwith the number of species of the phylogenetic tree and linear with the number of tem-poral constraints. The interest of this computation method is illustrated with three appli-cations, namely, to compute the distribution of the divergence times of a tree topologywith temporal constraints, to directly sample the divergence times of a tree topology,and to test for a diversification shift at a given clade.
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Introduction
Estimating divergence times (i.e., the times of the speciation events corresponding to the in-ternal nodes of a phylogenetic tree) is an essential and difficult stage of phylogenetic inference(Donoghue and Yang, 2016; Kishino et al., 2001; O’Reilly et al., 2015; Rannala and Yang, 1996,2007). In order to perform this estimation, current approaches use stochastic models for com-bining different types of information: molecular and/or morphological data, fossil calibrations,evolutionary assumptions etc (Gavryushkina et al., 2017; Heath, 2012; Ronquist et al., 2012;Thorne and Kishino, 2005). An important point here is that dating speciation events is far morecomplicated and requires stronger assumptions on the evolutionary process than just determin-ing the evolutionary relationships between species, not to mention the uncertainty with whichdivergence times can be estimated. It is therefore preferable to use, as much as possible, meth-ods that do not require the exact knowledge of the divergence times. This is in particular truefor studying questions related to the diversification process since the diversification process anddivergence times are intricately linked. Diversification models are used in order to provide “prior”probability distributions of divergence times (i.e., which does not take into account informationabout genotype or phenotype of species, dos Reis, 2016; Heath, 2012; Heled and Drummond,2015; Ho and Phillips, 2009; Yang, 2008). Conversely, estimating parameters of diversificationmodels requires temporal information about phylogenies.We consider here Markovian diversification models (i.e., with independence and memory-less properties) among which the birth-death-sampling model is arguably the simplest realistic
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model since it includes three important features shaping phylogenetic trees (Yang and Rannala,1997, 2006). Namely, it models cladogenesis and extinction of species by a birth-death pro-cess and takes account of the incompleteness of data by assuming a uniform sampling of extanttaxa. The birth-death-sampling model has been further studied and is currently used for phy-logenetic inference (dos Reis, 2016; Heled and Drummond, 2015; Stadler, 2009; Stadler andYang, 2013). Since assuming constant diversification rates along time is sometimes unrealistic,the birth-death-sampling model has been extended in various ways. The generalized birth-deathprocess proposed in Kendall (1948) enables us to consider time-varying rates. In the model pre-sented in Stadler (2011), the diversification rates are piecewise-constant and the model sup-ports the sampling of lineages not only at the present time but also at given past times in orderto model mass extinction events. We combined the features of these two models to devise thesampled-generalized-birth-deathmodelwhich allows both times-varying rates and past and extantsamplings (Appendix B). The main goal of this work is to present methods to compute probabil-ities of undated phylogenies under certain assumptions about divergence times and about thediversification process under general models. Though this study focuses on methodological andcomputational aspects, three applications illustrating its practical interest are provided.
The first result is a method to compute the probability, under a Markovian diversificationmodel, of a tree topology in which the divergence times are not exactly known but can be “con-strained” to belong to given time intervals. This computation is performed by splitting the treetopology into small parts involving the times of the temporal constraints, referred to as patterns,and by combining their probabilities in order to get the probability of the whole tree topology. Ifthe diversification model is lineage-homogeneous, the total time complexity of this computationis quadratic with the size of the phylogeny (i.e., its total number of nodes) and linear with thetotal number of constraints. Its memory space complexity is quadratic with the size of the phy-logeny. In practice, it can deal with phylogenetic trees with hundreds of tips on standard desktopcomputers.
This computation can be used to obtain the divergence time distributions of a given undatedphylogeny with temporal constraints, which can be applied to various questions. First, it can beused for dating phylogenetic trees from their topology only, like the method implemented in thefunction compute.brlen of the R-package APE (Grafen, 1989; Paradis et al., 2004). It also enablesus to visualize the effects of the model parameters on the prior divergence times distributions,to investigate consequences of evolutionary assumptions etc. Last, it can provide prior distribu-tions in phylogenetic inference frameworks. Note that the ability to take into account temporalconstraints on the divergence times is particularly interesting in this context since in the calibra-tion process, fossil ages are generally used for bracketing some of the divergence times (Marshall,2008). The computation of the divergence time distribution is illustrated with a contrived exam-ple in order to show the influence of the temporal constraints and on a real phylogenetic treein order to show the influence of the parameters of a simple birth-death-sampling model on thedivergence time distributions. A previous method for computing divergence time distributionsunder the birth-death model (Gernhard, 2008) is briefly recalled in Section 6.1. By reviewing thiswork, Amaury Lambert proposed an alternative method to compute the divergence time distri-butionwith temporal constraints, which has the same computational complexity as the approachpresented here. This alternative method is presented in Section 6.2. The methods presented inSections 6.1 and 6.2 both require that the divergence times are independent and identically dis-tributed under the diversification model considered, an assumption which is not necessary withthe approach presented here.
The computation of the probability of a tree topology under a given model allows us to sam-ple all its divergence times under this model. In particular, this sampling procedure can easily beintegrated into phylogenetic inference software (Drummond et al., 2012; Fredrik Ronquist et al.,2012), e.g., for proposing accurate MCMC moves.
A second result shows how to calculate the probability of a tree topology in which a givenclade is assumed to diversify following a diversification model different from that of the rest ofthe phylogeny. A natural application of this computation is to test diversification shift in undated
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phylogenies. It is used to define a likelihood ratio test for diversification shift which is comparedwith three previous approaches studied in Wertheim and Sanderson (2010).Last, the approach presented here can be extended in order to take into account fossils. InDidier and Laurin (2020), we started to work in this direction by determining divergence timedistributions from tree topologies and fossil ages under the fossilized-birth-death model in orderto obtain better node-calibrations for phylogenetic inference.C-source code of the software performing the computation of divergence time distributionsand their sampling under (piecewise-constant-)birth-death-sampling model and the shift detec-tion test is available at https://github.com/gilles-didier/DateBDS.The rest of the paper is organized as follows. Diversificationmodels and birth-death-samplingmodels are formally introduced in Section 1.1. Section 2 presents definitions and some resultsabout tree topologies. The standard and special patterns, i.e., the subparts of the diversifica-tion process from which are computed our probabilities, are introduced in Section 3. Sections 4and 5 describe the computation of the probabilities of tree topologies with temporal constraintsand diversification shifts, and show that this computation is quadratic with the size of the treetopology. Divergence time distributions obtained on two examples are displayed and discussedin Section 6. The method for directly sampling the divergence times is described in Section 7.Last, Section 8 presents a likelihood ratio test derived from the computation devised here, fordetermining if a diversification shift occurred in a tree topology. Its accuracy is assessed andcompared with three previous tests of diversification shift. Appendices start with a table of no-tations, followed with the presentation of the sampled-generalized-birth-death model then withthe proofs of theorems.
1. Diversification models

The methods presented below apply to general diversification models. Namely, a diversifica-tion model Θ provides the parameters of a stochastic process which starts with a single lineageat time s and ends at time e, where e is usually the present time (both s and e are parametersof Θ). At any time t between s and e, two types of event may occur on a lineage alive at t : aspeciation event, which gives rise to a new lineage and an extinction event which basically killsthe lineage. We also assume that the lineages alive at the end time e are sampled in a certainway (Fig. 1). A lineage alive at the end time which is not sampled has to be interpreted as a taxawhich is not included in the study, for instance because it is unknown.An important point is to distinguish between the part of the process that actually happened,which will be referred to as the complete process (Fig. 1-Left) and the part that can be observedfrom the available information at the present time (i.e., from the sampled extant taxa), which willbe referred to as the reconstructed process (Fig. 1-Right). More formally, for all times t ∈ [s, e], alineage alive at time t is observable if itself or at least one of its descendants are both alive andsampled at the end time e. We assume that the reconstructed process, which encompasses allthe observable parts of the diversification, is the only information available.Let Θ be a diversification model starting at s and ending at e, T be a tree topology and t and
t ′ be two times such that s ≤ t ≤ t ′ ≤ e. We assume that we are able to compute under Θ:

• TΘ(T ), the probability that the reconstructed tree topology is T conditionally on thenumber of tips of T ,
• QΘ(t, t ′, N), the probability that a lineage alive at time t has N descendants at time t ′ if

t ′ < e and N descendants sampled at time e otherwise,
• OΘ(t), the probability that a lineage alive at time t has at least a sampled descendant atthe end time e.

For a diversification model starting at s and ending at e and a time t ∈ [s, e], we put Θ[t] forthe model Θ restricted to the time interval [t, e]. Namely, Θ[t] models the evolution of a lineagealive at t until e under Θ.A diversification model Θ is Markovian if conditionally of being alive at a time t between sand e, the evolution of a lineage from t is independent of its evolution before t and of that of the
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Figure 1 – Left: the whole diversification process; Center: the part of the process thatcan be reconstructed is represented in plain – the dotted parts are lost (sampled extantspecies are those with ‘X’); Right: the resulting phylogenetic tree.

other lineages. A diversification model Θ is lineage-homogeneous if conditionally at occurring ata time t , any event of the process occurs on all the lineages alive at t with equal probabilities.

1.1. Birth-death-sampling models.
Under a birth-death-sampling model, the dynamics of speciation and extinction of speciesfollows a birth-death process with constant rates λ and µ both through time and lineage, startingat origin time s and ending at time e which is generally the present time (Nee et al., 1994). Fol-lowing Yang and Rannala (1997), each extant species is assumed to be independently sampled atthe end time e with probability ρ. The whole model will be referred to as the birth-death-samplingmodel and has thus five parameters:
• s : the origin time of the diversification process,
• e: the end/present time,
• λ: the speciation rate,
• µ: the extinction rate and
• ρ: the probability for an ending/extant taxa to be sampled.

Let us start by recalling some already derived probabilities of interest. By assuming that thediversification follows a simple birth-death process (i.e., with ρ = 1) with speciation rate λ andextinction rate µ, the probability pN(t) that a single lineage at time 0 has exactly N descendantsat time t was given in Nee et al. (1994). We have that

p0(t) =
µ
(
1− e−(λ−µ)t

)

λ− µe−(λ−µ)t and for all N > 0,

pN(t) = (λ− µ)2e−(λ−µ)t

(
λ(1− e−(λ−µ)t)

)N−1

(
λ− µe−(λ−µ)t)N+1 .

If one assumes that the diversification follows a birth-death-sampling processwith speciationrate λ and extinction rate µ, the probability p•N(t) that a single lineage at time 0 has exactly Ndescendants sampled with probability ρ at time t was given in Yang and Rannala (1997).We have
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that
p•0(t) =

µ(1− e−(λ−µ)t) + (1− ρ)
(
λe−(λ−µ)t − µ

)

ρλ+ (λ(1− ρ)− µ)e−(λ−µ)t and for all N > 0,

p•N(t) = ρN(λ− µ)2e−(λ−µ)t

(
λ(1− e−(λ−µ)t)

)N−1

(
ρλ+ (λ(1− ρ)− µ)e−(λ−µ)t)N+1 .

Let Θ = (s, e,λ,µ, ρ) be a birth-death-sampling model. For all pair of times t and t ′ with
s ≤ t ≤ t ′ and all number N , we define QΘ(t, t ′, N) as the probability under the model Θ that alineage alive at time t has N descendants alive at time t ′ if t ′ < e and N descendants alive andsampled if t ′ = e. We have that

QΘ(t, t ′, 0) =





µ

(
1−e−(λ−µ)(t′−t)

)

λ−µe−(λ−µ)(t′−t) if t ′ < e,
ρµ+(λ(1−ρ)−µ)e−(λ−µ)(e−t)

ρλ+(λ(1−ρ)−µ)e−(λ−µ)(e−t) if t ′ = e and for all N > 0,

QΘ(t, t ′, N) =





(λ− µ)2e−(λ−µ)(t′−t)

(
λ(1−e−(λ−µ)(t′−t))

)N−1

(λ−µe−(λ−µ)(t′−t))N+1 if t ′ < e,
ρN(λ− µ)2e−(λ−µ)(e−t) (λ(1−e−(λ−µ)(e−t)))N−1

(ρλ+(λ(1−ρ)−µ)e−(λ−µ)(e−t))N+1 if t ′ = e.
The probability OΘ(t) for a lineage living at time t in the complete diversification process (asin Figure 1-Left) to be observable (i.e., to be part of the reconstructed process) is the comple-mentary probability of having no descendant sampled at time e. We have that

OΘ(t) = 1−QΘ(0, t, e) = ρ(λ− µ)
ρλ+ (λ(1− ρ)− µ)e−(λ−µ)(e−t) .

By construction, birth-death-samplingmodels are bothMarkovian and lineage-homogeneous.
2. Tree topologies

Tree topologies arising from diversification processes are binary (since a speciation eventgives rise to a single new lineage under the models considered here) and rooted thus so are allthe tree topologies considered here. Moreover, all the tree topologies considered below will belabeled, which means their tips, and consequently all their nodes, are unambiguously identified.From now on, “tree topology” has to be understood as “labeled-rooted-binary tree topology”.Since the context will avoid any confusion, we still write T for the set of nodes of any treetopology T . For all tree topologies T , we put LT for the set of tips of T . For all nodes n of T , wenote Tn the subtree of T rooted at n.For all sets S , |S| denotes the cardinality of S . In particular, |T | denotes the size of the treetopology T (i.e., its total number of nodes, internal or tips) and |LT | its number of tips.
2.1. Probability.

Let us define TΘ(T ) as the probability of a reconstructed tree topology T given its numberof tips under a lineage-homogeneous diversification process.
Theorem 1 (Harding, 1971). Given its number of tips, the reconstructed tree topology T of a real-ization of a lineage-homogeneous diversification process has probability T(T ) = 1 if |T | = 1, i.e., Tis a single lineage. Otherwise, by putting a and b for the two direct descendants of the root of T , theprobability of the tree topology T is

T(T ) = 2|LTa |!|LTb |!
(|LT | − 1)|LT |!

T(Ta)T(Tb).
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ΩT = {∅, {a}, {a, b}, {a, c}, {a, c, d}, {a, b, c}, {a, b, c, d}}

Ω•T,c = {{a, c}, {a, c, d}, {a, b, c}, {a, b, c, d}}

Ω◦T,c = {∅, {a}, {a, b}}

Ω×T,c = {{a}, {a, b}}

a

b

c
d

e

ΓT,{a,c}

a

b

c
d

e

f

g

ΓT,{a,b,c}

Figure 2 – A tree T (top-left), examples of sets of start-sets of T of various types (top-right) and the start-trees of T associated to the start-sets {a, c} and {a, b, c} (bottom).

Assumptions of Harding (1971) are slightly different from those of Theorem 1 but its argu-ments still hold. The probability provided in Didier, Fau, et al. (2017, Supp. Mat., Appendix 2) isactually the same as that just above though it was derived in a different way fromHarding (1971)and expressed in a slightly different form (see Didier and Laurin, 2020, Appendix 1).Theorem 1 implies in particular that T(T ) can be computed in linear time through a post-order traversal of the tree topology T .
2.2. Start-sets.

A start-set of a tree topology T is a possibly empty subset A of internal nodes of T which issuch that if an internal node of T belongs to A then so do all its ancestors. Remark that, basically,the empty set ∅ is start-set of any tree topology and that if A and A′ are two start-sets of T thenboth A ∪ A′ and A ∩ A′ are start-sets of T .Being given a tree topology T and a non-empty start-set A, we define the start-tree ΓT,A asthe subtree topology of T made of all nodes in A and their direct descendants. By convention,
ΓT,∅, the start-tree associated to the empty start-set, is the subtree topology made only of theroot of T .For all tree topologies T , we define

• ΩT as the set of all start-sets of T , and for all internal nodes n,
• Ω•T,n as the set of all start-sets A of T such that n ∈ A,
• Ω◦T,n as the set of all start-sets A of T such that n /∈ A, and
• Ω×T,n as the set of all start-sets A of T such that n is a tip of ΓT,A.

Figure 2 displays examples of start-trees and of sets of start-sets of the types above.
3. Patterns

In this section, we shall consider diversification processes starting at origin time s and endingat time e following a birth-death-sampling model Θ = (s, e,λ,µ, ρ). A pattern is a part of theobserved diversification process starting from a single lineage at a given time and ending witha certain number of lineages at another given time, these ending lineages being either observ-able or special, where “special” means “only known to be alive at the end time (and selected forsome reason in the dataset)”. It consists of a 3-tuple (t, t ′, T ) where t and t ′ are the start andend times of the pattern and T is the resulting tree topology. We shall consider two types ofpatterns: standard and special patterns. Standard patterns ends with only observable lineages.All the ending lineages of a special pattern are observable except one which is special (Fig. 3).Standard and special patterns are very similar to patterns defined in Didier, Fau, et al. (2017) forthe fossilized-birth-death process.
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Figure 3 – The two types of patterns used to compute probability distributions.
3.1. Standard patterns.
Definition 1. A standard pattern (t, t ′, T ) starts with a single lineage at time t and ends with a treetopology T and |LT | observable lineages at time t ′ (Fig. 3-left).

Let us compute the probability XΘ(t, t ′, N) that a single lineage at time t ∈ [s, e) has Ndescendants observable at time t ′ ∈ (t, e] under the diversification model Θ. This probability isthe sum over all numbers j ≥ 0, of the probability that the lineage at t has j + N descendantsat t ′ in the whole process, which is equal to QΘ(t, t ′, j + N), among which exactly N ones areobservable (i.e., (j+N
N
)
OΘ(t ′)N (1−OΘ(t ′))j ). Under the diversification model Θ, we thus have

(1) XΘ(t, t ′, N) =
∞∑

j=0
QΘ(t, t ′, j + N)

(
j + N

N

)
OΘ(t ′)N (1−OΘ(t ′)

)j .

If Θ is the birth-death-sampling model (s, e,λ,µ, ρ), Equation (1) becomes
XΘ(t, t ′, N) =

(λ− µ)2e−(λ−µ)(t′−t)
(
λ(1− e−(λ−µ)(t′−t))

)N−1
OΘ(t ′)N

(
λOΘ(t ′) + (λ(1−OΘ(t ′))− µ)e−(λ−µ)(t′−t))N+1 .

The probability of the standard pattern (t, t ′, T ) is the probability of the tree topology Tconditioned on its number of tips, which is TΘ(T ) multiplied by the probability of observing thisnumber of tips in a standard pattern, which is that of getting |LT | observable lineages at t ′ froma single lineage at t , i.e., XΘ(t, t ′, |LT |).
Claim 1. Under the diversification model Θ, the probability of the standard pattern (t, t ′, T ) with
s ≤ t < t ′ ≤ e is

TΘ(T )XΘ(t, t ′, |LT |),
where TΘ = T if Θ is lineage-homogeneous.
3.2. Special patterns.
Definition 2. A special pattern (t, t ′, T ) starts with a single lineage at time t ∈ [s, e) and ends withthe tree topology T at t ′ ∈ (t, e], thuswith |LT | descendants at t ′ amongwhich |LT |−1 are observableand one is a distinguished “special” lineage of fate a priori unknown after t ′ (Fig. 3-right).

Let us now compute the probability YΘ(t, t ′, N + 1) that a single lineage at time t ∈ [s, e) hasone special descendant and N descendants observable from e at time t ′ ∈ (t, e]. This probabilityis the sum over all numbers j , of the probability that the lineage at t has j +N+1 descendants at t ′in the whole process, which is equal to QΘ(t, t ′, j +N +1), among which the special one is picked,exactly n ones are observable and j ones are not observable, which leads to (j + N + 1)
(j+N

N
)

=
(N + 1)

(j+N+1
N+1

) possibilities. Under the diversification model Θ, we have that
(2) YΘ(t, t ′, N + 1) =

∞∑

j=0
QΘ(t, t ′, j + N + 1)(N + 1)

(
j + N + 1

N + 1

)
OΘ(t ′)N (1−OΘ(t ′)

)j .
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If Θ is the birth-death-sampling model (s, e,λ,µ, ρ), Equation (2) gives us that
YΘ(t, t ′, N + 1) =

(N + 1)(λ− µ)2e−(λ−µ)(t′−t)
(
λ(1− e−(λ−µ)(t′−t))OΘ(t ′)

)N

(
λOΘ(t ′) + (λ(1−OΘ(t ′))− µ)e−(λ−µ)(t′−t))N+2 .

The probability of the special pattern (t, t ′, T ) is the probability of the tree topology T con-ditioned on its number of tips, which is TΘ(T ) multiplied by the probability of observing thisending configuration in a special pattern, i.e., YΘ(t, t ′, |LT |).
Claim 2. Under the diversification model Θ, the probability of the special pattern (t, t ′, T ) with
s ≤ t < t ′ ≤ e is

TΘ(T )YΘ(t, t ′, |LT |),where TΘ = T if Θ is lineage-homogeneous.
4. Probability densities of topologies with temporal constraints and shifts

The probability PΘ(T ) of observing a tree topology T under a diversification model Θ withorigin and end times s and e is that of the corresponding standard pattern, i.e., we have that
PΘ(T ) = TΘ(T )XΘ(s, e, |LT |).

We shall see in this section how to compute the probability of a tree topology under the con-straint that some of its divergence times are known to be anterior or posterior to given times.
4.1. Temporal constraints.

Let us put τn for the (random variable associated to the) divergence time corresponding tothe node n of T . Being given internal nodes n1, . . . ,n`, n′1, . . . ,n′`′ of T and times u1, . . . , u`, u′1, . . . ,
u′`′ between s and e (both not included), we aim to compute the joint probability of T and ofobserving τn1 < u1, . . . , τn` < u`, τn′1 > u′1, . . . , τn′

`′
> u′`′ under the model Θ, i.e.,

PΘ(T ,U ,L) = PΘ(T , τn1<u1, ... , τn`<u`, τn′1>u′1, ... , τn′
`′
>u′`′).

The temporal constraints induced by the tree topology, i.e., that we have necessarily τn ≤ τmif n is an ancestor of m are implicitly assumed granted in the probability above. The constraints
τn1 ≤ u1, . . . , τn` ≤ u` will be referred to as upper temporal constraints and summarized as theset of pairs “node-time” U = {(n1, u1), ... , (n`, u`)}, and the constraints τn′1 ≥ u′1, . . . , τn′

`′
≥

u′`′ , will be referred to as lower temporal constraints and summarized as the set of pairs L =
{(n′1, u′1), ... , (n′`′ , u′`′)}. We assume that the temporal constraints are consistent with another(otherwise they would basically lead to a null probability). For all subsets of internal nodes S of
T , we write U[S] (resp. L[S]) for the set of upper (resp. lower) temporal constraints of U (resp.of L) involving nodes in S , namely U[S] = {(nj , uj) | (nj , uj) ∈ U and nj ∈ S} (resp. L[S] =
{(n′j , u′j) | (n′j , u′j) ∈ L and n′j ∈ S}). For all times t , we define U=t (resp. L=t ) as the set oftemporal constraints of U (resp. L) involving t , namely, U=t = {(nj , uj) | (nj , uj) ∈ U and uj = t}(resp. L=t = {(n′j , u′j) | (n′j , u′j) ∈ L and u′j = t}). In the same way, we define U>t and L>t as thesubsets of temporal constraints of U and L respectively, which involved times strictly posteriorto t , i.e., U>t = {(nj , uj) | (nj , uj) ∈ U and uj > t} and L>t = {(n′j , u′j) | (n′j , u′j) ∈ L and u′j > t}.
Theorem 2. Let T be a tree topology, Θ be a Markovian diversification model from origin time s toend time e and U = {(n1, u1), ... , (n`, u`)} and L = {(n′1, u′1), ... , (n′`′ , u′`′)} be two sets of upper andlower temporal constraints respectively. Let o be the oldest time involved in a temporal constraint orthe end time if there are none, namely,

o = min{e, min{t | ∃n ∈ T such that (n, t) ∈ U}, min{t | ∃n ∈ T such that (n, t) ∈ L}}.
Let us define the set S of internal node subsets of T as the intersection of

{ ⋂
(n,o)∈U=o Ω•T,n if U=o 6= ∅,

ΩT otherwise, and
{ ⋂

(n,o)∈L=o Ω◦T,n if L=o 6= ∅,
ΩT otherwise.

Gilles Didier 9

Peer Community Journal, Vol. 1 (2021), article e65 https://doi.org/10.24072/pcjournal.73

https://doi.org/10.24072/pcjournal.73


a

b

c

d

e

f

g

h

i

j

k

s et

=
∑



a

b

c
d

e

f
g

h
i
j
k

s et

=
{h, i, j, k}

{f}
{g}

s t

×
et
f×

et

g×
et

h
i
j
k

a

b

c
d

e

f
g

h
i
j
k

s et

= {h, i}

{j, k}

{f}
{g}

s t

×
et
f×

et

g×
et

h
i×

et

j
k

a

b

c
d

e

f
g

h
i
j
k

s et

= {h, i}

{f}
{g}

{j}
{k}

s t

×
et
f×

et

g×
et

h
i× et

j×
et
k

a

b

c
d

e

f
g

h
i
j
k

s et

=
{j, k}

{f}
{g}
{h}
{i}

s t

×
et
f×

et

g×
et
h×

et
i×

et

j
k

a

b

c
d

e

f
g

h
i
j
k

s et

=
{f}
{g}
{h}
{i}
{j}
{k}

s t

×
et
f×

et

g×
et
h×

et
i×

et
j×

et
k

Figure 4 – Schematic of the computation of the probability PΘ(T , {(b, t)}, ∅), i.e., thatthe divergence time associated with node b is strictly anterior to t . Under the notationsof Theorem 2, we have that S = Ω•T,b. Nothing is known about divergence times in thegray part of the tree at the left. The only information about divergence times in blackparts of all trees is their relative position with regard to t .
The joint probability PΘ(T ,U ,L) of observing the tree topology T with the temporal constraints

U and L under Θ verifies
PΘ(T ,U ,L) =





1
|LT |!

∑

A∈S
|LΓT,A |!TΘ(ΓT,A)XΘ(s, o, |LΓT,A |)

∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!
OΘ(o) if o < e,

TΘ(T )XΘ(s, e, |LT |) otherwise,
where Θ[o] is the model Θ restricted to the time interval [o, e].
Proof. Appendix C.1. �

The general idea of the computation presented in Theorem 2 is first to consider the oldesttime involved in a temporal constraint (referred to as o in Theorem 2 and which is t in Figure 4),then to consider the part of the diversification process which occurred before the oldest timeand the part(s) which occurred after the oldest time.An issue here is that these parts are a priori unknown since, by construction, they are deter-mined by the relative positions of the divergence times with regard to the oldest time. If someof the divergence times are directly or indirectly (from their ancestors or their descendants) con-strained, thus known, to be posterior or anterior to the oldest time, some of them may be notandwe have to consider all the possibilities consistent with the temporal constraints as displayedin the left-hand side of the second column of Figure 4. Remark that since all these possibilitiesare mutually exclusive, their respective probabilities can be summed in order to obtained theprobability of the initial tree topology with the given temporal constraints.In order to compute the probability of each possibility (i.e., in which all the relative posi-tions of the divergence with regard to the oldest time are fixed), we use the Markov propertyto write the probability of the tree topology with the temporal constraints as the product of theprobability of the part of the diversification which happened before the oldest time (which byconstruction contains no temporal constraint and therefore is a standard pattern) to the prob-abilities of the parts which happened after the oldest time which is a set of independent treetopologies starting from the oldest time with possibly some time constraints, which all involvedtimes posterior to the oldest time. This part of the computation is illustrated by the five lines ofColumn 2 in Figure 4, in which the right-hand sides start with standard patterns correspondingto the diversification anterior to the oldest time which are followed by a certain number of treetopologies starting from the oldest time (in this case without time constraints since the example
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Figure 5 – A tree topology with a shift at time t for the clade {e, j, k}.
contains only one constraint) corresponding to the diversification posterior to the oldest time.For all the possibilities, Claim 1 allows us to directly compute the part of diversification anteriorto the oldest time.Theorem 2 states that PΘ(T ,U ,L) can be either calculated directly (if o = e) or expressed asa sum-product of probabilities of tree topologies with temporal constraints under birth-death-sampling models whose starting time is strictly posterior to the starting time of Θ, on whichTheorem 2 can be applied and so on. Since each time that Theorem 2 is applied, we get treetopologies under models and temporal constraints in which the starting time has been discarded,we eventually end up in the case where the oldest time is the end time of the diversification forwhich the probability can be calculated directly. To summarize, the probability PΘ(T ,U ,L) canbe computed by recursively applying Theorem 2.
4.2. Shifts.

We shall see how to compute the probability of a tree topology T under a diversificationmodel Θ starting at s and ending at e by assuming that one of its clades follows another diversi-fication model Θ̃ from a given time t ∈ [s, e] to the end time e. Note that this implicitly assumesthat the lineage originating this particular clade was alive at t (Fig. 5).
Theorem 3. Let T be a tree topology, s ≤ t ≤ e be three times, Θ and Θ̃ be two Markovian diversi-fication models from origin times s and t respectively and both to end time e, and m be a node of T .By puttingΘ[t] for the modelΘ restricted to [t, e], the probability S

Θ,Θ̃(T , m, t) of observing the tree
topology T assuming that evolution follows Θ on T except on Tm on which it follows Θ̃ from time tverifies
S
Θ,Θ̃(T , m, t) = 1

|LT |!
∑

A∈Ω×T,m

(|LΓT,A |−1)!TΘ(ΓT,A)YΘ(s, t, |LΓT,A |)PΘ̃
(Tm)|LTm |!

∏

n∈LΓT,A\{m}

PΘ[t](Tn)|LTn |!
OΘ(t) .

Proof. Appendix C.2. �
The idea of the proof is essentially the same as that of Theorem 2.Let us remark that the trees starting from t are standard patterns. It follows that S

Θ,Θ̃(T , m, t)can be equivalently written as
S
Θ,Θ̃(T , m, t) = 1

|LT |!
∑

A∈Ω×T,m

(|LΓT,A | − 1)!TΘ(ΓT,A)YΘ(s, t, |LΓT,A |)TΘ(Tm)X
Θ̃

(t, e, |LTm |)|LTm |!

∏

n∈LΓT,A\{m}

TΘ(Tn)XΘ[t](t, e, |LTn |)|LTn |!
OΘ(t) .

5. A quadratic computation
Since the number of start-sets may be exponential with the size of the tree, notably forbalanced trees, Equations of Theorems 2 and 3 do not directly provide a polynomial algorithm forcomputing the probabilities considered in these theorems. In the case where the diversificationis lineage-homogeneous, the form of the probability of the tree topology conditioned on its
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number of tips provided by Theorem 1 allows us to factorize the computation of Theorem 2(and of Theorem 3) in order to obtain a polynomial algorithm. Let us sketch the general idea ofthis computation.In the case where the diversification model Θ is lineage-homogeneous, Theorem 1 impliesthat TΘ = T. Let us assume that the temporal constraints are such that U ∪ L 6= ∅ and let a and
b be the two direct descendants of the root of T . For all start-sets A of T , we define Λa

A and Λb
Aas the subtrees of ΓT,A rooted at a and b respectively, namely Λa

A = ΓTa,A∩Ta and Λb
A = ΓTb ,A∩Tb .From Theorems 2 and 1, we have that

PΘ(T ,U ,L) = 1
|LT |!

∑

A∈S
|LΓT,A |!T(ΓT,A)XΘ(s, o, |LΓT,A |)

∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!
OΘ(o)

= 2
(|LT | − 1)(|LT |!)2

∑

A∈S

|LΓT,A |!XΘ(s, o, |LΓT,A |)
OΘ(o)|LΓT,A |

× |LΛa
A
|!|LΛb

A
|!T(Λa

A)T(Λb
A)

∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!

Since by construction a tip of ΓT,A is either a tip of Λa
A or a tip of Λb

A, we have basically that
∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |! =



∏

n∈LΛa
A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!


×



∏

n∈L
Λb

A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!


 .

It follows that
PΘ(T ,U ,L) = 2

(|LT | − 1)(|LT |!)2
∑

A∈S
f (|LΓT,A |)× g(Λa

A)× g(Λb
A),

where
f (k) = k!XΘ(s, o, k)

OΘ(o)k for all positive integers k , and,
g(Λ) = |LΛ|!T(Λ)

∏

n∈LΛ

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |! for all start-trees Λ of a subtree of T .
In plain English, computing PΘ(T ,U ,L) requires to sum over all start-sets A in S , f (|L|) ×

g(Λa
A) × g(Λb

A), a product of three factors where the first one depends only on the number oftips of ΓT,A and the two following ones depend on the subtrees Λa
A and Λb

A respectively (i.e., onthe start-set A and on the subtrees Ta and Tb).Let us start by regrouping the terms of the sum with respect to the number of tips of thecorresponding start-trees:
∑

A∈S
f (|LΓT,A |)× g(Λa

A)× g(Λb
A) =

∑

k
f (k)×

∑

A∈S,|LΓT,A |=k
g(Λa

A)× g(Λb
A).

Next, we put ∆a
S (resp. ∆b

S ) for the set of subtrees rooted at a (resp. at b) of the start-trees
ΓT,A for all A ∈ S , namely ∆a

S = {Λa
A | A ∈ S} and ∆b

S = {Λb
A | A ∈ S}. Moreover, for all A ∈ Sand since Λa

A and Λb
A are the two subtrees pending from the root of ΓT,A, we have that |LΓT,A | = kif and only if |LΛa

A
|+ |LΛb

A
| = k . For all k , a set A belongs to S and is such that |LΓT,A | = k if and only

if there exist a tree T ′ ∈ ∆a
S and a tree T ′′ ∈ ∆b

S such that A is the union of the root of T and ofnodes of T ′ and T ′′ and |LT ′ |+|LT ′′ | = k . It follows that the terms of∑A∈S,|LΓT,A |=k g(Λa
A)×g(Λb

A)
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can be regrouped and factorized in order to get that
∑

A∈S,|LΓT,A |=k
g(Λa

A)× g(Λb
A) =

k−1∑

i=1


 ∑

T ′∈∆a
S ,|LT ′ |=i

g(T ′)

×




∑

T ′′∈∆b
S ,|LT ′′ |=k−i

g(T ′′)


 .

To summarize, if the quantities ∑T ′∈∆a
S ,|LT ′ |=i g(T ′) and ∑T ′′∈∆b

S ,|LT ′′ |=k−i g(T ′′) are assumed
known, we have written PΘ(T ,U ,L) as a sum of a quadratic number of terms, namely
PΘ(T ,U ,L) = 2

(|LT | − 1)(|LT |!)2
∑

k
f (k)

k−1∑

i=1


 ∑

T ′∈∆a
S ,|LT ′ |=i

g(T ′)

×




∑

T ′′∈∆b
S ,|LT ′′ |=k−i

g(T ′′)


 .

Appendix C.3 shows how the quantities ∑T ′∈∆a
S ,|LT ′ |=i g(T ′) and ∑T ′′∈∆b

S ,|LT ′′ |=k−i g(T ′′),
which are referred to as Wa,i and Wb,k−i respectively in the appendix, can be recursively com-puted in order to obtain a computation with total complexity quadratic with the size of T . Weeventually obtain the following theorem.
Theorem 4. Let T be a tree topology,Θ be a lineage-homogeneous Markovian diversification modeland U andL be two sets of upper and lower temporal constraints respectively. If the probability of theending configuration of any standard pattern can be computed in constant time then the probability
PΘ(T ,U ,L) can be computedwith complexityO(1) both in time andmemory space if |U∪L| = 0 (i.e.,if there are no constraints) and with time complexityO(|U ∪L|×|T |2) and memory space complexity
O(|T |2) otherwise.
Proof. Appendix C.3 �

Theorem 4 holds in particular for birth-death-sampling models and sampled-generalized-birth-death models presented in Appendix B.It can be proved in the same way that the shift probability S
Θ,Θ̃(T , m, t) of Theorem 3 can

be computed with time and memory space complexity O(|T |2) if the probability of the endingconfiguration of any standard or special pattern can be computed in constant time and if thediversification process is lineage-homogeneous.
6. Divergence time distributions

We shall apply Theorem 2 to compute divergence time distributions of tree topologies withtemporal constraints.
Claim 3. Let T be a tree topology, Θ be a diversification model from origin time s to end time e,
U = {(n1, u1), ... , (n`, u`)} and L = {(n′1, u′1), ... , (n′`′ , u′`′)} be two sets of upper and lower temporalconstraints respectively and m be an internal node of T . The probability that the divergence time τmassociated with m is anterior to a time t ∈ [s, e] conditioned on observing the tree topology T withthe temporal constraints U and L under Θ is

PΘ(T , τm<t, τn1<u1, ... , τn′1>u′1, ... | T , τn1<u1, ... , τn′1>u′1, ...) = PΘ(T ,U ∪ {(m, t)},L)
PΘ(T ,U ,L) .

The computation of the divergence time distributions was performed on a contrived treetopology and on the Hominoidea subtree. Results are displayed in Figures 6 and 7 where theprobability densities are computed from the corresponding distributions by finite difference ap-proximations.Figure 6 shows how considering models which are not time-homogeneous such as the piece-wise-constant-birth-death models and adding temporal constraints on some of the divergencetimes influences the shapes of the divergence times distributions of all the nodes of the treetopology. In particular, divergence time distributions may become multimodal, thus hard to sam-ple. Let us remark that a temporal constraint on the divergence time of a node influences thedivergence time distributions of the other nodes of the tree topology, even if they are not amongits ascendants or descendants.
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Figure 6 – Divergence time probability densities of the tree displayed at the top, in thefirst row of plots by assuming a diversification process running from time 0 to 10 undera birth-death-sampling model with parameters λ = 0.2, µ = 0.02 and ρ = 0.5 betweentimes 0 and 10 and in the second row of plots by assuming a piecewise constant birth-death-sampling model with parameters λ0 = 0.1, µ0 = 0.02 and ρ0 = 0.1 between times
0 and 4 (only 10% of the lineages survives to time 4) and parameters λ1 = 0.2, µ1 = 0.02and ρ1 = 0.5 between times 4 and 10. Plots of the first column are computed with noconstraint on the divergence times and those of the second column by constraining thedivergence time associated to node e to be anterior to 7. Densities of nodes d and e areconfounded in the plots of the first column. Densities was obtained from the correspond-ing distributions by finite difference approximations.
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In order to illustrate the computation of the divergence time distributions on a real topology,let us consider the Hominoidea subtree from the Primates tree of dos Reis et al. (2018). Theapproach can actually compute the divergence time distributions of the whole Primates tree ofdos Reis et al. (2018) but they cannot be displayed legibly because of its size.The divergence time distributionswere computed under several (simple) birth-death-samplingmodels, namely all parameter combinations with λ = 0.1 or 1, µ = λ−0.09 or λ−0.01 and ρ = 0.1or 0.9. Since the difference λ− µ appears in the probability formulas, several sets of parametersare chosen in such a way that they have the same difference between their birth and death rates.Divergence time distributions obtained in this way are displayed in Figure 7 around theirinternal nodes (literally, since nodes are positioned at the median of their divergence times).Each distribution is plotted at its own scale in order to be optimally displayed. This representationallows us to visualize the effects of each parameter on the shape and the position of distributions,to investigate which parameter values are consistent with a given evolutionary assumption etc.Birth-death-sampling models are not identifiable, since several sets of parameters leads tothe same probability distributions. Namely, ρ and ρ′ being two sampling probabilities, if one sets
λ′ = ρλ/ρ′ and µ′ = µ− λ(1− ρ/ρ′), the probability densities of any phylogenetic tree (by consid-ering or not considering its divergence times) is the same under the model (s, e,λ,µ, ρ) as underthe model (s, e,λ′,µ′, ρ′) (Stadler, 2009). An identifiable parametrization of birth-death-samplingmodels is provided in Stadler (2009).Weobserve on Figure 7 that, all other parameters being fixed, the greater the speciation/birthrate λ (resp. the sampling probability ρ), the closer are the divergence time distributions to theend time.Influence of the extinction/death rate on the divergence time distributions is more subtle andambiguous, at least for this set of parameters. All other parameters being fixed, it seems that anincrease of the extinction rate tends to push distributions of nodes close to the root towards thestarting time and, conversely, those of nodes close to the tips towards the end time.The divergence time distributions obtained for λ = 0.1, µ = 0.01 and ρ = 0.9 (Fig. 7, column2, top) and for λ′ = 1, µ′ = 0.91 and ρ′ = 0.1 (Fig. 7, column 1, bottom) are very close oneto another. The same remark holds for λ = 0.1, µ = 0.09 and ρ = 0.9 (Fig. 7, column 4, top)and for λ′ = 1, µ′ = 0.99 and ρ′ = 0.1 (Fig. 7, column 3, bottom). This certainly comes fromidentifiability issue of the birth-death sampling model since in both cases we have that λ′ ∼ ρλ/ρ′and µ′ ∼ µ− λ(1− ρ/ρ′).The variety of shapes of divergence times probability densities observed in Figures 6 and 7exceeds that of standard prior distributions used in phylogenetic inference, e.g., uniform, lognor-mal, gamma, exponential (Heath, 2012; Ho and Phillips, 2009).
6.1. A previous approach.

A previous approach for computing the probability density of a given divergence time is pro-vided in Gernhard (2008). It is based on the explicit computation of the probability density fAk
n,tof the kth divergence time of a tree topology with n tips starting at t from the present, providedin Gernhard (2008), and the computation of the probability P(r(v)=k) for the rank r(v) of the di-vergence time associated to the vertex v to be the kth which was given in Gernhard et al. (2006).The probability density fv of the divergence time associated to a vertex v of a tree topology with

n tips is then given for all times s by
fv (s) =

n−1∑

k=1
P(r(v)=k)fAk

n,t
(s).

The probability density fAk
n,t
is computed in constant time and the probabilities P(r(v)=k) for all

nodes v are computed in a time quadratic with the size of the tree.The computation of the probability density of the kth divergence time of tree relies on thefact that, under some homogeneity assumption, the divergence times are independent and iden-tically distributed (iid) random variables. Approach provided in Gernhard (2008) was described
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Figure 7 – Divergence time probability densities of the Hominoidea tree from dos Reiset al. (2018) under birth-death-sampling models with parameters λ = 0.1 or 1, µ = 0.01or 0.09 and ρ = 0.1 or 0.9. Internal nodes are positioned at their median divergencetime. Densities was obtained from the corresponding distributions by finite differenceapproximations.
in the case of birth-death models. It can be easily adapted to deal with piecewise-constant-birth-death-sampling models but extending this approach in order to compute divergence timesdistribution with temporal constraints requires to consider all the orders consistent with the setof constraints, which is certainly feasible but seems not straightforward.
6.2. An alternative method.

By reviewing the present work, Amaury Lambert proposed an alternative method, whichrequires the property that the divergence times are iid random variables, to compute the prob-ability that the divergence times of a tree topology satisfy a given set of temporal constraints.Although a presentation of this method is provided in his first review, let us sketch its idea.We assume here that the diversification model starts from s , ends at e and is such thatthe divergence times are iid random variables which follow a distribution F which is knownexplicitly. This property is in particular granted for generalized-birth-death models (Lambertand Stadler, 2013) and for the model proposed in Appendix B. Let T be a tree, (τn)n∈T \LTbe the random variables associated to its divergence times and U = {(n1, u1), ... , (n`, u`)} and
L = {(n′1, u′1), ... , (n′`′ , u′`′)} be a set of upper and lower time constraints respectively.Amaury Lambert first remarks that the probability that τn1 ≤ u1, . . . , τn` ≤ u`, τn′1 ≥ u′1,. . . , τn′

`′
≥ u′`′ is equal to the probability that F−1(τn1) ≤ F−1(u1), . . . , F−1(τn`) ≤ F−1(u`),

F−1(τn′1) ≥ F−1(u′1), . . . , F−1(τn′
`′

) ≥ F−1(u′`′), where the random variables (F−1(τn))n∈T \LT are
independent and uniformly distributed over [0, 1].Let us set Hn = F−1(τn) for all internal nodes n of T , and
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• ani = F−1(ui) for all 1 ≤ i ≤ ` (i.e., for all nodes ni with upper time constraints in U ) and
am = F−1(e) = 1 for all internal nodes m 6∈ {n1, ... , n`},
• a′n′i = F−1(u′i) for all 1 ≤ i ≤ `′ (i.e., for all nodes n′i with lower time constraints in L) and

a′m = F−1(s) = 0 for all internal nodes m 6∈ {n′1, ... , n′`}.Let us recall that the random variables (τn)n∈T \LT , thus the uniform random variables
(Hn)n∈T \LT , have to satisfy not only the constraints induced by U and L but also (implicitly)those deriving from the diversification process. In order to compute the probability that the in-dependent and uniform random variables (Hn)n∈T \LT satisfy both the constraints induced by UandL and those deriving from the tree topology, Amaury Lambert defines Qm(x) as the probabil-ity that the random variables (Hn)n∈Tm\LTm

(i.e., those associated to the subtree Tm) satisfy boththese constraints and that Hm ≥ x , for all nodes m of T and all x ∈ [0, 1]. By setting Qn(x) = 1 forall tips n of T and all x ∈ [0, 1], the probability Qm(x) can be recursively computed for all internalnodes m from its two direct descendants m1 and m2, since from the independence property, wehave that

Qm(x) =





∫ am

a′m
Qm1(y)Qm2(y)dy if x < a′m,

∫ am

x
Qm1(y)Qm2(y)dy if a′m ≤ x ≤ am,

0 if x > am.
The probability that the random variables (Hn)n∈T \LT satisfy both the constraints inducedby U and L and those deriving from the tree topology, which is equal to the probability that thedivergence times of T satisfy the temporal constraints U and L, is finally given by Qr (a′r ), where

r is the root of T .By construction, the function Qm(x) is piecewise polynomial of degree smaller than |LTm |− 1and its definition requires to consider a number of intervals bounded by the cardinality of theset of times involved in the temporal constraints of Tm. It follows that the symbolic computationof Qr (x) can be performed in O(|U ∪ L| × |T |2), thus with exact same complexity as that of thealgorithm presented in Section 5, though it certainly involves a smaller constant factor.
7. Direct sampling of divergence times

Theorems 2 and 4 and Claim 3 show how to compute the marginal (with regard to the otherdivergence times) of the divergence time distribution of any internal node of a phylogenetic treefrom a given birth-death-sampling model. It allows in particular to sample any divergence timeof the phylogenetic tree disregarding the other divergence times. We shall see in this sectionhow to draw a sample of all the divergence times of any tree topology from a given birth-death-sampling model.
Lemma 1. Let T be a tree topology of root r , Θ be a Markovian diversification model from origintime s to end time e. The probability that the root divergence time τr is anterior to a time t ∈ [s, e]conditioned on observing the tree topology T under Θ is

PΘ(T , τr < t | T ) = 1−
QΘ(s, t, 1)PΘ[t](T )

PΘ(T ) .

Proof. The probability that the divergence time τr associated with r is anterior to a time t ∈ [s, e]is the complementary probability that τr > t . Observing τr > t means that the starting lineageat s has a single descendant observable at t from which descends the tree topology T sampledat e. It follows that
PΘ(T , τr<t|T ) = 1− PΘ(T , τr>t|T ) = 1−

QΘ(s, t, 1)PΘ[t](T )
PΘ(T ) .

�
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The probability PΘ(T , τr<t|T ) can be directly written as PΘ(T ,{(r ,t)},∅)/PΘ(T ). Lemma 1 showsthat considering a temporal constraint is not necessary, which is particularly interesting in thebirth-death-sampling case.
Remark 1. Under the birth-death-sampling model Θ = (s, e,λ,µ, ρ), we have that

PΘ(T , τr < t | T ) = 1−
[

(1− e−(λ−µ)(e−t))(ρλ+ (λ(1− ρ)− µ)e−(λ−µ)(e−s))
(1− e−(λ−µ)(e−s))(ρλ+ (λ(1− ρ)− µ)e−(λ−µ)(e−t))

]|LT |−1
,

which can be computed in constant time.
Let us first show how to sample the divergence time of the root of a tree topology. Themarginal, with regard to the other divergence times, of the distribution of the root-divergencetime conditioned on the tree topology T is the cumulative distribution function (CDF) Fr : t →

PΘ(T , τr<t|T ). In order to sample τr under this distribution, we shall use inverse transform sam-pling which is based on the fact that if a random variable U is uniform over [0, 1] then F−1
r (U)has distribution function Fr (e.g., Devroye, 1986, chapter 2). Since finding an explicit formula for

F−1
r is not straightforward, we have to rely on numerical inversion at a given precision level inorder to get a sample of the distribution Fr from an uniform sample on [0, 1]. The current imple-mentation uses the bisection method, which computes an approximate inverse with a number of

Fr -computations smaller than minus the logarithm of the required precision (Devroye, 1986, p32).In order to sample the other divergence times, let us remark that by putting a and b for thetwo direct descendants of the root of T and t for the time sampled for the root-divergence, wehave two independent diversification processes both starting at t and giving the two subtreetopologies Ta and Tb at e. By applying Lemma 1 to Ta and Tb between t and e, the divergencetimes of the roots of these subtrees, i.e., a and b, can thus be sampled in the same way as above.The very same steps can then be performed recursively in order to sample all the divergencetimes of T . The time complexity of each sampling of a divergence time of T is obtained bymultiplying the complexity of computing the probability of Lemma 1 with minus the logarithmof the precision required for the samples. From Remark 1, under the birth-death-sampling model
Θ = (s, e,λ,µ, ρ), the computation of PΘ(T , τr<t|T ) requires only the number of tips of T (inparticular, the shape of T does not matter). In this case, the CDF Fr can be computed at anytime t with complexity O(1) and, with a pre-order traversal of T , all its divergence times can besampled in a time linear in |T | with a multiplicative factor proportional to minus the logarithmof the precision required for the samples.The same approach can be applied in order to sample divergence times with temporal con-straints and/or shifts.

8. Testing diversification shifts
Theorem 3 yields the computation of the probability density of a tree topology in which agiven clade diversifies from a given “shift time” according a (simple) birth-death-sampling modeldifferent from that of the rest of the topology. This allows us to estimate the likelihood-ratio testfor comparing the null model assuming a unique diversification model for the whole topologywith the alternative model including a shift as displayed in Figure 5. Since the alternative modelrequires the implicit assumption that the lineage originating the “shifted” clade was alive at theshift time, we make the same assumption for the null model, i.e., the divergence time associatedto the crown-node of the clade (resp. to the direct ancestor of the crown node) is assumed to beposterior (resp. anterior) to the shift-time. Basically, being given a tree topology, one of its cladeand the shift time, we compute the ratio ΛN of the maximum likelihoods of this topology with towithout shift at the clade and shift time from Theorems 3 and 2 by using numerical optimizationwhenever a direct determination is not possible. Namely, in order to test a diversification shiftat time t on the clade originating at node m of the tree topology T , we consider the ratio

ΛN =
S
Θ1,Θ̃1

(T , m, t)
PΘ0(T , τf(m) ≤ t, τm ≥ t) ,
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Figure 8 – ROC plots of different measures for shift detection at left (resp. at right) areobtained by simulated 10000 Yule topologies with birth rate 0.4 (resp. 0.6) from times 0to 10 and birth rate 1.0 from the shift time 5 to 10 for one of the clades present at time 5.
where f(m) is the direct ancestor of m, Θ0, Θ1, Θ̃1 are diversification models with

Θ0= arg max
Θ

PΘ(T , τf(m) ≤ t, τm ≥ t) and (Θ1, Θ̃1)= arg max
(Θ,Θ̃)

S
Θ,Θ̃(T , m, t).

In order to assess the accuracy of ΛN , we compare it to three sister-group diversity testsconsidered inWertheim and Sanderson (2010). Namely, for two sister groups originating at shifttime t with N1 > N2 terminal taxa and total sums of branch lengths B1 and B2 respectively, wehave that
• the probability of observing this or greater difference between sister group diversities
from Slowinski and Guyer (1989) is P = 2N2

N1 + N2 − 1 ,
• the likelihood ratio alternative provided in Sims and McConway (2003) is
ΛA = 1.629× [h(N1−1)−h(N1) + h(N2−1)−h(N2)−h(2)−h(N1 + N2−2) + h(N1 + N2)],
where h(x) =





x log(x) if x > 0,
0 otherwise,

• the likelihood ratio from perfect-information given in Wertheim and Sanderson (2010) is
ΛP = 2×

(
λ̂+

1
λ̂+

)N1−1(
λ̂+

2
λ̂+

)N2−1

,

where λ̂+ = N1 + N2 − 2
B1 + B2

, λ̂+
1 = N1 − 1

B1
and λ̂+

2 = N2 − 1
B2

.
I simulated topologies with and without shift according to pure-birth models, a.k.a. Yule mod-els which are special cases of birth-death-sampling models with null death rate and full sampling,in the following way. Being given a general birth rate, a shift birth rate and the shift time, I firstsimulated topologies without shift from the general birth rate. Next, I filtered the simulatedtopologies by discarding those with less than 10 or more than 50000 nodes and those with asingle lineage alive at the shift time. For each remaining simulation, I randomly picked a lineagealive at the shift time and replaced the clade originating from this lineage with a clade simulatedwith the shift rate from the shift to the end times in order to eventually obtain a topology withshift.
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Figure 9 – Time calibrated phylogeny of Cetacea (Slater et al., 2010).

The quantities ΛN , the likelihood ratio obtained from Theorem 3, P , ΛA and ΛP are thenevaluated with regard to their ability to discriminate between tree topologies with or without
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shift. Figure 8 displays the Receiver Operating Characteristic (ROC) plots obtained for all thesequantities. We first observe that ΛN significantly outperforms measures P and ΛA. In particular,in the case where the difference between the general and the shift birth rates is small (e.g., 0.6and 1.0 in Fig. 8-right), performances of P and ΛA are close to that of a random guess while ΛNis still accurate. This was expected to at least some extent since ΛN takes into account both theshift time and the whole tree topology while P and ΛA are computed from the clade with theshift and its sister group. More surprisingly, ΛN is only partially outperformed by ΛP , which isobtained from all the divergence times and the shift time. In the case where the general birthrate is 0.4 and the the shifted one is 1, the ability to distinguishes between phylogenies with orwithout diversification shift is almost as good with our likelihood ratio as with that of the perfectinformation. In the case where the general birth rate is 0.6, the likelihood ratio test ΛN obtainedfrom Theorem 3 outperforms the other tests for all positive discovery rates lower than 40%.In order to illustrate the diversification tests on a biological dataset, let us consider the cal-ibrated phylogeny of Cetacea from Slater et al. (2010), which is displayed in Figure 9. Slater etal. (2010) detected a diversification rate increase in Delphinidae using MEDUSA, a detectionmethod developed in Alfaro et al. (2009). The general idea of MEDUSA is to fit birth and deathmodels with increasing numbers of diversification shifts by stopping when the improvement inthe Akaike Information Criterion (AIC) is smaller than a fixed threshold. Note that the MEDUSAmethod requires all the divergence times in order to fit the models (Alfaro et al., 2009).We computed the quantities ΛN , P , ΛA and ΛP for all clades of the phylogeny of Cetacea, eachtime by setting the shift time to the time corresponding to the middle of the branch supportingthe clade. Figure 9 displays the phylogenetic positions of the maxima observed for all thesequantities. The maximal/most significant with regard to the likelihood ratio ΛN was achievedat the position where the diversification rate increase was detected by MEDUSA (Slater et al.,2010, Fig. 1). None of the other quantities P , ΛA and ΛP were maximal for this branch (Fig. 9).
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Appendix A. Table of the notations
s origin time of the diversification process
e end time of the diversification process/present time
λ speciation rate
µ extinction rate
ρ sampling probability of extant taxa
Θ

(parameters of) a diversification model; in the case of a birth-death-sampling model, Θ = (s, e,λ,µ, ρ)
Θ[t] diversification model Θ restricted to the time interval [t, e]

PΘ(.) probability of an event, a tree topology etc. under Θ
OΘ(t) probability for a lineage alive at t to be observable under Θ

QΘ(t, t ′, N) probability that a single lineage alive at time t has exactly N descendantsat time t ′ under Θ
XΘ(t, t ′, N) probability of the ending configuration of a standard pattern (t, t ′, T )with |LT | = N under Θ
YΘ(t, t ′, N) probability of the ending configuration of a special pattern (t, t ′, T ) with

|LT | = N under Θ
S
Θ,Θ̃(T , m, t) probability of the tree topology T by assuming a shift from model Θ tomodel Θ̃ at time t on the branch ending at node m

Wm,k
quantity associated to a time o, a node m and a number of tips k used tocompute the probability of a tree topology with temporal constraints

TΘ(T ) probability of the tree topology T conditioned on its number of tips un-der Θ
T(T )

probability of the tree topology T conditioned on its number of tips un-der any lineage-homogeneous model (i.e., in the Yule-Harding distribu-tion)
|.| cardinality of a set or size of a tree topology
Tn subtree of T rooted at node n
LT set of tips of T
ΓT,A

subtree topology of T made of all nodes inA and their direct descendantsif A 6= ∅ and T if A = ∅
ΩT set of all start-sets of T
Ω•T,n set of start-sets of T containing node n
Ω◦T,n set of start-sets of T not containing node n
Ω×T,n set of start-sets A of T such that n is a tip of ΓT,A

Υ
(k)
S set of start-sets A ∈ S which are such that ΓT,A has exactly k tips

ΥS,m set of start-sets of S restricted to Tm (i.e., ⋃A∈S{A ∩ Tm})
Υ

(k)
S,m set of start-sets A ∈ ΥS,m which are such that ΓT,A has exactly k tips
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Figure 10 – Left: the whole diversification process under the model
(s, e,λ,µ, (x1, ρ1), (x2, ρ2)) (sampled extant species are those with ‘X’); Center: thepart of the process that can be reconstructed is represented in plain – the dotted partsare lost; Right: the resulting phylogenetic tree.

Appendix B. The generalized birth-death model with mass extinction events andextant sampling
The generalized birth-death process was introduced and studied in Kendall (1948). In thismodel, the speciation and extinction rates are allowed to change through time and are thereforegiven as two functions of the time, λ : t → λ(t) and µ : t → µ(t) (in this section, λ and µ denotestwo functions of the time and are not real numbers like in Section 1.1). The probability p?N(t, t ′)that a single lineage at time t has exactly N descendants at time t ′ by following the generalizedbirth-death (λ,µ) was given in Kendall (1948). We have that

p?0(t, t ′) = 1− eδt,t′

ωt,t′
and for all N > 0,

p?N(t, t ′) =
(
1− p?0(t, t ′)

) 1
ωt,t′

(
1− 1

ωt,t′

)N−1

= eδt,t′ (ωt,t′ − 1)N−1

ωN+1
t,t′

,

where δt,t′ =
∫ t′

t
(µ(z)− λ(z))dz and ωt,t′ = e−δt,t′

(
1 +

∫ t′

t
e−δt,zµ(z)dz

)
.

Following the idea of Stadler (2011), we shall consider a more general model by allowing touniformly sample lineages at a given set of times x1, . . . , xk with respective probabilities ρ1, . . . , ρk .Namely, under the sampled-generalized-birth-death model Θ = (s, e,λ,µ, (xi , ρi)1≤i≤k), lineagesevolve following the generalized-birth-death model (λ,µ) between s and e, the origin and endtimes of the diversification process, and are uniformly sampled with probability ρi at each time xifor 1 ≤ i ≤ k (Fig 10). In practice, sampling lineages at a time xi anterior to the present time has tobe interpreted as a mass extinction event (a lineage not sampled at xi is assumed to have becomeextinct exactly at xi ) while sampling at the present time accounts for our incomplete knowledgeof extant species (a species not sampled at the present time is assumed unknown). From nowon, we assume without loss of generality that the last sampling time is the end/present time, i.e.,
xk = e, and we set x0 = s , the origin time of the diversification process. Like in Section 1.1, weare interested in the reconstructed process, i.e., the part of the process which is observable fromthe present/end time (Fig 10).By construction, sampled-generalized-birth-death models are both Markovian and lineage-homogeneous. Extending the approaches which are presented in the main text in order to deal
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with the sampled-generalized-birth-death model Θ = (s, e,λ,µ, (xi , ρi)1≤i≤k) only requires tocompute the probabilities of the ending probabilities of standard and special patterns, whichcan be obtained from the probabilities OΘ(t) and QΘ(t, t ′, N) for all positive numbers N and alltimes s ≤ t ≤ t ′ ≤ e. Let us see how to compute these last two probabilities.In order to avoid ambiguity, we put t+ (resp. t−) for “an infinitesimal time after (resp. before)the time t”. In particular, time x+
i (resp. x−i ) is immediately after (resp. before) the i th sampling. Byconvention, we set QΘ(t, t ′, N) = QΘ(t, (t ′)+, N), i.e., QΘ(t, t ′, N) is the probability that a singlelineage at time t has N descendants immediately after t ′.In order to compute QΘ(t, e, 0), the probability that a lineage alive at t has no sampled de-scendant at the end/present time e = xk under the sampled-generalized-birth-death model

Θ = (s, e,λ,µ, (xi , ρi)1≤i≤k), let us remark that for all 1 ≤ i ≤ k , a lineage alive at x−i has nosampled extant descendant with probability QΘ(x−i , e, 0) = (1 − ρi) + ρiQΘ(x+
i , e, 0) if i < k(since it is either not sampled at xi or sampled with no sampled extant descendant) and withprobability QΘ(x−k , e, 0) = 1 − ρk otherwise (Stadler, 2011). It follows that for all t ∈ [xi−1, xi ],we have that

QΘ(t, e, 0) = p?0(t, xi) +
∞∑

j=1
p?j (t, xi)QΘ(x−i , e, 0)j = 1− eδt,xi (1−QΘ(x−i , e, 0)

ωt,xi (1−QΘ(x−i , e, 0)) + QΘ(x−i , e, 0)
.

If t = xi−1, the formula above gives QΘ(x+
i−1, e, 0), from which we get QΘ(x−i−1, e, 0) anditeratively any QΘ(t, e, 0) from QΘ(x−k , e, 0) = 1− ρk . The probability OΘ(t) that a lineage aliveat time t has at least a sampled extant descendant is basically 1−QΘ(t, e, 0) and can thereforebe computed under the sampled-generalized-birth-death model Θ = (s, e,λ,µ, (xi , ρi)1≤i≤k) .Let us compute QΘ(t, e, 1), the probability that a lineage alive at t has exactly one sampleddescendant at the end/present time e. For all 1 ≤ i ≤ k and all t ∈ [xi−1, xi ], the probability thata lineage alive at t has a single lineage sampled at e is the sum over all j ≥ 1 of the probabilitiesthat this lineage has j descendants at time x−i among which

• one is both sampled at xi and with a single descendant sampled at e and,
• j − 1 ones have no sampled descendants at e.

Namely, we have that
QΘ(t, e, 1) =

∞∑

j=1

(
j
1

)
p?j (t, xi)QΘ(x−i , e, 0)j−1ρjQΘ(x+

i , e, 1)

= eδt,xi ρjQΘ(x+
i , e, 1)

(
ωt,xi (1−QΘ(x−i , e, 0)) + QΘ(x−i , e, 0)

)2 ,

Since QΘ(x+
k , e, 1) = 1, QΘ(t, e, 1) can be computed for all t ∈ [s, e] by iterating the formulaabove.In order to show how to compute QΘ(s, e, N), we shall first show that the probability densityof observing the set of divergence times (τn)n∈T \LT of any tree topology T with N tips (i.e., with

|T \ LT | = N − 1 inner nodes and divergence times) under a sampled-generalized-birth-deathmodel and disregarding the tree topology T is
PΘ((τn)n∈T \LT ) = QΘ(s, e, 1)

∏

n∈T \LT
λ(τn)QΘ(τn, e, 1).

This result was actually already proved in Thompson (1975, pp. 57-58). But, since it was underthe simple birth-death process and without including the first divergence time, let us sketch itsproof.Thompson (1975) first remarks that for all times t < t ′, we have that
QΘ(t, e, 1) =

∞∑

j=1

(
j
1

)
p?j (t, t ′)QΘ(t ′, e, 0)j−1QΘ(t ′, e, 1).
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The equation above implies that the probability of observing no speciation event which givesrise to a lineage sampled at e between times t and t ′ on a lineage of the reconstructed tree is
QΘ(t,e,1)/QΘ(t′,e,1).For all internal nodes n, the branch ending by n ends at time τn and starts at time τ̂n where
τ̂n = τf(n) if n is not the root and f(n) is its direct ancestor, and where τ̂n = s if n is the root.Considering the diversification process only on this branch, we observe a single lineage alive at
τ̂n which goes to time τn without (observable) speciation, which has probability QΘ(τ̂n,e,1)/QΘ(τn,e,1).If n is a tip (i.e., n ∈ LT ) then we set τn = e and we have QΘ(τn, e, 1) = 1. If n is an inner node(i.e., n ∈ T \ LT ) then we observe a speciation event at τn, which occurs at rate λ(τn). From theMarkov property, all the branchs evolve independently and we get that the probability densityof observing the divergence times (τn)n∈T \LT is

PΘ((τn)n∈T \LT ) =


 ∏

n∈T \LT
λ(τn)QΘ(τ̂n, e, 1)

QΘ(τn, e, 1)


×


 ∏

n∈LT
QΘ(τ̂n, e, 1)


 .

In the product above, each divergence time τn occurs twice in numerators as τ̂a(n) and τ̂b(n),where a(n) and b(n) are the direct descendants of n, and once in denominators. The time originoccurs only once in the numerator associated to the root. By simplifying the product above, weeventually get that
PΘ((τn)n∈T \LT ) = QΘ(s, e, 1)

∏

n∈T \LT
λ(τn)QΘ(τn, e, 1),

which does not depend on the tree topology T (except on its size) and which is the probabilitydensity of observing the divergence times (τn)n∈T \LT on any tree topology with N tips.The probability of observing N lineages at e by starting with a single lineage at s (in anytree topology) is then obtained by integrating the probability density of N − 1 divergence times
(τj)1≤j≤N−1 between s and e:

QΘ(s, e, N) =
∫ e

s
...
∫ e

s
QΘ(s, e, 1)

∏

1≤j≤N−1
λ(τj)QΘ(τj , e, 1)dτ1 ... dτN−1

= QΘ(s, e, 1)
(∫ e

s
λ(τ)QΘ(τ, e, 1)dτ

)N−1
.

For all times t and t ′ with s ≤ t ≤ t ′ ≤ e, the probability QΘ(t, t ′, N) can be computed inthe same way by considering the restriction of the model Θ to the time interval [t, t ′] (with fullsampling at t ′ if t ′ 6= xi for all 1 ≤ i ≤ k ).The probabilities of ending configurations of standard and special patterns under the sampled-generalized-birth-deathmodelΘ = (s, e,λ,µ, (xi , ρi)1≤i≤k) can then be computed from the prob-abilities QΘ(t, t ′, N) and OΘ(t) (Eqs. (1) and (2)). By putting Θ[t,t′] for the model Θ restricted tothe time interval [t, t ′], we have that
XΘ(t, t ′, N) =

QΘ[t,t′](t, t ′, 1)OΘ(t ′)N
(∫ t′

t λ(τ)QΘ[t,t′](τ, t ′, 1)dτ
)N−1

(
1− (1−OΘ(t ′))

∫ t′
t λ(τ)QΘ[t,t′](τ, t ′, 1)dτ

)N+1 and,

YΘ(t, t ′, N) =
NQΘ[t,t′](t, t ′, 1)

(
OΘ(t ′)

∫ t′
t λ(τ)QΘ[t,t′](τ, t ′, 1)dτ

)N−1

(
1− (1−OΘ(t ′))

∫ t′
t λ(τ)QΘ[t,t′](τ, t ′, 1)dτ

)N+1 .

Appendix C. Proofs of Theorems
C.1. Proof of Theorem 2.

Let us start with the case where the oldest time is the end time of the diversification process,i.e., the case where o = e. By construction, we then have that U and L are both empty. It followsthat (s, e, T ) is a standard pattern of probability TΘ(T )XΘ(s, e, |LT |) from Claim 1.
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Let us now assume that o < e. Under the notations of the theorem and by assuming that thedivergence times of T are consistent with the temporal constraints, let us define Ao as the setof nodes of T whose divergence times are anterior to o (i.e. Ao = {m ∈ T | τm < o}). Sincedivergence times corresponding to ancestors of a given node are always posterior to its owndivergence time, all sets Ao are start-sets. By construction, the set S contains all the possibleconfigurations of nodes of T with divergence times anterior to o which are consistent with thetemporal constraints U and L. Since all these configurations are mutually exclusive, by putting
PΘ(T ,U ,L,Ao=A) for the probability of observing the topology T withAo = A and the tempo-ral constraints U and L, the law of total probabilities gives us that
(3) PΘ(T ,U ,L) =

∑

A∈S
PΘ(T ,U ,L,Ao=A).

For instance, the entries of the second column of Figure 4 (just after the sum sign) represent allthe start-sets of Ω•T,b.In order to compute the probability PΘ(T ,U ,L,Ao=A) for a start-set A ∈ S , we remark that
• the part of the diversification process anterior to o is the standard pattern (s, o, ΓT,A) andthat
• the part of the diversification process posterior to o consists of all the tree topologies Tnwith temporal constraints U[Tn],L[Tn] with n ∈ LΓT,A under the model Θ[o] (i.e., the model
Θ restricted to the interval of times [o, e]), which have probability PΘ[o] (Tn,U>o

[Tn ],L
>o
[Tn ])/OΘ(o)conditioned on the observability of their starting lineages.

Since the diversification modelΘ is Markovian, evolution of all the tree topologies Tn is inde-pendent of each other and with regard to the part of the process anterior to o, conditional uponstarting with an observable lineage at time o.From Claim 1, the probability of the standard pattern (s, o, ΓT,A) is TΘ(ΓT,A)XΘ(s, o, |LΓT,A |)under the assumption that ΓT,A is labeled. This part is a little tricky since we don’t have a directlabeling of ΓT,A here (the tips of ΓT,A are identified through the labels of their tip descendantsin T , i.e., the tips of the subtrees pending from the tips of ΓT,A). Since it assumes that ΓT,A is(exactly) labeled, we have to multiply the probability obtained from Claim 1 with the number ofways of connecting the tips/labels of ΓT,A to the subtrees starting from o, which is |LΓT,A |!, andwith the probability of observing the groups of labels corresponding to the subtrees starting from
o. Since all labelings of T are equiprobable, the probability of the groups of labels correspondingto the subtrees starting from o is the inverse of the number of ways of choosing a subset of |LTn |labels from |LT | ones for all tips n of ΓT,A without replacement, i.e., the inverse of correspondingmultinomial coefficient, which is ∏

n∈LΓT,A
|LTn |!

|LT |!
.

Putting all together, we eventually get that
PΘ,A(T ,U ,L) = |LΓT,A |!TΘ(ΓT,A)XΘ(s, o, |LΓT,A |)

∏
n∈LΓT,A

|LTn |!
|LT |!

∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])
OΘ(o)

=
|LΓT,A |!TΘ(ΓT,A)XΘ(s, o, |LΓT,A |)

|LT |!
∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!
OΘ(o) ,

which, with Equation (3), ends the proof. Thewhole computation of a toy example is schematizedin Figure 4.
C.2. Proof of Theorem 3.

Assuming that a diversification shift of the clade originating at m occurs at time t impliesthat the divergence times of T are such that both the direct ancestor of m has a divergencetime strictly anterior to t and the divergence time of m is strictly posterior to t . Reciprocally,if the divergence times of m and of its direct ancestor are respectively posterior and anteriorto t , then a diversification shift at time t may occur for the clade originating at m. The set of
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subsets of internal nodes with divergence time anterior to t consistent with the assumptions ofthe Theorem is thus exactly Ω×T,m.We next follow the same outline as that of the proof of Theorem 2. For all subsets A ofinternal nodes of T , let us put S
Θ,Θ̃,A(T , m, t) for the probability of observing the topology Twith a shift at time t for the clade originating at m and whose set of nodes with divergence timeanterior to t is exactly A. We have that

(4) S
Θ,Θ̃(T , m, t) =

∑

A∈Ω×T,m

S
Θ,Θ̃,A(T , m, t).

From the Markov property, we have that S
Θ,Θ̃,A(T , m, t) can be written as the product of

the part of the diversification anterior to t , which is the special pattern (s, t, ΓT,A) where thespecial lineage is the one on which the shift occurs, and the part of the diversification posteriorto t which is a set of trees starting from time t and ending at time e by following model Θ[t]except the special onewhich follows Θ̃. By construction, the non-special trees starting from t areconditioned on the observability of their starting lineage at t , thus have probability PΘ[t] (Tn)/OΘ(t)while the special one is not conditioned and has probability P
Θ̃

(Tm).
From Claim 2, the probability of the special pattern (s, t, ΓT,A) is TΘ(ΓT,A)YΘ(s, t, |LΓT,A |) un-der the assumption that ΓT,A is labeled. The situation slightly differs from the case of a standardpattern treated in the proof of Theorem 2 since the special tip of the special pattern is well identi-fied and so is the subtree pending from it. In order to taking into account the fact that ΓT,A is notdirectly labeled, we have here to multiply the probability provided by Claim 2 with the numberof ways of connecting the tips/labels of ΓT,A except m, the special one, to the subtrees startingfrom t , i.e., (|LΓT,A |−1)!, and with the probability of observing the groups of labels correspondingto the subtrees starting from t , which is

∏
n∈LΓT,A

|LTn |!
|LT |!

.

Eventually, we get that
S
Θ,Θ̃,A(T , m, t) = TΘ(ΓT,A)YΘ(s, t, |LΓT,A |)(|LΓT,A | − 1)!

∏
n∈LΓT,A

|LTn |!
|LT |!

P
Θ̃

(Tm)
∏

n∈LΓT,A\{m}

PΘ[t](Tn)
OΘ(o)

=
(|LΓT,A | − 1)!TΘ(ΓT,A)YΘ(s, t, |LΓT,A |)PΘ̃

(Tm)|LTm |!
|LT |!

∏

n∈LΓT,A\{m}

PΘ[t](Tn)|LTn |!
OΘ(o) ,

which with Equation (4) ends the proof.
C.3. Proof of Theorem 4.

If the model Θ is lineage homogeneous then, under the assumptions and notations of Theo-rem 2, we have that

PΘ(T ,U ,L) =





1
|LT |!

∑

A∈S
|LΓT,A |!T(ΓT,A)XΘ(s, o, |LΓT,A |)

∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!
OΘ(o) if o < e,

T(T )XΘ(s, e, |LT |) otherwise.
Since in the case where o = e, the computation of PΘ(T ,U ,L) is performed in constanttime under the assumptions of the theorem, we focus on the case where o < e. Let us firstintroduce an additional notation. For all sets S of start-sets of a tree topology T and all numbers

k between 1 and the number of tips of T , we put Υ(k)
S for the set of start-sets A ∈ S such thatthe corresponding start-tree ΓT,A has exactly k tips. By construction, a start-tree of T has at
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least one tip and at most |LT | tips. We have:
PΘ(T ,U ,L) = 1

|LT |!
∑

A∈S
|LΓT,A |!T(ΓT,A)XΘ(s, o, |LΓT,A |)

∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!
OΘ(o)

= 1
|LT |!

|LT |∑

k=1

∑

A∈Υ(k)
S

|LΓT,A |!T(ΓT,A)XΘ(s, o, |LΓT,A |)
∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!
OΘ(o)

= 1
|LT |!

|LT |∑

k=1

XΘ(s, o, k)
OΘ(o)k k!

∑

A∈Υ(k)
S

T(ΓT,A)
∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!.

Let us set for all nodes m of T ,
ΥS,m =

⋃

A∈S
{A ∩ Tm},

where Tm stands here for the set of nodes of the subtree topology rooted at m. In plain English,elements of ΥS,m are elements of S restricted to Tm. Since, by construction, the elements of
ΥS,m are start-sets of the tree topology Tm, the start-tree ΓTm,A is well-defined for all A ∈ ΥS,m.For all numbers 1 ≤ k ≤ |LTm |, we put Υ(k)

S,m for the set of start-sets A ∈ ΥS,m such that thecorresponding start-tree ΓTm,A has exactly k tips.Let us now define for all nodes m of T and all 1 ≤ k ≤ |LTm |, the quantity
Wm,k = k!

∑

A∈Υ(k)
S,m

T(ΓT,A)
∏

n∈LΓT,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!.

Basically, by putting r for the root of T , we have that
(5) PΘ(T ,U ,L) = 1

|LT |!

|LT |∑

k=1

XΘ(s, o, k)
OΘ(o)k Wr ,k .

We shall see how to compute (Wm,k)k=1,...,|LTm | for all nodes m of T .Let us first consider the case where k = 1. We have that
(6) Wm,1 = PΘ[o](Tm,U>o

[Tm],L>o
[Tm])|LTm |!.

Let us now assume that k > 1 and let a and b be the two direct descendants of m. Since weassume k > 1, all start-sets of Υ(k)
S,m contain m. It follows that we have A ∈ Υ

(k)
S,m if and only ifthere exist two start-sets I ∈ ΥS,a and J ∈ ΥS,b with {m} ∪ I ∪ J = A. The tree topology ΓTm,Ahas root m with two child-subtrees ΓTa,I and ΓTb ,J . In particular, we have:

|LΓTa ,I |+ |LΓTb ,J | = |LΓTm ,A | = k.

From Theorem 1, we have that
T(ΓTm,A) =

2|LΓTa ,I |!|LΓTb ,J |!
(|LΓTm ,A | − 1)|LΓTm ,A |!

T(ΓTa,I)T(ΓTb ,J)=
2|LΓTa ,I |!|LΓTb ,J |!

(k − 1)k! T(ΓTa,I)T(ΓTb ,J).

Moreover, since by construction LΓTm ,A = LΓTa ,I ∪ LΓTb ,J , we get that
T(ΓTm,A)

∏

n∈LΓTm ,A

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |! =

2|LΓTa ,I |!|LΓTb ,J |!
(k − 1)k! T(ΓTa,I)T(ΓTb ,J)(

∏

n∈LΓTa ,I

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!)(
∏

n∈LΓTb ,J

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!).

More generally, the start-sets ofΥ(k)
S,m are in one-to-one correspondence with the set of pairs

(I, J) of ΥS,a ×ΥS,b such that |LΓTa ,I |+ |LΓTb ,I | = k . This set of pairs is exactly the union over all
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pairs of positive numbers (i , j) such that i + j = k , of the product sets of Υ(i)
S,a ×Υ

(j)
S,b . It followsthat

Wm,k = k!
∑

i ,j
i+j=k

∑

(I,J)∈
Υ

(i)
S,a×Υ

(j)
S,b

2i!j!
(k − 1)k!T(ΓTa,I)T(ΓTb ,J)(

∏

n∈LΓTa ,I

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!)

(
∏

n∈LΓTb ,J

PΘ[o](Tn,U>o
[Tn],L>o

[Tn])|LTn |!).

After factorizing the left hand side of the equation just above, we eventually get that for all
k > 1,
(7) Wm,k = 2

k − 1
∑

i ,j
i+j=k

Wa,iWb,j .

The following remark is straightforward to prove by induction.
Remark 2. Let T be a binary tree topology and for all internal nodes n of T , let a(n) and b(n) denotethe two direct descendants of n. We have that

∑

n∈T \LT
|LTa(n) | × |LTb(n) | =

|LT |(|LT | − 1)
2 .

From Equation (7) and for all internal nodes m of T with children a and b, computing thequantities Wm,k for all 1 < k ≤ |LTm | involves exactly |LTa | × |LTb | terms of the form Wa,iWb,j .It follows that Remark 2 implies that if the quantities Wm,1 are given for all nodes m of T , thequantities Wm,k for all m ∈ T and all 1 < k ≤ |LTm | can be recursively computed in a timeproportional to |LT |(|LT |−1)/2, thus with time complexity O(|T |2).In order to finish to prove Theorem 4, we remark that if |U ∪ L| = 0 then PΘ(T ,U ,L) isthe probability of the standard pattern (s, e, T ) which can be computed with time and memorycomplexity O(1) from Claim 1.In the case where |U ∪ L| > 0, we shall proceed by induction on the total number tempo-ral constraints by showing that the total time complexity required to compute the probabilities
PΘ(Tm,U[Tm],L[Tm]) for all internal nodes m is O(|U ∪ L| × |T |2 + |T |).This property is basically true in the base case where |U ∪L| = 0, the probability PΘ(Tm, ∅, ∅)is the probability of a standard pattern which can be computed in constant time for all internalnodes m from Claim 1.Let us assume that the induction assumption holds for all numbers of temporal constraintssmaller than ` and let us consider two sets of temporal constraints U and L such that |U ∪ L| =
` + 1. If o is the oldest time involved in U and L, this implies that |U>o ∪ L>o| ≤ `. From theinduction hypothesis, computing the probabilities PΘ[o](Tm,U>o

[Tm],L>o
[Tm]) for all internal nodes m

can be performed in O(`× |T |2). From Equation (6), the quantities Wm,1 for all internal nodes mare calculated directly from the probabilities PΘ[o](Tm,U>o
[Tm],L>o

[Tm]), thus in O(|T |). From Remark
2, all the quantities Wm,k for all internal nodes m of T and all 1 < k ≤ |LTm | can be calculatedwith time complexity O(|T |2). Equation (5) can then be applied to all subtrees of T in order tocompute the probabilities PΘ(Tm,U[Tm],L[Tm]) from the quantities Wm,k for all internal nodes mof T . Since computing each PΘ(Tm,U[Tm],L[Tm]) requires to sum |LTm | terms, computing all the
PΘ(Tm,U[Tm],L[Tm]) has total time complexity O(|T |2).To sum up, being given the probabilities PΘ[o](Tm,U>o

[Tm],L>o
[Tm]), which can be computed with

complexity O(` × |T |2) from the induction hypothesis, computing the probabilities
PΘ(Tm,U[Tm],L[Tm]) for all internal nodes m of T has time complexity O(|T |2). The total timecomplexity required to compute all the PΘ(Tm,U[Tm],L[Tm]) is well O((`+ 1)× |T |2 + |T |). Sincewe assume that |U ∪ L| > 0, we have that O(|U ∪ L| × |T |2 + |T |) = O(|U ∪ L| × |T |2), whichends to prove the statement of the theorem about the time complexity in this case.
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Last, since at each stage of the induction, we have to store only the quantities
(Wm,k)m∈T ,k=1,...,|LTm | and the probabilities PΘ[o](Tm,U>o

[Tm],L>o
[Tm]) and PΘ(Tm,U[Tm],L[Tm]) for allinternal nodes m of T , the total memory space complexity of the computation is O(|T |2).
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