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 Abstract  

Despite massive company investments in human–computer interaction devices and 

software, such as Web 3.0 technologies, engineers are not demonstrating measurable 

performance and productivity increases. There is a lack of knowledge and understanding 

related to the motivation of engineers to use Web 3.0 technologies including the semantic 

web and cloud applications for increased performance. The purpose of this quantitative 

correlational study was to investigate whether the use of human–computer interaction 

devices predict Web 3.0 skills among engineers. Solow’s information technology 

productivity paradox was the theoretical foundation for this study. Convenience sampling 

was used for a sample of 214 participants from metropolitan areas of Georgia. Multiple 

linear regression was used to develop a predictive model and evaluate the influence on 

Web 3.0 skills of 10 independent variables measuring self-reported reliance on and 

competence with five human–computer interaction devices, two aggregate indices of 

reliance and competence, and two-factor interactions. Results indicated a significant 

linear relationship between several predictors (laptop reliance, tablet reliance, desktop 

competence, wearable competence, and five interactions) and the dependent variable 

(Web 3.0 skills). The results may enable engineering managers to make more informed, 

strategic decisions regarding the types of technology to invest in to improve engineer 

skills and productivity. The results of this study have potential implications for positive 

social change by helping engineering organizations overcome the information technology 

productivity paradox to reap the benefits from engineers who are more motivated and 

skilled.  
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Chapter 1: Introduction to the Study 

Since the 1990s, digital technology has transformed the economy and society 

(Gamble & Calverley, 2015). Web 1.0 and Web 2.0 technologies have dominated the 

World Wide Web (henceforth referred to as the web), and Web 3.0 opportunities are now 

driving digital technologies forward. The web is the fastest-growing publication medium 

of all time (Rudman & Bruwer, 2016). A large body of literature is available on the 

antecedent events of web technologies, from the beginning of Web 1.0 evolving to 

significant web technological advances on the Internet of Things (IoT) or Web 3.0 

technologies (Gamble & Calverley, 2015; James, 2015; Rudman & Bruwer, 2016). 

Measured growth in the labor productivity and total factor productivity of 

engineers is not yielding gains despite considerable investments in emerging information 

and communications technology (ICT) and information technology (IT) tools designed 

for increased usability and productivity for Web 3.0 (Tarute & Gatautis, 2014). IT 

includes the entire information domain of hardware, software, peripherals, and 

networking and serves as the umbrella to ICT, a branch that deals explicitly with digital 

devices used to communicate with digital information. The third phase in the evolution of 

the web, or Web 3.0, describes the human interaction and usage in the network of digital 

communications through different paths of the web defining advanced communication, 

demand-orientated information, transactions via the net economy, and transformation of 

the network in a database (Tarute & Gatautis, 2014). 

Procedures to increase productivity using Web 3.0 technologies remain 

challenging to find (Rudman & Bruwer, 2016). Research is needed to identify strategies 
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that will enable engineers to become more productive while using advanced technologies 

and devices. Addressing this management-related, real-world issue is of significant 

concern in various engineering and technology fields because research may enable 

organizations to be more efficient and effective in the global economy and provide them 

the knowledge to make sound investments in technology.  

Background of the Study 

Gamble and Calverley (2015) defined Web 1.0 as data and information, with 

minimal user interaction for leaving comments and creating website content. The concept 

of human–computer interaction (HCI) refers to the interface between humans and 

computing devices and computer technology. Gamble and Calverley identified five HCI 

devices that I considered in my study: desktop (e.g., stationary workstation); laptop (e.g., 

portable computer); tablet (e.g., touchscreen); smartphone (e.g., handheld computer); and 

wearable (e.g., virtual reality [VR] headset). These devices can access Web 3.0 

technologies. HCI has evolved since Web 1.0 technologies, providing a better user 

experience with more interactive, powerful, and appealing software applications (Gamble 

& Calverley, 2015).  

In 2018, Web 1.0 technologies and methods displayed content such as laws and 

manuals (Rudman & Bruwer, 2016). Web 1.0 presented static informative characteristics 

that progressed to a more interactive experience, advancing to Web 2.0 (James, 2015). 

Dale Dougherty coined the term Web 2.0 in 2004 (James, 2015). 

In less than 18 months, the term Web 2.0 had received more than 9.5 million 

citations on Google (James, 2015). Web 2.0 technologies, such as web-conferencing, e-
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surveys, and YouTube videos, have rapidly evolved into Web 3.0 technologies. In the 

2010s, the new phase of evolution in Web 3.0 technologies, the driving force behind the 

semantic web, much like that of Apple’s Siri, impacted how organizations viewed the 

internet and intranet (Rudman & Bruwer, 2016). 

Web 3.0 has matured to become competitive with new technological trends, 

rapidly advancing to Web 4.0 (Rudman & Bruwer, 2016; Serin & Yalçıner, 2021). The 

amount of data and information presented based on Web 3.0 technologies—that is, 

machine-to-machine communication on the Internet, cloud computing, and software 

applications—presented a significant challenge in extracting relevant information to use 

for productive day-to-day activities (Gamble & Calverley, 2015). By 2017, the web 

provided more knowledge and action capacity for users, resulting in considerable changes 

in several aspects of daily life. The next wave of web evolution, Web 4.0 technologies, 

refers to controlling the power of human and machine intelligence on a universal web, 

where both humans and computers interact, reason, and assist each other in more 

innovative ways (James, 2015). 

Adopting the most advanced IT for the engineering industry is essential to the 

economy’s success in the 21st century (Priem et al., 2012). Productivity growth is critical 

for sustainability and elevation of the standard of living for U.S. workers (Gamble & 

Calverley, 2015). The most prominent factors behind successful productivity growth in 

organizations are a technological edge and an inspired pace of technological change 

(Gamble & Calverley, 2015).  
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The number of personal computers in the workplace and the web has made new 

Web 3.0 technologies easily accessible to employees in the workplace. Increasing 

technological capacity and untapped potential of engineers is needed to propel the new 

economy forward (Gamble & Calverley, 2015). Engineers must figure out new ways of 

creating and sharing information resources by fully utilizing technology, especially Web 

3.0 technologies (Priem et al., 2012). 

Productivity has risen in many economies worldwide, especially in the United 

States, in recent years due to advancements in IT and other improvements in technical 

efficiency. However, productivity among engineers is not growing despite considerable 

investments in Web 3.0 technologies (Tarute & Gatautis, 2014). The reasons for this lack 

of productivity growth have not been thoroughly researched and documented in the 

scholarly literature. There is a lack of research into the factors that motivate engineers to 

embrace and fully utilize the capabilities offered by Web 3.0 technologies.  

Based on this summary of research, expanded in the literature review in Chapter 

2, there is a gap related to why engineers are not demonstrating measurable performance 

increases despite investments in technology and which technologies are associated with 

higher engineer performance and productivity. Specifically, current research fails to 

cover the motivation of engineers to learn Web 3.0 skills, one indicator of skill level, 

motivation, and productivity. Further research is needed to investigate the influence of 

various factors on motivation and productivity that may lead to practical solutions for the 

lack of productivity growth. Knowledge is needed on how to enhance the use of HCI 

devices through well-conceived investments in technology and the impact on engineers’ 
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motivation to learn new skills. This research has the potential to enable organizations to 

make better investment decisions and, as a result, yield higher productivity levels for 

engineers.  

Problem Statement 

The social problem in this study was that despite massive company investments in 

new HCI devices and software such as Web 3.0 technologies (Gamble & Calverley, 

2015), engineers are not demonstrating measurable performance increases. Stakeholder 

pressure on senior executives and engineers has heightened the need for engineers to 

become more productive considering significant investments in emerging ICT and IT 

projects (Shambaugh et al., 2018). According to the Office of Occupational Statistics and 

Employment Projections (2021), the employment of engineers is projected to grow 9% 

from 2019 to 2029. Prospective employees are hired based on their capabilities using the 

latest skills and knowledge of trends in technology.  

While current research covers Web 3.0, it fails to cover the motivation among 

engineers to learn and use new technology such as Web 3.0, which led to my research 

problem: a lack of knowledge and understanding of the influences on engineers’ 

willingness to learn and adopt new technological tools, specifically Web 3.0 tools. The 

lack of motivation among engineers results in inadequate proficiency, which leads to an 

overall lack of performance. Engineers’ ability and willingness to develop new skills is 

an ongoing motivational challenge as technology advances.  

One challenge is measuring the extent to which engineers have mastered 

advanced Web 3.0 technological tools, or the semantic web, and cloud applications for 
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increased performance. My research is needed because technology impacts the 

workplace, yet there seems to be a lack of motivation among engineers to use new 

technology tools despite the enormous investment organizations have made.  

Purpose of the Study 

The purpose of this quantitative correlational study was to investigate whether the 

use of HCI devices predicts Web 3.0 skills among engineers—in other words, whether 

the use of HCI devices influences, facilitates, or indicates the willingness or motivation to 

learn new skills, increasing performance, and enhancing productivity. Use of HCI devices 

has two components: reliance on and competence with HCI devices.  

There were five independent variables representing reliance on each of the five 

devices: (a) desktop reliance (DTR), (b) laptop reliance (LTR), (c) tablet reliance (TTR), 

(d) smartphone reliance (SPR), and (e) wearable reliance (WBR). There were five 

independent variables representing competence with the devices: (a) desktop competence 

(DTC), (b) laptop competence (LTC), (c) tablet competence (TTC), (d) smartphone 

competence (SPC), and (e) wearable competence (WBC). In addition, I evaluated two 

aggregate indices: reliance on HCI devices (RHCID) and competence with HCI devices 

(CHCID). I also evaluated two-factor interactions (2FIs) between independent variables. 

I chose Web 3.0 skills to represent leading edge capabilities, an indication of an 

engineer’s increase in capabilities and productivity. The dependent variable was a 

measure of Web 3.0 skills. All independent variables and the dependent variable are 

listed in Table 1. 
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Table 1 
 
Study Variables 

Variable Variable abbreviation Variable type 
Desktop reliance  DTR Independent 
Desktop competence DTC Independent 
Laptop reliance LTR Independent 
Laptop competence LTC Independent 
Smartphone reliance SPR Independent 
Smartphone competence SPC Independent 
Tablet reliance TTR Independent 
Tablet competence TTC Independent 
Wearable reliance WBR Independent 
Wearable competence WBC Independent 
Reliance on HCI devices RHCID Independent 
Competence with HCI devices CHCID Independent 
Web 3.0 skills WS Dependent 

 

By understanding the relationship between HCI device use and Web 3.0 skills, my 

research was intended to help close a gap in the research, knowledge, and understanding 

of what influences and motivates engineers to embrace and utilize new technologies such 

as Web 3.0. This research was aimed at providing insights into which kinds of HCI 

devices (e.g., desktop, laptop, tablet, smartphone, and wearable devices) influence 

engineers to obtain advanced skills and apply those new skills in small and medium 

enterprises, which is research that has not been conducted before. 

Research Question and Hypotheses 

The overarching research question in this study was: What is the relationship 

between the use of HCI devices and Web 3.0 skills? This question was designed to 

explore the motivations for engineers to use Web 3.0 technologies to enhance their 

overall skills and performance based on which HCI devices they relied on or were 



 

8 
 

 

competent with. Because there were two measures related to the use of HCI devices 

(reliance and competence on each of five specific devices, and aggregate indices of 

reliance and competence), there were two pairs of hypotheses (a null and alternate 

hypothesis for each) to address the research question: 

H01: There is no significant relationship between any of the predictors (10 

independent variables and 2FIs) and Web 3.0 skills (dependent variable). 

HA1: There is a significant relationship between at least one of the predictors and 

the dependent variable.  

H02: There is no significant relationship between reliance on or competence with 

the five HCI devices, in the aggregate, and their 2FI; and Web 3.0 skills. 

HA2: There is a significant relationship between either reliance on and 

competence with the five HCI devices, or both reliance and competence, in the 

aggregate; or their 2FI; and Web 3.0 skills. 

Theoretical Foundation 

The theoretical foundation for this study was the Solow IT productivity paradox. 

Solow (1957) was one of the pioneers in growth theory, who sparked an ongoing debate 

about the technological factors that can increase the growth of national income and social 

wealth. The Solow IT productivity paradox occurs when, as more investments are made 

in IT, engineer productivity or performance potentially goes down instead of up. 

Both researchers and industry professionals remain perplexed as to why 

investment in new technology has not yielded significant increases in productivity for 

organizations that have adopted and continue to purchase advanced systems. In Chapter 
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2, I describe the IT productivity paradox in greater detail and explain the rationale and 

theoretical underpinning for this research.  

The Solow IT productivity paradox theory aligned with my study, providing the 

theoretical explanation of why investments in technology do not consistently result in 

increases in skills and productivity. My research was intended to discover which 

technological devices are associated with higher skill levels, where organizations might 

be able to make investments that pay off, and what factors they ought to consider when 

contemplating technology investments.  

Nature of the Study 

In this correlational study, I investigated if and to what extent there is a 

relationship between the independent variables (reliance on and competence with five 

HCI devices, individually and in the aggregate) and the dependent variable (a self-

reported survey measurement of Web 3.0 skills). Several different methods based on 

standards for human performance have been employed to study the relationships among 

fundamental HCIs, tasks with a computer, and overall skill level, such as those proposed 

by Biagi (2013), Chua and Chua (2017), and Gamble and Calverley (2015). I chose a 

quantitative method using a correlational design to explore the relationship between the 

use of HCI devices and motivation to embrace and use Web 3.0 technologies. The 

objective was to explore some of the critical human behaviors of engineers (their use of 

HCI devices) and their Web 3.0 skills. The data collection instrument was a self-designed 

questionnaire, the Web 3.0 technological skill survey (see Appendix A), refined with a 
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pilot test using subject matter experts who provided feedback. In this correlational study, 

I employed the quantitative questionnaire to inform the independent variables.  

I also used the questionnaire to inform the dependent variable, Web 3.0 skills. The 

engineers rated their knowledge level for eight different Web 3.0 technologies: web 

technologies, developer tools, relational database technology, software design, 

blockchain technology, operating systems and server technologies, server software, and 

virtualization. The dependent variable, Web 3.0 skills, was an aggregate of the eight 

questions or knowledge of technologies (KOT) subscale. 

I used multiple linear regression (MLR) to build a predictive model of skill level 

as a function of the use of each of five HCI devices. I used MLR to test the research 

hypotheses and to assess the influence or predictability of the independent variables (the 

use of HCI devices) on the dependent variable (Web 3.0 skills). The target population 

was engineers employed by small and medium enterprises in metropolitan areas of 

Georgia. In the United States, the definition of small and medium enterprise is based on 

the industry size, revenue, and the number of employees—which may be up to 1,500 

employees, but the cap is typically 500 employees (Goerzig & Bauernhansl, 2018). Small 

and medium enterprises are innovative and considered the backbone of America’s 

economy, contributing to the most significant number of employers (Goerzig & 

Bauernhansl, 2018).  

In this research, I addressed the spectrum of desktops, laptops, tablets, 

smartphones, and wearable devices and its association with engineers’ competence with 

Web 3.0 technologies. The rationale for including these devices was that they represent 
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the kinds of devices procured by small and medium enterprises as an investment in their 

engineers to improve their productivity, specifically related to the use of Web 3.0 

technologies. HCI devices excluded in this research were devices that engineers do not 

use for working or for developmental purposes (e.g., gaming consoles, television remote 

controllers, and standard calculators). Desktops, laptops, tablets, smartphones, and 

wearable devices were the most appropriate for understanding where small and medium 

enterprises ought to prioritize their investment in technology for their engineers. 

Definitions 

The following are definitions for the special terms and concepts used in this study. 

Some of these I defined for the purpose of my research, and citations are provided for the 

others. The definitions are intended to provide consistency throughout the manuscript:  

Adjusted R2: The coefficient of determination; the portion of the variation in the 

dependent variable that is attributed to the variation of the model (Frost, 2020). 

Competence with HCI devices (CHCID): The extent to which engineers are 

competent, in the aggregate, with the five HCI devices. 

Computer technology: Ability to input, process, store, and transmit data or 

information in various output file formats electronically (Heaggans, 2012). 

Counterproductive work behaviors: Intentional behaviors of an employee that are 

viewed by an organization to be contrary to its legitimate interests (Glassman et al., 

2015).  

Cyberloafing: Employees engaging in counterproductive work (Glassman et al., 

2015).  
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Desktop competence (DTC): The extent to which engineers are competent with a 

stationary workstation. 

Desktop reliance (DTR): The extent to which engineers rely on a stationary 

workstation. 

Human–computer interaction (HCI): The interaction between human user and 

computer, relating specifically to the interface design and usage of computer technology 

(Gamble & Calverley, 2015).  

Human–computer interaction (HCI) device: A device based on state-of-the-art 

hardware and software developments that have led to the evolution from command-line 

to more advanced human-like or natural user interfaces for virtual environments, gesture 

design, and recognition (Bachmann et al., 2018). HCI devices related to this study 

include desktop (e.g., stationary workstation), laptop (e.g., portable computer), tablet 

(e.g., touchscreen), smartphone (e.g., handheld computer), and wearable (e.g., VR 

headset) devices. 

Information and communications technology (ICT): All applications and systems, 

networking components, and all devices combined to allow people and organizations to 

interact and engage in the digital world (Tarute & Gatautis, 2013).  

Input–output price ratio: The ratio of the aggregate price of capital services and 

labor hours relative to the price of the output (Byrne & Corrado, 2017). 

Input price: The cost to produce goods and services (Byrne & Corrado, 2017). 

Laptop competence (LTC): The extent to which engineers are competent with a 

portable computer. 
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Laptop reliance (LTR): The extent to which engineers rely on a portable 

computer. 

Ontology: The transporter of interpreted meanings of information that is 

integrated information collected from various sources (Rudman & Bruwer, 2016). 

Organization for Economic Cooperation and Development (OECD): An 

organization that provides a platform for governments to share common experiences and 

work toward common solutions driving change in developmental sectors that include the 

economic, social, and environment sectors (OECD, 2012).  

Productivity: The ratio of inputs to outputs and its effect on a country’s economy 

and its competitiveness (Schuh et al., 2014).  

Reliance on HCI devices (RHCID): The extent to which engineers rely on the five 

HCI devices in the aggregate.  

Robot: A machine programmable by a computer that can transmit complex 

instructions into a series of actions automatically. Often a series of actions resemble 

humans, as the image of robots are mechanical with human-like movement and 

expression (Gamble & Calverley, 2015). 

Smartphone: A portable and handheld computer considered smarter than a 

cellphone (for just making phone calls) that uses many applications (Web browsers, 

games, maps, emails, and image editors) and is wireless with a specialized operating 

system (Wang et al., 2016). A device that includes a virtual keyboard, voice action, 

multisensory touchscreen, and has network connectivity (e.g., Apple iPhone, Google 

Pixel, and the Samsung Galaxy; Wiberg & Wiberg, 2018). 
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Smartphone competence (SPC): The extent to which engineers are competent with 

a handheld computer. 

Smartphone reliance (SPR): The extent to which engineers rely on a handheld 

computer. 

Tablet competence (TTC): The extent to which engineers are competent with a 

touchscreen. 

Tablet reliance (TTR): The extent to which engineers rely on a touchscreen. 

Use of HCI devices: An engineers’ reliance on and competence with each of five 

HCI devices.  

Value-added output: Compensation of employees, taxes on production and 

imports, contributions, and gross operating surplus. Value added does not incorporate 

intermediate inputs (Ekuobse & Olutayo, 2016).  

Wearable competence (WBC): The extent to which engineers are competent with 

a VR headset. 

Wearable reliance (WBR): The extent to which engineers rely on a VR headset. 

Web-based application: An online communication service that users can access 

and interact with directly on their computer or handheld devices with network support 

from the internet or intranet (Kreps & Kimppa, 2015). 

Web 1.0: The read-only Web, or a platform in which information is published in a 

static form, portrayed in an environment with text and images that are well designed. The 

data are displayed with no interaction (static) between the information and the consumer, 

having minimal content creators (Rudman & Bruwer, 2016).  
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Web 2.0: Introduced in October 2004, an extension of Web 1.0 technologies with 

enhanced principles and underlying infrastructure. Website presenting user-generated 

content is known as the main feature (Kreps & Kimppa, 2015).  

Web 3.0: An application using crowd-sourced data, IoT, cloud computing, and 

semantic web (Kreps & Kimppa, 2015). 

Web 3.0 skills: A self-reported measure of composite knowledge and skills 

related to eight components of Web 3.0 technologies: web technologies, developer 

tools, relational database technology, software design, blockchain technology, operating 

systems and server technologies, server software, and virtualization. Web 3.0 skills is the 

dependent variable in this study. 

Assumptions 

Assumptions are out of a researcher’s control and cannot be proven or 

demonstrated but are essential for conducting research (Field, 2013; Frost, 2020). My 

first assumption was that all engineers would respond to the survey truthfully. I assumed 

that convenience sampling of participants who completed the questionnaire would be 

sufficient to answer the research question. 

I assumed that self-reported Web 3.0 skill levels indicated engineers’ 

performance. The assumption was that an engineer’s motivation to learn new skills 

impacts skill level, which in turn, impacts performance and productivity. I assumed that 

Web 3.0 skills are an indicator of leading-edge engineering skills that are assumed to 

correlate to whether engineers can succeed, receive better job offers, and work on better 

projects because those are the macro concerns of the engineering community. If an 
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engineer has Web 3.0 skills, that indicates motivation; possession of Web 3.0 skills is 

associated with productivity, and engineers with Web 3.0 skills are more competent, 

motivated, and productive.  

I assumed that the five HCI devices are representative of the technologies that 

companies might choose to invest in to increase the capabilities of their engineers and 

that an investment in these technologies might be motivation for engineers to develop 

skills and become more productive. Engineers who understand skills with new Web 3.0 

platforms help small and medium enterprises become innovative in building new 

applications that enhance users’ interactions with devices adequately and productively. 

Scope and Delimitations 

This research was focused on understanding the organized flow of information 

relating to HCI devices using web technologies, the more advanced forms of digital 

technology used in engineering. The study was limited in scope by time and geographic 

location. My research intended to assess the level of skill and interactions with 

technologies available and advanced technologies for building a smarter world, much like 

that of Web 3.0 technologies or IoT, cloud computing, and artificial intelligence (AI). 

The research covered the technologies that engineers use based on innovation and 

competitive advantage for organizations and their skill levels with advanced technologies 

such as Web 3.0. 

Delimitations are factors that limit the scope of a study and define the limits of a 

study (Bryman, 2012). This research was limited to engineers employed by small and 

medium enterprises. This study was limited by time, whereby the study was conducted 
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over a brief interval serving as a snapshot of the technological conditions existing in the 

past 5 years. The small and medium enterprises of interest were chosen based on the 

size—fewer than 500 employees, defined by OECD (2012) in the United States. 

This study includes engineering professionals who live and work in metropolitan 

areas of Georgia. According to the Atlanta Journal-Constitution, Atlanta is among the top 

25 cities for evolving technology and is home to the fourth-largest technology hub in the 

United States, known as Atlanta Tech Village. Atlanta ranks behind giants in the tech 

regions such as Silicon Valley (San Jose, California); San Francisco, California; and 

Washington, D.C., known as the top three tech-centric markets. According to the Atlanta 

Journal-Constitution (Pirani, 2017), previous research considered several factors to 

determine which cities would make up the Tech 25, including Atlanta’s institutions of 

higher learning, investment funding, well-qualified workforce, entrepreneurship, and 

more. 

Limitations 

Limitations are potential weaknesses in the research design or methods out of a 

researcher’s control affecting conclusions. Because correlation does not prove causation, 

the results of this study might not prove if the use of HCI devices causes a change in Web 

3.0 skill levels. Convenience sampling does not provide the same level of random 

investigation, which theoretically might introduce bias and impact generalization. 

However, with sufficient sample size and careful explanation of results, bias was 

minimized, and generalization was within the appropriate scope. 
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Significance of the Study 

Engineers must figure out new ways of creating and sharing information by fully 

using technology (Priem et al., 2012). My research fills a gap in understanding the 

motivation to learn and adopt Web 3.0 technologies that equip engineers to perform well. 

My research also fills a gap in describing the relationship between HCI devices and Web 

3.0 skills for engineers’ requirement to be motivated to perform well, especially when 

those enterprises are making significant investments in the technology. Despite the 

growing awareness of HCI, its overall impacts on using new technologies remain 

unknown, and views differ regarding its effects on human welfare and social change 

(Tisdell, 2014).  

This study is unique because it addressed an ongoing yet understudied challenge 

for small and medium enterprises (Benner & Tushman, 2013); Web 3.0 was implemented 

in 2006 but has yet to reap the expected benefits in terms of performance. In this chapter, 

the definition of productivity incorporates efficiency, which means economical use of 

resources, production of excellent products or services, and quality or technical 

specifications and outcomes related to customer engagement. This study provides much-

needed insights into the processes for increasing the motivation of engineers’ 

performance in the beginning phases of launching new projects while adopting new 

technologies throughout a project.  

Significance to Theory 

In this research, I examined the significance of HCI devices and their impact on 

Web 3.0 skills. As a basis for understanding digital technologies and computer literacy, I 
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explained the IT productivity paradox and its effect on engineering managers’ decision 

making. My research was focused on addressing the practical challenges that arise in the 

engineering workplace explained by the theory. 

This study contributes to the IT and engineering literature by expanding on the IT 

productivity paradox. The IT productivity paradox signifies an unresolved relationship 

between investment in IT and performance that is evident in previous studies and 

continues to puzzle managers, software developers, and engineers (Xu & Zhang, 2016). 

Enhancement of engineers’ productivity and engagement of digital technologies is a 

major priority, especially for small and medium enterprises (Gamble & Calverley, 2015). 

Yet, if investments do not pay off, as predicted, and explained in the IT productivity 

paradox, they are wasted. This study contributes to the theoretical understanding by 

investigating HCI and Web 3.0 skills as indicators of engineers’ performance. This 

research fills a gap in understanding how the adoption of specific Web 3.0-related 

technologies, in various combinations, can enhance performance levels among engineers 

and avoid the paradox captured in the theory. 

Significance to Practice 

My research is relevant to the practice of engineering management and 

technology management in various fields, including accounting, finance, economics, 

engineering, human resources management, IT, organizational behavior, operations 

management, and project management. This study addressed administrative and 

operational challenges related to managing technological advancements and innovation in 

which ICT, HCI, and Web 3.0 are common management issues. The results of this study 
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may provide much-needed insights into the processes related to technology investments 

for increasing the performance of engineers in the beginning phases of new projects. This 

research may lead to an increased understanding of the factors influencing engineers’ 

motivation and to the more effective adoption of Web 3.0, greater skills, and more 

productivity in the workplace. Understanding more clearly why investments are or are 

not paying off may lead to new motivation, training, and learning approaches. These 

approaches may benefit organizations in both effectiveness and efficiency using new 

technologies. Training and implementing rapid advancements in technology may help 

engineering management ultimately decide best practices for the adoption of 

groundbreaking technologies and tools for optimizing better performance in an 

organization’s operations and for its employees. This research may benefit engineering 

management, emphasizing the need for a strategic focus and planning capabilities while 

seeking improvements in operational performance on complex engineering tasks in small 

and medium enterprises.  

Significance to Social Change 

Historically, ICT innovations have significantly influenced economic growth and 

social change. The digital age, much like past industrial revolutions, resulted in a 

significant change in society (Schuh et al., 2014). Increased productivity can ultimately 

improve living standards and conditions for society. Enhanced skills and productivity 

benefit the engineering workforce and small and medium enterprises; society benefits 

from increased effectiveness and efficiency. This research may lead to positive change 

for engineering organizations, management, engineers, and society. Engineering 
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management benefits from wise decision-making strategies regarding investment in the 

right kinds and combinations of HCI devices and technologies used in small and medium 

enterprises. If the technologies provided to engineers are the right combinations of HCI 

devices, engineers may become more comfortable with and motivated to use new 

technologies enabled by Web 3.0 tools, making their daily tasks easier to complete. Thus, 

engineers equipped with the right kinds and combinations of HCI devices may be likely 

to increase their skills and productivity. Engineering organizations may then be more 

effective and efficient and, therefore, more successful. Society benefits because the 

engineering workforce may be better equipped and more productive, the quality of 

engineering products and services may increase while their costs may decrease due to 

efficiency.  

Summary and Transition 

ICT, IT, and Web 3.0 technologies have drastically advanced communication by 

increasing the productivity of engineers and revolutionized how information is analyzed 

and used to profit organizations (Kreps & Kimppa, 2015; Tarute & Gatautis, 2013). Web 

3.0 technologies were projected to increase the performance of professionals and improve 

knowledge and communication. The overall objective of this quantitative study was to 

improve the understanding of components of HCI and Web 3.0 skills and their impact on 

performance for engineers.  

Current research suggests that scholar–practitioners and industry professionals 

believe that economic productivity will not be achieved until the full power of technology 

evolves. Therefore, the productivity paradox remains in question and invites explanation. 
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In the next chapter, I analyze current literature and present findings that support the need 

for this study and a review of various methods used in relevant studies.
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Chapter 2: Literature Review 

The social problem in this study was that despite massive company investments in 

new HCI devices and software such as Web 3.0 technologies (Gamble & Calverley, 

2015), engineers are not demonstrating measurable performance increases. Measured 

growth in the labor productivity and total factor productivity of engineers is not yielding 

gains despite considerable investments in emerging ICT and IT tools designed for 

increased usability and productivity for Web 3.0 (Tarute & Gatautis, 2014). The research 

problem was a lack of knowledge and understanding of the motivation of engineers to 

learn and use Web 3.0 technologies. The purpose of this quantitative correlational study 

was to investigate whether the use of HCI devices predicts Web 3.0 skills among 

engineers. 

In this chapter, I document the evaluation of approximately 150 scholarly articles 

related to the social problem. The intent of this literature review was to present and 

critically assess research into the opportunities and challenges related to HCI and web 

technologies for rendering better performance by engineers. First, I describe my research 

strategy, then explain the theoretical foundation for my research. These topics lead to a 

critical assessment and comparison of research into the prominent opportunities and 

challenges relating to HCI and Web technologies for rendering better performance by 

engineers. The objective of this review was to demonstrate what has been researched and 

where a gap exists in the scholarly research. 



 

24 
 

 

Literature Search Strategy 

I employed an initial literature search strategy to find peer-reviewed articles about 

HCI and web technologies, but available articles on these topics were limited. Instead, 

many articles were related to IT and ICT. Primary keywords and key phrases used to 

conduct the literature search were cloud computing, computer literacy, engineers, HCI, 

ICT, IT, productivity, performance, semantic web, technology, web, web technologies, 

Web 3.0, and Web 3.0 skills. I searched Emerald Management Journals, ProQuest Central, 

SAGE, Google Scholar, and dissertations and theses in the Walden University library. 

Regarding the theoretical foundation, I conducted searches for Solow IT productivity 

paradox and seminal articles related to the origin and historical background of these 

theories. I located Solow’s original work from 1957 and current literature that referenced 

Solow. 

Theoretical Foundation 

The theoretical foundation for this study was the computer paradox (or IT 

productivity paradox) proposed by Solow in 1957. Solow was a pioneer in growth theory 

and sparked an ongoing debate about the technological factors that can increase the 

growth of national income and social wealth.  

The Solow IT productivity paradox was the best choice of theory for my study in 

my efforts to build on existing theory and for creating a conceptual productivity model 

that highlights a complex system of interrelated variables (e.g., technological skills and 

behavior). In the United States, the IT productivity paradox means a slowdown in 

productivity growth despite investments made in advanced technology. Performance 
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outcomes may or may not be positively associated with the productivity of engineers in 

small and medium enterprises and start-up organizations.  

IT Productivity Paradox 

The Solow growth model is a neoclassical model of economic growth (Solow, 

1957). Solow’s (1957) growth model has been applied to the economic growth of the 21st 

century, considering three essential points for GDP: (a) labor, (b) capital, and (c) skill. 

Solow’s (1957) growth model considers the ICT effect on long-run growth, which is 

calculated as total ICT effect on GDP growth = ICT use effect + ICT output effect. This 

equation measures the economic growth of production of goods and services. For 

consumers, this means ICT directly impacts the creation of value-added goods and 

services for the economy.  

The Solow growth model assumes that the growth rates of skills and labor are 

constant. The number of investments allotted for production are also assumed to be 

constant and exogenous. The growth model suggests that output directly impacts the 

growth of capital in the economy, as technical changes occur over time (Solow, 1957)  

The Solow growth model is based on endogenous technological progress or 

change and worldwide capital growth (Solow, 1957). Mathematically the Solow 

productivity growth model is represented as 

Q = A(t)f (K, L) (1) 

where, 

Q = output 

A = skill 
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t = time 

f = technical change 

K = capital 

L = labor 

A(t) = combined impact of technical changes over time 

This equation means that technical change occurs from adding new education or skills, 

which increase or decrease output, and the multiplicative factor A(t) represents the 

combined impact of technical changes over time. 

Solow Residual 

The Solow residual measures productivity increase in an economy per year. In the 

digital era of ICT, new models of connection, computing, information sharing, and 

knowledge management impact local, global, virtual, and multicultural growth (James, 

2015). Biagi (2013) assessed that the Solow residual has several ICT mechanisms that 

could contribute to improved organizational efficiency and productivity of skilled labor 

or enterprise software, more efficient dissemination of information or cell phones and 

texting, and reduced transaction costs and more efficient market transactions or online 

banking. 

Research Involving the IT Productivity Paradox  

Byrne et al. (2016) claimed that the United States is experiencing a slowdown in 

measured labor productivity growth. Byrne et al. (2016) compared data for the periods 

1947–1973, 1973–1995, 1995–2003, 2003–2007, 2007–2010, and 2010–2015. Compared 

to the 2.8% average annual growth sustained throughout 1995–2004, there has been a 
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decline in labor productivity growth (Syverson, 2016). From 2005 to 2015, labor 

productivity growth averaged only 1.3% per year (Syverson, 2016). According to the 

Bureau of Labor Statistics (2021), in the first quarter of 2021, labor productivity 

decreased 1.7%, output increased 1.4%, and hours worked increased 3.1%; these annual 

rates provide more evidence that productivity has decreased over time.  

The IT productivity paradox has been firmly supported by empirical evidence 

from the 1970s to the early 1990s (see, for example, Byrne et al., 2016; Syverson, 2016). 

Researchers have explained the IT productivity paradox in four components: (a) 

mismeasurement of outputs and inputs, (b) lags caused by learning and time adjustment, 

(c) redistribution or a waste of profits, and (d) mismanagement of IT (Byrne et al., 2016; 

Solow, 1957; Syverson, 2016).  

Xu and Zhang (2016) emphasized that the difficulty of measuring the return of IT 

investments is due, in part, to time lag and the learning curve. Specifically, Xu and Zhang 

(2016) argued that the reason for the IT productivity paradox is empirical measurement 

challenges. For example, Xu and Zhang proclaimed that the empirical measurement issue 

was the most noted and accepted explanation among IT researchers, which describes a 

positive relationship between IT investments and organization performance yet highlights 

the challenges in measuring IT investment payoff due to lags caused by learning and time 

adjustment.  

Relevant research (see, for example, Syverson, 2016; Xu & Zhang, 2016) has 

illustrated the strategic use of IT and ICT and the existence of the Solow IT productivity 

paradox, which serves as the theoretical foundation for this study. Other research studies 
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that include the Solow IT productivity paradox have helped researchers further 

understand the positive effect of the four components of the IT productivity paradox.  

Until the late 1990s, the first generation of case studies of the Solow IT 

productivity paradox involved mixed empirical results that assumed the paradox would 

resolve by observing productivity. Consequently, in the second generation of case 

studies, researchers (see, for example, Acemoglu et al., 2014; Biagi, 2013) focused more 

on quantitative performance measures in various sectors that used IT and ICT and found 

that organizations were adopting quantitative performance measures in IT for better 

performance of the national economy. In contrast, historical research methods of the 

Solow (1957) computer paradox examined in the literature depicted only measurements 

of variables of interest (e.g., investments and labor) without the need to control 

extraneous (irrelevant) variables and assessment of the relationship between the 

variables. 

Literature Review  

In this chapter, I review the literature related to digital technologies with a 

thorough examination of ICT, HCI, Web 3.0, and digital literacy. This review covers the 

existing research from studies conducted from 2012 to the present about the 

breakthroughs and barriers of digital technology adoption and the usage and application 

in the next generation of web technologies or Web 3.0. I examine approaches to 

understanding the relationship between technical ability and productivity related to the 

usage of Web 3.0 technologies for engineers to enhance performance in the United 
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States. I examine methodologies that impact engineers’ technological capability to make 

innovative decisions and strategic planning for propelling firms to the next level.  

This review focuses on historical research on the topics of ICT, HCI, and Web 3.0 

and its impact in technology, construction, healthcare, and other sectors that have 

integrated technological adoption for increased performance. The challenges of advanced 

tools and digital literacy are also examined.  

Historical Research: ICT 

ICT has drastically changed society in the 21st century (Stanley et al., 2018). 

There is growing research in ICT. The strategic asset for organizations has been 

sustainable competitive advantage and innovation (Ekuobse & Olutayo, 2016). ICT 

serves as a solid foundation in transforming business practices and is considered a 

competitive advantage factor for many organizations that attain and sustain technological 

advancement (Mihalič et al., 2015). ICT-based innovation is at the root of growth in 

performance improvement, but competitiveness is extreme and critical to the success of 

any organization (Ekuobse & Olutayo, 2016).  

Organizations face multiple challenges, including increased government 

regulations, stricter budgets, and rapidly changing technologies. Amid these challenges, 

organizations can still thrive on innovation and improve productivity or performance. 

Gamble and Calverley (2015) proposed that an opportunity exists for smaller businesses, 

start-ups, and conglomerate companies in emerging countries that often have less access 

to capital. With productivity analysis, a competitive strategy may decide which processes 
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or products should be expanded and eliminate projects that should be phased out (Mashal, 

2017).  

Positive Effect of ICT on Productivity  

ICT is a branch of IT that deals explicitly with digital devices used to 

communicate using digital information. Researchers have documented the positive effect 

of ICT on productivity. Mihalič et al. (2015) examined ICT for competitiveness, evolving 

resource theory, and the competitive advantage factor from 2000 to 2010. Additional 

researchers have suggested that ICT has a significant positive effect on the financial 

management system. For example, Cardona et al. (2013) provided empirical evidence 

that ICT severely impacted the beginning of the digital economy two decades ago, 

organizational performance, and proficiency of products and services.  

Gamble and Calverely (2015) explained that ICT advanced other technologies, 

such as IoT, enhanced computer control systems, cloud usage, and various computer 

simulation methods. ICT and advances in other areas, such as new energy sources, 

genomics, and nanotechnology, are transforming many industries, including energy, 

materials, agriculture, and healthcare (Gamble & Calverley, 2015). Harkushenko and 

Kniaziev (2019) expressed the need for ICT for economic development, stating that the 

scientific community, commercial manufacturing sector, and even the government are on 

board with financial and mathematical models of ICT for better impact on output and 

productivity.  

Borras-Gene et al. (2016) proclaimed that ICT impacted engineering education by 

innovation methods supporting learners’ technologies. Both theoretical and empirical 
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research suggested that ICT permits further innovation and adoption of advanced 

technologies (Cardona et al., 2013). 

Total Factor Productivity 

Total factor productivity is a measure of the increase in outputs holding capital 

and labor inputs constant and helps explain the effect of ICT on economic growth 

(Stanley et al., 2018). Biagi (2013) proposed that productivity growth is measured in 

labor productivity, at both the macroeconomic and the sector levels. Gamble and 

Calverley (2015) proposed that labor productivity growth impacts changes in productivity 

per hour and includes total factor productivity gains due to higher technical skills and 

more machines. 

Two basic methods, growth in gross domestic product (GDP) and labor 

productivity, have been used to estimate the contribution of ICT. Theoretically, 

researchers (see, for example, Stanley et al., 2018) have argued that ICT should be an 

effective and essential stimulant of economic and productivity growth. 

The use of ICT leads to efficient management of processes of budget accounting. 

Wambui and Njuguna (2016) examined critical factors that influence the effectiveness of 

financial management systems of health-oriented, civil society organizations in Kenya. 

Organizations that invest in a management information system experience lower 

administrative cost (Wambui & Njuguna, 2016).  

Wambui and Njuguna (2016) researched the financial management processes of 

non-governmental organizations due to resource scarcity and lack of social 

developmental activity funding. The extent of ICT’s impact on financial management 
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system effectiveness, improper management of project budgets, and strategic decision 

making was Wambui and Njuguna’s focus. Their findings suggested that 87% of donors 

do, in fact, support organizations in accomplishing their mission by using ICT (Wambui 

& Njuguna, 2016). Wambui and Njuguna recommended that ICT be further developed so 

that ICT is maximized to improve performance, efficiency, and better financial 

management investments for Web 3.0 technologies.  

ICT in the construction sector has also influenced small and medium enterprises’ 

decisions to adopt new technology (Sawhney et al., 2014). Gamble and Calverley (2015) 

studied the impact of significant investments in new ICT equipment and web technology 

software. Kusumaningtyas and Suwarto (2014) examined the extent of demographic 

factor differences of age, gender, education level in ICT, Internet and computer adoption, 

skill level, and usage related to 196 managers working in small and medium enterprises. 

Kusumaningtyas and Suwarto found that gender was not associated with differences in 

ICT adoption. Instead, the level of education, technological skill capacity, and age impact 

ICT adoption.   

The ICT maturity model proposed by Ekuobse and Olutayo (2016) adds another 

layer regarding the importance of ICT adoption. Ekuobse and Olutayo found that the 

service industry is affluent in using web-based ICT. However, their ICT maturity model 

suggests that the correlation between ICT maturity and ICT value in the Nigeria service 

industry is weak and negative. Gamble and Calverley (2015) asserted that ICT has 

changed how production is organized and managed; and suggested that new laws, 
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regulations, and infrastructures are needed to support the nature of work and leisure from 

the usage of ICT.  

Human–Computer Interactions and Engineers 

In this section, I investigate ways engineers can purpose their devices or machines 

in their work and everyday life for society. Historically, innovations in HCI have had 

significant influences on economic growth and social change. Dawson’s (2016) research 

on HCI added to understanding the proper usage of 21st century ICT tools and advanced 

technologies like Web 3.0 for engineers. Gamble and Calverley (2015) asserted that HCI 

changed how production is organized and managed; described the types of goods 

produced; identified where it is made; and suggested that new laws, regulations, and 

infrastructures are needed to support the nature of work and leisure from the use of HCI 

devices. 

According to Bryne et al. (2016) and Decker et al. (2017), transformative 

innovation in advanced HCI devices yields higher productivity growth and supports the 

notion that startups and small and medium enterprises’ technological innovations provide 

economic dynamism. Hampton and Shalin (2017) investigated ergonomics in society 

through a measure of urgency in social media. In their review of the literature, Hampton 

and Shalin (2017) found that HCI research generally aims to determine which features 

users benefit the most from, find more straightforward to use, and which computing 

devices and technologies are favorable among engineers.  

Despite that, previous literature has not resolved the question: What motivates 

engineers to interact with their devices, allowing for a fulfilling experience while solving 
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complex problems with ease or intensity? Other questions are raised considering how and 

why engineers opt to use one software or new technology. At what cost will Web 3.0 

technologies impact an engineer’s work-life balance, social interactions, and well-being? 

Businesses continue to invest billions in semantic technology. New and increased 

knowledge in the related fields of ICT for development and HCI for development 

(HCI4D) have resulted in leaps in technologies with special ergonomic attention and care 

to the social environment in business and sociocultural contexts (Sambasivan et al., 

2017). For example, engineers can walk in virtual worlds using VR, and voice user 

interface (VUI) is now considered a must-have feature on digital devices like 

smartphones to aid in faster human productivity and capability in IoT and intelligent 

spaces. 

VUI is an input method that allows voice input from humans to control computers 

and devices (Corbett & Weber, 2016). In the 2000s, the only capability of VUI was 

known as human speech over the telephone (Corbett & Weber, 2016; Sambasivan et al., 

2017). The popularity of utilizing voice as a control modality in mobile HCI or 

smartphones was introduced in 2011 by Apple’s iPhone 4S, which included a beta 

version of Siri on the operating system iOS 4.  

Voice experiences are innovative since this tool offers ease of use, is faster, and 

populates search results quicker (Amazon, 2018). For example, Amazon’s voice service-

developed VUIs known as Alexa and Amazon Echo, are capable of learning user speech 

patterns, and have evolved even smarter-building vocabulary for users to speak various 

commands (Corbett & Weber, 2016). Industry professionals predict that more people will 
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interact with their devices using voice commands and project 50% of all searches using 

their voice instead of text (Shneiderman et al., 2016).  

Innovative concepts like VUI have propelled the digital technology era especially 

with enhanced accessibility and integration via mobile devices. The intent of VUIs was 

for completely being hands-free, for users who have a variety of motor impairments, 

limiting their hand dexterity (Corbett & Weber, 2016). The advancement of smartphones 

coupled with voice recognition has given independence to many users, especially while 

driving, and provides convenience when integrated into both office and home 

environments (Corbett & Weber, 2016). 

Research in HCI has provided minimal evidence of ergonomic usage per HCI 

device since Web 1.0 displayed read-only information and content (Gamble & Calverley, 

2015). In 2004, O’Reilly and Dougherty popularized Web 2.0, an evolution into a social 

web and participatory culture (James, 2015). The evolution of Web 3.0 means even more 

interactivity, hence emphasizing how humans interact with computers or their HCI 

devices.  

Evolution of Web 3.0 

The research in this section consists of whitepapers and reports with few peer-

reviewed articles due to limited research of Web 3.0 conducted in the past 5 years. 

Minimal research has been conducted or published concerning the effects that Web 3.0 

skills and tools will offer organizations (Bruwer, 2014). Research that establishes a 

detailed framework to reduce potential risks in Web 3.0 has not been conducted. To 
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understand Web 3.0, I compare, contrast, and synthesize existing research and literature 

regarding the social problem and evolution of Web 3.0.  

Web 1.0 

The advancement of the web occurred in stages, as the first generation of the 

Internet, Web 1.0, was developed for content that provided users with information 

(Bruwer, 2014; Farah, 2012). Web 1.0 was considered traditional and document centric 

(Thirunarayan & Sheth, 2013). Simply put, Web 1.0 allowed employees to input data into 

spreadsheets or documents, like the software program Excel. 

The primary benefit intended in Web 1.0 was for databases, where users input 

more data into a relational database instead of documents, which reduced inconsistencies, 

permitted data to be searched, and avoided duplicates in information. For example, this 

was a skill set intended for software developers or engineers familiar with relational 

database tools. Limited HCI with web content posed challenges of active engagement, 

which led to the second generation, Web 2.0. 

Web 2.0  

Web 2.0, introduced in 2004, is known for interactivity, where HCI is enhanced 

according to how the user interacts with other users on social networking websites, such 

as Facebook (Horzum & Aydemir, 2014). Web 2.0 was also considered user-generated 

and content-focused (Thirunarayan & Sheth, 2013). Other popular social networking 

websites such as Snapchat, Instagram, Tumblr, and YouTube increased the amount of 

time users spend on their smartphones, tablets, and laptop computers. Web 2.0 has 
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permitted users to render search results from intelligent keyword-based search tools 

found in Google Search, for example. 

User personalization in Web 2.0 also became a challenge in assessing human 

factors for those who opted to use their smartphones for searching that was aligned with 

the user’s need for information based on their lifestyle. James (2015) proposed a new 

model for adopting and using Web 2.0 technologies, known as the user benefits model, 

which was developed to assist professionals in an organizational setting. 

 In 2015, Internet content became more semantic and diverse, with the volume of 

data increasing, measuring engineers’ usage, and managing data became more critical 

(Kreps & Kimppa, 2015). Internet and survey research using Web 2.0 technologies 

(blogs, wikis, 2D, social media, and podcasts) have provided a vast amount of 

information and resources (Roback, 2012; Sivarajah et al., 2015). 

Web 3.0  

Web 3.0 refers to software applications that collaborate based on previous user 

interactions, cloud computing, and web-based customer relation management (CRM) 

systems (James, 2015). Rudman and Bruwer (2016) confirmed that Web 3.0 computer 

programs and devices evolved from Web 1.0 to generate and process information 

semantically for humans. In Web 3.0, information is presented in a meaningful way with 

semantically linked data. Rudman and Bruwer (2016) urged organizations to accept the 

paradigm shift of the Web 3.0 evolution so that organizations can better understand big 

data and make better decisions.  
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In 2017, the term Web 3.0 was used occasionally, but an overview of the 

literature suggests that there is still no agreed-upon definition. The future prediction of 

Web 3.0 is yet to be determined, and no one knows how much it will impact society 

(Farah, 2012).  

Despite its many successes and general acceptance throughout the world, the 

Western system of Web 3.0 has not led to greater productivity, replaced workers, or 

decreased the workload required to remain competitive in a global economy (Atabekova 

et al., 2015; Gomes & Cardoso, 2020). Bruwer (2014), Byrne et al. (2016), Horzum and 

Aydemir (2014), James (2015), Kreps and Kimppa (2015), Mashal (2017), Roback 

(2012), Rudman and Bruwer (2016), and Thirunarayan and Sheth (2013) used industry or 

firm data to validate the positive effects of Web 3.0.  

Web Ontology Language  

In 2004, web ontology language (OWL), or the beginning of the semantic web, 

was birthed (Pew Research Center, 2014; Pew Research 2016). The semantic web, 

smartphones, tablets, software, cloud applications, social media, three-dimensional (3D) 

portals are propelling faster towards a more dynamic environment, where the 

democratization of the capacity of knowledge and action helps businesses in almost all 

sectors, ranging from retail, applied for molecular medicine, micro-businesses to 

conglomerate corporations (James, 2015; Kreps & Kimppa, 2015). 

OWL is an ontology language that enables a device or machine to universally 

process informative content from the web (Bruwer, 2014). According to Bruwer (2014), 
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web ontology emerged from the need to extract descriptions of web information and 

comprehend the relationships between pieces of web information. 

OWL is a Web 3.0 tool that can allow engineers to optimize their performance 

(James, 2015). Globally engineers can develop ontologies based on their native language 

and need. One objective of any engineering organization, including small and medium 

enterprises, is to equip engineers to align work behavior with organizational goals. 

Therefore, it is the responsibility of management to develop performance measures that 

will prompt organizationally desirable behaviors. 

Earlier adoption of ontology languages was user-specific or designed solely for 

user communities, particularly science and organization-specific e-commerce 

applications (Bruwer, 2014). Ontology languages were not compatible with the web’s 

architecture, especially not Web 3.0. However, with the creation of OWL2, HCI devices 

and machines without HCI can read and comprehend information on the web and are 

equipped with a more powerful syntax and more extensive vocabulary (Bruwer, 2014). 

Web 3.0 Technologies 

As the semantic web evolves and better gauge the projected direction of Web 3.0 

technologies (i.e., AI, IoT, AR), measuring the impact on small and medium enterprises 

will provide more insight into productivity usage expectations. Web 3.0 technologies 

may foster research and technological skills far exceeding what is possible today 

(Roback, 2012). 

Web 3.0 technologies drastically advance communication, increase engineers’ IT 

productivity, and revolutionize how information is analyzed and used to benefit 
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organizations (Farah, 2012; Santos, 2015). Thirunarayan and Sheth (2013) proclaimed 

that data and services associated with small and medium enterprises that adopt cloud 

computing, social networks, sensors, smartphones, tablets, and other devices that 

comprise IoT help define these advanced web resources and applications of Web 3.0. 

Web 3.0 technologies facilitate a worldwide data warehouse consisting of any data 

format that can be understood and shared by any device and over any network (Rudman 

& Bruwer, 2016). 

Web 3.0 technologies describe machine-to-machine communication on the 

Internet, using the semantic web to provide personalized information (James, 2015). Web 

3.0 technologies provide an integrated web experience where machines can understand 

and index data like humans (Rudman & Bruwer, 2016). Thirunarayan and Sheth (2013) 

proclaimed that Web 3.0 technologies might increase productivity and improve 

knowledge and communication. 

Chua and Chua (2017) assumed that a significant causal relationship between 

conscientiousness personality traits and attitude toward social networking sites (SNS) like 

Facebook would occur. Therefore, one could infer that social media is a gateway for 

computer-mediated communication (CMC), skill, motivation, and advanced learning of 

other Web 3.0 technologies (Chua & Chua, 2017). 

Ensuring adequate skills in engineers leads to a society that thrives in a well-

developed communications network that supports the free flow of communication across 

borders with the ability to make decisions promptly (Cebr, 2016). Technological skills of 

Web 3.0 are specifically known as the third generation of Internet-based services that 
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collectively comprised of an intelligent web (semantic web), machine learning, data 

mining, artificial intelligence, and natural language technologies (Kreps & Kimppa, 

2015). Web 3.0 technologies have made it possible for content relevance to be heightened 

by location and time (including Web 3D developments evolving from spatial and 

simulative technology (Kreps & Kimppa, 2015). 

The development of Web 3.0 technologies in making code-to-code and machine-

to-machine more intuitive connect people in real-time and across different locations 

worldwide (Gamble & Calverley, 2015). Engineers collaborating across borders must 

interact across virtual networks, utilizing CMC for significant projects to be sought after. 

For example, in the 20th century constructing the Sydney Opera House in Australia was 

built by an engineer from London. The Sydney Opera House’s original cost was 

approximated at $7 million, and scheduling was aimed for completion in 1957. However, 

the Sydney Opera House was completed 10 years late and went well over budget due to 

many challenges.  

Conversely, advanced Web 3.0 technologies made it possible to construct the 

world’s largest building in Dubai, the Burj Khalifa, in only 1,325 days. Since excavation 

work began in 2004, the tallest free-standing structure in the world was completed in 

2010 as the official launch ceremony was conducted for the Burj Khalifa. 

The potential problem found in current research is the rapid growth in Web 3.0 

technologies with little training and implementation of new technologies (Biagi, 2013; 

Benner & Tushman, 2013). Biagi (2013) revealed that not using new technology properly 
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caused an economic slowdown. Syverson (2016) proclaimed that the slowdown in 

measured labor productivity is statistically and economically significant. 

Academia has also experienced similar problems in analyzing the influential 

contributions that stemmed from new technology and usage. Still, the interpretation has 

been viewed as a negative signal of IT value. Management information systems managers 

find difficulty in justifying total investments in IT and Web 3.0 technologies. 

Management is tasked with a significant responsibility to provide incentives that 

guarantee worker-performance that is productive, especially since monitoring 

information about performance is costly (Glassman et al., 2015). 

Engineers are tasked to convert productivity from considerable investments in 

HCI devices and Web 3.0 applications (Tarute & Gatautis, 2014). Roback (2012) 

proposed a framework and future direction for utilizing productive web applications, 

social media, and other Web 3.0 technologies, asserting that there is still a need to 

develop solutions for practical usage in yielding substantial performance results for 

engineers. Engineers must know why their organization exists and become equipped with 

new technological skills that fulfill their organizational objectives. 

Digital technologies play a vital role in monitoring analytics and traction and 

equip engineers with insight into better performance trends that adjust machines to proper 

conditions. Gomes and Cardoso proposed a fourth industrial revolution (Industry 4.0) 

framework and future direction for utilizing productive Web 3.0 applications and 

technologies. Web 3.0 technologies may yield new research and technological skills far 

exceeding Industry 4.0 projections (Gomes & Cardoso, 2020). 
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Further advances in Web 3.0 technologies present both risk and rewards. 

Improving Web 3.0 in AI robot production risks replacing cheaper labor in emerging 

markets in other countries (Gamble & Calverley, 2015). A recurring theme in the 

ongoing debate sparked by engineering and IT experts further questions which types of 

jobs will become automated by robots in the future (Michie et al., 2017). For example, 

the possibilities ranged from surgical robots to massive assembly lines to family-friendly 

Wall-e science fiction or Star Wars-type images of robots (Gamble & Calverley, 2015). 

The options for robots are limitless since IoT and AI are accessible as open source. 

Xu and Chen (2018) proposed utilizing an IoT-based framework to equip 

industrial environments with just-in-time manufacturing. Quality assurance processes 

impacted by the emergence of Web 3.0 technologies and Industry 4.0 may alter industry 

standards and benefit operational efficiency (Gomes & Cardoso, 2020). Serin and 

Yalçıner (2021) examined engineers’ perspectives of innovation and the new Industry 4.0 

to gauge the potential direction of Web 4.0 in which is still being defined. 

Technologically Savvy Engineers 

The Digital Age, much like past industrial revolutions, resulted in a substantial 

change in how we interact with others making a more virtual society (Schuh et al., 2014). 

The Digital Age has birthed new learning theories that include the heutagogy theory 

(self-determined learning); the paragogy model for establishing peer-to-peer learning; 

rhizomatic theory of negotiating knowledge and explanation; the connectivism theory for 

connecting through distributed learning (Corbett & Spinello, 2020); and the cybergogy 
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theory for creating learner-centered, and collaborative virtual learning environment 

autonomously (Wang & Kang, 2006). 

Older theories like Vygotsky’s zone of proximal development and Bruner’s 

scaffolding models are becoming less effective in explaining the digital literacy and 

computer literacy phenomenon. Since the 1980s, academic research has accepted the 

five-factors model proposed by Tupes and Christal in 1961, whereby there is a valid and 

reliable assessment scale for measuring five factors of personality (Tupes & Christal, 

1992). The five-factors model is based on the theory of personality associated with 

words, but not neuropsychological experiments, suggesting five broad dimensions 

commonly associated with a person’s character and psyche are known as (a) openness to 

experience (or intellect), (b) conscientiousness, (c) extraversion, (d) agreeableness, and 

(e) neuroticism (or emotional stability) (Tupes & Christal, 1992). Current literature about 

factors that directly interface with the IT productivity paradox problem references the 

digital age and its importance to teaching engineers, professionals, and older adults that 

are not digital natives’ best practices for using technology (James, 2015; Malek, 2017). 

Employers seek out advanced digital natives or technologically savvy engineers 

who can help with mobile application development and forward-thinking initiatives 

(Jayarama et al., 2015). Computers and technology impact humanity worldwide; 

therefore, knowing new technology and being computer literate means understanding the 

usage of software, hardware, and other known applications of a computer. 

James (2015) proposed that digital natives, who have interacted with digital 

technology from an early age, use web technologies as second nature. The perspective 
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regarding the education on computers should begin at an early age; however, older adults 

were not susceptible to computer education at an early age before the Digital Age since it 

did not exist. Therefore, deficiencies in prior research do not address these factors pre-

dating the Digital Age other than the fact that web technologies were not accessible to 

older adults as it is to the younger generations today. 

Through more discovery and consideration of the potential factors that might lead 

to the IT productivity paradox, other research has indicated that the digital literacy in 

non-millennials, or older engineers not born between 1981 and 1996 (millennials ages 

22-37 in 2018) as the potential root to the complex IT productivity paradox (see, for 

example, Litchfield & Javernick-Will, 2015; Sharma et al., 2016). In 2015, one-fifth of 

the nations’ workforce was classified in the demographic of age 50 and older. A 

significant issue in society is that many working professionals who are 50 and older tend 

to struggle with proper computer use (Tishman et al., 2012). Conversely, for digital 

immigrants, age 50 and older, it involves an often long and challenging learning curve 

(James, 2015). Biagi (2013) and James (2015) further conveyed the technology and 

productivity interrelationship by pointing out that technological inability factors impacted 

organizational productivity due to age stereotypes of older adults.  

McKenna et al. (2014) proclaimed that these three significant challenges relate to 

the engineering field: (a) the demand for digitally inclined engineers, (b) scarcity of 

trained engineers, and (c) the absence of ethnic and gender diversity. Computer literacy, 

also referred to as digital literacy, is at the heart of the research problem for my study. 

Sharma et al. (2016) and Gamble and Calverley (2015) argued that various combinations 
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of variables, such as age, race, skill, and others, provide evidence of the digital divide that 

causes issues with digital literacy.  

Engineers provide technical solutions and translate knowledge for users who are 

not as tech-savvy (Gamble & Calverley, 2015). An engineer can either be an asset or a 

liability as technology evolves (Tishman et al., 2012). For that reason, employers require 

proficient, computer literate, and technologically savvy engineers—who are critical to the 

success of small and medium enterprises.  

The Hanover Research Industry Trend Report (2017) proclaimed that becoming 

equipped with 21st-century skills, coupled with having technological expertise, would 

prepare future engineers to meet the demands and challenges of today’s world. To ensure 

engineering students are adept in advanced technology, Hanover Research (2017) 

declared that the United States must cultivate economic, political, and social progression 

at a younger age in four critical areas: (a) creativity and imagination; (b) critical thinking; 

(c) problem solving; (d) collaboration and teamwork.  

Measuring productivity for engineers and data management has evolved in the 

last decade. In a fast-paced digital society, the growing international movement is 

focused on achieving skills that engineering students must master, which is critical to the 

quality of life and social change (Borras-Gene et al., 2016). Technologically savvy 

engineers are expected to have robust simulation, modeling, 3D computer-aided design 

(CAD), computer coding, and problem-solving skills (Priem et al., 2012). 

Edwards and Jensen (2014) proposed that senior management implement critical 

performance indicators (KPIs) tailored to assess engineering skills and productivity. Also, 
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updated performance management systems should factor in redesigning technology and 

production that consider human characteristics for engineers who operate those systems 

(Edwards & Jensen, 2014).  

According to Mashal (2017), the productivity of engineers is measured by five 

primary functions: (a) define productivity and direct behavior that communicates to the 

engineers or employees, the common expectation from the task(s); (b) monitor 

performance and provide feedback from an implemented measurement system that can 

check progress toward an objective; (c) diagnose problems or conduct productivity 

analysis and examination of trends that identify challenges prior to escalating authorized 

corrective action and early adjustment as needed; (d) facilitate planning and control so 

that productivity measurement allocates information on costs, time, output rate, and 

resource usage in order to foster better decision-making regarding pricing, purchasing, 

production scheduling, delivery scheduling, contracting and many other activities in the 

industrial cycle; and (e) support innovation of cost data coupled with productivity 

analysis which supports re-evaluation of proposed changes to current processes and 

products, allowing new products to pitch. General technological skills of technologically 

savvy engineers include the following: (a) managing complicated projects with varying 

milestones and deadlines; (b) managing budgets; (c) peers’ needs in other departments; 

and (d) communicating effectively (virtually and in person). 

Diversity in Engineering 

Expanding the discussion on McKenna et al.’s (2014) assertion regarding the 

absence of ethnic and gender diversity, a factor that potentially induces the IT 
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productivity paradox, this section explores diversity in the engineering field. Examining 

reports and data from the Centre for Economics and Business Research (Cebr), Google, 

and OECD databases highlights the global economic impact of women and minorities in 

engineering. A report conducted by Cebr (2016) for the Royal Academy of Engineering 

highlighted the engineering index, which included a robust dataset of engineering 

students and graduates’ measured strength in engineering and considered engineering as 

the driver in economic development. The engineering index considers engineering data 

and compares countries based on engineering wages, gender balance in engineering, 

employment and benefits, type of organization, exports, and quality of infrastructure. 

Historically, women have been under-represented in the field of engineering. A 

low proportion of women and students pursue engineering programs in many developed 

countries like the United States and the United Kingdom (Cebr, 2016). Slight 

improvement in diversity occurred between 2008 and 2012 in the United States and most 

OECD countries as the number of women in engineering graduates increased (Cebr, 

2016). However, data from organizational databases (see, for example, Cebr and OECD, 

2012) still indicate a significant deficiency in hiring diversity, a lack of high diversity 

enrollment rates in college admissions for STEM majors, and an overall lack of diversity 

in prominent engineering educational institutions. 

Google’s diversity report data collected in 2017 indicated that the workforce was 

composed of 69% male and 56% white. Only 31% were women, and barely 2% of 

engineers at Google were black (Corbett & Weber, 2016; Google, 2018). An initiative 

aimed at inviting more engineers from historically black colleges and universities 
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(HBCUs) to apply for jobs at Google, known as Google in Residence, has helped equip 

engineering students with computer science skills and teaches future engineers how to 

position themselves for engineering careers in the 21st century (Corbett & Weber, 2016; 

Google, 2018). This initiative addressed the lack of ethnic representation at Google and 

provided better talent engagement and community outreach efforts (Google, 2018). 

Summary and Conclusions 

In practice, researchers and industry professionals have struggled to understand 

why investment in new technology has not consistently provided a return on investment 

in terms of skills and productivity. However, the reasons for this lack of productivity 

have not been thoroughly researched and documented in the scholarly literature, 

particularly related to the factors that motivate engineers to embrace and fully utilize new 

capabilities, such as those offered by Web 3.0 technologies. My research was intended to 

fill the gap in understanding how to enhance the use of HCI devices through well-

conceived investments in technology, which may enable organizations to make better 

investment decisions, and as a result, to yield higher productivity levels for engineers.  

Specifically, my research was intended to determine which IT-related devices are 

most associated with engineer productivity, as measured by their skills with the latest 

technology (Web 3.0). Web 3.0 involves crowd-sourced data, IoT, cloud computing, and 

the semantic web. The objective was to identify where engineering organizations and 

managers might make the most effective and efficient investments, to increase 

productivity; rather than making large-scale investments across a wide spectrum of 
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technology, which has been both theorized and proven practically to decrease skills and 

productivity.  

This chapter included an exploration of the prominent literature in ICT, HCI, and 

Web 3.0 technologies. The literature provides definitions of advanced technologies, 

innovation in adopting web technologies, and limitations. The technology timeline 

provides a snapshot of how rapidly digital technologies have advanced and projects how 

digital life in 2025 in the United States would impact both people in society and small 

and medium enterprises for better or worse (Pew Research Center, 2014).  

The major themes in the literature review explained ICT, HCI, Web 3.0, digital 

literacy. But the existing research exhibits a gap in identifying how engineers interact 

with advanced devices and how engineers obtained Web 3.0 skills based on reliance and 

competence of HCI devices. My research was intended to close this gap in research.  

The literature review supports the need to examine the relationship between the 

use of HCI devices and Web 3.0 skills. In summary, the contribution of Web 3.0 skills to 

output and performance is documented in several studies, although the return on 

technology investment based on output growth, high profits, and market value is still to 

be determined (Decker et al., 2014; Kreps & Kimppa, 2015). Several researchers have 

attested to a need for future studies to expand on technological shifts by organization, 

industry, and other organizational characteristics for innovation and adoption of advanced 

technologies like Web 3.0 (Acemoglu et al., 2014; Bruwer, 2014; Byrne et al., 2016; 

Chua and Chua, 2017; Decker et al., 2014; Gamble & Calverley, 2015; Gomes & 
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Cardoso, 2020; Roback, 2012; Rudman & Bruwer, 2016; Shambaugh et al., 2018; 

Stanley et al., 2018).  

In Chapter 3, I concentrate on the numerical analysis of quantitative data. There is 

a shift in thinking from a focus on personality characteristics that typically were viewed 

as natural and generally accepted, to an emphasis on Web 3.0 skills and abilities that can 

be learned and developed. Although other factors such as personality attributes may play 

an integral role in engineering productivity and management decision-making, focusing 

on Web 3.0 skills obtained by engineers in my research was intended to suggest their 

abilities, knowledge, and types of devices used, which could be leveraged for effective 

management.  
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Chapter 3: Research Method 

The purpose of this quantitative correlational study was to investigate whether the 

use of HCI devices predicts Web 3.0 skills among engineers. In this chapter, I document 

the methodology for my nonexperimental descriptive survey research study. Significant 

sections of this chapter include the research design and rationale, research methodology, 

sampling procedures, population, and survey design. 

Research Design and Rationale 

In this quantitative correlational study, I investigated whether the use of HCI 

devices (reliance on and competence with HCI devices) correlates with Web 3.0 skills 

among engineers. In this correlational study, I employed a quantitative questionnaire to 

measure the reliance on and competence with five specific HCI devices among engineers 

(10 primary plus two aggregate independent variables). The questionnaire was also used 

to inform the dependent variable (Web 3.0 skills). The objective of using the quantitative 

research method was to evaluate the relationship between variables by collecting 

numerical data from a sample of a target population and analyzing data statistically 

(Yilmaz, 2013). This research design is intended to generalize the findings from a sample 

of the population. I chose the quantitative correlational methodology to determine if the 

use of various HCI devices is correlated with or predicts the skill of engineers with Web 

3.0 technologies. A qualitative methodology might lead to more insights among a few 

participants, but it would not determine a correlation between HCI device use and Web 

3.0 skills. Therefore, I chose the quantitative design. 
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Variables 

The quantitative questionnaire measured the dependent variable (Web 3.0 skills) 

and the 12 independent variables (reliance on and competence with five HCI devices, 

individually and in the aggregate). The dependent variable, Web 3.0 skills, was 

operationally defined by computing the mean response from Questions 1 through 8 of the 

questionnaire with responses from a 5-point Likert scale as follows: 

1. No prior experience or training with the technology; 

2. Minimal training received; minimal experience with the technology, below 

average level of expertise; 

3. Medium level of experience and expertise (able to competently use key 

functionality); 

4. Significant experience with the technology; above average level of knowledge, 

skill, and confidence, but not yet in senior, trainer, or mentor role; and 

5. Experienced, confident, and skilled; able to train or mentor others, considered 

expert in field on this technology. 

The independent variables measured two components of the use of five specific 

HCI devices: reliance on an HCI device and competence with each device. There was one 

variable for reliance on each device: desktop (DTR), laptop (LTR), tablet (TTR), 

smartphone (SPR), and wearable (WBR) devices. There was one variable for competence 

on each: desktop (DTC), laptop (LTC), tablet (TTC), smartphone (SPC), and wearable 

(WBC).  
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The independent variables were informed by the response for each device from 

Questions 9 and 10. The value of each independent variable for each participant was a 

discrete ordinal numerical value (no composite score) derived from the response for each 

device, using two 5-point Likert scales. For reliance on HCI device, as follows:  

1. Device not used; 

2. Minimal use of the device; 

3. Moderate use of the device; 

4. Significant use of and reliance on the device; and 

5. Heavily reliant on the device most of the time, cannot be apart from the device. 

For competence with an HCI device: 

1. No competence with any functions, 

2. Competence and confidence with some functions, 

3. Competence and confidence with many functions, 

4. Competence and confidence with most functions, and 

5. Expert on all functions. 

In addition, there were two aggregated variables, RHCID and CHCID. RHCID 

was calculated by computing the mean response from Question 9. CHCID was calculated 

by computing the mean response from Question 10. RHCID and CHCID were continuous 

random variables. 

Research Question and Hypotheses 

The primary research question was, What is the relationship between the use of 

HCI devices and Web 3.0 skills? This question was designed to explore the use of Web 
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3.0 technologies to enhance productivity in the United States. My findings focused on the 

outcomes of a test of these hypotheses:  

H01: There is no significant relationship between any of the predictors (10 

independent variables and 2FIs) and Web 3.0 skills (dependent variable). 

HA1: There is a significant relationship between at least one of the predictors and 

the dependent variable.  

H02: There is no significant relationship between reliance on or competence with 

the five HCI devices, in the aggregate, and their 2FI; and Web 3.0 skills. 

HA2: There is a significant relationship between either reliance on and 

competence with the five HCI devices, or both reliance and competence, in the 

aggregate; or their 2FI; and Web 3.0 skills. 

I used MLR to construct a predictive model of the dependent variable and to 

determine the relationship between the independent variables (reliance on and 

competence with HCI devices) and their 2FIs and the dependent variable (Web 3.0 

skills). SPSS was the statistical package I used for descriptive statistics and MLR. 

Methodology 

The methodological approach relied on a quantitative questionnaire and data 

analysis involving MLR to develop a predictive, multivariable model and to test the 

hypotheses. In this quantitative correlational study, I investigated whether and to what 

extent there is a relationship between the independent variables, reliance on and 

competence with HCI devices, and the dependent variable, a Web 3.0 skill level measure. 
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Population 

The target population of this study consisted of full-time engineers working in 

multinational small and medium enterprises in metropolitan areas of Georgia. I chose 

multinational engineering organizations for my research because multinational 

engineering organizations have common business problems that need investigation and 

explanation (Baturay & Toker, 2015; Contreras et al., 2012). Engineering disciplines 

include aerospace, agricultural, biomedical, chemical, civil, computer, computer 

hardware, electrical, electronics, environmental, health and safety, industrial, materials, 

mechanical, mining, and geological, network, nuclear, petroleum, software, system, 

marine, and naval architects. The population is appropriate for this study because (a) 

engineers in Georgia are finding innovative solutions for gaining the competitive 

advantage from technology, and (b) Web 3.0 skills and tools will soon drive innovative 

technology and smart cities, once established with internet access available for all 

engineers. 

Sampling and Sampling Procedures 

I used the G*Power software Version 3.1.9.2 (Faul et al., 2009) to calculate the 

sample size after identifying the level of significance, power, and the effect size. Power 

(1 – β) is the likelihood of rejecting the null hypothesis when it should be rejected. Power 

is directly related to the probability of a Type II error (β)—a false negative, or the 

likelihood of failing to reject the null hypothesis when it should be rejected. Power, then, 

is the likelihood of finding a significant outcome when one exists. The level of 

significance (α) is the probability of a Type I error—a false positive, or the likelihood of 
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rejecting the null hypothesis when it should not be rejected. Confidence (1 – α) is the 

likelihood of not concluding that an effect exists when it does not. 

Considering my self-designed instrument, I planned to test for a medium effect 

size (Cohen, 1988), based on the population squared correlation coefficient, ρ2 = 0.13 

(see also Cohen, 1992); with α = 0.05 and power = 0.95. I used G*Power (Faul et al., 

2009) to compute the minimum sample size using the a priori analysis, given α, power, 

effect size, exact test, and the linear multiple regression statistical test, random model. 

The minimum sample size was 178. Figure 1 shows the G*Power calculations. 

Figure 1 
 
Calculating Minimum Sample Size 
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Procedures for Recruitment and Participation 

The process for selecting engineering participants at small and medium 

enterprises (or businesses with up to 1,500 employees) in Georgia was planned to be 

handled through the combination of SurveyMonkey’s audience selection feature and a 

backup plan of convenience sampling of my network list of potential engineers contacted 

via email or LinkedIn. The minimum a priori sample size was calculated to be 178. I 

requested SurveyMonkey to provide 215 completed questionnaires to account for the 

possibility that some questionnaires might be invalid. In the event SurveyMonkey could 

not obtain a sample size of 215 participants, I planned to use convenience sampling to 

recruit more participants to complete the questionnaire via LinkedIn. I relied on 

SurveyMonkey to select participants and to provide 215 valid and complete responses to 

the survey according to my criteria. Informed consent was provided to all participants via 

SurveyMonkey on the first page of the questionnaire (or by email with a link to access 

the questionnaire). Participants who were unable to complete the informed consent form 

were not included in the research.  

Instrumentation and Operationalization of Constructs  

The most used research instrument in quantitative research is either a survey or an 

experiment (Rahi, 2017). I used a survey to reduce time and so that respondents could 

provide a snapshot to rate their current skills and experience using Web 3.0 technologies. 

Using surveys as a data collection tool in my study was the most beneficial in cost 

effectiveness and the survey’s potential to facilitate generalizability (Schmitz, 2012).  
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I considered other questionnaires for my survey. I searched for instruments from 

scholarly research into the variables of interest but did not find an existing questionnaire 

that assessed HCI and Web 3.0 skills suitable for my study. For example, I reviewed 

Hoboubi et al.’s (2016) uses of the Osipow occupational stress questionnaire, a 

questionnaire to examine the level of job stress; Smith et al.’s (1969) uses of the Job 

Descriptive Index for job satisfaction; and the employee productivity questionnaire by 

Hersey and Goldsmith (1980). James (2015) proposed a new model for adopting and 

using Web 2.0 technologies, known as the user benefits model, which was developed to 

assist professionals in an organizational setting. 

Bock et al. (2016) revised and validated the psychometric properties of the mobile 

phone affinity scale (MPAS) used to measure health behavior change for young adults 

and adolescents who used their cell phones often. Bock et al. assessed the construct 

validity of MPAS by relating the measuring instrument to a general theoretical 

framework. The researchers reviewed the items to determine face validity. Items that 

were confusing or ambiguous were edited, and duplicates were deleted. Before 

disseminating to the larger sample, the authors administered a pilot study to eight adults 

to confirm item clarity and comprehension. MPAS was designed to measure the use of 

technology, both negative (including excessive phone use and Internet addiction) and 

positive (productivity and efficiency) construct associated with cell phone usage (Bock et 

al., 2016).  

Bock et al. (2016) stated that there were no existing instruments that measured 

and assessed mobile phone and technology usage, including items of these positive 
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elements. Though no existing instruments were suitable for my research, some did 

provide insights into creating an appropriate instrument. Both of Bock’s constructs were 

included to assess MPAS subscales. Finally, to test for the concurrent validity of the final 

measure, I examined the association between MPAS subscales and measures of 

motivation.  

Bock et al.’s (2016) scale involved 57 statements that assessed mobile phone 

usage. Bock et al.’s productivity factor provided participants with only four generic 

statements related to mobile phone usage for being organized at work and school.  

My self-designed questionnaire, the Web 3.0 technological skill survey, provided 

in Appendix A, provided a value for eight different Web 3.0 technologies: web 

technologies, developer tools, relational database technology, software design, 

blockchain technology, operating systems and server technologies, server software, and 

virtualization. The dependent variable, Web 3.0 skills, was the mean of the responses to 

questions 1 through 8, related to engineers’ knowledge of technologies. This was a self-

reported assessment of skills, meaning that the 214 engineers responded to the 

questionnaire based on their assessment of their own skills. No managers at any small 

and medium enterprise were contacted to report how the 214 engineers performed or 

gave feedback of their Web 3.0 skill level. 

The values of the independent variables representing reliance on the five specific 

HCI devices (DTR, LTR, TTR, SPR, and WBR) were determined from question 9 of the 

questionnaire. The values of the independent variables representing competence with the 

five specific HCI devices (DTC, LTC, TTC, SPC, and WBC) were determined from 
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question 10 of the questionnaire. The Web 3.0 technological skill survey asked 

participants to self-evaluate reliance and competence with the five HCI devices, and their 

Web 3.0 skills. The aggregate indices (RHCID and CHCID) were assessed separately and 

calculated as the mean of the respective independent variables related to reliance and 

competence.  

Engineers rated statements according to their skill level and productivity using the 

semantic web, IoT, and cloud computing. Results for Web 3.0 skills were intended to be 

distributed normally, such that an engineer’s score to the right of the peak of the curve 

(the mean) is good, and to the left is poor. Once items were aggregated, every item that 

was skill-scored provided insight into how proficient an engineer claimed to be with Web 

3.0 technologies. 

In addition to the skills assessment portion of the Web 3.0 technological skill 

survey, I included a short section on participant demographics. The self-designed 

questionnaire includes participants’ demographics by identifying the participant number 

(ID). The demographic information was used to compare the sample to the population. 

Table 1 specifies the complete demographic information for the sample. The length of the 

questionnaire was under three pages, and its duration was about 15 minutes. 

Pilot Study 

The objective of the pilot study was to calculate Cronbach’s reliability coefficient 

(α) on the scales provided from the Web 3.0 technological skill survey. The pilot study 

benefited the research design before conducting a full-scale study. The pilot study 

ensured that the questions in the questionnaire were valid. For the pilot study, I selected 
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five engineers to take the questionnaire to help refine the questions and to improve item 

clarity and comprehension.  

Data Collection 

I used SurveyMonkey to generate the link to the questionnaire. Instructions about 

survey participation, deadlines for participation, and a list of frequently asked questions 

were included in the invitation to the survey. The duration for each questionnaire was up 

to 15 minutes, and participants were asked to return within 48 hours upon receiving an 

invitation unless they had further questions to address before taking the survey. 

Data Analysis Plan 

All questionnaires returned by SurveyMonkey were expected to be complete 

questionnaires, with no data missing. I did not anticipate outliers occurring in this survey 

since a Likert scale bounded the choices. I input data directly into SPSS by typing in Data 

View.  

I used MLR to construct a predictive model of the relationship between predictors 

(independent variables: reliance on and competence with HCI devices, individually and 

in the aggregate; and 2FIs) and the dependent variable (Web 3.0 skills); and to test the 

hypotheses. Using SPSS, I created scatterplots and for graphical analysis of variables, 

descriptive statistics for the participants’ demographics, and descriptive statistics of the 

responses to items in the questionnaire related to the research question. 

Multiple Linear Regression 

The regression model is the following: 

Y = b0 + b1X1 + … + bkXk + e. (2) 
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where (X1 to Xk) are predictors of Y 

Y = the dependent variable  

b0 = the Y intercept, or the value of Y if the value of all Xs = 0 

bj = the coefficient for predictor, Xj; the slope of the regression line; or the amount 

that Y will change per one unit change of Xj  

Xj = the jth predictor 

e = random error in Y. 

Two-Factor Interactions 

The influence on the dependent variable of 2FIs between independent variables is 

evaluated as an essential part of MLR analysis. 2FIs are created as the cross-product of 

the independent variables and tested in the MLR analysis.  

Hypotheses 

Null hypothesis. The null hypothesis for the overall multiple regression model 

(the hypothesis regarding the influence of the Xs on Y) is that there is no significant 

relationship between (independent variables and 2FIs) and the dependent variable, 

depicted mathematically as follows: 

H0: b1 = b2 = … = bk = 0. (3) 

Alternative hypothesis. There is a linear relationship between the dependent 

variable and at least one predictor, depicted mathematically as follows: 

Ha: at least one bj ≠ 0. (4) 

Hypotheses are tested regarding the overall model (testing if there is a significant 

relationship between the dependent variable and the entire set of predictors) using the F 
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test (and its associated p value). The F test and its associated p value assess whether the 

set of independent variables and 2FIs predict the dependent variable. Adjusted R2, the 

coefficient of determination, indicates goodness-of-fit of the regression model—the 

proportion of variation in the dependent variable that is attributed to the model of 

predictors. The t test and its associated p value are used to assess the significance of each 

predictor. 

Assumptions of MLR 

MLR assumes the following: (a) numerical variables; (b) linearity: a straight-line 

relationship between the independent variables and the dependent variable, (c) 

independence: the values of the residuals are independent; no autocorrelation; (d) 

homoscedasticity: the variation of the residuals (error terms) is constant for all values of 

the independent variables; (e) absence of multicollinearity: no relationship among 

independent variables; (f) normally distributed residuals; and (g) no influential cases: no 

significant outliers. Both the independent and dependent variables must be numerical; 

categorical independent variables must be converted to numerical using dummy 

variables. A scatterplot assesses linearity, independence, and homoscedasticity. A 

Durbin-Watson test is also used to test for independence.  

Variance inflation factors (VIFs) are used to assess the absence of 

multicollinearity. The absence of multicollinearity indicates no relationship among 

independent variables (Dunteman, 1984). VIF values greater than five suggests the 

presence of multicollinearity. When multicollinearity is present, independent variables 

are eliminated, sequentially, starting with the variable with the highest VIF.  
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A normal probability plot of residuals is used to assess their normality. Cook’s 

distance test is used to assess for outliers in regression. Cook’s distance is a combined 

measurement of both observations (graphic and visual) and residual values, where the 

assumption of an outlier means that an observation has a Cook’s distance of more than 

three times the mean, μ (Barnett & Lewis, 1985). 

Model-Building: Stepwise Regression 

Two forms of the stepwise regression approach to model-building are used to 

evaluate possible regression models, considering the influence of individual predictors, 

including the 2FIs, and their contribution to the strength of the overall regression model. 

The two-regression model-building approaches are statistical regression (both backward 

elimination and forward selection in SPSS) and sequential regression (using the SPSS 

enter method). Non-significant variables and interaction terms are sequentially eliminated 

(based on the inclusion criterion and improvement in adjusted R2) to produce the best 

predictive model—considering adjusted R2, which accounts for the number of predictors 

in the model. 

Predictive Regression Model  

The predictive regression model includes significant independent variables and 

interaction terms. For significant predictors, the dependent variable increases or decreases 

by the coefficients (bj) associated with each predictor. The predictive regression model is 

expressed in the following form: 

𝑌#  = b0 + b1X1 + … + bkXk (5) 

where 
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𝑌#  = “Y-hat”, the dependent variable 

b0 = Y intercept for the population 

bj = slope (coefficient) for the population for predictor, Xj 

Xj = jth predictor (independent variable or interaction term) 

There is no error term in the predictive model. The difference between the 

predicted value of Y (for any set of values for the independent variables) and the actual, 

measured value of Y for that set of values for the independent variables is the error in the 

model, called a residual. 

Threats to Validity 

Surveys are valid, reliable, and widely used in descriptive studies (Borg & Gall, 

1983; Rahi, 2017). The questionnaire in this research was self-designed. The advantages 

of this self-designed questionnaire include the following: (a) provided the ability to reach 

many engineers easily; (b) was economical; (c) provided quantifiable responses; (d) was 

easy to analyze; and (e) took less time than conducting observations or interviews 

(Bailey, 1982). 

I conducted a pilot study to ensure that the questionnaire was comprehensible and 

phrased adequately. The validity of the questionnaire determined by feedback from the 

pilot test included expert reviews of content. The methodology used to validate the 

instrument was based on the experts’ review, after which items were updated or removed 

to better focus on the research target of this study.  
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External Validity 

To declare external validity via SurveyMonkey, I disabled IP address tracking to 

make the questionnaire anonymous and ensure secure transmission of answers. 

Participants were able to change their answers on any page of the questionnaire until they 

completed the questionnaire. The design of my questionnaire in SurveyMonkey targeted 

participants who met the criteria of occupation/income or engineer, age, gender, and 

country.  

SurveyMonkey utilized nonprobability sampling from an audience sample of 

subject matter experts in the engineering field, including both males and females, from 

the target population of Atlanta—this also improved external validity in this study. In the 

event I needed additional responses, I used multiple target audience collectors feature in 

SurveyMonkey where I then sent the questionnaire web link or email invitation to my 

LinkedIn network. Use of convenience sampling by identifying only subject matter 

experts familiar with Web 3.0 technologies on LinkedIn, eliminated sample bias and 

increased external validity.  

This study offers both population and ecological validity. Establishing population 

validity ensured that this study could be generalized to a broader population of engineers 

and management professionals. Replication of this study aimed at other technical 

professionals (based on their peculiar characteristics like socioeconomic background, 

gender, and country) that utilize Web 3.0 technologies and devices would establish higher 

population validity. The findings of this study can be generalized to real-world scenarios 

that refer to ecological validity. 
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Survey Reliability 

Reliability refers to the stability of measurement, and its absence can be a 

significant threat to the validity of a study (Frankfort-Nachmias et al., 2015). I computed 

Cronbach’s α to assess reliability. Many factors may interfere with survey reliability; 

among them are timing, changes in participants, the environment, or the clarity of the 

questionnaire. To increase reliability, I utilized multiple-item scales and indexes to 

enhance the reliability and precision of measurements. The number of test items, item-

interrelatedness, and dimensionality affects the value of Cronbach’s α. The most critical 

of the three assumptions is unidimensionality. Unidimensionality is a fundamental 

determinant of Cronbach’s α since it assumes the questions only measure one latent 

variable or dimension (Field, 2013). 

In science and technology studies, perceived ease of use and performance is 

measured using 5-point Likert scales more frequently than 7-point Likert scales (Joshi et 

al., 2015). For example, Bock et al. (2016) used a 5-point Likert scale (1 = not true to 5 = 

extremely true), and the instrument contained 57 items measuring seven constructs, with 

six to nine items per construct. Since I was interested in how new technology (Web 3.0) 

and devices like smartphones, tablets, personal computers, and wearables increased 

performance, I adapted part of Bock et al.’s 5-point Likert scale in my instrument. 

Internal Validity 

Achieving internal validity meant that my research measured what I intended it to 

measure. I designed a questionnaire relevant to the independent variables (use of HCI 

devices) and dependent variable (Web 3.0 skills) for responding to the research question. 
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The independent variables (use of HCI devices) cannot be manipulated in this research 

design. Validity of the responses were achieved by using the 5-point Likert scales.  

I computed Cronbach’s α to assess how well the items in the scaling method 

correlate. Across the 5-point Likert scales, the numerical values have meaning and 

distinction (Bonett & Wright, 2015). A value of .80 or higher indicates good internal 

consistency. To compute Cronbach’s α, I asked a few subject matter experts to complete 

the Web 3.0 technological skill survey for pilot testing. In addition, I used a scatterplot to 

illustrate split-half correlation (even items vs. odd-numbered items).  

Internal validity in non-experimental studies is generally lower than in quasi-

experimental and experimental studies (Frankfort-Nachmias et al., 2015). Non-

experimental research lacks manipulating the independent variable(s) or treatments, 

random assignments of participants to conditions, or both (Frankfort-Nachmias et al., 

2015). 

Summary 

In this chapter, I identified the research plan strategy and explained how I intend 

to conduct the research. Included in this chapter is the purpose of the study, a description 

of my role as a researcher, sampling process, the type of participants, selection of 

instruments, data collection technique, data analysis, reliability, validity, and the research 

method and design. Reasons for sampling involved better: speed of data collection, 

accuracy in results, and cost-effectiveness. The selection of the sampling method 

depended on the nature of this research and included statistical, theoretical, and practical 

matters. ICT, IT, and Web 3.0 technologies drastically advance communication by 
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increasing engineers’ productivity and revolutionizing how information is analyzed and 

used to profit organizations. Web 3.0 technologies are projected to increase the 

productivity of engineering professionals and improve knowledge and communication.  
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Chapter 4: Results 

The purpose of this quantitative correlational study was to investigate whether the 

use of HCI devices predicts Web 3.0 skills among engineers—in other words, whether 

the use of HCI devices influences, facilitates, or indicates the willingness or motivation to 

learn new skills, increasing performance and enhancing productivity. Use of HCI devices 

has two components: reliance on and competence with HCI devices. I tested reliance on 

each of the five HCI devices that I hypothesized influence the dependent variable: 

desktop (DTR), laptop (LTR), tablet (TTR), smartphone (SPR), and wearable (WBR) 

devices. I also tested the competence with each of the five HCI devices (DTC, LTC, 

TTC, SPC, and WBC) that I hypothesized influence the dependent variable. In addition, I 

tested two independent variables that were aggregate measures of reliance and 

competence (RHCID and CHCID). 

H01: There is no significant relationship between any of the predictors (10 

independent variables and 2FIs) and Web 3.0 skills (dependent variable). 

HA1: There is a significant relationship between at least one of the predictors and 

the dependent variable.  

H02: There is no significant relationship between reliance on or competence with 

the five HCI devices, in the aggregate, and their 2FI; and Web 3.0 skills. 

HA2: There is a significant relationship between either reliance on and 

competence with the five HCI devices, or both reliance and competence, in the 

aggregate; or their 2FI; and Web 3.0 skills. 
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In this chapter, I address the pilot study, explain data collection, and provide 

descriptive statistics for the questionnaire’s demographic portion. Data collection and 

conversion of data, missing data, and an overview of the sampling selection are 

discussed. Tests of MLR assumptions are provided. MLR analyses, regression model 

building, and the results of the hypotheses tests and answers to the research question are 

provided.  

Pilot Study 

Upon approval by the Walden University’s IRB to conduct my study (approval 

number 06-25-19-0392340), the recruitment of participants for the pilot study consisted 

of a convenience sample of 100 experts via LinkedIn from the population of full-time 

engineers working in Georgia. Five experts responded and participated in the pilot study. 

The pilot study was intended to ensure that the questions from the Web 3.0 technological 

skill survey were valid and understandable.  

Data Collection for Pilot Study 

Table 2 identifies the participant number of each participant. Gender was coded as 

1 = male, and 2 = female. Race was coded as B = African American, W = Caucasian, O = 

other. Age identifies the participant’s age in years.  

Table 2 
 
Demographics of Experts in Pilot Study 

ID Gender Race Occupation Age 
001 Female African American System engineer 32 
002 Male African American Network engineer 26 
003 Male Caucasian Software engineer 34 
004 Female Caucasian Mechanical engineer 45 
005 Male Other Industrial engineer 27 
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Cronbach’s α: Scale Reliability 

Cronbach’s α measures reliability, or internal consistency, of the psychometric 

instrument (Frankfort-Nachmias et al., 2015). Field (2013) proclaimed that reliability 

analysis is used to measure the consistency of a measure. Frankfort-Nachmias et al. 

(2015) proposed that Cronbach’s α demonstrates the overall reliability of a questionnaire, 

with recommended values described as the following: α ≥ 0.9, excellent; 0.7 ≤ α < 0.9, 

good; 0.6 ≤ α < 0.7, acceptable; 0.5 ≤ α < 0.6, poor; and α < 0.5, unacceptable. The 

validity and reliability of the questionnaire’s three subscales were assessed with 

Cronbach’s α. The subscales were constructed as follows:  

• Subscale 1—Knowledge of technologies (KOT): web technologies (WT), 

developer tools (DT), relational database technology (RD), software design (SD), 

blockchain technology (BT), operating systems and server technologies (OS), 

server software (SS), and virtualization (VZ) 

• Subscale 2—Reliance on HCI devices (Reliance): desktop (DTR), laptop (LTR), 

tablet (TTR), smartphone (SPR), and wearable (WBR) 

• Subscale 3—Competence with HCI devices (Competence): desktop (DTC), 

laptop (LTC), tablet (TTC), smartphone (SPC), and wearable (WBC) 

Pilot Study Results 

The pilot study participants provided consent and answered the 10 questions of 

the main study questionnaire. Participants in the pilot study provided no feedback that 

required any changes to the questionnaire items. Based on Cronbach’s α, the Web 3.0 

technological skill survey was found to be highly reliable (18 items; Cronbach’s α = .97). 
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Subscale 1 (KOT) consisted of eight items (Cronbach’s α = .961) and had excellent 

internal consistency. Subscale 2 (reliance) consisted of five items (Cronbach’s α =.966) 

and is an excellent measure of the internal consistency of the test or instrument. No items 

were rejected using Subscale 2 (reliance). Subscale 3 (competence) consisted of five 

items (Cronbach’s α = .916) and is an excellent measure of the internal consistency of the 

test or instrument. 

Internal consistency was achieved, indicating interrelatedness of the items within 

the test for Subscale 1, KOT. Subtracting from 1.00 produced the index of measurement 

error. For the KOT subscale, the test has a reliability of 0.96, there was 0.08 error 

variance (random error) in the scores (0.96 × 0.96 = 0.92; 1.00 – 0.92 = 0.08). Table 3 

indicates the item-total statistics of KOT. In the column, labeled corrected item-total 

correlation; the total score from the questionnaire should correlate with values at or above 

.08. Any values less than .08 would be rejected. Therefore, no items needed to be rejected 

in the KOT subscale.  
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Table 3 
 
Item-Total Statistics of KOT 

 Scale mean 
if item 
deleted 

Scale 
variance if 

item deleted 

Corrected 
item–total 
correlation 

Cronbach’s α if 
item deleted 

Web technologies 28.0 26.5 .929 .951 
Developer tools 28.4 26.8 .889 .953 
Relational database 
technology 

27.8 27.7 .712 .965 

Software design 28.2 27.7 .940 .952 
Blockchain 
technology 

28.0 26.5 .929 .951 

Operating systems 
and server 
technologies 

28.4 26.8 .889 .953 

Server software 28.0 26.5 .929 .951 
Virtualization 28.6 28.3 .641 .969 

 

Table 4 displays the item-total statistics of Subscale 2, reliance. In the column, 

labeled corrected item–total correlation, the total score from the questionnaire correlated 

with values at or above .08. Any values less than .08 were rejected. In the column 

Cronbach’s α, if item deleted, the overall values for Cronbach’s α are shown. Any items 

that were greater than .966 would be deleted to increase Cronbach’s α and to improve 

reliability. In this case, no items were deleted. 

Table 4 
 
Item-Total Statistics of Reliance 

 Scale mean if 
item deleted 

Scale variance if 
item deleted 

Corrected item–
total correlation 

Cronbach’s α if 
item deleted 

DTR 16.0 10.0 .894 .960 
LTR 15.8   9.2 .906 .957 
TTR 16.2   9.2 .906 .957 
SPR 15.8   9.2 .906 .957 
WBR 16.2   9.2 .906 .957 
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Internal consistency is expressed as a number between 0 and 1 and described the 

extent to which all the items in Subscale 3 (competence) are the same concept or 

construct by indicating interrelatedness of the items within the test. Subtracting from 1.00 

produced the index of measurement error. The results of Subscale 3 demonstrated that the 

test has a reliability of 0.92, and there is 0.18 error variance (random error) in the scores 

(0.92 × 0.92 = 0.85; 1.00 – 0.82 = 0.18). Table 5 displays results for the item–total 

statistics of competence. In the column labeled corrected item–total correlation, the total 

score from the questionnaire correlated with values at or above 0.18. Any values less than 

0.18 were rejected. No items were rejected in Subscale 3. In the column Cronbach’s α if 

item deleted, the overall values for Cronbach’s α are shown. In this case, item SPC (.960) 

was greater than .916, and if deleted, would highly increase Cronbach’s α and improve 

reliability. The column labeled squared multiple correlation (not shown) returned missing 

values because the determinant of the covariance matrix was zero or approximately zero 

(.08).  

Table 5 
 
Item–Total Statistics of Competence 

 Scale mean if 
item deleted 

Scale variance if 
item deleted 

Corrected item–
total correlation 

Cronbach’s α if 
item deleted 

DTC 16.2   9.2 .907 .870 
LTC 16.2 11.2 .845 .893 
TTC 16.2   9.2 .907 .870 
SPC 16.0 12.5 .423 .960 
WBC 16.2   9.2 .907 .870 
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Impact on Main Study 

Cronbach’s α computations suggested that the questionnaire was reliable. 

Therefore, no changes were made. Achieving internal validity meant that my 

questionnaire measured what I intended. The reliability of the questionnaire, including 

three subscales (KOT, reliance, and competence) I created, were suitable for this 

research. As confirmed by the pilot study, the Web 3.0 technological skill survey is 

reliable and valid. 

Data Collection 

Sample  

Once I obtained informed consent consistent with IRB ethical standards, much 

like that of the pilot study, eligible participants were provided with an explanation of this 

research study and instructed to complete the Web 3.0 technological skill survey found 

on the first page of the questionnaire (or by clicking on the SurveyMonkey link sent via 

LinkedIn direct message). Potential participants received the Web 3.0 technological 

survey from June 25, 2019, to July 11, 2019. To achieve an initial desired sample size of 

215, I used SurveyMonkey’s sample calculator, set the confidence level to 95%, the 

population size of 500, and 5% margin of error, which would return 218 responses.  

In SurveyMonkey, I set a response limit to 215 to meet my required minimum 

sample size of 178 of complete and valid questionnaires and handle missing or corrupt 

data issues and to ensure sufficient valid samples to achieve the desired power and 

confidence given the effect size of this research study. Throughout this timeframe, I 

notified participants about my research study by contacting engineering colleagues 
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working in small and medium enterprises in metropolitan areas of Georgia, via direct 

messaging from my LinkedIn network of over 2,000 connections. If not contacted already 

by SurveyMonkey, potential participants could access the questionnaire using the 

SurveyMonkey link I provided via LinkedIn. SurveyMonkey’s nonprobability sampling 

returned the requested sample size of 215. There were no significant discrepancies in data 

collection from the plan or any adverse events affecting the success of recruitment and 

response rates for the main study.  

Missing Data 

The participants were required to answer all questions on the Web 3.0 

technological skill survey via SurveyMonkey before submitting their questionnaire to be 

considered valid. Participants were able to change their responses before submitting the 

questionnaire. One questionnaire was incomplete. The final sample size, of valid 

questionnaires was 214. Because the a priori minimum sample size was 178, the 

additional questionnaires yielded a post hoc statistical power of 98.2%, given a level of 

significance of 5%, a medium effect size of ρ2 = .13, and 10 predictors. Or, given a 

sample size of 214, level of significance of 5%, power of 95%, and 10 predictors, the 

detectible effect size was ρ2 = .11, somewhat more precise than the planned medium 

effect size of .13. 

Validity of the Instrument 

Once the data were collected, I input the responses from the SurveyMonkey 

dataset into SPSS and computed Cronbach’s α testing for internal consistency once again, 

but with 214 responses, to measure internal consistency and reliability. According to 
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Frankfort-Nachmias et al. (2015), Cronbach’s α recommended values are α ≥ 0.9, 

excellent; 0.7 ≤ α < 0.9, good; 0.6 ≤ α < 0.7, acceptable; 0.5 ≤ α < 0.6, poor; and α < 0.5, 

unacceptable. The evaluation of reliability met a good threshold of internal consistency 

(Cronbach’s α = .787). I concluded that the questionnaire was acceptably valid and 

reliable for this research. 

Data Analysis 

Demographics of the Sample 

The sample included various engineers from small and medium enterprises in 

Atlanta based on LinkedIn profile information of each targeted participant. The following 

define the demographic attributes of the sampling frame:  

• Race—Three levels: African American (B), Caucasian (W), Other (O) 

• Gender—Two levels for Male (one), Female (two) 

• Occupation—String type for various titles of engineers (e.g., mechanical 

engineer) 

• Age—A discrete numerical variable in years 

The sample involved participants who identified themselves as 87 (40.05%) 

African American, 76 (35.03%) Caucasian, and 52 (24.04%) Other. The average age of 

participants was 35.3 years (SD = 9.68). The age of participants ranged from 21 to 64 

years. Age was non-normally distributed, with skewness of .735 (SE = .166) and kurtosis 

of .031 (SE = .330). There were 109 men and 106 women participants (men’s age: M = 

34.8, SD = 9.44; women’s age: M = 35.7, SD = 9.95).  
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The target population consisted of full-time engineers working in multinational 

small and medium enterprises in Atlanta. I compared the demographics of the sample of 

215 participants to the demographics of the target population in race, age, gender, and 

occupation—to which the results of this study can be generalized.  

According to the U.S. Bureau of Labor Statistics (2021) and Data USA: 

Engineering (2019), the average age of male engineers working in Atlanta is 43.1 years, 

and the most common age of female engineers is 36.6. The most common race/ethnicity 

for engineers is Caucasian or White (Non-Hispanic) (Data USA, 2019). Though there are 

differences, the sample used in this study represents the population of engineers 

employed in metropolitan areas of Georgia. Differences should be considered when 

generalizing the results. 

Variables 

The independent variables measured two components of the use of HCI devices: 

reliance on an HCI device and competence with each device. There was an independent 

variable for reliance on each of the five HCI devices: desktop (DTR; e.g., stationary 

workstation), laptop (LTR; e.g., portable computer), tablet (TTR; e.g., touchscreen), 

smartphone (SPR; e.g., hand-held computer), and wearable (WBR; e.g., VR headset). 

The value for each of these five independent variables was determined from question 9 of 

the questionnaire. There was an independent variable for competence on each of the five 

HCI devices: DTC, LTC, TTC, SPC, and WBC. The value for each of these five 

independent variables was determined from question 10 of the questionnaire.  
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The dependent variable, Web 3.0 skills (WS), was a measure of skills with 

various related technologies encompassed of eight components of the Knowledge of 

Technologies (KOT) subscale: web technologies, developer tools, relational database 

technology, software design, blockchain technology, operating systems and server 

technologies, server software, and virtualization. WS was computed in SPSS as the mean 

response to questions 1 through 8 on the questionnaire. 

The 10 independent variables (DTR, LTR, TTR, SPR, WBR, DTC, LTC, TTC, 

SPC, and WBC) and 2FIs were postulated to predict the dependent variable, WS. In 

addition, two composite variables were calculated from the 10 independent variables. The 

five variables used to measure reliance (DTR, LTR, TTR, SPR, WBR) were averaged to 

compute a composite variable, RHCID. The five variables measuring competence using 

HCI devices (DTC, LTC, TTC, SPC, and WBC) were averaged to compute the 

composite variable, CHCID.  

RHCID, CHCID, and their 2FI (RH*CH) were computed to support an additional 

MLR analysis. RHCID measured overall reliance on HCI devices, and CHCID measured 

overall competence using HCI devices. 

Descriptive Statistics 

Independent Variables 

Table 6 shows the means and standard deviations for the 10 independent 

variables; and two composite indices (there is one variable for reliance on each of the five 

HCI devices; and one variable for competence with each of the five HCI devices) used in 

a separate analysis. The data were examined for outliers falling three or more standard 
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deviations from the mean. No outliers were found among the 10 independent variables 

and two indices. No outliers were found among the eight components of the dependent 

variable (WT, DT, RD, SD, BT, OS, SS, and VZ).  

Table 6 
 
Means and Standard Deviations for Independent Variables  

 Mean SD 
DTR 3.73 1.140 
LTR 3.68 1.120 
TTR 3.81 1.070 
SPR 3.77 1.080 
WBR 3.75 1.100 
DTC 3.67 1.080 
LTC 3.63 1.090 
TTC 3.63 1.090 
SPC 3.67 1.160 
WBC 3.68 1.200 
RHCID 3.75 0.694 
CHCID 3.66 0.758 

 

Figure 2 illustrates the reliance on HCI devices. The number of engineers who 

rated each category (WBR, SPR, TTR, LTR, and DTR) is on the y-axis and bar graph. 

The legend of both color and number corresponds to how the engineers rated, indicating 

significant use of and reliance on all devices (WBR, SPR, TTR, LTR, and DTR). Figure 3 

shows the summary of competence on HCI devices. 
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Figure 2 
 
Reliance on HCI Devices  
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Figure 3 
 
Summary of Competence on HCI Devices 

 
Note. The number of engineers who rated each category (WBC, SPC, TTC, LTC, and 

DTC) is on the y-axis and bar graph. The legend of both color and number corresponds to 

how the engineers rated, indicating expertise, and competence and confidence with most 

functions on all (WBC, SPC, TTC, LTC, and DTC) devices.  

Dependent Variable 

Table 7 shows the means and standard deviations for the eight components of the 

dependent variable (WS).  

5

4

2

3

7

20

23

23

27

53

63

63

66

52

25

69

72

66

59

56

58

53

58

74

74

0 10 20 30 40 50 60 70 80

DTC

LTC

TTC

SPC

WBC

5 – Expert on all functions

4 – Competence and confidence with most functions

3 – Competence and confidence with many functions

2 – Competence and confidence with some functions

1 – No competence with any functions



 

85 
 

 

Table 7 
 
Means and Standard Deviations for Components of Dependent Variable 

 Mean SD 
Web technologies 3.76 1.080 
Developer tools 3.53 1.140 
Relational database technology 3.52 1.140 
Software design 3.35 1.100 
Blockchain technology 2.70 1.340 
Operating systems and server technologies 3.62 1.070 
Server software 3.18 1.300 
Virtualization 3.20 1.270 
Web 3.0 skills 3.36 0.641 

 

Results 

Assumptions of MLR 

MLR assumes the following: 

• numerical variables 

• linearity: a straight-line relationship between the independent variables and the 

dependent variable 

• independence: the values of the residuals are independent; no autocorrelation 

• homoscedasticity: the variation of the residuals (error terms) is constant for all 

values of the independent variables 

• absence of multicollinearity: no relationship among independent variables 

• normally distributed residuals 

• no influential cases: no significant outliers  

The MLR assumptions were checked in SPSS by running an initial MLR analysis 

(SPSS run 0) with all 10 independent variables: DTR, LTR, TTR, SPR, WBR, DTC, 
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LTC, TTC, SPC, and WBC; and the dependent variable, WS. A separate MLR 

assumptions check was conducted in SPSS for the RHCID and CHCID indices.  

Numerical Variables 

All study variables were discrete or continuous, numerical variables.  

Linearity 

I checked the linearity assumption using scatterplots to assess the relationship of 

the dependent variable, WS, to the independent variables (Figure 4). There are no 

noticeable nonlinear patterns in the scatterplots. The outcome variable is linear in relation 

to the HCI devices. 

Figure 4 
 
Matrix Graph of Linearity Diagnostics of HCI Devices 

 

Next, I checked the linearity assumption using scatterplots to assess the 

relationship of the dependent variable, WS, to the indices, RHCID and CHCID. Figure 5 
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shows the matrix graph of linearity diagnostics of RHCID and CHCID. There are no 

noticeable nonlinear patterns in the scatterplots. The outcome variable is linear in relation 

to the RHCID and CHCID indices. 

Figure 5 
 
Matrix Graph of Linearity Diagnostics of RHCID and CHCID 

 

Independence of Residuals—No Autocorrelation 

Using the Durbin–Watson statistic, I tested the assumption of independence of 

residuals of HCI devices. Table 8 shows the Durbin-Watson statistic for the 10 

independent variables (DTR, LTR, TTR, SPR, WBR, DTC, LTC, TTC, SPC, and WBC), 

and the dependent variable (WS), which was 1.67. A value near 2.0 means that there is no 

autocorrelation detected in the sample and residuals are independent among the 10 

independent variables.  
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Table 8 
 
Model Summary for HCI devices 

 
 

R 

 
 

R2 

 
Adjusted 

R2 

Std. error 
of the 

estimate 

 
R2 

change 

 
F 

change 

 
 

df1 

 
 

df2 

 
Sig. F 
change 

 
Durbin-
Watson 

.489 .239 .202 .573 .239 6.42 10 204 < .001 1.67 
 

The same steps were repeated in assessing independence of errors for the RHCID 

and CHCID indices (Table 9). The Durbin-Watson test statistic = 1.63. There was no 

autocorrelation detected in the sample and residuals were independent of each other 

within each index. 

Table 9 
 
Model Summary for RHCID and CHCID 

 
 

R 

 
 

R2 

 
Adjusted 

R2 

Std. error 
of the 

estimate 

 
R2 

change 

 
F 

change 

 
 

df1 

 
 

df2 

 
Sig. F 
change 

 
Durbin-
Watson 

.458 .210 .202 .573 .210 28.15 2 212 < .001 1.63 
 

Homoscedasticity  

Testing the assumption for homoscedasticity required analysis of a scatterplot of 

residuals across the values for each HCI device (10 independent variables), and for the 

RHCID and CHCID indices. Figure 6 illustrates the test for the homoscedasticity 

assumption for the independent variable, DTC. The scatterplot indicates no change in the 

variation of residuals over the range of values for DTC. This was typical for all 

independent variables and demonstrated no violation of the homoscedasticity assumption. 



 

89 
 

 

Figure 6 
 
Homoscedasticity Test: Scatterplot of Residuals Versus DTC 

 

Absence of Multicollinearity  

The assumption of absence of multicollinearity was analyzed using VIFs. VIFs 

less than five suggest the absence of multicollinearity. VIFs were calculated by 

performing an initial, standard regression analysis using the SPSS enter method (Table 

10). No independent variables had a VIF greater than 1.42 for HCI devices, and no 

multicollinearity was present.  

The assumption of absence of multicollinearity was analyzed for the indices of 

CHCID and RHCID in Table 11. No index had a VIF greater than 1.36. There was no 

presence of multicollinearity. 
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Table 10 
 
Coefficients and Collinearity Statistics for 10 Independent Variables 

  
Unstandardized 

B 

 
Coefficients 

std. error 

Standardized 
coefficient 

Beta 

 
 
t 

 
Collinearity statistics 

 Sig. Tolerance VIF 
(Constant) 1.650   .027  6.950  < .001   
DTR .148 .038  .262 3.920 < .001 .831 1.20 
LTR   .057 .039  .099 1.460   .146 .806 1.24 
TTR   .087 .040  .145 2.170   .032 .828 1.21 
SPR   .037 .041 .062 .891   .374 .769 1.30 
WBR   .020 .042 .034 .467   .641 .712 1.41 
DTC   .056 .042 .095 1.340   .182 .742 1.35 
LTC   .044 .043 .074 1.020   .308 .707 1.41 
TTC -.026 .041 -.044 -.626   .532 .744 1.34 
SPC -.009 .039 -.017 -.235   .815 .747 1.34 
WBC  .045 .039 .085 1.170   .243 .707 1.42 

 

Table 11 
 
Collinearity Statistics for CHCID and RHCID 

  
Model  Tolerance VIF 
1 CHCID .737 1.36 
 RHCID .737 1.36 

 

Normality—Normally distributed residuals 

Figure 7 depicts the normal probability plot of standardized regression residuals 

and reveals a normal distribution for the regression model of the 10 independent variables 

(DTR, LTR, TTR, SPR, WBR, DTC, LTC, TTC, SPC, and WBC). Figure 8 depicts the 

normal probability plot of standardized regression residuals and reveals a normal 

distribution of residuals for the model of the CHCID and RHCID indices.  
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Figure 7 
 
Test of Normality of Residuals (HCI Devices) 

 

Figure 8 
 
Test of Normality of Residuals (CHCID and RHCID) 
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A check of normality of error terms using a histogram, Figure 9, indicates a 

normal distribution of residuals for the regression model of the 10 independent variables. 

Figure 10 shows the histogram of residuals with normal curve for CHCID and RHCID.  

Figure 9 

Histogram of Residuals with Normal Curve for HCI Devices 

 

Figure 10 
 
Histogram of Residuals with Normal Curve for CHCID and RHCID 
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No Influential Cases 

Cook’s Distance is a measure of how much influence a predictor variable has on 

the predicted value of the outcome variable, testing to ensure there are no significant 

outliers or overly influential cases biasing the model. A value greater than 4 ÷ n (in this 

study, 4 ÷ 214 = .02) indicates the possibility of an outlier. Figure 11 depicts Cook’s 

distance for WS, there were some exceptions that may be overly influential to the 

analysis. Upon further investigation, I found only three of these were more than three 

standard deviations from the mean. Since the data were obtained from a Likert scale 

questionnaire, and there were only three cases for which WS was more than three 

standard deviations from the mean, out of 214 observations, I concluded that outliers 

were not an issue with data analysis.  

Figure 11 
 
Scatterplot of Cook’s Distance by Predicted Value 
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Multiple Linear Regression  

For MLR, the objective was to create the best predictive model of the dependent 

variable (WS) as a function of the 10 independent variables (DTR, LTR, TTR, SPR, 

WBR, DTC, LTC, TTC, SPC, WBC); and a predictive model of the composite 

predictors, RHCID and CHCID. I conducted the MLR analysis on 214 responses using 

two stepwise approaches in which predictive variables were eliminated or selected 

sequentially based on their significance and their contribution to the model’s goodness-

of-fit: statistical regression, which uses automated routines in SPSS such as backward 

elimination and forward selection; and sequential regression which is a manual approach 

to model-building that employs the SPSS enter routine. Using an F test and its associated 

p value, I tested the significance of each predictive model using α = .05. I used .20 as the 

inclusion criterion for individual predictors, independent variables and 2FIs. 

Model Building for the 10 Independent Variables 

The first regression model-building analyses were performed on the 10 

independent variables. The primary purpose of this analysis phase was to screen for 

independent variables that were highly unlikely to be included in a model that was a 

significant predictor of WS. The inclusion criterion of .20 was used. In this phase, during 

the sequential regression analysis, scrutiny was paid to the p value for each independent 

variable after each run. The intent was to eliminate from consideration any independent 

variables with a relatively high p value, indicating their contribution to model 

significance was unlikely. Independent variables with p values near the inclusion 
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criterion would not necessarily be eliminated in the next phase, especially if their 

inclusion improved model goodness-of-fit (adjusted R2). 

Statistical Regression Using Backward Elimination 

All 10 independent variables (DTR, LTR, TTR, SPR, WBR, DTC, LTC, TTC, 

SPC, WBC) were entered to start the backward elimination analysis (SPSS run 1). Using 

the backward elimination method (criterion: the probability of F-to-remove > .201), the 

following independent variables were removed because their p value exceeded the 

removal criterion (.201): SPC, WBR, TTC, SPR, and LTC after SPSS ran six models (see 

Table 12). Model 6 (see Table 13) consisted of DTR, LTR, TTR, DTC, and WBC; with 

an adjusted R2 = .210. For the model, F = 12.308 and p < .001. 

Table 12 
 
Backward Method Model Summary 

 Change statistics  
 
 

Model 

 
 

R 

 
 

R2 

 
 

Adjusted 
R2 

Std. 
error of 

the 
estimate 

 
R2 

change 

 
F 

change 

 
 

df1 

 
 

df2 

 
Sig. F 
change 

1 .489 .239 .202 .574 .239 6.390 10 203 < .001 
2 .489 .239 .206 .573 < .001 .059 1 203 .808 
3 .488 .238 .209 .572 -.001 .206 1 204 .650 
4 .487 .237 .211 .571 -.002 .471 1 205 .493 
5 .484 .234 .212 .570 -.002 .627 1 206 .429 
6 .478 .228 .210 .571 -.006 1.640 1 207 .202 

 

Table 13 shows results from the last run using the backward method—model 6 

coefficients. The following variables are included in model 6: DTR, LTR, TTR, DTC and 

WBC.  
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Table 13 
 
Backward Method—Model 6 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficient 
std. error 

Standardized 
coefficients 

beta 

 
 

t 

 
 

Sig. 
6 (Constant) 1.720 .220  7.80 < .001 

 DTR .161 .036 .285 4.42 < .001 
 LTR .062 .038 .108 1.62 .107 
 TTR .093 .040 .155 2.32 .021 
 DTC .068 .040 .114 1.70 .091 
 WBC .057 .034 .107 1.67 .096 
 

Statistical Regression Using Forward Selection 

The forward selection regression technique (SPSS run 2) began with no 

independent variables in the model. Independent variables were entered sequentially 

(criterion: the probability-of-F-to-enter < .200). The independent variables were entered 

in this order: DTR, TTR, DTC, WBC, and LTR. Table 14 shows the model summary 

generated from using the forward selection and provides the adjusted R2 for each model.  

Table 14 
 
Forward Selection—Model Summary 

 Change statistics  
 
 
 

Model 

 
 
 

R 

 
 
 

R2 

 
 

Adjusted 
R2 

Std. 
error of 

the 
estimate 

 
 

R2 
change 

 
 

F 
change 

 
 
 

df1 

 
 
 

df2 

 
 

Sig. F 
change 

1 .366 .134 .130 .600 .134 32.88 1 212 < .001 
2 .425 .181 .173 .585 .047 12.00 1 211 < .001 
3 .454 .206 .195 .577 .026 6.78 1 210 .010 
4 .468 .219 .204 .573 .012 3.25 1 209 .073 
5 .478 .228 .210 .572 .010 2.62 1 208 .107 
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Table 15 shows model 5 coefficients. The independent variables remaining in 

both the backward method and forward selection processes resulted in the same 

predictive model, with an adjusted R2 = .210. For the model, F = 12.308 and p < .001.  

Table 15 
 
Forward Selection—Model 5 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 

std. error 

Standardized 
coefficients 

Beta 

 
 

 t 

 
 

Sig. 
5 (Constant) 1.720 .220  7.80 < .001 
 DTR .161 .036 .285 4.42 < .001 
 TTR .093 .040 .155 2.33 .021 
 DTC .068 .040 .114 1.70 .091 
 WBC .057 .034 .107 1.67 .096 
 LTR .062 .038 .108 1.62 .107 

Note. Dependent Variable: WS 

Sequential Regression Using the Enter Method  

I then employed sequential regression, which is a manual approach to model-

building that employs the SPSS enter routine, testing individual models (combinations of 

the independent variables). The manual process of the sequential regression method 

reduces errors inherent in the statistical methods (automated backward and forward 

process) since the analyst can use subject matter expert judgment and an iterative 

approach, choosing to add or eliminate variables based on both p value (compared to the 

inclusion criterion) and goodness-of-fit (adjusted R2).  

For the sequential regression method, I started with all 10 independent variables 

(DTR, LTR, TTR, SPR, WBR, DTC, LTC, TTC, SPC, and WBC), which was run 0 

originally performed to check the regression assumptions. I then sequentially eliminated 

independent variables based on their p-values (using an inclusion criterion of .20) and the 
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change in adjusted R2 after each run. Table 16 displays the model summary generated 

from SPSS run 0 using the enter method for all 10 independent variables in the initial 

model, adjusted R2 = .202. The coefficient table was previously presented in Table 10. 

Table 16 
 
Enter Method—Run 0 Model Summary 

 Change statistics  
 

Run 
 

R 
 

 R2 
Adjusted 

R2 
Std. error of 
the estimate 

R2 
change 

F 
change 

 
df1 

 
df2 

Sig. F 
change 

0 .489 .239 .202 .574 .239 6.39 10 203 < .001 
Note. Predictors: (Constant), WBC, DTR, LTR, TTR, LTC, TTC, SPR, DTC, SPC, WBR 

In run 3 (runs 1 and 2 were statistical regression runs), I eliminated SPC. The 

resulting model had an adjusted R2 = .206, which was an improvement. The coefficients 

and p values are shown in Table 17. 

Table 17 
 
Enter Method—Run 3 Model Summary 

 
Run 

  
Unstandardized  

B 

 
Coefficients 

std. error 

Standardized 
coefficients 

Beta 

  
 
 t 

 
 

Sig. 
3 (Constant) 1.639 .233  7.02 <.001 

 DTR .148 .038 .262 3.92 <.001 
 LTR .057 .039 .099 1.46 .147 
 TTR .087 .040 .145 2.17 .031 
 SPR .036 .041 .061 .877 .381 
 WBR .019 .042 .032 .449 .654 
 DTC .057 .042 .096 1.37 .173 
 LTC .042 .042 .071 .999 .319 
 TTC -.028 .040 -.048 -.688 .493 
 WBC .043 .038 .081 1.15 .251 

For run 4, I eliminated WBR because it had the largest p value. This model 

resulted in F = 8.06 and p < .001. The adjusted R2 = .209; again, an improvement and 
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corroboration that eliminating WBR enhanced model goodness-of-fit. The coefficients 

and p values are shown in Table 18. 

Table 18 
 
Enter Method—Run 4 Model Summary 

 
 

Run 

  
Unstandardized  

B 

 
Coefficients 

std. error 

Standardized 
coefficients 

Beta 

 
 

 t 

 
 

Sig. 
4 (Constant) 1.653 .231  7.15 <.001 
 DTR .150 .037 .266 4.01 <.001 
 LTR .058 .039 .100 1.48 .140 
 TTR .088 .040 .147 2.21 .028 
 SPR .035 .041 .060 .864 .389 
 DTC .060 .041 .101 1.46 .146 
 LTC .046 .041 .079 1.14 .255 
 TTC -.027 .040 -.046 -.671 .503 
 WBC .047 .036 .089 1.30 .196 

 

For run 5, I eliminated TTC. The resulting model had an adjusted R2 = .211, F = 

9.17, and p < .001, which was an improvement. The coefficients and p values are shown 

in Table 19. 

Table 19 
 
Enter Method—Run 5 Model Summary 

 
 

Run 

  
Unstandardized 

B 

 
Coefficients 

std. error 

Standardized 
coefficients 

Beta 

 
  

t 

 
 

Sig. 
5 (Constant) 1.630 .228  7.15 <.001 
 DTR .149 .037 .264 3.99 <.001 
 LTR .054 .038 .094 1.41 .161 
 TTR .088 .040 .146 2.20 .029 
 SPR .033 .041 .056 .815 .416 
 DTC .055 .041 .093 1.37 .173 
 LTC .044 .040 .075 1.09 .278 
 WBC .042 .035 .079 1.18 .240 

 



 

100 
 

 

In run 6, I eliminated SPR. The resulting model had an adjusted R2 = .212, F = 

10.60, and p < .001, which was an improvement. The coefficients and p values are shown 

in Table 20. 

Table 20 
 
Enter Method—Run 6 Model Summary (Without 2FIs) 

 
 

Run 

  
Unstandardized 

B 

 
Coefficients 

std. error 

Standardized 
coefficients 

Beta 

 
 
t 

 
 

Sig. 
6 (Constant) 1.660 .224  7.40 < .001 

 DTR .155 .037 .274 4.22 < .001 
 LTR .058 .038 .101 1.52 .131 
 TTR .091 .040 .152 2.31 .022 
 DTC .057 .040 .097 1.42 .156 
 LTC .050 .040 .085 1.26 .208 
 WBC .046 .035 .086 1.31 .193 

 

I reached run 6, with an adjusted R2 = .212, but with LTC p value = .208. 

Therefore, in run 7, I eliminated LTC. But, then the adjusted R2 = .210, which was a 

decrease. So, my decision was to re-admit LTC (reverting to the model in run 6, as 

depicted in Table 20), because adjusted R2 (.212) was higher for run6, and LTC’s p value 

was close to the inclusion criterion. Since I had planned next to add the 2FIs, it was 

prudent to keep LTC and see how the significance of the six remaining independent 

variables was impacted by an analysis involving the 2FIs. 

In summary, after conducting sequential regression using the enter method in 

SPSS, the best model based on adjusted R2 (.212), consisted of the six variables: WBC, 

DTR, LTR, TTR, LTC, and DTC as shown in Table 20. Eliminating LTC decreased 
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adjusted R2. While the p value was .208, I decided to retain LTC pending further analysis 

of the model with 2FIs included. 

To summarize the results of the backward elimination, forward selection, and 

sequential regression (enter) analyses of the 10 original IVs—if I had concluded 

sequential regression with only the five independent variables strictly meeting the 

inclusion criterion, then all three models would have included the same five variables: 

DTR, LTR, TTR, DTC, and WBC (with an adjusted R2 = .210, F = 12.308, and p < .001). 

However, I elected to retain LTC using adjusted R2, along with judgment and the 

knowledge that I would be continuing the analysis with the 2FIs. The model in run 6 

(Table 20) resulted in adjusted R2 = .212, F = 10.60, and p < .001. This concluded my 

screening analysis of the 10 IVs, using both statistical and sequential regression, to 

determine likely influential predictors to carry forward when I introduced the 2FIs. 

2FIs for HCI Devices  

2FIs—Statistical Regression 

The next step in the analysis was to add in the 2FIs to the model, which included 

all 15 pairs of the six independent variables from run 6. Using the statistical backward 

elimination method (criterion: the probability of F-to-remove > .201), the following 

independent variables and 2FIs were removed in SPSS run 8 because their p value 

exceeded the removal criterion: LTR*TTR, WBC, TTR, LTC*WBC, DTR*LTR, 

LTR*WBC, LTR*DTC, DTR, DTR*LTC, TTR*DTC, LTR, DTR*WBC, DTR*DTC, 

and DTC*WBC. Table 21 shows the backward elimination method model summary 
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resulting in model 15. The coefficients and p values for model 15 are shown in Table 22; 

adjusted R2 = .235, F = 10.41, and p < .001.  

Table 21 
 
Backward Method Model Summary 

 
Model 

 
R 

 
R2 

 
Adjusted R2 

Std. error of the 
estimate 

1 .532 .283 .205 .572 
2 .532 .283 .209 .570 
3 .532 .283 .213 .569 
4 .532 .283 .217 .566 
5 .532 .283 .221 .566 
6 .531 .282 .225 .565 
7 .531 .282 .227 .564 
8 .530 .281 .230 .563 
9 .528 .279 .232 .562 
10 .527 .277 .234 .561 
11 .524 .275 .235 .561 
12 .520 .271 .235 .561 
13 .517 .267 .235 .561 
14 .514 .265 .236 .561 
15 .510 .260 .235 .561 

 

Table 22 
 
Backward Method—Coefficients  

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 

std. error 

Standardized 
coefficients  

Beta 

 
 

t 

 
 

Sig. 
15 (Constant) 1.342 .354  3.79 < .001 

 DTC .288 .098 .485 2.92 .004 
 LTC .369 .117 .627 3.14 .002 
 DTR*TTR .040 .009 .404 4.63 < .001 
 LTR*LTC .016 .010 .148 1.49 .137 
 TTR*WBC .014 .009 .135 1.55 .123 
 TTR*LTC -.032 .016 -.304 -1.94 .053 
 DTC*LTC -.068 .026 -.670 -2.57 .011 
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Statistical regression using forward selection (run 9) produced a model that 

included the same two IVs as with backward elimination (DTC and LTC), four 2FIs, 

adjusted R2 = .233, F = 11.84, and p < .001. However, in comparison to the backward 

elimination method, the forward selection method resulted in a different set of 2FIs: 

adding DTR*WBC, but not selecting TTR*WBC and TTR*LTC. Table 23 shows the 

forward selection model summary. The coefficients and p values for model 6 are shown 

in Table 24.  

Table 23 
 
Forward Selection Model Summary 

Model R R2 Adjusted R2 Std. error of the estimate 
1 .398 .158 .154 .590 
2 .447 .200 .192 .576 
3 .462 .214 .202 .573 
4 .472 .223 .208 .571 
5 .480 .231 .212 .569 
6 .504 .255 .233 .562 

 
Table 24 
 
Forward Selection—Coefficients  

 
 

Model 

  
Unstandardized  

B 

 
Coefficients 

std. error 

Standardized 
coefficients 

Beta 

 
 
t 

 
 

Sig. 
6 (Constant) 1.432 .350  4.09 <.001 
 DTR*TTR .026 .007 .259 3.61 <.001 
 LTR*LTC .016 .010 .152 1.54 .126 
 DTC .327 .096 .551 3.42 .001 
 DTR*WBC .012 .008 .114 1.55 .122 
 DTC*LTC -.077 .026 -.762 -2.97 .003 
 LTC .282 .110 .479 2.57 .011 
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2FIs—Sequential Regression 

In this analysis, I began with run 10, with the six IVs and 15 2FIs. I added and 

eliminated terms (independent variables and 2FIs) based on an inclusion criterion of .20 

and run-to-run change in adjusted R2. The model summary and coefficient tables for runs 

10 through 23 (except run 22) are provided in Appendix D.  

Adjusted R2 increased with each run up to run 22. After run 23, I concluded that 

run 22 was the best model, consisting of LTR, TTR, DTC, WBC, DTR*TTR, LTR*LTC, 

TTR*DTC, DTC*WBC, and DTC*LTC. Adjusted R2 = .239, F = 8.452, p value < .001. I 

selected run 22 because, in run 23, DTC*WBC was removed; but that decreased adjusted 

R2. So, DTC*WBC was re-inserted, reverting to run 22. 

Statistical and Sequential Regression: Model Comparison 

Compared to statistical regression, sequential regression led to a model that 

included a different and larger set of terms (IVs and 2FIs), all of which met the inclusion 

criterion of .20, with a higher adjusted R2 = .239, F = 8.45, p < .001. The best model 

produced by backward elimination (Table 21) yielded adjusted R2 = .235; from forward 

selection, adjusted R2 = .233. Therefore, a model with better goodness-of-fit was 

produced by sequential regression. LTC and DTR were found not to be significant 

individually (based on the inclusion criterion) but were moderators of other independent 

variables (and part of 2FIs).  

The entire set of analyses, from runs 1 through 23, revealed some important 

insights about the process of model selection and the various techniques. First, LTC was 

brought forward to the analysis that included 2FIs, because as shown in runs 6 and 7, its 
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presence increased model adjusted R2, even though its p value exceeded, slightly, the 

inclusion criterion. However, while LTC was included in models produced by the two 

statistical regression techniques, in runs 8 and 9 (additional justification for carrying it 

forward after screening, to the full analysis with 2FIs), sequential regression 

demonstrated that LTC’s influence was as a moderator of other independent variables, 

and not as a significant predictor by itself. Likewise, DTR was included in models 

produced by the statistical regression techniques but found in sequential regression to be 

only a moderator, not a significant predictor by itself. 

Also, models produced by sequential regression enables manual additions and 

eliminations of predictors based partly on their individual significance, but also on the 

impact on model goodness-of-fit, as measured by adjusted R2. As a result, sequential 

regression was able to uncover subtle nuances in the regression models that resulted in 

the identification of LTC and DTR as moderators (instead of predictors), as well as three 

independent variables which were significant when included in a larger model of 

predictors (LTR, TTR, and WBC) plus two 2FIs—predictors not selected by statistical 

regression, but that contributed to model goodness-of-fit.  

Final Model 

Table 25 shows the model summary from run 22. Table 26 shows the coefficients 

and p values. The final predictive regression model was the following: 

𝑌#  (WS) = -.190(LTR) + .179(TTR) + .631(DTC) + .187(WBC)  

+ .036(DTR*TTR) + .068(LTR*LTC) − .059(TTR*DTC)  

− .037(DTC*WBC) − .059(DTC*LTC) + .108  (10) 
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Table 25 
 
Sequential Model Summary—Run 22 

 
Run 

 
R 

 
R2 

 
Adjusted R2 

Std. error of 
the estimate 

 
F 

22 .520 .271 .239 .560 8.452 
Note. Predictors: (Constant), DTC*LTC, DTR*TTR, LTR, WBC, TTR, DTC, 

LTR*LTC, DTC*WBC, TTR*DTC.  

Table 26 
 
Sequential Regression—Coefficients 

 
 

Run 

  
Unstandardized  

B 

 
Coefficients 

std. error 

Standardized 
coefficients 

Beta 

 
 
t 

 
 

Sig. 
22 (Constant) 1.080 .454  2.39 .018 
 LTR -.190 .107 -.331 -1.78 .077 
 TTR .179 .112 .298 1.59 .113 
 DTC .631 .161 1.060 3.93 < .001 
 WBC .187 .100 .351 1.87 .063 
 DTR*TTR .036 .009 .359 3.83 < .001 
 LTR*LTC .068 .028 .646 2.46 .015 
 TTR*DTC -.059 .029 -.581 -2.07 .040 
 DTC*WBC -.037 .027 -.378 -1.38 .170 
 DTC*LTC -.059 .028 -.578 -2.10 .037 

 

Adjusted R2 = .239 (Table 25) explained approximately 24% of WS variation. 

Based on the F test (F = 8.452), its associated p value < .001, and α = .05, I rejected the 

null hypothesis and concluded there was sufficient evidence that at least one coefficient 

was not equal to zero. The final regression model was a significant predictor of WS.  

2FI Explanation for the Final Model  

Based on the sequential regression analysis of the independent variables and 2FIs, 

there were four independent variables and five 2FIs that exerted a significant influence on 
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WS. In the 2FI figures to follow, there are two views of the interactions in which the 

independent variables are both, individually, significant predictors of WS. However, 

since there is no relationship between DTR and LTC, individually, and WS, there is only 

one depiction of the 2FIs involving DTR and LTC. There is no significance to the colors 

in the figures, as they are provided merely to show the differences in linear functions for 

various values of the moderating variable in each 2FI. 

The first significant 2FI was between DTR and TTR, depicted in Figure 12, which 

illustrates that the relationship between WS and TTR changes depending on the value of 

DTR. The influence of TTR on WS (slope) is very slightly positive (almost flat, or 

nonexistent) at the minimum value of DTR, but that influence (scope) is greater as DTR 

increases in value, such that the influence of TTR on WS is positive and highest at the 

maximum value of DTR. DTR is, by itself, not a significant predictor, but it does 

moderate the influence of TTR on WS. 
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Figure 12 
 
2FI: DTR and TTR 

 

The second 2FI was between LTR and LTC. This 2FI is depicted in Figure 13, 

which demonstrates that the relationship between WS and LTR changes depending on the 

value of LTC. The influence of LTR on WS (slope) is virtually non-existent (flat) at the 

minimum value of LTC, but that influence (slope) grows as LTC increases in value, such 

that the influence of LTR on WS is positive and at its highest at the maximum value of 

LTC. While LTC is, by itself, not a significant predictor, it does moderate the influence 

of LTR on WS. 
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Figure 13 
 
2FI: LTR and LTC 

 

Another significant 2FI was between DTC and LTC. This 2FI is depicted in 

Figure 14 which shows that the relationship between WS and DTC changes depending on 

the value of LTC. The influence of DTC on WS (slope) is positive at all values of LTC, 

but that influence (slope) diminishes as LTC increases in value from minimum to 

maximum. Again, LTC is, by itself, not a significant predictor, but it moderates the 

influence of DTC on WS. 
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Figure 14 
 
2FI: DTC and LTC 

 

The next significant 2FI was between TTR and DTC, both of which were 

significant predictors of WS. This 2FI is illustrated in Figure 15 which shows that the 

relationship between WS and TTR changes depending on the value of DTC. The 

influence of TTR on WS (slope) is positive at all values of DTC, but that influence 

(slope) decreases as DTC increases in value, such that at the maximum value of DTC, 

there is almost no influence by TTR on WS (a flat or zero slope, or linear relationship).  
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Figure 15 
 
2FI: TTR and DTC (First View) 

 

The same 2FI can be depicted in another way in Figure 16. The relationship 

between WS and DTC changes depending on the value of TTR. The influence of DTC on 

WS (slope) is positive at all values of TTR, but that influence (slope) decreases as TTR 

increases in value, such that at the maximum value of TTR, there is almost no influence 

by DTC on WS (a flat or zero slope, or linear relationship). 
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Figure 16 
 
2FI: TTR and DTC (Second View) 

 

The final significant 2FI was between DTC and WBC, both of which were 

significant predictors of WS. This 2FI is illustrated in Figure 17 which shows that the 

relationship between WS and WBC changes depending on the value of DTC. The 

influence of WBC on WS (slope) is positive at the minimum value of DTC, but that 

influence (slope) decreases as DTC increases in value, such that at the maximum value of 

DTC, there is virtually no influence, or perhaps a slightly negative influence by WBC on 

WS (a flat or slightly negative slope or linear relationship). 
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Figure 17 
 
2FI: DTC and WBC (First View) 

 

Figure 18 shows this 2FI in another way. The relationship between WS and DTC 

changes depending on the value of WBC. The influence of DTC on WS (slope) is 

positive at all values of WBC, but that influence (slope) decreases as WBC increases in 

value from minimum to maximum. 
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Figure 18 
 
2FI: DTC and WBC (Second View) 

 

Model-Building for RHCID and CHCID  

Statistical Regression Using Backward Elimination 

Next, I performed MLR model-building to assess if and to what extent two 

aggregate indices, RHCID and CHCID, plus their 2FI, RH*CH, predicted WS. In SPSS 

run 24, using statistical regression (backward elimination method, criterion: probability-

of-F-to-remove < .201), all variables were entered to start. No variables were eliminated 

using the backward elimination technique, and Table 27 provides a model summary 

(adjusted R2 =.206, F = 19.56, and p < .001). The coefficients and p values are depicted in 

Table 28.  
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Table 27 
 
Backward Method—Model Summary 

 
Run 

 
R 

 
R2 

 
Adjusted R2 

Std. error of the 
estimate 

24 .466 .218 .206 .572 
 

Table 28 
 
Backward Method—Coefficients 

 

Statistical Regression Using Forward Selection 

Using the forward selection regression process in run 25, no variables were 

included at the start, and only RHCID was entered by the automated routine (Criterion: 

probability-of-F-to-entry < .200). Table 29 shows the model summary generated from 

forward selection process and the adjusted R2 = .204, F = 55.72, and p < .001.  

Table 29 
 
Forward Selection—Model Summary 

 
Run 

 
R 

 
R2 

 
Adjusted R2 

Std. error of 
the estimate 

25 .455 .207 .204 .572 
 

Table 30 shows regression coefficients for the model. The adjusted R2 = .204, F = 

55.72, and p < .001.  

 
 

Run 

  
Unstandardized 

B 

 
Coefficients 

std. error 

Standardized 
coefficients 

Beta 

 
 

t 

 
 

Sig. 
24 (Constant) 1.010 .535  1.88 .062 
 RHCID .601 .158 .648 3.81 < .001 
 CHCID .269 .164 .317 1.64 .102 
 RH*CH -.063 .044 -.428 -1.44 .151 
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Table 30 
 
Forward Selection Coefficients 

 
 

Run 

  
Unstandardized 

B 

 
Coefficients 
of std. error 

Standardized 
coefficients 

Beta 

 
 
t 

 
 

Sig. 
25 (Constant) 1.760 .215  8.24 <.001 
    RHCID .422 .057 .455 7.46 <.001 

Note. Predictors: (Constant), RHCID 

Sequential Regression using the Enter Method 

I next employed sequential regression (using the SPSS enter method) starting 

with RHCID, CHCID, and RH*CH, with the intent to sequentially omit variables that 

contributed the least to the model goodness-of-fit based on their p values and the change 

in adjusted R2 after each run. No variables were eliminated in run 27 (run 26 was another 

check of assumptions). This result was consistent with statistical regression using 

backward elimination in run 24. Table 31 displays the model summary generated from 

sequential regression, the adjusted R2 = .206, F = 19.56, p < .001. Table 32 provides the 

coefficients for the model. This model is superior to the model developed by the forward 

selection method, based on a higher adjusted R2, and all terms met the inclusion criterion 

of .20 

Table 31 
 
Enter Method— RHCID, CHCID, and RH*CH Model Summary 

 
Run 

 
R 

 
R2 

 
Adjusted R2 

Std. error of the 
estimate 

 
F 

27 .466 .218 .206 .572 19.56 
Note. Predictors: (Constant), RH*CH, RHCID, CHCID 
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Table 32 
 
Enter Method— RHCID, CHCID, and RH*CH Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 

std. error 

Standardized 
coefficients 

Beta 

 
 

t 

 
 

Sig. 
1 (Constant) 1.010 .535  1.88 .062 
 RHCID .601 .158 .648 3.81 < .001 
 CHCID .269 .164 .317 1.64 .102 
 RH*CH -.063 .044 -.428 -1.44 .151 

Note. Predictors: (Constant), RHCID, CHCID, RH*CH 

The final predictive regression equation for the two indices and their 2FI was the 

following: 

𝑌#  (WS) = .601(RHCID) + .269(CHCID) − .063(RH*CH) + .101  (11) 

In the final model, adjusted R2 = .206 indicated that the model explained 

approximately 21% of WS variation. F = 19.56, and its associated p value < .001. 

Therefore, based on α = .05, I rejected the null hypotheses, and concluded there was 

sufficient evidence of a significant relationship between both reliance and competence, in 

the aggregate; and Web 3.0 skills. The regression model composed of the two indices and 

their 2FI was significant in predicting WS.  

In the analysis of the two indices, RHCID and CHCID, the 2FI was evaluated and 

found to be significant in the model predicting WS (inclusion criterion of .20; p < .001). 

Illustrations of the 2FI are provided in Figures 19 and 20. Figure 19 shows that the 

relationship between WS and RHCID changes depending on the value of CHCID. The 

influence (slope) of RCHID on WS is positive for all values of CHCID but increases as 

CHCID decreases in value. 
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Figure 19 
 
2FI: CHCID and RHCID (First View) 

 

Figure 20 shows, likewise, that the relationship between WS and CHCID changes 

depending on the value of RHCID. The influence (slope) of CHCID on WS is positive at 

the minimum value of RHCID, but that influence decreases as RHCID increases in value, 

such that the influence of CHCID on WS is negative at the maximum value of RHCID. 
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Figure 20 
 
2FI: CHCID and RHCID (Second View) 

 

Summary 

In Chapter 4, I provided a description of the pilot study and data collection. 

Reliability analysis was completed to confirm the internal validity and consistency of the 

questionnaire items used to inform each variable. I calculated Cronbach’s alpha for the 

statements belonging to each construct in the research model and found that each 

subscale was valid. A sample of 214 responses was analyzed. I performed statistical 

analysis to address the research question. 

The research question was, What is the relationship between the use of HCI 

devices and Web 3.0 skills? This question was designed to explore the motivations for 

engineers to use Web 3.0 technologies to enhance their skills and performance. Do the 

independent variables (use of HCI devices—reliance and competence) predict the 

dependent variable (Web 3.0 skills of engineers)? I postulated that reliance on and 
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competence with five HCI devices could predict the self-reported level of Web 3.0 skills 

for engineers. 

Initially, I considered the 10 independent variables—reliance on and competence 

with five HCI devices: desktop (DTR/DTC), laptop (LTR/LTC), tablet (TTR/TTC), 

smartphone (SPR/SPC), and wearable (WBR/WBC) devices. I added a second analysis in 

which I aggregated the original 10 independent variables to one variable for reliance on 

all five HCI devices (RHCID); and one variable for competence on all five HCI devices 

(CHCID). The dependent variable, Web 3.0 skills (WS) was a composite value of means 

or an index aggregated from eight components of the KOT subscale: web technologies, 

developer tools, relational database technology, blockchain technology, operating 

systems and server technologies, server software, and virtualization. 

I performed descriptive statistics and graphical analysis to characterize the sample 

and evaluated statistical assumptions. For both analyses (of the 10 independent variables 

and the two aggregate indices), I performed three different regression techniques: 

statistical regression with backward elimination, statistical regression with forward 

selection, and sequential regression with iteration. This strategy was intended to generate 

collaborative evidence for selecting the predictors in a model of WS and to avoid the 

pitfalls with automated stepwise regression techniques. 

I performed the regression model-building task involving the 10 independent 

variables in two stages. The first was a screening exercise involving only the independent 

variables, to identify those which were unlikely to be included in a predictive model of 

WS and those to carry into a full analysis that also included 2FIs. The second stage was 
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intended to develop the best predictive model of WS, including all predictors 

(independent variables and 2FIs) meeting the inclusion criterion of .20 and contributing 

to model goodness-of-fit (adjusted R2). 

In the first stage of the analysis of the 10 independent variables, the model 

developed in run 6 (Table 20) consisted of six independent variables: DTR, TTR, DTC, 

WBC, LTR, and LTC. All except LTC met the inclusion criterion. However, LTC was 

only slightly over the inclusion criterion. Therefore, I decided not to exclude it knowing 

that the next stage of analysis would provide further analysis of its significance. These six 

independent variables were carried into the second stage of the analysis. 

Stage 2 resulted in a final predictive regression model with an adjusted R2 of .239 

included four independent variables (TTR, DTC, WBC, and LTR) and five 2FIs 

(DTR*TTR, DTC*LTC, TTR*DTC, LTR*LTC, and DTC*WBC. For this final model, F 

= 8.452, its associated p value < .001. Based on standardized coefficients depicted in 

Table 26, DTC was the most influential predictor. However, its influence on WS was 

moderated by TTR as illustrated by the significant 2FI, TTR*DTC. 

Analysis of the aggregate indices, RHCID and CHCID, was performed in only 

one stage since the analysis was relatively simple. All three regression techniques were 

applied, and the final model consisted of both indices and their 2FI, depicted in Tables 35 

and 36. For this model, F = 19.56 and its associated p value < .001. RHCID was the more 

influential predictor based on standardized coefficients, but its influence was moderated 

by CHCID. 
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In response to the research question, both null hypotheses were rejected based on 

the F test and a p value < α = .05. The analysis revealed that a subset of the original 10 

independent variables and 2FIs (see Tables 25 and 26) comprised a significant predictive 

model of WS. Similarly, a model consisting of the two aggregate indices for reliance and 

competence, and their 2FI, also significantly predicted WS (see Tables 35 and 36).  

I conclude with the following six key findings from my analysis (a) A model of 

aggregate indices of reliance on and competence with HCI devices and their 2FI was a 

significant predictor of WS based on an F test (F = 8.452), its associated p value <.001, 

and α = .05. (b) Within a significant final predictive, regression model, the independent 

variables LTR, TTR, DTC, and WBC were predictors of WS based their p value < the 

inclusion criterion of .20. (c) The effects of the four independent variables in the final 

predictive model were moderated by other variables and captured in the form of five 

2FIs. (d) Two of the original independent variables (DTR, LTC) were not individually 

significant based on the inclusion criterion of .20 but were moderating variables (part of 

significant 2FIs). (e) Both of the aggregate indices of reliance and competence were 

predictors in a model that was a significant predictor of WS. (f) Four of the original 

independent variables were not part of a significant predictive model of WS (SPR, WBR, 

TTC, and SPC) and therefore not considered predictors of WS. 

In Chapter 5, I interpret the results related to these six key findings. I also address 

recommendations for future research. Additionally, I explain the real-world, practical, 

and operational significance of these results and the potential impact for positive social 

change.  
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Chapter 5: Discussion, Conclusions, and Recommendations 

The purpose of this quantitative correlational study was to investigate whether the 

use of HCI devices predicts Web 3.0 skills among engineers. The analysis revealed six 

key findings. First, a model of reliance on and competence with HCI devices was a 

significant predictor of Web 3.0 skills. Second, four independent variables were included 

in a model which was a significant predictor of Web 3.0 skills: two related to competence 

with devices (desktops and wearables) and two related to reliance on devices (laptops and 

tablets). Next, five 2FIs indicated that the effects of the four significant independent 

variables were moderated by other independent variables. The fourth key finding was that 

two independent variables (competence with laptops and reliance on desktops), while not 

significant predictors individually, were moderators of the influence of the significant 

predictors. A fifth key finding was that both aggregate indices of reliance and 

competence were predictors of Web 3.0 skills. Engineers’ usage of HCI devices—their 

competence with and reliance on HCI devices—predicts Web 3.0 skills among engineers. 

And, lastly, four of the original independent variables were not part of a significant 

predictive model. In this chapter, I interpret the findings within the context of previous 

research and professional practice. I provide recommendations for further research and 

discuss limitations that impacted my study. I also provide implications for engineering 

management and explain how my research may lead to positive social change.  

Interpretations of the Findings 

The theoretical foundation for this research was the Solow IT productivity 

paradox. The theory maintains that as more investments are made in IT, engineer 
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productivity or performance may go down instead of up. In engineering organizations, 

management is responsible for motivating its engineers to become more skilled and, 

therefore, more productive. But they are faced with the challenge of knowing what 

technologies to invest in that will motivate their engineers to improve their skills. 

Measuring engineering skills is a vast and complex task, and for this research, I chose 

one among many measures of skills and focused on Web 3.0. 

In this research, I assessed the relationship between reliance on and competence 

with five specific HCI devices and Web 3.0 skills. To perform this analysis, test the 

hypotheses, and answer the research question, I performed model building with several 

types of regression analysis: statistical regression in two forms, backward elimination and 

forward selection; and sequential regression using the enter method. These techniques 

were used collaboratively to generate evidence to select the best predictive model of Web 

3.0 skills. The evidence generated from these different statistical techniques was used in 

the aggregate to test the hypotheses and answer the RQs. There were six findings that 

resulted from this analysis. The following is an interpretation of those findings in terms 

of previous research and professional practice.  

Statistically Significant Predictive Model 

I had one RQ and two sets of hypotheses to guide this research. The analysis 

generated two predictive models documented in Chapter 4. One model was developed 

using the original 10 independent variables, with a final model that was a statistically 

significant predictor of Web 3.0 skills and included independent variables and 2FIs 

meeting my inclusion criterion. The second model was also a statistically significant 
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predictor of Web 3.0 skills and was based on two aggregated measures of reliance and 

competence. 

Research has not been conducted to examine if and to what extent engineer 

reliance on and competence with specific technology and devices are associated with or 

can predict advanced skills, such as Web 3.0. Consequently, engineering managers may 

make uninformed decisions regarding investment in technology, which may not result in 

increased skills or productivity. My research, as captured in this key finding, showed that 

it is possible to predict Web 3.0 skills using a regression model consisting of measures of 

reliance on and competence with various devices. 

Predictors of Skills 

Four independent variables were included in a model, which was a significant 

predictor of Web 3.0 skills: two related to competence with devices (desktops and 

wearables) and two related to reliance on devices (laptops and tablets). Because Web 3.0 

is still evolving, current research has not identified the significant predictors of Web 3.0 

skills. Previous research addresses Web 2.0 skills but does not identify engineer reliance 

on and competence with specific technology and devices. Furthermore, as a result, 

managers cannot make informed decisions about their investments in technology. The IT 

productivity paradox is well documented in the literature and supported by my research. 

My research showed that engineers exhibit varying degrees of reliance on and 

competence with laptops, tablets, desktops, and wearable devices to be productive. Self-

reported Web 3.0 skills were predicted by competence with desktops and wearables, and 
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by reliance on laptops and tablets, insights not previously identified by scholarly 

research. 

Laptop Reliance 

Engineers’ reliance on laptops was a negative predictor of skills with advanced 

technologies (Web 3.0). Within the predictive model of multiple predictors and 

interactions, an increase in laptop reliance predicts a decrease in Web 3.0 skills. This 

outcome must be qualified, however, by the interaction between laptop reliance and 

laptop competence, which was depicted in Figure 13. More broadly, the influence of 

laptop reliance depends on the values of the other significant predictors as shown in 

Figure 21. Figure 21 shows that when the other predictors are their minimum values (low 

reliance or competence), skills decline as laptop reliance increases. But, as the values of 

the other predictors increase, the influence of laptop reliance on Web 3.0 skills becomes 

increasingly more positive. So, while overall the influence of laptop reliance is negative, 

that influence is moderated by the other predictors. 

Under those circumstances, engineers’ reliance on laptops may decrease their 

willingness to become motivated to learn Web 3.0 skills on their own. As an example, 

laptops with the latest operating systems perform tasks that allow engineering users to 

complete tasks using speech recognition, often without typing text on the keyboard. As a 

result, there may not be an incentive to develop Web 3.0 skills further.  
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Figure 21 
 
2FI: Predicted WS and LTR 

 

Engineers can now work on automated and stored projects in the cloud, where 

information is understood and experienced spatially. Laptops are powerful devices that 

can process the primary capabilities of Web 3.0 technologies—the semantic web, 

decentralized technology, 3D interactive technology (i.e., AR/VR, and the spatial web), 

and the social web.  

Laptops that utilize biometric tools (e.g., Apple’s facial recognition algorithms 

and fingerprint sensors) can access content stored on laptops. Engineers who use Apple 

devices can customize, prioritize tasks via a tool known as mission control, allowing for 

multiple desktop-like interfaces on their laptops. The capabilities of a laptop are many 

and beneficial for engineers, often eliminating the need for engineers to learn Web 3.0 

manually, learning instead how to use and rely on their laptop device (Rudman & 

Bruwer, 2016).  
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Engineers explore data and interact with their laptop devices, but this does not 

translate into increased Web 3.0 skills. In the workplace, engineers are often focused on 

solving problems and providing solutions. My research provided evidence that, overall, 

engineers’ Web 3.0 skills tend to be higher with less reliance on laptops. But, to reiterate, 

my research also showed that the relationship between laptop reliance and skills is 

complex and depends on engineer’s reliance on and competence with other HCI devices. 

Tablet Reliance  

An increase in engineers’ reliance on tablets predicts an increase in Web 3.0 

skills. This may be explained by understanding that Web 3.0 technologies interface better 

on tablet devices. Tablet devices are convenient, portable, best suited for applications, 

and allow engineers to interact with data better than they can on other kinds of devices.  

The third generation of the Internet, or Web 3.0, can equip engineers with 

websites and applications to process information in an intelligent, human-like fashion 

using machine learning and big data (Ilchenko & Kramar, 2020). Today, the semantic 

web has evolved into applications that equip engineers with many options for being 

productive (i.e., business suites, developer tools, and open-source repositories) on tablet 

devices. Tablet devices, (e.g., Apple iPads) can display decentralized applications and 

applications built on Ethereum blockchain—which are disrupting old business models 

and creating new business practices by using backend code known as smart contracts that 

operate by a decentralized network instead of a centralized server. 

My research highlights that engineers’ reliance on tablets provides them access to 

many applications and widgets leading to higher Web 3.0 skills. Tablet devices are 
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unique since engineers can touch the tablet’s screen with their fingers to rotate, scroll, 

pan, or zoom content. Accessibility features on tablets allow engineers to customize 

gestures allowing for a high level of interactivity for greater accuracy.  

Adapting tablet devices (e.g., Apple iPads, Microsoft Surface, or Samsung 

tablets) in the workplace can empower engineers to communicate effectively, on the go, 

and boost employee productivity. Tablet reliance was the highest among the five HCI 

devices. Based on previous research and in my experience operationally, tablets are worth 

the investment since their use is associated with higher Web 3.0 skills.  

Desktop Competence  

Desktop competence was the most influential predictor of Web 3.0 skills (based 

on standardized coefficients), indicating that engineers tend to have higher Web 3.0 skills 

while using desktops. Within the predictive model of multiple predictors and interactions, 

an increase in desktop competence predicts an increase in Web 3.0 skills.  

Engineers are competent using desktop devices but as a result may be confined to 

a specific stationary area for working. Obtaining Web 3.0 skills while working on a 

desktop equips engineers with readily available tools to develop and manage their 

workloads. The development of Web 3.0 skills occurs while using a desktop device since 

this type of device’s screen size can range from the size of a laptop, 13 inches, to 55 

inches—the size of a TV monitor. Desktops are highly suited for using Web 3.0 

technologies and processing data on dashboards.  

Interaction with desktops allows engineers to work on multiple projects 

simultaneously and productively. Output and productivity increase as more projects are 
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completed. Sambasivan et al. (2017) highlighted insights about knowledge of 

technologies in related fields of ICT for development and HCI for development (HCI4D), 

which have evolved in technological design with special ergonomic attention and care to 

desktops in the social-work environment in manufactures, business, and sociocultural 

contexts. My study provides evidence that engineers’ competence in Web 3.0 skills is 

associated with their competence with desktops in the office environment.  

Wearable Competence  

Wearable competence was a predictor of Web 3.0 skills, indicating that wearable 

competence is associated with increased Web 3.0 skills for engineers. Consistent with the 

research from Farah (2012) and Santos (2015), my findings indicate competence with 

wearable devices or smartwatches that are unique in size (38 mm or 42 mm) is associated 

with increased Web 3.0 skills and productivity for engineers.  

Comparable to Corbett and Weber (2016), my study indicated that wearable, 

digital devices with voice user interface functions allow engineers to control their devices 

for more productivity. Wearables revolutionize how information is displayed and 

analyzed.  

My results indicated that immersion in wearables like VR headsets is beneficial 

for displaying 3D data and large computer aid design models. Engineers’ competence 

with VR and virtual collaboration with peers while working on projects is associated with 

higher skills and productivity. For example, previous experience allowed me to interact 

with engineering colleagues remotely while accessing real-time 3D data with the ability 

to seek help from other experts via their wearable devices. 
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Two-Factor Interactions 

There were four primary independent variables as predictors in the final 

regression model, but their influence was moderated by other predictors (see Table 25 

and Table 26). This moderating effect was captured in my analysis of five 2FIs. One of 

these was an interaction between two of the predictor variables: desktop competence and 

tablet reliance. Another was also the interaction between the two predictor variables, 

desktop competence and wearable competence. The remaining three 2FIs in the model 

involved a moderating independent variable that was not included in the MLR equation 

with an independent variable that was included in the MLR equation: DTR*TTR, 

LTR*LTC, DTC*LTC.  

2FI Between Desktop Competence and Wearable Competence  

My research revealed a 2FI between desktop competence and wearable 

competence, illustrated in Figures 17 and 18. In Figure 17, the influence of wearable 

competence on Web 3.0 skills was positive at low values of desktop competence; 

however, the influence of wearable competence on Web 3.0 skills decreased with 

increases in wearable competence as desktop competence increased in value. At the 

highest value of desktop competence, wearable competence was not influential, or 

perhaps negatively influential, on Web 3.0 skills.  

The second view of the 2FI between desktop competence and wearable 

competence (Figure 18) revealed that the relationship between Web 3.0 skills and 

desktop competence changed depending on the value of wearable competence. The 

influence of desktop competence on Web 3.0 skills was positive at all values of wearable 
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competence. However, the influence of desktop competence on Web 3.0 skills decreased 

as wearable competence increased in value.  

Consistent with Rudman and Bruwer (2016), my research suggested that Web 3.0 

technologies provide an integrated web experience for engineers across HCI devices, 

where machines can compute, understand, and index data like humans. Regarding WS, 

this 2FI indicates that engineers’ Web 3.0 skills are decreasingly associated with the 

competence of either device, when engineers are competent with the other device; that is, 

when they opt to be mobile (using their wearable for remote monitoring) or stationary 

(using their desktop). This finding also highlights the difference in human computer 

interaction and engineers’ Web 3.0 skill level based on the type of device—wearable 

technology versus desktop technology and its associated level of competence required to 

be efficient for usage. 

2FI Between Tablet Reliance and Desktop Competence 

My research revealed a 2FI between competence of desktops and reliance on 

tablets. The influence of tablet reliance on engineers’ skills and tablet reliance was 

positive for all values of desktop competence but diminished as the level of desktop 

competence increased. Likewise, the influence of desktop competence on engineers’ 

skills was positive for all values of desktop competence but lessened as tablet reliance 

increased. Figures 15 and 16 illustrate this 2FI. 

Regarding the impact on WS, this 2FI indicates that as desktop competence 

increases, the impact on WS of increasing tablet reliance is reduced. In other words, as 

engineers’ competence with desktops increases, their skills tend to associate less with 
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their reliance on tablets. Similarly, as engineers’ reliance on tablets increases, their skills 

are associated less with desktop competence.  

Moderating Variables 

Analysis of the 2FIs revealed that there were two independent variables that 

exhibited a moderating effect on the significant predictors, even though they were not, by 

themselves, significant predictors. These were reliance on desktops and competence with 

laptops. 

Desktop Reliance 

The moderating effect of desktop reliance is explained by its interaction with 

reliance on tablets, a 2FI which contributes to the goodness of fit of the model and the 

predictability of Web 3.0 skills. This 2FI is illustrated in Figure 12.  

The relationship between tablet reliance and Web 3.0 skills changes according to 

the value of desktop reliance. Based on Figure 12, for those engineers who heavily rely 

on their desktops, their Web 3.0 skills increase as their reliance on tablets increases. 

There is an interesting phenomenon apparent in two of the 2FIs involving the 

influence of tablet reliance on Web 3.0 skills. Whereas the influence of tablet reliance on 

Web 3.0 skills appears to decrease with higher competence on desktops (Figure 15), that 

influence appears to increase with higher reliance on desktops (Figure 12). In other 

words, at lower desktop competence and higher desktop reliance levels, Web 3.0 skills 

increases as tablet reliance increases. Engineers who are competent with but not reliant 

on desktops have skill levels not associated with their reliance on tablets.  
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Operationally, this means that engineering managers should invest in new desktop 

devices and tablets that can handle extensive workloads with speed or plan to hire a team 

of independent contractors and IT service technicians to update desktops periodically.  

Laptop Competence 

The 2FIs included in the model indicated that laptop competence was a 

moderating variable—not significant by itself but moderating the influence of laptop 

reliance and desktop competence. This moderating effect is explained in the following 

two 2FIs. 

2FI Between Laptop Reliance and Laptop Competence. My analysis of Figure 

13 revealed that, as laptop competence increases, the influence of laptop reliance on Web 

3.0 skills increases. This is a logical and self-evident outcome. Engineers who are 

competent with laptops have skill levels that are associated with their reliance on laptops. 

Engineering management’s investment in the right kinds of laptops can motivate 

engineers to develop their Web 3.0 skills.  

2FI Between Desktop Competence and Laptop Competence. The relationship 

between Web 3.0 skills and desktop competence changed depending on the value of 

engineers’ competence with laptops (2FI illustrated in Figure 14). The greater the 

competence with laptops, the less influence that desktop competence has on Web 3.0 

skills. This is an intuitive outcome. It might be expected that engineers are more 

competent with one platform than another, and their Web 3.0 skills would be more 

influenced by the device with which they are more competent. 
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The 2FI provides some insights that can be inferred from the interaction and 

raises the question of how and why engineers’ Web 3.0 skills change; and perhaps 

implies some insights about how they opt to use different devices. Web 3.0 skills are 

highest for engineers who are competent with both laptops and desktops. And skills are 

lowest when their competence with both devices is lowest. But their increase in skills 

based on desktop competence steepens when they are least competent with laptops.  

Reliance and Competence Composite Indices 

I explored the predictability of two composite indices of the independent 

variables. A key finding indicated that engineers’ reliance and competence of HCI 

devices, plus their 2FI, were predictors of Web 3.0 skills.  

Predictability of Competence and Reliability Indices 

In the predictive model, an increase in a general reliance on and competence with 

HCI devices predicts an increase in Web 3.0 skills. This finding does not refute any 

previous research, but it does substantiate the notion that engineers’ knowledge of and 

skills with various technologies can improve the productivity of businesses in almost all 

sectors, ranging from small and medium enterprises to conglomerate corporations.  

My research revealed a 2FI between the composite indices of reliance on HCI 

devices and competence with functions of HCI devices. The influence of reliance on HCI 

devices on Web 3.0 skills decreased somewhat as competence of HCI devices increased 

(see Figure 19). Irrespective of the level of competence, there was a positive increase in 

Web 3.0 skills with increased reliance on HCI devices. However, engineers’ Web 3.0 

skills tend to be more associated with their reliance on devices when they have low 
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overall competence. Figure 19 shows that when competence is low, WS increases the 

fastest as reliance increases. When competence is high, WS does not increase as fast as 

reliance increases. Thus, the engineers’ inclination to learn skills increases with reliance 

on devices, and more so when their competence is low. 

What is more interesting is that Figure 20 shows that when engineers are reliant 

upon HCI devices, moderately or more, their Web 3.0 skills are not greatly influenced by 

how competent they are with those devices; and those skills may even decline a bit as 

competence increases. That indicates that engineers’ Web 3.0 skills are predicted by their 

reliance on HCI devices, generally, regardless of if they consider themselves competent 

with those devices. Reliance is the dominant predictor, not competence. 

Variables Not Found to Be Predictors 

Four of the original independent variables were not part of a significant predictive 

model, either as predictors or as moderators of other predictors: smartphone reliance, 

smartphone competence, wearable reliance, and tablet competence. This finding does not 

refute any previous research. The finding may indicate that since smartphone use is so 

prevalent and routine, competence and reliance are not associated with the level of Web 

3.0 skills. As for the other two (wearable reliance and tablet competence), the finding 

suggests that engineers’ Web 3.0 skills simply are not associated with reliance on 

wearables—perhaps because developing those skills does not frequently depend on 

wearable devices; and not associated with competence with tables because tablets are 

such a routinely used device in the workplace.  
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Limitations of the Study  

A general limitation of my research was measuring reliance and competency, but 

not assessing the efficiency of production outputs among engineers. When engineering 

managers make decisions about investments in technology, they would be wise to 

consider efficiency as well as reliance and competence. There were a few specific 

limitations in this research: 

• The measurement of reliance and competence was self-reported, which may 

reflect interest in Web 3.0 skills as opposed to possessing Web 3.0 skills. This 

may have led to some subjectivity, variability, and potential bias. 

• Although operational definitions were provided for the responses based on a 5-

point Likert scale, there was some potential bias and variability among 

respondents who were interpreting the meanings of each Likert response. 

• Measuring skill level with technology was challenging.  

The dependent variable, Web 3.0 skills, was an aggregated index of eight 

components: Web Technologies, Developer Tools, Relational Database Technology, 

Software Design, Blockchain Technology [based on Bitcoin], Operating Systems and 

Server Technologies, Server Software, and Virtualization. Research did not provide a 

Web 3.0 technological skill survey. Therefore, I created a questionnaire based upon the 

existing technologies, buzz words, and hot topics regarding the definition and evolution 

of Web 3.0. Because Web 3.0 is an emerging, current, and relevant set of technologies, 

using it to measure engineers’ skills, and by inference their motivation, was an 
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appropriate decision for this research. However, this is only one measure of skill and 

motivation, and a limitation of the research. 

Engineers’ use of advanced technologies differs according to their preferences, 

and ergonomic design of HCI devices, as this forms the basis for further investigation of 

whether HCI devices correlate with Web 3.0 skills among small and medium enterprise 

engineers. Convenience sampling might introduce bias and impact generalization. 

However, with a sufficient sample size of 214 and careful explanation of results, bias was 

minimized. The study results may be generalizable to other states and metropolitan 

locations, among small and medium enterprises that employ and rely on Web 3.0 

technologies and across various industries. 

Recommendations 

Statistical data that have been collected in prior studies and provided by national 

databases, government departments, various agencies, or journals (e.g., International 

Journal of Production Research and National Productivity Review) sparked research for 

this study. Statistical data collected from my Web 3.0 technological skill survey might be 

assessed in greater depth and in future studies by researchers interested in discovering 

advances to Web technologies like Web 4.0. Future research might also include a 

qualitative analysis of the associations between HCI devices and Web 3.0 skills of 

engineers in small and medium enterprises.  

Interviewing engineers could provide an in-depth understanding of their 

motivation and expectations of engineers to perform concerning their occupation and 

further advances in technology. As technology advances, this research could serve as the 
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foundation for assessing future Web 4.0 technology and applications and its’ to be 

determined impact on small and medium enterprises and the U.S. economy. Emerging 

technology like blockchain and cryptocurrency is expected to disrupt our economy, 

providing new investors and open-source technology opportunities to emerge further. 

This study could provide insights leading to further research by current and new 

organizations to expand and produce new products. The future of autonomous vehicles, 

drones, and vehicle systems will emerge; therefore, developers and engineers must adopt 

strong technical skills to support economic endeavors in sustaining futuristic concepts 

and offerings. Researchers could assess and analyze if new advances in robotics aided in 

workforce labor. 

Immersing in VR and investing in other wearables could potentially impact how 

consumers shop, how engineers work and offer an outlet to K-16 students for learning 

and gaming. Lastly, the rise of AI could spark an ongoing debate and future study in 

assessing the relationship between machine-to-machine interactions.  

Cebr’s (2016) report revealed that natural resources are scarce due to excessive 

use by humans; therefore, urging engineers to provide sustainable solutions. Based on the 

new wave of innovation in AI, researchers must discover new findings, and engineers 

develop efficient technology. ICT has been a part of the secondary level education 

curriculum since 1982 in both U.S. and developed countries worldwide (Sharma et al., 

2016); therefore, newly developed educational courses and training methods could 

educate engineers and provide societal best practices for using technology productively 

and efficiently in the digital age and beyond. 
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Big data may motivate data engineers to adopt new Web 3.0 and Web 4.0 skills to 

inform society through better decision-making. Data engineers tasked to build machine 

learning models that organizations can use to become more productive involve creating 

these new tools to analyze data, pipelines, ingesting data, processing data, and updating 

dashboards. The quantitative approach to this study did not use theoretical data and 

provided non-empirical evidence to develop further the training of Web 3.0 technology 

(e.g., IoT, cloud computing, and AI) in small and medium enterprises. Operationally, 

emphasis on maximizing training programs for engineers can increase Web 3.0 skills and 

productivity.  

Further research is recommended regarding the counterintuitive result that 

increased laptop reliance predicts a decrease in Web 3.0 skills when measured in a model 

of several predictors and factor interactions. This may be an illustration of the IT 

productivity paradox. But research is called for because engineering leaders who 

understand how Web 3.0 and other emerging technologies can transform business and 

create new value will perform better economically. 

 Further research for understanding what the next era of Web 3.0 entails (i.e., 

spatial web) is also recommended for engineering management. Further research should 

explore the association of HCI device competence and reliance with other measures of 

skill level and motivation.  

I was unable to delve deeply into the degree of differences in the demographics 

among engineers (e.g., each category of age, occupation, and length of employment) or if 

their years of self-taught experience impacted their understandings of Web 3.0 skills. 
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Future research might perform more comprehensive analysis to understand the different 

degrees among these categories. I did not consider whether engineers who work in small 

and medium enterprises that use a pay-for-performance model might have different 

experiences with technology and skill levels. I did not obtain performance evaluation 

reports of engineers before this study, which means a combination of measurable inputs 

(e.g., goal setting, compensation, promotions, and incentives) could have been used to 

motive engineers to learn advanced concepts and tools per their job description. 

Justification based on an engineer’s level or role within small and medium enterprise 

either equipped engineers to perform as expected or not within their organization and 

may or may not justify their Web 3.0 skill level. 

Implications 

Positive Social Change Implication 

My study supports Berners-Lee’s vision of an invention of the web (as reported 

by Ilchenko & Kramar, 2020)—that prudent investment in technology can benefit small 

and medium enterprises and become a powerful force in social change, social 

engineering, and individual creativity. As a result of my research, the impact and 

evolution of Web 3.0 technologies may transform the U.S. economy and our society by 

employing well-conceived types and combinations of HCI devices that will function in 

various areas, particularly engineering, finance, healthcare, and education sectors. The 

right decisions by engineering managers may improve skills and productivity, making 

their organizations more effective and efficient, giving people satisfaction and 

employment while benefitting consumers and all of society with improved products that 
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are helpful and cost-effective. My research may lead to social change for engineers, 

consumers, and users who opt to invest, thoughtfully, in Web 3.0 technologies to make 

their daily tasks easier to complete.  

The key findings of my study may help managers, engineers, consumers, and 

users make better investment decisions regarding the five types of HCI devices 

commonly employed in their daily tasks and pursuits. Web 3.0 technologies, like cloud 

services, now allow machine-to-machine interaction; therefore, the use of IoT devices 

will rise, causing smart cities to emerge. Advanced tools used in autonomous vehicles 

will ultimately transform how drivers operate their vehicles, potentially leading civil 

engineers to construct new routes for safety concerns.  

Implication for Practice 

The importance of my research is its potential positive impact on small and 

medium enterprises through best management practices. This study addressed 

organizational and operational challenges related to managing technological 

advancements and innovation in which ICT, HCI, and Web 3.0 were common 

management issues. Engineering management and the management of advanced 

technology impact the engineering sector and accounting, finance, economics, human 

resources management, IT, organizational behavior, operations management, project 

management, and many more non-technical-intensive fields that use Web 3.0.  

Engineering managers and chief technology officers who utilize their training to 

coach and motivate other engineers to develop critical thinking skills for innovating new 

solutions to real-world issues may ultimately lead to better design and implementation of 
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web technologies and product offerings and services. I found that competence and 

reliance on HCI devices were, generally, associated with increased Web 3.0 skills. More 

specifically, I found that specific devices and certain combinations are associated with 

increased Web 3.0 skills; therefore, I recommend engineering management make 

thoughtful decisions and investments based on my research findings. 

Specifically, engineering managers should consider the effects of thoughtful 

combinations of the five HCI devices, rather than thinking about the devices in isolation. 

Consider both reliance upon and competence with devices. Furthermore, consider the 

engineer’s perspectives, needs, and productivity with various devices and combinations 

of devices, when making significant investments in technology. 

Theoretical Implication 

The theoretical foundation of my research, the Solow (1957) IT productivity 

paradox, started a debate about the technological factors that can increase national 

income and social wealth. Solow’s theory declares that as investments in technology 

increase, it is not certain that skills and productivity increase as well. My research was 

based on the IT productivity paradox and was intended to understand why significant 

investments can be spent on new technology without higher product margins. I 

investigated engineers’ reliance on and competence with HCI devices and their 

predictability of Web 3.0 skills. Statistical results of my research confirm the theoretical 

foundation, where a complex system of interrelated variables (competence and reliance 

on technology among engineers) influences engineers’ skills and productivity and levels 

of productivity in small and medium enterprises. 
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 My research corroborated the theory by showing that reliance upon and 

competence with various HCI devices (and by extension, investment in them) is not 

always associated with increases in skills and, therefore, productivity. And my research 

showed that investigating the benefits of individual devices is too simplistic—that their 

influence on skills and productivity depends on a complex set of factors and interactions 

among factors, on various combinations of devices. 

Acemoglu et al. (2014) may have declared the decline of the Solow IT 

productivity paradox prematurely. What has happened is that over time, the programming 

a software engineer needs to know has decreased and simplified. Programming for a 

statistician or data engineer is near effortless due to libraries that automatically compute 

the load and level of programs. Before, engineers knew many mathematical concepts for 

manual procedures that can now be computed and programmed using libraries and 

packages. Tech-savvy engineers continue to learn new skills that will drive the 

productivity revolution in building data pipelines, applications, and sustainable products 

for the U.S. economy. 

My research supported Harkushenko and Kniaziev’s (2019) concern of the need 

for ICT for economic development by creating financial and mathematical models of ICT 

for a greater impact on output and productivity-which ultimately affects the commercial 

manufacturing sector and government. Overall, my findings indicate that as engineers use 

advanced HCI devices and web technologies, their productivity and Web 3.0 skill level 

may increase or decrease depending on their level of reliance and competence on a 
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combination of devices. However, the influence of some devices on skills and 

productivity is moderated by reliance on and competence with other devices. 

Methodological Implications 

There are known issues with relying on automated, statistical regression routines 

such as backward elimination and forward selection. These techniques can be helpful as 

pieces of evidence, especially when screening many potential predictors. However, the 

more effective and accurate process, demonstrated in my research, is to use a form of 

sequential regression, which allows some iteration among models of different 

combinations of predictors, while striving to find the model with the best-goodness-of-fit. 

In my analysis, that model (set of predictors) using sequential regression was different 

from the model developed with the automated statistical regression routines and produced 

a superior goodness-of-fit.  

Sequential regression was able to identify more clearly the contributions of 

predictors (independent variables and 2FIs) to model quality, that were overlooked by the 

statistical methods, and that may have been eliminated based on the known pitfall that 

automated stepwise regression’s selection or elimination of predictors is heavily 

dependent upon the order they are examined. Sequential regression, with analyst 

judgment, can explore different combinations of predictors, resulting in a higher 

likelihood of including all significant predictors, and producing the highest quality model 

from the data set provided. The result in my research was a final model from sequential 

regression with the best goodness-of-fit, and potentially the avoidance of missed variable 

bias. 
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Conclusions 

In this study, I investigated the relationship between reliance on and competence 

with various HCI devices and Web 3.0 skills. The insight gained from this research helps 

to explain the use of HCI devices of engineers in small and medium enterprises and the 

relationship with Web 3.0 skills that engineers obtain that can be associated with the 

amount of interaction spent with their devices. Adopting more than one type of device 

improved the engineers’ Web 3.0 skills, in certain combinations.  

The intention was to understand from a practical perspective the theoretical 

productivity paradox that plagues engineering managers; and help them to find a solution 

to remedy their struggle to know what kinds of investments to make in IT that will yield 

increases in engineering skills, motivation, and productivity. In the past, engineering 

managers made worthy efforts to make good decisions about investing in IT. But there 

has been little research into the somewhat complex dynamics that drive productivity and 

how much of it is influenced by investments in technology. I have provided insights into 

those workplace dynamics that need to be considered when engineering managers make 

important decisions that can make or break small and medium enterprises; and, if not the 

specific investments, at least the kinds of considerations that engineering managers 

should undertake which will lead logically to sound decisions. Perhaps engineering 

management can apply these insights and follow logical processes to better performance 

and ROI. In that case, they would be far more likely to make good decisions and 

investments and increase rather than decrease their engineering staff’s skills, motivations, 

and productivity. Therefore, everyone in society potentially benefits from this. 
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In the examination of Web 3.0 skills, in particular social media trends among 

engineers (e.g., Facebook, Instagram, and Twitter), it is generally understood which 

technologies are more popular or considered favored technologies, and which devices aid 

in the success of how new technology or devices take form and shape. Reliance on the 

smartphone device is still prevalent since this device is easily accessible and used for 

emails, customer relationship management applications, and social media in small and 

medium enterprises. The life and success of technologies rely on how well users or 

engineers adapt their form and function. Reliance and competence in using HCI devices, 

like wearables with augmented reality, leads to productivity without an engineer 

physically being present. Small and medium enterprises’ goals in obtaining and 

maintaining the competitive advantage over others can motivate strategic decisions to 

adopt web technologies. Understanding the various factors in the workplace, especially 

effective and efficient combinations of HCI devices, can be a strategic advantage for 

these businesses. 
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Appendix A: Web 3.0 Technological Skill Survey 

Respondent Information 
  Title (Occupation): __________________________________________________ 
 Age (in years): _____________________________________________________ 
 Gender: ___________________________________________________________ 
 Race: ____________________________________________________________ 
 
Rate your knowledge level for the following technologies using this scale: 
 

1 – No prior experience or training with the technology 

2 – Minimal training received; minimal experience with the technology; below 

average level of expertise 

3 – Medium level of experience and expertise (able to competently use key 

functionality) 

4 – Significant experience with the technology; above average level of 

knowledge, skill, and confidence; but not yet in senior, trainer, or mentor role 

5 – Experienced, confident, and skilled; able to train or mentor others; considered 

expert in field on this technology 

 
1. Web Technologies (WT) 
HTML    1 2 3 4 5  
XML    1 2 3 4 5  
JavaScript   1 2 3 4 5  
SPARQL   1 2 3 4 5  
Web Ontology Language 1 2 3 4 5  
 
2. Developer Tools (DT) 
ARKit    1 2 3 4 5  
Android studio  1 2 3 4 5  
Core Machine Learning  1 2 3 4 5  
Tizen Studio   1 2 3 4 5  
Visual Studio   1 2 3 4 5  
 
3. Relational Database Technology (RD) 
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Power BI Report Server 1 2 3 4 5  
SQL Server 2016   1 2 3 4 5   
Oracle Mobile Cloud  1 2 3 4 5  
Google Cloud   1 2 3 4 5  
iCloud    1 2 3 4 5  
 
4. Software Design (SD) 
User Interface Design  1 2 3 4 5  
Process Modeling  1 2 3 4 5  
Object Orientation  1 2 3 4 5  
 
5. Blockchain Technology (upon which Bitcoin is based) (BT) 
    1 2 3 4 5  
 
6. Operating Systems and Server Technologies (OS) 
Android (Chrome OS)  1 2 3 4 5  
iOS    1 2 3 4 5  
Tizen    1 2 3 4 5  
Mac OSX   1 2 3 4 5  
Linux    1 2 3 4 5  
Windows 10 Pro  1 2 3 4 5  
 
7. Server Software (SS) 
McAfee Antivirus  1 2 3 4 5  
McAfee Mobile Security 1 2 3 4 5  
Symantec Antivirus  1 2 3 4 5   
Vipre Mobile Security  1 2 3 4 5  
 
8. Virtualization (VZ) 
Hypervisor    1 2 3 4 5  
VMware Mobile  1 2 3 4 5   
Hyper-V   1 2 3 4 5  
Microsoft Hyper-V Server 1 2 3 4 5  
Microsoft Virtual PC  1 2 3 4 5  
 
9. Use and reliance on HCI Devices  
 
Rate your use of and reliance on an HCI Device within the categories provided: 
1 – Device not used 
2 – Minimal use of the device 
3 – Moderate use of the device 
4 – Significant use of and reliance on the device 
5 – Heavily reliant on the device most of the time; cannot be apart from the device 
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Desktop (DTR)  1 2 3 4 5  
(e.g., stationary workstation) 
Laptop (LTR)   1 2 3 4 5  
(e.g., portable computer) 
Tablet (TTR)   1 2 3 4 5 
(e.g., touchscreen capable) 
Smartphone (SPR)  1 2 3 4 5  
(e.g., hand-held computer) 
Wearable (WBR)  1 2 3 4 5  
(e.g., VR headset) 
 
10. Competence with HCI Devices 
 
Rate your competence with an HCI Device within the categories provided: 
1 – No competence with any functions 
2 – Competence and confidence with some functions 
3 – Competence and confidence with many functions 
4 – Competence and confidence with most functions 
5 – Expert on all functions 
 
Desktop (DTC)  1 2 3 4 5  
(e.g., stationary workstation) 
Laptop (LTC)   1 2 3 4 5  
(e.g., portable computer) 
Tablet (TTC)   1 2 3 4 5 
(e.g., touchscreen capable) 
Smartphone (SPC)  1 2 3 4 5  
(e.g., hand-held computer) 
Wearable (WBC)  1 2 3 4 5  
(e.g., VR headset) 
 
Thank you for completing the Web 3.0 Technological Skill Matrix.  
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Appendix B: Protecting Human Subject Research Participants  
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Appendix C: Occupation Titles of Engineering Participants 

Title Frequency 
Aerospace Engineer 1 

Aerospace Engineer II 1 
Architect Engineer 1 

Biomedical Engineer 6 
Chemical Engineer 3 

Civil Engineer 6 
Cloud Engineer 5 

Cloud Customer Engineer 1 
Cloud Operations Engineer 1 

Cloud Partner Engineer 1 
Cloud Platform Devops Engineer 1 

Controls Engineer 2 
Data Center Engineer 1 

Data Engineer 6 
Desktop Engineer 3 

Director of Engineering 1 
Director of Engineering Quality 1 

Electrical Engineer 9 
Engineer 6 

Engineer II 1 
Engineer III 3 
Engineer IV 1 

Engineering Leader 1 
Forensic Engineer 1 

Full Stack Engineer 1 
Full Stack JavaScript Engineer 1 

Head of Engineering 1 
Humanist Engineer 1 
Industrial Engineer 5 

Inside Systems Engineer 1 
IT Engineer 3 

Lead Software Engineer 1 
Materials and Process Engineer 1 

Mechanical Design Engineer 13 
Mechanical Engineer 14 
Multifaceted Engineer 1 

Network Engineer 11 
Nuclear Engineer 3 

Operations and Supply Chain 
Engineer 

1 

Operations Engineer 1 
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Title Frequency 
Plant Engineering Supervisor 1 

Pre-Sales Engineer 1 
Process Engineer 4 
Product Engineer 1 

Production Support Engineer 1 
Project Engineer 12 

QA Automation Engineer 1 
QA Engineer 9 

Remote Asset Process Engineer 1 
Research Engineer 4 

Sales Engineer 14 
Senior Engineer 1 

Senior Mechanical Engineer 1 
Senior Mobile Application Engineer 1 

Senior Network Engineer 1 
Senior Process Engineer 1 

Senior Production Engineer 1 
Senior Software Engineer 1 

Senior Technical Support Engineer 1 
Software Engineer 12 

Software Automation Engineer 1 
Software Developer Engineer 1 

Solutions Engineer 8 
Splunk Engineer 1 

Structural Engineer 4 
Support Engineer 1 
Systems Engineer 5 

Systems Support Engineer 1 
Technical Implementation Engineer 1 

UI Engineer 4 
UX Engineer 3 
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Appendix D: Sequential Regression—SPSS Runs 10 to 23  

I performed a sequential regression analysis of the six independent variables and 

the 15 2FIs. This appendix shows the model summary and coefficient tables from run 10 

to run 23, except run 22 which is shown in the main body of this document.  

Table D1 displays the model summary generated from run 10, which included the 

six independent variables and 15 2FIs. Table E2 shows the coefficients. The adjusted R2 

= .205, F = 3.63, p < .001.  

Table D1 

Sequential Model Summary—Run 10 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

10 .532 .283 .205 .572 
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Table D2 

Sequential Regression—Run 10 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients  

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) .928 .531  1.75 .082 

 DTR .119 .234 .212 .510 .611 
 LTR -.135 .238 -.235 -.569 .570 
 TTR .032 .237 .054 .136 .892 
 DTC .512 .287 .863 1.78 .076 
 WBC .011 .204 .020 .053 .958 
 LTC .361 .327 .613 1.10 .272 
 DTR*LTR -.007 .033 -.067 -.197 .844 
 DTR*TTR .046 .039 .464 1.18 .238 
 DTR*DTC -.029 .040 -.284 -.735 .463 
 DTR*WBC .027 .033 .252 .801 .424 
 DTR*LTC -.035 .042 -.340 -.822 .412 
 LTR*TTR -.001 .035 .013 .036 .971 
 LTR*DTC .021 .040 .206 .529 .598 
 LTR*WBC -.016 .033 -.152 -.474 .636 
 LTR*LTC .055 .040 .524 1.37 .174 
 TTR*DTC -.027 .039 -.270 -.701 .484 
 TTR*WBC .032 .033 .314 .979 .329 
 TTR*LTC -.033 .044 -.311 -.749 .455 
 DTC*WBC -.030 .035 -.309 -.852 .395 
 DTC*LTC -.060 .037 -.509 -1.64 .103 
 LTC*WBC -.008 .032 -.080 -.240 .810 

 

Table D3 displays the model summary generated from run 11. The adjusted R2 = 

.209, F = 3.83, p < .001. Table D4 provides the coefficients for this model.  

Table D3 

Sequential Model Summary—Run 11 

 
Run 

 
R 

 
R Square 

Adjusted 
R Square 

Std. Error of 
the Estimate 

11 .532 .283 .209 .570 
 



 

172 
 

 

Table D4 

Sequential Regression—Run 11 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients 

Beta 

 
 

t 

 
 

Sig. 
1 (Constant) .929 .529  1.757 .082 
 DTR .122 .221 .217 .553 .581 
 LTR -.139 .218 -.241 -.636 .526 
 TTR .030 .227 .050 .132 .895 
 DTC .514 .284 .866 1.810 .072 
 WBC .011 .204 .020 .052 .958 
 LTC .362 .325 .615 1.110 .267 
 DTR*LTR -.007 .032 -.070 -.210 .834 
 DTR*TTR .046 .038 .461 1.200 .229 
 DTR*DTC -.029 .040 -.284 -.737 .462 
 DTR*WBC .027 .033 .251 .802 .423 
 DTR*LTC -.035 .042 -.342 -.834 .405 
 LTR*TTR .021 .039 .013 .036 .971 
 LTR*DTC .021 .039 .203 .532 .595 
 LTR*WBC -.016 .033 -.150 -.476 .635 
 LTR*LTC .055 .040 .524 1.37 .172 
 TTR*DTC -.028 .039 -.272 -.717 .475 
 TTR*WBC .032 .033 .313 .981 .328 
 TTR*LTC -.033 .043 -.312 -.754 .452 
 DTC*WBC -.030 .035 -.309 -.856 .393 
 DTC*LTC -.060 .036 -.589 -1.64 .102 
 LTC*WBC -.008 .032 -.080 -.244 .808 

 

Table D5 displays the model summary generated from run 12, the adjusted R2 = 

.213, F = 4.05, p < .001. Table D6 provides the coefficients for this model.  

Table D5 

Sequential Model Summary—Run 12 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

12 .532 .283 .213 .569 
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Table D6 

Sequential Regression—Run 12 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients 

Beta 

 
 

t 

 
 

Sig. 
1 (Constant) .940 .525  1.790 .075 
 DTR .117 .219 .207 .532 .595 
 LTR -.168 .167 -.292 -1.005 .316 
 TTR .044 .216 .074 .205 .837 
 DTC .525 .278 .884 1.885 .061 
 WBC .021 .197 .039 .105 .916 
 LTC .355 .322 .603 1.100 .273 
 DTR*TTR .043 .036 .436 1.204 .230 
 DTR*DTC -.031 .039 -.299 -.791 .430 
 DTR*WBC .025 .032 .233 .777 .438 
 DTR*LTC -.034 .042 -.332 -.817 .415 
 LTR*DTC .021 .039 .206 .541 .589 
 LTR*WBC -.015 .033 -.144 -.459 .647 
 LTR*LTC .055 .040 .523 1.37 .172 
 TTR*DTC -.029 .038 -.281 -.748 .456 
 TTR*WBC .031 .033 .306 .966 .335 
 TTR*LTC -.032 .043 -.306 -.744 .458 
 DTC*WBC -.031 .035 -.314 -.874 .383 
 DTC*LTC -.060 .036 -.591 -1.65 .099 
 LTC*WBC -.008 .032 -.079 -.239 .811 

 

Table D7 displays the model summary generated from run 13, the adjusted R2 = 

.217, F = 4.29, p < .001. Table D8 provides the coefficients for this model.  

Table D7 

Sequential Model Summary—Run 13 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

13 .532 .283 .217 .568 
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Table D8 

Sequential Regression—Run 13 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients 

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) .958 .519  1.85 .066 
 DTR .124 .216 .220 .575 .566 
 LTR -.164 .166 -.285 -.988 .324 
 TTR .050 .214 .083 .233 .816 
 DTC .548 .260 .923 2.11 .036 
 WBC .007 .188 .013 .037 .970 
 LTC .315 .276 .535 1.14 .255 
 DTR*TTR .042 .035 .419 1.18 .238 
 DTR*DTC -.032 .039 -.309 -.825 .410 
 DTR*WBC .024 .031 .222 .751 .453 
 DTR*LTC -.032 .040 -.310 -.785 .433 
 LTR*DTC .020 .038 .193 .513 .609 
 LTR*WBC -.016 .033 -.149 -.480 .632 
 LTR*LTC .056 .040 .529 1.40 .165 
 TTR*DTC -.029 .038 -.290 -.775 .439 
 TTR*WBC .032 .032 .310 .982 .327 
 TTR*LTC -.031 .043 -.300 -.732 .465 
 DTC*WBC -.033 .034 -.336 -.970 .333 

 

Table D9 displays the model summary generated from run 14, the adjusted R2 = 

.220, F = 4.55, p < .001. Table D10 provides the coefficients for this model.  

Table D9 

Sequential Model Summary—Run 14 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

14 .531 .282 .220 .566 
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Table D10 

Sequential Regression—Run 14 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients 

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) .958 .518  1.850 .066 
 DTR .136 .214 .241 .635 .526 
 LTR -.194 .153 -.337 -1.26 .208 
 TTR .053 .214 .088 .247 .805 
 DTC .575 .253 .969 2.270 .024 
 WBC -.015 .182 -.029 -.084 .933 
 LTC .323 .275 .549 1.17 .242 
 DTR*TTR .041 .035 .416 1.18 .241 
 DTR*DTC -.032 .039 -.309 -.827 .409 
 DTR*WBC .021 .031 .201 .689 .492 
 DTR*LTC -.032 .040 -.313 -.795 .428 
 LTR*DTC .017 .038 .162 .439 .661 
 LTR*LTC .052 .039 .495 1.33 .185 
 TTR*DTC -.030 .038 -.292 -.783 .435 
 TTR*WBC .030 .032 .296 .945 .346 
 TTR*LTC -.031 .043 -.297 -.727 .468 

 DTC*WBC -.038 .032 -.391 -1.195 .234 
 

Table D11 displays the model summary generated from run 15 the adjusted R2 = 

.223, F = 4.84, p < .001. Table D12 provides the coefficients for this model.  

Table D11 

Sequential Model Summary—Run 15 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

15 .530 .281 .223 .565 
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Table D12 

Sequential Regression—Run 15 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients  

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) .932 .513  1.82 .071 
 DTR .117 .209 .207 .558 .577 
 LTR -.159 .131 -.276 -1.22 .226 
 TTR .059 .213 .098 .276 .783 
 DTC .617 .234 1.04 2.64 .009 
 WBC -.014 .182 -.026 -.077 .939 
 LTC .275 .252 .467 1.09 .276 
 DTR*TTR .042 .035 .419 1.19 .236 
 DTR*DTC -.030 .038 -.286 -.774 .440 
 DTR*WBC .021 .031 .199 .683 .496 
 DTR*LTC -.029 .040 -.286 -.736 .462 
 LTR*LTC .059 .036 .559 1.64 .103 
 TTR*DTC -.030 .038 -.293 -.789 .431 
 TTR*WBC .030 .032 .294 .940 .349 
 TTR*LTC -.032 .043 -.309 -.759 .449 
 DTC*WBC -.038 .032 -.389 -1.19 .234 
 DTC*LTC -.056 .035 -.552 -1.60 .110 
 

Table D13 displays the model summary generated from run 16, the adjusted R2 = 

.225, F = 5.15, p < .001. Table D14 provides the coefficients for this model.  

Table D13 

Sequential Model Summary—Run 16 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

16 .529 .279 .225 .565 
 



 

177 
 

 

Table D14 

Sequential Regression—Run 16 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients 

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) .911 .512  1.780 .077 
 DTR .166 .196 .295 .849 .397 
 LTR -.164 .130 -.286 -1.26 .208 
 TTR .029 .083 .048 .139 .889 
 DTC .594 .231 1.00 2.56 .011 
 WBC .051 .155 .095 .329 .743 
 LTC .233 .244 .395 .954 .341 
 DTR*TTR .042 .035 .423 1.20 .231 
 DTR*DTC -.026 .038 -.255 -.697 .486 
 DTR*LTC -.025 .039 -.241 -.630 .529 
 LTR*LTC -.060 .036 .572 .168 .094 
 TTD*LTC -.029 .038 -.289 -.777 .438 
 TTR*WBC .031 .032 .304 .975 .331 
 TTR*LTC -.027 .042 -.259 -.648 .518 
 DTC*WBC -.035 .031 -.353 -1.010 .274 
 DTC*LTC -.057 .035 -.563 -1.640 .103 

 

Table D15 displays the model summary generated from run 17, the adjusted R2 = 

.227, F = 5.50, p < .001. Table D16 provides the coefficients for this model.  

Table D15 

Sequential Model Summary—Run 17 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

17 .527 .278 .227 .564 
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Table D16 

Sequential Regression—Run 17 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients  

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) .946 .508  1.863 .064 
 DTR .101 .166 .180 .609 .543 
 LTR -.167 .130 -.290 -1.29 .200 
 TTR .081 .191 .135 .424 .672 
 DTC .639 .220 1.08 2.91 .004 
 WBC .081 .147 .153 .553 .581 
 LTC .149 .204 .253 .729 .467 
 DTR*TTR .042 .035 .417 1.19 .237 
 DTR*DTC -.032 .037 -.310 -.873 .384 
 LTR*LTC .060 .036 .568 .167 .096 
 TTR*DTC -.033 .037 -.329 -.901 .369 
 TTR*WBC .028 .032 .269 .877 .382 
 TTR*LTC -.032 .041 -.301 -.763 .446 
 DTC*WBC -.038 .031 -.387 -1.22 .223 
 DTC*LTC -.056 .035 -.549 -1.61 .110 

 

Table D17 displays the model summary generated from run 18, the adjusted R2 = 

.229, F = 5.89, p < .001. Table D18 provides the coefficients for this model. 

Table D17 

Sequential Model Summary—Run 18 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

18 .525 .276 .229 .563 
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Table D18 

Sequential Regression—Run 18 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients 

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) .955 .507  1.88 .061 
 DTR .142 .157 .252 .902 .368 
 LTR -.166 .130 -.288 -1.28 .203 
 TTR .055 .188 .093 .296 .768 
 DTC .700 .204 1.18 3.43 .001 
 WBC .097 .145 .182 .668 .505 
 LTC .052 .160 .088 .326 .745 
 DTR*TTR .033 .033 .326 .987 .325 
 DTR*DTC -.033 .037 -.316 -.892 .374 
 LTR*LTC .060 .036 .567 1.67 .096 
 TTR*DTC -.043 .035 -.425 -1.24 .216 
 TTR*WBC .021 .030 .200 .683 .495 
 DTC*WBC -.035 .031 -.361 -1.15 .252 
 DTC*LTC -.063 .033 -.620 -1.88 .061 

 

Table D19 displays the model summary generated from run 19, the adjusted R2 = 

.231, F = 6.36, p < .001. Table D20 provides the coefficients for this model. 

Table D19 

Sequential Model Summary—Run 19 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

19 .524 .274 .231 .562 
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Table D20 

Sequential Regression—Run 19 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients  

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) .895 .499  1.79 .074 
 DTR .119 .153 .210 .773 .440 
 LTR -.178 .128 -.310 -1.39 .167 
 TTR .113 .167 .189 .679 .498 
 DTC .664 .196 1.12 3.38 .001 
 WBC .158 .114 .298 1.39 .166 
 LTC .038 .158 .065 .241 .810 
 DTR*TTR .033 .033 .335 1.02 .310 
 DTR*DTC -.029 .036 -.276 -.790 .430 
 LTR*LTC .064 .035 .610 1.83 .068 
 TTR*DTC -.040 .034 -.396 -1.17 .245 
 TTR*WBC .021 .030 .200 .683 .495 
 DTC*WBC -.031 .030 -.319 -1.04 .301 
 DTC*LTC -.063 .033 -.625 -1.91 .058 

 

Table D21 displays the model summary generated from run 20, the adjusted R2 = 

.233, F = 6.89, p < .001. Table D22 provides the coefficients for this model. 

Table D21 

Sequential Model Summary—Run 20 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

20 .522 .272 .233 .562 
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Table D22 

Sequential Regression—Run 20 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients 

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) .980 .487  2.013 .045 
 DTR .044 .121 .079 .366 .714 
 LTR -.166 .127 -.288 -1.30 .194 
 TTR .180 .144 .300 1.25 .214 
 DTC .594 .175 1.00 3.39 .001 
 WBC .155 .114 .291 1.36 .174 
 LTC .062 .155 .105 .400 .690 
 DTR*TTR .026 .031 .257 .819 .414 
 LTR*LTC .060 .035 .570 1.73 .084 
 TTR*DTC -.050 .032 -.494 -1.56 .120 
 DTC*WBC -.029 .030 -.299 -.977 .330 
 DTC*LTC -.066 .033 -.652 -2.00 .047 

 

Table D23 displays the model summary generated from run 21, the adjusted R2 = 

.236, F = 7.60, p < .001. Table D24 provides the coefficients for this model. 

Table D23 

Sequential Model Summary—Run 21 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

21 .521 .271 .236 .561 
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Table D24 

Sequential Regression—Run 21 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients 
Std. Error 

Standardized 
Coefficients 

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) 1.02 .474  2.150 .033 
 LTR -.158 .125 -.275 -1.26 .208 
 TTR .153 .124 .255 1.23 .219 
 DTC .616 .164 1.04 3.75 < .001 
 WBC .163 .111 .306 1.46 .145 
 LTC .074 .152 .126 .488 .626 
 DTR*TTR .037 .010 .367 3.85 < .001 
 LTR*LTC .058 .034 .554 1.70 .090 
 TTR*DTC -.053 .031 -.526 -1.74 .084 
 DTC*WBC -.031 .030 -.318 -11.05 .293 
 DTC*LTC -.067 .033 -.662 -2.04 .042 

 

Table D25 displays the model summary generated from run 23, the adjusted R2 = 

.235, F = 9.23, p < .001. Table D26 provides the coefficients for this model. The best 

predictive model was run 22 (found in Table 25 and Table 26). 

Table D25 

Sequential Model Summary—Run 23 

 
Run 

 
R 

 
R Square 

 
Adjusted R Square 

Std. Error of 
the Estimate 

23 .514 .264 .235 .561 
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Table D26 

Sequential Regression—Run 23 Coefficients 

 
 

Model 

  
Unstandardized 

B 

 
Coefficients  
Std. Error 

Standardized 
Coefficients  

Beta 

 
 
t 

 
 

Sig. 
1 (Constant) 1.38 .401  3.44 .001 
 LTR -.192 .107 -.334 -1.79 .074 
 TTR .207 .111 .346 1.87 .062 
 DTC .553 .151 .931 3.67 < .001 
 WBC .058 .035 .108 1.67 .097 
 DTR*TTR .037 .009 .366 3.89 < .001 
 LTR*LTC .070 .028 .669 2.53 .012 
 TTR*DTC -.068 .028 -.675 -2.47 .014 
 DTC*LTC -.062 .028 -.615 -2.24 .026 
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