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A Discrete Morse Approach for Computing
Homotopy Types

An Exploration of the Morse, Generalized Morse, Matching, and
Independence Complexes

Connor Donovan

Abstract

In this thesis, we study possible homotopy types of four families of simplicial
complexes–the Morse complex, the generalized Morse complex, the matching com-
plex, and the independence complex–using discrete Morse theory. Given a simplicial
complex, K, we can construct its Morse complex, M(K), from all possible discrete
gradient vector fields on K. A similar construction will allow us to build the gen-
eralized Morse complex, GM(K), while considering edges and vertices will allow us
to construct the matching complex, M(K), and independence complex, IK .

In Chapter 3, we use the Cluster Lemma and the notion of star clusters to apply
matchings to families of Morse, generalized Morse, and matching complexes, com-
puting their homotopy types. Notably, we show that the Morse complex of a subset
of extended star graphs is homotopy equivalent to a wedge of spheres (Theorem 17)
and the matching complex of a Dutch windmill graph is homotopy equivalent to a
point, sphere, or wedge of spheres (Theorem 29). In Chapter 4, we use a degener-
ate Hasse diagram, along with strong collapses to compute the homotopy type of
many families of Morse complexes. Recognizably, we provide computations show-
ing wedged complexes as suspensions (Corollary 56, Proposition 58) and provide a
sufficient condition for strongly collapsible Morse complexes (Theorem 61). Lastly,
in Chapter 5 we study chord diagrams–a largely unexplored topic–and provide in-
sight into the possible homotopy types of the independence complex of intersection
graphs of chord diagrams. We realize spheres and wedges of spheres as possible
homotopy types (Corollaries 68 and 70) and begin to explore what families of inter-
section graphs can be represented as a chord diagram. From here, most interesting,
we show that ladder graphs can be represented as chord diagrams, and the indepen-
dence complex of a ladder graph has the homotopy type of a sphere (Proposition
78).

KEYWORDS: Morse complex, matchings, strong collapses, homotopy type, chord
diagrams
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Chapter 1

Introduction

The gradient vector field was developed by Robin Forman in 1998 [11, 12] as a
powerful tool to study a simplicial complex K. A gradient vector field, which can
represent a sequence of collapses on a complex, has evolved to become an extremely
helpful tool in computing the number of critical simplices a complex has [11, Section
8] and thus helping determine the homotopy type of K. For example, one can find
a discrete Morse function on a path with only one critical 0-simplex. This discrete
Morse function can be represented by any maximum gradient vector field showing
this sequence of collapses. This one critical 0-simplex tells us that the path has the
homotopy type of a point.

Nearly a decade later, in 2005, Chari and Joswig [7] introduced a new complex
that would become the main complex of interest in this paper. It is known as the
Morse complex, denoted M(K), and it has a unique construction based on the
compatibility of different gradient vector fields on the simplicial complex, K. Up
to isomorphism, K can be reconstructed using M(K) as its guide because of the
unique set of gradient vector fields that is associated to it [5]. Although this is a
powerful and interesting topological usage, the same authors showed that M(K)
does not uniquely determine the simple homotopy type of K.

In 2013, Jonathan Ariel Barmak [4] introduced the subcomplex of K known
as the star cluster of a simplex in K. He proved that if K is a flag complex (also
known as clique), then the star cluster is contractible. For Barmak, this provided an
incredibly useful tool for studying the topology of a family of complexes determined
by independence sets, known as independence complexes. One notable result he
proved is that if there is an independence complex of a triangle-free graph, then
that independence complex has the homotopy type of a suspension. Further, he
used the idea of a star cluster to show that the independence complex of a forest
is either contractible or homotopy equivalent to a sphere. Some other notable uses
of the star cluster are constructing a matching tree for the independence complex
of square grids with cyclic identification [15] and useing star clusters to compute
the homotopy type of the independence complexes of the generalized Mycielskian of
complete graphs [13].

A tool that is used hand-in-hand with star clusters in this thesis is the Cluster
Lemma. The Cluster Lemma, independently developed by both Jonsson [16, Lemma
4.2] and Hersh [14, Lemma 4.1], is a tool to apply an acyclic matching to a simpli-
cial complex by applying many small acyclic matchings and then gluing them all
together. Throughout Section 3.3, we are able to show a large portion of a complex
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is collapsible by considering a star cluster and then applying small acyclic matchings
to the rest of the complex to form a larger matching using the Cluster Lemma.

In Chapter 3, our goal will be to utilize both the Cluster Lemma and star clus-
ters to determine the homotopy type of a variety of families of simplicial complexes:
Morse complexes, generalized Morse complexes, and matching complexes. Each
holds unique combinatorial information relating back to an original simplicial com-
plex, and thus, studying the topological structure of these objects is an interesting
and engaging pursuit. Although the Morse complex, M(K) is not a flag complex
and star clusters are only relevant in flag complexes, we are able to show that the
Morse complex is a flag complex when K = T is a tree. In this special case, we
use star clusters and the Cluster lemma to show that M(T ) has the homotopy
type of a suspension (Proposition 13). We also compute the homotopy type of the
Morse complex on what we define as the "extended star graph" (Theorem 17) and
provide an alternate computation of the homotopy type of the Morse complex of
a path (Proposition 14), as originally computed by D. Kozlov in [18]. We next
study the homotopy type of the generalized Morse complex, as first defined in [22].
This complex is slightly easier to study using this technique because it is always
a flag complex, and so we show that the Morse complex and Generalized Morse
complex of a cycle with a single leaf have the same homotopy type. Additionally,
we utilize the Cluster Lemma and star clusters to compute the homotopy type of
the matching complex of certain complexes. Again, this complex has the advantage
of always being a flag complex. If we consider a graph G, the matching complex,
denoted M(G), is the complex constructed from all independent edge sets on G.
We provide alternate proofs for the homotopy type of the matching complexes of
paths and cycles (Proposition 26, Proposition 27), as originally computed by Kozlov
[18], and provide a new, more involved, computation of the homotopy type of Dutch
windmill graphs (Theorem 29). One of the more relevant past results regarding the
matching complex was made in [6], where the authors relate the matching complex
to the Morse complex. They prove that there is a one-to-one correspondence be-
tween elements in the generalized Morse complex of a graph G and matchings on the
barycentric subdivision of G. So, it immediately follows that GM(G) ∼= M(sd(G))
and recalling that the Morse complex of a tree is flag, we have the relationship
M(T ) ∼= GM(T ) ∼= M(sd(T )). This acts as a nice bridge between our results
regarding the generalized Morse complex and our results of the matching complex.

We choose this as a focus for Chapter 3 because the Cluster Lemma is a powerful
tool in that it adds greater simplicity to choosing an ideal gradient vector field on
our simplicial complex–by ideal, we mean a gradient vector field that allows us to
determine the homotopy type. Due to a result by Robin Forman [10, Corollary
3.5], if our gradient vector field on a simplicial complex satisfies certain conditions
regarding the critical simplices that are produced, then we can uniquely determine
the homotopy type of that complex. In all of our work, we will satisfy Forman’s
result.

In Chapter 4, our focus will change to using strong collapses as our main tool
for computing homotopy types, along with what we call the "degenerate Hasse
diagram." This will allow us to prove some notable results–one of the most significant
being Theorem 61, where we provide a sufficient condition for when we can guarantee
that a Morse complex is strongly collapsible. We also extend a result of Ayala et.
al. [2] to show that the pure Morse complex–the Morse complex generated by
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the maximum gradient vector fields on a simplicial complex–is strongly collapsible.
Additionally, we are able to use our tools to compute the homotopy type of the Morse
complex for cycles with a leaf (Theorem 46), centipede graphs (Corollary 48), and
the strong collapse sequence for paths with a leaf (Proposition 52). Further, we
provide a handful of results in Section 4.3 that allow us to more easily identify when
a variety of different Morse complexes are suspensions.

We choose this as a focus for Chapter 4 because with the development of the
degenerate Hasse diagram, it becomes much easier to interpret the effect strong col-
lapses have in the Hasse diagram. We can easily model these strong collapses in
the Hasse diagram using simple drawings, leading to quick computations of strongly
collapsible complexes, and complexes that strongly collapse in a notable way (such
as collapsing into a suspension). Although this method is fairly restricted by recog-
nition of the degenerate Hasse diagram, it is a quick way to achieve topological
information.

In Chapter 5, we explore an area of research that has been little studied–the
independence complex of the intersection graph of a chord diagram. Given a chord
diagram C(n), we can associate an intersection graph, Γ(C(n)), based on which
chords intersect each other. From there, we can construct the independence com-
plex of Γ(C(n)), denoted IΓ(C(n)), and study this complex. It is an open question
whether IΓ(C(n)) is always homotopy equivalent to a point, a sphere, or a wedge of
spheres, so we explore that question. We first prove that the homotopy types of
sphere and wedge of spheres can be realized by IΓ(C(n)) and describe chord diagrams
that satisfy this realization (Corollaries 68 and 70). After, we work to construct
families of chord diagrams that realize certain families of graphs as the intersection
graph. Namely, we define cycle chord diagrams, path chord diagrams, ladder chord
diagrams, complete bipartite chord diagrams, and centipede chord diagrams, and
compute the homotopy type of the independence complex of the intersection graph
of these complexes (Propositions 74, 75, 78, 79, and 82).

Lastly, we would like to note that many results in this undergraduate thesis have
been previously published ([8], [9]). If a result is not cited in this thesis, it is either
our previously published work, or new results altogether. Note that these sources
may be cited in some cases as an attempt to give credit to the other contributing
authors.
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Chapter 2

Overview

A reoccurring goal in algebraic topology is to use a variety of topological tools to
transform a large, high-dimensional object into its smallest equivalent. The intuition
behind this is the following question: is there any way we can bend, shrink, or expand
an object into another while maintaining some overall “shape"? If so, we can consider
two objects to be homotopy equivalent. It is important to note that homotopy
equivalence is a related but distinct idea from homeomorphism. A single point
is homotopy equivalent to a solid disk because the solid disk can be continuously
squeezed down to a point. However, there is no bijection between a point and a
solid disk, and thus they cannot be homeomorphic.

Ideally, we can use topological tools to determine the homotopy type of a simpli-
cial complex, providing us with a complete understanding of the complex’s topolog-
ical properties. One of the hopes for this work is to provide new understanding to
the homotopy type of certain objects. When objects start to live in arbitrarily large
dimensions, it becomes extremely difficult to pinpoint its homotopy type, relating it
to a family of bigger and smaller objects. So, through this work, we hope to provide
a stronger basis for studying the homotopy type of a variety of simplicial complexes.

However, when it is impractical to compute the homotopy type because of the
complexity of a simplicial complex, information can still be gained by resorting
to properties such as topological invariants, connectivity, and homology. These
properties will not be covered in this work, as we will take a deep dive into the
world of homotopy types.

We refer to [21] for much of our foundational knowledge of simplicial complexes
and discrete Morse theory.

2.1 Simplicial Complexes
Conveniently, higher-dimensional spaces can be easily modeled with an object called
a simplicial complex. Recall that a graph G can be communicated by a vertex
set, V (G), and an edge set E(G). Two vertices are adjacent if they are joined
together by an edge. Additionally, if G is an acyclic graph, then we call G a tree.
The number of edges a vertex is incident to is the degree of the vertex. A leaf
is any vertex of degree 1. Now, an easy way to think of a simplicial complex is to
think of a graph without limitations to its dimension. So, in addition to a vertex set
and an edge set, there can exist higher dimensional faces communicating that more
than two vertices are related.

9



Definition 2.1.1. Let n ≥ 0 be an integer and [vn] := {v0, v1, . . . , vn} be a collection
of n + 1 symbols. An (abstract) simplicial complex K on [vn], or a complex,
is a collection of subsets of [vn], excluding ∅, such that

• if σ ∈ K and τ ⊆ σ, then τ ∈ K;

• {vi} ∈ K for every vi ∈ [vn].

The set [vn] is called the vertex set of K and the elements {vi} ∈ [vn] are called
vertices, or 0-simplices. Similarly to graphs, it is also commonplace to denote the
vertex set of K as V (K).

The elements of K are called faces. A set σ with cardinality n + 1 is called an
n-dimensional simplex or n-simplex for short. Thus, a vertex is a 0-simplex, an
edge is a 1-simplex, a triangular face is a 2-simplex, a tetrahedron is a 3-simplex,
and this continues on. If a simplex, σ, of K cannot be contained within a larger
simplex in K, then σ is called a facet of K.

Additionally, some terms that will be incredibly beneficial in our work, especially
in computing homotopy types of very large simplicial complexes, are the star and
link of a vertex.

Definition 2.1.2. The star of a vertex v in a simplicial complex K is starK(v) =
{σ ∈ K : v ∈ σ} and can be denoted st(v) when the context is clear.

Definition 2.1.3. The link of a vertex v in a simplicial complex K is linkK(v) =
{σ ∈ K : v ̸∈ σ, {v} ∪ σ ∈ K} and can be denoted lk(v) when the context is clear.

Throughout our work, we reference the wedge sum of two simplicial complexes
quite often, denoted "∨." A wedge of spheres is a common homotopy type, and we
frequently wedge paths onto other families of simplicial complexes as a means of
studying new families. By the wedge sum, we mean the one-point union of any
number of simplicial complexes. We can think of this as the gluing of simplicial
complexes together at a point.

Example 1. We can illustrate the wedge of two 2−spheres; i.e. two three-dimensional
spheres.

We have sufficiently introduced simplicial complexes as objects of study. We now
move on to the tools that we will use to study these complicated objects.

2.2 Discrete Morse Theory
As referenced at the beginning of the overview, mathematicians are frequently inter-
ested in different notions of "sameness." There are more than one ways to define what
being "the same" is, but for our purposes, we will be interested in both the simple
and strong homotopy type of a complex. The intuition of simple homotopy type
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follows easily from the idea of squeezing a complex down to its roots step-by step,
performing moves known as elementary collapses and elementary expansions.
Strong homotopy type strengthens this idea, with strong collapses allowing us
to perform many elementary collapses at once.

Before we give a foundation for discrete Morse theory, we can first ask, what is it
that discrete Morse theory allows us to do? There must be a reason that it has proven
fruitful in our studies. So, what is the intuition behind discrete Morse theory? First,
it will help us to detect and declare the number of holes that exist in a simplicial
complex. Tools of discrete Morse theory, namely collapses and expansions, allow
us to pinpoint which simplices within a complex are causing holes–a very powerful
and unique way to find a property of topological spaces. At this point, it is not
clear what a "hole" is but basic intuition can help us think of what a hole could
be. Secondly, discrete Morse theory allows us to replace simplicial complexes with a
topologically equivalent one that is smaller. Since homotopy type is an equivalence
relation it is incredibly useful to be able to replace a large, inconceivable complex
with a smaller one holding the same properties. This can save mathematicians a
lot of time in their studies. It is not clear what replacing a complex by a smaller,
equivalent, one means, but after we introduce some necessary background, this idea
should become comprehensible.

2.2.1 Simple Homotopy Type

Let K be a simplicial complex such that there is a pair of simplices {σ(p−1), τ (p)} in K
such that σ is a face of τ and σ has no other cofaces. Then K−{σ, τ} is a simplicial
complex called an elementary collapse of K. The action of an elementary collapse
can be denoted by the symbol ↘. Thus, we write K ↘ K − {σ, τ}.

Conversely, suppose {σ(p−1), τ (p)} is a pair of simplicies not in K where σ is a
face of τ and all other faces of τ are in K. Then, we can perform a elementary
expansion of K, adding {σ(p−1), τ (p)} to K, denoted K ↗ K ∪ {σ, τ}.

For either an elementary collapse or expansion, our pair of simplicies {σ, τ} is
called a free pair.

Definition 2.2.1. Let K and L be simplicial complexes. We say that K and L
have the same simple homotopy type, denoted K ≃ L, if there is a sequence of
elementary collapses and expansions from K to L.

In the case where L = {v} = ∗, we say that K has the simple homotopy type
of a point. If K ≃ ∗ is achieved through only using elementary collapses, we call
K collapsible.

Example 2. We can illustrate an elementary collapse. A visualization can be very
useful in understanding what it means for a pair of simplices to be a free pair.

v

u
uv

u
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Notice how v is a face of uv, and v has no other cofaces. Hence, {v, uv} is our
free pair, making for a clear elementary collapse on our simplicial complex.

Since simple homotopy is a type of equivalence relation, reflexivity holds, and
thus if K ≃ H and H ≃ L, then K ≃ L. This is an important property of simple
homotopy because it allows us to form families of complexes with alike topological
structure.

Definition 2.2.2. Let K and L be two simplicial complexes with no vertices in
common. We define the join of K and L, denoted K ∗ L, by

K ∗ L := {σ, τ, σ ∪ τ : σ ∈ K, τ ∈ L}.

When L = {v, w} for vertices v, w ̸∈ K, then K ∗ L is the suspension of K
denoted ΣK.

We consider another special case of the join called the cone, denoted C(K).
This is the join of a simplicial complex K with a single vertex. The following is an
incredibly useful proposition in computing simple homotopy types.

Proposition 3. The cone C(K) over any simplicial complex K is collapsible.

2.2.2 Strong Homotopy Type

Next, we introduce a stronger equivalence between two complexes, hence the term
"strong homotopy type." Note that there is a foundation centered around simplicial
maps (functions that map one simplicial complex to another) if we choose to intro-
duce this concept starting from its roots. However, we choose to omit the notion of
simplicial maps in favor of a very intuitive definition of strong homotopy type. The
hope is that this allows for a clearer understanding of the actions we perform to
achieve strong homotopy type. The first necessary concept that we must introduce
is that of a dominating vertex.

Definition 2.2.3. Let K be a simplicial complex. A vertex v is said to dominate
v′ if every maximal simplex (facet) of v′ also contains v.

Using the fairly explicit notion of a dominating vertex, we are able to formally
define strong homotopy type.

If v dominates v′ in a simplicial complex K, the removal of v′ from K is called an
elementary strong collapse and is denoted by K ↘↘ K −{v′}. Conversely, the
addition of a dominated vertex is an elementary strong expansion and is denoted
by ↗↗. A sequence of elementary strong collapses and expansions is called a strong
collapse or strong expansion, respectively, and is denoted in the same manner.

Definition 2.2.4. Let K and L be simplicial complexes. If there is a sequence of
strong collapses and expansions from K to L, then K and L are said to have the
same strong homotopy type.

In the case where L = ∗, then K is said to have the strong homotopy type
of a point. If there is a sequence of only strong collapses from K to a point, K is
strongly collapsible.

12



Example 4. We can illustrate a strong collapse. Note how a strong collapse acts
as many elementary collapses happening simultaneously.

v

u u

Starting with the simplicial complex to the left, it is evident that u dominates
v, as every facet of v also contains u. So we can make a strong collapse, leaving the
reduced simplicial complex on the right.

This definition brings to light the question of whether collapsibility and strong
collapsibility are the same thing. By definition, strongly collapsible implies collapsi-
ble. However, the converse is false, and can be shown so by counterexample. A
famous counterexample is the Argentinian complex, as it is clearly collapsible, but
has no dominating vertices, and thus cannot be strongly collapsible.

2.2.3 Discrete Gradient Vector Fields

Consider a simplicial complex K. A way to represent elementary collapses on K
is by a type of induced function known as a gradient vector field. Each arrow
in a gradient vector field represents an elementary collapse that can be performed.
If done strategically, this can slowly squeeze K down to its simple homotopy type.
However, there are some rules that we must satisfy when choosing our gradient
vector field on K, and so we provide a formal definition and basis of this rich tool.

Definition 2.2.5. Let K be a simplicial complex. A discrete vector field V on
K is defined by

V := {(σ(p), τ (p+1)) : σ < τ, each simplex of K in at most one pair}.

If (σ, τ) ∈ V , (σ, τ) is called a vector, an arrow, or a matching. All three terms
are commonplace. The element σ is a tail while τ is a head.

Any pair (σ, τ) ∈ V is called a regular pair, and σ, τ are called regular sim-
plices or just regular. If (σ(p), τ (p+1)) ∈ V , we say that p + 1 is the index of the
regular pair. Any simplex in K which is not in V is called critical.

The formal definition of a discrete vector field puts implicit conditions on the
types of vectors allowed. For any discrete vector field on a simplicial complex K,
exactly one of the following holds:

1. σ is the tail of exactly one arrow.

2. σ is the head of exactly one arrow.

3. σ is neither the head nor the tail of an arrow. In other words, σ is critical.
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Although these conditions are clear and easy to implement, they do not always
correspond to a gradient vector field on our simplicial complex, K. There is one
more condition we must satisfy: namely, we need to solve the problem of "closed
paths."

Definition 2.2.6. Let V be a discrete vector field on a simplicial complex K. A
V -path or gradient path is a sequence of simplices

α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , α

(p)
2 . . . , β

(p+1)
k−1 , α

(p)
k

of K such that (α
(p)
i , β

(p+1)
i ) ∈ V and β

(p+1)
i > α

(p)
i+1 ̸= α

(p)
i for 0 ≤ i ≤ k − 1.

If k ̸= 0, then the V -path is called non-trivial. A V -path is said to be closed
if α(p)

k = α
(p)
0 . A discrete vector field V which contains no non-trivial closed V -paths

is called a gradient vector field. We sometimes use f to denote a gradient vector
field.

We will refer to gradient vector fields consisting of only a single matching as a
primitive gradient vector field. Taking multiple primitive gradient vector fields, we
are allowed to combine them to form new, larger gradient vector fields.

If f, g are two gradient vector fields on K, we can write g ≤ f whenever the
regular pairs of g are also regular pairs of f . This denotes that g is a sub-gradient
vector field of f . Generally, we call a collection of primitive gradient vector fields
f0, f1, . . . , fn compatible if there exists a gradient vector field f such that fi ≤ f
for all 0 ≤ i ≤ n.

It is important to note a distinction between two useful types of gradient vector
fields when attempting to compute homotopy types: maximal and maximum
gradient vector fields.

Definition 2.2.7. A maximal gradient vector field on a simplicial complex, K, is
one that cannot be properly contained within any other gradient vector field on K.

Let K be a simplicial complex. A gradient vector field on K is maximum if as
many simplices are matched as possible.

Example 5. Here, we can illustrate the distinction between primitive gradient vec-
tor fields (left), maximum gradient vector fields (center), and maximal gradient
vector fields (right).

Note that maximum gradient vector fields are always maximal, but the converse
is not necessarily true. Further, maximum and maximal gradient vector fields are
beneficial in understanding the construction of the Morse complex, which will be
explained in Chapter 3.
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Chapter 3

The Cluster Lemma and Computing
Homotopy Types

Our first area of results is in using what is called the "Cluster Lemma" [14, 16] to
compute homotopy types of large simplicial complexes. In this chapter, we inves-
tigate the homotopy type of families of the Morse complex, the Generalized Morse
complex, and the Matching complex. This chapter focuses mainly on computing sim-
ple homotopy type. However, other useful results describing the topology of these
intricate simplicial complexes may arise, such as determining whether a complex is
a suspension of another.

3.1 Motivation
Homotopy type is of great interest in topology and the study of different spaces.
Similarities and differences of higher-dimensional spaces are a frequent focus in the
discipline and homotopy invariants can be found more easily, computing the exact
homotopy type takes patience and a variety of approaches. In [4], Barmak introduced
the star cluster of a simplex in K and proved that if K is a flag (or a clique)
complex, then the star cluster is collapsible. This proved to be a useful tool in
studying the topology of a family of complexes known as independence complexes.
So, our goal here is to expand this tool for independence complexes to other families
of complexes.

The Morse, generalized Morse, and matching complexes store a variety of com-
binatorial information of a simplicial complex K. Thus, determining the homotopy
types of the complexes is an interesting topological question with potential applica-
tions in topological data analysis and determining similarities between data sets.

3.2 Star Clusters and The Cluster Lemma
There are several famous types of complexes–one being the flag complex. A result
by Jonathan Barmak [4], declaring that the "star cluster of a simplex of a flag
complex is collapsible" will be crucial in our computations of homotopy types. The
previous phrase is not currently clear, so let us introduce the necessary prerequisites.

Definition 3.2.1. A simplicial complex K is a flag complex if for each non-empty
set of vertices σ such that {vi, vj} ∈ K for every vi, vj ∈ σ, we have that σ ∈ K.
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The flag complex of a graph G is the smallest simplicial complex that has G as
a 1-skeleton.

Definition 3.2.2. [4, Definition 3.1] Let σ be a simplex of a simplicial complex, K.
We define the star cluster of σ in K as the subcomplex

SCK(σ) =
⋃
v∈σ

stK(v) + lkK(v)

We denote the star cluster of σ by SC(σ) when the context is clear.

We will now formally introduce Barmak’s result which will act as a fundamental
tool in our work.

Proposition 6. [4, Lemma 3.2] The star cluster of a simplex in a flag complex is
collapsible.

Next, we must properly introduce the "Cluster Lemma." This result was inde-
pendently formulated by both Jonsson [16, Lemma 4.2] and Hersh [14, Lemma 4.1].
It is a simple way to construct a gradient vector field on a complex by applying
several of smaller gradient vector fields disjointly and gluing them together. This
result, along with Proposition 6 will simplify the process of computing homotopy
types on complexes that are flag.

Lemma 7. ([16, Lemma 4.2] and [14, Lemma 4.1]) [Cluster Lemma] Let ∆ be a
simplicial complex which decomposes into collections ∆σ of simplices, indexed by
the elements σ in a partial order P which has a unique minimal element σ0 = ∆0,
Furthermore, assume that this decomposition is as follows:

1. Each simplex belongs to exactly one ∆σ.

2. For each σ ∈ P ,
⋃

τ≤σ ∆τ is a subsimplicial complex of ∆.

For each σ ∈ P , let Mσ be an acyclic matching in ∆σ. Then
⋃

σ∈P Mσ is an acyclic
matching on K.

In addition to the Cluster Lemma [Lemma 7] allowing us to apply an acyclic gra-
dient vector field on a whole complex by mending together smaller acyclic matchings,
what is most important for us to take note of the simplices that go unmatched. If
our gradient vector field is picked strategically enough, in some cases, specific collec-
tions of critical simplices can uniquely determine the homotopy type of the original
complex–Morse, generalized Morse, and matching complex alike; of which, we will
introduce later in this chapter. This unique determination is due to the following
well-known result by Robin Forman:

Theorem 8. [10, Corollary 3.5] Let K be a simplicial complex and M an acyclic
matching on K with mi critical simplices of dimension i. Then K has the homotopy
type of a CW complex with exactly mi cells of dimension i. In particular, if m0 =
1,mn = k, and mj = 0 for all j ̸= 0, n, then K has the homotopy type of a k-fold
wedge of Sn.

In our work, all of our computations will satisfy Theorem 8 and allow us to
uniquely determine the homotopy type of the specific complex. We choose not to
include the proof of Forman’s result, as it is outside the realm of this thesis. However,
we can note that a CW complex is a more general concept than a simplicial complex.
Thus, simplicial complexes are encapsulated in the definition of a CW complex.
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3.3 Computing Homotopy Types using Star Clus-
ters and the Cluster Lemma

3.3.1 The Morse Complex

We continue onward to our first large classification of complex–the Morse complex.
Informally, the Morse complex of a simplicial complex, K, is the complex contain-
ing information of all possible gradient vector fields on K, and is denoted M(K).
Although the Morse complex is not a flag complex in general, it is when K = T ,
T a tree. In this special case, we are able to determine that M(T ) is a suspension
using star clusters and the Cluster Lemma [Lemma 7]. Further, we are able to use
these same ideas to determine the homotopy type of a variety of different families
of Morse complexes.

Definition 3.3.1. The Morse complex of K, denoted M(K), is the simplicial
complex whose vertices are given by primitive gradient vector fields and whose n-
simplices are given by gradient vector fields with n+1 regular pairs. A gradient vec-
tor field f is then associated with all primitive gradient vector fields f := {f0, . . . , fn}
with fi ≤ f for all 0 ≤ i ≤ n.

Example 9. As a simple example, we can find the More complex of the following
complex K:

a b c d

Although the simplicial complex K is fairly simple, the Morse complex still
requires some work to create. First, we will consider the six primitive gradient
vector fields on K. These are (a, ab), (b, ab), (b, bc), (c, bc), (c, cd), and (d, cd). Fur-
ther, we will consider the five compatibilities V1 = {(a, ab), (b, bc), (c, cd)}, V2 =
{(a, ab), (b, bc), (d, cd)}, V3 = {(a, ab), (c, bc), (d, cd)}, V4 = {(b, ab), (c, bc), (d, cd)},
and V5 = {(b, ab), (c, cd)}. From these, we can construct our Morse Complex, M(K):

(c, cd) (c, bc)

(a, ab) (b, ab)

(d, cd) (b, bc)

We find that V1, V2, V3, and V4 form triangle faces in M(K), while V5 only forms
an edge between (b, ab) and (c, cd). We can now draw a connection back to maximal
and maximum gradient vector fields. It is clear that V1, . . . , V4 are maximum gradient
vector fields on K, while V5 is only maximal.
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Remark 10. If (a, ab) is a primitive gradient vector field, we sometimes denote this
as (a)b, and if (ac, acb) is a primitive gradient vector field, we sometimes denote this
as (ac)b. This notation is less cumbersome to work with, and thus we will use it
moving forward.

Lemma 11. [9] The Morse complex M(K) is a flag complex if and only if K is a
tree.

Proof. Let T be a tree and M(T ) the Morse complex of T . For M(T ) to be a
flag complex, each non-empty set of mutually compatible vertices needs to be all
together compatible. In other words, for each non-empty set of vertices σ such that
{v, w} ⊆ M(T ) for every v, w ∈ σ, we have that σ ∈ M(T ). Now the only case
when a collection of pairwise compatible primitive gradient vector fields may not be
compatible is when they form a cycle. But since trees are acyclic, a collection of
pairwise compatible primitive gradient vector fields can never form a cycle so that
M(T ) is a flag complex.

Now suppose M(K) is a flag complex. Clearly neither K nor the 1-skeleton of
K can contain a cycle since otherwise there would exist a collection of mutually
compatible vertices on M(K) that are not all together compatible. Thus K must
be a tree.

Although the flag condition greatly reduces the kind of Morse complexes that
we can study directly using star clusters, the following result of Barmak will allow
us to make a blanket statement about the Morse complex of all trees. Specifically,
as previously stated, that the Morse complex of all trees is a suspension.

Lemma 12. [4, Lemma 3.4] Let K be a simplicial complex and K1, K2 be two
collapsible subcomplexes such that K = K1 ∪K2. Then K is homotopy equivalent
to Σ(K1 ∩K2).

Proposition 13. [9] Let T be a tree. Then M(T ) has the homotopy type of a
suspension.

Proof. We apply Lemma 12 by constructing two collapsible subcomplexes of M(T )
whose union is all of M(T ). Pick any leaf {v0, v0v1} of T and consider the maximum
gradient vector field σ0 rooted in v0 and the maximum gradient vector field rooted in
v1 [20, Proposition 3.3]. These correspond to simplices σ0, σ1 ∈ M(T ), respectfully.
Define M1(T ) = SCM(T )(σ0) and M2(T ) = SCM(T )(σ1). Then M1(T ) and M2(T )
are collapsible subcomplexes of M(T ) by Lemma 11. Furthermore, it is easy to see
that M(T ) = M1(T ) ∪M2(T ). Thus M(T ) ≃ Σ(M1(T ) ∩M2(T )).

Hence, we are limited with making claims about the homotopy types when di-
rectly using star clusters and the Cluster Lemma [Lemma 7]. However, we can still
use this technique to compute the homotopy type of the Morse complex of specific
classes of trees. Our first computation is the homotopy type of the Morse complex of
a path. This has been shown by Kozlov [18], so we are providing an alternate proof
technique utilizing our method of collapsing star clusters and the Cluster Lemma
[Lemma 7].
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First, recall that a path graph on t vertices, denoted Pt, is a tree with two vertices
of degree one and the other t−2 vertices having degree two. It is a convenient starting
point for an illustration of our technique because it is a simple family of trees where
all vertices and edges can be drawn in a straight line.

Proposition 14. [9] Let Pt be the path on t vertices, t ≥ 3. Then

M(Pt) ≃


∗ if t = 3n

S2n−1 if t = 3n+ 1

S2n if t = 3n+ 2

Proof. We apply the Cluster Lemma. In order to do so, we decompose M(Pt) into
collections ∆k. First, we construct collections of sub-simplices σi for i = 0, . . . n.
We construct collections as follows:

1. Let σ0 := SC((v0)v1, (v1)v2, . . . , (vt−3)vt−2, (vt−2)vt−1)

2. For 1 ≤ j ≤ n, we define the following:

(a) When j = 2k − 1, let σj := st((vt−(3k−1))vt−3k)

(b) When j = 2k, let σj := st((v3k)v3k−1)

3. Let σn+1 := M(Pt)−
⋃n

i=0 σi

Now define ∆0 := σ0 and ∆k := σk −
⋃k−1

j=0 σj, and observe that
⋃n+1

k=0 ∆k = M(Pt).
Define an acyclic matching on each ∆j as follows:

We know that ∆0 is collapsible by Proposition 6 and Lemma 11 so ∆0 has an
acylcic matching with a single unmatched 0-simplex.

Let j = 2k − 1, 1 ≤ j ≤ n. Any simplex V ∈ ∆j by definition contains
(vt−(3k−1))vt−1. Match V with V ∪{(vt−(3k−2))vt−(3k−1)} (or V −{(vt−(3k−2))vt−(3k−1)}
if V already contains this vector). In this way, all simplices in ∆2k−1 are matched
with no unmatched simplices. Furthermore, since this matching is a subset of the
matching on the cone on (vt−(3k−1))vt−1, it is acyclic.

Let j = 2k, 2 ≤ j ≤ n. Any simplex V ∈ ∆j by definition contains (v3k)v3k−1.
Match V with V ∪ {(v3k−1)v3k−2} (or V with this vector removed, as above). In
this way, all simplices in ∆2k are matched with no unmatched simplices. Again, this
matching is a subset of the matching on a cone so it is acyclic.

Now consider ∆n+1. We have three cases:
(Note: When considering n = 1 in cases 2 and 3, disregard matchings containing

vertices with negative indices e.g. v−1)

Case 1 Let t = 3n. Then ∆n+1 = ∅, and thus M(Pt) ≃ ∗.

Case 2 Let t = 3n+1. Then ∆n+1 contains a single simplex V of dimension (2n−1)
satisfying

(v3⌊n
2
⌋)v3⌊n

2
⌋−1, (v3⌊n

2
⌋+2)v3⌊n

2
⌋+1 ̸∈ V.

Thus by Theorem 8, M(Pt) ≃ S2n−1.
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Case 3 Let t = 3n + 2. Then ∆n+1 contains a single simplex V of dimension 2n
satisfying

(v3⌊n
2
⌋)v3⌊n

2
⌋−1, (v3⌊n

2
⌋+3)v3⌊n

2
⌋+2 ̸∈ V.

Thus by Theorem 8, M(Pt) ≃ S2n.

Example 15. This computation gives us an algorithm to determine which simplex
in the M(Pt) are critical. We can look at a small yet helpful example:

v0 v1 v2 v3 v4 v5 v6

For t = 7 = 3(2) + 1, Case 2 of the proof of Theorem 14 implies that V ∈ ∆3

will result in the gradient vector field (critical simplex) in M(P7) pictured above.

Next, recall that the star graph, Sn, on n+1 vertices is the complete bipartite
graph K1,n. Alternatively, we may view Sn as the result of taking n paths of length
1 and gluing them to a common endpoint (the so-called wedge). We generalize Sn

in the following definition:

Definition 3.3.2. An extended star graph, denoted Sv1,v2,v3 , is the graph ob-
tained by starting with v1 paths of length 1, v2 paths of length 2, and v3 paths of
lengths 3 and identifying an endpoint of each path with a fixed vertex c called the
center. By an extended leaf of length k, we mean a path of length k from the
center vertex, c, to a vertex, vk, of degree 1.

Clearly Sk = Sk,0,0 recovers the star graph. It was shown in [8, Proposition 3.5]
that not only is M(Sn) (strongly) collapsible for n ≥ 2, but that any complex with
at least two leaves sharing a common vertex is strongly collapsible. Hence, we let
v0 = 0 in our computation below.

Example 16. Here we illustrate a possible extended star graph: S0,4,0.

By Corollary [19], we see that M(S0,4) ≃ S4 ∨ S4 ∨ S4.

Theorem 17. [9] Let S0,n,m be an extended star graph. Then,

M(S0,n,m) ≃ ∨n−1S2m+n
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Proof. Define a collection of subsimplices σi for i = 0, . . . n on M(S0,n,m) as follows:
Let c be the center vertex of S0,n,m and let {vaivbi , vbi} be the leaf of each extended

leaf of length 2, i = 1, 2, . . . , n, and {vαj
vβj

, vβj
} the leaf of each extended leaf of

length 3, j = 1, 2, . . . ,m with vγj ̸= vβj
the other neighbor of vαj

.

1. Let σ0 be the star cluster of the gradient vector field rooted in c. Such a
gradient vector field exists and is unique by [20, Proposition 3.3].

2. Let σ1 := ∪m
i=1st({(c)vγi})

Now define ∆0 := σ0,∆1 := σ1 − σ0, and ∆2 := M(S0,n,m) − (σ0 ∪ σ1). Clearly
∆0∪∆1∪∆2 = M(S0,n,m) so we can apply the Cluster Lemma. We define an acyclic
matching on each ∆j as follows:

First, ∆0 is collapsible by Proposition 6 and Lemma 11 so there is an acyclic
matching on ∆0 with a single critical 0-simplex.

To construct a matching on ∆1, we first observe that a typical element of ∆1 is
of the form (c)vγi along with other arrows pointing away from the center vertex c.
Furthermore, because σ0 contains all gradient vector fields with any arrow pointing
towards c, all elements of ∆1 are not compatible with any arrow pointing towards
c. Upon inspection, there are exactly 2m such gradient vector fields. Match the
(2m + n − 1)-simplex of ∆1 containing (c)vγi but not containing (vγi)vαi

to the
corresponding (2m+ n)-simplex containing both (c)vγi and (vγi)vαi

. This produces
an acyclic matching on all elements in ∆1.

Lastly, observe that ∆2 contains n+1 elements. We will create a single matching,
leaving n−1 unmatched (2m+n)-simplices and hence critical. A typical element of
∆2 is of the form (

⋃n
i=1(vai)vbi)∪ (

⋃m
i=1(vγi)vαi

)∪ (
⋃m

i=1(vαi
)vβ1) along with possibly

one of (c)vai . Match the (2m + n − 1)-simplex of ∆2 containing none of the (c)vai
with the (2m+ n)-simplex containing (c)va1 .

If n > 1 then, there are n − 1 unmatched (2m + n)-simplices τi, where each τi
contains (c)vai for i = 2, 3, . . . , n− 1. Thus M(S0,n,m) ≃ ∨n−1S2m+n.

We can quickly obtain several special cases for which we list as corollaries below.

Corollary 18. Let S0,1,n be an extended star graph. Then,

M(S0,1,n) ≃ ∗

Corollary 19. Let S0,n be an extended star graph. Then,

M(S0,n) ≃ ∨n−1Sn

Corollary 20. Let S0,0,n be an extended star graph. Then,

M(S0,0,n) ≃ S2n−1

As one can quickly see, using star clusters in conjunction with the Cluster Lemma
7 can be a simple yet powerful tool to computing homotopy types. We will con-
tinue to use this method throughout Chapter 2, and it will next be done with the
generalized Morse complex.
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3.3.2 The Generalized Morse Complex

The generalized Morse complex was defined in [22] in order to estimate the
connectivity of the Morse complex. However, we see merit in using our technique to
learn more about the topology of the object. Specifically, the homotopy type, and
how it can possibly be related back to the Morse complex.

Definition 3.3.3. The generalized Morse complex GM(K) of a simplicial com-
plex, K, is the simplicial complex whose vertices are the primitive gradient vector
fields on K, with a finite collection of vertices spanning a simplex whenever the
primitive gradient vector fields are pairwise compatible. Reworded, the simplices of
GM(K) are the discrete vector fields on K, with face relation given by inclusion.

Note that GM(K) is a flag complex since it allows closed V -paths on K. We
now compute the homotopy type of the generalized Morse complex for cycles. First,
a definition.

Definition 3.3.4. Let Ct be a cycle, t ≥ 3, with vertices v0, . . . , vt−1. Let Vk :=
{(vi+1)vi : k ≤ i ≤ t− 1}. We define stmod(Vk) := {σ ∈ st(Vk) : (vk)vk−1 ̸∈ σ}.

Theorem 21. [9] Let Ct be the cycle on t vertices, t > 3. Then

GM(Ct) ≃


S2n−1 ∨ S2n−1 if t = 3n

S2n if t = 3n+ 1

S2n if t = 3n+ 2

Proof. We decompose GM(Ct) into collections ∆k. We begin by constructing the
following collections:

1. Let σ0 := SC({(v0)v1, (v1)v2, . . . , (vt−1)v0})

2. For 1 ≤ j ≤ t− 2, let σj := stmod({(vj)vj−1(vj+2)vj+1})

Define ∆0 := σ0 and ∆k := σk −
⋃k−1

j=0 σj. Then
⋃t−2

k=0∆k = GM(Ct). Clearly ∆0

is collapsible. Now match k-simplex of the form {(vj)vj−1(vj+2)vj+1 . . .} with the
(k + 1)-simplex of the form {(vj)vj−1(vj+1)vj(vj+2)vj+1 . . .}. There are three cases
to consider.

Case 1 Let t = 3n. Then there will be two critical (2n − 1)-simplices, both of
which were excluded from every σj by the definition of stmod. However, all
other simplices have been matched. Thus GM(C3n) ≃ S2n−1 ∨ S2n−1.

Case 2 Let t = 3n+1. Then there will be one critical (2n)-simplex while all other
simplices have been matched. Thus GM(C3n+1) ≃ S2n.

Case 3 Let t = 3n + 2. There is a single critical (2n)-simplex which was excluded
from every σj by the definition of stmod with all other simplices matched. Thus
GM(C3n+2) ≃ S2n.

We next investigate the generalized Morse complex of a cycle with a leaf attached.
We use the notation Ct ∨ ℓ to denote the cycle of length t with a leaf ℓ joined to
some vertex of Ct.
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Theorem 22. [9] Let Ct be the cycle on t vertices, t > 3. Then

GM(Ct ∨ ℓ) ≃


∗ if t = 3n

S2n if t = 3n+ 1

S2n+1 if t = 3n+ 2

Proof. Let {v1, v0v1} be the leaf attached to v1 ∈ Ct.
To apply the Cluster lemma, we first construct collections as follows:

1. Let σ0 := SC({(v0)v1(v1)v2(v2)v3 . . . (vn)v1})

2. For 1 ≤ j ≤ n,

(a) Let j = 2k − 1 and define

σj := st({(v1+3(k−1))v0+3(k−1)(v3+3(k−1))v2+3(k−1)})

(b) Let j = 2k and define

σj := st({(vt−3(k−1))v(t−1)−3(k−1)(v(t−2)−3(k−1))v(t−3)−3(k−1)})

3. For j = n+ 1,

(a) if n+ 1 = 2k − 1, then

σn+1 := st({(vt−3(k−1))v(t−1)−3(k−1)(v(t−1)−3(k−1))v(t−2)−3(k−1)})

(b) if n+ 1 = 2k, then

σn+1 := st({(v1+3(k−1))v0+3(k−1)(v2+3(k−1))v1+3(k−1)})

Let ∆0 := σ0 and ∆k := σk −
⋃k−1

j=0 σj. Then
⋃n+1

k=0 ∆k = GM(Ct ∨ l). Clearly ∆0 is
collapsible. Now match each ∆j for 1 < j < n by the following:

If j = 2k − 1, match each m-simplex of the form

{(v1+3(k−1))v0+3(k−1)(v3+3(k−1))v2+3(k−1) . . .}

to the corresponding m+ 1-simplex of the form

{(v1+3(k−1))v0+3(k−1)(v2+3(k−1))v1+3(k−1)(v3+3(k−1))v2+3(k−1) . . .}

If j = 2k, match each m-simplex of the form

{(vt−3(k−1))v(t−1)−3(k−1)(v(t−2)−3(k−1))v(t−3)−3(k−1) . . .}

to the corresponding m+ 1-simplex of the form

{(vt−3(k−1))v(t−1)−3(k−1)(v(t−1)−3(k−1))v(t−2)−3(k−1)(v(t−2)−3(k−1))v(t−3)−3(k−1) . . .}

Thus all simplicies in ∆j for 1 < j < n have been matched.
Now we must match simplices in ∆n+1. We consider three cases:

Case 1 Let t = 3n. Then ∆n+1 = ∅, and thus GM(Ct ∨ l) ≃ ∗.
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Case 2 Let t = 3n+ 1. Then ∆n+1 only contains one 2n-simplex. Thus GM(Ct ∨
l) ≃ S2n.

Case 3 Let t = 3n + 2. Then ∆n+1 only contains one 2n + 1-simplex. Thus
GM(Ct ∨ l) ≃ S2n+1.

The homotopy type of the Morse complex of Ct ∨ ℓ is computed in Theorem 46.
It turns out to be the same as the homotopy type of the Generalized Morse complex
of Ct ∨ ℓ. We thus have

Corollary 23. Let Ct ∨ ℓ be a cycle with a leaf. Then,

GM(Ct ∨ ℓ) ≃ M(Ct ∨ ℓ).

A collapse of GM(Ct ∨ ℓ) onto M(Ct ∨ ℓ) can be seen by considering the closed
V-paths in GM(Ct ∨ ℓ) that are added to M(Ct ∨ ℓ). We see that there are four
such V-paths: a clockwise cycle, a counterclockwise cycle, a clockwise cycle with an
inward facing arrow on the leaf, and a counterclockwise cycle with an inward facing
arrow on the leaf. By matching the clockwise cycle with the clockwise cycle with an
inward facing arrow on the leaf and also matching the counterclockwise cycle to the
counterclockwise cycle with an inward facing arrow on the leaf, we have collapsed
GM(Ct ∨ ℓ) back into M(Ct ∨ ℓ), showing a homotopy equivalence.

3.3.3 The Matching Complex

Our last complex of interest is the matching complex. The matching complex is
a very well-known complex that can be associated to a graph, and it is fairly well-
studied. However, there is still a lot of discovery to be done when thinking about
the homotopy type of the matching complex.

Definition 3.3.5. Let the matching complex of a graph, G, denoted M(G), be the
simplicial complex with vertices given by edges of G and faces given by matchings of
G, where a matching is a subset of edges H ⊆ E(G) such that any vertex v ∈ V (H)
has degree at most 1.

Example 24. We can begin with the simplicial complex, P5 (left), and using our
definition of the matching complex, we can construct M(P5) (right).

a b c d e

ab bc

cdde
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The homotopy types of the matching complexes of the path and cycle were
computed in [18]. As in the case of the Morse complex for a path, we are able
to provide alternative proof methods using star clusters and the Cluster Lemma.
Additionally, this method proves fruitful as we are able to provide a new result,
computing the homotopy type of the matching complex for Dutch windmill graphs.

First, a simple yet powerful observation that we can make is GM(G) ∼= M(sd(G))
for any graph G [6]. Thus the results in Section 3.3.2 hold for the matching complex
on the barycentric subdivision of the graph in question. By barycentric subdivision
of the graph, we mean that sd(G) is the graph that results from dividing every edge
in G into two by adding a vertex.

It was furthermore proved in [8, Proposition 3.5] (and is formally stated as
Proposition 59) that if a graph G has two leaves sharing a common vertex, then
the Morse complex is contractible. The same result holds for the generalized Morse
complex. We thus have the following:

Corollary 25. [9] If a graph G has two leaves sharing a common vertex, then
M(sd(G)) is contractible.

Proposition 26. [9] Let Pt be a path on t ≥ 3 vertices. Then

M(Pt) ≃


Sn−1 if t = 3n

Sn−1 if t = 3n+ 1

∗ if t = 3n+ 2

Proof. We apply the Cluster Lemma. In order to do so, we decompose M(Pt) into
collections ∆k. First, we construct collections of sub-simplices σi. We construct
collections as follows:

1. Let σ0 := SC({
⋃k

i=0(v3iv3i+1)}), k ≤ n

2. Let σ1 := st{(v1v2)}

Let ∆0 := σ0 and ∆1 := σ1 − σ0. Now any maximal matching of Pt contains
either v0v1 or v1v2. If it contains v0, then it is in ∆0. If it contains v1v2, then it is in
∆1. Hence ∆0 ∪∆1 = M(Pt) so that we define an acyclic matching on ∆0,∆1 and
apply the Cluster Lemma.

Now ∆0 is flag so it is collapsible by Proposition 6 and Lemma 11. To construct
a matching on ∆1, we consider three cases:

Case 1 Let t = 3n. Then ∆1 is a single simplex given by {
⋃n−1

i=0 (v3i+1v3i+2)}. Hence
this corresponds to an (n−1)-simplex in the Morse complex and thus is critical
so that M(P3n) ≃ Sn−1.

Case 2 Let t = 3n+1. As in Case 1, ∆1 is a single matching given by {
⋃n−1

i=0 (v3i+1v3i+2)}.
This matching corresponds to a critical (n− 1)-simplex in the Morse complex
and thus M(P3n+1) ≃ Sn−1.

Case 3 Let t = 3n+ 2. Then ∆1 = ∅. Thus M(P3n+2) ≃ ∗.
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We can also provide an alternate proof for computing the homotopy type of the
matching complex of the cycle using the same technique and a similar matching.

Proposition 27. [9] Let Ct be a cycle on t ≥ 3 vertices. Then

M(Ct) ≃


Sn−1 ∨ Sn−1 if t = 3n

Sn−1 if t = 3n+ 1

Sn if t = 3n+ 2

Proof. As usual, we apply the Cluster Lemma by first constructing collections of
subsimplices σi.

1. Let σ0 := SC({
⋃k

i=0(v3iv3i+1)}), k ≤ n (k ≤ n− 1 when t = 3n+ 1)

2. Let σ1 := st{(v(t−1)v0)}

3. Let σ2 := st{(v1v2)}

Define ∆0 := σ0,∆1 := σ1 − σ0, and ∆2 := σ2 − (σ0 ∪ σ1). Since every matching
of Ct is in one of the σi, it follows that ∆0 ∪∆1 ∪∆2 = M(Ct). To define an acyclic
matching on the ∆i, we first observe that ∆0 is collapsible.

The matchings on both ∆1 and ∆2 are considered in three cases:

Case 1 Let t = 3n. In ∆1, there exists one (n − 1)-simplex, {
⋃k

i=0(v2+3iv3+3i)}.
Thus it cannot be matched so it it critical. In ∆2, there exists one (n − 1)-
simplex of the form {

⋃k
i=0(v1+3iv2+3i)} which also cannot be matched. Thus

M(C3n) ≃ Sn−1 ∨ Sn−1.

Case 2 Let t = 3n+1. Any (n− 1)-simplex V in ∆1 does not contain {(vt−3vt−2)}
so we match V with V ∪ {(vt−3vt−2)}. This yields a perfect acyclic matching
on ∆1. Now there is only one simplex in ∆2; namely, the (n − 1)-simplex
{
⋃n−1

i=0 (v3i+1v3i+2)}. This (n− 1)-simplex is critical, hence M(C3n+1) ≃ Sn−1.

Case 3 Let t = 3n + 2. For each (n − 1)-simplex V of ∆1, there is exactly one k,
0 ≤ k ≤ n− 1, such that both v3k+1v3k+2 and v3k+2v3k+3 are not in V . Match
this V with V ∪ {v3k+2v3k+3}. Then there is one n-simplex left unmatched,
namely, {

⋃n
i=0(v3i+1v3i+2)}. Observe that ∆2 is empty, and thus M(C3n+2) ≃

Sn.

Next, we can use the same technique to compute the homotopy type for some
new families of graphs. The first being the centipede graph, and the second being
the Dutch windmill graph.

Definition 3.3.6. A centipede graph, Ct is a graph obtained by adding a leaf to
each vertex on a path Pt. If v0, . . . , vt−1 are the vertices of Pt, denote the vertex of
the leaf added to vi by v′i.

Proposition 28. [9] Let Ct be a centipede graph. Then

M(Ct) ≃

{
Sn−1 if t = 2n

∗ if t = 2n+ 1
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Proof. Let Ct be a centipede graph. We apply the Cluster Lemma and construct
collections as follows:

1. Let σ0 := SC({
⋃t−1

i=0(viv
′
i)})

2. Let σ1 := st((v0v1))

Define ∆0 := σ0 and ∆1 := σ1 − σ0 so that ∆0 ∪ ∆1 = M(Ct). Define an acyclic
matching on each ∆i as follows:

We know ∆0 is collapsible by Proposition 6 and Lemma 11.
For ∆1, we have two cases:

Case 1 Let t = 2n. Then the only element in ∆1 is {
⋃n−1

j=0 (v2jv2j+1)}, an (n − 1)-
simplex. Hence M(Ct) ≃ Sn−1.

Case 2 Let t = 2n+ 1. Then ∆1 = ∅. Thus M(Ct) ≃ ∗.

Definition 3.3.7. Let Dn
m be a Dutch windmill graph. Dn

m is obtained by taking
n copies of the cycle Cm and joining them at a common vertex.

Theorem 29. [9] Let Dn
m be a Dutch windmill graph. Then

M(Dn
m) ≃


∗ if m = 3k

Snk−1 if m = 3k + 1

∨2n−1Snk if m = 3k + 2

Proof. Let Dn
m be the Dutch windmill graph with center vertex v0 and for each of

the n cycles Cm, let v(j)i denote vertex j of cycle i, 0 ≤ j ≤ m − 1 and 1 ≤ i ≤ n.
We apply the Cluster lemma by defining the following collections:

1. Let σ0 := SC{
⋃n

i=1(
⋃k−1

j=0(v(3j+1)iv(3j+2)i))}

2. For 1 ≤ ν ≤ k − 1, let σν :=
⋃n

i=1(st(
⋃k−ν

j=1 (v(3j)iv(3j+1)i)))

3. Let σk :=
⋃n

i=1(st(
⋃k−1

j=0(v(3j+2)iv(3j+3)i)))

Define ∆0 := σ0 and ∆β := σβ −
⋃β−1

α=0 σα. Then
⋃k

β=0∆β = M(Dn
m). We now

define an acyclic matching on each ∆β as follows:
We know ∆0 is collapsible by Proposition 6 and Lemma 11. Observe that

∆1, . . . ,∆k = ∅ for m = 3k, which implies that M(Dn
m) ≃ ∗.

Hence, suppose m ̸= 3k. Let 1 ≤ ν ≤ k−1 and consider ∆ν . For each 1 ≤ i ≤ n,
we match

⋃k−ν
j=1 (v(3j)iv(3j+1)i) with (v(3(k−ν)+2)i

v(3(k−ν)+3)i
)∪
⋃k−ν

j=1 (v(3j)iv(3j+1)i). This
produces an acyclic matching for all gradient vector fields in ∆ν . It remains to put
a matching on to ∆k.

For ∆k, we consider cases:

Case 1 Let m = 3k + 1. Then ∆k has one element, namely,
n⋃

i=1

k−1⋃
j=0

(v(2+3j)iv(3+3j)i).

This is an (nk − 1)-unmatched simplex, so it is critical, and thus M(Dn
m) ≃

Snk−1.
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Case 2 Let m = 3k + 2. Then ∆k has 2n+ 1 elements which are given by

n⋃
i=1

k−1⋃
j=0

(v(2+3j)iv(3+3j)i)

For each 1 ≤ ℓ ≤ n, (v(0)ℓv(1)ℓ) ∪
n⋃

i=1

k−1⋃
j=0

(v(2+3j)iv(3+3j)i)

For each 1 ≤ ℓ ≤ n, (v(0)ℓv(m−1)ℓ) ∪
n⋃

i=1

k−1⋃
j=0

(v(2+3j)iv(3+3j)i)

We can only create one matching, namely, we match

n⋃
i=1

k−1⋃
j=0

(v(2+3j)iv(3+3j)i) with (v(0)1v(1)1) ∪
n⋃

i=1

k−1⋃
j=0

(v(2+3j)iv(3+3j)i).

This leaves 2n− 1 (nk)-simplices unmatched. Thus, M(Dn
m) ≃ ∨2n−1Snk.
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Chapter 4

Computing Homotopy Types
Through Strong Collapses and the
Hasse Diagram

Through this chapter, we are further exploring homotopy types, so note that the
same motivation of Chapter 3 holds. In this chapter, we hone our focus on the
Morse complex, as we are particularly interested in the combinatorial information
of gradient vector fields that it stores. Additionally, the Hasse diagram provides
both a nice definition of the Morse complex, as well as another tool to study its
topological structure.

4.1 Degenerate Hasse Diagrams and An Alternate
Definition of the Morse Complex

Recall that a partially ordered set, or poset is a set P along with a reflexive,
antisymmetric, and transitive relation, typically denoted by ≤. For example, if we
consider a set X and the power set of X, P(X), we can show that P(X) is a poset
under subset inclusion. If we have the set X = {a, b, c}, we can visualize the poset of
P(X) by writing all the elements of P(X) out and drawing a line between a simplex
and each codimension-1 face, while maintaining the cardinality in the same rows.

Example 30. We can illustrate the above example, as seen in [21]:

{∅}

{b}{a} {c}

{a, c}{a, b} {b, c}

{a, b, c}

The above illustration is called a Hasse diagram, and will be a key part of
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an alternate definition of the Morse complex. We refer to each point in the Hasse
diagram as a node, and we call each ascending row of the Hasse diagram the level
i. In another lense, the level is used to denote the i-simplices of K in the Hasse
Diagram.
Definition 4.1.1. Let K be a simplicial complex. The Hasse diagram of K,
denoted H(K), is defined as the partially ordered set of simplices of K ordered by the
face relations. Thus, H(K) is a graph such that there is a one-to-one correspondence
between the nodes of H(K) and the simplices of K.

If we choose to abuse notation for easier explanation, if σ ∈ K, we can write
σ ∈ H(K) for the corresponding node, and there is an edge between two simplices
σ, τ ∈ H(K) if and only if τ is a codimension-1 face of σ.

This can be visualized by a picture placing nodes in rows in H(K) such that
every node in the same row corresponds to a simplex in K of the same dimension.

So, with the Hasse diagram formally defined, we are free to provide an alternate
definition of the Morse complex that will be useful to keep in mind throughout
Chapter 3:
Definition 4.1.2. Let K be a simplicial complex. The Morse Complex of K,
denoted by M(K), is the simplicial complex on the set of edges of H(K) defined as
the set of subsets of edges of H(K) which form discrete Morse matchings (acyclic
matchings), excluding the empty matching.
Definition 4.1.3. Let P be the set of all (finite) posets, and K be the set of all
simplicial complexes. Define a function f : P → K as follows: for each P ∈ P,
construct a simplicial complex f(P ) whose vertex set is the edge set of P . Then
let σ = e1e2 · · · ek be a simplex of f(P ) if and only if the edges e1, e2, · · · ek oriented
upward and all other edges oriented downward form an acyclic matching of P .
Remark 31. Take a moment to see that for any simplicial complex K, M(K) ≃
f(H(K)). Our definition 4.1.3 generalizes the notion of taking the Morse complex
to degenerate Hasse diagrams. So, we will similarly call f(P ) the Morse complex of
the poset P .

Lastly, we will now mention that the pure Morse complex of K, denoted
MP (K), is the subcomplex of M(K) generated by the maximum gradient vector
fields on K.
Example 32. If we consider the Morse complex of P4 from Example 9, we can make
a slight tweak to to form the pure Morse complex, MP (P4):

(c, cd) (c, bc)

(a, ab) (b, ab)

(d, cd) (b, bc)
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Note that the only change when moving from M(P4) to MP (P4) is we omit
the edge from (c, cd) to (b, ab), as that is the only face that is maximal but not
maximum.

We will state a general result regarding the strong collapsibility of pure Morse
complex of trees, and so we see it fitting to include the pure Morse complex in this
chapter, along with all other strong homotopy results.

4.2 The Morse Complex and Strong Homotopy Re-
sults

In this section, we use methods involving strong collapses and manipulation of the
Hasse diagram to further explore the homotopy type of families of Morse complexes.
One notable, and extremely applicable proposition that results from our results is
that given two leafs wedged to the same vertex on a complex K, then M(K) is
strongly collapsible. This fact gives rise to the question of what characterizes strong
collapsibility. We leave that question to be pondered by the reader.

Our first result is a broad statement that completely characterizes the homotopy
type of the pure Morse complex of trees, and extends a result by Ayala et. al. [2]
showing that MP (T ) is collapsible where T is a tree. Our extension leads this result
by Ayala et. al. to fall as an immediate corollary.

Proposition 33. Let T be a tree. Then MP (T ) is strongly collapsible.

Proof. Let T be a tree. By definition, T has at least one leaf, say {a, ab}. We
will show that (b)a is dominated and that after removing (b)a from MP (T ), then
(a)b dominates all remaining primitive gradient vector fields, and hence MP (T ) is
strongly collapsible.

Let bc be an edge incident with b, c ̸= a. We claim that (b)a is dominated by (c)b
in MP (T ). Suppose σ ∈ MP (T ) is a facet containing (b)a. Then σ is a maximal
gradient vector of T , and since σ is in the pure Morse complex, σ is also maximum.
Since (b)a ∈ σ with a a leaf, σ is the only maximum gradient vector field containing
(b)a and thus is dominated by (c)b (and in fact every primitive gradient vector field
of σ). Since (b)a is dominated, we may perform a strong elementary collapse and
remove it from MP (T ).

Now we claim (a)b dominates all remaining primitive gradient vector fields. Note
that since (b)a ̸∈ MP (T )−{(b)a}, (a)b is compatible with (α)β ∈ MP (T )−{(b)a}.
Thus (a)b dominates (α)β for all other (α)β ∈ MP (T ) − {(b)a} so that MP (T ) −
{(b)a} is a cone and thus strongly collapsible.

Thus, we can now formalize the corollary mentioned above:

Corollary 34. Let T be a tree. Then MP (T ) is collapsible.

Our next result strengthens a previous result by Kozlov [18, p. 119] computing
the homotopy type of the Morse complex of the path, for which we provided an
alternate proof in Chapter 1 14. We extend this result to state that a path on 3t
vertices is strongly collapsible. However, first we state a lemma that will prove very
useful throughout this chapter.
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Lemma 35. Let K be a simplicial complex with leaf {a, ab} and c a neighbor of b
not equal to a. Then (b)c is dominated in M(K) by (a)b.

Proof. Consider any facet of (b)c in M(K). A facet of M(K) is a maximal gradient
vector field on K, and since (b)a is not compatible with (b)c and {a, ab} is a leaf, (a)b
must be in any maximal gradient vector field containing (b)c. Thus (a)b dominates
(b)c in M(K).

Proposition 36. Let P3n be the path on 3n vertices, n ≥ 1. Then M(Pt) ↘↘ ∗

Proof. By Lemma 35, (v1)v2 dominates (v2)v3. After removing (v2)v3, we see that
(v3)v2 dominates (v4)v3, and so we remove (v4)v3. Continuing in this manner, we see
that (v3k−2)v3k−1 dominates (v3k−1)v3k for all 1 ≤ k ≤ n, and (v3k)v3k−1 dominates
(v3k+1)v3k for for all 1 ≤ k < n. Hence we may remove each of these primitive
gradient vector fields.

Now the last primitive gradient vector field removed is (v3n−1)v3n since it was
dominated by (v3n−2)v3n−1. We now claim that (v3n)v3n−1 dominates every remain-
ing vertex. To see this, observe that because (v3n−1)v3n has been removed, (v3n)v3n−1

is compatible with all remaining vertices (vi)vj, and no (vi)vj can exist in a facet of
the remaining Morse complex without (v3n)v3n−1. We remove all (vi)vj until we are
only left with (v3n)v3n−1. Thus M(P3n−1) is strongly collapsible.

4.2.1 Morse Complex of the Disjoint Union

Now, before we give more results regarding strong homotopy, we must provide a cou-
ple useful results regarding the Morse complex of a disjoint union that we attribute
to [8]. We will leave out the proofs, as they are quite involved.

Proposition 37. Let K,L be connected simplicial complexes each with at least one
edge. Then M(K ⊔ L) = M(K) ∗M(L).

Corollary 38. Let K be a simplicial complex. Then M(K ⊔ P2) ≃ ΣM(K).

Additionally, given Remark 31 and Proposition 37, we also have the following:

Corollary 39. Let A,B be posets. Then f(H(A) ⊔H(B)) ≃ f(H(A)) ∗ f(H(B)).

If one of the factors in the join is strongly collapsible, then the join is strongly
collapsible, due to the following result by Barmak:

Proposition 40. [3, Proposition 5.1.16] Let K,L be simplicial complexes. Then
K ∗ L is strongly collapsible if and only if K or L is strongly collapsible.

Now, we can use these results as tools for computing the homotopy type of a
variety of families of simplicial complexes.
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4.2.2 Cycles Wedge a Leaf

A useful observation is that for any simplicial complex, K, M(K) is minimal unless
it contains at least one vertex, v ∈ K, with degree 1 [8].

Example 41. This is useful as it can tell us if strong collapses are possible. So, if
we consider a cycle on 4 vertices, we can immediately know that the Morse complex
of C4 is not strongly collapsible. However, if we wedge a leaf to any vertex of the
cycle, it is now possible to show that the resulting Morse complex strongly collapses
down to the Morse complex of the disjoint union of P2 and P4, which ultimately
results in the homotopy type of a sphere.

We can write the sequence of strong collapses in the following fashion:

M



 ↘↘ M

( )
≃

We will be able to show that the Morse complex of a cycle wedged with a leaf
strongly collapses to the Morse complex of a disjoint union of paths in Proposition
44 using this along with a handful of other results.

Remark 42. Conveniently, behavior of strong collapses can be studied by consid-
ering a modified version of the Hasse diagram–our degenerate Hasse diagram. In
general, this is simply a poset and not necessarily a Hasse diagram by its formal
definition. However, it still functions as a tool that allows us to predict the behavior
of strong collapses in M(K) in many cases. We use K ∨v ℓ to denote attaching a
leaf ℓ to a vertex v ∈ K. We use K ∨ ℓ when there is no need to make reference to
the vertex.

Lemma 43. For any simplicial complex K and vertex v ∈ V (K), the Morse complex
M(K ∨v ℓ) strongly collapses to f((H(K)− v) ⊔H(ℓ)).

Proof. Write ℓ = vw for some vertex w and let a1, a2, . . . , ak be the neighbors of v.
By Lemma 35, the vertex (w,wv) dominates vertices (v, va1), (v, va2), . . . (v, vak),
leading to k strong collapses. In the Hasse diagram H(K ∨ ℓ), this corresponds to
a removal of the edges connecting node v to nodes va1, va2, . . . , vak. As these are
all the edges in K that v is connected to, the Hasse diagram now consists of H(K)
with node v removed, together with a second component consisting of the Hasse
diagram of the leaf vw. The entire Hasse diagram is (H(K)− v)⊔H(ℓ)). Therefore
M(K ∨v ℓ) ↘↘ f((H(K)− v) ⊔H(ℓ)).

Proposition 44. Let v be a vertex of Cn. Then M(Cn ∨v ℓ) ↘↘ M(Pn ⊔ ℓ).

Proof. By Lemma 43, we know that M(Cn ∨v ℓ) ↘↘ f((H(Cn) − v) ⊔ H(ℓ)). We
also have f((H(Cn)− v)⊔H(ℓ)) ≃ f(H(Cn)− v) ∗ f(H(ℓ)) ≃ f(H(Cn)− v) ∗M(ℓ).
In addition, by Proposition 37 and Remark 31, M(Pn ⊔ ℓ) ≃ M(Pn) ∗ M(ℓ) ≃
f(H(Pn))∗M(ℓ). Observe that H(Cn)−v ≃ H(Pn), thus f(H(Pn)) ≃ f(H(Cn)−v).
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We can know refer back to Proposition 14 or [18] to recall that

Proposition 45. Let Pn be a path on n vertices. Then

M(Pn) ≃


∗ if n = 3k

S2k−1 if n = 3k + 1

S2k if n = 3k + 2.

Thus, the homotopy type of the Morse complex of a cycle wedge a leaf follows
immediately by considering Propositions 44, 37, 45, 40, and Corollary 38:

Theorem 46. Let Cn be a cycle of length n ≥ 3. Then

M(Cn ∨ ℓ) ≃


∗ if n = 3k

S2k if n = 3k + 1

S2k+1 if n = 3k + 2.

4.2.3 Centipede Graphs

In this section, we will continue to use Proposition 37 to compute homotopy types.
However, we will now return our focus to centipede graphs, as they were studied in
Section 3.3.3.

Definition 4.2.1. Let K be a simplicial complex with vertex set V (K). We denote
the graph obtained by wedging a path of length n to each v ∈ V (K) by Ln(K).

It turns out that centipede graphs satisfy the following property:

Proposition 47. Let G be a connected graph with v vertices, and let L2(G) be the
complex resulting from adding a leaf to each vertex of G. Then M(L2(G)) ≃ Sv−1.

Proof. Let G be a connected graph, and we will denote the leaves we add to G to
obtain L2(G) by ℓ1, ℓ2, . . . , ℓv. Let {a, ab} be any leaf of G. If c is any neighbor of
b, c ̸= a, then (b)c is dominated in M(L2(G)) by Lemma 35. By adding a leaf to
each vertex of G, every primitive gradient vector field on G is dominated, and thus
can be removed from M(L2(G)). Since the Morse complex of a single leaf is S0, we
have

M(ℓ1 ⊔ ℓ2 ⊔ . . . ⊔ ℓv) = M(ℓ1) ∗M(ℓ2) ∗ . . .M(ℓv)

≃ Sv−1

where the first equality is Proposition 37 and the second follows from the fact that
ΣSn ≃ Sn+1.

Thus, centipede graphs follow as an immediate corollary:

Corollary 48. Let Cv be a centipede graph. Then M(Cv) ≃ Sv−1.
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Example 49. We can easily illustrate this property with an example. On the left,
we start with C3. After performing the strong collapses that Lemma 35 allows, we
then only have to take the Morse complex of the subcomplex on the right.

Proposition 50. Let G be a graph. Then M(L3i+2(G)) ≃ Sv·(2i+1)−1

Proof. Consider a connected graph, G, and M(L3i+2(G)). Starting at each leaf
vertex, consider the sequence of strong collapses used in the proof of Proposition 36,
along the wedged paths. If νi ∈ V (L3i+2(G)) is adjacent to each vi ∈ V (G), we see
that (νi)vi dominates all (vi)vj, vj a neighbor of vi not equal to νi. Thus, all primitive
gradient vector fields from G have been strongly collapsed. Then, considering the
Hasse diagram, we are left with v · (2i + 1) copies of f(H(ℓ)). Thus, using Then,
using Proposition 37, Remark 31, and Lemma 43,

M(L3i+2(G)) ≃ f(H(ℓ1)) ∗ f(H(ℓ2)) ∗ . . . ∗ f(H(ℓv·(2i+1))

≃ M(ℓ1) ∗M(ℓ2) ∗ . . . ∗M(ℓv·(2i+1))

≃ Sv·(2i+1)−1

4.2.4 Paths Wedge a Leaf

Next, we can once again use Proposition 37 to compute homotopy types. Now, we
focus on paths wedge a leaf, and we obtain a general result that allows us to easily
compute the exact homotopy type of a Morse complex given a path wedge a leaf.

Lemma 51. Let vk be a vertex of Pt, 1 ≤ k ≤ t−2 and t ≥ 2. Then M(Pt∨vk ℓ) ↘↘
M(Pk+2 ⊔ Pt−(k+2) ⊔ ℓ).

Proof. Write ℓ = vku. By Lemma 35, (u)vk dominates (vk)vk+1 in M(Pt ∨vk ℓ). In
the corresponding Hasse diagram H(Pt∨vk ℓ), this corresponds to the removal of the
edge between vk and vkvk+1.

Furthermore, by Lemma 35, (vt)vt−1 dominates (vt−1)vt−2. This corresponds to
the removal of the edge between vt−1 and vt−2vt−1 on the Hasse diagram. Upon
inspection, we see that this yields three components: the Hasse diagram of the path
Pk+2, the Hasse diagram of the path P2 = ℓ, and an “upside-down" Hasse diagram
of the path H(Pt−(k+2)). Thus

M(Pt ∨vk ℓ) ↘↘ f(H(Pk+2) ⊔H(Pt−(k+2)) ⊔H(ℓ)).

By Proposition 37 and Remark 31, we have that

f(H(Pk+2) ⊔H(Pt−(k+2)) ⊔H(ℓ)) ≃ M(Pk+2 ⊔ Pt−(k+2) ⊔ ℓ).
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Combining Lemma 51 and Proposition 37, we have

Proposition 52. Let vk be a vertex of Pt, 1 ≤ k ≤ t − 2. Then M(Pt ∨vk ℓ) ≃
M(Pk+2) ∗M(Pt−(k+2)) ∗M(ℓ).

Considering Proposition 52, Proposition 40, and Proposition 36, we can finally
achieve the following result:

Corollary 53. Let vk be a vertex of Pt, 1 ≤ k ≤ t−2. If k+2 = 3j or t−(k+2) = 3j,
then M(Pt ∨vk l) ↘↘ ∗.

Example 54. We can illustrate the strong collapse sequence of M(P4 ∨ ℓ) by the
following diagram:

M


 ↘↘ M



 ↘↘

4.3 Strongly Collapsing to Suspensions
Although we showed earlier that the Morse complex of all trees are suspensions
(Proposition 13), in general, it is unknown when a Morse complex is a suspension.
Thus, it is an interesting question to ask when this may be true.

Here, we provide some convenient results for showing the Morse complex of many
simplicial complexes are suspensions. Lemma 55 and Corollary 56 is for all simplicial
complexes, while Proposition 58 is for cycles.

Lemma 55. Let K be a simplicial complex. Then, M(K ∨v P3i+1) ≃ Σ2iM(K)

Proof. Suppose v0, v1, . . . , v3i ∈ V (P3i+1) such that v0 is our leaf vertex and v3i is
wedged with some v ∈ V (K). Consider a sequence of strong collapses starting with
vertex (v0)v1 dominating vertex (v1)v2 in the Morse complex. This can then be
immediately followed by a strong collapse of (v2)v1 dominating (v3)v2 in the Morse
complex. Upon inspection, each vertex (v3t)v3t+1 dominates (v3t+1)v3t+2 and each
(v3t+2)v3t+1 dominates (v3(t+1))v3t+2 along our wedged path. Note that this is the
same sequence of strong collapses seen in Proposition 36.

These strong collapses correspond to the removal of the edges between each
v3t+1 and v3t+1v3t+2 on the Hasse diagram, along with the edges between v3(t+1)

and v3(t+1)v3t+2. We can quickly notice that this yields two components on our
degenerate Hasse diagram per index i; all of which are Hasse diagrams of P2 = ℓ,
either "right-side-up" or "upside-down."

Our v3i is wedged to K, and those those 2i components are separated from
H(K)–it goes uneffected by the strong collapses. Thus,

M(K ∨v P3i+1) ↘↘ f((H(K) ⊔H(ℓ1) ⊔ . . . ⊔H(ℓ2i))
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So, by Proposition 37 and Remark 31,

f((H(K) ⊔H(ℓ1) ⊔ . . . ⊔H(ℓ2i)) ≃ f((H(K)) ∗ f(H(ℓ1)) ∗ . . . ∗ f(H(ℓ2i))

≃ M(K) ∗M(ℓ1) ∗ . . . ∗M(ℓ2i)

≃ Σ2iM(K)

Thus, we can immediately follow this with some corollaries.

Corollary 56. Let K be a simplicial complex. Then, for v1, v2, . . . , vm ∈ V (K),

M(K ∨v1 P3n1+1 ∨v2 . . . ∨vm P3nm+1) ≃ Σ2(n1+...+nm)M(K).

Corollary 57. Let K be a simplicial complex on n vertices. Then, M(L3i+1(K)) ≃
Σ2i(n)M(K).

Proposition 58. Let Cn be a cycle on n vertices. Then, M(Cn ∨v P3i+2) ≃
Σ2i+1M(Pn−1)

Proof. Firstly, it is clear to see that M(Cn ∨v P3i+2) = M(Cn ∨v ℓ ∨v′ P3i+1) when
the path is wedged onto the leaf vertex, v′.

Again, by Lemma 43, we know that for any simplicial complex, K, and vertex
v ∈ V (K), the Morse complex M(K∨v ℓ) strongly collapses to f((H(K)−v⊔H(ℓ)).
It can be shown similarly, using the sequence of strong collapses seen in the proof
of Proposition 36, that

M(Cn ∨v ℓ ∨v′ P3i+1) ↘↘ f((H(Cn)− v) ⊔H(ℓ0) ⊔H(ℓ1) ⊔ . . . ⊔H(ℓ2i))

Therefore, by Proposition 37 and Remark 31,

f((H(Cn)− v) ⊔H(ℓ0) ⊔H(ℓ1) ⊔ . . . ⊔H(ℓ2i)) ≃ f((H(Cn)− v) ∗ f(H(ℓ0)) ∗ . . . ∗ f(H(ℓ2i))

≃ M(Pn−1) ∗M(ℓ0) ∗ . . . ∗M(ℓ2i)

≃ Σ2i+1M(Pn−1)

4.4 Sufficient Condition for Strong Collapsibility
In [8], the following result is shown:

Proposition 59. [8, Proposition 3.5] If a simplicial complex, K, has two leaves
sharing a vertex, then M(K) is strongly collapsible.

We also include the proof, as it will be useful to reference in the proof of Theorem
61.

Proof. Call the leaves {a, ab} and {a, ac} where a, b, c ∈ V (K). These correspond
to vertices (a)b, (b)a, (a)c, (c)a ∈ V (M(K)). We claim that (b)a dominates (a)c.
Consider any facet σ of (a)c. The only vertex incompatible with (b)a is (a)b, but
since (a)c and (a)b are incompatible, (a)b ̸∈ σ. Therefore we must have (b)a ∈ σ
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since σ is maximal. Perform the strong collapse given by removing vertex (a)c.
We claim that (c)a dominates every vertex in the resulting complex. Consider an
arbitrary v ∈ V (M(K)) − (a)c and a facet τ containing v. The only vertex that
(c)a is incompatible with in V (M(K)) is (a)c. Since (a)c ̸∈ V (M(K)) − (a)c,
we know that (c)a is compatible with every vertex in τ , so (c)a ∈ τ . Therefore
(c)a dominates v. We repeatedly apply the strong collapse removing each vertex v,
strongly collapsing the Morse complex to (c)a.

One of the most significant results of this work is the following theorem. We are
able to generalize Proposition 59 to include many pairs of paths wedged together at
the same vertex. This is a strong sufficient condition for strong collapsibility, as the
following is also shown in [8]:
Proposition 60. [8, Proposition 3.3] Let K be a simplicial complex. If all vertices
v ∈ V (K) have degree at least 2, then M(K) is minimal. In particular, M(K) is
not strongly collapsible.

Thus, with the following result, we are on our way to answering when a Morse
complex is strongly collapsible, which would be a very significant contribution of
knowledge to the study of homotopy types, and more specifically, strong homotopy
types.
Theorem 61. Suppose a simplicial complex, K, has two paths, of length 3n + 2
and 3m+ 2 respectively, wedged at v ∈ V (K), then M(K) is strongly collapsible.
Proof. We show by induction that this holds:

Consider a base case where both paths wedged at v ∈ V (K) are of of length
2. Then two leaves are sharing a vertex, and so M(K) ↘↘ ∗ by Proposition 59.
Suppose this holds true for paths length 2 up to paths of length 3(n − 1) + 2 and
3(m − 1) + 2. Now, we will show that this holds for paths of length 3n + 2 and
3m+ 2 respectively:

Consider the sequence of strong collapses used in Proposition 36 starting at the
leaf vertex, v1 of P3n+2. Then, (v1)v2 dominates (v2)v3, (v3)v2 dominates (v4)v3, and
then we are on to considering the remaining path of length 3(n− 1) + 2. Similarly,
we can consider the remaining path of length 3(m − 1) + 2 for the other path. By
assumption, M(K) ↘↘ ∗ for paths of lengths 3(n− 1) + 2 and 3(m− 1) + 2.

It is clear to see that the sequence of strong collapses for paths of lengths 3(n−
1) + 2 and 3(m− 1) + 2 is not hindered by the remaining primitive gradient vector
fields from v0 to v4, as each (v3k−2)v3k−1 dominates (v3k−1)v3k for all 1 ≤ k ≤ n,m,
and each (v3k)v3k−1 dominates (v3k+1)v3k for all 1 ≤ k ≤ n,m.

So, using the same sequence of strong collapses we would for paths of lengths
3(n−1)+2 and 3(m−1)+2, M(K) ↘↘ ∗ when paths of length 3n+2 and 3m+2
are both wedged at the same v ∈ V (K).

4.5 Realizing Cocktail Party Graphs Using Strong
Collapses

As a fun final result of Chapter 4, we will talk about cocktail party graphs. This
result is not as powerful or useful as some of the others in this thesis, but it still

38



relates to the Morse complex and strong collapses. We choose to include it because
we think it is a good display of a way that math can act as an artistic outlet, and a
way of finding unusual hidden patterns.

Definition 4.5.1. The n−cocktail party graph, denoted Kn×2, is the complete
n-partite graph where each partite set has size 2.

Example 62. On the left, we illustrate a K2×2 cocktail party graph. On the right,
we illustrate a K3×2 cocktail party graph.

We call a simplicial complex, K, minimal if it contains no dominating vertices.
The core of K is the minimal sub-complex K0 ⊆ K such that K ↘↘ K0. Barmak
[3, Theorem 5.1.10] proved that no matter the order of strong collapses, the core
will be the same (the core is unique up to isomorphism).

The n-skeleton of K, denoted by K(n), is the sub-complex of K containing all
simplices up to n−dimensional simplices.

For the following, let M0(K) denote the core of the Morse complex of K.

Proposition 63. Let Pt be the path on t ≥ 4 vertices. Then

M0(Pt)
(1) =

{
K2k×2 if t = 3k + 1

K(2k+1)×2 if t = 3k + 2

Proof. Proceed as in the proof of Proposition 36 by removing dominated vertices
from M(Pt) starting with (v1)v2. The last vertex removed along the path differs
depending on t.

Suppose t = 3k + 1. Then the last vertex removed from the Morse complex is
(v3n)v3n−1 as it is dominated by (v3n−1)v3n−2. We claim there are no more dominated
vertices. We show that for any remaining primitive gradient vector field σ, there
exists a unique primitive gradient vector field τ such that σ and τ are not compati-
ble. If so, then σ is compatible with every other primitive gradient vector field, thus
creating a maximal simplex of σ not containing τ . Observe that (v0)v1 and (v1)v0
are not compatible with each other, and that (v2)v1 is not compatible with (v2)v3.
Additionally, each remaining primitive gradient vector field, (v3n)v1+3n is not com-
patible with the corresponding (v1+3n)v3n, as well as each remaining (v2+3n)v1+3n is
not compatible with the corresponding (v2+3n)v3+3n. Other than these incompati-
bilities, every primitive gradient vector field is compatible with any other. Thus no
primitive gradient vector field can dominate another and we have arrived at M0(Pt).
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We now determine the structure of the 1-skeleton of M0(Pt). There were 6k
primitive gradient vector fields on Pt, and we removed 2k of these above, yielding
4k vertices in M0(Pt). As determined above, every vertex of M0(Pt) is compat-
ible every other vertex of M0(Pt) other than a unique vertex. In other words,
there is an edge between vertex v and every other vertex except a unique vertex
v′. This is precisely the complete 2k-partite graph with partite sets of size 2. Thus
M0(Pt))

(1) = K2k×2.
The t = 3k + 2 case is similar, and so we omit it.
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Chapter 5

Chord Diagrams and Corresponding
Independence Complexes

5.1 Chord Diagrams to Independence Complexes
Definition 5.1.1. [1] A chord diagram of size n, denoted C(n), or C when the
context is clear, is a pairing of 2n given points on a circle with cyclic ordering and
a one-to-one pairing on those points.

Given a chord diagram, we can associate an intersection graph which commu-
nicates which chords intersect.

Definition 5.1.2. [1] For a chord diagram C(n), we define the intersection graph,
denoted Γ(C(n)), or Γ(C), as follows: each chord in C becomes a vertex in Γ(C),
and two vertices are neighbors if and only if the corresponding chords cross each
other in C.

From the intersection graph, Γ(C), we can consider the independence com-
plex, denoted IΓ(C). Recall the graph theoretic concept of independent sets in a
graph G: a collection of vertices in G such that no two vertices in the set are neigh-
bors. The independence complex of the intersection graph, Γ(C), is a simplicial
complex containing the independent sets of Γ(C) as simplices. The independence
complex is an interesting complex of study because of it’s direct connection to the
chromatic properties of graphs.

Example 64. We can run through one example of the construction for which we
are interested in. Firstly, we can illustrate one possible C(3):

A

B

C

D

E

F
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From this specific C(3), we can illustrate Γ(C(3)):

AB CD

EF

Lastly, we can construct IΓ(C(3)), for which we will be interested in computing
the homotopy type of.

AB CD

EF

From here, it is easy to apply a discrete gradient vector field and show that
IΓ(C(3)) ≃ ∗.

It is important to note that the independence complex is also a clique complex
[4], which will allow us to consider star clusters when computing homotopy types.

5.2 Homotopy Type of the Independence Complex
of the Intersection Graph

5.2.1 Realizing Spheres and Wedges of Spheres

For simplicity in our upcoming results, we will introduce some easy terms for com-
municating properties of certain collections of chords.

Definition 5.2.1. Consider a chord diagram C. Define X-chords as a pair of
crossing chords such that they are disjoint from all other chords in C.

Define X(n)-chords as n mutually crossing chords such that they are disjoint
from all other chords in C.

Using this terminology, and the well-known fact that, if K and L are simplicial
complexes, then IK⊔L ≃ IK ∗ IL, we can easily communicate some results regarding
the homotopy type of IΓ(C).

Remark 65. [17, Observation 1.3]
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1. Let K be contractible. Then, ΣK is also contractible.

2. Σ(∨Sn) ≃ ∨Sn+1.

Lemma 66. Suppose C contains X-chords. Then IΓ(C) has the homotopy type of
a suspension.

Proof. Consider a chord diagram C. Suppose we add X-chords to C. Call them
a and b. Then, Γ(C + {a, b}) has two components: one for C and one for {a, b}.
Additionally, our component for {a, b} will resemble P2. So,

Γ(C ⊔ {a, b}) = Γ(C) ⊔ Γ(P2)

Thus,

IΓ(C)⊔Γ(P2) ≃ IΓ(C) ∗ IP2

≃ ΣIΓ(C).

Using Lemma 66, we can show that all spheres, and all wedges of spheres can be
realized as the homotopy type of some IΓ(C).

Proposition 67. Suppose C is one pair of X-chords. Then, IΓ(C) ≃ S0.

Proof. Suppose C is one pair of X-chords. Then Γ(C) = P2, meaning IΓ(C) is two
disjoint vertices, i.e. IΓ(C) ≃ S0.

Thus, considering Lemma 66 and Remark 65, if we continue to add X-chords to
our chord diagram, we have

Corollary 68. Suppose C is one pair of X-chords. Then, ΣnIΓ(C) ≃ Sn.

Proposition 69. Suppose C is a set of X(n)-chords. Then IΓ(C) ≃ ∨n−1S0.

Proof. Suppose C is a set of X(n)-chords. Then, Γ(C) is a complete graph on n
vertices. Thus, IΓ(C) is n disjoint vertices, i.e. IΓ(C) ≃ ∨n−1S0.

Like Corollary 68, considering Lemma 66 and Remark 65, if we continue to add
X-chords to our chord diagram, we have

Corollary 70. Suppose C is a set of X(n)-chords. Then ΣiIΓ(C) ≃ ∨n−1Si.

5.2.2 Realizing Families as the Intersection Graphs of Chord
Diagrams

Now, using previous results regarding independence complexes, we can say more
about chord diagrams. Namely, if we can show that the intersection graph resem-
bles a class of graphs for which we already know about the homotopy type of the
independence complex, we can quickly achieve results, and develop classes of chord
diagrams.

We first state two known results regarding the independence complex of paths
and cycles.
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Lemma 71. [18] Suppose Pt is a path on t vertices. Then,

IPt ≃


∗ if t = 3n

Sn if t = 3n+ 1

Sn if t = 3n+ 2

Lemma 72. [18] Suppose Ct is a cycle on t vertices. Then,

ICt ≃


Sn−1 if t = 3n

∗ if t = 3n+ 1

Sn if t = 3n+ 2

Now, using Lemmas 71 and 72, we can define two families of chord diagrams and
state results regarding the independence complex of their intersection graphs.

Definition 5.2.2. Suppose C(n) contains n chords such that each crosses exactly
two other chords. Then, C(n) is a cycle chord diagram.

Definition 5.2.3. Suppose P (n) contains n chords resembling a cycle chord diagram
with exactly one chord removed. Then P (n) is a path chord diagram.

Example 73. Here, we can illustrate a cycle chord diagram, C(4), and a path chord
diagram P (3).

As one can see, a path chord diagram is as if we simply tear one of the chords out
of our cycle chord diagram, which is an intuitive idea given the relationship between
cycle and path graphs.

Proposition 74. Suppose C(n) is a cycle chord diagram. Then

IΓ(C(n)) ≃


Sk−1 if n = 3k

∗ if n = 3k + 1

Sk if n = 3k + 2.

Proof. Suppose C(n) is a cycle chord diagram. Then it is clear that Γ(C(n)) is a
cycle graph with n vertices. Thus, by Lemma 72,

IΓ(C(n)) ≃


Sk−1 if n = 3k

∗ if n = 3k + 1

Sk if n = 3k + 2.
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Proposition 75. Suppose P (n) is a path chord diagram. Then,

IΓ(P (n)) ≃


∗ if n = 3k

Sk if n = 3k + 1

Sk if n = 3k + 2.

Proof. Suppose P (n) is a path chord diagram. Then it is clear that Γ(P (n)) is a
path graph with n vertices. Thus, by Lemma 71,

IΓ(P (n)) ≃


∗ if n = 3k

Sk if n = 3k + 1

Sk if n = 3k + 2.

Next, we provide a new computation for the homotopy type of the independence
complex of ladder graphs.

Definition 5.2.4. We define a square grid, SGr,s, such that SGr,s = Pr×Ps where
× denotes the Cartesian product. For a vertex v ∈ V (SGr,s), we can denote v{i,j}
such that 1 ≤ i ≤ r and 1 ≤ j ≤ s.

Definition 5.2.5. We define a square grid, SG2,s, to be a ladder graph for s ≥ 2.

Lemma 76. Let SG2,s be a ladder graph. Then,

ISG2,s ≃

{
S s

2
−1 if s = 2k

S⌊ s
2
⌋ if s = 2k + 1

Notice that SG2,s is defined by two paths of length s. We will denote the vertices
of one path by vi, 1 ≤ i ≤ s, and the other by ui, 1 ≤ i ≤ s, where the ordering of v
and u has the same orientation, i.e. vi and ui are connected by a "ladder rung."

Proof. We apply the Cluster Lemma. In order to do so, we decompose ISG2,s into
collections ∆k. First, we construct collections of sub-simplices as follows:

1. Let σ0 := SC(∪⌊ s
2
⌋

j=0v2j+1 ∪
⌊ s
2
⌋

j=1 u2j).

2. For 1 ≤ i ≤ ⌊ s
2
⌋, let σi := st(v2i).

3. Let σ⌊ s
2
⌋+1 :=

{
(∪⌊ s

2
⌋−1

j=0 u2j+1) for s = 2k

(∪⌊ s
2
⌋

j=0u2j+1) for s = 2k + 1.

Now define ∆0 := σ0 and ∆i := σi − ∪i−1
j=0σj, and observe that

⋃⌊ s
2
⌋+1

k=0 ∆k = ISGr,s .
Define an acyclic matching on each ∆j as follows:

We know that ∆0 is collapsible by Proposition 6 so ∆0 has an acyclic matching
with a single unmatched 0-simplex.

Now, consider ∆i for 1 ≤ i ≤ ⌊ s
2
⌋. For each (n)-simplex, {τ (n−1)v2i} ∈ ∆i, we will

match it with the (n+ 1)-simplex of the form {τ (n−1)v2iu2i−1} ∈ ∆i. We can notice
that considering only the collection of sub-simplices defined by ∆1, u1 dominates
v2. From there, it is easy to verify that as we progress through our ∆i, each u2i−1
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dominates each v2i, which provides a clear explanation for why our matching is
valid. Further, we know each ∆i matching is acyclic if we consider the nature of
each individual pair, as they are all directed towards u2i−1. Note that this matches
all simplices in each ∆i.

Then, this leaves us with ∆⌊ s
2
⌋+1, which is simply one element, and thus must be

critical. So, we are left with one critical 0-simplex from ∆0 and the critical simplex
from ∆⌊ s

2
⌋+1. Thus,

ISG2,s ≃

{
S s

2
−1 if s = 2k

S⌊ s
2
⌋ if s = 2k + 1.

Definition 5.2.6. Denote SG(2, s) a ladder chord diagram for SG2,s.
Define SG(2, 2) to be a cycle chord diagram on four chords ordered counterclock-

wise c1, . . . , c4. Then, SG(2, s + 1) := SG(2, s) + {ci, cj} where i, j are ordered in
general increasing order (i.e. i = 5, j = 6 for SG(2, 3)), and

• ci intersects ci−2 and cj;

• cj intersects ci and cj−2.

Example 77. Here, we can illustrate SG2,3 and the corresponding chord diagram,
SG(2, 3), such that Γ(SG(2, 3)) = SG2,3

c2 c4 c6

c1 c3 c5

c4

c3

c1

c2

c6

c5

Thus, using 76, we can state the following proposition:

Proposition 78. Suppose SG(2, s) is a ladder chord diagram. Then,

IΓ(SG(2,s)) ≃

{
S s

2
−1 if s = 2k

S⌊ s
2
⌋ if s = 2k + 1.

Proof. Suppose SG(2, s) is a ladder chord diagram. Then it is clear that Γ(SG(2, s))
is a ladder graph of length s. Thus, by Lemma 76,

IΓ(SG(2,s)) ≃

{
S s

2
−1 if s = 2k

S⌊ s
2
⌋ if s = 2k + 1.

Definition 5.2.7. A chord diagram, C(n), is bipartite if the n chords can be
partitioned into two independent sets, A and B.
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Definition 5.2.8. A chord diagram, C(n), is complete bipartite if C(n) is bipar-
tite and all chords in A intersect all chords B.

Proposition 79. Suppose C(n) is complete bipartite. Then IΓ(C(n)) ≃ S0.

Proof. Let C(n) be complete bipartite. Then we can partition the chords of C(n)
into two independent sets, A and B. Suppose |A| = n1 and |B| = n2. Then, consider
IΓ(C(n)). If ∆n is the n-simplex, it is clear that IΓ(C(n)) will resemble ∆n1−1 ⊔∆n2−1.
We know that ∆n is collapsible for all n, and thus IΓ(C(n)) ≃ ∆n1−1 ⊔∆n2−1 ≃ S0.

We continue to explore families of intersection graphs that can be modeled by
chord diagrams. Here, we give a short proof for the homotopy type of graphs, L2(G),
defined in Proposition 47, and then define centipede chord diagrams and give the
homotopy type of the resulting independence complex for their intersection graph.

Lemma 80. Let G be a connected graph with v vertices and let L2(G) be defined
as in Proposition 47. Then, IL2(G) ≃ ∗.

Proof. Let G be a connected graph and denote the leaves we add to G to obtain
L2(G) as ℓ1, ℓ2, . . . , ℓv. Consider the approach of the Cluster Lemma for computing
homotopy types. Let us choose our first collection of sub-simplices, σ0, to be defined
as follows: σ0 := SC(∪v

j=1ℓj). Then, ∆0 is collapsible by Proposition 6, and the only
possible simplex left outside of ∆0 would be the (v − 1)-simplex defined by all v
vertices of G. However, it is clear that not all v vertices are independent from each
other, and thus, that simplex cannot exist in IL2(G). Thus, IL2(G) ≃ ∗.

Corollary 81. Let Cn be a centipede graph. Then, I(Cn) ≃ ∗.

Definition 5.2.9. Suppose we order the chords of P (n) as ci, 1 ≤ i ≤ n. Then, de-
fine a centipede chord diagram, denoted C(n), as the chord diagram P (n)∪n

i=1(c
′
i)

such that each chord c′i only intersects chord ci ∈ P (n).

Proposition 82. Suppose C(n) is a centipede chord diagram. Then IΓ(C(n)) ≃ ∗.

Proof. Suppose C(n) is a centipede chord diagram. Then, it is clear that Γ(C(n))
corresponds to Cn, and thus by Lemma 81, IΓ(C(n)) ≃ ∗.
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Chapter 6

Future Directions

Open Question 1. One future direction that seems to hold a lot of potential for
computing the homotopy type of the Morse complex relates the homotopy type of
the Morse complex to the homotopy type of the generalized Morse complex. We
argued using two elementary collapses that GM(Ct ∨ l) ≃ M(Ct ∨ l). Because the
generalized Morse complex is a flag complex, its homotopy type should theoretically
be easier to compute, as we can use star clusters as a tool. So, consider another
example:

Using the Cluster Lemma starting with a star collapse, we can apply a matching
to M(D2

3), finding that its homotopy type is collapsible. Slightly easier, we can
use the Cluster Lemma starting with a star cluster collapse to apply a matching to
GM(D2

3) and compute the homotopy type of a point. So, we would be interested
in pursuing the question of whether there is a way to use the generalized Morse
complex as a tool for computing the homotopy type of the Morse complex for certain
complexes.

Open Question 2. Another future direction that may prove interesting is studying
what types of graphs can be modeled by the intersection graph of a chord diagram.
For example, in this thesis, we were able to model ladder graphs as chord diagrams.
However, we were not successful in modeling square grids at a larger scale. Right
when we added a second row or squares in the grid, drawing a chord diagram with
an intersection graph that realized the grid became, we think, impossible.

So, a question we might ask is what characteristics prevent an intersection graph
from being modeled by a chord diagram? Can an intersection graph such that
its independence complex has torsion be modeled by a chord diagram? This may
shed more light on the largely unexplored area of chord diagrams, and bring more
perspective as to whether all independence complexes of chord diagrams have the
homotopy type of a point, sphere, or wedge of spheres.
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Open Question 3. One way to use the homotopy type of the generalized Morse
complex to determine the homotopy type of the Morse complex is to show that the
generalized Morse complex collapses to the Morse complex. This is not always pos-
sible, as we saw: the homotopy type of the Generalized Morse complex of a cycle
computed in Theorem 21 does not agree with the homotopy type of the Morse com-
plex of the cycle, as computed by Kozlov [18]. However, one can use the matching
found in the proof of Theorem 21, throw out the closed V-paths in the matching,
and obtain a matching on the Morse complex. In this case, Forman’s theorem 8 is
not satisfied because the critical cells occur in different dimensions,so the homotopy
type is not uniquely determined. However, there may be special cases where the
homotopy type can be recovered from knowledge of the critical cells and some other
information. See, for example, [19, Theorem 2.2].

One complex of particular interest is the 3-simplex. The homotopy type of the
Morse complex of the 3−simplex remains unknown. Chari and Joswig [7] showed
that the 3−simplex satisfies {b0 = 1, b5 = 99} using software. However, a matching
on the 3-simplex has never been formed to yield these results. While star clusters
are ineffective in collapsing the Morse complex of the n-simplex because it is not
flag, can we create a matching on the generalized Morse complex and then remove
the cyclic gradient vector fields from the matching? To find a matching, even just
on the Morse complex of the 3-simplex, would be a major development in the study
of the Morse complex.

Another object of particular interest, and one that would make for an interesting
application, is the Tait graph of a knot–as well as the Morse complex of the Tait
graph. We have studied the effect that Reidemeister moves have on the Tait graph,
and we will provide proofs for both type I and type II Reidemeister moves. First,
let us informally define the Tait graph of a knot as well as the Reidemeister moves.

Definition 83. Let D be a knot diagram. Its corresponding Tait graph, denoted
Γ(D), is a graph corresponding to a checkerboard coloring of the knot diagram,
where each region, as well as each crossing, corresponds to a vertex in Γ(D). Then,
each crossing has an edge connecting it to the vertices of its adjacent regions.

Example 84. Here we have the Trefoil knot, 31, and its corresponding Tait Graph,
with crossings, and black and white regions, labeled.

b1

c2 c3

w1

c1

b2

w2 w3

Definition 85. Let D be a knot diagram, with strand s separating two regions. A
Type I Reidemeister Move (RI) is the twisting of s, introducing a new crossing.
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Example 86. We illustrate a Type I Reidemeister move. It is a "twist" in the
strand, introducing a new crossing and a new region.

Definition 87. Let D be a knot diagram, with strands s1 and s2 such that they
are not crossing. A Type II Reidemeister Move (RII) "pokes" s1 either over or
under s2, introducing two new crossings.

Example 88. We illustrate a Type II Reidemeister move. It is a "poke" move,
meaning we slide one strand under or over the other, introducing two new crossings.

So, our biggest interest regarding these Reidemeister moves is the effect, if any,
that they have on the homotopy type of the Tait Graph and the Morse complex of
the Tait graph. The Tait graph of knots gets large quick, and they do not tend to be
trees. Thus, they become difficult objects to study, and it is likely that star clusters
will not be a very useful tool.

We have pursued the effect that these Reidemeister moves have on the Tait
graph–but not yet the effect on the homotopy type. So we will state those results.
Note that these results are construction-oriented and so our results unfold in the
proofs.

For any region, rx, in knot diagram D, we denote its corresponding vertex in the
Γ(D) by vrx . Also, we denote an edge between two vertices, vx, vy in Γ(D) by vxvy.

Lemma 89. Let D be a knot diagram with Tait Graph Γ(D). Then performing a
Type I Reidemeister move on D produces a new Tait Graph, Γ(DRI) = Γ(G1).

Proof. Let D be a knot diagram with Tait Graph Γ(D). Let s ∈ D be a strand
which separates regions r1, r2 ∈ D.

We can perform a RI on s by twisting the strand, protruding towards r1, creating
a new crossing, c, and a new region r3. We can call knot projection D with a RI,
DRI = G1, with Tait graph Γ(DRI) = Γ(G1).

Performing the RI, crossing c and region r3 are created.
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Thus, Γ(G1) contains a new crossing vertex, vc. From vc, there will exist an
edge connecting vc to vr3 , vcvr3 ; an edge connecting vc to vr2 , vcvr2 ; and two edges
connecting vc to vr1 , vcvr1 and vcvr1

′.
Tait Graphs are planar so these new edges exist such that they do not overlap

with any other edges.
All other elements of Γ(D) are unchanged in Γ(G1)

Lemma 90. Let D be a knot diagram with Tait Graph Γ(D). Then performing a
Type II Reidemeister move on D produces a new Tait Graph, Γ(DRII) = Γ(G2).

Proof. Let D be a knot diagram with Tait graph Γ(D). Let there exist a strand
s1 ∈ D between regions r1, r2 ∈ D and a strand s2 ∈ D between regions r2, r3 ∈ D.

We can perform a RII by pushing s1 across r2, under/over (without loss of
generality) s2, and protruding into r3. We can call this knot projection D with a
RII, DRII = G2, with Tait graph Γ(DRII) = Γ(G2).

Performing the RII, two new crossings, c1, c2 ∈ D, are created, and two new
regions, r4, r5 ∈ D, are created.

Thus, Γ(G2) contains a new crossing vertex vc1 . From vc1 , there exists edge
vc1vr1 , vc1vr2 , vc1vr3 , and vc1vr4 . Γ(G2) also contains a new crossing vertex vc2 . From
vc2 , there exists edge vc2vr1 , vc2vr2 , vc2vr3 , and vc1vr5 .

Tait graphs are planar, these new edges exist such that they do not overlap with
any other edges.

All other elements of Γ(D) are unchanged in Γ(G2).

So, we can formally state a question regarding Tait graphs: what effect, if any,
do Reidemeister moves have on the homotopy types of the Tait graph and the Morse
complex of the Tait graph? Can the Cluster Lemma be a useful approach to this
question? Can we create a matching on the generalized Morse complex and then
remove the cyclic gradient vector fields from the matching?
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