
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

University of Montana Course Syllabi, 2021-2025 

Spring 2-1-2023 

GPHY 489.01: Programming for GIS GPHY 489.01: Programming for GIS 

K. Arthur Endsley 
University of Montana, Missoula, arthur.endsley@umontana.edu 

Follow this and additional works at: https://scholarworks.umt.edu/syllabi2021-2025 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Endsley, K. Arthur, "GPHY 489.01: Programming for GIS" (2023). University of Montana Course Syllabi, 
2021-2025. 986. 
https://scholarworks.umt.edu/syllabi2021-2025/986 

This Syllabus is brought to you for free and open access by ScholarWorks at University of Montana. It has been 
accepted for inclusion in University of Montana Course Syllabi, 2021-2025 by an authorized administrator of 
ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/syllabi2021-2025
https://scholarworks.umt.edu/syllabi2021-2025?utm_source=scholarworks.umt.edu%2Fsyllabi2021-2025%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/syllabi2021-2025/986?utm_source=scholarworks.umt.edu%2Fsyllabi2021-2025%2F986&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


Programming for GIS 
Geography 491/489 — Spring 2023 

Tues & Thus, 09h30 - 10h50; Weds 09h00 - 10h50 

218 Stone Hall (Tues, Thurs) & 106 Stone Hall (Weds) 

Instructor: K. Arthur Endsley, PhD, Research Scientist, NTSG 

Email: arthur.endsley@ntsg.umt.edu 

Moodle site: https://moodle.umt.edu/course/view.php?id=60666 

Office hours: Weds, 11h00 - 12h00, ISB 415 

The contents of this syllabus are subject to change. 

Course Overview 

Resource managers, environmental scientists, and policy experts regularly ask ques-
tions that require spatial data to answer. They are fortunate that there is today a wealth of 
spatially explicit data on human communities and natural resources; but, sometimes, these datasets 
are so voluminous they can be difficult or impossible to work with in a desktop GIS or spreadsheet 
program. The questions we ask may also implicate spatial relationships (e.g., distance, proximity, 
routing) that can’t be analyzed using built-in software routines. Moreover, when we conduct a 
spatially explicit study as a series of geoprocessing steps, how do we preserve and describe this 
recipe so that others can understand, verify, and repeat our analysis? 

Learning Objectives: 

• Learn Python programming! Python is consistently ranked within the top 3 general 
programming languages (2018-present, TIOBE index), and for good reason! It is easy-to-
learn, scales up quickly, and supported by a large user community that contributes packages 
for a wide variety of applications. You’ll also learn about R, which is a “meh” programming 
language but a powerful analysis and visualization tool. 

• Automate geospatial workflows. When humans try to complete repetitive tasks (e.g., 
converting latitude-longitude coordinates into UTM coordinates), they frequently make mis-
takes. Computers never make mistakes; they carry out our instructions in a predictable 
and deterministic way. If you have a lot of data to process, clicking here, then there, then 
there again, in a desktop GIS, over and over, simply won’t do! 

• Process large geospatial datasets. Multi-decadal field campaigns, social media analytics, 
and satellite remote-sensing are increasing the volume and the frequency of data we collect. 
Desktop GIS and spreadsheet programs have limits—they simply cannot work with gigabytes 
or terabytes of data. You will learn to process “Big Data” by breaking the problem down into 
either separate tasks or subdatasets that can be processed independently and concurrently. 

• Document, explain, and reproduce your geospatial workflows. You will learn to 
convert your GIS workflows into transferable and re-useable scripts. You’ll learn about 

1 

https://moodle.umt.edu/course/view.php?id=60666
mailto:arthur.endsley@ntsg.umt.edu


literate programming, and how tools like Jupyter Notebooks and RMarkdown can help 
you combine code with narrative so that other people can understand, verify, and reproduce 
your work. 

Prerequisite(s): You should be very familiar with a desktop GIS program (e.g., QGIS, ArcGIS) 
and understand what spatial data formats (e.g., raster, vector) and common spatial data file types 
(e.g., GeoTIFF, Shapefile) exit. You should also have basic familiarity with geographic and pro-
jected coordinate systems. 

Textbook: There is no required textbook, but I can recommend some supplemental resources: 

Think Python, 1st Edition, Allen P. Downey 

Free to read at: https://greenteapress.com/wp/think-python/ 

Guide to NumPy, Travis E. Oliphant 

Free to read at: http://web.mit.edu/dvp/Public/numpybook.pdf 

Whirlwind Tour of Python, Jake Vanderplas 

Free to read at: https://github.com/jakevdp/WhirlwindTourOfPython 

2 

https://greenteapress.com/wp/think-python/
http://web.mit.edu/dvp/Public/numpybook.pdf
https://github.com/jakevdp/WhirlwindTourOfPython


Schedule at a Glance 

Weeks 1 - 3: Introduction to Python Programming, to prepare you for general-purpose pro-
gramming in Python, including: file handling; input and output on the command line; writing 
and executing scripts; defining and applying re-usable functions; repeating tasks within loops; 
changing program behavior depending on conditions. 

Weeks 4 - 5: Raster Data Processing in Python, where we will learn how to: read raster 
data from files in the Python environment; treat raster data as multi-dimensional arrays; 
write arbitrary arrays to raster data formats while handling spatial reference systems; com-
bine multiple raster datasets; use multiple CPUs to process raster data concurrently; apply 
windowing functions/ generic filters to raster arrays. Applications: Habitat suitability 
analysis, Land cover/ Land use classification, Landscape modeling (e.g., NDVI, TWI). 

Week 6: Batch Processing and Scientific Computing in Python, where we will learn to 
scale-up Python programs to process hundreds or thousands of spatial datasets in sequence, 
efficiently and accurately. We’ll learn to write re-usable Python scripts that accept argu-
ments or configuration files to define program behavior. We’ll also learn about scientific data 
formats including HDF5 and NetCDF4. 

Week 7: Spatial Data Management with GDAL/OGR, which will empower you to use 
efficient command-line tools for managing and manipulating both vector and raster data. 
Applications: Bulk reprojection, Resampling, Mosaics 

Weeks 8 - 9: Spatial Analysis in Python, where we will briefly explore how to read and write 
vector data in Python, with the ultimate goal of using vector data (e.g., Shapefiles) to summa-
rize raster arrays. Applications: Zonal statistics, Census district enumeration, Proximity 
analysis, Landscape modeling. 

Week 10 (Spring Break) 

Week 11: Introduction to R for Data Analysis, where we will treat R not as a program-
ming language but as an environment for data analysis, focusing on tabular data (e.g., the 
attribute table of a Shapefile). This will lay the foundation for manipulating spatial data in R. 

Weeks 12 - 13: Vector Data and Spatial Analysis in R, where we will learn to read and write 
vector data files in R; transform/ project data between different spatial reference systems; 
compute spatial metrics and combine these with attribute data. Applications: Proximity 
analysis, Spatial autocorrelation, Spatial autoregressive models. 

Week 14: Mapping in R, where we apply our knowledge of managing and plotting generic data 
in R to spatial data, specifically, and produce regional, continental, and global maps that 
combine raster and vector data for effective communication. 

Weeks 15 - 16: Student Project Presentations 

3 



Course Policies and Expectations 
• Arrive to class on time. Give me a heads-up if you have a consistently tough commute because 

of, for example, a class ending immediately before ours. 
• Let me know if you’re going to be late or absent. Things come up, and we’re all busy. Help 

me to help you stay on track. 
• During lecture (Tuesday-Thursday), keep your cell phones in your backpacks. Limited use on 

Wednesdays is fine, but devices should be in a quiet mode at all times while in the classroom. 

Learning Procedures 
During the Tuesday-Thursday classes, we will primarily use two types of learning: 

• Hands-on, individual programming, where you reproduce the results of commands or small 
programs that I show to you or share with you. 

• Peer programming: You and a partner will try to solve a programming challenge together: 
explaining to one another how a program works, debugging a program, or writing a small 
program. 

How You Will Be Evaluated 

• Lab Exercises (70%) 

– During Lab we will ask and answer meaningful questions about real datasets. 
– Lab assignments are due 1 week after they are introduced; i.e., they must be 

submitted before 10:00 AM on the following Wednesday. 

• Class Participation (10%) 

– To make this easy and fair for everyone, I’ll be tracking attendance. There are multiple 
valid reasons why you might be late or absent, so just let me know. 

– May also include completion of weekly surveys and Comprehension Checks, but is not 
based on correctness (“getting the right answer”). 

• Graduate Increment: Midterm Project (10%)* 

– Students can choose to interview a GIS professional or conduct a software/ data review 
and present their findings to the class. Detailed rubric will be provided after Week 1. 

• Graduate Increment: Final Project (10%)* 

– Students will choose publicly available spatial dataset(s), present a new analysis of the 
data, and document and share their geoprocessing workflow. Detailed rubric will be 
provided after Week 1. 

*Optional as extra credit for undergraduate students; grade will otherwise be normalized 
by the Lab Exercises + Class Participation total. 

4 



Submitting Assignments 
Assignments should be submitted through Moodle only. 

• Unless otherwise announced by the instructor, Labs are due by 9:00 AM the following 
Wednesday; i.e., right before the next week’s lab begins. 

• Labs must be uploaded to Moodle as a compiled Notebook (*.html or *.pdf file) or as 
*.ipynb files. 

• The uploaded file should have your last name as the first part of the filename; 
e.g., Endsley_Lab1.html 

• Please try and simplify your Notebook before submitting it—just show the problem prompts, 
the code you wrote to solve it, and any relevant outputs. We’re not using “templates” anymore 
because this was too confusing. 

• If a question is asked as part of a Lab (beyond entering Python code), please use a Markdown 
cell to answer the question. 

On Academic Dishonesty 

You should be familiar with the University of Montana Student Code of Conduct and follow 
it accordingly. This includes Article IV, which prohibits plagiarism and other acts of academic 
dishonesty. I’m sure this won’t be an issue, because we’re all adults and we’re all here to learn 
together! 

Accessibility 

We all have different ways of learning; some of us face challenges learning in or access-
ing a typical classroom environment. I’m here to help you succeed! For reasonable 
accommodation, please meet with me as soon as possible. The Office for Disability Equity 
(ODE) can assist both of us. For more information, visit the ODE website. 

Required Software 

I strive to make the course materials compatible with Windows 10+, Mac OS X, and 
GNU/Linux operating systems. This is more challenging than you may realize. The campus 
lab computers run Windows 10 with the “Windows Subsystem for Linux” (WSL), which enables 
them to run Linux programs, including the Unix Command Line. If you want to reproduce your 
work on your personal computer (and I highly recommend that you do), you’ll want to set it up 
the same way or make sure it supports the same software. 

For All Users 
• Install R and RStudio. There are two steps: Install R, then RStudio. You’ll find these 

steps, and the downloads, at this link. 

• Follow additional instructions, below, for your system. 

5 

https://www.umt.edu/student-affairs/community-standards/um_student_code_of_conduct_effective_8-1-2021.pdf
https://www.umt.edu/disability/default.php
https://www.rstudio.com/products/rstudio/download/#download
https://www.rstudio.com/products/rstudio/download/#download


For Windows Users 
1. Install OSGeo4W. Go to: https://trac.osgeo.org/osgeo4w/ and “Download the OSGeo4W 

network installer.” Run the installer, choosing “Express” install and choose to install GDAL 
and QGIS (if QGIS is not already installed). 

2. Start the OSGeo4W Shell by typing “OSGeo4W Shell” in the Start or search menu. 

3. Install Python dependencies: Type the following and hit ENTER: 
pip install numpy scipy matplotlib pandas rasterio pyproj h5py netCDF4 pytest 
pysptools scikit-image scikit-learn line_profiler shapely geopandas 

4. Install Jupyter Notebook: Type the following and hit ENTER: 
pip install notebook 

5. Test that you can launch Jupyter Notebook: Type the following, hitting ENTER at 
the end of each line; username should be replaced with your Windows username: 
cd C:/Users/username 
python -m notebook 

For GNU/Linux Users 
Instructions here are for Ubuntu, but Steps 2-4 should be the same on all GNU/Linux systems. 

1. Install the GDAL/OGR tools. Launch a Terminal window and type: 
sudo apt install python3-dev gdal-bin libgdal-dev python3-gdal 

2. Install Python dependencies: Type the following and hit ENTER: 
sudo -H pip3 install numpy scipy matplotlib pandas rasterio pyproj h5py 
netCDF4 pytest pysptools scikit-image scikit-learn line_profiler shapely 
geopandas 

3. Install Jupyter Notebook: Type the following and hit ENTER: 
pip install notebook 

4. Test that you can launch Jupyter Notebook: Type the following, hitting ENTER at 
the end of each line: 
cd 
jupyter notebook 

Optional: Install a Python IDE 

• Install a text editor or Python interactive development environment (IDE) of your 
choice. It’s possible to complete all work in Python using the command line and a plain text 
editor (e.g., SublimeText, Notepad++). You might choose to install a dedicated Python 
IDE like Spyder, PyCharm, Geany, or LiClipse. Spyder can be installed in the Anaconda 
Navigator. 

6 

https://trac.osgeo.org/osgeo4w/
https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/
https://geany.org/
https://www.liclipse.com/


Tentative Schedule 

Some of the recommended resources are required for participating in classroom discussions. 

ResourcesClass Topics (Bulleted items required) 

Tuesday, 
Jan. 17 

So, You’re Programming Now? 

• Motivating examples 

• “Stereotype threat: A 
summary of the problem” 

• Human-Computer interaction 

• Thinking like a computer scientist 
Planet Money: “When 
Women Stopped Coding” 

• Who is a computer scientist? Downey (Ch. 1) 

Mattheis et al. (2022) 

Weds., 
Jan. 18 

LAB (Week 1) 
Optional lab time for anyone who wants help installing or getting familiar with 
software. 

Thursday, 
Jan. 19 

Introduction to Python Programming 

• The Python interpreter 
• Variables and program state 

• Data types and Sequences 

• Functions and their application 

• Where to go for help 

Downey (Ch. 2, Ch. 3 
through Section 3.4) 

Intro to Jupyter Notebooks 

Tuesday, 
Jan. 24 

Introduction to Python Programming 
(Cont.) 
Picking up where we left off on Jan. 19... 

Downey (Ch. 3, 5, 6 and 
Appendix A) 

Vanderplas, Ch. 3: Variables 
and Objects and Ch. 6: 
Built-in Data Structures 

Weds., LAB #1 (Week 2) 
Jan. 25 Working with global primary productivity datasets to practice basic Python skills. 

7 

https://dynamicecology.wordpress.com/2014/04/28/stereotype-threat-a-summary-of-the-problem/
https://dynamicecology.wordpress.com/2014/04/28/stereotype-threat-a-summary-of-the-problem/
https://www.npr.org/sections/money/2014/10/21/357629765/when-women-stopped-coding
https://www.npr.org/sections/money/2014/10/21/357629765/when-women-stopped-coding
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268562
http://programminghistorian.org/en/lessons/jupyter-notebooks
https://nbviewer.org/github/jakevdp/WhirlwindTourOfPython/blob/master/03-Semantics-Variables.ipynb
https://nbviewer.org/github/jakevdp/WhirlwindTourOfPython/blob/master/03-Semantics-Variables.ipynb
https://nbviewer.org/github/jakevdp/WhirlwindTourOfPython/blob/master/06-Built-in-Data-Structures.ipynb


Thursday, 
Jan. 26 

Introduction to Python Programming, 
Part 2 

• Comparison operators, the is and in 
keywords 

• Function arguments 

• Everything is an Object 
• Data structures 

• Loading Python packages 

Downey (Ch. 3, 5, 6 and 
Appendix A) 

Vanderplas, Ch. 3: Variables 
and Objects and Ch. 6: 
Built-in Data Structures 

Tuesday, Building Python Proficiency Downey (Ch. 7) 
Jan. 31 

• Python idioms: Sequences, Comprehensions Vanderplas, Ch. 9: Errors 
• Control of flow and Exceptions 

• Debugging and Tracebacks 

Weds., LAB #2 (Week 3) 
Feb. 1 Building and applying Python functions for working with spatial features from 

airborne CO2 flask data. 

Thursday, Arrays and Plotting in Python Oliphant (Ch. 2) 
Feb. 2 

• Introduction to numpy NumPy: The absolute basics 
• Multi-dimensional arrays in Python for beginners 
• Plotting data with matplotlib 

NumPy Illustrated: The 
Visual Guide to NumPy 

Tuesday, Raster Data Analysis in Python 
• The GIS&T Body of Feb. 7 

• Reading and writing raster data in Python Knowledge: Python for 
GIS• The Geospatial Data Abstraction Library 

(GDAL) in Python Unfamiliar with rasters? 
• Affine transformations Read “Intro to Raster Data” 
• Raster band math; Spectral indices 

• Multispectral rasters in Python 

8 

https://nbviewer.org/github/jakevdp/WhirlwindTourOfPython/blob/master/03-Semantics-Variables.ipynb
https://nbviewer.org/github/jakevdp/WhirlwindTourOfPython/blob/master/03-Semantics-Variables.ipynb
https://nbviewer.org/github/jakevdp/WhirlwindTourOfPython/blob/master/06-Built-in-Data-Structures.ipynb
https://nbviewer.org/github/jakevdp/WhirlwindTourOfPython/blob/master/09-Errors-and-Exceptions.ipynb
https://nbviewer.org/github/jakevdp/WhirlwindTourOfPython/blob/master/09-Errors-and-Exceptions.ipynb
https://numpy.org/devdocs/user/absolute_beginners.html
https://numpy.org/devdocs/user/absolute_beginners.html
https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d
https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d
https://gistbok.ucgis.org/bok-topics/python-gis
https://gistbok.ucgis.org/bok-topics/python-gis
https://gistbok.ucgis.org/bok-topics/python-gis
https://datacarpentry.org/organization-geospatial/01-intro-raster-data/index.html


Weds., LAB #3 (Week 4) 
Feb. 8 You’ll take gridded surface temperature data from NOAA, stored as an array, and 

export it to GIS-friendly formats. You’ll also get some practice with querying 
raster array data and plotting histogram summaries of multispectral raster bands. 

Thursday, Raster Data Analysis in Python, Part 2 
Feb. 9 • GISGeography: What is • Function application with raster data 

Map Algebra? 
• Handling NoData 

• Array masks 

• Zonal statistics 

• Raster (re-)projection 

Tuesday, Raster Data Workflows 
Feb. 14 

• Introduction to rasterio 

• Reprojection with rasterio 

• Resampling with rasterio 

• Focal operations and scipy filters 

Weds., LAB #4 (Week 5) 
Feb. 15 Using Landsat 5 data to monitor change in lake surface area. 

Thursday, Scientific Computing with Python 
Feb. 16 

• Machine representation of numbers 

• Scientific provenance 

• Hierarchical Data File (HDF) format 
• NetCDF4 format 
• QA/QC Bit packing 

Tuesday, Scaling-Up Raster Data Analysis 
Feb. 21 

• Why is my Python code slow? 

• Concurrency vs. Parallelism 

• Parallel processing of raster data arrays 

Weds., LAB #5 (Week 6) 
Feb. 22 Using MODIS surface reflectance data to monitor high-latitude vegetation trends. 

9 

https://gisgeography.com/map-algebra-global-zonal-focal-local/
https://gisgeography.com/map-algebra-global-zonal-focal-local/


Thursday, 
Feb. 23 

Automating Tasks with Python 

• Writing Python scripts 

Downey (Ch. 10-12, 14, 15) 

• Python at the Command Line 

• The Python Module Pattern 

• Reading files 

Tuesday, Scientific Computing with Python, Part 2 Downey (Ch. 4) 
Feb. 28 

• Creating command-line interfaces • Wilson et al. (2014): Best 
• Separating code from data with 

configuration files 

practices for scientific 
computing 

• Verification and Validation 
(assertions and tests) 

• Reproducible workflows 

Weds., Optional LAB #6 (Week 7): GDAL-OGR Workflows 
March 1 • Introduction to the Command Line 

• Navigating files and folders 

• Programs and arguments 

• gdalinfo and ogrinfo 

• gdalwarp and gdal_translate 

• Clipping rasters with gdalwarp and cutlines 

• Creating mosaics with gdal_merge.py 

• Raster math with gdal_calc.py 

• Vector data management with ogr2ogr 

Thursday, Spectral Analysis 
March 2 

• Mixing spaces 

• Principal components analysis (PCA) 
• Dimensionality reduction 

• Spectral Angle Mapper 

10 

https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://gdal_calc.py
https://gdal_merge.py


Tuesday, Vector Data Analysis in Python Unfamiliar with vector data? 
March 7 Read “Intro to Vector Data” 

• GeoJSON and json 

• Opening geometry collections with fiona 

• Geometric operations in shapely 

• Coordinate transformations 

• Introduction to geopandas 

Weds., LAB #7 (Week 8) 
March 8 Using a Shapefile of burned-area boundaries, practice vector data processing and 

computing geometric relationships using fiona, shapely, and geopandas 

Thursday, Vector Data Analysis in Python, Part 2 
March 9 

• Spatial joins in geopandas 

• Extracting raster values using Point or 
Polygon geometry 

• Zonal statistics 

Tuesday, Introduction to Statistical Learning 
March 14 

• Classification versus Regression 

• Training and testing data 

• scikit-learn 

• Naive Bayes classifier 

Weds., LAB #8 (Week 9) 
March 15 

Thursday, Midterm Project Presentations 
March 16 

Tuesday, Introduction to R for Data Analysis 
March 28 

• Reading tabular data in R 

• Selecting columns, filtering rows 

• Pipelines with dplyr 

• Introduction to RMarkdown 

11 

https://datacarpentry.org/organization-geospatial/02-intro-vector-data/index.html


Weds., 
March 29 

LAB #9 (Week 10) 

Thursday, 
March 30 

Tuesday, 
April 4 

Weds., 
April 5 

R for Data Analysis, Part 2 

• Pivoting and reshaping with tidyr 

• Beginning plotting with ggplot2 

• Effective visualizations 

• Perceptually linear color scales 

Vector Data in R 

• The Simple Features library 

• Plotting simple features with ggplot2 

• Feature collections and their attributes 

• Projections and coordinate reference systems 

• Text data to spatial data with st_as_sf() 

LAB #10 (Week 11) 

Rougier et al. (2014): Ten 
simple rules for better figures 

Ware (1988): Color 
sequences for univariate 
maps 

Thursday, 
April 6 

Raster Data in R 

• The raster library 

• Rasters as Data Frames: Why, God? 

• Plotting raster data with ggplot2 

• Multi-band raster data in R 

• Raster map extent 
• Projecting raster data 

12 

https://doi.org/10.1371/journal.pcbi.1003833
https://doi.org/10.1371/journal.pcbi.1003833
https://doi.org/10.1109/38.7760
https://doi.org/10.1109/38.7760
https://doi.org/10.1109/38.7760

	GPHY 489.01: Programming for GIS
	Let us know how access to this document benefits you.
	Recommended Citation

	Course Overview
	Schedule at a Glance

	Course Policies and Expectations
	Learning Procedures
	How You Will Be Evaluated
	Submitting Assignments
	On Academic Dishonesty
	Accessibility

	Required Software
	For All Users
	For Windows Users
	For GNU/Linux Users
	Optional: Install a Python IDE

	Tentative Schedule

