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External direct sum invariant subspace and decomposition of

coupled differential-difference equations
Keqin Gu1, Huan Phan-Van2

Abstract—This article discusses the invariant subspaces that
are restricted to be external direct sums. Some existence con-
ditions are presented that facilitate finding such invariant sub-
spaces. This problem is related to the decomposition of coupled
differential-difference equations, leading to the possibility of
lowering the dimensions of coupled differential-difference equa-
tions. As has been well documented, lowering the dimension of
coupled differential-difference equations can drastically reduce
the computational time needed in stability analysis when a
complete quadratic Lyapunov-Krasovskii functional is used. Most
known ad hoc methods of reducing the order are special cases
of this formulation.

I. INTRODUCTION

In this article, we consider invariant subspace of a special
structure. Specifically, given matrices A ∈ Rm×m, B ∈
Rm×n, C ∈ Rn×m, D ∈ Rn×n, form the matrix

S =

(
A B
C D

)
. (1)

We would like to investigate the existence of a nontrivial
invariant subspace W of S (or W is S-invariant)

SW ⊂ W, (2)

with the restriction that W is an external direct sum of a
subspace U ⊂ Rm and a subspace V ⊂ Rn,

W = U⊕V, (3)

where the external direct sum ⊕ is defined as

U⊕V :=

{(
u
v

)
: u ∈ U , v ∈ V

}
. (4)

Let the dimensions of U and V be

dim(U) = p, (5)
dim(V) = q. (6)

Then 0 ≤ p ≤ m, 0 ≤ q ≤ n. For the subspace W to be
nontrivial, 0 < p+q < m+n.

The existence of invariant subspace of such a structure arises
from the possibility of decomposing coupled differential-
difference equations

ẋ(t) = Ax(t)+By(t−r), (7)
y(t) = Cx(t)+Dy(t−r) (8)

into two sets of such equations of lower dimensions. In the
above equations, x ∈ X = Rm is the state variable for the
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differential equation, and y ∈ Y = Rn is the state variable
for the difference equation. Then the complete state space is
X×Y .

Coupled differential-difference equations arise in many
practical problems in engineering and other scientific disci-
plines as reviewed in [12]. Early literature tends to formu-
late such a system in the general framework of differential-
difference equations of neutral type[7]. The earliest example
of direct stability analysis on such a system was given by
Rǎsvan [11]. Various analysis of such a system has been
conducted, see, for example, [1]. It was proposed in [4]
that such a formulation have a substantial advantage even
for differential-difference equations of retarded type when
a complete type of Lyapunov-Krasovskii functional is used
for stability analysis. It was also pointed out in [4] that
systems with multiple commensurate delays may be rewritten
as a coupled differential-difference equation with single delay.
Indeed, several order of magnitude of saving of computational
time have been reported in both the discretized Lyapunov-
Krasovskii functional method [4] and sum-of-square method
[15] due to reduced dimension of the delayed variable y as
compared with the more traditional formulation (such as those
given in [5] and [9]).

The method presented in this article will allow us to reduce
the dimension of coupled differential-difference equations in
a more systematic way. Many ad hoc methods used to reduce
dimension of y such as the one presented in [4] turn out to
be special cases of the method presented here. An important
feature not explored before is the possibility of reducing not
only the dimension of y, but also simultaneously that of x in
the equations (7-8).

A preliminary version of this article was presented in [3].
This journal version added new examples to illustrate the
procedure and expanded the discussions and references.

II. CONDITIONS FOR COMPONENT SUBSPACES

In this section, we will discuss the requirements the compo-
nent subspaces U and V need to satisfy in order for W to be
an invariant subspace of S. We will first make the following
simple observation.

Lemma 1. The subspace W is S-invariant if and only if the
component subspaces U and V satisfy

AU ⊂ U , (9)
BV ⊂ U , (10)
CU ⊂ V, (11)
DV ⊂ V. (12)
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Proof. By definition, W is S-invariant if and only if all u ∈ U
and v ∈ V satisfy

Au+Bv ∈ U , (13)
Cu+Dv ∈ V. (14)

It is easy to see that (9-12) are sufficient conditions for the
above requirements. On the other hand, note that 0 ∈ U and
0 ∈ V . Choose v = 0 in (13) and (14), we conclude that (9)
and (11) are necessary conditions. Similarly, we can conclude
that (10) and (12) are necessary by choosing u = 0 instead.

■

Before presenting the main result, we would like to intro-
duce the following definitions.

Definition 1. For a matrix E ∈ Rl×l and a subspace F ⊂ Rl,
the reachable subspace (from the origin) of the pair (E,F),
which is denoted as ⟨E|F⟩, is

⟨E|F⟩ =
⋂

{H : F ⊂ H, EH ⊂ H}. (15)

In the equation (15) above and the equation (16) below, H
is restricted to be a subspace of Rl. If ⟨E|F⟩ = Rl, then the
pair is said to be controllable. Otherwise, we say (E,F) is
uncontrollable.

For a pair of matrices E ∈ Rl×l and G ∈ Rh×l, the
unobservable subspace of the pair (G,E) is

N (G,E) =
∑

{H : H ⊂ Ker(G), EH ⊂ H}. (16)

In the above,
∑

means the sum of subspaces. The pair (G,E)
is said to be observable if N (G,E) = {0}. Otherwise, we say
the pair is unobservable.

For the reachable subspace, it is well-known that [14]

⟨E|F⟩ = F+EF+E2F+· · ·+El−1F . (17)

Alternatively, let F be a matrix such that

Im(F ) = F .

Then [10]

⟨E|F⟩ = span{F,EF,E2F, . . . , El−1F}. (18)

In the above, span refers to the subspace spanned by the
column vectors of the matrices F , EF , etc.

For unobservable subspace, it is well known that [14]

N (G,E) =

l⋂
i=1

Ker(GEi−1). (19)

Theorem 2. Let S be defined in the equation (1). For a given
subspace V ⊂ Rn that is D-invariant, there exists a subspace
U ⊂ Rm such that W = U⊕V is S-invariant if and only if

C ⟨A|BV⟩ ⊂ V. (20)

For such a V , W = U⊕V is S-invariant if and only if U is
A-invariant and satisfies

⟨A|BV⟩ ⊂ U ⊂ C−1V, (21)

where C−1V = {u ∈ Rm|Cu ∈ V}.

Proof. It is sufficient to show that (9) and (21) constitute
necessary and sufficient conditions for W to be S-invariant,
or equivalently, for the satisfaction of the conditions (9-12).
Note that (12) is satisfied by assumption.

To show necessity, note that conditions (9) and (10) implies
U ⊃ ⟨A|BV⟩ in view of (15) in definition 1, which together
with (11) implies (21).

To show sufficiency, note that (9) and (12) are satisfied by
assumption. (21) obviously implies both (10) and (11).

Finally, for an A-invariant U that satisfies (21) to exist,
(20) is obviously necessary. It is also sufficient because
U = ⟨A|BV⟩ is A-invariant and satisfies (21). ■

We can obtain the following corollary from the above
theorem by symmetry of the role U and V play in this invariant
subspace problem.

Corollary 3. For a given subspace U ⊂ Rm that satisfies
(9), there exists a subspace V ⊂ Rn such that W = U⊕V is
S-invariant if and only if

B ⟨D|CU⟩ ⊂ U . (22)

For such a U , W = U⊕V is S-invariant if and only if V is
D-invariant and satisfies

⟨D|CU⟩ ⊂ V ⊂ B−1U . (23)

III. DECOMPOSITION OF COUPLED
DIFFERENTIAL-DIFFERENCE EQUATIONS

For the coupled differential-difference equations (7-8), carry
out a variable transformation

x = Ux1+Û x2, (24)

y = V y1+V̂ y2, (25)

where x1 ∈ Rp, x2 ∈ Rm−p, y1 ∈ Rq , y2 ∈ Rn−q , and
the matrices

(
U Û

)
and

(
V V̂

)
are nonsingular. We seek

such a transformation so that the variables x2 and y2 are
independent of x1 and y1. The transformed equations are(

ẋ1(t)
ẋ2(t)

)
=

(
A11 A12

A21 A22

)(
x1(t)
x2(t)

)
+

(
B11 B12

B21 B22

)(
y1(t−r)
y2(t−r)

)
, (26)(

y1(t)
y2(t)

)
=

(
C11 C12

C21 C22

)(
x1(t)
x2(t)

)
+

(
D11 D12

D21 D22

)(
y1(t−r)
y2(t−r)

)
, (27)

where the coefficient matrices satisfy

A
(
U Û

)
=
(
U Û

)( A11 A12

A21 A22

)
, (28)

B
(
V V̂

)
=
(
U Û

)( B11 B12

B21 B22

)
, (29)

C
(
U Û

)
=
(
V V̂

)( C11 C12

C21 C22

)
, (30)

D
(
V V̂

)
=
(
V V̂

)( D11 D12

D21 D22

)
. (31)
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For x2 and y2 to be independent of x1 and y1, we need

A21 = 0, B21 = 0, C21 = 0, D21 = 0. (32)

Taking the first column block of the equations (28-31) and
considering (32), we obtain(

A B
C D

)(
U 0
0 V

)
=

(
U 0
0 V

)(
A11 B11

C11 D11

)
. (33)

Thus we reached the following conclusion.

Proposition 4. The variable transformation (24-25) results in
a system such that x2 and y2 are independent of x1 and y1
if and only if the matrices U and V satisfy (33) for some
matrices A11, B11, C11 and D11 of appropriate dimensions.

Let

U = Im(U), (34)
V = Im(V ). (35)

Then (33) indicates that U⊕V is an invariant subspace of the
matrix S defined in (1). Indeed, (33) is a matrix representation
of the invariance relation (2).

A decomposed system consists of two subsystems with
lower dimensions, and is more convenient to analyze than the
original form both analytically and numerically. In the follow-
ing, we will illustrate how the decomposition can drastically
reduce the amount of computation in the stability analysis
using the discretized Lyapunov-Krasovskii functional method
developed in [4]. Consider a system (7-8) with

A =


97
3 −78

298
3 −50

104
3 −75

251
3 −42

−4
3 −3

11
3 −1

−23 34 −26 14

 , B =


−16 4 13

−19 2 18

−16 1 18
−43
3

7
3

50
3

 ,

C =


28
3 −17

76
3 −15

−17
3 11

−5
3 −2

6 −11 18 −11

 , D =


8
5

13
10

−23
5

4
13
10

−37
5

2
7
10

−19
5

 .

Carrying out the variable transformation (24-25) with

(
U Û

)
=


1 2 1 4

1 1 2 4

2 1 2 2

3 2 1 1

 ,
(
V V̂

)
=

1 2 3

2 3 2

1 1 2

 (36)

results in the following two decomposed subsystems:

ẋ1(t) =

(
−1 2

2 −8

)
x1(t)+

(
1

2

)
y1(t−r)

+

(
−3 5

9 1

)
x2(t)+

(
−5 −3

7 4

)
y2(t−r), (37)

y1(t) =
(
−2 −3

)
x1(t)+

(−2
5

)
y1(t−r)

+
(
4 7

)
x2(t)+

(
2 2

)
y2(t−r), (38)

and

ẋ2(t) =

(
−6 −1

4 −10

)
x2(t)+

(
0 1

−4 −5

)
y2(t−r), (39)

y2(t) =

(
−1 2

3 −2

)
x2(t)+

(
1
10 −1

1
10

−3
5

)
y2(t−r). (40)

The transformation does not affect the stability of the system.
Therefore, the original system is stable if and only if the
subsystem 2 consisting of (39-40) is stable, and the subsystem
1 consisting of (37-38) (with the terms involving x2 and y2
removed) is stable. It can be shown analytically, for example,
using the method in [13], that the subsystem 1 is stable for
r ∈ [0, r1max), where r1max ≈ 0.290583, and it becomes
unstable when the delay r increases beyond r1max. We will
call r1max the stability margin of the subsystem. Similarly,
we can calculate that the stability margin of the subsystem 2
is r2max ≈ 0.163488. Because r2max < r1max, the stability
margin of the original system is r2max.

Then, we used the discretized Lyapunov-Krasovskii func-
tional method developed in [4] with N = 5 to obtain
estimated stability margins of subsystem 1, subsystem 2, and
the original system. A PC with Windows environment running
MATLAB with LMI toolbox [2] was used to do calculation.
For each (sub-)system, we started with the initial interval of
[0, 5], and used a bisection method to determine an estimated
stability margin until the interval size was less than 10−6. The
estimated stability margin and the computational time in CPU
seconds are listed in the following table.

TABLE I
ESTIMATED STABILITY MARGINS & COMPUTATIONAL TIME

System Estimated Stability Margin CPU (second)
Subsystem 1 0.290581 7.33
Subsystem 2 0.163465 24.58

Original System 0.163465 106.67

From the above table, it can be seen that the stability margin
estimated by the discrized Lyapunov-Krasovskii functional
method is very close to the analytical results in all cases. The
decomposition provided a substantial advantage in terms of
computational time. If the decomposition is available, then the
total computational time for the numerical stability analysis is
7.33+24.58 = 31.91 seconds. However, if we conduct the
numerical stability analysis directly on the original system,
then the computational time would be 106.67 seconds, more
than 3 times that for the decomposed case. The advantage
of decomposition would be much more pronounced if the
dimension of the system increases.

IV. SOME SPECIAL CASES

We will first discuss a few special cases of the invariant
subspace restricted to be external direct sum, and their in-
terpretation in the context of coupled differential-difference
equations.

A. Uncontrollable difference equation

Suppose the pair (D, Im(C)) is uncontrollable. Let

V = ⟨D| Im(C)⟩ = span{C,DC,D2C, . . . ,Dn−1C}. (41)

Consider the conditions in Theorem 2. V is clearly D invariant.
Furthermore, (20) is satisfied because

Im(C) ⊂ V (42)
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in view of (41). Equation (42) also implies C−1V = Rm.
Therefore, the condition (21) becomes

⟨A|BV⟩ ⊂ U . (43)

In other words, U can be any A-invariant subspace that
contains ⟨A|BV⟩ (which is obviously A-invariant). The two
extremes choices for U are ⟨A|BV⟩ and Rm. If we choose
U = Rm, then x1 = x, thus the variable x is not decomposed,
resulting in a system where y2 is independent of x and y1.

A simple example is the differential-difference equation

ẋ(t) = Ax(t)+A1x(t−r). (44)

As is commented in [4], even for this system of retarded
type, there is an advantage of writing it in the form of couple
differential-difference equations when A1 is singular. This is
due to the possibility of reducing the dimension of the delayed
variable, resulting in substantial savings of computational cost
in stability analysis. We will first use a simple method to
rewrite this system as coupled differential-difference equations
without considering the reduction of dimensions. Introduce the
new variable

y(t) = A1x(t). (45)

Then the system can be written as

ẋ(t) = Ax(t)+y(t−r), (46)
y(t) = A1x(t). (47)

In this case, B = I , C = A1, D = 0.
When rank(A1) = k < n, we will then try to decompose

the system. The choice (41) results in V = Im(A1), then
d(V) = k. We will show that making the simple choice of U =
Rm results in an ad hoc method of reducing the dimension of
the delayed variable y given in [4]. Indeed, with only y to be
decomposed, we can write

y = V y1+V̂ y2, (48)

where V has k columns and Im(V ) = Im(A1), and the matrix(
V V̂

)
is nonsingular. Let(

Vi

V̂i

)
=
(
V V̂

)−1
. (49)

Then
V̂iV = 0, (50)

which also implies
V̂iA1 = 0. (51)

Then, the system becomes

ẋ(t) = Ax(t)+V y1(t−r)+V̂ y2(t−r), (52)
y1(t) = ViA1x(t), (53)
y2(t) = 0. (54)

The above equations indicate that y2 does not contribute to
the dynamics of the system, and thus can be deleted from the
model. This conclusion has been arrived in [4] by observing
A1 = V P (here P = ViA1) and let y1(t) = Px(t). Therefore,
such an ad hoc method is a special case of the method
presented here.

It should be pointed out that in general, y2 has its own
dynamics that need to be evaluated separately. The above
example is just a very special case where the dynamics of
y2 are trivial.

B. Unobservable difference equation

Suppose the pair (B,D) is unobservable. Let V =
N (B,D), then V is obviously D-invariant, and (20) is ob-
viously satisfied because BV = {0}. Therefore, Theorem 2
indicates that an A-invariant subspace U exists that satisfied
(21). Indeed, in this case, (21) reduces to

U ⊂ C−1V. (55)

A valid choice is U = {0}, in which case x2 = x, and
therefore, x is not decomposed, resulting in a system in which
y1 does not influence the dynamics of x and y2.

Consider a system described by

ẏ(t)−Dẏ(t−r) = Ay(t)+Ey(t−r), (56)

where y(t) ∈ Rn, and

D = fDgTD, (57)

E = fEg
T
E , (58)

are rank 1 matrices, reflecting the common theme in practice
that the delayed elements are of low dimensions. We assume
the two column vectors fD and fE are linearly independent,
and so are the vectors gD and gE . Let

x(t) = y(t)−Dy(t−r). (59)

Then we can rewrite the system in the form of coupled
differential-difference equations

ẋ(t) = Ax(t)+(AD+E)y(t−r), (60)
y(t) = x(t)+Dy(t−r). (61)

Compared with the standard form, we have C = I and

B = AD+E = AfDgTD+fEg
T
E . (62)

Select V ∈ Rn×(n−2) with full column rank such that gTDV =
gTEV = 0, and let V = Im(V ), then V = N (B,D). Carry out
the transformation

y = V y1+V̂ y2, (63)

where V̂ can be chosen to be
(
gD gE

)
. Let(

Vi

V̂i

)
=
(
V V̂

)−1
, (64)

then the transformed system can be written as

ẋ(t) = Ax(t)+(AD+E)V̂ y2(t−r), (65)

y1(t) = Vix(t)+ViDV̂ y2(t−r), (66)

y2(t) = V̂ix(t)+V̂iDV̂ y2(t−r). (67)

It can be seen that y1(t) ∈ Rn−2 does not affect the dynamics
of x and y2, and can be deleted from the system description.
The remaining delayed variables are represented by y2(t) ∈
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R2, which may have a much lower dimension than the original
dimension n.

Although the dynamics of y1 is trivial in this example (an
algebraic expression of x and y2), this is not always the case.
In general, the dynamics of y1 need to be evaluated separately.

C. Uncontrollable differential equation and unobservable
differential equation

The readers should not have difficulty obtaining the con-
ditions when the pair (A, Im(B)) is uncontrollable or when
the pair (C,A) is unobservable. These parallel results may be
easily derived from Corollary 3, in a similar way Theorem 2
was used to derive results in the previous two subsections.

D. Finite number of invariant subspaces

When D or A have a finite number of invariant subspaces,
a definite conclusion can be drawn whether it is possible
to decompose the coupled differential-difference equations in
the sense described in Section III. This is the case if each
repeated eigenvalue of the matrix corresponds to a single
Jordan block. For example, if D has only a finite number
of invariant subspaces Vk, k = 1, 2, . . . ,K, then, for each
V = Vk, we may use Theorem 2 to check the existence of U ,
thus exhaustively search whether any nontrivial S-invariant
subspace U⊕V exists. This procedure will be illustrated in
section VI.

V. SOME ADDITIONAL OBSERVATIONS

In this section, we would like to make a few additional
observations.

First, we do not claim that this process provides two decou-
pled subsystems. In general, the output of the subsystem with
variables x2 and y2 provides an input to the subsystem with
variables x1 and y1. It is not always possible to decouple the
system into two completely separate subsystems. Nonetheless,
this structure is still valuable in analysis. For example, it is
well known that the overall system is exponentially stable if
and only if each subsystem is exponentially stable.

Second, if we follow the procedure described in Subsection
IV-C, say, with the invariant subspaces of A. Then obviously
U = {0} and U = Rm are potential candidates. For U = Rm,
we have seen in Subsection IV-A that V exists if the difference
equation is uncontrollable. Similarly, for U = {0}, we have
seen in Subsection IV-B that V exists if the difference equation
is unobservable. It is interesting to ask the opposite question:
if we choose U = {0} or U = Rm, what are the conditions
needed for V to exist? The following theorem provides a
definite answer.

Theorem 5. For U = Rm, there exists a subspace V ⊂ Rn,
V ≠ Rn, such that U⊕V is S-invariant if and only if the pair
(D, Im(C)) is uncontrollable. For U = {0}, there exists a
subspace V ⊂ Rn, V ̸= {0}, such that U⊕V is S-invariant if
and only if the pair (B,D) is unobservable.

Proof. For U = Rm, if (D, Im(C)) is controllable, then the
equation (23) in Corollary 3 requires V = Rn, and therefore,

the only S-invariant subspace is Rm+n, which is trivial. On the
other hand, if (D, Im(C)) is uncontrollable, Subsection IV-A
has already shown that V = ⟨D | Im(C)⟩ ,V ̸= Rn, makes
U⊕V a nontrivial S-invariant subspace. This proved the first
part.

For U = {0}, the equation (23) in Corollary 3 requires V ⊂
Ker(B). Because V is D-invariant, this means V ⊂ N (B,D).
If (B,D) is observable, then V = {0}, and U⊕V is trivial.
If (B,D) is unobservable, then Subsection IV-B has already
shown that V = N (B,D) ̸= 0 makes U⊕V a nontrivial S-
invariant subspace. ■

Third, the decomposition of coupled differential-difference
equations is independent of the value of delay r or whether
the delay is constant or depends on time. While the main
motivation here is the stability analysis of systems with time-
invariant delay using a complete type of Lyapunov-Krasovskii
functional, it may certainly be applied to other analysis and
systems with time-varying delay.

VI. ILLUSTRATIVE EXAMPLE

In this section, we will illustrate the procedure of discov-
ering all the possible decomposition of coupled differential-
difference equations when the matrix D has a finite number
of invariant subspaces. Consider the system:

ẋ(t) = Ax(t)+By(t−r), (68)
y(t) = Cx(t)+Dy(t−r), (69)

where

A =


2 14 −7 1

6 3 9 −8

27 −35 48 −28

116
3 −51

182
3 −34

 , B =


61
3

−43
3

40
3

19 −14 12

53
3

−26
3

11
3

62
3

−20
3

−1
3

 ,

C =

34 −57 82 −46

25 −40 66 −37

22 −37 54 −30

 , D =


38
3

−26
3

20
3

44
3

−26
3

20
3

7 −5 5

 ,

and let
S =

(
A B
C D

)
. (70)

The matrix D has a simple eigenvalue λ1 = 5 and a repeated
eigenvalue λ2 = λ3 = 2. The eigenvector corresponding to
λ1 is V1 =

(
100
27 , 140

27 , 67
27

)T
. Corresponding to the repeated

eigenvalue λ2, there is one eigenvector V2 =
(−4

9 , −8
9 , −4

9

)T
,

and one generalized eigenvector V3 =
(−73

27 , −140
27 , −67

27

)T
. Let

Vi = span{Vi}, i = 1, 2, 3. Then the invariant subspaces of D
are {0},V1,V2,V1+V2,V2+V3, and R3. Invoking Theorem
2, it can be checked that the relation (20) is satisfied by
V = {0},V2,V2+V3, and R3, and not satisfied by the
other invariant subspaces of D. Because (A, span{B}) and
(D, span{C}) are controllable, and (C,A) and (B,D) are
observable, V = {0} or V = R3 does not lead to nontrivial
invariant subspace of S according to Theorem 5.

In the following, we will obtain decomposition of the system
by applying Theorem 2 to the remaining two choices of V , viz,
V = V2 and V = V2+V3.
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A. 1-dimensional invariant subspace of D

Let V = V2, then, it can be calculated that

C ⟨A|BV⟩ = V = span{V }, (71)

where

V =


−4
9
−8
9
−4
9

 . (72)

Thus, the equation (20) in Theorem 2 is satisfied. We now
proceed to find U to satisfy (21). We can calculate,

⟨A|BV⟩ = span


−20
9

−124
9

−4
3

−76
9

−16
9

−104
9

−28
9 20

 , (73)

C−1V = span


1000
1249

68
351

400
1249

−4
351

200
1249

−80
351

600
1249

−28
117

 . (74)

It is easily verified that ⟨A|BV⟩ = C−1V2. Thus, for the given
1-dimensional invariant subspace V , the corresponding U =
span(U) is the unique 2-dimensional subspace U = span{U},
where

U =


−20
9

−124
9

−4
3

−76
9

−16
9

−104
9

−28
9 20

 . (75)

To decompose the coupled differential-difference equations
(68-69), introduce a variable transformation:

x = Ux1+Û x2, (76)

y = V y1+V̂ y2, (77)

where

Û =


1 2

2 3

3 5

3 2

 , V̂ =

1 3

2 5

3 1

 , (78)

which are chosen such that
(
U Û

)
and

(
V V̂

)
are nonsin-

gular. The transformed equations become:(
ẋ1(t)
ẋ2(t)

)
= Ã

(
x1(t)
x2(t)

)
+B̃

(
y1(t−r)
y2(t−r)

)
, (79)

(
y1(t)
y2(t)

)
= C̃

(
x1(t)
x2(t)

)
+D̃

(
y1(t−r)
y2(t−r)

)
, (80)

where

Ã =
(
U Û

)−1
A
(
U Û

)
=


0 1

−945
8

10431
8

1 6
75
4

−843
4

0 0
49
6

−17
6

0 0
−1
6

29
6

 , (81)

B̃ =
(
U Û

)−1
B
(
V V̂

)
=


1

−5073
8

5721
16

0
405
4

−117
2

0
41
2

41
4

0
−3
2

3
4

 , (82)

C̃ =
(
V V̂

)−1
C
(
U Û

)
=

5 33 144
6525
4

0 0 20 208

0 0 24 244

 , (83)

D̃ =
(
V V̂

)−1
D
(
V V̂

)
=

2
327
4

−363
8

0
35
3

−29
6

0
40
3

−14
3

 . (84)

From the above expressions of Ã, B̃, C̃, D̃, it is easily seen
that the variables x2 and y2 are independent of x1 and y1,
and thus a decomposition has been achieved.

B. 2-dimensional invariant subspace of D
Now let V = V2+V3 instead. Then,

C ⟨A|BV⟩ = V = span{V }, (85)

where

V =


−4
9

−73
27

−8
9

−140
27

−4
9

−67
27

 , (86)

and, the equation (20) in Theorem 2 is satisfied. To find U to
satisfy (21). We calculate,

⟨A|BV⟩ = span


−20
9

−371
27

−4
3

−77
9

−16
9

−322
27

−28
9

−553
27

 , (87)

C−1V = span


1000
1249

68
351

1142
1345

400
1249

−4
351

−175
1053

200
1249

−80
351

−354
341

600
1249

−28
117

−781
815

 . (88)

It can be verified that ⟨A|BV⟩ is a subspace of C−1V . The
corresponding U must be A-invariant. Obviously, ⟨A|BV⟩ is
A-invariant. However, C−1V is not. Therefore, the only choice
of U that is A-invariant and satisfies (21) is U = ⟨A|BV⟩ =
span(U), where

U =


−20
9

−371
27

−4
3

−77
9

−16
9

−322
27

−28
9

−553
27 .

 . (89)

A variable transformation to accomplish decomposition is:

x = Ux1+Û x2, (90)

y = V y1+V̂ y2, (91)
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where

Û =


1 2

2 3

3 5

3 2

 , V̂ =

3

5

1

 . (92)

The transformed equations become:(
ẋ1(t)
ẋ2(t)

)
= Ã

(
x1(t)
x2(t)

)
+B̃

(
y1(t−r)
y2(t−r)

)
, (93)(

y1(t)
y2(t)

)
= C̃

(
x1(t)
x2(t)

)
+D̃

(
y1(t−r)
y2(t−r)

)
, (94)

where

Ã =
(
U Û

)−1
A
(
U Û

)
=


8
3

623
36

−545
8

5935
8

4
7

10
3

75
7

−843
7

0 0
49
6

−17
6

0 0
−1
6

29
6

 , (95)

B̃ =
(
U Û

)−1
B
(
V V̂

)
=


1 0

3225
16

0 1
−234

7

0 0
−41
4

0 0
3
4

 , (96)

C̃ =
(
V V̂

)−1
C
(
U Û

)
=

5
413
12 924

38973
4

0 0 −180 −1872

0 0 −16 −172

 , (97)

D̃ =
(
V V̂

)−1
D
(
V V̂

)
=

2 1
−1871

8

0 2
87
2

0 0 5

 . (98)

Again, from the above expressions of Ã, B̃, C̃, D̃, it is easy
to see that, the variables x2 and y2 are independent of x1 and
y1, thus a decomposition has been achieved.

VII. FURTHER REMARKS

In this section, we will make a few additional remarks.
First, we do not claim that the procedure described in

this paper can find a transformation to decompose the sys-
tem whenever such one exists. However, such cases are
rare. Indeed, the only case that our procedure fails is when
(A, Im(B)) and (D, Im(C)) are both controllable, (C,A) and
(B,D) are both observable, and both A and D have repeated
eigenvalues that correspond to more than one Jordan blocks.
In practice, one may start with checking the controllability and
observability and see if the procedure described by Subsections
IV-A, IV-B or IV-C would apply. Then check if either D or
A has a finite number of invariant subspaces, and follow the
procedure illustrated in Section VI if it is the case.

Second, if the system has inputs, for example,

ẋ(t) = Ax(t)+By(t−r)+Eu(t), (99)
y(t) = Cx(t)+Dy(t−r)+Fu(t) (100)

Then, the transformation does not consider the input terms,
and the resulting system does not decompose the input. This
is similar to the case discussed in [8].

Third, in addition to coupled differential-difference equa-
tions, this decomposition may be applied to other context. For
example, for two sets of coupled difference equations

x(t) = Ax(t−r1)+By(t−r2), (101)
y(t) = Cx(t−r1)+Dy(t−r2), (102)

where one or both delays r1 and r2 may be time-varying. The
procedure described in this article can obviously be used to
decompose the system without change.

VIII. CONCLUSIONS AND FUTURE WORK

Invariant subspace that is restricted to be an external direct
sum of two subspaces is directly related to the decomposition
of coupled differential-difference equations. Such invariant
subspaces possess a number of interesting properties that may
facilitate their discovery. A number of known simple ad hoc
methods of reducing the dimensions of coupled differential-
difference equations can be considered as special cases of such
invariant subspace problem.

It is interesting to extend this method to the case of multiple
delays. The significance of this problem and an ad hoc method
of reducing the dimensions of delayed variables in writting
coupled differential-difference equations with multiple delays
are given in [8].

REFERENCES

[1] E. Fridman, Stability of linear descriptor systems with delay: A
Lyapunov-based approach, J. Math. Anal. Applicat., vol. 273, no. 1,
pp. 24–44, 2002.

[2] Gahinet, P., Nemirovski, A., Laub, A., & Chilali, M. (1995). LMI control
toolbox for use with MATLAB. Natick, MA: Mathworks.

[3] K. Gu, External direct sum invariant subspace and decomposition
of coupled differential-difference equations, in Proceedings of 2022
American Control Conference, June 8-10, 2022, Atlanta, GA.

[4] K. Gu and Y. Liu, Lyapunov-Krasovskii functional for uniform stability
of coupled differential-functional equations, Automatica, vol. 45, no. 4,
pp. 798–804, 2009.

[5] K. Gu, A further refinement of discretized Lyapunov functional method
for the stability of time-delay systems, Int. J. Control, vol. 74, no. 10,
2001, pp. 967–976.

[6] K. Gu, Stability problem of systems with multiple delay channels,
Automatica, vol. 46, no. 4, 2010, pp. 743–751.

[7] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional
Differential Equations, Springer-Verlag, New York, 1993.

[8] M. M. Peet, Minimal Differential Difference Realizations of Delay
Differential, Differential Difference, and Neutral Delay Systems, IEEE
Control Systems Letters, vol. 5, no. 4, pp. 1471–1476, 2021.

[9] M. Peet, A. Papachristodoulou and A. Lall, On positive forms and the
stability of linear time-delay systems, in Proceedings of the 45th IEEE
Conference on Decision and Control, 2006, pp. 187–193.

[10] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, 1980.
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