
Southern Adventist University Southern Adventist University

Knowledge Exchange Knowledge Exchange

MS in Computer Science Project Reports School of Computing

Spring 4-28-2023

Automated Classification of Pectinodon Bakkeri Teeth Images Automated Classification of Pectinodon Bakkeri Teeth Images

Using Machine Learning Using Machine Learning

Jacob A. Bahn
Southern Adventist University, jacobabahn@southern.edu

Follow this and additional works at: https://knowledge.e.southern.edu/mscs_reports

 Part of the Artificial Intelligence and Robotics Commons, Data Science Commons, and the

Paleontology Commons

Recommended Citation Recommended Citation
Bahn, Jacob A., "Automated Classification of Pectinodon Bakkeri Teeth Images Using Machine Learning"
(2023). MS in Computer Science Project Reports. 9.
https://knowledge.e.southern.edu/mscs_reports/9

This Thesis is brought to you for free and open access by the School of Computing at Knowledge Exchange. It has
been accepted for inclusion in MS in Computer Science Project Reports by an authorized administrator of
Knowledge Exchange. For more information, please contact jspears@southern.edu.

https://knowledge.e.southern.edu/
https://knowledge.e.southern.edu/mscs_reports
https://knowledge.e.southern.edu/computing
https://knowledge.e.southern.edu/mscs_reports?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/162?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://knowledge.e.southern.edu/mscs_reports/9?utm_source=knowledge.e.southern.edu%2Fmscs_reports%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jspears@southern.edu

AUTOMATED CLASSIFICATION OF FOSSILIZED PECTINODON BAKKERI

TEETH IMAGES USING MACHINE LEARNING

by

Jacob Bahn

A THESIS

Presented to the Faculty of

The School of Computing at the Southern Adventist University

In Partial Fulfillment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Dr. Germán Harvey Alférez Salinas

Collegedale, Tennessee

April, 2023

AUTOMATED CLASSIFICATION OF FOSSILIZED PECTINODON BAKKERI

TEETH IMAGES USING MACHINE LEARNING

Jacob Bahn, M.S.

Southern Adventist University, 2023

Adviser: Dr. Germán Harvey Alférez Salinas

Microfossil dinosaur teeth are studied by paleontologists in order to better un-

derstand dinosaurs. Currently, tooth classification is a long, manual, error-ridden

process. Deep learning offers a solution that allows for an automated way of

classifying images of these microfossil teeth. In this thesis, we aimed to use deep

learning in order to develop an automated approach for classifying images of

Pectinodon bakkeri teeth. The proposed model was trained using a custom topology

and it classified the images based on clusters created via K-Means. The model had

an accuracy of 71%, a precision of 71%, a recall of 70.5%, and an F1-score of 70.5%.

v

Contents

Contents v

List of Figures ix

1 Introduction 1

1.1 Problem Statement . 1

1.2 Goals and Requirements . 2

1.3 Motivation . 3

2 Background 5

2.1 Theoretical Framework . 5

2.1.1 Microfossils . 6

2.1.2 Principal Component Analysis 7

2.1.3 K-Means Clustering . 7

2.1.4 Machine Learning . 7

2.1.5 Deep Learning . 8

2.1.6 Convolutional Neural Network 8

2.1.7 Computer Vision . 10

2.1.8 Tensor Flow . 10

2.1.9 Keras . 11

vi

2.2 State of the Art . 11

2.2.1 Application of Deep Learning and Computer Vision for Im-

age Classification . 11

2.2.2 Manual Classification of Microfossils 12

2.2.3 Automated Classification of Microfossils 13

3 Methodology 15

3.1 Problem Understanding . 16

3.1.1 Analytic Approach . 16

3.1.2 Data Requirements . 17

3.1.3 Data Collection . 18

3.1.4 Data Understanding . 18

3.1.5 Data Preparation and Modeling 19

3.1.6 Evaluation . 22

3.1.7 Deployment . 23

4 Evaluation Plan 25

5 Results 27

5.1 PCA and K-Means Clustering . 27

5.1.1 Code for PCA and K-Means . 29

5.2 Python Script for the Automatic Organization of Images 33

5.3 Deep Learning Topology . 39

5.3.1 Results . 49

5.4 Discussion . 50

6 Conclusions and Future Work 53

vii

Bibliography 55

ix

List of Figures

2.1 Concept map showcasing the relationship between the concepts pre-

sented in this section . 5

2.2 Small microfossilized theropod dinosaur tooth with measurements for

the anterior denticles per millimeter, basal width, crown height, fore-aft

basal length, and posterior denticles per millimeter [1]. 6

2.3 Convolution Operation [2]. 8

2.4 Max Pooling [2]. 9

2.5 ReLU Operation [2]. 9

3.1 IBM foundational Data Science Methodology [3]. 16

3.2 Microfossil Dinosaur Tooth Image . 18

3.3 Dino-Lite Edge 3.0 Digital Microscope . 19

3.4 Microfossil Tooth Image Before Crop (Left) and After Crop (Right) . . . 20

3.5 The Original Tooth (Left) and Augmented Tooth (Right) 20

3.6 The Original Tooth (Left) and Augmented Tooth (Right) 21

5.1 Scree Plot of Dimensional variance (Left) and Correlation Plot of Feature

Contribution to each dimension (Right) 28

5.2 Feature Contributions for Dimension 1 (left) and Dimension 2 (Right) . 28

5.3 Variable Contribution plot for Dimension 1 vs Dimension 2 29

x

5.4 Elbow Plot and Silhouette Plot . 30

5.5 K-Means Clustering result with 3 Clusters 30

5.6 K-Means Clustering Output . 34

5.7 Directory Before Running the Clustering Program (Left) and After

Running the Program (Right) . 35

5.8 The model’s accuracy per epoch for classifying images in Cluster 1 and

Cluster 3 . 50

5.9 The model’s loss per epoch for classifying images in Cluster 1 and

Cluster 3 . 51

1

Chapter 1

Introduction

1.1 Problem Statement

Microfossils are paleontological remains that are more clearly visible through a

microscope [4]. The manual classification of microfossils is a cumbersome task. As

a result, there are recent approaches that apply deep learning for the automatic

classification of images of microfossils, for example in the case of fish teeth [5].

Unfortunately, deep learning has not been applied to the automatic classification

of images of dinosaur teeth.

The goal of this project is to apply deep learning for the automatic classification

of images of microfossilized teeth of the Pectinodon bakkeri species. To this end, a

convolutional neural network topology was created with TensorFlow. A sample

data set with 367 images of individual teeth provided by the Biology Department

at Southern Adventist University was used for training and evaluating the deep

learning model. Alongside there is a numerical dataset with tooth measurements

with the following variables: crown height, fore aft basal width, basal width,

anterior denticles, and posterior denticles per millimeter. The image dataset does

2

not contain information about the fore aft basal width and basal width.

In order to know the groups in which the images were going to be classified,

this project proposed the application of PCA for understanding the underlying

variables and clustering (unsupervised learning) on the numerical dataset. The

images were organized according to these groups. Then, these images were used

to train a deep learning model. A topology for such a model was built. The model

was validated and tested with the following metrics: accuracy, precision, recall,

and F1-score.

1.2 Goals and Requirements

These are the major goals of this project:

• Apply Principal Component Analysis and K-Means clustering (i.e., unsuper-

vised machine learning) to a comma-separated values (CSV) file containing

numerical measurements for the samples of Pectinodon bakkeri teeth. The

data is comprised of the following numerical variables: crown height, fore

aft basal width, basal width, anterior denticles, and posterior denticles per

millimeter. The clusters generated with K-Means were used for determining

the different groups that a deep learning model used for classifying the

dataset containing 487 images of mircrofossilized teeth.

• Train and validate the deep learning model that classifies images of Pectinodon

bakkeri teeth. The validation was carried out by means of accuracy, precision,

recall, and F1-score.

3

1.3 Motivation

Although there are approaches for the manual classification of microfossils [6,

7], determining these characteristics from a set of teeth can be extremely time

consuming and error-prone. Some of these characteristics could include crown

height, basal width, anterior denticles, posterior denticles per millimeter, and more.

Advances in machine learning and computer vision offer an opportunity to train

deep learning models that are able to classify images microfossils. This automated

opportunity would open the door to faster classification times for paleontologists.

5

Chapter 2

Background

The theoretical framework and state of the art introduce terms and include relevant

works related to the topics of deep learning and microfossils, respectively.

2.1 Theoretical Framework

This section presents the definitions of the concepts covered in this research work.

Figure 2.1 presents the underlying concept map.

Figure 2.1: Concept map showcasing the relationship between the concepts pre-
sented in this section

6

2.1.1 Microfossils

Microfossils are remains of fossils, usually smaller than 1mm, that are only view-

able through a microscope. They come in many forms including bacteria, plants,

and animals. Microfossils are studied independently of each other due to the

way that rock samples are processed and the need for microscopes in their study.

Microfossils are arguably the most important type of fossil. Conveniently, they are

also the most abundant type of fossil, with large numbers found in sedimentary

rocks. They are useful in the study of age-dating, correlation, and reconstructing

ancient environments [4]. Some of the measurements used in their classification

can be seen in Figure 2.2.

Figure 2.2: Small microfossilized theropod dinosaur tooth with measurements
for the anterior denticles per millimeter, basal width, crown height, fore-aft basal
length, and posterior denticles per millimeter [1].

7

2.1.2 Principal Component Analysis

Principal Component Analysis is an unsupervised machine learning technique

used for reducing the dimensions of a data set. The algorithm accomplishes this

by transforming a large set of variables into a smaller set while retaining most of

the larger set’s information. This results in a list of significant components that

allow for easier analysis of the data set [8].

2.1.3 K-Means Clustering

Clustering refers to separating data points into groups that contain similar ele-

ments. The K-means clustering algorithm is a popular unsupervised approach for

clustering data. It helps with identifying natural groupings in a data set. K-means

works by iteratively assigning data points to the nearest cluster centroid, based on

a specified number of clusters, until the assignments stay the same or maximum

number of iterations is met [8].

2.1.4 Machine Learning

Machine learning can be defined as the process where computers learn from data

without explicitly being programmed. It is especially useful for detecting patterns

in images [9]. Machine learning is often split into 2 categories, supervised and

unsupervised learning. Supervised learning is where the training data is labeled.

Unsupervised learning is where the data is unlabeled. In unsupervised learning,

the machine learning algorithms group the data in order to discover patterns [10].

8

2.1.5 Deep Learning

Deep learning is a method of machine learning in which computers learn from

experience and understand the world through a hierarchical structure of concepts.

This approach allows the computer to acquire knowledge through experience

rather than requiring manual input from a human operator. The hierarchical

concept structure enables the computer to understand complex ideas by breaking

them down into simpler components [11].

2.1.6 Convolutional Neural Network

A convolutional neural network (CNN) is a specialized neural network that pro-

cesses an input image by assigning importance to various objects and features

within it, allowing it to differentiate between them. A CNN has the following

elements [12]:

• Convolution Layer: This is the core of a CNN and it carries most of the net-

work’s computational load. In this layer, a dot product’s output is calculated

between an area of an input image and a weight matrix, also known as a

filter. The filter slides through the image repeating the dot product operation.

An example can be seen in Figure 2.3.

Figure 2.3: Convolution Operation [2].

9

• Grouping Layer: This layer is used for reduction of the spatial dimension

without affecting the depth. Max pooling can be utilized in order to get

highest number of the input’s area, the most sensitives area. Figure 2.4 is an

example of max pooling. Average pooling can be used to find the mean of

the input area also.

Figure 2.4: Max Pooling [2].

• Nonlinearity layer: This layer utilizes the ReLU activation function that

returns zero for every negative value and original number for every positive

value. See Figure 2.5.

Figure 2.5: ReLU Operation [2].

• Fully Connected Layer: This layer flattens out the result of the previous

convolutional layer and connects each node of the current layer to another

node in the next layer.

10

• Dropout Layer: This layer removes the contribution of some neurons to-

wards the subqequent layers. It is a regularization technique that prevents

overfitting.

• Flatten Layer: This layer transforms the 2 dimensional arrays that result from

the pooling layer into a single linear vector that can be passed into a fully

connected layer.

2.1.7 Computer Vision

Computer Vision, also called artificial vision, is a field of deep learning that seeks

to understand and interpret characteristics of the physical world through the

analysis of images. Computer vision aims at emulating the way humans use vision

by rebuilding properties from images like shape and color [13]. Computer vision

can be implemented using CNN’s, which enable image processing at a pixel level

[14].

2.1.8 Tensor Flow

TensorFlow is an open-source library created by Google that is used for distributed

numerical computation using data flow graphs. TensorFlow defines and exe-

cutes calculations involving tensors, which are n-dimensional arrays of base data

types [9]. Each element in a tensor has an identical data type and the type is

always known. The shape, however, is not always fully known before runtime.

TensorFlow’s usage is generally for training deep neural networks.

11

2.1.9 Keras

Keras is a high-level API built on top of TensorFlow that enables faster neural

network development. It accomplishes this by focusing on simplicity and flexibility.

Keras’ built-in layers and models provide abstractions which simplify deep learning

model creation [15].

2.2 State of the Art

This section describes the current usage of deep learning for image classification,

manual classification of microfossils, and automated classification of microfossils.

2.2.1 Application of Deep Learning and Computer Vision for

Image Classification

This section presents examples of projects developed by the advisor of this research

project for the automatic classification of images using deep learning.

In [16], the authors developed a deep-leaning model to identify plutonic rocks

in order to save time and money. They utilized TensorFlow to create a convolutional

neural network and trained it to identify 6 different types of rocks. They found

their model to have an accuracy of 95%, a precision of 96%, a recall of 95%, and an

F1 score of 95%.

Relating to the medical field, in [2], the authors created a mobile app that

utilized a convolutional neural network to detect if a patient has a difficult airway.

They used the MobileNetV2 computer vision model and TensorFlow to train a

deep learning model based off of 240 images. The authors model had an average

accuracy of 88.5%. In [17], the authors trained a deep learning model for detecting

12

glaucoma when given a picture of a human eye. They specifically targeted the

Latino population with 260 total pictures. The MobileNet and Inception V3 models

were used to create the deep learning model. The best results came from the

Inception V3 model, which had a value of 90% for precision, accuracy, recall, and

F1 score.

2.2.2 Manual Classification of Microfossils

In [6], the authors introduce characteristics of microfossills that allow for them to be

identified in clusters of fossilized bones. These clusters, also known as microsites,

are often comprised of many different species. The specific microsites studied were

from the Hell Creek Formation in Montana. The research project contains images

that show the features of different species and the authors showcase the differences

between them. Also, the authors do a deep dive on the comparative anatomy of

vertebrate animals, creating a guide for assigning fossils to their respective animal

groups. This guide is useful for directing the manual classification of microfossils

from microsites.

In [7], the authors studied, measured, and compared features of more than

500 dinosaur teeth from 18 locations. They observed how the shape of the tooth

implied predatory behavior. This led them to closely analyze relationships between

characteristics of teeth from the same species and see if there were any patterns.

From this, they noticed a correlation between serration size and tooth size in

dinosaurs and predatory vertebrates.

In [1], the authors carefully studied and assessed a dataset of 1,183 dinosaur

teeth using multivariate statistical methods. The teeth, obtained in North America,

were found to have qualities dependent on the formation they came from. So,

13

teeth found in time equivalent formations were indistinguishable and distinct

compared to teeth from other formations. In the study, 5 different measurements

were utilized in order to aid in manually classifying the teeth.

2.2.3 Automated Classification of Microfossils

In [5], the authors detail their approach for training two open source deep learning

models for tooth classifications. The first model is called ”Mask R-CNN” and it

was used for object detection. The second model is the ”EfficientNet-V2” and it

was used for classifying the teeth. Overall, their model achieved 89.0% precision

and 78.6% recall. Our approach is different from this because we are working with

images of dinosaur teeth instead of fish teeth and we will train and evaluate our

own deep neural network topology.

In [18], the authors used deep learning to classify microfossil species using

sediments obtained from the Southern Ocean and Japan Sea. The model is limited

to classifying 2 sediments, but the authors were able to achieve an accuracy greater

than 90% and a confidence level of 0.90. This paper’s results show that machine

learning has positive results for usage with images of microfossils. It is different

from ours because it is specifically classifying underwater sediments.

In [19], the authors use machine learning to classify Cenozoic radiolarians. The

authors utilized the MobileNet convolutional neural network for the microfossil

classification. The model resulted in average accuracy of 73%. In [20], the authors

explain their process of training a deep learning model to classify microfossil

species. Both of these studies vary from our approach due to the type of microfossil

studied and the choice of convolutional neural network.

15

Chapter 3

Methodology

The aim of this research work is to use deep learning to develop an automated

approach for classifying images of microfossil dinosaur teeth of the Pectinodon

bakkeri species. We accomplished it by creating a topology for a deep learning

neural network that is trained on the provided microfossil images from the Biology

Department of Southern Adventist University. The technology utilized for building

it was Keras.

The IBM Foundational Methodology for Data Science [3] was used in this

research project because it is a proven methodology for working on data science

projects (see Figure 3.1). The first step of this methodology requires a comprehen-

sive understanding of the problem. This was followed by looking at the techniques

and technologies utilized for the solution. The next step was to focus on data,

including identifying the type of data required, the methods for collecting it,

techniques for gaining deeper insights, and preparing it for analysis. Lastly, it

covered the deployment and evaluation steps. These steps are explained in the

proceeding subsections.

16

Figure 3.1: IBM foundational Data Science Methodology [3].

3.1 Problem Understanding

Paleontologists have done work studying microfossil teeth [6] and learning from

measured data, but current approaches to classify dinosaur teeth are time-consuming.

As deep learning has grown, an opportunity has arisen to incorporate computer

vision into classifying these teeth. Microfossil Pectinodon bakkeri teeth numerical

data and images have been provided by the Biology department of Southern

Adventist University to aid this research.

3.1.1 Analytic Approach

R was used to create a PCA and K-Means models from the numerical dataset

containing measurement values of the microfossil teeth. The PCA model let us

understand the underlying variables of the collected microfossils. The K-Means

model let us organize the samples into clusters. Deep Learning was used to

develop a classification model of the Pectinodon bakkeri tooth images according to

17

the clusters found with K-Means. Specifically, Python was used with TensorFlow

and Keras to create a convolutional neural network.

3.1.2 Data Requirements

For the data set given, it was necessary to have samples with measurements

calculated to properly apply the PCA and clustering analysis. To this end, we were

provided with a numerical dataset of 484 Pectinodon bakkeri tooth samples with

the the following variables. There were data samples without complete numerical

measurements, which were removed from the analysis. The dataset is stored in a

CSV file, which is available online1:

• Crown Height: The total height of the tooth.

• Fore Aft Basal Length: The length of the base of the tooth, from the front to

the back.

• Basal Width: The width of the tooth’s base.

• Posterior Denticles Per Millimeter: The number of small, pointed structures

called denticles located on the posterior or back part of a tooth, within a

millimeter of tooth length.

• Anterior Denticles: Presence or absence of anterior denticles.

Figure 3.2 shows a sample of one of the images of the samples that are used

in this study. The images are in JPG format. The numerical dataset and image

dataset can be found online also at1.
1https://github.com/jacobabahn/MicrofossilResearch

https://github.com/jacobabahn/MicrofossilResearch

18

Figure 3.2: Microfossil Dinosaur Tooth Image

3.1.3 Data Collection

The data was provided by the Biology Department at Southern Adventist Univer-

sity using the Dino-Lite Edge 3.0 digital microscope, see Figure 3.3. The original

images were cropped in order to remove extra information, such as the holding

clip. Figure 3.4 shows an image in its original form and after it was cropped.

3.1.4 Data Understanding

To enhance our comprehension of the data, we employed PCA analysis, which

aided in identifying the critical variables within the dataset. To ensure data

consistency, only samples with values for every measurement were included in

the analysis. The Elbow Method was used in order to find the number of clusters

to separate the data set into. K-means was used to determine which samples

belonged to each cluster.

19

Figure 3.3: Dino-Lite Edge 3.0 Digital Microscope

3.1.5 Data Preparation and Modeling

For the most part, the data provided was usable. However, there were 15 samples

that had missing values for some of the measurements. Therefore, these samples

were not included in the experiments. In total, 459 samples were used in this

research.

From the image dataset, there were 367 usable samples, but the clusters were

unbalanced. In order to balance them for the deep learning experiments, image

augmentation was incorporated using Python. Figure 3.5 and Figure 3.6 provide

examples of images before and after augmentation, which in this case were rotation

and horizontal flips.

Listing 5.19 shows the code used to add augmented images. Lines 1-4 show

20

Figure 3.4: Microfossil Tooth Image Before Crop (Left) and After Crop (Right)

Figure 3.5: The Original Tooth (Left) and Augmented Tooth (Right)

the necessary imports for the program. On line 6, the directory containing images

is stored in a variable. On line 7, the directory where the augmented images will

be placed is stored in a variable. On lines 9-12, the augmentations are defined

using the imgaug library. The augmentation on line 10 sets a random rotation

between 10% and -10%. On line 11, a horizontal flip is defined for 50% of the

images. On line 14, a list of image files is received and stored in the image files

variable. On line 15, the count variable is created to ensure that there will not

be too many images generated, making the clusters imbalanced. On line 16, the

conditional breaks when the correct amount of images to even out the clusters

is met. In this case, that is 71 images. On line 19, a try-catch block is created to

21

Figure 3.6: The Original Tooth (Left) and Augmented Tooth (Right)

handle line 20 where the program attempts to open an image. On line 24, the

image is converted to a numpy array. On line 25, the image is augmented using

the predefined augmentation. On line 27, the image array is converted back into

an image. On line 29, the filename is set with the ’ augmented’ postfix. On line 30,

the augmented image is saved to the predefined output directory. On line 32, the

count is incremented so that the conditional at the beginning of the loop can check

the number of images augmented.

1 import os

2 from PIL import Image

3 import numpy as np

4 import imgaug.augmenters as iaa

5

6 input_dir = ’./path -to -images ’

7 output_dir = ’./path -to-output -dir’

8

9 augmentations = iaa.Sequential ([

10 iaa.Affine(rotate =(-10, 10)), # rotate by -10 to 10 degrees

11 iaa.Fliplr (0.5), # horizontally flip 50% of the images

12])

13

22

14 image_files = os.listdir(input_dir)

15 count = 0

16 for file_name in image_files:

17 if count == 71:

18 break

19 try:

20 image = Image.open(os.path.join(input_dir , file_name)).

convert(’RGB’)

21 except:

22 continue

23

24 image_array = np.array(image)

25 augmented_image_array = augmentations(image=image_array)

26

27 augmented_image = Image.fromarray(np.uint8(augmented_image_array

))

28

29 output_file_name = os.path.splitext(file_name)[0] + ’_augmented.

jpg’

30 augmented_image.save(os.path.join(output_dir , output_file_name))

31

32 count += 1

Listing 3.1: Image Augmentation Script

3.1.6 Evaluation

The deep learning model was evaluated using the metrics of accuracy, precision,

recall, and F1-score.

23

3.1.7 Deployment

A Python script was created to execute the classification on the new server of

the School of Computing using the previously trained classification model. The

server’s specifications are as follows: two AMD Rome EPYC 7F32 8C/16T 3.7GB

128M CPUs, two NVIDIA PNYQuadroTRXA4000 16GB GPUs, 512 GB RDIMM,

and two SSDs of 1.9T.

25

Chapter 4

Evaluation Plan

The deep learning model was evaluated using accuracy, precision, recall, and

F1-score. The equations use the following metrics: Correct Positives (CP), Correct

Negatives (CN), False Positives (FP), and False Negatives (FN).

• Accuracy: a measure of the total number of correct predictions. It is calculated

by dividing the number of correct predictions from the total number of

predictions.

Accuracy = CP+CN
CP+FP+CN+FN

• Precision: a measure of how many positive predictions are right. It is

calculated by dividing the number of correct positive predictions by the total

number of positive predictions made.

Precision = CP
FP+CP

• Recall: a measure of how many positive predictions were found out of the

total number of positive results. It is calculated by dividing the number of

positives found by the total amount of positives.

26

Recall = CP
CP+FN

• F1-Score: a measure that combines precision and recall.

F1-Score = 2 × Precision×Recall
Precision+Recall

27

Chapter 5

Results

Initially, the PCA analysis and K-Means clustering were conducted on the nu-

merical dataset containing the following features: crown height, fore aft basal

width, basal width, anterior denticles, and posterior denticles per millimeter. The

discoveries obtained in this step were used to automatically organize the images

according to the clusters generated. Finally, the tooth images were used to train a

deep learning model.

5.1 PCA and K-Means Clustering

According to the results from PCA, a majority of the variance (82.1%) in the data

is found in dimensions 1 and 2 (left-hand side of 5.1). Looking at the correlation

plot (right-hand side of 5.1), it is possible to see the presence of every feature

per dimension. In dimension 1, the most relevant feature is crown height. In

dimension 2, the main features represented are Posterior Denticles Per Millimeter

and Fore Aft Basal Length. The plots of Figure 5.2 and Figure 5.3 show different

representations of the contributions of features per dimension.

28

Figure 5.1: Scree Plot of Dimensional variance (Left) and Correlation Plot of Feature
Contribution to each dimension (Right)

Figure 5.2: Feature Contributions for Dimension 1 (left) and Dimension 2 (Right)

Next, the Elbow Method and a clustered silhouette plot were used for deter-

mining the proper number of clusters for splitting up the data. Per the results

from those algorithms (see Figure 5.4), the data was organized into 3 clusters.

Performing the K-Means clustering with 3 clusters on the modified data set

rendered clusters with 177 samples for Cluster 1, 76 samples for Cluster 2, and

29

Figure 5.3: Variable Contribution plot for Dimension 1 vs Dimension 2

206 samples for Cluster 3 (see Figure 5.5). In Table 5.1, the unnormalized feature

averages per cluster are shown. Cluster 1 contains the largest teeth. Cluster 2 has

the smallest teeth, which have the most posterior denticles per millimeter. Cluster

3 has teeth that are bigger than the ones in cluster 2 but smaller than the ones in

cluster 1.

5.1.1 Code for PCA and K-Means

The code for this section is available on GitHub1. In Listing 5.1 the code modifies

the CSV data set with numerical tooth data to remove non-numerical rows and
1https://github.com/jacobabahn/MicrofossilResearch

https://github.com/jacobabahn/MicrofossilResearch

30

Figure 5.4: Elbow Plot and Silhouette Plot

Figure 5.5: K-Means Clustering result with 3 Clusters

incomplete fields. On line 1, the first 2 rows that contain descriptive information

and an empty row were removed from the data. On line 2, the names for all of the

samples are grabbed and stored. On line 3, the columns with string values were

31

Cluster Crown Height Fore Aft Basal
Length

Basal Width Posterior
Denticles Per
Millimeter

1 4,495.408 2,773.842 1,192.1974 1.892105

2 2,854.301 2,160.572 7,85.4046 3.689133

3 3,671.417 2,541.441 941.2941 2.967946

Table 5.1: Feature Averages Per Cluster (Unnormalized)

removed from the data. On line 4, the rows are converted to the numeric type,

so that they can be processed later. On line 5, every row with missing fields are

removed from the data.

1 data <- data[-c(1, 2, 356) ,]

2 names <- data[, 1]

3 modded_data <- data %>% dplyr:: select(-1, -6, -7)

4 modded_data[, c(1:4)] <- sapply(modded_data[, c(1:4)], as.

numeric)

5 modded_data <- modded_data[complete.cases(modded_data),]

Listing 5.1: Data Modification

Listing 5.2 shows the code that performs PCA. The prcomp function on line 1

performs PCA on the modified data set and scales the result. On the next line, the

get pca var() function is called which extracts information from each variable in the

PCA object.

1 pca <- prcomp(modded_data , scale = TRUE)

2 var <- get_pca_var(pca)

Listing 5.2: PCA

Listing 5.3 shows how the plots in 5.1 are created. The fviz eig function creates

a scree plot from the pca object. The scree plot showcases a visualization of the

variance in each of the principal components. On line 2, the corrplot function

32

is called to create a correlation plot of the squared cosine values in each of the

PCA variables. The cos2 values are the amount that each variable is represented

in the PCA for each of the dimensions. The amount is visualized with different

colors and sizes in the correlation plot. The graphs generated from this code

can be seen in Figure 5.1. On lines 4-6, the fviz pca var function is called. This

function generates a scatter plot of the PCA variables where each are colored by

the representation of cos2.

1 fviz_eig(pca , addlabels = TRUE)

2 corrplot(var$cos2 , is.corr = FALSE)

3

4 fviz_pca_var(pca , col.var = "cos2",

5 gradient.cols = c("#00 AFBB", "#E7B800", "#FC4E07"),

6 repel = TRUE ,

7)

Listing 5.3: Scree and Correlation Plots

In Listing 5.4, the K-Means algorithm is executed and the clusters are deter-

mined. On line 1, the seed is set in order to ensure that results will be reproducible

each time the code is executed. On line 2, PCA is run again this time making

sure that data centering is set to false and that a rank of 2 is set. The reason for

running PCA again was to set the rank to 2, which tells the prcomp function to

compute only the first 2 principal components, which contain a majority of the

data’s variation. On line 5, a results variable is created which contains the principal

component values. The fviz nbclust function is used to run the Elbow Method

algorithm which determines the optimal number of clusters for a dataset. It plots

within-cluster sum of squares (wss) vs number of clusters. On line 8, the optimal

number of clusters selected by the fviz nbclust function is returned. On line 10, the

33

eclust function is called for performing K-Means clustering on the PCA results.

Euclidean distance is used as the distance metric, and the number of clusters is set

to 3. On line 12, the fviz silhoutte function is used to assess the quality of a number

of clusters for a K-Means output. In the graph, if one of the clusters is below the

red dotted line (see Figure 5.1), it is not an effective cluster.

1 set.seed (123)

2

3 pcal <- prcomp(modded_data , center=FALSE , scale=TRUE , rank. = 2)

4

5 results <- pcal$x

6

7 fviz_nbclust(modded_data , kmeans , method = "wss")

8 km1$nbclust

9

10 km1 <-eclust(results , "kmeans", hc_metric="eucliden", k=3)

11

12 fviz_silhouette(km1)

Listing 5.4: K-Means Clustering

5.2 Python Script for the Automatic Organization of

Images

After performing clustering on the numerical data set, we had a list of rows from

the CSV file and the cluster that the row corresponded too. The odd rows were a

sequence of samples, and the following row contained the cluster that each sample

belonged to (see Figure 5.6). For example, the first value in the first row, 3, belongs

to cluster 1, which is the value in the proceeding row, located in the same column.

34

The next step after this was grouping the images based on that output, but this

was going to be a long manual task.

Figure 5.6: K-Means Clustering Output

In order to organize the images according to the clusters, a Python program

was created. The source code presented in this section is available online2. The first

part of the program matched matched samples with the cluster that they belonged

to. Following that, the program would take a directory containing image samples

and group all of them in the folder according to the clusters created in the previous
2https://github.com/jacobabahn/MicrofossilResearch

https://github.com/jacobabahn/MicrofossilResearch

35

step. The final result was 3 folders corresponding to the 3 clusters with the image

samples that belong to them (see Figure 5.7). These images are available online2.

Figure 5.7: Directory Before Running the Clustering Program (Left) and After
Running the Program (Right)

Listing 5.5 shows the function that puts samples in the correct clusters based

on the K-Means output. Lines 4-11 show the transformation from the K-Means

text file to a 2D Array. On line 14, the clusters array is created with each index

being one of the clusters. Lines 15-18 are where each sample is put into the correct

cluster array. Due to how the K-Means output was organized, the even rows

corresponded to the samples and the odd rows corresponded to which cluster a

sample belonged to. The samples were matched with the cluster that was in the

same column, where samples in row n were matched with the cluster given in n +

1.

1 def put_samples_in_clusters(modded , sampleList):

2 new = []

3

4 for line in file:

5 if line == "":

6 continue

7 line = line.split(" ")

36

8 for value in line:

9 if value == "":

10 line.remove(value)

11 new.append(line)

12

13 clusters = [[], [], []]

14

15 for i in range(len(new)):

16 for j in range(len(new[i])):

17 if i % 2 == 0:

18 clusters[int(new[i + 1][j]) - 1]. append(sampleList[

int(new[i][j]) - 1])

19

20 return clusters

Listing 5.5: put samples in clusters() Function

Listing 5.6 moves on to the next function in the program which moves image

files from a source directory to specific cluster directories. The function accom-

plishes this by using the clusters array generated in the put samples in clusters()

function. In lines 2-7, the directory containing tooth images is set as well as the

output directories for the clusters. Line 9 is where the contents of the directory

are retrieved. In lines 12-26, each image is moved into the cluster directories.

Specifically, the if condition is used to strip the file name into a string that can be

correctly used as an input for the get cluster() function. For example, a file name

could be 95000a.jpeg or 95000b.jpeg for a specific sample, 95000, where the a and b

stand for the side of the tooth that the image was taken on. The if condition would

strip it to be 95000 so that it can be properly used as an input for the get cluster()

function. After this, on line 20, the get cluster() function is called giving the sample

name and the clusters array. Lines 22-26 check that a cluster was found for the

37

given sample and then the current image file is moved to the correct cluster folder.

1 def put_image_in_cluster_folder(clusters):

2 directory = ’./path -to-directory ’

3 clusterPaths = [

4 ’./path -to-directory/cluster1 ’,

5 ’./path -to-directory/cluster2 ’,

6 ’./path -to-directory/cluster3 ’

7]

8

9 files = os.listdir(directory)

10

11 sample = ’’

12 for file in files:

13 if "a" in file:

14 sample = file.split("a")[0]

15 elif "b" in file:

16 sample = file.split("b")[0]

17 else:

18 print("Not a correct file name: " + file)

19 continue

20

21 cluster = getCluster(sample , clusters)

22 if cluster == None:

23 print("Cluster not found for " + sample)

24 continue

25 else:

26 shutil.move(directory + "/" + file , clusterPaths[

cluster])

Listing 5.6: put image in cluster folder Function

Listing 5.7 shows the get cluster() function. It is a helper function that returns

38

the cluster a sample belongs to. The first input is a sample name and the second

input is a 2D array where each of the inner arrays correspond to a cluster. In

line 2, a for loop is created for checking each of the clusters. In line 3, a list

comprehension is used to check for the presence of the sample in the cluster. If the

sample is in the cluster it is added to the res variable. In lines 4 and 5, the program

checks if a value was added to res, and if there was, the cluster number is returned

from the function.

1 def get_cluster(sample , clusters):

2 for i in range(len(clusters)):

3 res = [ele for ele in clusters[i] if(sample in ele)]

4 if len(res) != 0:

5 return i

Listing 5.7: get cluster() Function

There were a few more helper functions in the program that will only be

mentioned briefly. There is a print clusters() function that will print all of the

sample names for each cluster. There is a list cluster() function that allows a user

to enter a sample name and the program will output the cluster that the sample

belongs to. There is also an error checking method that looks at the contents of

a cluster directory and determines if all of the images in that directory belong to

it. Overall, the program was utilized to easily group the sample images into the

proper clusters determined from the K-Means algorithm in order to be used in the

training of the deep learning model.

39

5.3 Deep Learning Topology

This section presents the deep learning topology that was used to train a model

to classify images of Pectinodon bakkeri teeth. Table 5.2 summarizes this topology.

This topology has eight layers. The first layer applies a convolution to the images.

It has an output shape of (None, 180, 180, 16), where the None represents the batch

size, 180, 180 represent the number of pixels in the input, and 16 is the filter count.

448 parameters are trained in this layer. The next layer applies max pooling to

the output of the previous layer. It has an output shape of (None, 90, 90, 16) and

parameter count of 0. The following layer performs a dropout on the previous

layer and also has an output shape of (None, 90, 90, 16), with a parameter count of

0. The next layer is another convolution layer and it has an output shape of (None,

90, 90, 32) and a parameter count of 2,080. The following layer is a max pooling

layer which has an output shape of (None, 45, 45, 32) and a parameter count of 0.

The layer after this is a flatten layer, which has an output shape of (None, 64,800)

and a parameter count of 0. This layer takes all of the pixels from the previous

layer’s output and combines them into a one dimensional vector. The next layer

performs a dropout, and the output shape is (None, 64) with a parameter count of

4,147,264. The final layer is a dense layer which has an output shape of (None, 2)

and a parameter count of 130.

The source code of the topology is available on GitHub3. This source code is

described as follows. First, Listing 5.8 shows the program’s imports.

1 import sys

2 import tensorflow as tf

3 from tensorflow.keras.preprocessing.image import ImageDataGenerator

4 from tensorflow.keras.models import Sequential

3https://github.com/jacobabahn/MicrofossilResearch

https://github.com/jacobabahn/MicrofossilResearch

40

Layer (type) Output Shape Param #

conv2D (Conv2D) (None, 180, 180, 16) 448

max pooling2D (MaxPooling2D) (None, 90, 90, 16) 0

dropout (Dropout) (None, 90, 90, 16) 0

conv2D 1 (Conv2D) (None, 90, 90, 32) 2080

max pooling2D 1 (MaxPooling2D) (None, 45, 45, 32) 0

flatten (Flatten) (None, 64800) 0

dropout (Dropout) (None, 64) 4147264

dense 1 (Dense) (None, 2) 130

Table 5.2: The Custom Deep Learning Topology

5 from tensorflow.keras.layers import Conv2D , MaxPooling2D

6 from tensorflow.keras.layers import Dropout , Flatten , Dense

7 from tensorflow.keras import layers

8 from tensorflow.keras import backend as K

9 from tensorflow.keras import optimizers

10 import matplotlib.pyplot as plt

11 from matplotlib import pyplot

12 from livelossplot.tf_keras import PlotLossesCallback

13 import numpy as np

14 from sklearn.metrics import classification_report

Listing 5.8: The Deep Learning Model’s Imports

Listing 5.9 shows the global variable setup. On line 1, the path to the directory

of training images is stored. On line 2, the path to the directory of validation

images is stored. On line 4, the number of epochs for training the model is set.

The amount of epochs determines the number of times the entire dataset is used

to train a model. So, in this case, the entire dataset will be used to train the model

100 times. On line 5, the batch size is set to 32. Batch size specifies the number of

41

samples in each batch of data that is processed by the model during training.

1 trainingData = "./path -to -directory"

2 validationData = "./path -to -directory"

3

4 epochs = 100

5 batch_size = 32

Listing 5.9: Global Variable Setup

Listing 5.10 enables distributed computing using the two GPUs available in

the server. On line 1, a HierarchicalCopyAllReduce object is created. These objects

are used for optimizing communication between devices when training with a

distributed approach. On line 3, a MirroredStrategy object is created to perform

synchronous data parallelism by replicating the model across both GPUs. This is

another optimization strategy. On line 7, the number of devices is outputted to the

console to verify that the program is correctly identifying both GPUs.

1 cross_device_ops = tf.distribute.HierarchicalCopyAllReduce ()

2 # ,"/gpu:1","/gpu :0"]

3 strategy = tf.distribute.MirroredStrategy(

4 ["device:GPU:%d" % i for i in range (2)],

5 cross_device_ops=cross_device_ops)

6 # outputs 2

7 print(’Number of devices: {}’.format(strategy.num_replicas_in_sync))

Listing 5.10: Distributed Computing Setup

Listing 5.11 shows the code where the custom topology is implemented. On

line 1, the function for creating the model is defined. On line 2, a Sequential model

is created. The Sequential model is used for creating deep learning models that

consist of a linear stack of layers. On line 3, a convolutional layer that performs

2D convolutions was added to the model. The first argument, 16, determines the

42

number of filters in the layer. The second argument, (3, 3), specifies the filter’s

size. In this case, it is a 3 by 3 filter. Setting the padding argument to same makes

sure that the input and output have the same spatial dimensions. The input shape

argument determines the shape of the input data. The input is a 3D tensor set to a

size of (180, 180, 3). The activation argument is set to Rectified Linear Unit (RELU).

This argument determines the activation function that is applied to the output from

the layer. On line 4, a Max Pooling layer is added to perform 2D max pooling on

the input. Max pooling is recommended to reduce the complexity of the data set

without removing essential information. This helps the model’s training to remain

accurate while taking less time. The pool size argument, (2, 2), specifies the size of

the pooling window. In this case, it is a 2 by 2 window. On line 5, a Dropout layer

is added to the model. A dropout layer randomly drops out a certain percentage

of units in the layer. This helps to regularize the layer and prevents overfitting.

The argument passed in to the layer, 0.2, specifies the percentage of units to drop

out. In this case, it is 20%. On line 6, another convolutional layer is added to

the model, with 32 filters this time instead of 16. On line 7, another Max Pooling

layer is added to the model. On line 8, a Flatten layer is added which transforms

the data into a 1D tensor from a 3D tensor. On line 9, a Dense layer is added

to the model. This is a fully connected layer. The first argument, 64, determines

the number of units in the layer. The second argument determines the activation

function to apply to the output. On line 10, another Dropout layer is added. This

time, 50% of the units will be dropped out. On line 11, another Dense layer is

added. This time, the layer has 2 units and the softmax function is applied to the

output. Softmax maps the output of the model to a probability distribution over

the possible classes, ensuring that the predicted probabilities sum to 1. This makes

it so that the output of the model can be interpreted as a probability of the input

43

belonging to each class.

1 def create_model ():

2 model = Sequential ()

3 model.add(Conv2D (16, (3, 3), padding ="same", input_shape =

(180, 180, 3), activation = "relu"))

4 model.add(MaxPooling2D(pool_size = (2, 2)))

5 model.add(Dropout (0.2))

6 model.add(Conv2D (32, (2, 2), padding = "same", activation = "

relu"))

7 model.add(MaxPooling2D(pool_size = (2, 2)))

8 model.add(Flatten ())

9 model.add(Dense(64, activation = "relu"))

10 model.add(Dropout (0.5))

11 model.add(Dense(2, activation = "softmax"))

12

13 return model

Listing 5.11: Custom Topology Implementation

Listing 5.12 shows how the model is compiled. On line 1, the create model()

function created previously is called and assigned to the model variable. On line 2,

the model’s parameters for compilation are set with arguments for loss, optimizer,

and metrics. The initial experiments were carried out with the information of three

clusters. However, the results obtained exhibited an accuracy of 48%, a precision

of 27%, a recall of 33%, and an F1-score of 25%, with Cluster 2 having very low

scores. According to these results, it was necessary to use the information from the

two stronger clusters which contained the majority of the images. Due to using

only 2 clusters, i.e., the classes in this case, the binary crossentropy loss function

was used. The optimizer chosen was Adam with an initial learning rate of 0.001

and epsilon of 1e-08 for preventing division by 0. Adam is a popular optimizer

44

that dynamically adapts the learning rate during training. The metric chosen to be

evaluated during training was accuracy. Setting this parameter allows the model’s

training and validation accuracy to be viewed as it is trained.

1 model = create_model ()

2 model.compile(

3 loss = ’binary_crossentropy ’,

4 optimizer = optimizers.Adam(epsilon = 1e-08, learning_rate =

0.001) ,

5 metrics = ["accuracy"])

Listing 5.12: Model Compilation

In Listing 5.13, the ImageDataGenerator class is used to preprocesses images

before use in the neural network. Using the ImageDataGenerator class is beneficial in

deep learning because it allows images to be preprocessed using rescaling. It also

enables the ability to perform on-the-fly augmentation. Both of these aspects help

reduce the risk of overfitting. On line 1, an ImageDataGenerator object is created

for the training images with 4 parameters set which determine how the image is

processed. The rescale parameter is used to normalize the pixel values between 0

and 1. The shear range parameter, 0.3, is used to augment the shearing of the image

up to 30%. The zoom range parameter is used as a form of augmentation to zoom

an image up to 30%, given the value of 0.3. The horizontal flip parameter is used

to randomly flip some of the images. On line 6, the test data datagen variable, an

instance of the ImageDataGenerator class, is created for the validation images. The

rescale parameter is set to normalize the pixels, but none of the image augmentation

values are set.

1 train_datagen = ImageDataGenerator(

2 rescale = 1. / 255,

3 shear_range = 0.3,

45

4 zoom_range = 0.3,

5 horizontal_flip = True)

6 test_datagen = ImageDataGenerator(rescale = 1. / 255)

Listing 5.13: Data Preprocessing

Listing 5.14 shows how the training and validation generators are created. On

line 1, the data generator for the training images is created. The train datagen

variable is the first ImageDataGenerator object that was created in Listing 5.13. The

flow from directory function reads the images in with specific arguments passed to

it. The first parameter, set to trainingData, is the path to the directory containing

the training images. The value of target size, (180, 180), specifies the size that each

image will be resized to. In this case, it will be 180 pixels by 180 pixels. The

value of batch size determines the number of images that will be passed into the

neural network at a time. This value was defined earlier as 32. The value set for

the class mode parameter specifies the label encoding to be used during training.

The shuffle parameter determines if the training images will be shuffled between

epochs. In this case, the value is set to True, so they will be shuffled. It is important

to shuffle the images so that each batch the model is trained on contains a random

subset of the images. This helps to reduce bias and overfitting in the model during

training. If the images are not shuffled, the model may learn to recognize patterns

that are specific to the order of the images in the dataset, rather than learning

general features that are useful for classifying all images. On line 8, the validation

generator is created in the same way that the training generator was created, except

it uses the validationData and the Shuffle parameter is set to False. The validation

set was not shuffled because no training is done on this data.

1 train_generator = train_datagen.flow_from_directory(

2 trainingData ,

46

3 target_size =(180 , 180),

4 batch_size = batch_size ,

5 class_mode =’categorical ’,

6 shuffle=True)

7

8 validation_generator = test_datagen.flow_from_directory(

9 validationData ,

10 target_size =(180 , 180),

11 batch_size = batch_size ,

12 shuffle=False)

Listing 5.14: Data Generator Creation

Listing 5.15 shows how the model’s steps are calculated. On line 1, the number

of training steps that will be used per epoch is calculated. It is calculated by

dividing the number of training samples by the size of each batch. On line 2, the

number of validation steps that will be used is calculated. The calculation divides

the number of validation samples by the batch size.

1 TRAIN_STEPS = train_generator.samples // batch_size

2 VAL_STEPS = validation_generator.samples // batch_size

Listing 5.15: Training and Validation Steps are Calculated

The code in Listing 5.16 is used to train the model. On line 1, the strategy

variable created in Listing 5.10 is utilized to create a scope that will execute

code on both GPUs. On line 2, the fit method is called on the model to train

it. On lines 3-7, the parameter options for the model are specified. The first

parameter, set to train generator, determines the training data for the model. The

next parameter, set to steps per epoch, determines the number of batches of data to

get from the training generator before finishing an epoch. The epochs parameter

determines the number of times to iterate over the entire training dataset before

47

finishing. The value for this parameter is 100. The validation generator is passed

into the validation data parameter to set the image data used for validation. The

validation steps parameter determines the number of batches of validation images

to get from the generator before the validation epoch is finished. The callbacks

parameter determines functions that will be called during training. The verbose

parameter specifies how much information will be printed for each epoch.

1 with strategy.scope():

2 trainingmodel = model.fit(

3 train_generator ,

4 steps_per_epoch = TRAIN_STEPS ,

5 epochs = epochs ,

6 validation_data = validation_generator ,

7 validation_steps = VAL_STEPS ,

8 callbacks =[PlotLossesCallback ()],

9 verbose =1)

Listing 5.16: Training the Model

In Listing 5.17, the model.predict() function applies the trained model to the data

passed in and produces the output predictions. In this case, the data passed in is

the validation images.

1 predictions = model.predict(validation_generator)

Listing 5.17: Model Predictions

Listing 5.18 shows how the model’s reports are created. On line 1, the predicted

class is determined for each validation image and stored in the predicted classes

variable. On line 3, the actual class for each of the validation images is stored in

the true classes variable. On line 4, the list of class labels is stored. On line 6, the

scikit-learn classification report function is called. This function returns a report

48

of the models precision, recall, F1-score, and accuracy given the true classes and

predicted classes values. On line 8, the summary of the model is printed. This

includes the layer type and number of parameters for each layer of the model. On

line 9, the output of the classification report function is printed.

1 predicted_classes = np.argmax(predictions , axis = 1)

2

3 true_classes = validation_generator.classes

4 class_labels = list(validation_generator.class_indices.keys())

5

6 report = classification_report(true_classes , predicted_classes ,

target_names = class_labels)

7

8 print(model.summary ())

9 print(report)

Listing 5.18: Classification Report and Model Summary

Listing 5.19, shows a piece of code that loads in the trained neural network

and then makes predictions on an image. This code is going to used in future

work for the classification of new images of Pectinodon bakkeri teeth. On line 1, the

previously trained neural network model, saved in the H5 format, is loaded into

the program. On line 3, an image is loaded in with the size set using the target size

parameter. On line 4, the image is converted to a NumPy array. On line 5, the

image’s pixel values are normalized. On line 6, the image is reshaped in order

to have the correct shape for the artificial neural network. The first value passed

into the reshape function specifies the batch size. In this case, it is set to 1, which

indicates that a single image will be processed. The next 2 values, set to 180 each,

determine the height and width of the image. The last value specifies the number

of color channels. In this case, there are the 3 color channels for red, green, and

49

blue. On line 8, the predict function is called on the model with the image passed

in as the input. The output is stored in the predictions variable. The output for this

model is an array with two values that correspond to the likelihood of the image

belonging to each cluster. On line 9, the model’s output for the image is printed.

1 model = load_model(’test_model.h5’)

2

3 image = load_img(’./ Clusters/ScaledClusters/validate/Cluster3 -

Validation /02117a.jpg’, target_size =(180 , 180))

4 img = np.array(image)

5 img = img / 255.0

6 img = img.reshape (1 ,180 ,180 ,3)

7

8 predictions = model.predict(img)

9 print(predictions)

Listing 5.19: Image Classifier

5.3.1 Results

The total number of image samples used was 408 with 80% of the images used for

training and 20% for validation. There was an even split of 163 images used for

training each class and 41 images used for the validation of each class. Originally,

the second cluster had 106 training images and 27 validation images, but the image

count was evened out using image augmentation as described in Section 3.1.4. The

results for training the model with 100 epochs were an average of 71% accuracy,

71% precision, 70.5% recall, and 70.5% F1-score. The specific metrics for each

cluster can be seen in Table 5.3. The classification accuracy and cross entropy loss

for each epoch can be seen in Figure 5.8 and Figure 5.9. In both of the figures, the

50

orange line represents the validation score and the blue line represents the training

score.

Name Accuracy Precision Recall F1-Score

Cluster 1 71 70 73 71

Cluster 3 71 72 68 70

Table 5.3: Accuracy, Precision, Recall, and F1-Score for Clusters 1 and 3

In the initial experiments, the model’s results indicated an overfitting issue,

which is when the training accuracy is vastly better than the validation accuracy.

This was resolved by tweaking the topology to include regularization layers and

by reducing the total number of layers in the model. Also, it is notable that there

are peaks in the data, but the overall trend is upward. In the plot of the model’s

loss, there are spikes toward the end, but the overall trend is still downward.

Figure 5.8: The model’s accuracy per epoch for classifying images in Cluster 1 and
Cluster 3

5.4 Discussion

PCA and K-Means were used to further look at the dimensionality and differences

between the samples from the numerical dataset. The PCA findings revealed that

51

Figure 5.9: The model’s loss per epoch for classifying images in Cluster 1 and
Cluster 3

most of the data’s variation was encompassed in 2 dimensions. This allowed to

facilitate the analysis by only focusing on 2 dimensions for the K-Means analysis.

The K-Means clustering was performed on dimensions 1 and 2 from the PCA, and

the number of clusters was determined with the Elbow Method and Silhoutte plot.

Due to the lack of a paleontologist, the clusters determined from the K-Means

algorithm were unable to be confirmed. This could have led to a less accurate

model since the model’s clusters were determined using the K-Means output.

Detecting variations between the tooth images proved to be a challenging task.

This is because there appear to be a lot of similarities between the teeth in the

clusters, which made it harder to differentiate between them. The issues also could

have been due to the images. There were multiple images with reflections and

noise. There were also inconsistencies with the background color of the images.

The first topologies tried resulted in models with major overfitting. The final

model presented was developed after many iterations with subpar results and

experimentation with different techniques for tweaking the model to eliminate

overfitting and improve results. One of the tweaks we tried was adding more

layers to the topology. Another was to change the output layer’s function from

52

softmax to sigmoid. Adding more filters to the convolution layers was also tried.

Another modification was changing the optimizer from Adam to SGD. None of

these changes resulted in improved performance, and for the most part, they

reduced the model’s performance. Eventually, the overfitting was resolved by

adding dropout layers to the model. Dropout layers help to regularize inputs

and were useful with improving the results with this data set. The results also

improved by reducing the number of filters in the convolution layers.

53

Chapter 6

Conclusions and Future Work

As of now, paleontologists are manually classifying dinosaur teeth. This proposed

research work aims at saving time for paleontologists by automating the classifica-

tion of images of microfossil teeth. Although there are deep learning approaches

to classify microfossils, none are specifically targeting dinosaur teeth. The goal for

this project was to utilize deep learning to classify microfossil Pectinodon bakkeri

tooth images.

The first necessary step was accomplishing PCA. PCA reduces the dimensional-

ity of a numerical dataset in order to more easily understand the data. The results

from PCA were utilized in K-Means clustering, which was the next important

step. K-Means clustering was used to determine the clusters that each of the

teeth belong to. Following this, a Python program was created to automatically

organize images based on the clusters created from K-Means. From the original

three clusters, Cluster 2 was not taken into account to train the deep learning

model because of low results. Therefore, images in Cluster 1 and Cluster 3 were

used to train the model. The results from this model were as follows: 71% accuracy,

71% precision, 70.5% recall, and 70.5% F1-score.

54

The future work of this thesis is to use the classification model for determining

the cluster of new Pectinodon bakkeri tooth images that may be collected. Along

with this, image segmentation will be applied to the images in order to clearly

separate the tooth from the background. A limitation of this research was not

considering tooth size during the training process (i.e., all the images had the

same size). So, another aspect of future work will be to account for the size of

teeth when training the model. Finally, the results are going to be submitted to a

paleontologist for validation.

55

Bibliography

[1] D. W. Larson and P. J. Currie, “Multivariate analyses of small theropod

dinosaur teeth and implications for paleoecological turnover through time,”

PLoS One, vol. 8, no. 1, p. e54329, 2013. (document), 2.2, 2.2.2

[2] K. Aguilar, G. H. Alférez, and C. Aguilar, “Detection of difficult airway

using deep learning,” Machine Vision and Applications, vol. 31, pp. 1–11, 2020.

(document), 2.3, 2.4, 2.5, 2.2.1

[3] J. Rollins, “Foundational methodology for data science, IBM anal.(2015).”

(document), 3, 3.1

[4] J. H. Lipps, “Microfossils.” [Online]. Available: https://ucmp.berkeley.edu/

fosrec/Lipps1.html 1.1, 2.1.1

[5] K. Mimura, S. Minabe, K. Nakamura, K. Yasukawa, J. Ohta, and Y. Kato, “Au-

tomated detection of microfossil fish teeth from slide images using combined

deep learning models,” Applied Computing and Geosciences, vol. 16, p. 100092,

2022. 1.1, 2.2.3

[6] D. G. Demar, “An illustrated guide to latest cretaceous vertebrate microfossils

of the hell creek formation of northeastern montana.” 1.3, 2.2.2, 3.1

https://ucmp.berkeley.edu/fosrec/Lipps1.html
https://ucmp.berkeley.edu/fosrec/Lipps1.html

56

[7] J. O. Farlow, D. L. Brinkman, W. L. Abler, and P. J. Currie, “Size, shape, and

serration density of theropod dinosaur lateral teeth,” Modern Geology, vol. 16,

no. 1-2, pp. 161–198, 1991. 1.3, 2.2.2

[8] C. Ding and X. He, “K-means clustering via principal component analysis,” in

Proceedings of the twenty-first international conference on Machine learning, 2004,

p. 29. 2.1.2, 2.1.3

[9] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. ”

O’Reilly Media, Inc.”, 2022. 2.1.4, 2.1.8

[10] G. H. Alférez, O. A. Esteban, B. L. Clausen, and A. M. M. Ardila, “Automated

machine learning pipeline for geochemical analysis,” Earth Science Informatics,

vol. 15, no. 3, pp. 1683–1698, 2022. 2.1.4

[11] K. G. Kim, “Book review: Deep learning,” Healthcare informatics research,

vol. 22, no. 4, pp. 351–354, 2016. 2.1.5

[12] A. Zerium, “Demystifying convolutional neural networks,” Sep

2018. [Online]. Available: https://medium.com/@eternalzer0dayx/

demystifying-convolutional-neural-networks-ca17bdc75559 2.1.6

[13] R. Szeliski, Computer vision: algorithms and applications. Springer Nature, 2022.

2.1.7

[14] R. Klette, Concise computer vision. Springer, 2014, vol. 233. 2.1.7

[15] Simplilearn, “What is Keras and why it so popular in 2021: Simplilearn,”

Dec 2022. [Online]. Available: https://www.simplilearn.com/tutorials/

deep-learning-tutorial/what-is-keras 2.1.9

https://medium.com/@eternalzer0dayx/demystifying-convolutional-neural-networks-ca17bdc75559
https://medium.com/@eternalzer0dayx/demystifying-convolutional-neural-networks-ca17bdc75559
https://www.simplilearn.com/tutorials/deep-learning-tutorial/what-is-keras
https://www.simplilearn.com/tutorials/deep-learning-tutorial/what-is-keras

57

[16] G. H. Alférez, E. L. Vázquez, A. M. M. Ardila, and B. L. Clausen, “Automatic

classification of plutonic rocks with deep learning,” Applied Computing and

Geosciences, vol. 10, p. 100061, 2021. 2.2.1

[17] L. G. Olivas, G. H. Alférez, and J. Castillo, “Glaucoma detection in latino pop-

ulation through oct’s rnfl thickness map using transfer learning,” International

Ophthalmology, vol. 41, pp. 3727–3741, 2021. 2.2.1

[18] T. Itaki, Y. Taira, N. Kuwamori, T. Maebayashi, S. Takeshima, and K. Toya,

“Automated collection of single species of microfossils using a deep learning–

micromanipulator system,” Progress in Earth and Planetary Science, vol. 7, no. 1,

pp. 1–7, 2020. 2.2.3

[19] J. Renaudie, R. Gray, and D. B. Lazarus, “Accuracy of a neural net classification

of closely-related species of microfossils from a sparse dataset of unedited

images,” PeerJ Preprints, vol. 6, p. e27328v1, 2018. 2.2.3

[20] T. Itaki, Y. Taira, N. Kuwamori, H. Saito, M. Ikehara, and T. Hoshino, “Inno-

vative microfossil (radiolarian) analysis using a system for automated image

collection and ai-based classification of species,” Scientific reports, vol. 10, no. 1,

pp. 1–9, 2020. 2.2.3

	Automated Classification of Pectinodon Bakkeri Teeth Images Using Machine Learning
	Recommended Citation

	Contents
	List of Figures
	Introduction
	Problem Statement
	Goals and Requirements
	Motivation

	Background
	Theoretical Framework
	Microfossils
	Principal Component Analysis
	K-Means Clustering
	Machine Learning
	Deep Learning
	Convolutional Neural Network
	Computer Vision
	Tensor Flow
	Keras

	State of the Art
	Application of Deep Learning and Computer Vision for Image Classification
	Manual Classification of Microfossils
	Automated Classification of Microfossils

	Methodology
	Problem Understanding
	Analytic Approach
	Data Requirements
	Data Collection
	Data Understanding
	Data Preparation and Modeling
	Evaluation
	Deployment

	Evaluation Plan
	Results
	PCA and K-Means Clustering
	Code for PCA and K-Means

	Python Script for the Automatic Organization of Images
	Deep Learning Topology
	Results

	Discussion

	Conclusions and Future Work
	Bibliography

