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Abstract

Mutual information (MI) is a measure frequently used to find co-evolving sites 

in protein families. However, factors unrelated to protein structure and function, 

in particular sampling variance in amino acid counts and complex evolutionary 

relationships among sequences, contribute to ML Understanding the contribution 

of these components is essential for isolating the MI associated with structural 

or functional co-evolution. To date, the contributions of these factors to mutual 

information have not been fully elucidated.

We find that stochastic variations in amino acid counts and shared phylogeny each 

contribute substantially to measured MI. Nonetheless, the mutual information 

observed in real-world protein families is consistently higher than the expected 

contribution of these two factors. In contrast, when using synthetic data with 

realistic substitution rates and phylogenies, but without structural or functional 

constraints, the observed levels of MI match those expected due to stochastic and 

phylogenetic background.

Our results suggest that either low levels of co-evolution are ubiquitous across 

positions in protein families, or some unknown factor exists beyond the currently 

hypothesized components of intra-protein mutual information: sampling variance, 

phylogenetics and structural/functional co-evolution.

in
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1

C h a p t e r  1

Introduction

With the aim of being accessible to the largest possible audience, an extremely 

brief overview of biological and statistical concepts fundamental to the thesis 

are presented in this first section. Interested readers are referred to texts such 

as A lberts et al. (2009) and R eza (1961) for additional background. Readers 

familiar with these areas may prefer to begin with Section 1.1 for a review of 

recent literature.

In most organisms, genetic information is stored in long, intricate strands of 

deoxyribonucleic acid or DNA. Through complex intermediate processes, this 

information is used to create strands of amino acids. These strands take on 

particular 3-dimensional configurations, or “fold” to form proteins. The overall 

shape and structure of proteins are significant, and critical to correct function.

Not all parts of a protein, however, are equally important for its proper function. 

Some amino acids, for example, may serve to physically connect adjacent regions 

of the sequence, but do not directly affect protein function. Thus, the exact type 

of amino acid in these locations, or “sites” , in the protein sequence is less critical.

Some sites, however, serve an important role in the structure of the protein. Some 

pairs of amino acids may, for example, form bonds thereby connecting locations
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which were well-separated in the sequence. In this way, protein folding leads to 

close proximity of sections in the sequence which were originally distant. The 

amino acid sequences in these structurally significant areas often cannot change 

freely since a different amino acid may be unable to form the required bond. If 

both amino acids in such a pair change, however, it may be possible to maintain 

the critical structural characteristics of the protein.

As well as site pairs which influence protein structure, some groups of amino acids 

are directly involved in the function of the protein, and are equally important. If 

the function of the protein involves binding to another molecule, or facilitating a 

chemical reaction, for example, amino acids with specific characteristics may be 

required at certain sites in the sequence. A single change in one of these sites may 

render the protein useless. However, as in the structural case described above, 

simultaneous mutations may preserve the protein’s function.

A group of similar proteins, which perform the same biochemical function, can 

often be found across a range of organisms. The resemblance between these ho­

mologous proteins exists because they arise from common genetic ancestors. The 

entire evolutionary history of such a group can be represented as a phylogenetic 

tree. This tree shows which organisms share a common ancestor and the likely 

evolutionary distance to that point. These organisms themselves shared more 

distant ancestors, eventually tracing to a single common root. This paradigm 

presumes a single historical protein served as the founder of all existing forms of 

that protein. Selection facilitated changes and divergence of paths, as represented 

by tree branches, resulting in the currently observable set of proteins, represented 

by tree leaves.

A multiple sequence alignment (MSA) is the collection of homologous proteins 

from different organisms, the leaf nodes of the phylogenetic tree. The MSA lists 

the amino acid sequence from each protein as a row in the alignment. Many
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areas in a protein are similar throughout most organisms allowing sequences to 

be lined-up with each other. However, because of different lengths of strands, 

gaps are added to shorter strands to line-up similar regions. Once complete, the 

MSA can be thought of as a table. Each row represents one organism’s amino acid 

sequence for the protein of interest. Each column represents a common location 

or site shared in the protein family.

Given a MSA, it is trivial to spot regions in the protein which do not change 

among organisms, called “conserved sites” . However, it is difficult to identify in­

stances where the amino acids are not strongly conserved, but are still constrained 

by other locations in the protein. We use the term co-evolution, in this context, 

to represent a pair (or group) of amino acids that must evolve simultaneously to 

maintain an aspect of protein structure or function.

Mutual information (MI) is a measure of the mutual dependence of two variables. 

It represents the amount of information conveyed in one random variable about 

another. If two random variables are independent then their level of mutual 

information is zero. As the dependency between two random variables increases, 

so does the MI.

Formally, the formula for mutual information is:

where X and Y are random variables which can take on values x and y respectively.

Here, pm(x) and pm(y) represent the probabilities of x and y independently while 

Pj(x,y)  is the probability of x and y occurring simultaneously. This measure 

can be applied to Iwo sites in a MSA. In this case, X and Y represent the un­

known amino acid at sites i and j respectively. This means pm(x) and pm(y) 

represent the probability of particular amino acids occurring at each site; Pj(x,y)

( i . i )
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represents the probability of a particular pair of amino acids occurring together, 

meaning amino acid x occurs at site i, and amino acid y occurs at site j, in the 

same protein. Although we cannot directly know the probability of amino acids 

occurring, a common assumption is that the frequency with which an amino acid 

is observed, divided by the total number of observations, gives a good estimate 

of its probability. However, as described in detail in the following Chapter, when 

there are only a small number of observations, this estimation becomes less ac­

curate. When this potential inaccuracy is assumed negligible, and probabilities 

are estimated from observed frequencies, a single point value for MI can be calcu­

lated for each site pair in the sequence. However, if this uncertainty is considered, 

then a distribution of possible MI values results for each site pair, as described 

in Chapter 2.

1.1 Applying Mutual Information techniques

The insight that MI is a tool that can be applied to MSAs in order' to detect 

co-evolution was first suggested by Korber et al. (1993). Point estimates of 

MI were originally used in a straightforward way with no correction terms; we 

will call this statistic “uncorrected MI” . Korber et al. (1993) found sites with 

high MI values frequently corresponded to sites which independent experiments 

indicated had structural significance.

C larke (1995) also applied uncorrected MI to MSAs from proteins whose struc­

ture was already partially known. He selected 16 highly co-varying pairs in the 

sequence and then looked at the specific structures found at these pairs in the 

folded protein. Indeed, many of these areas had structural significance such as a 

salt bridge or other binding mechanisms.

Most protein structures, however, are unknown. Methods may be developed to
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identify structurally or functionally significant pairs, but there is no certain way 

to evaluate their accuracy. To resolve this, proximity is used as a gold standard 

to evaluate if a method can identify sites likely to be co-evolving. If a method 

effectively identifies sites which are physically close in the folded structure of the 

protein, it is considered accurate.

Oliveira et al. (2002) also used uncorrected MI, subdividing MI from “struc­

ture and function” into three categories: “part of the main active site” , “part 

of a modulator binding site” and “transducing a signal between those sites” . 

These authors used a broad class of methods called Correlated Mutation Analy­

sis (CMA) to categorize amino acids into pairs and groups which are likely related 

in terms of the function they perform. CMA looks at a combination of entropy, 

co-variation and physicochemical similarities between amino acids. The paper 

also touched on the very high conservation of functional location in a protein as 

compared to the conservation of the particular amino acids which perform that 

task.

Although MI can be modified with correction terms, some recent papers still use 

uncorrected MI values. One such recent application includes the discrimination 

of phylogenetically related organisms. In particular, WECKWERTH and SELBIG 

(2003) showed that applying mutual information assists in the discovery and 

identification of amino acid sites or motifs which are particular to different kinds 

of organisms. Regions in proteins from mammals, plants and bacteria may be 

consistent within their own group, but show marked differences across groups.

A second important application of uncorrected MI has been the identification of 

site pairs which are critical for drug resistance in HIV. HOFFMAN et al. (2003) 

created a MSA from HIV sequences and subsequently divided it into two groups. 

One contained sequences from people who had not been taking drugs to combat 

the virus; the other group had sequences from people who did. There was suffi­
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cient variation in these sequences to pinpoint co-evolving sites which existed only- 

in the sequences from people undergoing drug treatment which in turn indicated 

these pairs are critical to drug resistance.

1.2 Mutual Information components

Calculating the point MI for a site pair is straightforward; however the intu­

itive explanation for the resulting value is not. Unfortunately, diverse sources 

contribute to the total observed MI. These sources may be summarized as:

MI(0bserved) Ml (stochastic) T Ml(phyiogeny) T MI(structure) T MI(funĉ jon̂ (1-2)

as hypothesized by Atchley et al. (2000).

Observed MI represents the total MI, calculated directly from the MSA. Stochas­

tic MI includes effects such as random variations and small sample sizes. In other 

words, one would expect that purely by chance, certain pairs would appear to 

undergo some level of co-evolution. Since there are a finite number of organisms 

in the MSA, small sample size becomes an unavoidable issue. MI is always a 

non-negative value meaning any such variation changing the value from zero will 

always produce a positive level of MI. A second factor, Phylogenetic MI, considers 

the effect of a shared evolutionary history. Similarities in a group of organisms’ 

proteins may arise from the fact that the organisms have a common ancestor and 

may not be related to any structural or functional constraints. If by chance two 

sites mutate far back in the phylogenetic tree, then observed levels of MI would 

increase despite a lack of structural or functional significance in the pair. Similar 

to Stochastic MI, this effect will always contribute positively to the observed MI 

levels for a pair. The final factor we consider is the effect of structural and func­
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tional constraints. This component reflects the relationship between sites that 

are critical to the operation of the protein.

Of these components, the aim of co-evolution analysis is to isolate the MI arising 

from structure or function. In recent years, a great deal of research has focused on 

ways to remove or account for both the stochastic and phylogenetic components 

of the measurement which we will call background MI. This includes correction 

terms which consider what levels of background MI are expected for a given site 

pair.

1.3 Modifications to basic Mutual Information methods

The uncorrected MI value calculated for a pair can be modified in various ways 

to improve co-evolution prediction accuracy. To this end, many authors have 

proposed methods which compare one pair’s MI values in some way with the MI 

observed for all other site pairs. For example, T illier and Lui (2003) searched 

for pairs which co-varied differently to most others. This involved identifying 

groups of organisms in the MSA which tended to share mutations. Next, varia­

tions which occurred within groups of otherwise similar organisms were flagged. 

Since wide-spread co-variation typically arises from shared phylogeny, sites which 

did not follow the overall pattern likely co-varied for non-phylogenetic reasons. 

This paper indirectly accounted for phylogeny by assuming groups of proteins 

with similar patterns were closely related, but did not take phylogenetic history 

directly into account.

SuEL et al. (2003) used a statistic called “statistical coupling energy” , a mea­

sure that is closely related to MI, but which takes globally observed amino acid 

frequencies into account. With this measure, Suel et al. (2003) were able to 

identify groups of amino acids which represent disjoint functional areas on the
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protein. These authors expanded the common conception that co-evolution pri­

marily occurs between amino acids which are physically close, hypothesising that 

a network may link physically distant areas on the protein thereby making them 

functionally related.

Similarly, correlation coefficients computed between sites may be used to identify 

regions of interaction within a protein (SARAF et al. 2003). Correlation coeffi­

cients consider the overall similarity of a pair compared to the level of conservation 

of each site. This measure was likewise used to find regions in the protein which 

were functionally important.

A different modification of MI, normalizing MI by the joint entropy of the pair 

of positions, was shown to offer substantial improvements over uncorrected MI 

in predicting contacting pairs (M artin et al. 2005). Joint entropy is a measure 

of the variability of the amino acids at a particular pair of sites. If the amino 

acids are highly conserved across organisms then the entropy value will be low. 

A modified MI value is found by dividing point MI estimates by the joint entropy 

to create a statistic called Mir.

An extension of this work is to identify co-evolving groups of sites. G loor et al. 

(2005) used Mir to support the finding that amino acid sites that co-vary with 

relatively few other sites are more likely to be structurally important while those 

that co-vary in larger groups of related sites are usually critical for the function 

of the protein.

Fares and T ravers (2006) continued this work, which sought to isolate the 

notoriously difficult to separate MI components “structural” and “functional” . 

Proteins with known 3D structures and areas of functional importance were an­

alyzed. The results confirmed previous findings that sites with a small number 

of co-varying sites tended to be in close physically proximity and related to the
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structure of the protein. Sites which were part of a larger network of co-variation 

tended to be important to the function of the protein and were not necessarily 

physically close in the folded protein.

More advanced normalizations can even better account for phylogenetic effects 

indirectly by assuming that the phylogenetic background will be largely the same 

across all sites in the protein family. When searching for unusually high levels of 

mutual information, Dunn et al. (2008) used all pairs to account for background 

levels of mutual information. This entails comparing the observed mutual infor­

mation of one pair to the observed mutual information of all other possible pairs 

which include one of the original sites. That is, if sites 3 and 5 are of interest, 

then the observed mutual information is normalized by the average MI for all 

other site pairs that include either 3 or 5.

Little and Chen (2009) made a further refinement to the analysis of this nor­

malized value by measuring the level of variability in MI values. This allowed 

for normalization of both MI levels and variability. With these values, a refined 

calculation of the discrepancy between observed MI point estimate and expected 

MI as calculated by Dunn et al. (2008) was possible. This in turn identified sites 

with unusually high MI levels and a high probability of co-evolution.

A recent development has been the use of weighted importance of sequences and 

low-count corrections to reduce the impact of small, redundant samples (Buslje 
et al. 2009). This stops similar, but not identical, sequences from being totally 

eliminated while still preventing them from biasing sequence calculations. This 

allows for better extraction of data from observed MSAs.
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1.4 Including phylogenetic information

None of the methods described above directly consider the phylogenetic history 

of the protein family when computing co-evolution scores. However, a number 

of co-evolution analyses which include the underlying phylogeny, so-called “tree- 

aware” methods, have also been proposed.

POLLOCK et al. (1999) described an early method to include phylogenetic in­

formation which also reduced amino acids from the original 20 possibilities to a 

two-state system, considering properties of amino acids such as size or charge. 

Analysis of the results focused on physical proximity and simple structural con­

structs. The method identified sites which were touching in a helix loop, and 

frequently had opposing charges. In addition, many sites found to be coevolving 

on the surface of the protein were in close physical proximity.

T uff and Darlu (2000) used phylogenetic history to reconstruct simulated pro­

tein families from 15 different sets of homologous proteins. Similar to P ollock 

et al. (1999), they considered substitutions which affected the physicochemical 

properties of the site. The authors investigated different methods to construct the 

phylogenetic tree as well as different possible reduced amino acid alphabets. The 

number and location of co-varying sites found under different tree-construction 

methods and amino acid alphabets were reported. This large sensitivity to the 

particular methods used highlighted the difficulty of obtaining robust predictions 

of co-evolution leaving the problem, admittedly, unresolved.

A method used in this thesis, bootstrapping, was described by W ollenberg 

and Atchley (2000). In this method, the phylogenetic tree and MSA are used 

to find a probabilistic root ancestor based on tree branch length and position. 

With this, a new MSA is created by first instantiating one root ancestor given 

the probabilities of each amino acid at each site. Now, mutations are added
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stochastically, depending on the branch lengths, until all leaf nodes contain a 

new protein sequence. MI calculated from this MSA will include the effects of 

phylogeny and stochastic variation but not structural or functional constraints, 

since they were not included in the simulated evolution. WOLLENBERG and 

Atchley (2000), however, considered only point estimates of MI, as opposed to 

distributions considered in this thesis.

By comparing point estimates of the MI found in the bootstrapped MSAs with 

the MI point estimate from the original alignment, sites with high co-variation 

for structural or functional reasons were identified by Atchley et al. (2000). 

While WOLLENBERG and Atchley (2000) had focused on a known structure, the 

bootstrapping method was expanded in this contribution to investigate proteins 

with unknown structure. The idea of comparing bootstrap (expected) MI with 

observed MI is a cornerstone of this thesis.

This method of expected and observed MI comparison is not limited to site pairs 

and was extended by B uck and Atchley  (2005) to find networks of co-evolving 

sites. The paper investigated the serpin proteins and found extensive networks of 

highly correlated sites corresponding to groups which played a significant func­

tional role in the protein.

Mutations are typically considered to occur with equal probability over any length 

of branch in the phylogenetic tree. However, D immic et al. (2005) considered on 

which branches of the tree mutations were most likely to occur for each site. 

Mutation likelihood was calculated for branches in the phylogenetic tree for all 

sites independently. To develop a null hypothesis of no co-evolution, bootstrap 

methods described by P ollock et al. (1999) were used. Test statistics then 

determined if the null hypothesis could be rejected. If so, the pair was considered 

to be co-evolving. D immic et al. (2005) were able to identify a large number of 

co-evolving sites in real-world eukaryotic proteins, using amino acid proximity in
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the folded structure to assess accuracy.

1.5 Comparison of methods

Despite this progress, it is as yet unclear which methods work best when used 

with real data and even whether including complete phylogenetic information in 

co-evolution analysis improves the accuracy or statistical power of the measure. 

Fodor and A ldrich (2004) investigated 4 tree-unaware methods, including 

uncorrected MI, and focused on their ability to correctly detect covariance in 

both synthetic and real world data. Each method was found to have an optimal 

level of site conservation at which it performed best. This implied that different 

methods on different types of data, or an intelligent hybrid of multiple methods, 

would improve detection. CAPORASO et al. (2008) directly addressed the question 

of co-evolution detection by tree-aware and tree-ignorant methods. In the same 

paper, the effect of using reduced-state amino acid alphabets was investigated. 

Using 4 tree-aware and 5 tree-unaware metrics, CAPORASO et al. (2008) analysed 

a protein which contained a large, well-known helix structure. Since amino acids 

separated by 4 sites were known to interact and be critical to the helix structure, 

the paper investigated each method’s ability to detect co-evolution in these site 

pairs. Tree-ignorant methods, it was found, were generally as powerful as tree- 

aware methods. The use of reduced alphabets was less clear, with some recodings 

offering improvements while others did not.

1.6 Conclusion

Explicitly or implicitly, all of the methods proposed for identifying co-evolving 

sites in protein families aim to minimize or eliminate the contribution of shared
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phylogeny and stochastic variation to the observed co-evolution signal. As men­

tioned by Buslje et al. (2009) and Little and Chen (2009) however, the effect 

of the MI(stochastic) and MI(phyiogeny) components has not been fully explored to 

date. In Chapter 2, we shed light on the nature of these contributing factors.
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C h a p t e r  2

Teasing apart components in observed Mutual 

Information from multiple sequence alignments

2.1 Introduction

It has long been understood that co-evolution, both among and within proteins, 

may indicate associations of structural or functional significance (Fitch and 

Markowitz 1970). A large number of techniques have thus been developed 

which quantify some signature of co-evolution, and use this pattern to identify 

protein-protein interactions (Marcotte et al. 1999; Goh et al. 2000; Goh and 

Cohen 2002; Pazos et al. 2005; Waddell et al. 2007), domains of interaction 

within and between proteins (Larson et al. 2000; Kim and Subramaniam 2006; 

Kim et al. 2006; Fares and T ravers 2006), and co-evolving sites within protein 

families (for review see Codoner and Fares (2008) and Pazos and Valencia 

(2008)).

For intraprotein interactions in particular, Mutual Information (MI) is a tool 

that can be applied to multiple sequence alignments (MSAs) in order to de­

tect co-evolution (Korber et al. 1993; Clarke 1995; Oliveira et al. 2002; 

Fodor and A ldrich 2004). When applied to an MSA, the observed MI re­

flects the information content carried by one site in the protein about another
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site. Since co-evolving sites are expected to share high MI, MI may be used to 

identify sites of structural or functional significance within the protein sequence. 

Recent applications include the discrimination of phylogenetically related organ­

isms (W eckwerth and Selbig 2003) and the identification of site pairs which 

are critical for drug resistance in HIV (Hoffman et al. 2003).

Unfortunately, diverse sources are believed to contribute to the total observed M I. 

These sources may be summarized as: M I(0bserved) =  M I (st0chastic) +  M I (phyiogeny) 

+  M I (structure) +  M I (function), as hypothesized by Atchley et al. (2000). Of these 

components, the aim of co-evolution analyses is to isolate the M I arising from 

structure or function. Intense research effort has thus been devoted in recent 

years toward developing an appropriately normalized or corrected measure of M I, 

which reduces or eliminates both the stochastic and phylogenetic components of 

the measurement.

To do this, many investigators have proposed methods which use simple nor­

malizations or rapidly-computed comparisons over all site pairs. For example, 

multiple significant interdependency may be used to discriminate functional ver­

sus phylogenetic co-evolution (TiLLlER and Lui 2003). Normalizing MI by the 

joint entropy of the pair of positions offers substantial improvements over unnor­

malized MI in predicting contacting pairs (M artin et al. 2005). An extension 

of this work is to identify co-evolving groups of sites (Gloor et al. 2005), which 

may help distinguish important structural locations from those of functional sig­

nificance (Fares and T ravers 2006). Statistical coupling energy, a measure 

closely related to MI, has also been used to indentify groups of amino acids which 

represent distant functional areas on the protein (Suel et al. 2003). Similarly, 

correlation coefficients computed between sites may be used to identify regions of 

interaction within a protein (Saraf et al. 2003). Normalizations can also account 

for phylogenetic effects indirectly by assuming that the phylogenetic background 

will be largely the same across all sites in the protein family (Dunn et al. 2008),
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Figure 2.1: Two different pairs of sites in a protein. We consider one pair which is 
highly conserved with a single mutation in both sites near the tree root; this would 
result in the MSA depicted in (a). In contrast, panel (b) would result if the sites 
are strongly co-varying and not well conserved. These two very different situations 
produce identical MSAs and are indistinguishable if phylogenetic information is 
ignored.

and by manipulating residuals between observed and expected MI based on this 

assumption (L ittle and C hen 2009).

None of the methods described above considers the phylogenetic history of the 

protein family when computing co-evolution scores. The need for including phylo­

genetic information can be illustrated with a simple example, as shown in Figure 

2.1. Suppose that one pair in this example, labeled (a), consists of highly con­

served sites sharing a single coordinated mutation event near the root. This could 

for example indicate a distant selective sweep, or founder effect, and would not 

commonly be considered coevolution. In contrast, suppose that a second pair, 

labeled (b), consists of highly variable positions, in which substitution events are 

coordinated. These multiple, coordinated substitutions are commonly refered to 

as ‘molecular coevolution’. Note that both panels of Figure 2.1 result in the 

same MSA, albeit with shuffled rows, despite describing very different biological 

events. Therefore without considering the underlying phylogeny we are unable 

to understand the evolutionary relationship between sites.

A number of co-evolution analyses which include the underlying phylogeny, so-
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called “tree-aware” methods, have been proposed (POLLOCK et al. 1999; T uff 

and Darlu 2000; D immic et al. 2005; CAPORASO et al. 2008). In a study of 

nucleotide sequences, for example, (WOLLENBERG and Atchley 2000) use the 

phylogenetic tree to recreate via bootstrap a new MSA. This new set of sequences 

captures co-variation from phylogenetic sources and also stochastic variations, 

but not structural or functional constraints. By comparing point estimates of the 

MI found in the bootstrapped MSAs with the MI point estimate from the orig­

inal alignment, sites with high co-variation for structural or functional reasons 

(Atchley et al. 2000), or networks of co-evolving sites (B uck and Atchley

2005) , can be identified. Despite this progress, it is as yet unclear whether in­

cluding complete phylogenetic information in co-evolution analyses improves the 

accuracy or statistical power of the measure (Fodor  and A ldrich 2004; C a- 

PORASO et al. 2008).

In contrast with the phylogenetic component of MI, the component MI(st0Chastic) 
has received comparatively little attention. Estimates of the number of sequences 

required to obtain meaningful MI measures range from 30 (Fares and T ravers

2006) to 400 (B uslje et al. 2009). A recent development has been the use of 

weighted importance of sequences and low-count corrections to reduce the impact 

of small, redundant samples (B uslje et al. 2009).

Explicitly or implicitly, all of the methods proposed for identifying co-evolving 

sites in protein families aim to minimize or eliminate the contribution of shared 

phylogeny and stochastic variation to the observed co-evolution signal. To date, 

however, the contributions of MI(stochastic) and MI(Phyi0geny) have not been fully elu­

cidated, as noted by several authors (W ollenberg and Atchley 2000; B uslje 

et al. 2009; L ittle and C hen 2009). The purpose of this study is to identify 

and isolate the contribution of each of these factors to the observed MI. We find, 

strikingly, that these two components do not explain the levels of MI observed 

for most position pairs in MSAs of protein families.
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2.2 Methods

Our analysis requires a MSA, site-specific substitution rates, and a corresponding 

phylogenetic tree for which both topology and branch lengths have been esti­

mated. For this study, the following set of functionally and structurally diverse 

proteins were used: triosephosphate isomerase (TIM1) (454 sequences, 320 sites); 

dihydropteroate synthetase (215 sequences, 370 sites); phosphopyruvate dehy­

dratase (162 sequences, 508 sites); methionine aminopeptidase-1 (223 sequences, 

332 sites); phosphoglycerate kinase (326 sequences, 581 sites); the GroEL chaper- 

onin (317 sequences, 591 sites), where the number of sites represents the number 

of amino acids in one sequence including gaps. All sequences were obtained from 

GenBank and had redundant sequences of more than 90% identity removed.

Protein families were aligned using a combination of the NCBI’s Cn3D struc­

tural alignment system (Hogue 1997) and extensive manual curation. Midpoint- 

rooted phylogenetic trees were computed using PhyML under a Gamma model 

of rate heterogeneity (Guindon and Gascuel 2002; G uindon and Gascuel 

2003) using the WAG substitution matrix (W helan and Goldman 2001). Rates 

were estimated using both bRate (FERNANDES and Atchley 2008) and Rate4Site 

(Pupko et al. 2002).

2.2.1 Algorithm

Estimating the Observed MI Distribution

Our algorithm proceeds as follows. For any two sites (columns in an MSA), we 

calculate the pair or “joint” counts, a 20-by-20 table of the number of times 

each amino acid pair occurs in the two columns, and the “marginal” counts, the 

number of times each amino acid occurs in each column. As described in greater
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detail below, MI is not fundamentally a function of these amino acid counts, but of 

frequencies. Typically, this distinction is obscured by assuming that a reasonable 

estimate of the underlying frequency is given by the fraction: (counts)/(total 

observations). Under this assumption, MI can be computed in the usual way 

(Martin et al. 2005); we refer to this as the MI “point estimate” .

Unfortunately, such point estimates are extremely sensitive to the number of 

sequences in the alignment, or the number of entries in the 20-by-20 contingency 

table. In any such table from real-world proteins, only a small fraction of the 400 

possible amino acid pairs are typically non-zero. The MI point estimate implicitly 

assumes that if a pair is not observed, it would never be observed; its expected 

frequency is assumed to be zero. This is an extremely strong assumption, and 

acts as a large source of systematic bias (Hutter and Zaffalon 2005).

We therefore use the observed counts to estimate, in a statistically rigorous way, 

a distribution of the possible frequencies which might underly the observed data. 

We then generate repeated random samples from this distribution, calculating a 

value of MI each time. This yields a distribution of values of MI which might 

have been observed, given our best guesses about the underlying frequencies of 

amino acid pairs. In essence, this procedure accounts for the fact that we do 

not have every possible protein sequence in the alignment, but have observations 

based on only a subset of all possible organisms.

For brevity we call the distribution computed in this way the ‘observed MI’. An 

example is given in the right-most histogram in Figure 2.2 and described further 

in the Results.
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Estimating MI(stochastiC)

The procedure outlined above illustrates that stochastic variations in amino acid 

counts, based for example on which organisms are included in a specific align­

ment, produce variation in MI. We would like to quantify the contribution of this 

stochastic variation alone, in the absence of any structural/function or phyloge­

netic sources of MI. To do this, we assume that amino acid frequencies at the 

two sites in question are independent. In particular, we use the same statistically 

rigorous procedure to estimate the distribution of the marginal frequencies, the 

frequencies of each amino acid at each site, given the observed data. We then 

draw a random sample from this distribution. Since we have assumed indepen­

dence, we compute each of the joint frequencies as the product of the appropriate 

marginal frequencies. A value of MI is then computed based on these joint and 

marginal frequencies, and the process is repeated to estimate the distribution of 

Ml(stochastic) ? as illustrated by the leftmost histogram in Figure 2.2.

Estimating the expected MI distribution

To generate the expected MI distribution, we would like to generate possible 

values of MI which might occur given both stochastic variations in amino acid 

counts, and shared phylogenetic history, but without assuming any structural 

or functional relationship between the two sites. To do this, we bootstrap an 

evolutionary history, but assume that mutations occur independently at the two 

sites.

As stated above, our method requires a phylogenetic tree and site-specific substi­

tution rates as inputs. We use these, along with the observed MSA, to generate 

a probabilistic ancestor at the root of the tree. The ancestor is probabilistic in 

the sense that we estimate a probability that the residue at a specific site in the
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ancestor was a specific amino acid. We can then sample with these probabilities 

to generate a particular possible ancestor. Starting from this ancestor, we assume 

that the evolutionary history at each site can be modeled by a standard evolu­

tionary Markov process at the estimated site-specific substitution rates, using 

the WAG substitution matrix (W helan and G oldman 2001), and following the 

given phylogenetic tree. Again we note that substitutions occur independently 

at each site throughout this bootstrap procedure. At the end of this procedure, 

we have a single bootstrapped MSA. Repeating this procedure many times yields 

a distribution of M I, as illustrated in the central histogram of Figure 2.2. We 

note that this ‘expected M I ’ , or M I(stochastic) +  M I (Phyiogenetic)j accounts explicitly 

for sampling variance, rate heterogeneity, amino acid substitution similarity and 

shared phylogeny for every site pair.

Comparing observed and expected MI

The expected MI distribution computed above contains both the stochastic and 

phylogenetic components of MI, but no structural or functional information. In 

contrast, when we use the original MSA to estimate the observed MI distribution, 

structural or functional constraints on the pair frequencies are preserved. Thus 

our null hypothesis is that the distribution of observed MI for most site pairs will 

not differ significantly from the expected distribution.

Determining the extent to which alternate probability distributions are distin­

guishable, via their samples, is a nontrivial task. The most popular approaches are 

based on the work of N eyman and P earson (1933) and are related to the para­

metric analysis of Receiver Operating Characteristic curves (Lasko et al. 2005). 

For this work we instead used a method similar to the Mann-Whitney U statistic 

(M ann and W hitney 1947) and the Area Under the Curve (AUC), as described 

by Faw cett (2006). To verify robustness, numerous variations of this measure
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were used. In all cases, differences between these variants were negligible, showing 

that our measure of separability was invariant to minor changes in the analytical- 

discrimination framework.

We scale our separability measure such that if the expected distribution lies to 

the left of the observed, and has very little overlap, the separability is close to 

negative one. If the two distributions overlap perfectly, the measure will return 

a value of zero separability. It is uncommon that the expected MI level is larger 

than the observed, but is possible with stochastic variations; in this case, if the 

expected distribution lies entirely to the right of the observed, the separability is 

one.

An internal control for the analysis

The integrity of our analysis was tested by using bootstrapped MSAs, in which 

site pairs do not have structural or functional constraints, as internal controls. 

In brief, we use randomly chosen MSAs created by the bootstrapping procedure 

described above as the input to our algorithm, along with the rates and phyloge­

netic tree of the original MSA. We then compute a control case of the “observed” 

MI distribution, a control case of the probabilistic root ancestor and a control 

set of bootstrapped MSAs. These allow us to estimate an expected MI distribu­

tion known to be free of structural and functional constraints. In principle, this 

distribution should be indistinguishable from the “observed” MI distribution for 

the respective bootstrapped MSA.
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2.2.2 Implementation 

Observed MI Distribution

As stated above, rare events (low or zero contingency table counts) have a large 

impact on the ‘information’ of the data (Shannon 1948a; Shannon 1948b), and 

can systematically bias subsequent computations, such as MI (Hutter and Zaf- 

falon 2005). Attempts have been made to derive a closed-form expression for 

the sampling distribution of the MI estimator (Hutter  and Zaffalon 2005), 

but only asymptotic moment-expansions have been found. Therefore we follow 

a standard Monte Carlo approach where a Bayesian posterior frequency distri­

bution is derived from the presumed-multinomial contingency counts (R obert 

2001). Specifically, a Dirichlet prior is combined with a multinomial likelihood 

to estimate posterior contingency frequencies p from counts n, both joint and 

marginal, such that

Pv(p\n) oc Pr(n|p) Pr(p|a), (2.1)

where Pr(n|p) is multinomial likelihood and Pr(p|a) is Dirichlet. Since the multi­

nomial distribution is conjugate to the Dirichlet, the posterior is also Dirichlet- 

distributed. Following B erger and B ernardo  (1992), each component of hy­

perparameter a is set to 1/2 such that the prior is minimally informative both in 

the sense of B erger and B ernardo (1992) and Jeffreys (R obert 2001).

Let riij represent the observed joint count of amino acid pair (z, j ) ,  while ni9 and 

n,j denote the counts of the respective marginals. Then the joint frequencies pij 

and marginal frequencies pi9 and are Dirichlet distributed with parameters 

riij +  a, +  a, and -1- a respectively. The sampling distribution of the 

MI estimator is computed by repeatedly drawing values of Pij, pi9, and p.j and



computing

28

20 20

MI = E  E  PH lo§
t= l j = 1

Inspection showed that 1000 replicates were required to reasonably estimate the 

posterior MI distribution from our typical amino acid pair count contingency 

tables.

M -I  (stochastic)

To estimate MI(stoChastic) , we generate joint frequencies as the product of the ap­

propriate marginal frequencies as estimated via the Dirichlet posteriors. New joint 

counts are then generated via multinomial sampling of joint frequencies. An MI 

value is computed based on this new joint table, and the process is repeated.

Expected M I distribution

Under the hypothesis of site-independence, parametric bootstrapping was used 

as per W ollenberg and Atchley (2000). Specifically, the distribution of 

amino acids for each site of the root ancestor was estimated using standard 

phylogenetic likelihood techniques (FELSENSTEIN 2004). The probabilistic an­

cestor was repeatedly sampled and subject to tree-guided Markovian evolution 

with site-specific rates to realize hypothetical MSAs under the null model of 

site-independence. For each MSA realization an ‘observed MI’ distribution was 

generated via multinomial sampling (as described for the original MSA), and 

then a single MI value was drawn from this distribution. The distribution of an 

equal-weighted mixture of such bootstrap realizations is the ‘expected MI’ ; we 

note that the expected MI distribution conditions only on site independence.
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2.3 Results

2.3.1 Distribution comparison

Figure 2.2 shows the resulting distributions of mutual information for a typi­

cal pair of positions in a multiple sequence alignment. For illustrative purposes 

we have used a pair of positions from the alignment TIM1, as described in the 

Methods. The histogram on the left shows the mutual information attributable 

to finite sampling alone, MI(stochastic). The centre distribution shows the mutual 

information which is attributable to the effects of both finite sampling and shared 

phylogeny, MI(stochastic) +  MI(phylogenetic). The rightmost histogram shows the dis­

tribution of the observed MI shared by that pair, given the original data in the 

multiple sequence alignment.

In this example, we note that the observed MI is clearly well-separated from 

our expectations based on finite sampling and shared phylogeny. We measured 

the separability between the phylogenetic and observed MI distributions for all 

ungapped position pairs in TIM1 (over 10,000 pairs); the resulting histogram is 

shown in Figure 2.3. The surprising result here is that for almost all position pairs 

in this alignment, the observed and expected histograms are extremely separable.

We repeated this analysis on each of the six structurally and functionally diverse 

protein families described in the Methods. For each protein, fifty sites were chosen 

uniformly at random, yielding approximately 1000 site-pairs per protein (with 

minor variability due to gap removal). The resulting separability histograms for 

each protein family are provided in Figure 2.4. For the majority of site pairs 

in every protein, the observed MI distribution was separable from the expected 

distribution, as indicated by the preponderance of large negative separability 

values. We also observed that as the length of the protein increased, a larger 

fraction of site pairs had separability at or near zero (compare top left panel with
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Figure 2.2: Typical distributions of mutual information from a pair of sites in 
a real world protein. The left distribution shows the expected mutual infor­
mation when including stochastic effects, but ignoring phylogenetic information. 
The center distribution shows expected mutual information when phylogenetic 
information is also considered. The right distribution is the observed mutual in­
formation for the pair. Each distribution represents 2000 realizations for sites 12 
and 69 in protein TIM1. The point estimate of MI for these two sites is 0.19. The 
left distribution uses the left axis while the center and right distribution both use 
the right axis.
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Figure 2.3: A histogram of the separability of expected and observed mutual 
information in TIM1. If the expected mutual information distribution is lower 
than the observed, this is represented by negative separability. Distributions with 
a great deal of overlap are represented near zero. Each of >10,000 ungapped site 
pairs undergoes 100 realizations of both observed and expected MI to calculate 
separability. Insets show theoretical examples of distributions with separability 
of -0.9, -0.5 and -0.2.
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bottom right).

In contrast, the histogram in Figure 2.5 shows the separability when a MSA boot­

strapped from TIM1 was used as a control (see Methods). Since the bootstrapped 

MSA contains no structural or functional constraints on pair frequencies, we ex­

pect, as shown in Figure 2.5, that the degree of overlap between the observed and 

expected MI distributions is very high (separability centered around zero). This 

verifies that differences between observed and expected distribution when using 

real-world MSAs were not artifacts of the analysis.

2.4 Discussion

Our aim was to isolate and quantify the contributions of M I(stochastic) and MI(phyiogeny) 

to the observed M I in multiple sequence alignments. We find, surprisingly, that 

these two components are not sufficient to account for the M I shared by most po­

sition pairs in MSAs of real world protein families. In contrast with the prevailing 

wisdom that only a small fraction of position-pairs in a protein share functional or 

structural constraints (D unn et al. 2008; L ittle and C hen 2009), this striking 

result suggests that almost all sites are co-varying, to some extent, for reasons 

beyond phylogenetic history. To relate this to the hypothesis of Atchley et al. 

(2000) our results imply that either M I (structure) o r  M I(functi0n) are shared by most 

position pairs in protein families, or that an additional component contributing 

to mutual information has not yet been described.

We estimated the distribution of expected Mutual Information via parametric 

bootstrap and multinomial sampling, accounting for shared phylogenetic history, 

amino acid similarity, rate heterogeneity and sampling variance. As an internal 

control, we also tested MSAs created by an evolutionary Markov process using the 

respective phylogenetic trees, at the site-specific rates inferred from the original
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Figure 2.4: Separability histograms for six protein families. For each of >  1000 
site pairs per protein, 100 observed MI and 100 expected MI realizations were used 
to create distributions, as described in the text. The sequences are shown in order 
of increasing length with the shortest in the top left moving right and down to the 
longest in the bottom right. In that order, the protein names are: triosephosphate 
isomerase (TIM1); methionine aminopeptidase-1; dihydropteroate synthetase; 
phosphopyruvate dehydratase; phosphoglycerate kinase and; the GroEL chap-
eronm.
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Figure 2.5: A histogram of the separability of expected and observed MI when 
bootstrapped data are used as input. Each of >  10,000 ungapped site pairs under­
goes 100 realizations of both observed and expected MI to calculate separability.
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data. In these control cases we found that MI(stoChastic) and MI(phyi0geny) completely 

account for the measured MI. This disparity between control and real-world MSAs 

reinforces the conclusion that protein families contain broadly-shared contribu­

tions to MI that are not captured by standard, complex evolutionary models.

There are several possible explanations for this counter-intuitive result. The 

most straight-forward hypothesis is that local structural constraints “percolate” 

through sequences or structures, resulting in broadly shared co-evolution in real- 

world protein families. This broad co-evolutionary signature is of course absent in 

bootstrapped MSAs. This explanation is consistent with the “covarion hypothe­

sis” of F itch and M arkow itz (1970) and is also supported anecdotally by our 

observation (Figure 2.4) that shorter sequences tend to have larger amounts of 

unexplained MI whereas for longer sequences, observed MI does not differ from 

expected for an increasing number of site pairs.

Another possible explanation is that standard evolutionary Markov process mod­

els either do not adequately reflect the underlying relationship among sequences 

or require the explicit inclusion of additional effects such as non-clock-like sub­

stitution. Finally, it may be that the complex relationship among ancestor, tree 

and MSA cannot be adequately captured by the MI statistic, even if unlimited 

data were available.

A possibility for future investigation is to consider the effects of root location 

in the phylogenetic tree. In calculating MI from a MSA, each leaf is treated 

as equal; tree-unaware models share this feature. However, when incorporating 

evolutionary history, leaf nodes closer to the root have a larger effect on the 

probabilistic ancestor and thus a larger effect on the outcome of the expected 

mutual information. Although the rooting of phylogenetic trees is a notoriously 

complex question, future work involving sequence-weighting (B uslje et al. 2009) 

based on distance from the root might shed some light on the results described
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here.

Although our work suggests that structural and functional MI may be more 

broadly shared in protein families than previously predicted, this by no means 

negates the use of sophisticated tools for identifying site-pairs which co-evolve 

most strongly. Ultimately, the characterization of factors contributing to MI 

should in fact facilitate the further development of these important methods.
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C h a p t e r  3

Summary and Future Work

This thesis assumes that the bootstrap procedure, described by W ollenberg 
and Atchley (2000), accurately reflects the impact of phylogenetic history on 

MI levels in MSA pairs. Additional research could be done into the effects of 

assumptions included in this model. One such consideration is that relative mu­

tation rates are assumed constant. In the current model, mutation rates are 

averaged over the entire tree for each site. For example, if site 5 was determined 

to be twice as likely as site 3 to mutate, this would be true throughout the entire 

tree. It is possible, however, that for real world proteins, certain sites may have 

been more likely to mutate at certain times in evolutionary history.

In addition to fixed mutation rates, the creation of the probabilistic ancestor may 

require some reconsideration. When calculating the site probabilities for internal 

nodes, including the root, branch length determines how much the child node 

affects its parent. Leaf nodes close to the root, that is those with a short total 

branch length, will more strongly affect the root probabilistic ancestor. Further 

investigation into the effect of short-distance leaf nodes could be carried out, and 

possible weighting techniques could be developed to reduce this effect if needed.

A final bootstrapping consideration is the nature of internal nodes. Currently, 

all nodes except the root are totally cleared, then generated with data from the
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root. By considering alternate methods which do not fully “erase” the probable 

amino acid identities at internal nodes, better estimations of historical internal 

nodes might be possible. This in turn may be used for better MI corrections 

related to phylogeny. Any such method, however, must be sure not to include 

any structural or functional constraints.

An additional consideration, unrelated to the bootstrapping already mentioned, 

is the removal of similar proteins in a MSA. Currently, if two sequences are 

more than 90% similar, one is removed. The weighting, instead of deletion, of 

these similar proteins might allow for more powerful statistics as the problems 

associated with small sample sizes could be reduced, as proposed by Buslje et al. 

(2009). Research into the full benefit of this idea, as it applies to this thesis, is 

needed. Sequence weighting would have at least two clear benefits. It would 

eliminate the need for an arbitrary similarity cut-off, currently set at 90%. Also, 

it would remove the random selection of which protein to keep when two or more 

are found to be similar.

In the area of software, the simulation software is currently not intuitive to use. 

Changing parameters, such as the number of MI points in each distribution, 

is done by changing the code and recompiling. The data output has minimal 

formatting or organization, requiring additional programming, currently done 

in Matlab, to make it useable. The code is relatively modular, and uses pre­

existing optimization libraries; however, additional comments and an intuitive 

user interface could greatly improve accessibility.

Migration onto SharcNet would also be beneficial since analysing a protein with 

320 sites, bootstrapping 100 times for each pair, takes upwards of 3 hours on 

a dual core, 1.6GHz processor. As proteins get larger, the number of pairs to 

analyse increases by 0 (n 2), which has already limited the length of strand we 

can fully analyse.
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Overall, an improved understanding of MI contributions, and possible subsequent 

improvements to background MI corrections, may lead to better identification of 

co-evolving site in protein families. Assisting in this eventual improvement of 

such methods is, in a way, the long-term goal of this entire work. In particular, a 

better understanding of MI component contributions may assist in the isolation 

of pairs, and groups, which share MI for structural or functional reasons. In the 

long term, the ability to better identify these locations in sequences of unknown 

function will assist in our understanding of the complex mechanisms that exist 

in proteins.
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