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Exact exchange-correlation potentials of singlet two-electron systems
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Ontario M1C 1A4, Canada
2Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada

(Received 7 September 2017; accepted 13 October 2017; published online 31 October 2017;
publisher error corrected 1 November 2017)

We suggest a non-iterative analytic method for constructing the exchange-correlation potential, vXC(r),
of any singlet ground-state two-electron system. The method is based on a convenient formula for
vXC(r) in terms of quantities determined only by the system’s electronic wave function, exact or
approximate, and is essentially different from the Kohn–Sham inversion technique. When applied
to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corre-
sponding basis-set-limit vXC(r), whereas the Kohn–Sham inversion produces physically inappropriate
(oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by com-
puting accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic
series, H2, H+

3) using common ab initio methods and Gaussian basis sets. Published by AIP Publishing.
https://doi.org/10.1063/1.5003825

I. INTRODUCTION

Two-electron systems occupy a special place in elec-
tronic structure theory. On the one hand, they exhibit electron
correlation effects and thus conceptually pose the same chal-
lenge as interacting many-electron systems in general. On the
other hand, they are small enough that their Schrödinger equa-
tions can be solved with extremely high accuracy by ab initio
methods.1–8

In the Kohn–Sham (KS) density-functional scheme,9 the
singlet ground state of a two-electron system is mapped to
the singlet ground state of an auxiliary system of N = 2 non-
interacting electrons occupying the same KS orbital. Single-
orbital KS systems are also special because one can write down
for them a number of exact relations that do not hold for N > 2.
In particular, given a singlet ground-state density of a two-
electron system, one can invert the KS equation

[
−

1
2
∇2 + v(r) + vH(r) + vXC(r)

]
φ(r) = εφ(r), (1)

where φ(r) = ρ1/2(r), and write the corresponding exchange-
correlation potential as

vXC(r) =
∇2ρ(r)
4ρ(r)

−
τW (r)
ρ(r)

− v(r) − vH(r) + ε . (2)

Here τW (r) = |∇ρ(r)|2/8ρ(r), v(r) is the external potential,
vH(r) is the Hartree (electrostatic) potential of ρ(r), and ε is
the KS eigenvalue which, in the exact KS scheme, is equal
to the first ionization energy of the system, ε = −I .10–13 A
generalization of Eq. (2) to N > 2 is easy to write (see,
for instance, Ref. 14), but the result contains KS orbitals and
hence cannot be used to determine vXC(r) from ρ(r) in a single
step.

a)Electronic mail: vstarove@uwo.ca

Equation (2) is the most obvious method for construct-
ing exchange-correlation potentials of two-electron systems
from accurate ab initio densities.13,15–22 It can also be extended
to the time-dependent KS scheme.23–27 Despite its appealing
simplicity, however, this method is not as sound as it may seem.

First, Eq. (2) states the result of inverting Eq. (1) ana-
lytically. This means that if the starting ρ(r) is generated
using a finite one-electron basis set and vXC(r) is obtained
from that ρ(r) by Eq. (2), then one generally has to solve
the KS equations with that vXC(r) using a complete (infinite)
one-electron basis set to reproduce the initial ρ(r) exactly.
The finite one-electron basis set used for generating the initial
ρ(r) simply cannot do the job.28 Second, potentials obtained
by Eq. (2) from atomic and molecular Gaussian-basis-set
densities oscillate wildly and diverge as r→∞,18,19,29–32 a
result that is mathematically correct but physically inap-
propriate for a Coulombic v(r). The fact that Eq. (2) can
give very different potentials for exact (basis-set-limit) and
approximate (finite-basis-set) densities of the same system ren-
ders it impractical for calculations employing Gaussian basis
sets.

One way to obtain physically sensible potentials from rea-
sonable densities is to restrict application of Eq. (2) to densities
expanded in Slater-type basis functions.19 Another one is to
reformulate the problem so that sensible results are obtained
in any reasonable basis set. We have recently developed such
a reformulation.33–38 In our approach, vXC(r) is not fitted to
a given ρ(r) but is computed using a certain analytic expres-
sion that involves quantities constructed from the interacting
wave function of the system and from the KS orbitals and
their eigenvalues, all generated using the same one-electron
basis set. Since the KS orbitals and eigenvalues are initially
unknown, this expression generally needs to be iterated starting
from an initial guess for vXC(r). Just like Eq. (2), our method
would produce potentials that recover the associated ab initio

0021-9606/2017/147(16)/164117/8/$30.00 147, 164117-1 Published by AIP Publishing.

 29 June 2023 21:01:55

https://doi.org/10.1063/1.5003825
https://doi.org/10.1063/1.5003825
mailto:vstarove@uwo.ca
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5003825&domain=pdf&date_stamp=2017-10-31


164117-2 Ryabinkin, Ospadov, and Staroverov J. Chem. Phys. 147, 164117 (2017)

densities exactly if implemented in a complete basis set. In
a finite basis set, it yields potentials that are close to the
basis-set-limit vXC(r), unlike Eq. (2), and can be improved
systematically by increasing the basis-set size.

The definitive version of our method is the modified
Ryabinkin–Kohut–Staroverov (mRKS) procedure,38 which
employs a small but crucial modification of the original expres-
sion for vXC(r) derived in Ref. 33. In this work, we show that,
in the special case of single-KS-orbital systems, the modified
expression reduces to an exact formula for vXC(r) which con-
tains no KS quantities whatsoever. This formula allows one to
reduce any singlet two-electron wave function directly to the
corresponding exchange-correlation potential and in practice
is much better for that purpose than Eq. (2).

II. EXCHANGE-CORRELATION POTENTIAL

In Ref. 38, we derived the following equation for the
exact exchange-correlation potential of a singlet ground-state
N-electron system:

vXC = v
hole
XC + ε̄KS − ε̄WF +

τWF
P

ρWF
−
τKS

P

ρKS
, (3)

where each quantity is a function of r. Here

vhole
XC (r) =

∫
ρXC(r, r2)
|r − r2 |

dr2 (4)

is the potential of the exchange-correlation hole charge,39

ρXC(r, r2), a quantity determined by the interacting two-
electron reduced density matrix (2-RDM). The next term is
the KS average local orbital energy

ε̄KS(r) =
1

ρKS(r)

N∑
i=1

ε i |φi(r)|2, (5)

where φi(r) are the spatial parts of the respective KS spin-
orbitals, ε i are the associated eigenvalues, and

ρKS(r) =
N∑

i=1

|φi(r)|2 (6)

is the non-interacting electron density. The analogous wave-
function-based quantity, called the generalized average local
electron energy,40,41 is given by

ε̄WF(r) =
1

ρWF(r)

∑
j

λj | fj(r)|2, (7)

where fj(r) are the spatial parts of the spin-eigenfunctions
of the integral generalized Fock operator, Ĝ, and λj are the
associated eigenvalues. The kernel of Ĝ is35,42

G(x, x′) = ĥ(r)γWF(x, x′) + 2
∫
ΓWF(x, x2; x′, x2)

|r − r2 |
dx2, (8)

where ĥ(r) = − 1
2∇

2 + v(r), γWF(x, x′) is the interacting 1-
RDM, and ΓWF(x, x2; x′, x′2) is the interacting 2-RDM. The
summation in Eq. (7) is over all spin-eigenfunctions of Ĝ (their
number is determined by the size of the one-electron basis set).
The ab initio electron density is given by

ρWF(r) =
∑

j

nj | χj(r)|2, (9)

where each χj(r) is the spatial part of the jth natural spin-
orbital and nj is the corresponding occupation number. The
remaining quantities in Eq. (3) are the interacting Pauli kinetic-
energy density38

τWF
P (r) =

1
2ρWF(r)

∑
i<j

ninj | χi(r)∇χj(r) − χj(r)∇χi(r)|2

(10)
and its KS counterpart

τKS
P (r) =

1

2ρKS(r)

N∑
i<j

|φi(r)∇φj(r) − φj(r)∇φi(r)|2. (11)

Note that each distinct spatial orbital appears twice, with
different subscripts, in the sums of Eqs. (5)–(11).

Equation (3) determines vXC(r) up to a constant. This
constant is fixed by the highest-occupied molecular orbital
(HOMO) condition33,34,38

εKS
HOMO = −IEKT, (12)

where IEKT is the first (lowest) ionization energy determined
from the interacting wave function using the extended Koop-
mans theorem43–45 (EKT). In practice, we compute IEKT by
the method of Ref. 46. As the level of theory increases, IEKT

approaches47,48 the exact first ionization energy, I, and thus
attains consistency with the better-known condition10,12,13 on
the exact KS HOMO eigenvalue, εKS

HOMO = −I .
Now consider a singlet ground-state two-electron system.

For such a system, there is only one distinct spatial KS orbital
(φ1 = φ2, where the subscripts label the corresponding spin-
orbitals), and so Eq. (5) assumes the form

ε̄KS(r) = εKS
HOMO = −IEKT, (13)

while Eq. (11) becomes

τKS
P (r) = 0. (14)

Thus, for N = 2, Eq. (3) reduces to

vXC(r) = vhole
XC (r) +

τWF
P (r)

ρWF(r)
− ε̄WF(r) − IEKT, (15)

where the last term is a constant. This formula contains only
quantities determined by the interacting wave function (equiv-
alently, the 2-RDM) and, therefore, allows one to compute
vXC(r) from that wave function without iterations. The KS
orbitals corresponding to this potential can also be com-
puted in a single step, by diagonalizing the KS Hamiltonian
matrix.

Observe that for an N-electron closed-shell Hartree–Fock
(HF) wave function, Eq. (15) may be written as

vHF
XC = vS + ε̄KS − ε̄HF +

τHF
P

ρHF
−
τKS

P

ρKS
, (16)

where vS(r) is the Slater potential49 of the HF exchange hole,
while ρHF(r), ε̄HF(r), and τHF

P (r) are given by the same ex-
pressions as ρKS(r), ε̄KS(r), and τKS

P (r), only in terms of HF
orbitals and orbital energies. The first EKT ionization energy
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for a HF wave function is IEKT = −ε
HF
HOMO, which implies that

the vertical shift of vHF
XC(r) is fixed by the condition εKS

HOMO
= εHF

HOMO.
For a closed-shell two-electron HF wave function,

ε̄HF
HOMO(r) = εHF

HOMO and τHF
P (r) = 0, while

vS(r) = −
1
2
vHF

H (r) = −
1
2

∫
ρHF(r′)
|r − r′ |

dr′. (17)

Thus, for N = 2, Eq. (16) reduces to

vHF
XC(r) = −

1
2
vHF

H (r). (18)

The exact exchange potential of any singlet ground-state two-
electron system is given by17

vX(r) = −
1
2
vWF

H (r) = −
1
2

∫
ρWF(r′)
|r − r′ |

dr′. (19)

This gives the following explicit formula for the corresponding
correlation potential:

vC(r) = vhole
XC (r) +

1
2
vWF

H (r) +
τWF

P (r)

ρWF(r)
− ε̄WF(r) − IEKT. (20)

Equations (15) and (20) are the main results of this work. They
are nontrivially equivalent to older formulas of Buijse et al.,50

namely, Eqs. (32) and (41) of Ref. 50. The difference is in how
the term denoted here by ε̄WF is represented and evaluated (see
Appendix A).

III. NUMERICAL ILLUSTRATIONS
A. Computational details

All calculations reported below were performed with the
appropriately modified gaussian 09 program51 using Gaussian
basis sets from the Environmental Molecular Sciences Labora-
tory (EMSL) Basis Set Library.52,53 The u-XZ (X = D, T, Q, 5)
basis sets used for the He isoelectronic series were con-
structed by starting with the respective cc-pVXZ basis sets
for the He atom, uncontracting them, and scaling the expo-
nents αk of the primitive functions by the same factor accord-
ing to exp(−αkr2) → exp[−αk(ζr)2]. The optimal values
of ζ for each species and basis set were obtained by mini-
mizing the corresponding full configuration interaction (FCI)
energy.

In the general mRKS procedure,38 the Hartree part of
the total KS potential is constructed in each iteration from
ρKS (the density computed using the current KS orbitals)
because self-consistent-field (SCF) iterations typically fail54

to converge if vH is constructed from ρWF. For N = 2, both
methods of constructing vH work but the one using ρWF does
not require any SCF iterations, so it is the method we adopted
here. Specifically, we constructed the electrostatic part of the
KS Hamiltonian matrix by evaluating vH([ρWF]; r) analytically
and then computing matrix elements of this potential numeri-
cally using a saturated density-functional integration grid. Use
of ρKS in vH would not affect vXC for N = 2 but would result
in a marginally different total KS potential because ρKS and
ρWF are not exactly equal in a finite basis set.33,34,36,38

The exchange-correlation potentials and other quanti-
ties labeled “exact” are those extracted by Umrigar and co-
workers17,55,56 from highly accurate explicitly correlated wave
functions of two-electron ions. We treat those potentials as the
basis-set-limit benchmarks.

B. Results

As a first application, consider a sequence of FCI wave
functions for the He atom computed using the cc-pVXZ
(X = D, T, Q, 5) basis sets. The electron densities obtained
from these wave functions are reasonably close to the exact
(basis-set-limit FCI) density of the He atom. However, if the
FCI/cc-pVXZ densities are inserted into Eq. (2), one obtains
exchange-correlation potentials that have little resemblance
to the basis-set-limit vXC(r) (Fig. 1). By contrast, Eq. (15)
produces consistent, physically correct potentials that have
no oscillations anywhere and decay as �1/r at large r. These
potentials are visually almost indistinguishable from the exact
vXC(r) even for the cc-pVDZ basis set (Fig. 2).

In a similar manner, we generated exchange-correlation
potentials from FCI/u-XZ wave functions for several species
of the He isoelectronic series (H�, He, Li+, Be2+, C4+, and
Ne8+). To assess the proximity of these potentials to the basis-
set limit, we substituted them into Eq. (1), solved it in the

FIG. 1. Exchange-correlation potentials extracted by Eq. (2) from FCI/cc-
pVXZ electron densities of the He atom.

FIG. 2. Exchange-correlation potentials extracted by Eq. (15) from FCI/cc-
pVXZ wave functions of the He atom.
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respective basis set, and used the resulting KS orbitals to
compute a number of properties which were then compared
to the known exact (basis-set-limit) values. The four proper-
ties we selected include (i) the kinetic part of the correlation
energy,

Tc = T − Ts, (21)

where T is the interacting kinetic energy from the ab initio
wave function and T s is non-interacting kinetic energy com-
puted from the KS orbitals determined by vXC(r); (ii) the KS
exchange-correlation energy,

EKS
XC = EWF

XC + Tc, (22)

where

EWF
XC =

1
2

∫
ρWF(r)vhole

XC (r) dr (23)

is the ab initio exchange-correlation energy (i.e., the non-
Coulomb part of the electron-electron interaction energy); (iii)
the integrated density discrepancy,

∆ρ =

∫
|ρKS(r) − ρWF(r)| dr, (24)

where ρKS(r) is constructed from the KS orbitals determined
by vXC(r); (iv) the virial-theorem57 energy discrepancy

∆Evir = W − EKS
XC − Tc, (25)

where

W =
∫ [

3ρKS(r) + r · ∇ρKS(r)
]
vXC(r) dr. (26)

The basis-set-limit values of ∆ρ and ∆Evir are zero (this
remains true for any type of wave function, not just FCI). The
exact (complete-basis-set FCI) values of the other properties
were taken from the work of Huang and Umrigar.56

Table I shows that the sequence of FCI/u-XZ exchange-
correlation potentials of each two-electron species steadily
approaches the corresponding basis-set limit. Note that the
magnitudes of ∆ρ and ∆Evir are not indicators of any numeri-
cal deficiencies of the construction procedure (as would be the

TABLE I. Properties of selected two-electron ions computed from FCI/u-XZ wave functions and the corresponding KS potentials constructed using Eq. (15).
∆ρ values are in units of electron charge, and the rest are in hartrees (Eh). The exact (basis-set-limit) values are taken from Ref. 56.

Basis set (ζ ) Etot T EWF
XC IEKT T c EKS

XC ∆ρ ∆Evir

H�

u-DZ (0.36) −0.518 824 0.520 203 −0.453 910 0.0214 0.015 723 −0.438 187 0.033 439 0.023 207
u-TZ (0.34) −0.525 751 0.525 546 −0.452 433 0.0260 0.025 664 −0.426 769 0.007 581 0.006 161
u-QZ (0.32) −0.526 976 0.526 868 −0.451 835 0.0271 0.027 304 −0.424 531 0.003 281 0.002 146
u-5Z (0.31) −0.527 393 0.527 434 −0.451 475 0.0274 0.027 673 −0.423 803 0.001 704 0.000 904
Exact −0.527 751 0.527 751 −0.450 774 0.0278 0.027 882 −0.422 892 0 0

He
u-DZ (1.00) −2.889 091 2.890 546 −1.091 341 0.8948 0.026 465 −1.064 876 0.002 454 0.006 948
u-TZ (1.00) −2.900 774 2.900 937 −1.099 776 0.9012 0.034 412 −1.065 365 0.000 743 0.001 449
u-QZ (1.00) −2.902 582 2.902 671 −1.101 945 0.9027 0.036 003 −1.065 942 0.000 298 0.000 332
u-5Z (1.00) −2.903 183 2.903 222 −1.102 636 0.9032 0.0363 90 −1.066 245 0.000 151 0.000 107
Exact −2.903 724 2.903 724 −1.103 318 0.9037 0.036 643 −1.066 675 0 0

Li+

u-DZ (1.65) −7.256 148 7.256 208 −1.717 138 2.7678 0.029 252 −1.687 887 0.000 758 0.001 152
u-TZ (1.65) −7.275 770 7.275 910 −1.729 275 2.7767 0.037 213 −1.692 062 0.000 267 −0.000 635
u-QZ (1.65) −7.278 301 7.278 385 −1.732 326 2.7786 0.038 944 −1.693 382 0.000 105 −0.000 449
u-5Z (1.64) −7.279 159 7.279 167 −1.733 364 2.7793 0.039 417 −1.693 947 0.000 055 −0.000 182
Exact −7.279 913 7.279 913 −1.734 406 2.7799 0.039 828 −1.694 578 0 0

Be2+

u-DZ (2.31) −13.619 441 13.617 900 −2.341 620 5.6386 0.030 599 −2.311 021 0.000 360 −0.002 155
u-TZ (2.32) −13.650 131 13.650 235 −2.356 224 5.6517 0.038 701 −2.317 523 0.000 135 −0.002 329
u-QZ (2.32) −13.653 484 13.653 576 −2.359 841 5.6540 0.040 478 −2.319 364 0.000 056 −0.001 159
u-5Z (2.30) −13.654 619 13.654 634 −2.361 114 5.6548 0.040 988 −2.320 126 0.000 028 −0.000 479
Exact −13.655 566 13.655 566 −2.362 385 5.6556 0.041 483 −2.320 902 0 0

C4+

u-DZ (3.64) −32.334 896 32.331 415 −3.589 777 14.3736 0.031 868 −3.557 909 0.000 138 −0.005 633
u-TZ (3.69) −32.397 588 32.397 707 −3.607 850 14.4009 0.040 239 −3.567 611 0.000 058 −0.004 671
u-QZ (3.70) −32.403 069 32.403 220 −3.612 194 14.4041 0.042 070 −3.570 123 0.000 027 −0.002 321
u-5Z (3.68) −32.404 889 32.404 911 −3.613 769 14.4052 0.042 620 −3.571 149 0.000 012 −0.001 098
Exact −32.406 247 32.406 247 −3.615 353 14.4062 0.043 175 −3.572 178 0 0

Ne8+

u-DZ (6.31) −93.721 372 93.724 178 −6.085 643 43.8201 0.032 796 −6.052 847 0.000 046 −0.008 435
u-TZ (6.44) −93.888 438 93.887 942 −6.108 643 43.8970 0.041 415 −6.067 228 0.000 023 −0.006 693
u-QZ (6.48) −93.900 492 93.900 664 −6.113 864 43.9032 0.043 344 −6.070 520 0.000 011 −0.003 479
u-5Z (6.49) −93.904 362 93.904 394 −6.115 786 43.9053 0.043 955 −6.071 830 0.000 006 −0.001 857
Exact −93.906 807 93.906 807 −6.117 733 43.9068 0.044 555 −6.073 178 0 0
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FIG. 3. Exchange-correlation potentials obtained by Eq. (15) from various
wave functions of a stretched H2 molecule.

case with the KS inversion technique) because the construc-
tion is analytic. Rather, the non-zero values of ∆ρ and ∆Evir

are properties of the resulting potentials, uniquely determined
by the wave function and the basis set.

Our next application involves the H2 molecule
(Re = 1.401a0). A 2-electron/2-orbital complete active space
(CAS) SCF wave function, abbreviated (2,2)CAS, is a com-
pact approximation that has all of the qualitative features of
the exact wave function for this system. Equation (15) is con-
venient for illustrating the well-known effect that, as the H2

molecule is stretched, the exact vXC(r) develops a peak at the
bond midpoint,50,58,59 a feature that comes from the τWF

P /ρWF

term and is absent in KS potentials obtained from the HF wave
function (Fig. 3). The height of this peak for H2 tends to 0.5
Eh in the R→ ∞ limit50 (Fig. 4).

Consider now a fictitious heteronuclear molecule AB con-
sisting of two electrons and two nuclei with charges ZA = 1.2
and ZB = 0.8 a.u. At large internuclear separation, the exact
vXC(r) for this system should have a step ∆v equal60 to the dif-
ference of the ionization energies of the isolated one-electron
atoms A and B, ∆v = (Z2

A − Z2
B)/2 = 0.4 Eh. KS potentials

for this system generated from multireference wave functions
such as FCI/cc-pVTZ indeed exhibit such steps: the potential

FIG. 4. Correlation potentials obtained by Eq. (20) from (2,2)CAS wave
functions of the H2 molecule for various internuclear separations.

FIG. 5. Exchange-correlation potentials computed by Eq. (15) from FCI/cc-
pVTZ wave functions of the two-electron diatomic molecule AB with nuclear
charges ZA = 1.2 a.u. and ZB = 0.8 a.u. for various internuclear separations.

well of atom A is upshifted relative to the potential well of
atom B by a constant approaching 0.4 Eh as R → ∞, and
the wells are separated by a peak whose height increases with
R (Fig. 5). Similar steps and peaks in exchange-correlation
potentials of heteronuclear diatomics have been previously
reported for model and real systems.13,20,61,62 A partitioning
analysis of the potential for R = 20a0 shows (Fig. 6) that the
step stems from the term ε̄WF(r), while the peak arises from
the kinetic-energy term, as was noted in a number of previous
studies.20,37,50,61 We stress that exchange-correlation poten-
tials of the quality seen in Figs. 3–6 would be impossible
to obtain from Gaussian-basis-set densities by KS inversion
without some sort of post-processing because Eq. (2) would
produce severely corrupted curves.18,19

Our final illustration of the capabilities of Eq. (15)
involves a multicenter two-electron ion, H+

3 ,63 at its symmet-
rically stretched geometry, an equilateral triangle with a side
of RHH = 2Re = 3.300a0. We have generated the exchange-
correlation potential for this system from the FCI/cc-pVTZ
wave function and visualized the result in the form of a
contour plot in the molecular plane (Fig. 7). It is interesting

FIG. 6. Partitioning of one of the exchange-correlation potentials of Fig. 5.
Here IEKT = 0.3291 Eh.
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FIG. 7. Exchange-correlation potential computed by Eq. (2) from the FCI/cc-
pVTZ wave function of a stretched H+

3 ion (D3h, RHH = 3.300a0). The plot
is for the molecular plane. The white dots mark the nuclear positions.

to note that the minima of this vXC do not coincide with the
nuclear positions.

IV. CONCLUDING REMARKS

We have shown that Eq. (3), which is generally not a
closed-form expression for vXC(r), becomes an explicit for-
mula for vXC(r) in the case of singlet ground-state two-electron
systems. This formula, Eq. (15), enables one to construct
the exchange-correlation and correlation potentials of such
systems directly from interacting wave functions. Note that
triplet two-electron systems involve two spatial KS orbitals so
that construction of exchange-correlation potentials for triplet
states would require the general (iterative) method of Ref. 38.
We deliberately chose small to moderately large basis sets for
our illustrative applications of Eq. (15) in order to emphasize
that it can routinely produce potentials of high quality. If one
wishes to generate even more accurate potentials, all one has
to do is to use a better basis set.

Exchange-correlation potentials associated with finite-
basis-set densities by Eq. (15) do not recover those densities
exactly (analogously, solutions of the Roothaan equations64

do not satisfy exactly the Hartree–Fock integro-differential
equations). Nevertheless, potentials obtained by Eq. (15) are
consistent and physically appropriate for Coulombic systems,
in contrast to potentials obtained from Gaussian-basis-set den-
sities by Eq. (2). The two methods serve entirely different
purposes: Eq. (2) gives the potential that recovers a given den-
sity, provided that the KS equations with that potential are
solved using a complete basis set, whereas Eq. (15) gives a
finite-basis-set approximation to the system’s vXC(r) corre-
sponding to the basis-set limit of the chosen level of ab initio
theory.

In a comment65 on Refs. 33–35, Baerends and Grit-
senko argued that the method proposed in those papers “does
not allow to compute the KS potential from wave-function
quantities. . . since those quantities cancel in the expression
for vXC(r)” and that it does not “progress” beyond Eq. (2).

Equation (15) and comparison of Figs. 1 and 2 refute those
arguments even more explicitly than the evidence presented in
our response.41

Previously, Helbig et al.61 derived an exact formula for the
KS potential of a simplified two-electron diatomic molecule
in which each electron is tightly bound to its nucleus (a similar
model had been employed by Perdew13). Another separated-
atom, two-electron model for studying the exact KS potential
was developed by Tempel et al.20 Equation (15), derived for
two-electron systems with no restrictions on the type of wave
function, represents a nontrivial generalization of all such for-
mulas (see Appendix B). It would be not difficult to extend
Eq. (15) to non-integer electron numbers (0 < N ≤ 2),
as was done for the model potential of Ref. 61 by Benı́tez
and Proetto.62 Extension to time-dependent wave functions is
another possibility.
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APPENDIX A: FORMULA OF BUIJSE
AND CO-WORKERS

Buijse et al.50 devised an exact expression for the KS
potential which generally involves both interacting and non-
interacting wave functions, as Eq. (3), but for singlet two-
electron systems reduces to a simpler formula which involves
the interacting wave function alone, as Eq. (15). The purpose
of this section is to explain how Eq. (15) differs from the result
of Buijse et al. (The general expressions for vXC are compared
in Ref. 35.)

Buijse et al. showed that for a singlet two-electron system
[see Eq. (32) of Ref. 50],

vHXC(r) = vcond(r) + vkin(r) + vN−1(r), (A1)

where each term is determined by the interacting wave function
Ψ

(
x1, x2

)
. The first term is50,65

vcond(r) = vH(r) + vhole
XC (r). (A2)

The second term is given by50

vkin(r) =
τ(r) − τW (r)

ρ(r)
, (A3)

where τ(r) = 1
2

[
∇r · ∇r′γ

WF(r, r′)
]

r=r′
. Since τP = τ � τW in

any basis set, we identify vkin as our τP/ρ term. The quantity
vN−1 is defined in Ref. 50 by Eq. (18) which involves the
(N � 1)-electron Hamiltonian, ĤN−1, and the entire interacting
wave function. To compute vN−1 by definition, one actually
needs no more than the 2- and 3-RDMs, a fact that is not
obvious from Ref. 50 but can be deduced by the method of
Ref. 66. For N = 2, however, ĤN−1 becomes the one-electron
bare-nucleus Hamiltonian ĥ(r2), so vN−1 reduces to
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vN−1(r) =
2
ρ(r)

∑
σ

∫
Ψ
∗(x, x2)ĥ(r2)Ψ(x, x2) dx2 − EN−1

0 ,

(A4)
where EN−1

0 is the ground-state energy of the ionized (i.e., cor-
responding one-electron) system. The right-hand side of Eq.
(A4) can be evaluated using the 2-RDM alone. Evaluation of
ε̄WF by Eq. (7) also requires no more than the 2-RDM (but
for all N) and is arguably more convenient than that of vN−1

by Eq. (A4) even for N = 2 because the generalized Fock
matrix is readily available in most ab initio electronic struc-
ture codes as part of analytic energy gradient subroutines and
multiconfigurational SCF modules.

It can be shown35 that, in a complete basis set, vN−1 and
ε̄WF are related by

vN−1(r) + ε̄WF(r) = −I . (A5)

This identity does not mean that ε̄WF is given by the same
expression as vN−1 up to a constant, but rather that the functions
ε̄WF and vN−1 are such that their sum is a constant. It remains
to be seen whether Eq. (A5) holds pointwise in finite-basis-set
implementations.

Note that if Ψ is an eigenfunction of the all-electron
interacting Hamiltonian, then the integral in Eq. (A4) can be
evaluated65 to give

vN−1(r) = −
τL(r)
ρ(r)

− vcond(r) − v(r) − I , (A6)

where I = EN−1
0 − EN

0 = −ε and τL = τ − ∇
2ρ/4. Substituting

Eqs. (A2), (A3), and (A6) into Eq. (A1) and subtracting out vH,
one reverts to Eq. (2). However, Eq. (A6) is not true when its
ingredients are evaluated using a finite basis set (i.e., when Ψ
is not an eigenfunction). If one ignores that and evaluates vN−1

by Eq. (A6) anyway, then Eq. (A1) proves to be no different
from the KS inversion of Eq. (2).65 This illustrates our key
point36 that different expressions for vXC which are equivalent
on paper may not be equivalent when implemented using a
finite basis set.

Buijse et al.50 did use Eqs. (A1)–(A4) to compute
exchange-correlation potentials for He and H2 from FCI wave
functions but did not investigate the KS electron densities
recovered by those potentials. As far as we know, Ref. 50
remains the only work where KS potentials were constructed
using Eq. (A4) as written.

APPENDIX B: SPECIAL CASES OF EQ. (15)

Helbig and co-workers61 studied a model two-electron
system that is mathematically equivalent to a singlet system of
two non-interacting electrons occupying the first two lowest-
energy eigenstates of the one-electron Hamiltonian with an
external potential v ,(

−
1
2
∇2 + v

)
ψk = ekψk . (B1)

For such a system,

ρWF = |ψ1 |
2 + |ψ2 |

2 (B2)

and the generalized Fock operator reduces to the actual one-
electron Hamiltonian of Eq. (B1), so f k = ψk and λk = ek

(k = 1, 2). Thus,

ε̄WF =
1
ρWF

(e1 |ψ1 |
2 + e2 |ψ2 |

2). (B3)

Moreover, vH = v
hole
XC = 0,

τP =
1

2ρWF
|ψ1∇ψ2 − ψ2∇ψ1 |

2, (B4)

and IEKT = e2. Substitution of these expressions into Eq. (15)
gives the three-dimensional version of Eq. (11) of Ref. 61—
the exact exchange-correlation potential for the model system
of Helbig et al.

Tempel and co-workers20 derived an analytic expression
for the total KS potential, vs, starting from a Heitler–London-
type two-electron wave function [Eq. (25) of Ref. 20]. Their
expression also has an explicit connection to Eq. (15): in the
interatomic region of a highly stretched molecule, v + vH ≈ 0,
so vs ≈ vXC and Eq. (25) of Ref. 20 reduces to Eq. (11) of
Ref. 61, a special case of our Eq. (15).
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