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Abstract Gaiduket al. (2012) [Phys Rev Lett 108:253005] showed that one can improve
local, semilocal, and hybrid approximations to the Kohn–Sham effective potentials of atoms
and molecules by removing a system-independent fraction ofelectron charge from the
highest-occupied molecular orbital (HOMO); if the corrected Kohn–Sham potential is used
for adiabatic linear-response time-dependent density-functional theory (TDDFT) calcula-
tions, accurate Rydberg excitation energies are obtained.One may ask whether the same
effect could also be achieved by fractionally increasing the positive charges of the nuclei.
We investigate this question and find that a small increase ofnuclear charges can indeed
substantially reduce errors in TDDFT Rydberg excitation energies. However, the optimal
magnitude of the charge increase is system-dependent. In addition, the procedure is ambigu-
ous for molecules, where one has to decide how to distribute the additional charge among
individual nuclei. These two drawbacks of the fractional nuclear charge method make it
disadvantageous compared to the HOMO depopulation technique.

Keywords Excited states· TDDFT · Fractional occupations· Effective nuclear charge·
Model exchange-correlation potentials

1 Introduction

Adiabatic time-dependent density-functional theory (TDDFT) in the linear-response regime [1–
3] is a common method for calculating vertical electronic excitation energies. TDDFT with
traditional (local, semilocal, and hybrid) density-functional approximations gives a rea-
sonable accuracy of roughly 0.2 eV for valence excitations but significantly (by 1 eV or
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more) underestimates Rydberg excitation energies [4–7]. This happens because exchange-
correlation potentials derived from traditional density functionals are not negative enough
and decay too fast with increasing distance from the nuclei [2, 3, 8]. TDDFT description of
Rydberg excitations can be improved by switching from traditional to range-separated hy-
brid functionals [9–12] or to directly approximated exchange-correlation potentials [13–17].
It is also possible to obtain accurate Rydberg excitations by combining traditional function-
als with shape corrections [15, 18–20], quantum defect theory [21], the highest-occupied
molecular orbital (HOMO) depopulation method [22–24], andother techniques [25–29].

In the HOMO depopulation method [22, 23], the corrected Kohn–Sham potential of a
finite system is obtained by performing a self-consistent-field (SCF) calculation on an aux-
iliary system in which the HOMO occupation number is reducedby δ (0 ≤ δ ≤ 1). The
optimal value ofδ turns out to be almost system-independent but varies from one func-
tional to another. When the Kohn–Sham orbitals and orbital eigenvalues computed with the
corrected Kohn–Sham potential are substituted, in a post-SCF fashion, into the Casida equa-
tions [1] for the correspondingneutral system of interest, the mean absolute error (MAE)
in predicted Rydberg excitation energies decreases by almost an order of magnitude, while
the accuracy for valence transition is barely affected [22,23]. The optimal values ofδ clus-
ter around 0.25 for local and semilocal density-functionalapproximations, and are in the
neighborhood of 0.17 for hybrid functionals [22].

The HOMO depopulation method can be applied to any approximate density functional,
has no added computational cost, and is easy to implement. Inan independent study, Li and
Truhlar [24] found that, for a test set of 69 excited states (both valence and Rydberg) of 11
closed-shell organic molecules, the HOMO-depopulation TDDFT technique with common
semilocal and hybrid density functionals outperforms eventhe equation-of-motion coupled
cluster singles and doubles method [30], a highly accurate but computationally demanding
ab initio technique.

Loosely speaking, the HOMO depopulation method works by making an approximate
Kohn–Sham potential more attractive in the valence and asymptotic regions. One may there-
fore wonder whether the same beneficial effect on the shape ofvHXC(r) could be achieved
in an even simpler manner—by leaving the orbital occupationnumbers unchanged but in-
creasing the nuclear charge(s) instead. In this work we answer that question.

2 Methodology

In the Kohn–Sham density functional theory [31], the electron density of a spin-compensated

N-electron system is given byρ(r) = 2∑N/2
i=1 |φi(r)|2, whereφi(r) are the lowest-eigenvalue

self-consistent solutions of the equation

[

−
1
2

∇2 + veff(r)
]

φi(r) = εiφi(r), (1)

with

veff(r) = v(r)+ vHXC([ρ];r). (2)

Herev(r) is the external potential of the nuclei andvHXC([ρ];r) is the density-dependent
Hartree–exchange-correlation potential. The latter is inturn decomposed as

vHXC([ρ];r) = vH([ρ];r)+ vXC([ρ];r), (3)
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wherevH([ρ];r) =
∫

ρ(r′)|r− r′|−1 dr′ is the electrostatic (Hartree) potential ofρ(r) and
vXC([ρ];r) is the exchange-correlation potential which represents the remainder of electron-
electron interactions.

In the HOMO depopulation method [22, 23], one corrects the approximate Kohn–Sham
potential of anN-electron system of interest by replacingvHXC([ρ];r) with vHXC([ρδ ];r),
whereρδ (r) is the self-consistent electron density obtained by removing a fractionδ (0≤
δ ≤ 1) of electron from the HOMO level. For spin-compensated systems withm degenerate
spatial HOMOs, the scheme requires removingδ/2m spin-up andδ/2m spin-down elec-
trons from each degenerate orbital [22]. Obviously, the density of the fractionally ionized
system is such that

∫

ρδ (r)dr = N −δ . (4)

Consider now a different way of introducing the fractional positive charge into a finite
system. Letζ (0≤ ζ ≤ 1) be the total positive charge added to all of the nuclei of the system.
For an atom of an element with atomic numberZ, this means increasing the nuclear charge
from Z to Z + ζ . For a molecule, we distribute the total additional charge among all of the
nuclei with weights proportional to their atomic numbers, that is, by changing eachZA to
ZA +ζA, where

ζA =
ZA

∑B ZB
ζ . (5)

Other ways of partitioningζ among the nuclei are certainly possible (e.g., based on the
density of the HOMO, the average local ionization energy [32–35], the difference between
the total electron densities of the cation and the neutral system) but they are not the subject
of this work.

The external potentialvζ (r) of this auxiliary system is now more negative, i.e.,vζ (r) <
v(r). The corresponding densityρζ (r) increases relative toρ(r) in the atomic core regions
but decreases elsewhere and is such that

∫

ρζ (r)dr =
∫

ρ(r)dr = N. (6)

As a result, the exchange-correlation potential in the valence and asymptotic regions of the
auxiliary system will be less negative than in the initial system. However, the Hartree poten-
tial as a function of the density varies faster at a givenr thanvXC(r), so the net result of in-
creasing the nuclear charges is thatvHXC([ρζ ];r)] < vHXC([ρ];r)] in the valence and asymp-
totic regions, as in the fractional HOMO depopulation method. Of course,vHXC([ρζ ];r)] for
someζ is different fromvHXC([ρδ ];r)] for δ = ζ , and it remains to be seen which correction
scheme performs better.

The idea is to compute the total Kohn–Sham effective potential of the auxiliary (frac-
tionally charged) system and use it as an improved approximation to the total Kohn–Sham
effective potential of the neutral system. The above manipulations with nuclear charges
amount to replacingveff(r) with

ṽeff(r) = vζ (r)+ vH([ρζ ];r)+ vXC([ρζ ];r). (7)

Equation (7) may also be written as

ṽeff(r) = v(r)+ vH([ρ];r)+ vcorrected
XC (r), (8)
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Fig. 1 Exchange-only LDA potentials for the Mg atom before and after applying the nuclear charge cor-
rection. The corrected potential is obtained by Eq. (9) using ζ = 1, a larger-than-optimal value chosen for
illustrative purposes

where

vcorrected
XC (r) = vζ (r)− v(r)+ vH([ρζ ];r)− vH([ρ];r)

+ vXC([ρζ ];r). (9)

Thus, modification of nuclear charges may be interpreted as areplacement of the exchange-
correlation part ofveff(r) with a model exchange-correlation potential formally defined by
Eq. (9). Manipulations with nuclear charges are then nothing more than a recipe for con-
structing a model exchange-correlation potential for the neutral system of interest.

The model exchange-correlation potential of Eq. (9) is moreattractive in the valence
and asymptotic regions and decays as−ζ/r at larger, which is closer to the correct−1/r
behavior than the exponential or−1/rα (α > 1) decay of traditional local and semilocal
approximations [36]. Figure 1 illustrates this result for the exchange-only local density ap-
proximation (LDA) for the Mg atom. Although the behavior of each curve atr = 0 is not
seen in Fig. 1, the original LDA potential is finite at the nucleus, whereasvcorrected

XC (r) tends
to −∞ asr → 0. The singularity arises from the external potential differencevζ (r)− v(r)
in Eq. (9). It does not cause any problems, however, because most exchange-correlation po-
tentials of the generalized gradient approximation (GGA) type already have a singularity at
each nucleus [37].

Now let us compare the performance of the fractional nuclearcharge method to that of
the HOMO depopulation technique.

3 Computational details

All calculations reported in this work were performed with the Gaussian 09 program [38]
using the d-aug-cc-pVQZ basis set for atoms and d-aug-cc-pVTZ for molecules. These basis
sets were constructed by augmenting the standard aug-cc-pVQZ and aug-cc-pVTZ basis sets
with one additional set of diffuse functions as explained inthe Supplementary Material.

The HOMO depopulation and fractional nuclear charge schemes are two-step proce-
dures. In the first step, a particular density-functional approximation is used to obtain the
SCF solution of the Kohn–Sham equations for a fractionally charged system. In the second
step, the Kohn–Sham orbitals and orbital eigenvalues from the first step are used, in a post-
SCF fashion, to construct and solve Casida’s equations for the neutral system of interest
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Fig. 2 Determination of the optimalζ value for the LDA exchange-correlation functional. The plots show the
MAEs for the 7 valence, 7 Rydberg, and all 14 TDLDA excitationenergies of the CO molecule as a function
of ζ . The smallest MAEs are obtained forζ = 0.22

(i.e., for the same molecular geometry). In both schemes, all linear-response TDDFT cou-
pling matrix elements are computed with the same approximate density functional that was
used in the first step.

The test set used in this work was the same as in Ref. [22]. Thisset, referred to as E-104
here, includes electronic excitation energies of three atoms (Be, Mg, Zn) and six molecules
(CO, CH2O, C2H2, C2H4, H2O, N2) at their experimental geometries. The total numbers of
electronic transitions in this test set is 104, including 31valence and 73 Rydberg excitations.
The following representative density-functional approximations were tested: the LDA with
the Perdew–Wang parametrization for correlation [39], theBecke–Lee–Yang–Parr (BLYP)
GGA [40, 41], the Becke three-parameter hybrid functional with the Lee–Yang–Parr corre-
lation (B3LYP) [42] and the Tao–Perdew–Staroverov–Scuseria (TPSS) meta-GGA [43].

By analogy with the HOMO depopulation procedure of Ref. [22], the optimal value of
ζ for each functional was determined by fitting 14 (7 valence and 7 Rydberg) calculated
excitation energies of the CO molecule to the correspondingexperimental values. The re-
sultingζ = ζCO value was then used without any adjustments for calculations with the same
functional on all other atoms and molecules. For the LDA, thefitting procedure is illustrated
by Fig. 2. The optimalζ values for other density functionals were determined similarly.
The results are:ζCO = 0.22 for LDA, ζCO = 0.26 for BLYP, ζCO = 0.14 for B3LYP, and
ζCO = 0.20 for TPSS.

4 Results

The MAEs of the E-104 electronic excitation energies calculated using various methods
and approximate density functionals are collected in Table1. According to this Table, the
fractional nuclear charge method always reduces the MAE in calculated Rydberg excitation
energies, but not very consistently, and sometimes worsensthe functional’s performance
for valence excitations. Clearly, whereas the fractional HOMO depopulation works equally
well for both atoms and molecules, the fractional nuclear charge technique withζ values
optimized for the CO molecule gives relatively poor resultsfor atoms. This makes the overall
performance of the fractional nuclear charge much less impressive than the performance of
the HOMO depopulation scheme.

To find out whether the relatively poor performance of the fractional nuclear charge
method for atoms is due to the use ofζCO values favoring molecules, we refitted all functional-
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Table 1 MAEs (in eV) relative to experiment for the E-104 vertical excitation energies calculated using
TDDFT with and without shape corrections for Kohn–Sham potentials. The optimal values of parametersδ
andζ = ζCO for each functional are shown in parentheses

Atoms Molecules Atoms and molecules
Functional Valence Rydberg All Valence Rydberg All ValenceRydberg All

Uncorrecteda

LDA 0.22 0.98 0.81 0.27 1.39 1.02 0.26 1.27 0.97
BLYP 0.29 1.26 1.05 0.35 1.77 1.30 0.34 1.61 1.24
B3LYP 0.29 0.94 0.80 0.36 0.98 0.78 0.35 0.97 0.78
TPSS 0.49 1.10 0.97 0.31 1.45 1.08 0.35 1.35 1.05

Corrected by the HOMO depopulation methoda

LDA (δ = 0.24) 0.29 0.23 0.25 0.22 0.25 0.24 0.23 0.24 0.24
BLYP (δ = 0.28) 0.32 0.19 0.22 0.26 0.18 0.21 0.28 0.18 0.21
B3LYP (δ = 0.18) 0.24 0.29 0.28 0.38 0.15 0.23 0.36 0.19 0.24
TPSS (δ = 0.23) 0.35 0.22 0.25 0.29 0.18 0.22 0.30 0.19 0.22

Corrected by the fractional nuclear charge method
LDA (ζ = 0.22) 0.48 0.58 0.56 0.24 0.22 0.23 0.29 0.33 0.32
BLYP (ζ = 0.26) 0.56 0.60 0.59 0.25 0.16 0.19 0.31 0.29 0.30
B3LYP (ζ = 0.14) 0.24 0.21 0.22 0.33 0.17 0.22 0.31 0.18 0.22
TPSS (ζ = 0.20) 0.42 0.40 0.41 0.31 0.18 0.23 0.33 0.25 0.27
aLast-digit discrepancies with Ref. [22] are caused by the fact that Ref. [22] used different exponents
for the additionald and f diffuse functions of the Mg atom (see the Supplementary Material).
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Fig. 3 MAEs of the electronic excitation energies of the E-104 testset calculated using two differentζ values
for each functional: one fitted to the 14 experimental excitation energies of the CO molecule, the other fitted
to the 8 experimental excitation energies of the Mg atom. TheζCO values give good results for molecules but
not for atoms. TheζMg values give good results for atoms but not for molecules

specificζ values by minimizing the MAE of the 8 (2 valence and 6 Rydberg)excitation
energies of the Mg atom. This gaveζMg = 0.09 for LDA, ζMg = 0.14 for BLYP,ζMg = 0.10
for B3LYP, andζMg = 0.11 for TPSS (see the Supplementary Material). Although the refit-
ted parameters did lower the combined (valence and Rydberg)excitation-energy MAEs for
the atoms to 0.36 eV (LDA), 0.32 eV (BLYP), 0.25 eV (B3LYP), and 0.36 eV (TPSS), the
combined (valence and Rydberg) MAEs for the molecules increased to 0.60 eV (LDA), 0.63
eV (BLYP), 0.33 eV (B3LYP), and 0.55 eV (TPSS). The overall performance of the scheme
with ζMg values was worse than withζCO values for all functionals (Fig. 3). This shows that
the fractional nuclear charge method lacks the key feature of the fractional HOMO depop-
ulation technique—transferability of the optimal charge increase value from one system to
another.

Another concern about the fractional nuclear charge methodis that contracted basis
sets such as d-aug-cc-pVQZ may be deficient for atoms and molecules with incremented
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nuclear charges. As a result, TDDFT description of core orbitals and, indirectly, electronic
excitation energies may be adversely affected by having suboptimal basis-set exponents and
contraction coefficients whenζ > 0. To assess the extent of this problem, we computed
and compared all of the atomic excitation energies of the E-104 test set for a series ofζ
values using two basis sets: the contracted d-aug-cc-pVQZ and the fully uncontracted d-
aug-cc-pVQZ (denoted “u-d-aug-cc-pVQZ”). The latter has sufficiently tight primitive basis
functions to accommodate higher than normal nuclear charges. For each atom and eachζ
value, we evaluated the mean absolute deviation (MAD) in thecalculated excitation energies
caused by the basis-set decontraction,

MAD =
1
n

n

∑
i=1

|Ei(uncontracted)−Ei(contracted)|, (10)

where the summation is over all valence and Rydberg excitation energies of the E-104 test set
for the corresponding atom. We found that, in the relevant range 0≤ ζ ≤ 0.3, decontraction
of the basis set usually results in MADs of 0.001–0.03 eV and never exceeds 0.1 eV, the Be
atom being the worst case (see Fig. S1 in the Supplementary Material). These deviations are
substantially smaller than the average variations of excitation energies caused by changes in
ζ alone (Fig. 2), which suggests that reoptimization ofζ values using more flexible basis
sets would not have affected the results significantly.

5 Conclusion

We have investigated the fractional nuclear charge method for TDDFT calculations of Ryd-
berg electronic excitation energies as a possible alternative to the fractional HOMO depopu-
lation technique of Ref. [22]. The accuracy of these two schemes is controlled by functional-
specific values of parametersζ (additional nuclear charge) andδ (HOMO level depopula-
tion), respectively. From calculations on the E-104 test set of valence and Rydberg excitation
energies it appears that the parameterζ of the fractional nuclear charge method exhibits con-
siderable system-dependence, unlike the parameterδ of the HOMO depopulation scheme.
For a given density-functional approximation, theζ value that is optimal for atoms is subop-
timal for molecules, andvice versa. As a consequence, the fractional nuclear charge method
performs less accurately overall than the fractional HOMO depopulation technique. Another
disadvantage of the fractional nuclear charge method is that it is ambiguous for molecules,
that is, it requires deciding how to distribute the total additional nuclear chargeζ among
the nuclei. For these reasons, we conclude that the fractional nuclear charge method is not a
viable alternative to the HOMO depopulation technique.

Acknowledgements D.N.K. is grateful to Dr. Alex P. Gaiduk for help with the HOMOdepopulation method.
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