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Abstract Previously, we derived an exact formula for the
Kohn–Sham exchange-correlation potential corresponding,
in the basis-set limit, to the Hartree–Fock electron density of
a given system. This formula expresses the potential in terms
of the occupied Hartree–Fock and Kohn–Sham orbitals and
orbital energies. Here we show that, when applied to the
Hartree–Fock description of a uniform electron gas, the for-
mula correctly reduces to the exchange-only local density
approximation.

Keywords Uniform electron gas· Local density approx-
imation · Exchange-correlation potential· Hartree–Fock
self-consistent field

1 Introduction

Some time ago, we devised a method for constructing the
Kohn–Sham (KS) exchange-correlation (XC) potential cor-
responding, in the basis-set limit, to the electron density
generated by a ground-state Hartree–Fock (HF) wave func-
tion [1, 2]. Here we will denote this potential byvHF

XC(r)
and call it “HFXC potential” for short. The method is based
on an exact expression forvHF

XC(r) in terms of the occupied
HF and KS orbitals and orbital energies of the system. (An
equivalent expression had been also derived by Nagy [3]
and Miao [4].) Using this method we showed that HFXC
potentials obtained from finite-basis-set HF wave functions
of atoms and molecules at equilibrium geometries can serve
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as excellent approximations to the corresponding basis-set-
limit exchange-only optimized effective potentials (OEPs) [1,
2]. (Hollins et al. [5] later suggested that HFXC potentials
might differ from exchange-only OEPs for strongly corre-
lated systems.) Subsequently, we generalized our approach
to correlated wave functions, which made it possible to gen-
erate accurate atomic and molecular exchange-correlation
potentials at various level ofab initio theory [6–12].

The purpose of this work is to demonstrate an antici-
pated but non-obvious result: that the somewhat intricate
expression forvHF

XC(r) derived in Ref. 1 reduces to the lo-
cal density approximation (LDA) exchange-only potential
when the HFXC formula is applied to a uniform electron
gas (UEG) described at the HF level of theory. All equations
below are written using atomic units.

2 HFXC potential

Consider a spin-unpolarized ground-stateN-electron system.
In the notation of Ref. 11, its HFXC potential is given by

vHF
XC(r) = vHF

S (r)+ ε̄KS(r)− ε̄HF(r)+
τHF

P (r)
ρHF(r)

− τKS
P (r)

ρKS(r)
, (1)

where

vHF
S (r) = − 1

2ρHF(r)

∫ |ρHF(r ; r ′)|2
|r − r ′| dr ′ (2)

is the Slater exchange-hole charge potential [13], in which
ρHF(r ; r ′) is the HF one-electron spin-free reduced density
matrix,

ε̄KS(r) =
2

ρKS(r)

N/2

∑
i=1

εKS
i |φKS

i (r)|2 (3)
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is the average local KS orbital energy, and

ε̄HF(r) =
2

ρHF(r)

N/2

∑
i=1

εHF
i |φHF

i (r)|2 (4)

is the average local HF orbital energy;ρKS(r) andρHF(r)
are, respectively, the usual KS and HF expressions for the
same total electron density,

ρKS(r) = 2
N/2

∑
i=1

|φKS
i (r)|2 (5)

and

ρHF(r) = 2
N/2

∑
i=1

|φHF
i (r)|2. (6)

The quantities

τHF
P (r) =

2
ρHF(r)

N/2

∑
i< j

|φHF
i (r)∇φHF

j (r)−φHF
j (r)∇φHF

i (r)|2

(7)

and

τKS
P (r) =

2
ρKS(r)

N/2

∑
i< j

|φKS
i (r)∇φKS

j (r)−φKS
j (r)∇φKS

i (r)|2

(8)

are the HF and KS Pauli kinetic energy densities. Note that
the upper summation limit in Eqs. (3)–(8) isN/2 rather than
N; this accounts for the different prefactors compared to the
corresponding equations of Ref. 11.

The KS orbitals and their eigenvalues appearing in Eq. (1)
are initially unknown and are determined by solving the KS
equations withvHF

XC(r) using the usual self-consistent-field
procedure with convergence acceleration [14]: we treat Eq.(1)
as a formula for a model KS potential (cf Refs. 15–17), start
with some initial guess forφKS

i (r) andεKS
i , and iterate the

KS eigenvalue problem until self-consistency.
As explained in Refs. 10 and 18, if Eq. (1) were im-

plemented using a complete (infinite) basis set, thenρHF(r)
andρKS(r) would automatically satisfy the KS condition at
convergence,

ρKS(r) = ρHF(r). (9)

In a finite basis set, Eq. (9) is weakly violated even at conver-
gence. The discrepancy betweenρHF(r) and the finalρKS(r)
depends on the basis set and tends to zero in the basis-set
limit [10]. This fact is of no consequence here because the
present work concerns exact analytic expressions rather than
their practical implementation.

3 Uniform electron gas limit of the HFXC potential

The UEG is an infinitely extended system with a constant
electron density. Usually, the UEG is considered to be the
same as jellium—an infinitely extended system of interact-
ing electrons with a constant neutralizing background po-
tential, but no uniformity constraint on the electron density.
Lewin and co-workers [19, 20] recently suggested that those
two systems are not necessarily identical. Here we follow
the traditional approach [21, 22], in which the UEG is as-
sumed to have a constant background potential.

Equation (1) is exact in the HF limit for any system.
Therefore, it should reduce to the LDA exchange potential
when applied to the HF description of a UEG. That is, if
ρKS(r) = ρHF(r) = ρ(r) = const, then one should have

vHF
XC(r) = vLDA

X (r), (10)

where

vLDA
X (r) = −kF(r)

π
(11)

and

kF(r) =
[

3π2ρ(r)
]1/3

(12)

is the Fermi momentum. This can be shown as follows.
Method 1. Consider a paramagnetic (spin-unpolarized)

UEG in a cube of volumeV . In the standard treatment of a
UEG [21, 22], where the UEG is identified with jellium, the
sum of the electron-electron and background-background
electrostatic repulsion potentials is canceled by the electron-
background attraction, so the HF equations become
[

−1
2

∇2 + K̂

]

φHF
k (r) = εHF

k φHF
k (r), (13)

whereK̂ is the Fock exchange operator andk is the wavevec-
tor of the stateφHF

k (r). The solutions to Eq. (13) are plane
waves

φHF
k (r) =

1√
V

eik·r (14)

with the eigenvalues [21, 22]

εHF
k =

k2

2
− kF

π
f (k), (15)

where

f (k) = 1+
k2

F − k2

2kkF
ln

∣

∣

∣

∣

kF + k
kF − k

∣

∣

∣

∣

. (16)

It is interesting to note that the spin-restricted HF wave func-
tion of jellium is unstable with respect to spin-polarization
and symmetry breaking [22–24]. However, only the spin-
restricted solution is characterized by a uniform density,so
it is the one of relevance here.
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The KS description of the UEG is formally simpler: the
exchange-only KS equations are [25]
[

−1
2

∇2 + vLDA
X (r)

]

φKS
k (r) = εKS

k φKS
k (r), (17)

where the orbitals are also plane waves

φKS
k (r) =

1√
V

eik·r , (18)

but the eigenvalues are different:

εKS
k =

k2

2
− kF

π
. (19)

To evaluate the UEG limit of Eq. (1), we proceed term
by term. The Slater potential of a UEG is given by [25, 26]

vHF
S (r) = −3

2
kF(r)

π
. (20)

The HF and KS Pauli kinetic energies of the UEG are equal
becauseφHF

k (r) = φKS
k (r). Therefore,

τHF
P (r)
ρ(r)

− τKS
P (r)
ρ(r)

= 0. (21)

To evaluate the contribution of the average local orbital en-
ergies, we note that

|φHF
k (r)|2 = |φKS

k (r)|2 =
1
V

. (22)

This implies thatε̄KS and ε̄HF are constant functions for a
UEG, just likeρ andkF . From Eqs. (3) and (4),

ε̄KS− ε̄HF =
2
ρ

1
V ∑

|k|≤kF

(εKS
k − εHF

k ). (23)

Replacing the sum overk with an integral and considering
that the number of states lying within a volume elementdk
of k-space is(V/8π3)dk, we obtain

ε̄KS− ε̄HF =
2

ρV
V

8π3

∫

|k|≤kF

(εKS
k − εHF

k )dk. (24)

Next we substitute Eqs. (15) and (19) into Eq. (24) and switch
to spherical polar coordinates. This gives

ε̄KS− ε̄HF =
1

π2ρ
kF

π

∫ kF

0
k2 [ f (k)−1]dk, (25)

where f (k) is defined by Eq. (16). Evaluating the integral,
substitutingρ = k3

F/3π2, and reintroducing ther -dependence
of ρ (i.e., by making the transition to the LDA), we have

ε̄KS(r)− ε̄HF(r) =
1
2

kF(r)
π

. (26)

Finally, by combining Eqs. (20), (21), and (26) we arrive at

vHF
XC(r) = −kF(r)

π
. (27)

Method 2. Let us multiply Eq. (13) by 2φHF
k (r)∗, sum

over k, and divide the sum byρ(r) = 2∑|k|≤kF
|φHF

i (r)|2.
The result of these manipulations is

ε̄HF(r) =
τHF

L (r)
ρ(r)

+ vHF
S (r), (28)

where we have introduced the quantity

τHF
L (r) = − ∑

|k|≤kF

φHF
k (r)∗∇2φHF

k (r) (29)

and used the fact that, by definition [13],

vHF
S (r) =

2
ρ(r) ∑

|k|≤kF

φHF
k (r)∗K̂φHF

k (r). (30)

Similarly, from Eq. (17) we have

ε̄KS(r) =
τKS

L (r)
ρ(r)

+ vLDA
X (r), (31)

where

τKS
L (r) = − ∑

|k|≤kF

φKS
k (r)∗∇2φKS

k (r). (32)

Given thatτHF
L (r) = τKS

L (r), subtraction of Eq. (28) from
Eq. (31) produces

ε̄KS(r)− ε̄HF(r) = vLDA
X (r)− vHF

S (r). (33)

Substituting this result into Eq. (1) and using Eq. (21) we ar-
rive directly at Eq. (10). Although this method appears sim-
pler than the first, it is actually less constructive becauseit
merely retraces the general derivation [1] of Eq. (1) for a
particular system—the UEG.

4 Concluding remarks

Generalization of the HFXC method to spin-unrestricted HF
wave functions is straightforward [1]. Using the above ap-
proach it would be easy to show that the spin-up and spin-
down HFXC potentials also reduce to the respective local
spin-density approximation potentials in the UEG limit.

Apart from the UEG, Eq. (1) can also be simplified for
one- and singlet two-electron systems such as ground-state
He, Li+, H2, H+

3 , etc. The KS description of such systems in-
volves only one occupied KS orbital, so the KS quantities in
Eq. (1) either drop out or become constants and it becomes
possible to write the exchange-correlation potential in terms
of interacting wave-function quantities alone (see Refs. 11
and Ref. 27 for details). ForN = 2, the resulting formulas
provide direct access to the exact KS correlation potential
and as such they can be very useful for studying correlation
effects in real and model two-electron systems [28–32].
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