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Abstract

Several workers have deduced various exact expressions for the Kohn–Sham exchange-correlation

potential in terms of quantities computable from the interacting and noninteracting wave functions

of the system. We show that all these expressions can be obtained by one general method in which

the interacting N -electron wave function is expanded in products of one- and (N − 1)-electron

functions. Different expressions correspond to different choices of the latter functions. Our analysis

unifies and clarifies the previously proposed exact treatments of the exchange-correlation potential,

and suggests new ways of expressing this quantity.
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I. INTRODUCTION

The Kohn–Sham density-functional scheme [1] involves a one-electron Schrödinger equa-

tion with the effective multiplicative potential vs(r) = v(r)+vH(r)+vXC(r), where v(r) is the

external potential, vH(r) is the electrostatic potential of the electron density ρ(r), and vXC(r)

is the exchange-correlation potential. The last quantity is defined as vXC(r) = δEXC[ρ]/δρ(r),

where EXC[ρ] is the exchange-correlation energy functional. The potential vXC([ρ]; r) is itself

an unknown functional of ρ(r), no less complicated than EXC[ρ].

To develop accurate approximations to EXC[ρ] and vXC(r), it is essential to know what

the exact exchange-correlation potentials look like. An accurate vXC(r) can be generated

numerically by fitting vs(r) to a given ground-state ρ(r) for a known v(r) [2–8] or by the

optimized effective potential (OEP) method [9–11]. It is also possible to write down the

exact vXC(r) for a given system as a mathematical expression involving quantities that can

be extracted from the interacting and the corresponding noninteracting (Kohn–Sham) wave

functions. Baerends and co-workers [12–15] devised the first of such expressions and used

it extensively for interpretive purposes [13–21]. The simplest formula for vXC(r) obtained

by the Baerends group involves one- and two-electron reduced density matrices (1- and

2-RDMs) and Dyson orbitals [19]. Other exact expressions for vXC(r) involving at most

the 2-RDM were devised by Ryabinkin et al. [22] and Cuevas-Saavedra et al. [23]. Either

of the last two expressions enables one to generate [22, 23] accurate exchange-correlation

potentials directly from many-electron wave functions in a manner that is numerically more

robust than potential fitting and OEP techniques.

In this work, we show that the various exact formulas for vXC(r) proposed so far are

special cases of one general expression, which we derive in a transparent new way. All these

formulas contain the same types of ingredients and differ only by how these ingredients

are expressed. Our derivation clarifies the relationship between various exact treatments of

vXC(r) and suggests other possible ways of expressing this quantity.

II. PRELIMINARIES

For simplicity, we restrict our discussion to singlet ground states described with closed-

shell Kohn–Sham determinants. To derive an exact formula for vXC(r), we will need two
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expressions for the ground-state electron density in terms of one-electron functions: one

from the Kohn–Sham scheme, the other from the wave-function method. In the Kohn–

Sham scheme, the electron density is given by

ρKS(r) =
∑

σ

N
∑

i=1

|φi(x)|2, (1)

where σ is the spin variable, x = (r, σ) is the collective electron coordinate, and φi(x) are

solutions to the Kohn–Sham eigenvalue problem

[

−1

2
∇2 + v(r) + vH(r) + vXC(r)

]

φi(x) = ǫiφi(x). (2)

In the wave-function method, there are many different ways to represent the ground-state

density in terms of one-electron functions. We will now derive a general formula for ρWF(r)

covering a broad class of such expressions.

Consider the ground state of a system of N electrons described by the normalized elec-

tronic wave function ΨN which satisfies the stationary Schrödinger equation

ĤNΨN(x1,x2, . . . ,xN) = ENΨN(x1,x2, . . . ,xN), (3)

where the Hamiltonian is

ĤN(r1, r2, . . . , rN) =
N
∑

i=1

[

−1

2
∇2

i + v(ri)

]

+
N
∑

i<j

r−1
ij . (4)

Let {θN−1
k } be a full set of orthogonal (not necessarily normalized) antisymmetric (N−1)-

electron functions, such that

〈θN−1
l |θN−1

k 〉 = δlkDk. (5)

The requirement that {θN−1
k } be a “full set” means that it should span the full configuration

interaction (FCI) space of (N − 1)-electron wave functions for the same system. Examples

of such full sets include the set of all eigenfunctions of the (N −1)-electron Hamiltonian and

the set of all (N − 1)-electron Slater determinants that can be constructed from the same

one-electron basis as ΨN . Under these conditions, ΨN can be expanded as

ΨN(x1,x2, . . . ,xN)

=
1√
N

∑

k

ψk(x1)θ
N−1
k (x2, . . . ,xN), (6)

3
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where

ψk(x1) =

√
N

Dk

∫

θN−1∗
k (x2, . . . ,xN)

×ΨN(x1,x2, . . . ,xN) dx2 · · · dxN . (7)

The properties of the one-electron functions ψk(x1) are determined by the choice of {θN−1
k }.

In general, the ψk(x1) are linearly dependent and not normalized to 1.

Recall that the density is related to the total electronic wave function by

ρWF(r1) = N
∑

σ

∫

|ΨN(x1,x2, . . . ,xN)|2 dx2 · · · dxN . (8)

Substituting Eq. (6) into Eq. (8) and using Eq. (5) we obtain

ρWF(r) =
∑

σ

∑

l

Dl|ψl(x)|2, (9)

where the summation is over all ψl(x).

For the purposes of our derivation, we will also need an eigenvalue-type equation satisfied

by the functions ψk(x). To find such an equation, we draw on the work by Morrell et al. [24]

and by Katriel and Davidson [25] and start by partitioning the Hamiltonian as

ĤN(r1, r2, . . . , rN)

= −1

2
∇2

1 + v(r1) +
N
∑

j>1

r−1
1j + ĤN−1(r2, . . . , rN), (10)

where ĤN−1 is of the same type as Eq. (4). We insert Eqs. (6) and (10) into Eq. (3), multiply

from the left by θN−1∗
l (x2, . . . ,xN), integrate over x2 through xN and use the orthogonality

of the θN−1
k to write the result as

Dl

[

−1

2
∇2

1 + v(r1)

]

ψl(x1)

+
∑

k

wlk(x1)ψk(x1) =
∑

k

λlkψk(x1), (11)

where

wlk(x1) =
N
∑

j>1

∫

r−1
1j θ

N−1∗
l (x2, . . . ,xN)

× θN−1
k (x2, . . . ,xN) dx2 · · · dxN (12)

4
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and

λlk = 〈θN−1
l |EN − ĤN−1|θN−1

k 〉. (13)

We interpret Eq. (11) as a reduced Schrödinger equation. The solutions of this equation,

ψk(x), give the ground-state electron density via Eq. (9). Therefore, Eqs. (9) and (11) may

be viewed as wave-function counterparts of the Kohn–Sham equations. We will see below

that Eq. (11) can be further simplified for certain choices of the functions θN−1
k .

III. DERIVATION

The starting point for our derivation of a general formula for vXC(r) is the equality

ρKS(r) = ρWF(r), (14)

where ρKS(r) and ρWF(r) are given by Eqs. (1) and (9), respectively. This equality is valid

by the very construction of the Kohn–Sham scheme [1].

Let us apply the Laplacian operator to both sides of Eq. (14),

∇2ρKS(r) = ∇2ρWF(r). (15)

Substituting Eqs. (1) and (9) into Eq. (15) we have, after dividing the result by 4,

1

2
ℜ
[

∑

σ

N
∑

i=1

φ∗
i (x)∇2φi(x)

]

+ τKS(r)

=
1

2
ℜ
[

∑

σ

∑

l

Dlψ
∗
l (x)∇2ψl(x)

]

+ τWF(r), (16)

where

τKS(r) =
1

2

∑

σ

N
∑

i=1

|∇φi(x)|2 (17)

and

τWF(r) =
1

2

∑

σ

∑

l

Dl|∇ψl(x)|2. (18)

The quantity τKS(r) is the electronic kinetic energy density of the noninteracting Kohn–

Sham system, and τWF(r) is the electronic kinetic energy density of the real (interacting)

system.

Now from Eq. (2)

−1

2
∇2φi(x) = [ǫi − v(r)− vH(r)− vXC(r)]φi(x) (19)

5
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and from Eq. (11)

−Dl

2
∇2ψl(x) =

∑

k

λlkψk(x)−Dlv(r)ψl(x)

−
∑

k

wlk(x)ψk(x). (20)

Insert Eqs. (19) and (20) into Eq. (16) and use Eqs. (1) and (9) to simplify the result. After

dividing by ρWF = ρKS and rearranging the terms we obtain

vXC(r) = vee(r)− vH(r)

+ ǭKS(r)− ǭWF(r) +
τWF(r)

ρWF(r)
− τKS(r)

ρKS(r)
, (21)

where

vee(r) =
1

ρWF(r)

∑

σ

∑

kl

wlk(x)ψ
∗
l (x)ψk(x), (22)

ǭKS(r) =
1

ρKS(r)

∑

σ

N
∑

i=1

ǫi|φi(x)|2, (23)

and

ǭWF(r) =
1

ρWF(r)

∑

σ

∑

kl

λlkψ
∗
l (x)ψk(x). (24)

Observe that by using Eqs. (6) and (12) we can rewrite Eq. (22) as

vee(r1) =
N

ρWF(r1)

∑

σ1

N
∑

j>1

∫

r−1
1j |ΨN |2 dx2 · · · dxN

=
N(N − 1)

ρWF(r1)

∑

σ1

∫

r−1
12 |ΨN |2 dx2 · · · dxN

=
2

ρWF(r1)

∫

P (r1, r2)

r12
dr2, (25)

where the quantity

P (r1, r2) =
∑

σ1σ2

Γ(x1,x2;x1,x2), (26)

called the pair function, is the spin-free diagonal part of the 2-RDM

Γ(x1,x2;x
′
1,x

′
2)

=
N(N − 1)

2

∫

ΨN(x1,x2,x3, . . . ,xN)

×ΨN∗(x′
1,x

′
2,x3, . . . ,xN) dx3 · · · dxN . (27)

6
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Moreover, one can always write the pair function as

P (r1, r2) =
1

2
ρWF(r1)

[

ρWF(r2) + ρWF
XC (r1, r2)

]

, (28)

which defines ρWF
XC (r1, r2), the exchange-correlation hole. Then Eq. (25) becomes

vee(r1) = vH(r1) + vWF
S (r1), (29)

where

vWF
S (r1) =

∫

ρWF
XC (r1, r2)

r12
dr2 (30)

is the Slater exchange-correlation-charge potential. Substituting Eq. (29) into Eq. (21) we

obtain

vXC(r) = vWF
S (r) + ǭKS(r)− ǭWF(r) +

τWF(r)

ρWF(r)
− τKS(r)

ρKS(r)
. (31)

Equation (31) is the desired exact expression for vXC(r). Next we consider several variants

of this general formula.

IV. SPECIAL CASES

Here we show that it is the choice of the functions θN−1
k that distinguishes the previously

derived expressions for the exchange-correlation potential.

A. Expression in terms of Dyson orbitals

If θN−1
k are chosen as the exact normalized eigenfunctions of the (N − 1)-electron Hamil-

tonian, that is,

θN−1
k = ΨN−1

k , (32)

where

ĤN−1ΨN−1
k = EN−1

k ΨN−1
k , (33)

then the one-electron functions ψk(x) are the Dyson orbitals [25],

ψk(x1) = dk(x1) =
√
N

∫

ΨN−1∗
k (x2, . . . ,xN)

×ΨN(x1,x2, . . . ,xN) dx2 · · · dxN . (34)

7
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The Dyson orbitals are neither orthogonal nor normalized [25]. But the ΨN−1
k are normalized,

〈ΨN−1
l |ΨN−1

k 〉 = δlk, (35)

so Dk = 1, and the ab initio expression for the electron density given by Eq. (9) becomes

ρWF(r) =
∑

σ

∑

k

|dk(x)|2, (36)

and the kinetic energy density of Eq. (18)

τWF(r) =
1

2

∑

σ

∑

k

|∇dk(x)|2. (37)

Equation (13) simplifies to

λlk = δlk(E
N − EN−1

k ) = −δlkIk, (38)

where

Ik = EN−1
k − EN (39)

is the ionization energy corresponding to the kth state of the ion, and then Eq. (24) assumes

the form

ǭWF(r) = − 1

ρWF(r)

∑

σ

∑

k=1

Ik|dk(x)|2, (40)

where the summation is over all Dyson orbitals.

Equation (31), in which the wave-function-based quantities other than vWF
S (r) are given

by Eqs. (36)–(40), is an exact formula for vXC(r) in terms of the 2-RDM and Dyson orbitals.

This expression was first derived by Chong et al. [19] using a different method. The method

of Chong and co-workers and its relation to our technique will be explained in Section V.

We note that the expression for vXC(r) in terms of Dyson orbitals is not practical for

direct construction of exchange-correlation potentials from wave functions because Eq. (40)

involves all Dyson orbitals of the system, computing which is not an easy task. However,

the formula in terms of Dyson orbitals proves very useful for interpreting the Kohn–Sham

orbital eigenvalues as approximations to vertical ionization energies [19–21].

B. Expression in terms of natural orbitals

A simpler exact expression for vXC(r) containing only quantities that can be extracted

from the 1- and 2-RDMs was devised recently by Cuevas-Saavedra et al. [23]. Recall that

8
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the 1-RDM is defined by

γWF(x1,x
′
1) = N

∫

ΨN(x1,x2, . . . ,xN)

×ΨN∗(x′
1,x2, . . . ,xN) dx2 · · · dxN , (41)

and that the eigenfunctions of the integral operator with the kernel γWF(x1,x
′
1) are the

natural spin-orbitals,
∫

γWF(x,x′)χk(x
′) dx′ = nkχk(x), (42)

nk being the natural orbital occupation numbers.

In the language of this work, the derivation of Ref. 23 amounts to setting

θN−1
k = ηN−1

k , (43)

where ηN−1
k are (N − 1)-electron functions defined by

ηN−1
k (x2, . . . ,xN)

=
√
N

∫

χ∗
k(x1)Ψ

N(x1,x2, . . . ,xN) dx1. (44)

Carlson and Keller [26] studied such functions and showed that they are related to the

eigenfunctions XN−1
k of the (N − 1)-electron RDM by

ηN−1
k = n

1/2
k XN−1

k , (45)

and are orthogonal,

〈ηN−1
l |ηN−1

k 〉 = δlknk. (46)

The eigenfunctions XN−1
k span the FCI space of (N − 1)-electron functions if eigenfunctions

with zero eigenvalues are included. The eigenfunctions XN−1
k with zero eigenvalues, however,

do not contribute to the expansion of ΨN , which is why the set of ηN−1
k is sufficient for

expanding ΨN [24–26]. Thus, one can also say that the derivation of Ref. 23 amounts to

choosing θN−1
k to be the eigenfunctions XN−1

k scaled by n
1/2
k .

For θN−1
k = ηN−1

k , we have Dk = nk. Substitution of Eq. (44) into Eq. (7) then gives

ψk(x1) =
1

nk

∫

γWF(x1,x
′
1)χk(x

′
1) dx

′
1 = χk(x1). (47)

Because the natural spin-orbitals are orthonormal,

〈χl|χk〉 = δlk, (48)

9
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by Eq. (9) we have

ρWF(r) =
∑

σ

∑

k

nk|χk(x)|2, (49)

where the summation is over all natural orbitals. By Eq. (18),

τWF(r) =
1

2

∑

σ

∑

k

nk|∇χk(x)|2, (50)

and by Eq. (24),

ǭWF(r) =
1

ρWF(r)

∑

σ

∑

kl

λlkχ
∗
l (x)χk(x), (51)

where now

λlk = 〈ηN−1
l |EN − ĤN−1|ηN−1

k 〉. (52)

To construct ǭWF(r) by Eq. (51) one needs the matrix elements λlk. Instead of using the awk-

ward Eq. (52) for computing λlk, the method of Ref. 23 employed an alternative expression

which we derive here as follows.

Observe that for ψk = χk, Eq. (11) may be written as

nl

[

−1

2
∇2

1 + v(r1)

]

χl(x1)

+ 2

∫

Γ(x1,x2;x
′
1,x2)χl(x

′
1)

r12
dx′

1dx2 =
∑

k

λlkχk(x1), (53)

because
∑

k

wlk(x1)χk(x1) = 2

∫

Γ(x1,x2;x
′
1,x2)χl(x

′
1)

r12
dx1dx

′
2, (54)

which can be verified by expanding the 2-RDM in natural spin-orbitals and using their

orthonormality. Equation (53), which was previously derived by Löwdin [27] and by Morrell

et al. [24], may be cast compactly as
∫

G(x,x′)χl(x
′) dx′ =

∑

k

λlkχk(x), (55)

where

G(x1,x
′
1) =

[

−1

2
∇2

1 + v(r1)

]

γWF(x1,x
′
1)

+ 2

∫

Γ(x1,x2;x
′
1,x2)

r12
dx2 (56)

with γWF(x1,x
′
1) =

∑

k nkχk(x1)χ
∗
k(x

′
1). Equation (55), which is a transformed version of

Eq. (52), implies that

λlk = 〈χl|Ĝ|χk〉, (57)

10
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where Ĝ is an integral operator with the kernel defined by Eq. (56).

Since the kernel of Ĝ depends on the 2-RDM at most, Eq. (57) is more convenient for

computing λlk than Eq. (52). The formula for vXC(r) derived in Ref. 23 is a particular

version of Eq. (31) in which the wave-function-based quantities are given by Eqs. (49)–(51)

and (57).

There exists a connection between the expansions of ΨN in terms of Dyson orbitals and

in terms of natural orbitals. Goscinski and Lindner [28] showed that the natural orbitals

can be obtained by canonical orthonormalization of the Dyson orbitals. The set of all Dyson

orbitals is overcomplete. The dimension of the space spanned by the Dyson orbitals is equal

to the number of natural spin-orbitals with nonzero eigenvalues, which is equal [26] to the

number of eigenfunctions XN−1
k with nonzero eigenvalues, which in turn is the same as the

number of ηN−1
k . This is why the expansion of ΨN in terms of ηN−1

k contains fewer terms

than the expansion in terms of ΨN−1
k .

C. Expression in terms of energy orbitals

The approach used by Ryabinkin et al. [22] to derive another exact expression for vXC(r)

deviates considerably from the present method. However, their final result has the same

structure as Eq. (31) and differs from the previously discussed formulas only in how ǭWF(r)

is represented.

The central quantity in derivation of Ryabinkin et al. [22] is the integral operator Ĝ. This

operator naturally arises in many problems of electronic structure theory and is known as the

generalized Fock operator, extended Hartree–Fock operator, or orbital Lagrangian [27, 29–

34]. The generalized Fock operator is in general non-Hermitian and becomes Hermitian for

variational methods. Ryabinkin et al. [22] observed that

ǭWF(r) =

∑

σ G(x,x)

ρWF(r)
. (58)

Therefore, expressions for ǭWF(r) in terms of matrix elements of Ĝ such as Eqs. (24) and (51)

do not change if every λlk is replaced with λ∗kl. This means that ǭWF(r) is determined by the

Hermitian (symmetric) part of Ĝ and remains real even for nonvariational methods. The

Hermitian part of the matrix of λlk can always be diagonalized by solving the eigenvalue

11
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problem

F̂ fj(x) = λjfj(x), (59)

where F̂ = (Ĝ + Ĝ†)/2. The eigenfunctions fj(x), which we called “energy orbitals” [35],

form a complete orthonormal set and span the same space as {ψj}, {dk}, and {χj}. The

expression for the average local electron energy in terms of energy orbitals is

ǭWF(r) =
1

ρWF(r)

∑

σ

∑

j

λj|fj(x)|2, (60)

where the summation is over all energy orbitals.

The formula for vXC(r) proposed in Ref. 22 is a special case of Eq. (31) in which ǭWF(r)

is expressed by Eq. (60) and the remaining wave-function-based quantities are as in Sec-

tion IVB. One could also write ρWF(r) and τWF(r) in terms of energy orbitals, but these

expressions would have a nondiagonal form and offer no conceptual or computational ad-

vantage over the corresponding expressions in terms of natural orbitals.

For Hartree–Fock (HF) wave functions, energy orbitals coincide with the natural

and canonical HF orbitals, the eigenvalues of these orbitals are related through λHF
k =

nHF
k ǫHF

k [35], and vWF
S (r) reduces the Slater exchange-charge potential [36]. Therefore, for

HF wave functions, Eq. (60) simplifies to

ǭHF(r) =
1

ρHF(r)

∑

σ

N
∑

i=1

ǫHF
i |φHF

i (x)|2. (61)

Exchange-correlation potentials constructed by Eq. (31) for Hartree–Fock wave functions

are excellent approximations to exact exchange potentials [37, 38].

V. COMPARISON WITH THE METHOD OF BAERENDS AND CO-WORKERS

The earliest exact expression for vXC(r) in terms of wave-function and Kohn–Sham quan-

tities was derived by Baerends and co-workers [12–14, 19, 20]. Their approach is similar in

spirit to our method in that it also involves a factorization of ΨN , but differs in essential

details. Baerends and co-workers start by writing ΨN as a single product,

ΨN(x1,x2, . . . ,xN) = a(x1)Φ(x2, . . . ,xN ;x1), (62)

where

a(x1) =

√

ρWF(x1)

N
(63)

12

Page 14 of 21

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

and

Φ(x2, . . . ,xN ;x1) =
ΨN(x1,x2, . . . ,xN)

a(x1)
, (64)

which has the property
∫

|Φ(x2, . . . ,xN ;x1)|2 dx2 · · · dxN = 1 for all x1. (65)

This formal factorization of ΨN was originally proposed by Hunter [39, 40] who interpreted

a(x1) as a marginal probability amplitude and Φ as a conditional probability amplitude.

The Kohn–Sham determinant ΨN
s is factorized similarly as

ΨN
s (x1,x2, . . . ,xN) = as(x1)Φs(x2, . . . ,xN ;x1), (66)

where

as(x1) =

√

ρKS(x1)

N
= a(x1) (67)

and

Φs(x2, . . . ,xN ;x1) =
ΨN

s (x1,x2, . . . ,xN)

as(x1)
. (68)

Buijse and Baerends [12] showed that if Eq. (62) is inserted into the N -electron

Schrödinger equation with ĤN partitioned as in Eq. (10) and if the result is multiplied from

the left by Φ∗ and integrated over x2 · · ·xN , one obtains the reduced one-electron Schrödinger

equation for the marginal probability amplitude. By using this reduced Schrödinger equa-

tion and a similar equation derived from Eqs. (66)–(68), Gritsenko et al. [13] arrived at the

following expression,

vXC(r) = vholeXC (r) + vc,kin(r) + vresp(r), (69)

which is equivalent to our Eq. (31), as we will now show.

The first term on the right-hand side of Eq. (69), the exchange-correlation hole potential,

is identical to our generalized Slater potential,

vholeXC (r) = vWF
S (r). (70)

The second term is given by [19]

vc,kin(r) =

[

∇r∇r
′ρWF(r, r′)−∇r∇r

′ρKS(r, r′)
]

r
′=r

2ρ(r)
, (71)

where ρ(r) = ρKS(r) = ρWF(r),

ρKS(r, r′) =
∑

σ

N
∑

i=1

φi(x)φ
∗
i (x

′) (72)
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is the spin-free Kohn–Sham 1-RDM, and

ρWF(r, r′) =
∑

σ

γWF(x,x′) (73)

is the spin-free 1-RDM from the wave function. Clearly,

vc,kin(r) =
τWF(r)

ρWF(r)
− τKS(r)

ρKS(r)
. (74)

The third term in Eq. (69) is defined as

vresp(r) = vN−1(r)− vN−1
s (r), (75)

where [19]

vN−1(r) =− EN−1
0 +

∑

σ1

∫

Φ∗(x2, . . . ,xN ;x1)

× ĤN−1Φ(x2, . . . ,xN ;x1) dx2 · · · dxN , (76)

in which EN−1
0 is the ground-state energy of the (N − 1)-electron system, and

vN−1
s (r) =− EN−1

s,0 +
∑

σ1

∫

Φ∗
s(x2, . . . ,xN ;x1)

× ĤN−1
s Φs(x2, . . . ,xN ;x1) dx2 · · · dxN , (77)

in which EN−1
s,0 is the ground-state energy of the noninteracting (N − 1)-electron system.

Chong et al. [19] showed that if ΨN is expanded in Dyson orbitals, then vN−1(r) becomes

vN−1(r) = −I0 +
1

ρWF(r)

∑

σ

∑

k=1

Ik|dk(x)|2, (78)

where I0 is the first ionization energy of the system, while Gritsenko et al. [13] showed that

vN−1
s (r) = ǫN − 1

ρKS(r)

∑

σ

N
∑

i=1

ǫi|φi(x)|2, (79)

where ǫN is the eigenvalue of the highest occupied Kohn–Sham orbital. The connection

between these and our quantities is, therefore,

vN−1(r) = −ǭWF(r)− I0 (80)

and

vN−1
s (r) = −ǭKS(r) + ǫN . (81)
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Since in the exact Kohn-Sham scheme [41],

I0 = −ǫN , (82)

we conclude that

vresp(r) = ǭKS(r)− ǭWF(r). (83)

Equation (83) also follows from the equality of the right-hand sides of Eqs. (31) and (69)

together with the identities expressed by Eqs. (70) and (74).

VI. CONCLUSION

We have devised a unified method for deriving various exact expressions for the exchange-

correlation potential of the Kohn–Sham density-functional theory. The starting point of our

derivation is the expansion of the interacting N -electron wave function in products of one-

and (N−1)-electron functions. Depending on how the (N−1)-electron functions are chosen,

the method produces different formulas for vXC(r) which all have the same analytic structure

given by Eq. (31) but differ in how individual terms are expressed.

The expressions for vXC(r) derived by the Baerends group [13, 19] and by Staroverov

and co-workers [22, 23] are particular cases of Eq. (31). The main difference between those

formulas is in how one particular term, ǭWF(r), is represented. Baerends and co-workers gave

two analytic expressions for ǭWF(r)—one in terms of conditional probability amplitudes,

Eq. (76), the other in terms of Dyson orbitals, Eq. (40). Conditional probability amplitudes

are as complicated objects as ΨN itself, while Dyson orbitals require the knowledge of all

ΨN−1
k or at least the system’s single-particle Green’s function. Our expressions for ǭWF(r),

Eqs. (51) or Eq. (60), are simpler in that they require the 2-RDM at most.

Another way to describe the difference between the existing formulas for vXC(r) is to

state which ingredients have a diagonal representation and which do not. In the expression

involving natural orbitals, ρWF(r) and τWF(r) have a diagonal form in terms of one-electron

functions, whereas ǭWF(r) does not. In the expression involving energy orbitals, it is the

other way around. In the expression in terms of Dyson orbitals, all three quantities ρWF(r),

τWF(r), and ǭWF(r) are in diagonal form.

Our key finding is that each variant of Eq. (11) gives rise to a distinct expression for

vXC(r). In this work, we have analyzed the cases where Eq. (11) defines the natural spin-
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orbitals, Dyson orbitals, and energy orbitals. Other exact expressions for vXC(r) can be

generated by using some other reduced one-electron form of the Schrödinger equation.
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