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Abstract

The first vertical ionization energy of an atom or molecule is encoded in the rate of exponential

decay of the exact natural orbitals. For natural orbitals represented in terms of Gaussian basis

functions, this property does not hold even approximately. We show that it is nevertheless possible

to deduce the first ionization energy from the long-range behavior of Gaussian-basis-set wavefunc-

tions by evaluating the asymptotic limit of a quantity called the average local electron energy

(ALEE), provided that the most diffuse functions of the basis set have suitable shape and location.

The ALEE method exposes subtle qualitative differences between seemingly analogous Gaussian

basis sets and complements the extended Koopmans theorem by being robust in situations where

the one-electron reduced density matrix is ill-conditioned.
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1. INTRODUCTION

The vertical ionization energy (IE) of a chemical species X is the internal energy change

for the process X → X+ +e, where X+ has the molecular geometry of X and both species are

in their ground electronic states. Experiments measure vertical IEs as differences between

the energies of the ground vibrational state of X and vibrationally excited states of X+,1

but in quantum chemistry it is customary to focus on the purely electronic contribution

I = Ee(X
+) − Ee(X) (1)

where Ee(X) and Ee(X
+) are the ground-state electronic energies of the initial and ionized

systems. In this work, IE means exclusively the first (lowest) nonadiabatic electron removal

energy defined by eq 1 for the nonrelativistic, fixed-nucleus solutions of the Schrödinger

equation.

The direct way to predict an IE is to compute Ee(X) and Ee(X
+) separately at the same

level of theory. There are also many indirect approaches (reviewed in Ref. 2) that avoid a

separate calculation on the cation by relating the ground-state wavefunction of X+ to that

of X,3–10 or by using the electron propagator theory.11 The basic premise of such techniques

is made plausible by the fact that the value of I is encoded in the exact wavefunction of X

alone. Specifically, it is known that the exact ground-state electron density of an atom or

molecule falls off asymptotically as7,12–17

ρ(r) ∼ rβ exp(−2
√

2Ir) (r → ∞) (2)

where β is a system-specific positive constant. From eq 2 there follow naive recipes for

extracting I from ρ(r), e.g.,

lim
r→∞

∇2ρ(r)

8ρ(r)
= lim

r→∞

τW (r)

ρ(r)
= I (3)

where τW (r) = |∇ρ(r)|2/8ρ(r). The exponent 2
√

2I also governs the rate of exponential

decay of the natural orbitals of the system,7,12,15 which means that not only ρ(r) but also

many other quantities imply the IE. For instance,18

lim
r→∞

τ(r)

ρ(r)
= − lim

r→∞

τL(r)

ρ(r)
= I (4)

where τ(r) = 1
2
[∇r∇r

′γ(r, r′)]
r
′=r

is the positive-definite form of the kinetic energy density

expressed in terms of the one-electron reduced density matrix (1-RDM) γ(r, r′) and τL(r) =

τ(r) −∇2ρ(r)/4.
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Unfortunately, eq 3 and eq 4 are useless in practice because they do not hold even ap-

proximately when ρ(r), τ(r), and τL(r) are represented in terms of Gaussian basis functions.

Such functions contain factors of the form exp(−αir
2) which cause the ratios of eq 3 and eq 4

to diverge with increasing r (see Appendix).

Koopmans’ theorem19 and its extension7–10 to correlated wavefunctions are more sophisti-

cated techniques for extracting IEs from ground-state electron distributions. These theorems

work for Gaussian basis sets but have their own limitations: IE values predicted by Koop-

mans’ theorem for Hartree–Fock (HF) wavefunctions are not sufficiently accurate, whereas

the extended Koopmans theorem (EKT) runs into numerical problems when the 1-RDM

has very small eigenvalues or is not positive-definite.20–23

The objective of this work is to demonstrate that the idea to compute the first IE as an

asymptotic limit of some ground-state quantity does not have to be abandoned. The quantity

we employ for this purpose is the average local electron energy (ALEE), ǭ(r), defined below,

which has the formal property24

lim
r→∞

ǭ(r) = −I (5)

We will show that proper construction of ǭ(r) in a finite basis set and subsequent analytic

evaluation of the asymptotic limit do furnish the first IE. This technique may be regarded

as the most direct practical way of extracting IEs from approximate wavefunctions.

2. AVERAGE LOCAL ELECTRON ENERGY

The main ingredient of the ALEE and EKT is the generalized Fock operator,25–27 also

known as the extended HF operator,28,29 Koopmans operator,30 Lagrangian matrix,31 and

by other names. This operator is defined by its integral kernel, which for spin-compensated

systems may be written in the spin-free form as

G(r, r′) = ĥ(r)γ(r, r′) + 2

∫

Γ(r, r2; r
′, r2)

|r − r2|
dr2 (6)

where

ĥ(r) = −1

2
∇2 + v(r) (7)

is the one-electron core Hamiltonian, γ(r, r′) is the 1-RDM, and Γ(r1, r2; r
′

1, r
′

2) is the 2-RDM.

Application of the EKT consists of solving the eigenvalue problem9

∫

G(r, r′)ψk(r
′) dr′ = (−Ik)

∫

γ(r, r′)ψk(r
′) dr′ (8)
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where Ik are electron removal energies and ψk(r
′) are the associated amplitudes. In practice,

eq 8 is solved in matrix form10

Gdk = (−I)kPdk (9)

where G, P, and dk are matrix representations of G(r, r′), γ(r, r′), and ψk(r), respectively.

The ALEE function is defined as24

ǭ(r) =
G(r, r)

ρ(r)
(10)

where ρ(r) ≡ γ(r, r). The quantity G(r, r) may be expressed in different ways24,32–35 that are

equivalent in a complete basis set but not in a finite one. One such expression is obtained

by substituting eq 6 into eq 10:

ǭ(r) =
τL(r)

ρ(r)
+ v(r) + vee(r) (11)

where

τL(r) = −1

2

[

∇2γ(r, r′)
]

r
′=r

(12)

and

vee(r) =
2

ρ(r)

∫

Γ(r, r2; r, r2)

|r − r2|
dr2 (13)

is the effective electron-electron interaction potential. The name ALEE owes to the fact that

eq 11 may be interpreted as the sum of local kinetic and potential energies per electron.

For calculations using finite basis sets, it is crucial34,35 to employ not eq 6 but the spectral

representation of G(r, r′) which restricts the domain of this kernel to the appropriate vector

subspace. This representation is

G(r, r′) = 2
K

∑

k=1

λkgk(r)g
∗

k(r
′) (14)

where gk(r) are basis-set expansions of the eigenvectors of G, λk are the associated eigen-

values, and K is the dimension of the space spanned by the spatial orbitals from which the

wavefunction, RDMs, and G(r, r′) are built. The factor of 2 arises from spin summation.

Substitution of eq 14 into eq 10 gives24

ǭ(r) =
2

ρ(r)

K
∑

k=1

λk|gk(r)|2 (15)

which is how we compute the ALEE here. Within a finite Gaussian basis set, the output of

eq 15 retains the correct shape and smoothness of the exact (basis-set-limit) ALEE,34,35
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whereas the output of formulas such as eq 11 is characterized by wild oscillations and

divergences.36,37

The spectral representation of the 1-RDM is

γ(r, r′) = 2
K

∑

k=1

nkχk(r)χ
∗

k(r
′) (16)

where χk(r) are natural orbitals and nk are their occupation numbers (0 ≤ nk ≤ 1).

For a closed-shell N -electron Slater determinant of spatial canonical orbitals φk(r) with

eigenvalues ǫk, we have K = N/2, gk(r) = φk(r) and λk = nkǫk, where nk = 1 for occupied

orbitals and 0 for unoccupied, so eq 15 may be written as

ǭ(r) =
2

ρ(r)

N/2
∑

i=1

ǫi|φi(r)|2 (17)

with ρ(r) =
∑N/2

i=1 |φi(r)|2. For a complete active space (CAS) self-consistent-field (SCF)

wavefunction, K is the total number of core and active-space orbitals. In the full configura-

tion interaction (FCI) method, K is the dimension of the space spanned by the one-electron

basis set (for M linearly independent basis functions, K = M). An ALEE is never more

difficult to calculate than the underlying wavefunction.

3. ASYMPTOTIC LIMIT OF THE ALEE

According to eq 11, the r → ∞ limit of ǭ(r) should be the same as that of the ratio

τL(r)/ρ(r) because the terms v(r) and vee(r) vanish at infinity. For exact wavefunctions, the

asymptotic limit of τL(r)/ρ(r) is given by eq 4, whence eq 5 is obtained. Within a Gaussian

basis set, however, the ratio τL(r)/ρ(r) diverges at infinity36 (see Appendix) and so does the

right-hand side of eq 11. We will now demonstrate that the quantity ǭ(r) constructed using

eq 15 always has a well-defined r → ∞ limit within a basis set of Gaussian functions despite

their physically incorrect fall-off rate. Moreover, under certain mild constraints on the basis

set, this limit is close to the exact first IE. The essence of the ALEE method for extracting

the first IE from a wavefunction is represented graphically in Fig. 1.
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Figure 1: Various quantities computed from the FCI/def2-QZVP wavefunction of the Be atom. All

of these are supposed to approach the first IE (Iexact = 0.3426 Eh) in the r → ∞ limit, but only

−ǭ(r) does so (approximately). The small deviations −ǭ(r) from the expected behavior at large r

are basis-set effects explained in ref 38.

3.1. General procedure

The theoretical foundation for the proposed method is eq 5 with ǭ(r) given by eq 15.

To evaluate the r → ∞ limit of this ǭ(r), we need to rewrite eq 15 explicitly in terms

of one-electron basis functions. Suppose we have a basis set of M real functions fµ(r)

(µ = 1, 2, . . . ,M). Then the eigenfunctions of the generalized Fock operator are given by

gk(r) =
M

∑

µ=1

bµkfµ(r) (18)

where the coefficients bµi are determined by diagonalizing the matrix G after transforming

it to an auxiliary orthonormal basis set. Substitution of eq 18 into eq 14 gives

G(r, r′) = 2
M

∑

µ=1

M
∑

ν=1

Gµνfµ(r)fν(r
′) (19)

where

Gµν =
K

∑

k=1

λkbµkbνk (20)

The natural orbital expansions are

χk(r) =
M

∑

µ=1

cµkfµ(r) (21)
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where the coefficients cµi are obtained by a similar diagonalization of the density matrix P.

Substitution of eq 21 into eq 16 gives

γ(r, r′) = 2
M

∑

µ=1

M
∑

ν=1

Pµνfµ(r)fν(r
′) (22)

where

Pµν =
K

∑

k=1

nkcµkcνk (23)

Using the diagonal parts of eq 19 and eq 22 in eq 10 we obtain

ǭ(r) =

∑M
µ=1

∑M
ν=1 Gµνfµ(r)fν(r)

∑M
µ=1

∑M
ν=1 Pµνfµ(r)fν(r)

(24)

Generally, ǭ(r) approaches different asymptotic limits in different directions. Let us

denote the asymptotic limit of ǭ(r) in the direction defined by a unit vector u by

a(u) = lim
r→∞

ǭ(ru) (25)

and the largest (least negative) of these limits by

amax = max
u

a(u) (26)

As we will see below, the IE encoded in the ALEE is

IALEE = −amax (27)

Extraction of the IE from an ALEE amounts to finding the greatest (least negative) r → ∞
limit of eq 24.

In principle, one can determine amax graphically by plotting the right-hand side of eq 24 in

various directions, but this method is obviously inefficient. A better approach is to compute

amax analytically using the fact that the asymptotic behavior of eq 24 is governed by the

slowest-decaying (most diffuse) functions of the basis set and their coefficients Gµν and Pµν .

The slowest-decaying primitive functions are those that have the smallest exponent (α0) and

the highest angular quantum number l among the functions with α0. The rate of decay of a

contracted basis function is determined by the diffuse primitive function of the contraction.

To determine amax for a given system and basis set, one needs to take into account the

type, number, positions, and nodes of the slowest-decaying basis functions, as well as the

angular dependence of a(u). The problem is non-trivial in general, but has very simple

solutions for many special cases. We will present four such cases which cover sufficiently

many situations to demonstrate that the proposed method works.
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3.2. Special cases

For notational convenience we assume that the basis functions have been ordered by the

rate of their asymptotic decay, so that the slowest-decaying function is f1(r).

Case 1: The slowest-decaying function is a single s-type (l = 0) orbital, f1(r), centered

at the origin of the coordinate axes. Using eq 24 we immediately obtain

a1s = lim
r→∞

ǭ(r) =
G11

P11

=

∑K
k=1 λk|bk1|2

∑K
k=1 nk|ck1|2

(28)

where ak1 and ck1 are the coefficients of f1(r) in eq 18 and eq 21, respectively. Since f1(r)

is spherically symmetric, this limit is the same in every direction, so we take

amax = a1s (29)

Case 2: The slowest-decaying functions are three p-type (l = 1) orbitals, (f1 = px, f2 = py,

f3 = pz) centered at the origin of the coordinate axes, and the system is oriented in such a

way that each eigenfunction gk(r) and each natural orbital χk(r) have nonzero contributions

from at most one of these functions. If these conditions are met, the asymptotic limit of ǭ(r)

along the x axis is determined by the contributions of f1(r) alone (as if it were Case 1), so

ax
1p = lim

x→±∞

ǭ(x, y, z) =
G11

P11

(30)

By a similar argument,

ay
1p = lim

y→±∞

ǭ(x, y, z) =
G22

P22

(31)

az
1p = lim

z→±∞

ǭ(x, y, z) =
G33

P33

(32)

In general, ax
1p 6= ay

1p 6= az
1p. Owing to the special orientation of the coordinate axes, a(u)

interpolates between these three values but does not exceed the greatest of them. Therefore,

amax = max{ax
1p, a

y
1p, a

z
1p} (33)

Note that if the px, py, and pz functions belong to a three-dimensional irreducible rep-

resentation of the point group of the system (e.g., Ne atom, CH4 molecule), then a(u) is

isotropic: ax
1p = ay

1p = az
1p. If the system has at most cylindrical symmetry with respect to

the z axis (e.g., LiF molecule), then ax
1p = ay

1p 6= az
1p, and so on.
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Case 3: The slowest-decaying functions are two identical s-type Gaussians, f1(r) and

f2(r), whose centers are R a.u. apart. Without loss of generality, we can assume that the

coordinates of the centers are (0, 0,±R/2). Now eq 24 gives different limits for different

directions: along the z axis we get

az
2s = lim

z→±∞

ǭ(x, y, z) =
G11

P11

=
G22

P22

(34)

whereas in the xy plane intersecting the z axis at z = t

axy
2s (t) = lim

x→±∞

ǭ(x, y, t) = lim
y→±∞

ǭ(x, y, t)

=
(1 + e4α0Rt)G11 + 2e2α0RtG12

(1 + e4α0Rt)P11 + 2e2α0RtP12

(35)

where G11 = G22 and P11 = P22 by symmetry of the system and G12 = G21 and P12 = P21

by symmetry of the matrices. The function axy
2s (t) becomes stationary at t = 0 and t = ±∞,

where it assumes the values

axy
2s (0) =

G11 + G12

P11 + P12

(36)

and axy
2s (∞) = az

2s. Analysis of the function axy
2s (t) shows that, whenever axy

2s (0) is a maximum,

axy
2s (∞) is a minimum, and vice versa, depending on the values of the matrix elements.

Therefore,

amax = max{axy
2s (0), az

2s} (37)

Case 4: The slowest-decaying functions are two sets of Gaussian p-type orbitals centered

at the points A = (0, 0, R/2) and B = (0, 0,−R/2). Let us label these functions f1 = pA
x ,

f2 = pA
y , f3 = pA

z , f4 = pB
x , f5 = pB

y , f6 = pB
z . Assuming that the centers A and B

are equivalent by symmetry, we have G11 = G44, G22 = G55, G33 = G66, P11 = P44, etc.

Evaluation of the asymptotic limit of eq 24 in directions parallel to the z axis gives

az
2p = lim

z→±∞

ǭ(x, y, z) =
G33

P33

=
G66

P66

(38)

For lines parallel to the x axis at z = t we obtain

ax
2p(t) = lim

x→±∞

ǭ(x, y, t) =
(1 + e4α0Rt)G11 + 2e2α0RtG14

(1 + e4α0Rt)P11 + 2e2α0RtP14

(39)

which has the same analytic form as ax
2s(t). As shown in Fig. 2, the maximum value of ax

2p(t)

is either

ax
2p(0) =

G11 + G14

P11 + P14

(40)
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Figure 2: Directional dependence of the asymptotic limits of full-valence CASSCF ALEEs calcu-

lated using Gaussian basis sets in which the most diffuse functions are two (px, py, pz) sets equivalent

by symmetry. See Case 4 for details.

or

ax
2p(∞) =

G11

P11

=
G44

P44

(41)

depending on the system and the basis set. Similar conclusions apply to the function ay
2p(t)

with the stationary values

ay
2p(0) =

G22 + G25

P22 + P25

(42)

and

ay
2p(∞) =

G22

P22

=
G55

P55

(43)

Generally, ax
2p(t) 6= ay

2p(t), but if the system is symmetric with respect to rotation about the

z axis, then ax
2p(t) = ay

2p(t) for any direction in the xy plane intersecting the z axis at z = t.

In any event,

amax = max{ax
2p(0), ax

2p(∞), ay
2p(0), ay

2p(∞), az
2p} (44)

It should be noted that the formulas derived for cases 1 and 2 hold for both Gaussian- and

Slater-type orbitals, whereas the formulas derived for cases 3 and 4 apply only to Gaussian

orbitals. If needed, the corresponding equations for Slater-type orbitals may be derived

using similar techniques.
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3.3. Requirements for the basis sets

Not every finite basis set is suitable for evaluating the IE by the asymptotic-limit method.

In ref 38 we showed that subtle changes in the composition of a Gaussian basis set, particu-

larly in the choice of the most diffuse functions, can have dramatic effects on the shape and

asymptotic limit of the ALEE at large r. In order for IALEE to be close to the correct IE,

the most diffuse functions of the basis set must contribute to the HOMO, and this contri-

bution must be greater than that to any lower-energy orbital. Basis sets that violate these

requirements give unphysically low amax values and hence IEs that are much too high.38

A basis set that is unsuitable for evaluating the IE by the asymptotic limit method can

often be made suitable by adding diffuse functions of proper shape at suitable locations.

For instance, in the HF/6-31G* description of H2O, the most diffuse functions (two s-type

Gaussians of the H atoms) do not contribute to the HOMO (atomic p orbital of the O atom)

at all, so one gets amax = −0.571 Eh and ǫHF
HOMO = −0.498 Eh. By contrast, a similar HF/6-

31+G* calculation on the same molecule gives amax = ǫHF
HOMO = −0.509 Eh because the most

diffuse functions of the 6-31+G* basis (p-type Gaussians of the O atom) contribute to the

HOMO.

4. NUMERICAL EXAMPLES

4.1. Computational details

Extraction of the first IE from a wavefunction by the asymptotic-limit method requires

computing the generalized Fock (G) and density (P) matrices and substituting their ele-

ments into simple relations such as eqs 29, 33, 37, and 44. We performed these calculations

using a locally modified version of the gaussian program.39 Matrices G and P were con-

structed from wavefunctions of three types: HF, CASSCF and FCI. The method was applied

to atoms and molecules at the experimental equilibrium geometries taken from Ref. 40 and

included in Table 1.

Most standard Gaussian basis sets are defined unambiguously. An important exception

is Dunning’s correlation-consistent basis sets, cc-pVXZ and aug-cc-pVXZ. In the original

definitions of these sets,41–43 the most diffuse primitive Gaussians appear both as uncon-

tracted functions and in contractions, whereas in the transformed versions44,45 the most

11



diffuse functions appear only as uncontracted primitives. We employed the transformed

variants of cc-pVXZ and aug-cc-pVXZ as implemented in the gaussian program.39

To assess the accuracy of IALEE values, we compare them to the corresponding EKT IEs,

denoted by IEKT, and the exact values, denoted by Iexact, from Ref. 46 (for atoms) and

the NIST Computational Chemistry Comparison and Benchmark Database47 (for molecules

other than H2). In this work, we employ only RDMs derived from variational wavefunctions,

for which the EKT gives a variational upper-bound estimate of the IE at a given level of

theory. For HF wavefunctions, IEKT = −ǫHF
HOMO, which is precisely the IE implied by the

rate of asymptotic decay of HF orbitals in the basis-set limit.48–50 At least within the finite-

basis-set HF method, IALEE is an upper bound to IEKT for reasons explained in ref 38.

4.2. Results

According to Table 1, IEs obtained by the asymptotic-limit method are in good-to-

excellent agreement with the corresponding IE values obtained through the EKT, and the

accuracy of both techniques generally improves with increasing level of theory. For exam-

ple, the FCI/def2-QZVP wavefunction of Be gives IALEE = 9.30 eV and IEKT = 9.29 eV,

compared to Iexact = 9.32 eV. The ALEE and EKT CAS(8,8)/6-311+G IEs of Ne are within

0.2–0.25 eV of Iexact = 21.62 eV.

The results for the NH3 molecule indicate that the CAS size can have a significant effect

on the predicted IEs. With a suitable basis set such as DGTZVP, the full-valence CAS(8,7)

wavefunction gives IALEE and IEKT values that are closer to −ǫHF
HOMO than to Iexact, whereas

the more accurate CAS(8,10) wavefunction gives IEs that are closer to Iexact than to −ǫHF
HOMO.

Instances where IALEE is substantially higher than IEKT signal a problem with the basis

set. Table 1 illustrates this by examples involving LiF and H2O. The ground-state electron

configuration of LiF is 1σ22σ23σ24σ21π4, which requires the most diffuse function of the

basis set to be of p type. When that is the case (cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ),

IALEE and IEKT are in good agreement with Iexact and each other (within 0.3 eV). When the

most diffuse function is of s type (as in aug-cc-pVTZ), it does not contribute to the HOMO

and the resulting IALEE = 15.78 eV is much too high (by almost 4 eV).

For the H2O molecule, the HOMO is the atomic p orbital of the O atom, so the ALEE

requires a basis set whose most diffuse basis functions are p orbitals centered on the O

12



Table 1: First IEs (eV) extracted from correlated Gaussian-basis-set wavefunctions as the asymp-

totic limit of the ALEE and by using the EKT.

Method Basis Seta Case Nucleusb IALEE IEKT

Be
HF def2-TZVP 1 Be 8.42 8.41

def2-QZVP 1 Be 8.42 8.42
FCI def2-TZVP 1 Be 9.68 9.27

def2-QZVP 1 Be 9.30 9.29
Exact 9.32

Ne
HF 6-31G 2 Ne 22.61 22.61

6-311+G 2 Ne 23.20 23.20
CAS(8,8) 6-31G 2 Ne 20.97 20.96

6-311+G 2 Ne 21.87 21.84
Exact 21.62

NH3 (RNH = 1.012 Å, θHNH = 106.7◦)
HF DGTZVP 2 N 11.66 11.64
CAS(8,7) DGTZVP 2 N 11.58 11.55
CAS(8,10) DGTZVP 2 N 10.60 10.57
Exact 10.82

LiF (R = 1.5639 Å)
CAS(8,8) cc-pVDZ 2 Li 11.53 11.53

cc-pVTZ 2 Li 12.19 11.89
aug-cc-pVDZ 2 Li 11.82 11.81
aug-cc-pVTZc 1 Li 15.78 11.96

Exact (adiabatic) 11.30
H2O (ROH = 0.9575 Å, θHOH = 104.51◦)

CAS(8,6) cc-pVDZc 3 H 17.10 13.49
cc-pVTZc 3 H 16.87 13.79
aug-O-cc-pVDZ 2 O 13.92 13.92
aug-O-cc-pVTZ 2 O 13.95 13.95

CAS(8,10) aug-O-cc-pVDZ 2 O 12.68 12.68
aug-O-cc-pVTZ 2 O 12.79 12.78

Exact 12.60
H2 (R = Re = 0.74144 Å)

FCI cc-pVDZ 3 H 16.29 16.27
cc-pVTZ 3 H 16.41 16.40
cc-pVQZ 3 H 16.43 16.43

Exact 16.44
H2 (R = 10Re = 7.4144 Å)

FCI cc-pVDZ 3 H 13.59 –d

cc-pVTZ 3 H 13.60 –d

cc-pVQZ 3 H 13.60 –d

Exact 13.61
N2 (R = 1.09769 Å)

CAS(10,8) aug-cc-pVTZ 4 N 17.67 17.10
aug-cc-pVQZ 4 N 17.66 17.10

Exact 15.58
F2 (R = 1.41264 Å)

CAS(14,8) aug-cc-pVTZ 4 F 18.39 17.92
aug-cc-pVQZ 4 F 18.19 17.91

Exact 15.70
CH2O (RCO = 1.208 Å, RCH = 1.116 Å, θHCH = 116.5◦)

CAS(12,10) aug-O-cc-pVTZ 2 O 11.09 11.09
aug-O-cc-pVQZ 2 O 11.10 11.10

Exact 10.88
C2H4 (RCC = 1.329 Å, RCH = 1.082 Å, θHCH = 117.2◦)

CAS(12,12) aug-C-cc-pVTZ 4 C 11.21 11.21
aug-C-cc-pVQZ 4 C 11.21 11.21

Exact 10.68

aaug-A-cc-pVXZ means aug-cc-pVXZ for A, cc-pVXZ otherwise.
bLocation of the most diffuse functions of the basis set.
cThe most diffuse basis functions do not contribute to the HOMO.
dThe EKT method breaks down. 13



nucleus. The cc-pVXZ and aug-cc-pVXZ basis sets do not satisfy this requirement (because

their most diffuse functions are s orbitals of the H atom) and therefore give exaggerated

IALEE values (by 3–4 eV). The problem is easily fixed by switching to the aug-cc-pVXZ

basis set for the O atom while retaining cc-pVXZ for H. The composite basis sets, denoted

aug-O-cc-pVXZ, give IALEE values that are in excellent agreement with IEKT.

Although the EKT is more stable with respect to the type and placement of the most

diffuse basis functions than the ALEE method, the latter does have one pleasing advantage.

The usual manner of solving the EKT eigenvalue problem (eq 9) involves inverting the

matrix P1/2. When this matrix has very small eigenvalues, it becomes ill-conditioned and

the inversion breaks down.51 The asymptotic-limit method does not require inverting the P

matrix and therefore works even in those situations where the EKT fails. In Table 1, this

is shown for a stretched H2 molecule. Note that all instances of Case 3 in Table 1 have

amax = axy
2s (0).

The remainder of Table 1 reports examples of Case 4 and illustrates applications of the

asymptotic-limit method to polyatomic molecules. For CH2O and C2H4, the most diffuse

basis functions should be p orbitals of the heavy atoms, a requirement that is not met

by the cc-pVXZ basis sets. Using properly modified basis sets, aug-O-cc-pVXZ for CH2O

and aug-C-cc-pVXZ for C2H4, we obtained IALEE = IEKT for these molecules. No basis-set

modifications were necessary for N2 and F2 because the most diffuse functions of cc-pVXZ

for N and F are already of proper p type. The HOMO of N2 is a bonding orbital, whereas the

HOMO of F2 is antibonding, which is why the least negative values of a(u) for these diatomics

is found in different directions: amax = ax
2p(0) = ay

2p(0) for N2, but amax = ax
2p(∞) = ay

2p(∞)

for F2 (Fig. 2). The N2 and F2 molecules are the only systems in Table 1 that exhibit

persistent discrepancies of about 0.5 eV between IALEE and IEKT. We have not found yet a

convincing explanation for this observation.

For highly stretched heteronuclear molecules such as LiH, the exact-wavefunction ALEE

has a plateau around each atom at the level corresponding to the negative ionization energy

of that atom.52 These plateaus are clearly visible53 in plots of ALEEs constructed from

accurate correlated wavefunctions. The true IE of such systems is the lowest IE of the

constituent atoms and it could be determined by the asymptotic limit method.

Although it is not necessary to examine ALEE plots to determine alim, we note that,

for most basis sets, ǭ(r) visually reaches its asymptotic limits at r = 10–20 bohrs from the

14



center of the most diffuse basis function (as in Fig. 1). This distance can be much greater

for Pople-style basis sets in which the exponent of the most diffuse function is shared by

functions with lower l values.38

5. CONCLUDING REMARKS

We have shown that the first vertical IE implied by the asymptotic behavior of the

ground-state electron density can be extracted even from wavefunctions represented in terms

of asymptotically incorrect Gaussian-type orbitals. The procedure is based on eq 5 and

consists in finding the least negative asymptotic limit of eq 24, where G and P are the

generalized Fock and density matrices in the atomic-orbital basis of functions fµ(r). When

the most diffuse functions of the basis set are Gaussian-type orbitals with l = 0 or l = 1

centered at no more than two different points, the method boils down to applying eqs 29,

33, 37, or 44.

Calculations of IEs as asymptotic limits of the ALEE do not require inverting the P matrix

and thus do not suffer from numerical instabilities of the EKT eigenvalue problem for systems

with ill-conditioned density matrices. For such systems, the asymptotic-limit method is

easier to apply and is more robust than the EKT. On the other hand, the asymptotic limit

approach does not work with every Gaussian basis set and therefore cannot replace the EKT,

equation-of-motion,3–5 and electron propagators11 methods in general.

In order for the IE predicted by the asymptotic-limit method to be accurate, the most dif-

fuse functions of the one-electron basis set must make nonzero contributions to the HOMO.

For a given system, some standard Gaussian basis sets meet these requirements fortuitously,

while others do not. When the basis set is chosen properly, IE values extracted from the

ALEE are in good-to-excellent agreement with the EKT and exact IEs. Large discrepancies

between IALEE and IEKT indicate that the most diffuse functions of the basis set may have

been chosen or assigned to atoms suboptimally. Such information may be useful as a guid-

ing principle for developing property-optimized Gaussian basis sets for molecular response

calculations.54–57

The rigorous finite-basis-set approach developed in this work can be adapted to studying

the long-range behavior of other quantities and, in fact, it suggests a new way for analyzing

the intricate asymptotic properties58–62 of Kohn–Sham exchange-correlation potentials. Of
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course, the long-range behavior of one-electron basis functions is not always important, and

even atomic orbitals that completely vanish beyond a certain distance from the nucleus can

be perfectly adequate for thermochemical predictions.63

Appendix

Consider a one-electron system described with an orbital φ(r). By definition, ρ(r) =

|φ(r)|2, τ(r) = 1
2
|∇φ(r)|2, and τL(r) = −1

2
φ(r)∇2φ(r). If φ(r) is a Slater-type orbital,

φ(r) = e−αr, then the ratios of eq 3 and eq 4 are

∇2ρ(r)

8ρ(r)
=

α2

2
− α

2r
(45)

τW (r)

ρ(r)
=

τ(r)

ρ(r)
=

α2

2
(46)

τL(r)

ρ(r)
= −α2

2
+

α

r
(47)

The r → ∞ limit of all these ratios is α2/2. On the other hand, if φ(r) is a Gaussian-type

orbital, φ(r) = e−αr2

, then
∇2ρ(r)

8ρ(r)
= 2α2r2 − 3α

2
(48)

τW (r)

ρ(r)
=

τ(r)

ρ(r)
= 2α2r2 (49)

τL(r)

ρ(r)
=

τ(r)

ρ(r)
− ∇2ρ(r)

4ρ(r)
= 3α − 2α2r2 (50)

All of these ratios diverge when r → ∞.
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