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ABSTRACT

A 2-D, high-resolution, vortex particle method was implemented, and its validity 

and capabilities were demonstrated through comparisons with experimental and 

numerical data available in the literature for flows around bluff bodies. A series of 

simulations of the flow around flat plates with various nosings and elongation ratios were 

performed. The resultant Stc map (variation of chord-based Strouhal number, Stc, with 

elongation ratio, d t , and nosing angle, 6 ) reveals that there are an upper and a lower 

limit for Stc variations, and, by changing the separation angle at the leading edge, the 

transition between them appears to be continuous. For plates with a smaller separation 

angle at the leading edge, Stc increases almost linearly with d t  after a jump, and 

eventually makes transition to a horizontal variation. From the analyses of mean flow 

characteristics, visualizations of the vorticity field, and quantitative analyses of identified 

vortices, the effects of geometry on a number of flow properties were identified, based on 

which a detailed description of the mechanics leading to various behaviors of Stc is given. 

It is the alternate predominance of the leading- and trailing-edge shedding in the overall 

shedding process that leads to the linear and horizontal variations, and abrupt jumps of Stc. 

When the trailing-edge shedding is in control, the shedding frequency jumps to a higher 

value and Stc tends to follow a linear variation. When the leading-edge shedding 

predominates, Stc tends to follow a horizontal variation.

Keywords: numerical simulations; vortex particle method; bluff-body aerodynamics; 

effects of geometry; elongated bluff body; vortex shedding
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CHAPTER 1 

INTRODUCTION

Modem long-span bridges are particularly susceptible to the action of wind due to their 

flexibility, light weight and low damping. Wind-induced motion, or deflection of the 

flexible structure, may result in remarkable modifications of the flow pattern. This 

consequently leads to some changes in the aerodynamic forces acting on the structure, 

which may be significant enough to alter the structural responses. In wind engineering, 

the foregoing process, in which the structure motion interacts with aerodynamic forces, is 

usually referred to as "aeroelastic phenomenon" (Simiu & Scanlan 1996). Different 

aeroelastic behaviors of bridges are usually classified into vortex-induced vibration, 

galloping, flutter, buffeting, and torsional divergence (e.g., Parkinson 1971, Simiu & 

Scanlan 1996).

Torsional divergence is essentially a static instability phenomenon, which 

depends upon the stiffness of the structure, the manner in which the pitching moment 

varies with the angle of attack, and the mean wind speed. The structure fails at a critical 

wind speed due to negative torsional stiffness of the system, in a process that is analogous 

to column buckling (Simiu & Scanlan 1996). Buffeting is the unsteady loading of a 

structure due to turbulent wind flow (including self-excited forces due to the interaction 

of structural motion and aerodynamic forces, or aerodynamic damping). The random 

response of the structure in natural wind can be obtained using the analytical methods 

developed by Davenport (1961, 1962), although there are still some aspects, such as the 

aerodynamic admittance and the spatial correlation of the aerodynamic forces, that need
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further investigation. Vortex-induced vibration (VIV), galloping and flutter are all 

oscillatory instability phenomena. Galloping is driven by self-excited aerodynamic forces, 

and is characterized by low frequencies (compared to the vortex-shedding frequency) and 

very large amplitudes. It is satisfactorily described by the quasi-static theory in both 

smooth and turbulent flow (Laneville et al. 1977, Blevins 1986, Simiu & Scanlan 1996). 

Flutter is also driven by self-excited forces, and usually involves the coupling of bending 

and torsional motion (classic flutter) or only torsional motion (single-degree flutter), in 

which the aerodynamic forces are large enough to modify the oscillating frequencies of 

the structure and cancel the mechanical damping effects. This leads to high levels of 

deflection, which may result in catastrophic failure of the structure. Based on linear 

assumptions, the flutter theory developed by Scanlan (1978), which involves the use of 

"aerodynamic derivatives" determined from wind tunnel tests, has been quite successfully 

applied to long-span bridges.

What distinguishes VIV from other aeroelastic instabilities is the fact that it 

always occurs over a narrow band of wind speeds (usually less than the design wind 

speed) where the natural vortex-shedding frequency is close to that of structural 

oscillation ("lock-in" or "synchronization") and the amplitude of the motion is large but 

self-limited. Since lock-in is observed to persist over a range of wind speeds where the 

vortex shedding frequency is almost constant, it can be inferred that vortex-induced 

oscillation is not simply a forced vibration driven by the periodic excitation due to vortex 

shedding, and it is not appropriate to be termed "self-excited" since, although the 

alternating lift force is modified by body motion, it is not initiated and sustained by the 

motion like in the case of galloping (see Sarpkaya 1979, 2004). Because of the highly
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nonlinear interactions between the structural motion and the flow patterns during lock-in, 

and the inadequate knowledge of the mechanism of VIVs even in the case of bluff bodies 

with simple shapes, the mathematical modeling of VIVs of bridges has been less 

successful (although quite a few sophisticated models for circular cylinders have been 

developed, see Billah 1989, and Gabbai & Benaroya 2005 for reviews). Since there is no 

reliable analytical prediction model, the assessment of VIVs for long-span bridges has 

relied heavily on wind tunnel tests (Macdonald et al. 2002). However, due to the lack of 

understanding of the flow around a bridge deck and the effects of geometry and 

turbulence, together with the limitations on Reynolds number in wind tunnel tests and the 

uncertainty in structural damping, it is often a difficult task to interpret the test results. 

Hence, to some extent, VIVs of a bridge remain a problematic aspect, even after a 

detailed wind tunnel test, and VIVs observed in wind tunnel smooth flows are often 

considered questionable and not convincing enough by the designers to modify the design. 

This has led to retrofits of some bridges (see Owen et al. 1996, Larsen et al 2000, and 

Macdonald et al. 2002, for recent examples). In the words of King (2003), "The response 

to vortex shedding remains an area that needs attention. ... The effect of turbulence on 

vortex shedding and the ensuing oscillations should be addressed in a systematic 

fashion."

1.1. EFFECTS OF GEOMETRY ON BLUFF-BODY FLOWS

From the perspective of bluff-body aerodynamics, a bridge deck generally takes the form 

of an elongated bluff body, which is usually defined as a uniform bluff body with an 

afterbody that is sufficiently long so that the separated shear layer from the leading edge
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can reattach on the surface. However, the vast body of knowledge about bluff body flows 

accumulated so far has mostly been contributed by studies related to circular cylinders 

(see Appendix A for a brief review), and which has long been employed by wind 

engineers to explain various aerodynamic behaviors of bridge decks, even though it has 

been demonstrated that the flow patterns around non-circular bluff bodies may be 

substantially different. One of the well known distinctions is that the separation points on 

a circular cylinder move with varying Reynolds numbers, whereas they are fixed on a 

sharp edged bluff body. However, as we can see later, this fact does not necessarily make 

the problem simpler.

A striking example showing the significance of an afterbody is the so called 

"critical geometry" of a rectangular cylinder (Nakaguchi et al. 1968, Bearman & 

Trueman 1972, Roshko 1993). It is observed that as the chord (c) to thickness (t) ratio (dt, 

referred to as elongation ratio hereafter) increases from zero, the drag on a rectangular 

cylinder rises to a maximum value when d t » 0.6 and then levels off with increasing dt. 

Bearman & Trueman (1972) argue that, when d t  < 0.6, the afterbody, while extending 

into the vortex formation region downstream, barely has any effect on the separated shear 

layers. It is observed in Bearman (1965) and Griffin & Ramberg (1974) that the base 

suction is lower when vortices form further away from the body, which is also shown in 

the numerical simulations by Tan et al. (2004). For cylinders with d t  >0.6,  vortex 

formation in the wake is delayed further downstream due to the interference of the 

trailing edge of the cylinder with the separated shear layers, and thus a recovery in base 

pressure is observed. Roshko (1993) points out that the base suction is highly dependent 

on the vortex formation region in the wake: the contribution from the low-pressure
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formation region decreases with longer formation length, and the influences from the 

separated shear layers are enhanced as a result.

Another interesting example of afterbody effects is the Strouhal-Reynolds number 

relationship for rectangular plates with elongation ratios of d t  — 1, 2, 3 and 4 in the range 

70 < Re < 2><104 discussed in Okajima (1982). For d t  = 1, the Strouhal number varies 

continuously with increasing Reynolds number, and remains nearly constant at about

0. 13 at high enough Reynolds numbers (say, Re > 900). However, the situation is rather 

different for d t  = 2. An abrupt downward jump in Strouhal number at Re ~ 500 is 

observed, after which the Strouhal number varies slowly with Reynolds number and 

asymptotes to a roughly constant but lower value of 0.08 to 0.09 at Re > 5,000. Based on 

flow visualizations and numerical simulations, Okajima argues that these behaviors may 

be attributed to the interference of the afterbody with the separated shear layers. For d t =

1, the separated shear layers do not reattach on the body surfaces, and earlier transition in 

the shear layers at higher Reynolds numbers does not seem to affect the Strouhal number 

significantly. For d t  = 2, the shear layers reattach alternately on the upper and lower 

surfaces of the body in a shedding cycle for Re < 500. When Reynolds number is 

increased past the critical value, the shear layers become fully detached, and, hence, a 

sudden widening of the wake and a downward jump of Strouhal number are observed. 

The situation is further complicated for d t  = 3. For Re < 500, the variation of Strouhal 

number is similar to that for d t  = 2. When Re > 500, the shear layers do not fully detach 

from the body due to a longer afterbody. Strongly intermittent fluctuating velocity signals 

were observed in the wake, and multiple Strouhal numbers were obtained from spectral 

analyses in the range of Re = 1,000-3,000. Unsteady reattachment of separated shear
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layers for d t  > 2.8 is also reported by Nakaguchi et al. (1968). At even higher Reynolds 

numbers, the higher frequency mode survives, leading to a nearly constant Strouhal 

number of 0.16-0.17. The Strouhal numbers for d t  = 4 are found to be essentially 

independent of Reynolds number.

Although substantial distinctions exist, the flow fields around short bluff bodies of 

various shapes also show similarity, to some extent, which may be supported by the 

concept of a "universal Strouhal number" (Fage & Johansen 1928, Roshko 1954b, 

Goldburg & Florsheim 1966, Bearman 1967, Simmons 1977, Griffin 1978, 1981, 

Sarpkaya 1979, Nakamura 1996, Yarusevych 2009). Based on experiments on various 

short bluff bodies, Nakamura (1996) concludes that, even though the base suction of a 

bluff body is highly dependent on both cross-sectional shape and elongation ratio, the 

Strouhal number only decreases with increasing dt, and is essentially independent of the 

details of section geometries for elongation ratios up to 1.0. It should be noted, however, 

that these "universal" Strouhal numbers are not really universal, but subject to limitations. 

As pointed out by Nakamura (1996), Roshko's universal Strouhal number is based on the 

assumption that "the wakes of different bluff bodies are similar in structure", which, from 

the foregoing discussions, is obviously not always true for bluff bodies with an afterbody. 

Nakamura suggests that Roshko's universal Strouhal number may only be applied to bluff 

bodies without an afterbody that may interfere with the separated shear layers.

1.2. SEPARATED AND REATTACHING FLOWS

Figure 1.1 shows a schematic sketch of the flow around a rectangular plate. The flow 

tends to separate at the sharp leading edge, and reattach to the plate surface after some
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distance, xr, to form a separation bubble (the region with substantial backflow between 

the separation point and reattachment point, which is in turn usually defined as the point 

where the mean wall shear stress vanishes, see e.g., Castro & Haque 1987, and Djilali & 

Gartshore 1992) if the plate is long enough. The reattached flow redevelops along the 

body surface until the trailing edge is encountered, where it separates again and tends to 

interact with the separated shear layer from the other side of the plate.

separation reattachment separation

Two types of separated flows are commonly encountered in bluff body flows 

(Kiya et al. 1997): separated shear layers and separated and reattaching flows. Examples 

of the former are the two separated shear layers from a circular cylinder, and those from 

the trailing edge of an elongated bluff body as shown in Figure 1.1. The separation 

bubble on a long blunt plate in Figure 1.1 is a good example for the latter.

As mentioned earlier, we define an elongated cylinder as a uniform bluff body 

with an afterbody that is sufficiently long so that the separated shear layer from the 

leading edge may reattach on its surface. However, it is difficult to precisely define how 

long is "sufficiently long", because the reattachment length of a separated shear layer can 

be affected by many factors (Eaton & Johnston 1981, Westphal & Johnston 1984, Cherry
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et al. 1984, Castro & Haque 1987, Hancock 2000), such as free-stream turbulence, 

boundary layer properties at separation, end effects, blockage ratio, geometry of the bluff 

body, three-dimensional effects, Reynolds number effects, body motion, external forcing, 

and so on. This concept is introduced for convenience, so that when we speak of an 

elongated bluff body, we assume that reattachment occurs, at least intermittently.

1.2.1. Reattachment Lengths

As noted above, one of the important factors that have pronounced effects on the 

reattachment length of a separated shear layer is the body geometry. For flows past a 

wide range of forebody and splitter-plate combination, the empirical relationship between 

the mean reattachment length and the separation angle proposed by Simpson (1985, 1989) 

has been shown to fit the experimental data remarkably well (see also Yeung & 

Parkinson 2004). However, the reattachment lengths measured by Djilali & Gartshore 

(1992) on flat plates with symmetric triangular nosings of different angles significantly 

deviate from Simpson's relationship. A modified form of Simpson's formula is proposed 

by Djilali & Gartshore, which approximates their data within 5%:

where xr is the reattachment length, a function of the separation angle a, and a = 90 

corresponds to the case of a rectangular (blunt) leading edge. A similar value of xr = 4.7- 

5.2t has been observed in many experiments on blunt plates (e.g., Lane & Loehrke 1980, 

Cherry et al. 1983, 1984, Kiya & Sasaki 1983, Cao & Hancock 2004). Nevertheless, a 

much longer reattachment length, xr = 1 .It, is reported by Castro & Epik (1998), who 

argue that this may be justified by the much lower blockage ratio (1.2%, compared to 4-5%

( 1- 1)



9

in other work) and substantially larger (spanwise) aspect ratio (64 versus around 10 in 

other work) of the plate in their experiments. This is consistent with the trend in the data 

compiled in Cherry et al. (1984) that the separation bubble on a blunt plate is longer 

when the blockage ratio is smaller and/or the aspect ratio is larger. Blazewicz et al. (2007) 

also report a larger value of xr = 6.0-6.21 for rectangular plates with d t  > 17 from their 

open-jet wind tunnel experiments. More importantly, their data for c!t = 6.5-23 show that 

xr increases with d t  until it saturates at d t  = 17. Similar dependence of xr on d t  for 

rectangular plates with d t  < 9 is also observed by Yaghoubi & Mahmoodi (2004).

The reattachment length has been shown to be an appropriate length scale to 

normalize bubble geometries (Roshko & Lau 1965, Eaton & Johnston 1981, Westphal & 

Johnston 1984, Driver et al. 1987, Hudy et al. 2003), and it is possible to study a 

separation bubble without worrying about the details of its formation, to some extent. For 

example, if the pressure distribution under a separation bubble is normalized as suggested 

by Roshko & Lau (1965), C* =(Cp - C pmin) / ( l - C pmin) (where Cp is the measured

pressure coefficient, and Cpm¡n is its minimum value), the pressure data can be reasonably 

collapsed onto a single curve against x/xr (Roshko & Lau 1965, Cherry et al. 1983, Castro 

& Haque 1987, Djilali & Gartshore 1992, Hudy et al. 2003, and Yeung & Parkinson 

2004) for elongated bluff bodies with a wide range of geometries (with the exception for 

a backward facing step with a long streamlined nose, possibly due to the much thicker 

boundary layer at separation, see Roshko & Lau 1965 and Cherry et al. 1983). In addition, 

Westphal & Johnston (1984) report that the velocity profiles and skin friction in the 

recirculation region also scale strikingly well with reattachment lengths. They further
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argue that some observed deviations in the scaling may be due to large uncertainties in 

reattachment length measurements.

1.2.2. Vortex Shedding From a Separation Bubble

The reattachment of a shear layer is a highly unsteady process (Cherry et al. 1984, 

Driver et al. 1987, Castro & Haque 1987, Simpson 1989, Bandyopadhyay 1991, and 

Sigurdson 1995). In the reattaching zone, the separated shear layer curves sharply and 

impinges on the body surface, where a strong adverse pressure gradient drives part of the 

shear-layer fluid into the reverse flow region, and the instantaneous reattachment point 

oscillates randomly up and downstream. Mabey (1972) finds a broadband peak at 

approximately fsXr/Um « 0.5 -  0.8 (with f s being the peak frequency, xr the reattachment 

length, and Ux the free-stream velocity) in the turbulent energy spectrum of separated 

and reattaching flows, which is indicative of vortical structures. Indeed, unsteady 

shedding of large scale vortices from the bubble is commonly observed, which probably 

comes from the initial roll-up of the vortex sheet due to Kelvin-Helmholtz instability and 

multiple parings in the separated shear layer (Castro & Haque 1987, Simpson 1989, 

Bandyopadhyay 1991, Soria et al. 1993, Song & Eaton 2004, Yarusevych et al. 2009). 

The formation and shedding of large structures from reattaching flows is termed the 

"shedding-type instability" of the bubble by Sigurdson & Roshko (1988), in addition to 

the Kelvin-Helmholtz instability of a free shear layer, whereas Nakamura et al. (1991) 

suggest that an "impinging shear layer instability" is responsible for the shedding. 

Sigurdson (1995) further suggests that this shedding-type instability is analogous to that
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which leads to the periodic vortex shedding in the wake of a bluff body, and a scaling of 

the frequency f s of this instability is found to be universal,

f sd/U s «0.08 (1-2)

which is almost the same value of 0.08 as given by Roshko (1955) for Karman vortex 

shedding from a bluff body. In Equation (1-2) Us is the flow velocity at separation, and d 

represents the half distance between the vorticity and its corresponding image of opposite 

sign. Driver et al. (1987) find in their backward-facing step flow investigations that the 

maximum contribution to the turbulence energy, both up and downstream of reattachment, 

always comes from the components at fsxJU^ ~ 0.6. Kiya et al. (1997) hypothesize that 

the separation bubble is a self-excited flow sustained by a feedback loop. When a large 

scale vortex impinges on the surface in the reattachment zone, a pressure pulse is 

generated, which propagates upstream at the speed of sound to the separation edge, and, 

hence, modifies the separation and rolling-up behaviors of the shear layer. The frequency 

of the shedding may be expressed as f s.xJU,x = UC/UM, where Uc is the average convection 

speed of the vortex in the separation bubble. Kiya et al. suggest that Uc near reattachment 

may be approximately taken as UJUa. »0 . 5  since this is observed in a number of 

experiments (Kiya & Sasaki 1983, Cherry et al. 1984). Higher values of Uc/Ux ~ 0.57-0.7 

have also been reported by other researchers (Cherry et al. 1984, Nakamura et al. 1991, 

Hudy et al. 2003). It is shown by Tan et al. (2004), through numerical simulations of 

flow around rectangular plates at Re = 400, that UJUVJ actually rises rapidly from a 

minimum value of around 0.2 when it is being formed, and approaches a saturated value

of about 0.7 far downstream.
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The influence of separation and reattachment on downstream boundary layer 

development has been observed to be "extremely long-lived" (Castro & Epik 1998). Far 

downstream of reattachment, the mean velocity profiles of the developing boundary layer 

resemble that of a canonical one, but very energetic eddies persist and dominate the 

turbulence in the outer shear layer (Bradshaw & Wong 1972, Eaton & Johnston 1981, 

Song et al. 2000, Song & Eaton 2004). Bradshaw & Wong (1972) suggest that the 

classical relationship for a boundary layer velocity profile cannot be applied at least 

within 30b, (with ty, being the boundary layer thickness at the time mean reattachment 

point) after reattachment in a step flow, while an even higher value of 7Of* is reported by 

Castro & Epik (1998) for a flat plate (where h ~ 2.067). They attribute this persisting 

effect to the large-scale vortex shedding in the reattachment region. Parker & Welsh 

(1983) suggest that on a flat plate the elongation ratio must be larger than 25 for the flow 

at the trailing edge to be independent of the leading edge separation and subsequent 

reattachment.

1.2.3. The Low-Frequency Motion of a Separation Bubble

A weak "flapping" motion (quasi-periodic extension and collapse of the bubble) 

at very low frequencies also exists throughout the separation bubble, although most 

noticeable in the range x < 0.25xr (Kiya & Sasaki 1983, Cherry et al. 1984, Castro & 

Haque 1987, 1988, Driver et al. 1987, Simpson 1989, Hudy et al. 2003, Castro 2005). 

The flapping frequency is usually expressed as fpXrIUm < 0.1 (Simpson 1989), or 5-10 

times lower than that of the passage of large scale vortex structures (Castro 2005). Cherry 

et al. (1984) speculate that this low-frequency motion may be "an integral feature of a
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fully turbulent separation", and it may be associated with some overall bubble growth- 

decay mechanism since it scales well with the reattachment length. However, it is shown 

in Castro & Haque (1988) that the low-frequency motion in fact does not scale exactly 

with the bubble size, and the timescale of which can be noticeably reduced with the 

introduction of free-stream turbulence. Kiya & Sasaki (1983) speculate that the flapping 

motion is the result of intermittent shedding of large vortical structures from the bubble, 

while Castro & Haque (1987), and Simpson (1989) suggest that it may be related to the 

phase variations of the large-scale vortex shedding. From experiments on the separation 

bubble produced by a fence-splitter plate combination, Hudy et al. (2003) demonstrate 

that there are two distinctive regions in the bubble: for x < 0.25xr, the surface pressure is 

dominated by low-frequency fluctuations which convect upstream at a velocity of 0.21 

and for x > 0.25x,-, the flow is characterized by smaller time scales and the dominant 

pressure fluctuations convect downstream at a velocity of 0.51Û ,. Transition between 

these two regions was found to occur between 0.25x, to 0.5xr. Hudy et al. further suggest 

that an absolute instability zone exists near the center of the bubble, where upstream and 

downstream disturbances emanate. It is presumed that this absolute instability results 

from the instability of the recirculation flow in bubble, and is responsible for continuous 

expansion and contraction of the bubble and consequently the shear layer flapping. It is 

further speculated that the flapping motion may in turn "modulate the shear layer 

instability process," and, hence, affects "to some degree" the development of shear-layer 

vortices "on instantaneous bases." They emphasize that the idea of absolute instability in 

the bubble does not contradict the shedding-type instability, as the latter is related to the 

instability of the shear layer near the reattachment in the presence of a wall.
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1.3. VORTEX SHEDDING FROM A BLUNT TRAILING EDGE

If the elongated cylinder has a streamlined leading edge, the flow may remain attached to 

the cylinder until the trailing edge is encountered. This idea makes it possible to focus on 

vortex shedding at the trailing edge alone (see Wood 1971, Staubli & Rockwell 1989, 

Lotfy & Rockwell 1993, Hourigan et al. 2001, and Mills et al. 2005 for examples). 

Usually a "streamlined" leading edge may take the shape of an airfoil tip, a semi-ellipse 

or a half Rankine oval in order to eliminate flow separation, while a semi-circular shape 

is also used for its simplicity.

Generally, vortex shedding at the trailing edge of an elongated cylinder with 

streamlined leading edge mimics that from a circular cylinder (Staubli & Rockwell 1989). 

However, an obvious difference is that the attached boundary layers may now be able to 

develop over much longer distances before separating at the trailing edge. In addition, in 

contrast to a circular cylinder, where the boundary layer is subjected to strong adverse 

pressure gradient, the flow on a flat plate with a streamlined leading edge usually has a 

zero pressure gradient at separation (Staubli & Rockwell 1989, Lotfy & Rockwell 1993). 

Increasing the streamwise length of the body changes the state of boundary layers at the 

trailing edge, which may in turn affect vortex shedding and the wake. For example, a 

longer development distance may lead to a thicker boundary layer at separation, which in 

turn results in a wider wake and a lower Strouhal number, accompanied by a slightly 

lower base suction (Bull et al. 1995, Mills et al. 2005). A sudden drop in Strouhal 

number is observed by Parker & Welsh (1983), and Welsh et al. (1984), when the 

elongation ratio of the plate with a semi-circular leading edge reduces from about 1.2 to 1, 

which they attribute to the effects of separated shear layers at the leading edge, since with
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a semi-circular leading edge, the flow still separates at a small angle (and which is subject 

to Reynolds number effects) and reattaches rapidly. They argue that when d t  < 1 the 

separated shear layers do not reattach to the cylinder permanently and interact 

downstream the trailing edge, which leads to a longer vortex formation region in the 

wake and hence a lower Strouhal number.

1.4. VORTEX SHEDDING FROM ELONGATED BLUFF BODIES

Based on a series of experiments on rectangular flat plates at Re = 14,800 -  31,100 (based 

on plate thickness), Parker & Welsh (1983) suggest that there exist four possible vortex 

shedding regimes depending on c/t, which are summarized by Stokes & Welsh (1986) as 

follows:

a) Short plates (c/t < 3.2): leading-edge shear layers do not reattach to the surface of 

the plate, instead they interact directly in the wake to form a regular vortex street.

b) Longer plate (3.2 < d t  < 7.6): the leading-edge shear layers reattach to the plate 

''periodically", after which the separation bubbles tend to grow beyond the trailing 

edge, when the fluid in the recirculation region enters the wake to form vortices, 

and a regular vortex street is usually observed.

c) Still longer plates (7.6 < d t  < 16): the leading-edge shear layers permanently 

reattach upstream of the trailing edge to form separation bubbles on the plate. It is 

presumed that the separation bubble tends to "grow and divide in a random 

manner", and the discrete vortices shed from the bubble arrive at the trailing edge 

randomly and interfere with the separating shear layers there. Hence, the
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subsequent shedding at the trailing edge is disorganized and no regular vortex 

street can be observed.

d) Very long plates (c/t > 16): the leading edge shear layers behave in nearly the 

same manner as in regime (c), but the vortices shed from the reattaching flow are 

supposed to "diffuse" upstream of the trailing edge. The flow separates again at 

the trailing edge without much interference from the leading edge vortices, and 

hence a regular vortex street is re-established.

Through wind tunnel experiments on H-section cylinders, Nakamura & Nakashima (1986) 

have shown that, when Karman vortex shedding is suppressed by installing a long splitter 

plate in the near wake, vortex-included vibrations (VIVs) of the bodies persist, and even 

the on-set wind speeds remain unchanged. This observation is in direct contradiction to 

the conventional understanding that Karman vortex shedding in the wake is responsible 

for VIVs. It is postulated that the shear layers in regime (b) can be characterized by the 

"impinging-shear-layer instability" (ISLI hereafter), a concept originally developed for 

cavity flows (Rockwell & Naudascher 1978, 1979), whereby a leading-edge shear layer 

becomes unstable in the presence of a sharp trailing-edge comer. They argue that this is a 

single-layer instability and it exists even when a splitter plate is installed in the wake, 

while the instability frequency remains the same as the shedding frequency in the case 

without a splitter plate. The frequency of this single layer instability is almost constant at 

Stc = fvc/Uao = 0.6, which is consistent with their observations for elongated cylinders with 

c/t = 2-5.

Further experiments on rectangular plates covering an elongation-ratio range of 

c/t = 3-16 (where c/t = 3 is believed to be the minimum value necessary for ISLI to exist)
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were performed by Nakamura et al. (1991), in which regular vortex shedding was 

observed for d t  = 3-15 at Re = 1,000, while for d t=  16 no dominant peak was detected 

in the spectrum of fluctuating velocity in the wake. It is also shown that, when Re > 2,000, 

regular vortex shedding disappears for rectangular plates with d t>  12. They argue that 

this is because the ISLI, although still present in the flow, is "masked" by the increased 

turbulence fluctuations at higher Reynolds numbers, but can be excited by external 

forcing. A stepwise variation of Stc with d t  is identified by Nakamura et al., as shown in 

Figure 1.2, where Stc is nearly constant at 0,6n for each step, in which n = 1,2,3... is 

considered to be the wave number of the instability on the cylinder surface. It is proposed 

that the instability wavelength is locked to the chord due to "some nonlinear flow 

processes" until jumps occur at certain d t  values. Open circles near Stc jumps in the 

figure indicate that intermittent velocity signals were observed. Nakamura et al. speculate 

that the feedback from the "impinging edge" tends to affect the vorticity generation at the 

separation point and greatly enhance the "shear-layer instability", but how this feedback 

works is left unexplained.

Naudascher & Wang (1993), and Naudascher & Rockwell (1994) suggest that the 

flows in regimes (a) and (d) are characterized by "leading-edge vortex shedding" (LEVS) 

and "trailing-edge vortex shedding" (TEVS), respectively. While for regimes (b) and (c), 

the flow is governed by "a flow instability equivalent to that of impinging shear layers", 

whereby vortices are produced in the unstable leading-edge shear layers and are 

convected downstream, weak pressure pulses are generated when they pass the trailing 

edge and propagate upstream to the leading edge to regulate the formation of new 

vortices. This flow instability concept, which leads to "impinging leading-edge vortices"
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(ILEV), appears similar to the "shedding-type instability" proposed by Sigurdson & 

Roshko (1988) for separated and reattaching flows, and the proposed feedback loop 

mechanism seems to be able to reasonably explain why the frequency of leading-edge 

vortex shedding is locked to the plate chord.

Figure 1.2. Stepwise variation of Stc with c/t (after Nakamura et al. 1991); open circles indicate that 

secondary peaks were observed in spectral analyses

Based on numerical simulations at Re < 700, Hourigan et al. (2001) suggest that 

the trailing-edge vortex shedding (TEVS) also plays an important role in the self- 

sustained flow oscillations around long rectangular plates. They speculate that, for 

elongated cylinders fitted with splitter plates where no TEVS occurs, the flow instability 

may be characterized by ILEV described above, and the feedback loop is completed by 

upstream propagating pressure pulses generated when the leading-edge vortices pass the 

trailing edge. For cylinders with blunt trailing edges, the leading-edge vortices tend to 

interact with TEVS as they convect past the trailing edge. They argue that trailing-edge
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vortices at the trailing edge can only form in-between the arrivals of leading-edge 

vortices from the developing boundary layer after upstream reattachment. TEVS can 

generate a stronger pressure pulse than the passage of a leading-edge vortex, which 

travels upstream to regulate the "preferred" shedding frequency to be that of the TEVS. It 

is shown by Tan et al. (2004), through numerical simulations, that the change of the 

vorticity flux into the leading-edge shear layer due to the effect of trailing-edge shedding 

is well correlated with the variation of the total vorticity flux. In contrast, that due to the 

passage of leading-edge vortices is poorly correlated, which is believed to be an 

indication that the TEVS contributes much more than ILEV in the feedback loop.

It is speculated in Mills et al. (2002, 2003) and Tan et al. (2004) that the naturally 

preferred "global oscillation frequency" of the flow around a long rectangular plate is the 

one that leads to the peak base suction, or the most intense TEVS, which generates the 

"dominant" pressure pulse feedback to the leading edge. They postulate that since the 

vortices that are periodically shed from the leading edge convect downstream at a nearly 

constant velocity Uc independent of c!t, it takes a longer time for leading edge vortices to 

arrive at the trailing edge on a longer plate. However, it always takes an integer number 

of shedding cycles for the leading edge vortices to arrive at the trailing edge regardless of 

elongation ratios, because their generation is controlled by the feedback pressure pulse 

generated at the trailing edge, which occurs only in-between the successive arrivals of 

leading edge vortices. It is also shown that, by changing the frequency of the external 

forcing, the phase at which the leading-edge vortex arrives at the trailing-edge can be
o

controlled. If it passes the trailing edge at a phase of 180 , it tends to suppress the TEVS. 

They further suggest that, as the leading-edge vortex convects past the trailing edge, it
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interacts with trailing-edge vortex (which is of the same sign) and they merge into one 

larger vortex before being shed into the wake. This occurs alternately on each side of the 

plate and a regular vortex street wake is observed. Tan et al. argue that, while the 

leading-edge shear layers are convectively unstable and are very sensitive to external 

forcing, the trailing-edge shedding, which is globally unstable, can only exist over a 

narrow frequency band, and, hence, it may be controlling the frequency selection. As c/t 

increases, the preferred shedding frequency for TEVS is no longer possible for certain 

elongation ratios because of "interference from leading-edge vortices", and a "nearby" 

frequency is selected at which TEVS could occur and the shedding jumps to a higher 

"mode" (Hourigan et al. 2001, Mills et al. 2002, 2003). As Reynolds number is increased 

above 2 ,0 0 0  for long rectangular plate, the relatively weak feedback mechanism may be 

"broken down" by the enhanced inherent turbulence in the flow, but the same locking 

effect may be excited by external forcing with appropriate frequency and amplitude.

From wind tunnel experiments on elongated cylinders with a variety of leading 

and trailing edges over a wide range of elongation ratios, Shiraishi & Matsumoto (1983) 

find that the critical reduced wind speed for vertical VIVs can be well related to the 

elongation ratio as Vcr = (l/0.6n)(c/f) for c/t = 2 -  7.5, where n is an integer number. It is 

hypothesized that the leading-edge vortices convect downstream at an almost constant 

velocity Uc = 0.6Um, and VIVs occur only when the leading-edge vortices coalesce with 

trailing-edge vortices after an integer number of the natural vibration period. This is 

consistent with the aforementioned stepwise variation of chord based Strouhal number 

and the explanation of Mills et al. (2002, 2003).
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1.5. OBJECTIVES

The vast body of knowledge in the literature has led to a reasonable understanding of the 

flow around circular cylinders. However, although the wind engineering community has 

reported a large number of wind tunnel tests on vortex-induced vibrations (VIVs) of 

bridges, relatively little progress has been made toward understanding the mechanisms 

behind various aerodynamic behaviors observed in the tests. One of the reasons for the 

slow progress may be attributed to the complex geometries of bridge decks, which leads 

to a much larger parameter space than that for circular cylinders and rectangular plates. 

While previous studies on the flow around rectangular cylinders have provided valuable 

insights into vortex shedding from elongated bluff bodies, there is a lack of detailed 

knowledge regarding the effects of geometric details (e.g., nosing shapes, and asymmetry 

of upper and lower surfaces, etc.). Application of the main findings from these studies, 

such as the classification of flow regimes based on elongation ratios (c/t), and the 

stepwise variation of chord-based Strouhal numbers (Stc = fvclUm), to flows around bridge 

decks is still limited. Bridge deck nosings are usually designed to form obtuse angles 

with the upper and lower surfaces, which lead to smaller separation angles and earlier 

reattachment, significantly modifying the flow pattern and shedding frequency. In 

practice, a significant matrix of wind tunnel tests is often performed to help determine the 

"optimal" aerodynamic shape of the bridge deck, and comparisons between testing results 

of different deck profiles have proven a difficult task due to the lack of understanding of 

geometric effects. Hence a better understanding of the effects of geometry on vortex 

shedding from various elongated bluff bodies is considered an essential step toward a 

better understanding of VIVs of long-span bridges.
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Thus, the main objective of the present study is to identify the effects of geometry 

on vortex shedding from elongated bluff bodies, so that explanations of the effects of 

nosing shapes and elongation ratios may be offered in a systematic way.

1.6. RESEARCH METHODS

To achieve the objective of the present study, a parametric analysis of flows around 

elongated bluff bodies is indispensable. Experimentally, this would involve dozens of 

testing models and an enormous amount of data, which will be expensive and time 

consuming. Numerical simulations are considered a more suitable method to accomplish 

the objective of the present study, due to the large parameter space and the need for flow 

visualizations close to the body surfaces.

Vortex methods, which Ferziger (1993) called the "chief competitors" to 

conventional grid-based simulation methods, have been shown to produce excellent 

results for complex bluff-body flows, and are "unsurpassed for explaining the genesis of 

forces on a body" (Ferziger 1993). In the past two decades, developments of new tools 

and fast algorithms have brought vortex methods "closer to conventional grid-based 

methods" (Cottet et al. 2002). High-resolution vortex methods, as an alternative approach 

to direct numerical simulations (DNS), are now capable of producing accurate results for 

complex bluff-body flows that can only be achieved with high-order spectral methods 

(Koumoutsakos 2005).

As pointed out by Anderson & Greengard (1985) and Cottet et al. (2002), time- 

step limitations are far less restrictive for vortex methods than for grid-based methods 

because vortex methods are free of convection-related stability conditions. In other words,
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large time steps may be used and substantial savings of computational time over grid- 

based methods can be achieved (see also Koumoutsakos 2005). This is in addition to 

considerable time savings due to the fact that the vorticity field that needs to be solved 

usually exists only in small fractions of the whole flow field. Far-field boundary 

conditions are automatically satisfied for vortex particles with a compact support, and 

hence, there is no need for a large computational domain to minimize blockage effects. 

Another advantage of vortex methods over grid-based methods is that the interactions 

between computational elements mimic the physics they represent so that no additional 

criteria for "critical parts" of the flow (which are not always known a priori) are 

necessary (Beale & Majda 1982ab, Koumoutsakos 2005). Moreover, the Lagrangian 

formulation means that there is no numerical diffusion associated with convection, and 

the dynamics are not constrained by a prescribed minimum scale and, thus, is a robust 

way for high Reynolds number flow simulations.

On the other hand, three-dimensional (3-D), high-resolution simulations are still 

far too time consuming for practical applications. For example, Ploumhans et al. (2002) 

have reported a 3-D vortex method simulation for the flow past a sphere at Re = 1,000, in 

which the total run time of 4,000 time steps was about 240 hours on a 64-processor HP 

V-Class system. Two-dimensional (2-D) simulations, of course, will not capture any 3-D 

effects. In the context of bluff-body flows, an evident example of 3-D effects is the lack 

of spanwise correlation of vortex shedding and pressure when the body is at rest, while in 

2-D simulations a perfect spanwise correlation is always inherently presumed. This may 

lead to overprediction of total forces on the body, which is usually not too excessive (for 

example, up to 10% overprediction in drag coefficient for a circular cylinder at Re a 200,
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see Mittal & Balachandar 1995, Tutar & Holdo 2000, and Al-Jamal & Dalton 2004 for 

comparisons). Through systematic comparisons between results of 2-D and 3-D 

computations for stationary circular and elliptic cylinder flows, Mittal & Balachandar 

(1995) have shown many subtle differences between these two approaches. It is argued 

that in 2-D simulations, all the energy extracted from the mean flow field is used to drive 

the in-plane velocity fluctuations, while part of the energy is spent on sustaining spanwise 

velocity fluctuations in 3-D computations, leading to a reduction in in-plane fluctuations 

of velocities and Reynolds stresses. It is suggested that the effect of higher in-plane 

Reynolds stresses in the near wake on surface pressures is one of the main reasons for the 

overprediction of drag in 2-D simulations, and the discrepancies are dependent on the 

cylinder geometry. They also find that the vortex formation region is usually shorter in 2- 

D than in 3-D results, which, although is shown to have little direct effect on the mean 

drag, brings the intense Reynolds stress region closer to the body, and is considered to be 

partly responsible for larger amplitudes of lift fluctuations predicted in 2-D computations.

An interesting example, showing the capability of 2-D simulations to capture the 

physics in a turbulent phenomenon, is reported by Orlandi (2007), who, after performing 

both 3-D and 2-D DNS simulations of co-rotating vortices at Re -  3,000 (based on 

circulation), concludes that, "The most important output of these expensive simulations is 

that, at this Re, the results do not differ largely from those of 2-D simulations." In fact, it 

has been observed in the experiments by Cerretelli & Williamson (2003) that the merging 

process of two co-rotating vortices is "principally two-dimensional." That is, although 

turbulence is always 3-D, there are many phenomena dominated by 2-D processes that 

may be studied with a 2-D approach.
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In the present study, a two-dimensional CFD code for incompressible, viscous 

flows, based on the state-of-the-art high-resolution vortex method is implemented. The 

code is validated against numerical and experimental results available in the literature, 

and is then used as the tool to investigate geometric effects on vortex shedding from 

elongated bluff bodies.

The rest of the thesis is organized as follows. In Chapter 2, the theory and 

implementation of the high-resolution vortex particle method is presented, and 

simulations of various bluff-body flows are validated against numerical and experimental 

data available in the literature. In Chapter 3, a series of numerical simulations of flows 

around flat plates with various nosings at Re = 600 are performed, and the resultant flow 

fields are examined. And finally, concluding remarks and recommendations for future 

studies are given in Chapter 4.
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CHAPTER 2

THEORY AND IMPLEMENTATION OF THE 2-D VORTEX 

PARTICLE METHOD

2.1. INTRODUCTION

Computational fluid dynamics (CFD) has achieved rapid progress along with 

computational technologies during the past three decades, and has become a promising 

and popular research and engineering tool (see Shang 2004, Ekaterinaris 2005, Fujii 2005, 

and Fureby 2008 for recent reviews). It is now well known to researchers that CFD is a 

powerful tool in many situations, but by no means a magic tool that solves all the 

problems we face (Fujii 2005).

Vortex methods, which Ferziger (1993) called the "chief competitors" to 

conventional grid-based simulation methods, have been shown to produce excellent 

results for complex bluff-body flows, and are "unsurpassed for explaining the genesis of 

forces on a body" (Ferziger 1993). However, classical vortex methods focused on various 

techniques to achieve stable and fast computations, while accuracy at finer scales was 

sacrificed. As a result they have suffered from a reputation as "back-of-the-envelope" 

version of CFD methods, and have not become an accepted member of the mainstream 

CFD tools (Shiels 1998, Barba 2004).

In the past two decades, developments of new tools and fast algorithms have 

brought vortex methods "closer to conventional grid-based methods" (Cottet et at. 2002). 

Barba (2004) suggests that there have been three major reasons for vortex methods being
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left out of standard CFD family. Firstly, the velocity field calculation using Biot-Savart 

law involves CP(N) operations for N  vortex particles and, hence, requires special 

numerical treatment. This problem has been successfully addressed due to the advent of 

the Fast Mutipole Method (FMM) which reduces the operation count to 0(N) (Barnes & 

Hut 1986, Greengard & Rokhlin 1987). Other ways around this problem have been 

developed through mixed Eulerian-Lagrangian formulations (at the cost of introducing 

numerical diffusion due to interpolation errors), such as the Vortex-in-Cell (VIC) method 

(see, e.g., Christiansen 1973, Couet et al. 1981, Cottet 1987) which reduces the 

operations to C(MogAT) (where M  is the number of grid points), and the Particle-Particle 

Particle-Mesh (P3M) technique, also with a nominal operation cost of C(MogA/) 

(Hockney et al. 1973, and Walther 2003). Secondly, including viscous effects in a 

Lagrangian formulation has proven a difficult task. This problem has received much 

attention in the past three decades and many vorticity diffusion schemes have been 

introduced. Typical examples are the Random Walk Method (Chorin 1973), Core 

Spreading Method (Leonard 1980, Rossi 1996), Particle Strength Exchange (PSE) 

method (Degond & Mas-Gallic 1989), and Vorticity Redistribution Method (Shankar & 

Van Dommelen 1996), among others. The no-slip boundary conditions at a solid surface 

have been successfully addressed by the numerical scheme proposed by Koumoutsakos et 

al. (1994), which is "rigorous and free of ad hoc numerical parameters". The third reason 

is that the Lagrangian evolution results in a loss of discretization accuracy due to the 

distortion of the particle distribution in areas of large strain, giving rise to creation and 

evolution of spurious vortical structures in the flow. A variety of "remeshing" or 

"redistribution" schemes using high-order interpolation kernels on regular Cartesian grids
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have been proposed to tackle this problem (see Beale & Majda 1985, Cottet & 

Koumoutsakos 2000), and high resolution, totally mesh-less vortex methods (Shankar 

1996, Barba 2004) have been proposed to avoid this problem. Vortex particle methods 

are still under intensive development. New techniques, implementation improvements, 

and applications to different fields of studies are constantly being proposed; for most 

recent progress see, among others, Eldredge (2008), Chatelain & Leonard (2008), Wee & 

Ghoniem (2008), Huberson et al. (2008), Lakkis & Ghoniem (2009) , and Huang et al. 

(2009).

The accuracy of vortex methods has been reported to compare well to non- 

dissipative and high-order, finite-difference schemes (see Ould-Salihi et al. 2000, 

Koumoutsakos 2005). In a homogeneous turbulent flow at low Reynolds number and a 

vortex reconnection case at moderate Reynolds number, the comparisons between 

spectral and vortex methods (Cottet et al. 2002) show that the vortex method is accurate 

enough to yield "acceptable statistics" in large and intermediate scales, and it appears to 

behave as accurately as LES models in the under-resolved scales "in the sense that they 

avoid accumulation of energy at the end of the spectrum, without excessive dissipation in 

the resolved scales".

As mentioned in Chapter 1, vortex methods have many advantages over 

conventional grid-based methods: (i) Vortex methods are free of convection-related 

stability conditions, so that time-step limitations are far less restrictive for vortex methods 

(see Anderson & Greengard 1985, and Cottet et al. 2002). Large time steps may be used 

and substantial savings of computational time over grid-based methods can be achieved 

(see also Koumoutsakos 2005); (ii) The vorticity field that needs to be solved usually
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exists only in small fractions of the whole flow field, and hence, considerable savings in 

computational costs may be achieved; (iii) Far-field boundary conditions are 

automatically satisfied for vortex particles with a compact support so there is no need for 

a large computational domain to minimize blockage effects; (iv) The interactions 

between computational elements mimic the physics they represent so that no additional 

criteria for "critical parts" of the flow (which are not always known a priori) are 

necessary (Beale & Majda 1982ab, Koumoutsakos 2005); (v) Vortex methods are based 

on Lagrangian formulations, so there is no numerical diffusion associated with 

convection, and the dynamics are not constrained by a prescribed minimum scale.

2.2. BASIC FORMULATION

In a non-rotating frame of reference, the vorticity in an incompressible fluid with uniform 

viscosity and conservative body forces is governed by the vorticity equation

—  = (co-V)U + vV2<o (2-1)
Dt v '

with v being the kinematic viscosity of the fluid, and D/Dt the material derivative

D a da  ,TT
Dt dt v '

/k / \

U = m + vj + wk and oo = Q)xi + ooyj + oozk are the velocity and vorticity vectors, 

respectively,

rJiv
U (r, t) = (0 = V x V

y J dt

A A A

where r = xi + y\ + zk is the position vector. The first term on the right-hand side of 

Equation (2-1) represents the stretching and tilting of the vortices by the strain rate,
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which vanishes in a two-dimensional (2-D) flow. That is, for a 2-D incompressible 

homogenous flow, we have

^  + (U -V)co = v V 2co (2-2)

in which co has been used instead of coz for simplicity.

Consider a rigid body immersed in an incompressible flow with freestream 

velocity Uoo and zero initial vorticity, the boundary conditions to be satisfied are:

•  The no-slip boundary condition at the solid boundary (d<D)

U(ri ,0 = UI(rI,0on5©  (2-3)

where rs is the position vector on the surface of the body, and Us(rs,f) is the body 

velocity at r s. The no-slip boundary condition is commonly decomposed into two 

parts: the no-through flow boundary condition

U-n = U ,-n (on 50) (2-4)

and the no-slip boundary condition

U t  = Us t (onô©) (2-5)

where n and t are the unit normal vector and the unit tangential vector on the body 

surface, respectively.

•  The far field boundary condition

U -» Uœ (at r -> oo ) (2 -6 )
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2.3. NUMERICAL SCHEMES AND IMPLEMENTATION

2.3.1. The Biot-Savart Law

To solve the vorticity equation, Poisson's equation for incompressible flows is often used,

V2U = -Vxo) (2-7)

With Green's function for the 2-D Laplace operator

G (r) = -
ln|r
2  K

a solution to Equation (2-7) can be expressed as

U(r,/) = IL, + f VG(r-r')x(o(r',t)dA  = V X +K*
J<D

CO

where the 2-D Biot-Savart kernel K is given by

K (f) =
k x r
2  n r1

(2-8)

(2-9)

(2- 10)

in which r  = |r |, and the symbol in Equation (2-9) denotes convolution over the 

domain ©. Equation (2-9) is the well-known Biot-Savart law.

2.3.2. The Vortex Particle Discretization

In modem vortex methods (see Cottet & Koumoutsakos 2000), the vorticity field is 

usually discretized into the sum of many vortex particles of finite sizes

®{r,t) « X  ̂r i (07*(X -  ri (0) (2 -'11)
i=i

with r ¡(f), F,{t) and o} being the position, strength (circulation), and core size of particle i. 

t]Jj ) describes the distribution of the vorticity of the particles,
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1 M
7cr(r) =— ■V — a  \ a )

(2- 12)

where the cutoff function 77(E) is usually chosen to be radially symmetric. Compared to 

the traditional point vortex method (vortices of zero size), the finite sizes of the particles 

eliminate the instability that arises from the direct use of Equation (2-9) when two 

vortices approach each other. The core sizes a; are often chosen to be uniform (a; = 0), 

although they may change with time. Inserting Equation (2-11) into Equation (2-9) yields

where the constant k is determines the cutoff width. Different values of k, mostly 1, 2 or 4, 

have been suggested in the literature, see Barba (2004) for a brief discussion. In the 

present study, k = 2 is used, as suggested by Barba. Now K a can be obtained analytically

N

(2-13)

where the mollified Biot-Savart kernel K a is given by the convolution of the Biot-Savart

kernel K and the cutoff function r jjj)

K(7(r) = K(r)*i7<T(r) (2-14)

Gaussian cutoff functions are commonly used due to their smoothness and fast decay

(although they are also more expensive to compute),

(2-15)

(2-16)

Equation (2-13) will be referred to as the (discrete) Biot-Savart law in the present study.

Convergence of the above smoothed vortex particle descretization has been well 

established through extensive studies in the literature (see Hald 1979, 1987, Beale &
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Majda 1982ab, Anderson & Greengard 1985, Cottet & Koumoutsakos 2000), based on 

some assumptions about the core size and the cutoff function. The core size is assumed to 

be related to the distance between vortex particles, h, as follows

a - h q (0< q<  1) (2-17)

This means vortex particles must overlap, which may be more conveniently controlled by 

an overlap ratio, /?

P s  h/t7 < 1 (2-18)

The chosen cutoff function, given by Equation (2-15), satisfies all the 

requirements (see the aforementioned references for details), and the error introduced by 

the discretization of Equation (2-11) is of order C(a2). It has been shown by Perlman 

(1985) that, in non-smooth vorticity fields, higher-order cutoff functions will not provide 

any advantage in accuracy. The truncation error due to the mollification contributes to 

enstrophy production and creation of small vortical structures in high strain regions 

(Cottet 1996, Koumoutsakos 2005), which may be compensated for by adding an 

"artificial viscosity" (Cottet 1996) or occasional re-regularization of the particle positions.

The convergence analysis for discrete time advancing of vortex methods is given 

in Anderson & Greengard (1985). It is shown that the error associated with time 

discretization is of order (9(Atk) if a /cth-order time-stepping scheme is employed. What is 

remarkable is that the convergence is unconditional, or in other words, there is no 

stability condition relating the size of time step to the grid size as suffered by grid-based 

methods. However, in order to achieve a well resolved simulation, the following 

constraints on At are often suggested (see Ploumhans & Winckelmans 2000, Barba 2004):

H  At = 0(1) (2-19)
I Imax v '  v '



34

to ensure that particles do not rotate too much with respect to one another in one time 

step, and

vAtjh2 = 0(1) (2-20)

in order to simulate the diffusion effects accurately. Eldredge (2007) further suggests that, 

in order to allow the thickness of the temporal boundary layer created during each time

step, which is of the scale of ^4vAt , to extend at least one particle spacing, it is 

necessary to impose a lower bound on At. His numerical analysis leads to the following 

recommendation:

0.2<vAt/h2 <1.2 (2-21)

2.3.3. The Fractional-Step Algorithm

First introduced by Chorin (1973) into viscous vortex methods, viscous splitting, or the 

fractional-step method, has been one of the most popular algorithms in the studies using 

this method. This is perhaps because it is straightforward to implement, and convergent 

for both bounded and unbounded flows (Beale & Majda 1981, Alessandrini et al. 1983, 

Ying 1987, 1990, Cottet & Koumoutsakos 2000).

In numerical simulations, the evolution of the flow is treated in discrete time steps. 

The viscous splitting algorithm considers the convection and diffusion of vorticity 

successively in multiple substeps. Although more than two substeps may be used to 

increase the accuracy, the standard and commonly accepted two-step algorithm is used in 

the present numerical scheme. Suppose that we have finished the computation for the (n- 

l)th time step, and we are seeking to advance the solution to the next time step, t = nAt



35

(with At the size of the time step). Following Cottet & Koumoutsakos (2000), the 

fractional-step algorithm is implemented in the present study as follows:

•  Substep 1: using the results from t = t-Aias the initial conditions, the local velocity is 

computed by the Biot-Savart law and integrated to convect the vortex particles (see 

Section 2.3.4), and their strengths are updated through diffusion (see Section 2.3.5). 

A spurious slip velocity, AUsuP (see Section 2.3.7), will be observed at the solid 

boundary at the end of this substep, but no boundary condition is explicitly enforced 

in this substep.

•  Substep 2: a surface vortex sheet, Ay, is computed by enforcing the kinematic 

boundary condition (see Section 2.3.7) to cancel the slip velocity AUsup obtained in 

substep 1. The vortex sheet is then diffused into the vorticity field (see Section 

2.3.7), which is equivalent to enforcing the no-slip boundary condition.

The two-step viscous splitting algorithm is second-order accurate at each substep, but is 

first-order accurate overall, irrespective of the time-stepping scheme used (see Beale & 

Majda 1981, Cottet & Koumoutsakos 2000).

2.3.4. Convection

Particle positions, r ,■(/), can be determined from the following differential equations

= U(r,-, t), i = l..N  (2-22)

where N  is the number of particles used in the computation to simulate the vorticity field, 

and U(r„ t) may be obtained using Equation (2-13). However, the direct use of Biot- 

Savart law involves 6{N2) computation, which is prohibitive in high resolution
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simulations where N  may be of the order of a million. In the present work, the adaptive 

fast multipole method (Barnes & Hut 1986, Greengard & Rokhlin 1987, Carrier et al. 

1988) is implemented, which reduces the operation count to 0(N). A second-order 

Runge-Kutta (RK2) scheme is chosen in the present study to integrate the velocity over 

time.

2.3.5. Diffusion

The diffusion of the vorticity field, in the frame work of viscous splitting, is governed by

Many schemes to approximate the above viscous diffusion in vortex methods have been 

proposed since Chorin (1973) first introduced his famous random walk method. Due to 

its "numerical convenience" (Sarpkaya 1989), the random walk method has been the most 

widely used scheme, especially in engineering applications, although the accuracy is 

limited by the statistical nature of the scheme. The particle strength exchange (PSE) 

method (Degond & Mas-Gallic 1989) is more popular in academic studies of "high- 

resolution" vortex methods (see, e.g., Koumoutsakos & Leonard 1995, Ploumhans & 

Winckelmans 2000, Barba 2004, Eldredge 2007). To solve Equation (2-23), the basic 

idea of PSE is to use an integral operator to approximate the Laplacian (Degond & Mas- 

Gallic 1989):

where (D is the entire computational domain, and s  is a scaling parameter which satisfies

(2-23)
dt

(2-24)

the stability inequality



37

v < Cse2 (2-25)

with Cs being a positive constant, ^¿(r) is a smoothing function dependent on the

parameter s  such that

\ £ )
(2-26)

in which the 2-D cutoff function £ (r) satisfies the following moment conditions

f y f ( r ] d A = 2

y 2C(r)dA = 2

|  xa'y a2£(r)dA = 0, V a,e N2, 1 < a x + a2 < m + \ 

J0 r m+2 |^ ( r ) ^ 4 < c°

for an integer m> 2. The approximation introduces an error of G(dn). For convenience, a 

radially symmetric cutoff function, which satisfies Equation (2-27) for m = 2, may be 

constructed as follows (Degond & Mas-Gallic 1989)

C (r ) = ~ - - y rl{r ) (2*28)r dr

where r|(r) is given by Equation (2-15) with k = 2. Let s — cr, we have

Ce(r) = 2ria (r) (2-29)

Assuming a uniform distribution of vortex particles with overlapping ratio J3< 1, 

Equation (2-24) may be discretized using particle locations as quadrature points, and 

Equation (2-23) may now be rewritten as

dr,
dt

2 vh 2 N

■Z (r.-r,)^(r,
j =1

(2-30)

It can be inferred from Equation (2-30) that PSE scheme simulates diffusion effects by
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exchanging strengths among particles, instead of modifying particle positions as in the 

random walk method. Although the method is formulated grid-free, the accuracy highly 

depends on the evaluation of the discretized integral, which requires a uniform 

distribution and overlap of particles. To meet this requirement, a remeshing step, where 

the particles are interpolated (remeshed) onto a regular grid, will be carried out every a 

few time steps (see Section 2.3.6).

In Equation (2-30), every particle will exchange strength with all other particles in 

the flow field, which may incur high computational costs. Thanks to the rapid decay of 

the smoothing function, only particles within a small radius, which can be easily 

determined by examining the smoothing function with a prescribed error tolerance, make 

significant contribution to the strength exchange. A radius of 5cr is typically used by 

other researchers (see, e.g., Ploumhans & Winckelmans 2000, and Barba 2004) and is 

chosen in the current implementation.

As pointed out in Ploumhans & Winckelmans (2000), particles very close to the 

solid boundary may "not be completely surrounded by other particles," which may lead to 

a spurious vorticity flux at the wall. Following the suggestions by Mas-Gallic (1995), 

Benhaddouch (1999), and Ploumhans & Winckelmans (2000), the method of image 

particles is adopted in the present implementation for particles within 5a distance from 

the body to ensure zero vorticity flux at the boundary.

2.3.6. Remeshing

Numerical experiments (see Perlman 1985, and Barba 2004) have shown that the 

discretization accuracy deteriorates quickly due to the distortion of the particle
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distribution and loss of particle overlap in areas of large strain, leading to spurious 

vortical structures in the flow. Also, as discussed in Section 2.3.5, the accuracy of PSE 

diffusion scheme relies on a uniform distribution and overlap of the particles. Several 

"remeshing" or "redistribution" schemes using high-order interpolation kernels have been 

designed to solve this problem (see Cottet & Koumoutsakos 2000, and Barba 2004 for 

reviews). In high-resolution vortex methods, the A3 and M \  interpolation kernels are

chosen by most researchers for remeshing schemes:

A3(w) =-

j ( l - w 2)(2 -w)

i ( l - « ) (2 -w ) (3 -« )
0

if 0  < u < 1, 

if 1 < u < 2 , 
otherwise

M\ ( u ) -  <

1 - fw 2 + f u 3

-j (1 - m)(2 - w) 2

0

if 0  < u < 1, 
if 1 < u < 2 , 
otherwise

(2-31)

(2-32)

where u = \<%, with ¿f being the normalized distance from the source particle. Both kernels 

require a 4-point wide stencil. The A3 kernel is piecewise-cubic and conserves up to the 

third moment of vorticity, but it is not as smooth as the M\ kernel, which is derived from 

B-splines (Monaghan 1985) and is also third-order accurate. In the present 

implementation, the M\ kernel is the preferred interpolation kernel for remeshing, 

although the A3 kernel is also implemented for comparison purposes.

For particles very close the solid boundary, some of the new particles within their 

interpolation stencil may fall inside the solid body, and hence, the direct use of the 

symmetric interpolation kernel may result in leakage of vorticity into the body. The 

common way to deal with this problem is to work with a body-fitted grid and/or use
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asymmetric interpolation kernels near the boundary; see the remeshing techniques in 

Koumoutsakos & Leonard (1995), Cottet & Koumoutsakos (2000), and Ploumhans & 

Winckelmans (2000) for examples. Since we are dealing with bodies of general 

geometries in the present study, the concept of immersed boundary by Peskin (1972) is 

adopted, and the boundary intersects with the Cartesian remeshing grid in an arbitrary 

way. To avoid leaking vorticity in to the body, two asymmetric interpolation kernels 

conserving up to second ( A '2 ) and third ( ) moment of vorticity distribution,

respectively, are constructed:

A3 (4)■

A'2(#) =

'¿ £ ( £ - l ) ( 2 - £ ) if -1 < £ < 0 ,
i ( £ - l ) ( £ - 2 )(£ + l) if 0  < £ < 1,

4 ^ + D ( 2 - # ) if 1 < £ < 2 ,

i £ ( £ - i ) ( £ - i ) if 2 < £ < 3,
0

..
otherwise

> ( l - £ ) ( 2 -£ ) if 0 < £ < 1,

£(2 - £ ) if 1 < £ < 2 ,
if 2 < 4 < 3,

0 otherwise

(2-33)

(2-34)

When remeshing involves a particle near the boundary, an inside-body test is first 

performed on all the 16 points of the symmetric stencil. If all new particles are outside 

the body, the symmetric kernel is used. If any of the new particles falls inside the body, 

the remeshing then proceeds in two substeps as suggested by Ploumhans & Winckelmans 

(2000). In the first substep, an interpolation kernel is selected to redistribute particles in 

the x-direction only, without creating new particles inside the body, and temporary 

particles are created at appropriate locations. Each of the temporary particles is then 

redistributed in the y-direction with a carefully selected kernel. When selecting an
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interpolation kernel, M \  (or A3) is used if possible. But if it creates new particles inside 

the body, A3 is then tested. If A 3 still leaks vorticity into the body, A \ is then selected. 

A "penalty" p t (Ploumhans & Winckelmans 2000) is calculated for each new particle:

Pi =

0  if symmetric kernels are used in both directions,
1 if an asymmetric kernel is used in eighter x -  or y-direction, (2-35)
2  if asymmetric kernels are used in both directions

A "global penalty" Pxy is then obtained as the average value of p,. A "global penalty" Pyx 

is then calculated in the next substep by redistribute the particle first in the y-direction 

and then in the x-direction. If P Xy < Pyx, the remeshing result from the first substep is 

used as the final result, or else the result from the second substep is chosen.

2.3.7. Boundary Conditions

The far field boundary condition, Equation (2-6), is automatically satisfied in a vortex 

particle system described above, hence, only the boundary conditions at the fluid-solid 

interface need to be considered.

2.3.7.1. Kinematic boundary condition

In the present study, we are interested in a stationary rigid body immersed in an 

incompressible flow with ffeestream velocity U* and zero initial vorticity. To describe 

the vorticity boundary conditions, the surface of the body is represented by a surface 

vortex sheet (bound vortex) of strength Xrs), the velocity field associated with the vortex 

sheet, Ur is given by (Cottet & Koumoutsakos 2000)
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U y (r) = ± -  y(rs )t(r,) + ̂  y{ r,) V G(r -  r,) x ids  (2-36)

in which the + or -  sign is used when we approach the surface from outside or inside of 

the body, respectively. By matching the tangential component of the total velocity at the 

interior side of the surface with that of the body velocity, we get

+ ̂  r (r)^-G (rs -r)d s  = -A V liip(rJ,t)-t(rJ) (2-37)
2  JdlD on

where the normal vector is into the body, and

AUslip (rs, t) = U(rs, /) -  U, (r,, t) (2-3 8 )

Equation (2-37) is a Fredholm integral equation of the second kind. A Fredholm 

integral equation of the first kind may also be obtained by matching the normal 

components of the velocities on the exterior side of the vortex sheet

= AUslip(rs,0 -n (rs) (2-39)

However, as pointed out by Koumoutsakos (1993) and Cottet & Koumoutsakos 

(2 0 0 0 ), the latter often leads to ill-conditioned systems of equations when discretized, and, 

hence, Equation (2-37) is employed in the present study. In addition to Equation (2-37) or 

(2-39), the strength of the vortex sheet must satisfy Kelvin's theorem of circulation 

conservation (Wu 1981, Koumoutsakos 1993, Koumoutsakos et al. 1994)

cfaoA K i ) * + | ; r <(0 = 0 (2-40)

2.3.7.2. The panel method

Equations (2-37) or (2-39) may be solved with the panel method (see Katz & Plotkin 

2001, and Kuethe & Chow 1986). In the present implementation, the body surface is
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discretized into M  linear panels of constant strengths. Boundary conditions are to be 

enforced at the center points of these panels, and the panel-averaged slip velocity 

UsiiP(rs,i) (obtained using Gaussian quadrature) is used instead of USHP(rs,t) for better

accuracy (Koumoutsakos 1993, Ploumhans & Winckelmans 2000, Eldredge 2007). This 

leads to a system of M  linear equations with M  unknowns

[C]{r}={b} (2-40

where [C] is the coefficient matrix depending on the body geometry. Furthermore, the 

constraint imposed by Equation (2-40) must also be satisfied, hence we now have an 

over-determined system of linear equations. Usually they are solved in a least squares 

sense (see, e.g., Morgenthal 2002 and Eldredge 2007). However, as suggested Ploumhans 

& Winckelmans (2000), Equation (2-40) should be satisfied exactly, and hence, we need 

to solve a linear equality-constrained least-squares problem. Note that for a rigid body, 

the matrix [C] in Equation (2-41) does not change over time. In the present study, the 

linear equality-constrained least-squares problem is solved in two steps. All the 

computations that only involve [C] are finished at the beginning of the simulation, and 

only the computations involve the changing right hand side value in Equation (2-40) and 

the vector {b} in Equation (2-41) need to be repeated in each time step.

2.3.7.3. Diffusion of the surface vortex sheet

Once the vortex sheet strength is obtained, it is diffused into the fluid with homogenous 

initial conditions (keep in mind that this diffusion occurs during the second substep in the 

fractional-step algorithm, where the initial vorticity field has been taken into account in
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the first substep) and a Neumann-type vorticity boundary condition (Koumoutsakos et al. 

1994, Mas-Gallic 1995)

' t
- ^ -  = \A/2a>' on©x[0,At]

•<y'(r >0) = 0 on© (2-42)

M  = _ r M  on00x[o>A;]
l dn At 1 1

where the normal vector is into the fluid. As pointed out by Koumoutsakos et al., the 

nullification of this spurious vortex sheet at the body surface eliminates the spurious slip 

velocity present at the boundary and generates vorticity in the fluid, which is equivalent 

to enforcing the no-slip boundary condition (see also Lighthill 1963). Following 

Koumoutsakos et al. (1994) and Cottet & Koumoutsakos (2000), the solution to Equation 

(2-42) can be expressed in integral form (see Friedmann 1964) as

co'(r,t)=( f Q (r-r',t-r)ju(r',T )dsr'dT (2-43)JO Jd<D

where the 2-D heat kernel G(r,f) is given by

|2 Nr l
\vt J

and the surface density //(iy) is determined from

—rA (r ,0  + v'fnT  ^ G (r - r \ t - r ) / j ( r ' ,T ) d s r,dT = (2-44)2 Jo JdvQ f j  A t

The discretization of the boundary into linear panels described in Section 23.1.2

is re-used here to solve Equation (2-43). Assuming that /u(r,t) remains constant over the

small time interval At and takes a constant value over each panel, Equation (2-43) can be

g(r,t) = — —̂  exp 
4 nvt L
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integrated analytically, and the vorticity field induced by the /th panel, centered at r, with 

length Xj, is then given by

a»'(r,A0 = y | ()AV ,(i',0^  (2-45)

In a local coordinate system of the panel i where x  = (r -r ()-tJ, y' = (r -r ,)-n ,, $(r,/) is 

expressed as

t) =
V4 nvt

exp
f

4 vt
erf (x ' + Ai/ 2 ^ _ Qxi( x ' - X l/2

sl4vt V4vt
{2-46)

An approximate solution to Equation (2-44) is given in Koumoutsakos et al. 

(1994) and Cottet & Koumoutsakos (2000), by adopting the approximations suggested by

Greengard & Strain (1990) to exploit the locality of the heat kernel Q(r,t)

M r,) :
2 r(r,)/A t

\-K (rs)y]xvAt/2
(2-47)

with x(rv) being the local curvature of the boundary, ¡u, is assumed to be constant over 

panel i, on a flat panel it follows that

ju, * 2y(r, )/A? (2-48)

With Equations (2-45)-(2-48), the amount of circulation Ar,y to be diffused from vortex 

panel i to particle j  with an associated fluid area Aj in one time step can be expressed as

A ry- = £  cq\(r, At)dAj = </>t (r, t)dAjdt (2-49)

In Koumoutsakos et al. (1994) and Cottet & Koumoutsakos (2000) the spatial integration 

in Equation (2-49) is simply evaluated by treating $  as constant over the fluid area, and 

the time integral is carried out using a mid-point rule. It is argued in Leonard et al. (1997)
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and Ploumhans & Winckelmans (2000) that these approximations are a source of 

accuracy loss. For square fluid areas (of size hj) aligned with the local coordinate system 

of the panel /, the spatial integration in Equation (2-49) can be carried out exactly:

L ^ ( r  >t)dAj=^

where

/
a.

, h \
CC; , h ' J  , h ) J  , h ^

V 2 J V 2
(2-50)

AaAx,t) = r j \ x  + -^, t
\ f A-n x ——,i
J l  2 y

, P(x,t) = erf f  x '
4 Â v t,

and

rj(x,t) = x e  rf f  x '
■s[Âvt J V

4 vt
n

exp f  x1 ^
4 vtV ^Vl y

For particles at a distance y) < h from the panel, Equation (2-50) may be rewritten as

\ A <f>i(r,t)dAj a, , „ , h \x +—,t - a t X:— ,t ( h \
P  y'j + y t

\  2  y
(2-51)

Ploumhans & Winckelmans further suggest that, to exactly conserve the circulation, the 

following correction be made to the circulation assigned to particle j

K ) 2A r ' = A r ÿ +
I(Ar.) L

A r (r ,) - 'Z & r v. (2-52)

In the present work, the time integration Equation (2-49) will be computed by 

Gaussian qudrature (3 or 4 points as suggested by Ploumhans & Winckelmans 2000), and 

the spatial integration will be evaluated according to Equations (2-50)-(2-52). The 

resulting field co’ will be added to the solution in the first substep to yield the complete 

vorticity distribution at the beginning of next time step.
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2.3.8. Particle Population Control

The particle population is controlled by creation and deletion according to the following

criteria (with suggestions from Morgenthal 2002, and Eldredge 2007):

•  New particles are only created from interpolation stencils in the remeshing step;

•  Particles within a prescribed distance, Cbh, of the body are deleted, and their strengths 

are recorded and later added to Equation (2-40). This is suggested by Eldredge (2007) 

to avoid singularities which arise in the interactions between vortex panels and 

particles when they become too close to each other. c& is set at 0.5 in the present 

study, as suggested by Eldredge;

•  Particles with strengths below a prescribed threshold, r mjn = erv, are removed from 

the flow field after each remeshing step;

•  Particles outside the prescribed limits of the computational domain are deleted, and 

their strengths are recorded and later added to Equation (2-40).

2.3.9. Forces on the Body

For the flow field of interest, where there is no net vorticity and the no-through flow

boundary condition is enforced, the net force on a stationary body can be expressed in

terms of vorticity impulse (see Wu 1981, Saffman 1992)

In the context of the vortex method, the above equation can be written explicitly as

dt
(2-53)

(2-54)
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As pointed out by Koumoutsakos (1993) and Koumoustakos & Leonard (1995), 

the linear impulse is conserved in the interpolation process, but its time derivative may 

not be. This can lead to some small high-frequency oscillations riding on the force curve. 

A smoothing scheme may be applied to the linear impulse history to remove the non

physical oscillations, if a smooth curve is desired.

2.4. VALIDATION OF THE CODE

2.4.1. Impulsively started circular cylinders

Due to numerous analytical and numerical studies, most notably by Collins & Dennis 

(1973a,b), and Bar-Lev & Yang (1975), and the extensive experiments by Bouard & 

Coutanceau (1980, referred to as BC80 hereafter), the early stage evolution of the flow 

around an impulsively started circular cylinder has been a popular benchmark problem 

for modem viscous vortex particle codes; see Koumoustakos & Leonard (1995, referred 

to as KL95 hereafter), Shankar (1996, referred to as SS96 hereafter), Ploumhans & 

Winckelmans (2000, referred to as PW00 hereafter), Lakkis & Ghoniem (2009, referred 

to as LG09 hereafter), and Huang et al. (2009) for examples. The code must cope with

the challenge of a 1 f ^ T  singularity (see Collins & Dennis 1973b, and Bar-Lev & Yang 

1975) at the beginning of the evolution, and high-resolution is necessary to resolve the 

details of the separation process at high Reynolds numbers.

In this section, the present simulation results for impulsively started circular 

cylinder at Re = 550, 3,000 and 9,500 will be validated against published data from other 

researchers. In the simulations, a circular cylinder with diameter, D, was placed in a
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uniform flow, which was impulsively set into motion at the beginning of the simulation 

with velocity £/«,. Remeshing was carried out every 5 time steps, and other parameters for 

the simulations are summarized in Table 2.1.

Table 2.1. Simulation parameters for impulsively started circular cylinders

Parameter Re = 550 Re = 3,000 Re = 9,500

Time step A T= U^AtlD 0.005 0.005 0.005

Particle spacing h/D 4.264x10° 1.826x10° 1.026x10°

vAtih2 0.5 0.5 0.5

Overlap ratio P 1.0 1.0 1.0

Number o f panels 111 1721 3063

Cutoff ratio Cy 1x10° 1x10° lxlO'4

The time evolution of drag coefficient obtained from the simulation at Re = 550 is 

shown in Figure 2.1(a). The linear impulse was filtered by a 5-point moving average to 

smooth out the noise introduced by remeshing before the drag was computed. Also 

shown in Figure 2.1(a) are the numerical results from KL95, SS96, and PW00, all of 

which are also obtained with high-resolution vortex particle methods. Note that an 

interpolation scheme on body-fitted grids specially designed for circular cylinders was 

used by KL95 (see the discussions in PW00), and in SS96 the grid-free vorticity 

redistribution method was employed, and ghost vortices inside the body were included in 

drag calculations to improve accuracy (Graham 1980). The present result is almost 

indistinguishable from those from PW00 and SS96, and the comparison shows that the 

improvements in numerical schemes over those of KL95 suggested by PW00, which are 

also adopted in the present implementation, seem to make slight differences for T> 1.0.

To see if the present simulation is able to capture the singularity at the beginning 

of the evolution, and how it compares to the theoretical predictions, the time history of
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the drag coefficient for T < 0.3 is plotted in Figure 2.1(b), in comparison to the short time 

analytical solution by Collins and Dennis (1973b, referred to CD73 hereafter), and the 

numerical results by SS96 and PW00. An additional simulation with a smaller time step 

AT = 0.0025 is also reported in PW00, because their simulation with AT=  0.01 is unable 

to capture the singularity at the beginning of the evolution. In this figure the linear 

impulse from the present simulation was smoothed with a 3-point moving average before 

calculating the drag. Note a smaller smoothing window was used here in order to reduce 

the shifting effect of the moving average. It can be observed that the present result 

follows the analytical solution very well for T < 0.3, and is almost indistinguishable from 

that by SS96. The present results also agrees well with those from the simulations by 

PW00 with AT = 0.0025 and AT = 0.01 for T< 0.15 and T> 0.06, respectively.

Figure 2.1. Time history of drag coefficient for an impulsively started circular cylinder at Re = 550. (a), 

long-time evolution; (b), early stage evolution.

The early stage evolution of drag coefficient for T < 0.5 from the simulation at Re 

3,000 is presented in Figure 2.2(a), compared to the analytical solution by CD73, and
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the numerical results by SS96 and PWOO. To avoid the shifting effect of a moving 

average, the linear impulse from the present simulation was not smoothed before 

calculating the drag. Central difference was employed to calculate the time derivative, 

except before and after each remeshing step, where forward and backward differences 

were used, respectively. The "general scheme" in PWOO refers to the same remehsing 

scheme with a regular Cartesian lattice arbitrarily overlapping the boundary as in the 

present implementation, and "KL-like" scheme means that remeshing was performed on 

body-fitted grids as in KL95. The figure shows that the present result follows the 

analytical solution closely for T < 0.5, and, although all numerical results shown are in 

good agreement, the present result seems to match that of SS96 more closely at the early 

stage of evolution.

Figure 2.2. Time history of drag coefficient for an impulsively started circular cylinder at Re = 3,000. (a), 

early stage evolution; (b), long-time evolution.

Figure 2.2(b) shows the longer time evolution of drag coefficient for Re = 3,000, 

which was calculated from the linear impulse history filtered by a 5-point moving



52

average. The numerical results by KL95, SS96, Anderson & Reider (1996) (referred to as 

AR96 hereafter), PWOO, and LG09 are also shown for comparisons. A fourth-order 

accurate (both special and temporal) finite-difference scheme was employed by AR96 to 

achieve their result, and a high-resolution vortex method with a grid-free scheme was 

used by LG09. The figure again shows that the present result is in excellent agreement 

with those obtained with various high resolution methods. Note that the sharp "dip" in the 

middle of the "plateau" at T « 1.4 on the drag curve from PWOO is not observed in the 

present result and those by other researchers.

Figure 2.3(a) presents the time history of drag coefficient for T < 0.6 at Re = 

9,500, in comparison to the analytical solution by CD73, and the numerical results by 

SS96. The linear impulse from the present simulation was filtered by a 3-point moving 

average before calculating the drag. The comparisons show that the present result follows 

the analytical solution closely for T < 0.6, and is in good agreement with that of SS96.

T

(a)
T

(b)
Figure 2.3. Time history o f drag coefficient for an impulsively started circular cylinder at Re = 9,500. (a), 

early stage evolution; (b), long-time evolution.
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In Figure 2.3(b), the longer time evolution of the drag coefficient obtained from 

the present simulation at Re = 9,500 is compared to the numerical results by KL95, AR96, 

SS96, Fischer (1997), and LG09. The drag curve from Fischer (1997) was obtained with 

a high-order spectral element method with mesh refinements in "critical regions". 

Generally, the present result compares very well with those by other researchers, 

especially for T < 1.5 where more data is available and all results are in excellent 

agreement. As discussed in KL95 the "plateau" at T ~ 1 is the "footprint" of the process 

in which the secondary vortex penetrates the primary one (see Figure 2.4). This 

"eruptive" phenomenon, which is considered to be the initiation of boundary-layer 

separation, was first discussed in Van Dommelen & Shen (1980). As pointed out by Van 

Dommelen & Shen (1980) and Doligalski et al. (1994), it is a challenging task for grid- 

based methods to resolve such a phenomenon, which develops very fast at a location not 

known a priori, and the "spike" narrows progressively (see Figure 2.4) during the process.

Figures 2.5-2.7 show comparisons between instantaneous streamlines from the 

present simulations and the experimental visualizations by BC80 at T=  2.5, 2.5, and 1.0, 

for Re = 550, 3,000, and 9,500, respectively. The flow visualizations from BC80 were 

realized by illuminating reflective or diffusive tracers in the flow. The present streamlines 

are contours of streamfunctions computed on a Cartesian grid during the simulations. As 

suggested by KL95, all the particles were treated as point vortices to ensure that the 

streamfimction value inside the body is constant. Flowever, the use of a regular Cartesian 

grid, which overlaps the immersed boundary arbitrarily, may still lead to non-smoothness 

of the streamlines very close the body. An example of such errors may be observed by 

scrutinizing the "zero" streamline in Figure 2.5(b). Other than this cosmetic problem, the
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present streamlines visually compare very well with the experimental results by BC80. 

The lengths of recirculation regions in the wake normalized by the cylinder diameter 

obtained from the present simulations for the three cases are, respectively, 0.82, 0.70, and 

0.087, which are also in good agreement with 0.87, 0.73, and 0.088 determined from the 

experiments, correspondingly. These favorable comparisons indicate that the present 

simulations accurately captured the physics.

Figure 2.4. Vorticity field at T -  1.0-1.3 for an impulsively started circular cylinder at Re = 9,500.

In Figures 2.8-2.10 instantaneous streamwise velocities along the centerline in the 

wake obtained from the present simulations are compared with the experimental results 

by BC80, and the numerical results by SS96, for Re = 550, 3,000, and 9,500, respectively. 

The experimental data for Re = 3,000 and 9,500 were taken from Ta Phuoc Loc &
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Bouard (1985). In the figures, the distance, x, is measured from the center of the cylinder. 

It can be observed that the present results closely match those from SS96, except some 

small discrepancies in the recirculation region. A further comparison in Figure 2.10 

shows that the present results are almost indistinguishable from those by LG09 for Re = 

9,500 at T — 1.5. For Re = 550, the present results are in good agreement with the 

experimental results, except for T = 0.5 and x/D > 1.2. For Re = 3,000 and 9,500, the 

agreement between the present simulations and the experiments by BC80 are very good 

for shorter times (T < 1.5 for Re = 3,000, and T < 1.4 for Re = 9,500). Comparisons at 

longer times seem to be less favorable, but are still in reasonable agreement.

(a) (b)

Figure 2.5. Instantaneous streamlines at T -  2.5 for an impulsively started circular cylinder at Re = 550

(a) Experimental results by Bouard & Coutanceau (1980)

(b) Present simulation

(a) (b)

Figure 2.6. Instantaneous streamlines at T = 2.5 for an impulsively started circular cylinder at Re = 3,000

(a) Experimental results by Bouard & Coutanceau (1980)

(b) Present simulation
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(a) (b)

Figure 2.7. Instantaneous streamlines at T = 1.0 for an impulsively started circular cylinder at Re = 9,500

(a) Experimental results by Bouard & Coutanceau (1980)

(b) Present simulation

Figure 2.8. Instantaneous streamwise velocity profiles along the centre line for an impulsively started 

circular cylinder at Re = 550. Experimental data taken from Bouard & Coutanceau (1980).

To show the performance of the code, the simulation at Re = 3,000 was performed 

with only simple diagnostic output (such as linear impulse and force calculations). The 

number of particles increased from around 20,000 to more than 550,000 over 1,000 time 

steps, and the total run time was about 1.8 hours on a laptop computer with an Intel Core 

2 Duo CPU running at 2.5 GHz (only one core was used). While KL95 had to perform 

such simulations on a supercomputer (Cray YMP) in 1995, and it took PW00 60 hours to 

run their simulation at Re = 3,000 on a workstation (DEC Alpha running at 533 MHz) in
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2000, today these can be run on an ordinary PC, allowing the possibility to use such 

codes in the developmental stages for engineering design.

Figure 2.9. Instantaneous streamwise velocity profiles along the centre line for an impulsively started 

circular cylinder at Re = 3,000. Experimental data taken from Ta Phuoc Loc & Bouard (1985).

Figure 2.10. Instantaneous streamwise velocity profiles along the centre line for an impulsively started 

circular cylinder at Re = 9,500. Experimental data taken from Ta Phuoc Loc & Bouard (1985).
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2.4.2. St-Re relationships for circular and square cylinders

In this Section, a series of simulations of flows around circular and square cylinders at Re 

= 50 -  600 (based on the freestream velocity £/» and the cross-stream dimension of the 

body) are presented to demonstrate the ability of the code to run long time simulations of 

bluff-body flows. To check the dependence of the results on numerical resolution, two 

different time steps, AT = 0.05 and 0.025, were used for the simulations. The overlap 

ratio, /?, was set to unity, and the particle spacing was chosen such that vAt/h = 0.5, 

hence a smaller time step was used in combination with a higher spatial resolution. The 

solid boundaries were discretized into panels of lengths X « h, and remeshing was carried 

out every 5 time steps. The sharp comers of the square cylinders were ''rounded" with 

radius r = X as suggested by PW00 for better numerical behavior. The fluid was 

impulsively set into motion with velocity Um at the beginning of the simulation, and the 

simulations were performed long enough to obtain 10-30 stable shedding cycles.

Figure 2.11 presents the variation of Strouhal number with Reynolds number for 

circular cylinders from the present simulations. The shedding frequencies were 

determined from the power spectral densities (PSD) of the lift time history as well as 

instantaneous velocities at a number of locations in the wake (see Figure 2.12 for an 

example). As shown in Figure 2.11, Strouhal numbers obtained with AT  = 0.05 are 

consistently lower than those with AT = 0.025, but the differences are usually small 

(maximum 2.0% for Re > 100 and 2.8% for Re < 100), suggesting that AT = 0.05 is 

adequate to resolve the flows under investigation. Notable experimental data and 

numerical results from other researchers are also included in Figure 2.11, for comparison.
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It can be observed that the present results are in excellent agreement with the 

experimental data in the laminar shedding regime (Re < 190). A fit of the present results 

obtained with AT=  0.025 to the Si-Re relationship proposed independently by Fey et al. 

(1998), and Williamson & Brown (1998)

yields A = 0.2656, and B = 1.0247, which are in good agreement with A = 0.2684, B 

=1.0356 from Fey et al. (1998) by fitting their experimental data for Re = 47-180, and A 

= 0.2665, B =1.018 from Williamson & Brown (1998) by fitting the parallel shedding 

data from Williamson( 1988,1992). All these favorable comparisons indicate that, at least 

in the laminar flow regime, the present implementation of the vortex method is capable of 

capturing the physics of interest. However, the present 2-D simulations are unable to 

capture the discontinuities in the transitional region and tend to overpredict Strouhal 

numbers for circular cylinders at high Reynolds numbers, which is, of course, dictated by 

the 2-D nature of the method.

0.24 —i----------1------------ 1----------- 1----------- 1-----------1----------- 1----------- 1----------- 1----------- 1-----------1-----------r

St = A -
(2-55)

..........H e n d e rs o n  (1997), fit to 2 D  sim ulations
------- F it to p resen t s im ulations

0.10
100 200 300 400 500 600

Re
Figure 2.11. St-Re relationship for circular cylinders
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Figure 2.12. Cross-stream velocity time history (top) and its power spectral density (PSD, bottom) at the 

location on the center line o f the wake and 2D downstream of a circular cylinder at Re = 400

Nevertheless, it is well known that the flows around circular cylinder are sensitive 

to Reynolds number variations, and the motion of separation points combined with the 3- 

D effects makes the flow at high Reynolds numbers intractable for 2-D methods. In 

Figure 2.13 the St-Re relationship for square cylinders is presented. Included for 

comparisons are notable experimental and numerical data available in the literature. Note 

the unpublished data referred to as Norberg (1996) are available from Sohankar et al. 

(1999). The available data for square cylinders are much more variable compared to 

circular cylinders except for Re < 100, where the present results are in close agreement 

with all the experimental and numerical data. The general trend is that Strouhal numbers 

for square cylinders are less sensitive to variations in Reynolds number for Re > 150, 

where the present results compare reasonably well with the experimental data by Shimizu 

& Tanida (1978), Okajima (1982), Norberg (1993), Norberg (1996), Saha et al. (2003),
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and Dutta et al. (2008), and the numerical results by Fitzgerald et al. (2007). For Re > 

400, the present results are also in agreement with those from 3-D DNS simulations by 

Sohankar et al. (1999). It is interesting to note that, for the flows around square cylinders 

at low to moderate Reynolds numbers, the Strouhal numbers predicted by 3-D 

simulations are not necessarily more "accurate" than the present results.
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Figure 2.13. St-Re relationship for square cylinders

The Strouhal numbers recently obtained by Luo et al. (2003) and Luo et al. (2007) 

from experiments are significantly higher than those from Shimizu & Tanida (1978), 

Okajima (1982), Saha et al. (2000) and Dutta et al. (2008) for Re = 100-290, but no 

comparisons and discussions were made. The studies on aspect ratio and inclination of 

the end plates in Luo et al. (2007) seem to suggest that the use of longer cylinders and 

inclined endplates, which are intended for promoting and maintaining parallel shedding, 

tends to increase Strouhal numbers. It is interesting that, both larger aspect ratio and 

parallel shedding are ways of promoting two-dimensionality, and yet the result is that the 

experimental data deviates further from the present 2-D numerical results.
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It can be observed from Figure 2.13 that, the numerical resolution has an impact 

on the predicted Strouhal numbers at some Reynolds numbers (usually less than 5.0%, 

except when Re = 400 the difference is 7.8%). In addition to the more unstable nature of 

the flow, the "rounding" of the sharp comers with a radius of r = X in the present 

simulations may also contribute to the impact. The panel length X, and hence the comer 

radius ratio rlH (with H  being the height of the square) decreases with increasing 

resolution. Studies on the comer sharpness (see Hu et al. 2006 and references cited 

therein) suggest that, the Strouhal number for a "square" cylinder increases almost 

linearly as rlH is increased from 0 (square with sharp comers) to 0.5 (circular cylinder). 

In the present simulations, the values of rlH varies from 0.045 {Re = 50) to 0.013 {Re = 

600) when AT  = 0.05, and from 0.032 to 0.009 when AT=  0.025. Since the difference in 

Strouhal numbers between circular and square cylinders are smaller at lower Reynolds 

number where r/H is larger, the effects of comer rounding are considered negligible in 

the present simulations. Nevertheless, square cylinders with slightly rounded comers may 

better mimic those used in real-life experiments.

Further comparisons for the simulation at Re = 500 for a square cylinder are 

presented in Table 2.2, in which C^ms is the r.m.s. (the root-mean-square) value of the lift 

coefficient. Experimental data for Cu-ms at Re = 500 is rare in the literature, and all the 

numerical results in Table 2.2, both 2-D and 3-D, are higher than the values from the 

water tunnel experiments by Shimizu & Tanida (1978). The experimental data presented 

in Shimizu & Tanida (1978) shows that, Cums is sensitive to Re variations in the range Re 

= 400-1,000 (where Cu-ms = 0.17-1.27), hence, any errors in the experiments and 

numerical simulations leading to small changes in the effective Reynolds number may
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result in significant discrepancies. Nonetheless, the present Cfrms values compare 

reasonably well with other numerical results, and the drag coefficients and Strouhal 

numbers obtained from the present simulations are in good agreement with both 

experimental and numerical data available in the literature. These comparisons again 

confirm that the present 2-D code is capable of capturing the physics of interest at 

moderate Reynolds numbers for square cylinders.

Table 2.2. Comparison of force coefficients and Strouhal numbers for a square cylinder at Re = 500

Source CD L̂rms St

Shimizu & Tanida (1978), water tunnel experiments 1.85 - 1.94 0.56-0 .72 0.138-0.140

Okajima (1982), wind tunnel experiments - - 0.126-0.135

Norberg (1993), wind tunnel experiments - - 0.135

Okajima (1995), wind tunnel experiments 1.80- 1.89 - 0.138

Hwang & Sue (1997), 2-D simulation 1.88 1.01 0.137

Sohankar et a l  (1999), 3-D simulation 1.84 1.22 0.122

Sohankar et al (1999), 2-D simulation 1.89 1.13 0.174

Saha et a l  (2003), 3-D simulation 2.17 1.45 0.116

Present simulation, AT = 0.025 2.08 1.35 0.132

Present simulation, A T -  0.05 2.22 1.39 0.137

2.4.3. Stepwise variation of chord-based Strouhal numbers for 

rectangular plates at Re = 600

In these simulations, rectangular cylinders with elongation (d t) ratios from 3 to 10 were 

placed in a uniform flow with freestream velocity UK, and, to balance accuracy and 

computational costs (i.e., time), the normalized time step was set to AT = 0.05. A unity 

overlap ratio, ¡3, was used throughout the simulations, and the particle spacing was 

chosen as hit =1.291x10' so that vAt/h -  0.5. The sharp comers were again "rounded"



64

as in the square cylinder case. Remeshing was carried out every 5 time steps, and the 

solid boundaries were discretized into panels of lengths l « / i .  The fluid was impulsively 

set into motion with velocity Ux at the beginning of the simulation, and the simulations 

were performed long enough to yield 15-20 stable shedding cycles, with 3-5 million 

particles in the flow fields towards the end of the simulations.

The stepwise variation of the chord-based Strouhal number Stc = fvc/Uao, where f v 

is the shedding frequency, with d t  obtained from the simulations are shown in Figure 

2.14, with comparisons to experimental and numerical results available in the literature. 

A second symbol for the same set of data indicates that a secondary shedding frequency 

was observed for certain d t  ratios, usually just before the "jump". Stepwise variations of 

Stc with dt, as well as similar characteristics of the flows have been reported for 

rectangular plates over a wide range of Reynolds numbers in the literature, and, hence, it 

is reasonable to make comparisons between the results obtained at various Reynolds. 

Further discussions about the choice of the Reynolds number, Re = 600, are given in 

Section 3.2.

It can be observed from Figure 2.14 that the current results compare very well to 

the LES simulations by Ohya et al. (1992), and spectral element method simulations by 

Tan et al. (1998). For d t  = 3-5, the present results match the experimental results almost 

exactly. For larger dt, small discrepancies can be observed, and they tend to be a little 

larger for d t  = 9-10. A possible explanation of these disparities is that the speed-up of the 

flow around the plates due to blockage in experiments may result in a higher convection 

speed of leading-edge vortices and hence a higher shedding frequency. In their 2-D 

spectral element method simulations, Tan et al. (2004) also find that Stc = 0.55n instead
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of 0.6/7 (n = 1,2,3.--) commonly observed in experiments. They speculate that higher 

Reynolds numbers, and, hence, three-dimensional effects in experiments may lead to 

higher average convection velocity of leading-edge vortices, which in turn result in 

higher Strouhal numbers. Additional simulations of higher resolution with AT = 0.025 

and vAt/h2 = 0.5 were performed for d t  = 5, 6, 7 and 9 to check the dependence of the 

results on numerical resolution, and virtually no changes (i.e., differences less than 2.5%) 

in Strouhal numbers were observed, which suggests that the chosen resolution (AT = 0.05) 

is adequate to resolve the flows under investigation.

2.5

2.0

1.5

1.0

0.5

0.0

Figure 2.14. Stepwise variation of chord-based Strouhal numbers for rectangular plates at Re = 600
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As mentioned in Chapter 1, the underlying mechanics leading to the stepwise 

variation has attracted strong interests from many researchers in the past two decades, 

and a detailed description of the shedding process and feedback mechanism is reviewed

in Section 1.4.
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Figure 2.15 shows a sequence of snapshots of the vorticity field for a rectangular 

plate with d t  = 7 at Re = 600 from the present simulations at time intervals of AT = 1. In 

frame (a), there are two leading-edge vortices on the lower surface, and a trailing-edge 

vortex is growing. At the upper trailing-edge a leading-edge vortex is coalescing with the 

trailing-edge one, and another leading-edge vortex attached to the shear layer is still 

growing. In frame (b), the merging vortices at the upper trailing-edge are leaving the 

body, and the leading-edge vortex upstream is cut from the shear layer and starts to 

convect toward the trailing-edge. On the lower surface, a leading-edge vortex convects 

closer to the trailing edge and the trailing-edge vortex is still growing. In the next frame, 

the lower trailing-edge vortex is about to be shed while a leading-edge vortex is 

approaching. At the upper trailing edge, the merging vortices are shed as a pair into the 

wake, and a trailing-edge vortex starts to grow. A vortex also starts to grow at the end of 

the shear layer from the upper leading edge. Frame (d) shows the same coalescing 

process at the lower trailing edge as in frame (a) at the upper trailing edge, and the upper 

trailing-edge vortex is growing larger. This completes approximately half a shedding 

cycle.

It can be observed in Figure 2.15 that there are always two leading-edge vortices 

on both the upper and lower surfaces of the plate, which corresponds to the observation 

that d t  = 7 is of "mode 2" in Figure 2.14. It is also observed that trailing-edge vortices 

only form in-between the passages of leading-edge vortices, and the shedding of the 

coalescing vortices at the trailing edge corresponds to the end of the growth of a leading- 

edge vortex, which closely matches the experimental findings.
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Figure 2.15. Vorticity field for a rectangular plate with d t  = 7 at Re = 600; The time interval between 

successive images in AT= 1.

The successful replication of the stepwise variation of the chord-based Strouhal 

numbers for rectangular cylinders, and the favorable comparisons of flow patterns from 

the present simulations with experimental observations, suggest that the present code is 

capable of capturing the physics of interest with reasonable accuracy. The fact that the 

flow patterns from the present 2-D simulations at a moderate Reynolds number agree 

well with experimental observations at much higher Reynolds numbers indicates that, 

although small differences in the flow fields are expected due to the large difference in 

Reynolds numbers and the absence of 3-D effects in these simulations, the energy
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carrying, large-scale structures in the flows are correctly captured to a significant extent. 

Hence, with the convenience of running simulations on ordinary personal computers at 

low cost, the present 2-D vortex particle code can be a useful engineering tool for studies 

of various flow phenomena related to these large vortical structures, such as vortex 

shedding from bluff bodies.
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CHAPTER 3

EFFECTS OF GEOMETRY ON VORTEX SHEDDING 

FROM ELONGATED BLUFF BODIES

3.1. INTRODUCTION

As mentioned in Chapter 1, while previous studies on the flow around rectangular 

cylinders have provided valuable insights into vortex shedding from elongated bluff 

bodies, there is a lack of detailed knowledge regarding the effects of geometric details 

(e.g., nosing shapes, and asymmetry of upper and lower surfaces, etc.). Application of the 

main findings from these studies, such as the classification of flow regimes based on 

elongation ratios (d t), and the stepwise variation of chord-based Strouhal numbers (Stc = 

f vc/Uoo), to flows around bridge sections is still limited. In this chapter, numerical 

simulations of flows around flat plates with various nosings at Re = 600 are performed 

with the 2-D high-resolution vortex particle method implemented in Chapter 2. The 

resultant flow fields are then explored. Thus, the main objective of this chapter is to 

identify the geometric effects on vortex shedding from elongated bluff bodies, so that 

explanations of the effects of nosing shapes and elongation ratios may be offered in a 

systematic way. It should be noted that, all the simulations are carried out with a 2-D 

code at a relatively low Reynolds number, since it is the basic mechanisms and geometric 

effects which are of interest here. The approach here is much like the low Reynolds 

number work on the flow around circular cylinders.
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3.2. NUMERICAL SIMULATIONS

3.2.1. Simulation Details

In this series of simulations, flat plates with various nosings and elongation ratios (c/t 

ranging from 3 to 10) were placed in a uniform flow with free stream velocity, Ux. A 

definition sketch of a flat plate with triangular nosings is shown in Figure 3.1. The angle, 

6, was chosen to be 60°, 75 , 82.5°, 90 , 105 , 120° and 150 in the simulations, and a

o
rectangular plate may be fit into this series with 6 = 180 . Flows around flat plates with a 

streamlined leading edge (half Rankine Oval with a width to height ratio of 2, see Figure 

3.2) and a rectangular trailing edge were also simulated for comparison. The streamlined 

leading edge was used to eliminate the leading-edge separations as a limiting case. A list 

of the simulations presented in this chapter is given in Table 3.1. For convenience, the 

plates with various leading and trailing edges are given a short name. For example, a 

"T90-R plate" refers to a plate with a d = 90 triangular leading edge and a rectangular 

trailing edge, and an "O-R plate" is one that has a streamlined leading edge (Rankine 

Oval) and a rectangular trailing edge.

The Reynolds number based on freestream velocity and the thickness of the plates 

was 600. To balance accuracy and computational costs, the normalized time step was set 

to AT -  0.05 (see Sections 2.4.2 and 2.4.3 for discussions about the dependence of the 

results on numerical resolution). A unity overlap ratio, J3, was used throughout the 

simulations, and the particle spacing was chosen to be hit =1.291x10' so that vAt/h = 

0.5, where At is the time step. The solid boundaries were discretized into panels of 

lengths X « h, and the sharp comers were "rounded" with radius r = X for better numerical
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behavior, as discussed in Chapter 2. The fluid was impulsively set into motion with 

velocity Uco at the beginning of the simulation, and remeshing was applied every 5 time 

steps. All the computations were carried out on a desktop computer, and the simulations 

were performed long enough for the start-up effects to die out. In most cases 15-25 stable 

shedding cycles were observed, with 3-5 million particles in the flow fields toward the 

end of the simulations.

Table 3.1. Simulations of flows around elongated bluff bodies at Re = 600

Leading edge Trailing edge Short name c/t A (c/t)

triangular, 9 = 60° triangular, 6 -  60° T60-T60 3-10 1

triangular, 9 = 75° triangular, 6 -  75° T75-T75 3-10 1

triangular, 9  =82.5° triangular, 9 = 82.5° T82.5-T82.5 3-10 1

triangular, 9 = 90° triangular, 9 = 90° T90-T90 3-10 0.25

triangular, 9 = 105° triangular, 9 = 105° T105-TI05 3-10 1

triangular, 9 = 120° triangular, 6 = 120° T120-T120 3-10 1

triangular, 9 = 150° triangular, 9 = 150 T150-T150 3-10 1

triangular, 9 = 75° rectangular T75-R 3-10 1

triangular, 9 = 90° rectangular T90-R 3-10 0.25

triangular, 9 = 105° rectangular T105-R 3-10 1

triangular, 9 = 120° rectangular T120-R 3-10 1

triangular, 9 = 150° rectangular T150-R 3-10 1

rectangular rectangular R-R 3-10 0.5

Rankine oval rectangular O-R 3-10 1

3.2.2. Reynolds Number Effects

The Reynolds number, Re = 600, was chosen as a compromise between physical 

requirements and computational costs. At low Reynolds numbers, 3-D effects are less 

pronounced and 2-D simulations would have greater accuracy. A lower Reynolds number



72

is also desirable to reduce computational costs. However, the wind tunnel experiments at 

Re = 200-1,000 by Nakamura et al. (1996) have shown that the stepwise variation of Stc 

for rectangular plates only occurs above Re = 300. When Re < 250, the separated shear 

layers appear to be steady and the trailing edge shedding dominates the wake, which 

leads to an almost linear variation of Stc with c/t (or, in other words, an almost constant 

thickness-based Strouhal number, St). This is consistent with the experimental results of 

Lane and Loehrke (1980), who found that the separation bubble on a long blunt plate is 

steady up to Re = 260. It is also shown by Lane & Loehrke that the length of separation 

bubble increases with Reynolds number up to Re = 325, and then shrinks with further 

increases in Reynolds number and asymptotes to 4-5 plate thicknesses after Re = 700. 

Through 2-D simulations of separated-reattaching flows over a normal plate followed by 

a long splitter plate, Najjar & Vanka (1993) also find that "a clear shedding" of vortices 

from the separation bubble only occurs above Re > 250. On the other hand, flow 

visualizations by Sasaki & Kiya (1991) suggest that the leading-edge separation bubble 

on a blunt flat plate becomes three-dimensional at Re > 320. Strouhal numbers obtained 

at relatively low Reynolds numbers, both experimentally (e.g., water tunnel experiments 

at Re = 490 by Mills et al. 2003) and numerically (e.g., 2-D spectral element method 

simulations at Re = 400 by Tan et al. 1998, 2004), are in good agreement with the 

experimental data Re = 1,000 by Nakamura et al. (1991). Nakamura et al. (1996) also 

report that an increase in Reynolds number from 300 to 1,000 only leads to higher levels 

of "random modulations" in velocity signals in the wake of rectangular plates, and the 

shedding frequencies remain unchanged. Furthermore, it is demonstrated in Tafti & 

Vanka (1991) that, time-dependent features of flows around rectangular plates, such as
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leading-edge shedding frequencies and vortex convection speeds, predicted by their 2-D 

LES simulations at Re = 1,000 are in good agreement with experiments at much higher 

Reynolds numbers.

Figure 3.1. Sketch of a flat plate with triangular leading and trailing edges

flow „
c = >

Figure 3.2. Sketch of a flat plate with a streamlined leading edge and a rectangular trailing edge

Table 3.2. Experiments and numerical simulations where stepwise variation of Stc is observed

Source Re Method Blockage ratio

Nakamura et al. (1996) 300-1,000 Wind tunnel experiments 0.1%

Tan et al. (1998, 2004) 400 Numerical simulations (2-D) 2.5%

Mills et al. (2003) 490 Water tunnel experiments 4.8%

Nakamura et al. (1991) 1,000-3,000 Wind tunnel experiments 0.2%

Mills et al. (2002) 5,000-13,000 Wind tunnel exp. with external forcing open jet

Stokes & Welsh (1986) 8,000-44,300 Wind tunnel exp. with resonant sound 2.5-4.9%

Parker & Welsh (1983) 14,800-31,100 Wind tunnel exp. with external forcing open jet

Nakamura & Nakashima (1986) 2,400-288,000 Wind tunnel experiments 0.6-6%

Actually, as long as the Reynolds number is high enough for the leading-edge 

shedding to occur, similar characteristics of flows around long rectangular plates have 

been reported over three decades of variation in Reynolds number; see Table 3.2 for a
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summary of the experiments and numerical simulations where such observations are 

reported (although the observations for long plates at high Reynolds numbers included in 

the table were all made under external forcing). In other words, the flows around sharp 

edged rectangular plates are largely insensitive to the variation of Reynolds numbers 

when Re > 300, hence, a comparison between the results obtained at various Reynolds 

numbers are reasonable. This also justifies the use of 2-D simulations at a moderate 

Reynolds number in the present work to study this phenomenon.

3.3. STEPWISE VARIATION OF CHORD-BASED STROUHAL 

NUMBERS

Figure 3.3 shows the variations of chord-based Strouhal numbers (Stc) for a series of flat 

plates with triangular nosings. The dashed straight line is a reference line with a slope of 

0.2. As well, a symbol with a "+" at its center indicates that a secondary peak was 

observed in spectral analysis. Also shown for comparison is the Stc variation for flat 

plates with a streamlined leading edge and a rectangular trailing edge. For convenience in 

discussions, a "mode" number (Hourigan et al. 2001, Mills et al. 2002, 2003) is assigned 

to each part between jumps in the Stc map. Figure 3.3 shows that there are two limits for 

Stc variations: horizontal lines with jumps at certain elongation ratios (lower limit, 

rectangular plates), and a straight line (upper limit, plates with streamlined leading edge) 

where Stc varies almost linearly with c/t. It can be inferred from the discussion in Chapter 

1 about the mechanism leading to the stepwise variation of Stc for rectangular plates that, 

when leading-edge vortices are strong enough to interfere with the trailing-edge shedding, 

Stc tends to follow the horizontal line as in the case of rectangular plates.
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Figure 3.3. Stc for flat plates with triangular leading and trailing edges at Re = 600

For plates with a streamlined leading edge, the trailing edge shedding dominates 

the wake and, hence, an almost linear variation of Stc (or an almost constant shedding 

frequency,/,) is observed. As mentioned in Chapter 1, a longer development distance 

leads to a thicker boundary layer before separation at the trailing edge, which in turn 

results in a wider near wake and a lower Strouhal number, and, hence, a slight deviation 

of Stc from the straight line can be observed. By reducing the separation angle at the 

leading edge (which is half of 0 ), the transition from the lower to upper limit appears to 

be continuous: Stc jumps occur earlier, the sizes of which tend to be smaller, until finally 

they disappear and Stc variation follows the straight line (e.g., Stc variation for T60-T60 

plates in Figure 3.3).

A triangular nose extending into the wake may interfere with vortex formation in 

the near wake, and, hence, it may have an impact on the Strouhal number. Figure 3.4
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presents the variations of Stc with d t  for flat plates with triangular leading edges and 

rectangular trailing edges. Fewer plates are included in this figure to avoid cluttering of 

data. In comparison with Figure 3.3, only minimal changes can be observed (e.g. the 

secondary Strouhal number for a T120-T120 plate disappears for a T120-R plate at d t = 

8). This indicates that the shape of trailing-edge nosing has only a minor influence on the 

shedding frequency.
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Figure 3.4. Stc for flat plates with a triangular leading edge and a rectangular trailing edge at Re = 600

In Figure 3.5 a comparison of the Stc variations for a T90-T90 plate and a T90-R 

plate is presented with smaller increments of dt. It can be observed that the triangular 

trailing edge may delay the Stc jumps to slightly larger elongation ratios, and lead to 

slightly larger sizes of jumps. Since the chord length is measured from tip to tip (see 

Figure 3.1), the distance between the leading- and trailing-edge separation points 

(referred to as "surface length" hereafter) differs slightly (by 0.57 in this case) for these
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two plates, which may also contribute to the discrepancies in Stc at some elongation ratios. 

However, normalizing the shedding frequencies with surface lengths does not bring the 

Strouhal numbers for both plates closer to each other, which indicates that the 

interference of the trailing-edge nose with vortex formation in the near wake does play a 

role in leading to these discrepancies.

d t
Figure 3.5. Stc for flat plates with 9 = 90° triangular leading edges at Re = 600

More importantly, with finer increments of dt, Figure 3.5 shows a clearer picture 

of the transition before and after a jump in Stc. It can be observed that Stc does not always 

jump directly onto the "horizontal leg" of a higher mode. Instead it settles at a somewhat 

lower value, and then follows a straight line (referred to as the "linear leg" of a mode, 

hereafter) which eventually makes transition to the horizontal leg. This means that the 

shedding frequency (fv) remains nearly constant after the jump over a range of elongation 

ratio, and then starts to decrease with dt. Since the linear leg is associated with shedding
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from the trailing edge, while the horizontal leg is largely controlled by shedding from the 

leading edge, this suggests that one of the significant effects of nosing geometry is that, 

depending on d t  ratios, both mechanisms can occur for any particular leading-edge 

separation angle. This will be further examined below.

3.4. MEAN FLOW CHARACTERISTICS

3.4.1. Reattachment Lengths

As mentioned in Chapter 1, the reattachment length (xr) is often used as the characteristic 

length scale to normalize other dimensions in separated and reattaching flows. Figure 3.6 

shows variation of the reattachment length with d t  for T90-R, T105-R, T120-R and R-R 

plates, in which xr is measured from the separation point to the location where the mean 

wall shear stress (which was calculated on a grid of 0.05? increments) changes sign 

(following a reverse flow region). The experimental results from Blazewicz et al. (2007) 

and Yaghoubi & Mahmoodi (2004) for R-R plates are also included for comparison. Note 

that an open-jet wind tunnel was used by Blazewicz et al. (2007), while the blockage 

ratio in Yaghoubi & Mahmoodi (2004) is 4.4%. Hence, the xr values from the former are 

higher than those from the latter. Figure 3.6 shows that, for the d t  under investigation, xr 

tends to increase with dt, and is longer for bluffer plates. The dependence of xr on d t  is 

consistent with the two sets of experimental data, although the values differ significantly 

for longer plates. However, the largest value of xr from the present simulations for a 

rectangular plate, xr = 7.5?, occurs at d t  = 10, is in good agreement with xr = 1 .It reported 

by Castro & Epik (1998), who argue that two dimensionality (large aspect ratio, which is
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64 in their experiment, 2-D in the present simulations) and low blockage ratio (1.2% in 

their experiment, 0 in the present simulations) lead to longer reattachment lengths (see 

Section 1.2 for a discussion). For short plates (e.g. d t  = 4), xr is almost the same for all 

plates in Figure 3.6, which is also in good agreement with the experimental result from 

Yaghoubi & Mahmoodi (2004). This indicates that, for short plates, xr is largely limited 

by the presence of the trailing edge, and is less sensitive to other effects, such as the 

effects of leading-edge separation angle and blockage ratio. For rectangular plates with 

d t  -  5.5 and 7, the present results compare fairly well with those obtained experimentally 

by Blazewicz et al. (2007), which suggests that the physics are correctly captured in 

present simulations. A possible reason for the discrepancies at larger elongation ratios is 

that, 3-D effects, which may be more pronounced on longer plates, are missing in the 

present 2-D simulations.
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Figure 3.6. Reattachment lengths for flat plates at Re = 600
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The scaling of xr with separation angles proposed by Djilali & Gartshore (1992, 

referred to as DG92 hereafter), which is given by Equation (1-1), does not seem to apply 

to the present data presented in Figure 3.6 (for example, Equation (1-1) predicts that xr 

for a T90-R plate is half that for an R-R plate, which is not the case for the present data). 

Interestingly, recent wind tunnel data (xr = 4.2/ for a rectangular plate, and 2.1/ for a T90- 

T90 plate, both with d t  = 7) reported by Taylor et al. (2009, TGK09 hereafter) scale well 

with Equation (1-1). A closer look into the experimental details by DG92 and TGK09 

reveals that Reynolds number (5><104 in DG92, 3><104 in TGK09), aspect ratio (11.1 in 

DG92, 18 in TGK09), and blockage ratio (5.6% in DG92, 5.4% in TGK09) are similar in 

both experiments. In Figure 3.6, due to the 2-D nature of the simulations, and a zero 

blockage ratio, xr is still increasing with d t  even for the longest plates. Or, in other words, 

the reattachment lengths are limited by the presence of the trailing edge of the plates and 

are not "saturated". While in the experiments at high Re with low aspect ratios and high 

blockage ratios, xr may be already "saturated" (at a value observed in many experiments 

on semi-infinite plates) even on a plate with d t  = 7. So, it is reasonable to assume that the 

empirical relationship given in Equation (1-1) may only be applied to "saturated" xr data.

The variations of xr with d t  for T90-R and T90-T90 plates are compared in Figure 

3.7. Within the d t  range under investigation, xr increases with d t  for both plates. Overall 

the reattachment lengths at the same d t  ratios for both plates are close to each other, and 

the effects of the trailing-edge shape are mostly observed on short plates and those near 

the Stc jumps (see Figure 3.5). For short plates, the surface length is //2 longer on a T90-R 

plate and, hence, a longer is observed. However, the difference near the Stc jump at d t  

= 7.25-7.5 is interesting, since the close match of xr for both plates before and after this
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d t  region seems to suggest that the small difference in surface lengths is not the reason 

for the relative large difference in xr, and it is more likely that the shedding process leads 

to a different arrangement of the vortices on the body surfaces. That is, xr measured on 

plates with finite lengths might be affected by vortex shedding in the wake, and, hence, 

caution should be used when comparing various experiments.

d t
Figure 3.7. Reattachment lengths for flat plates with 0 ~ 90° triangular leading edges at Re -  600

3.4.2. Wake Formation Lengths

The (vortex) formation length (the length of the vortex formation region in the near wake) 

is considered by Gerrard (1966, see Appendix A for a description of Gerrard's formation 

region model) one of the two characteristic length scales (the other one is the "diffusion 

length") governing the shedding frequency of short bluff bodies. A relevant definition in 

the mean flow field is the length of the "wake recirculation region" or "wake formation 

region" (see, e.g., Williamson 1996), which is bounded by the mean zero streamline in
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the near wake. In the present study, the length of the wake formation region is simply 

referred to as the "formation length" (Lw), and is determined from the trailing-edge 

separation point to the saddle point of the streamlines in the wake.

Figure 3.8. Formation lengths for flat plates at Re = 600

The variations of formation length with d t  for various flat plates with rectangular 

trailing edges are presented Figure 3.8. For the O-R plate, Lw increases almost linearly 

with dt, which is consistent with the finding for short bluff bodies (the O-R plate has no 

afterbody) that the shedding frequency (see Figure 3.4, note Stc increases almost linearly 

with dt, and the shedding frequency decreases slightly with dt) roughly scales inversely 

with Lw (Roshko 1954b, Gerrard 1966). For T90-R, T105-R and T120-R plates, two 

peaks are observed in Lw at the two elongation ratios just before Stc jumps in Figure 3.4. 

For the R-R plate, two peaks are also observed near the Stc jumps, although a larger peak 

at d t = 9.5 occurs after the Stc jump at d t  = 9.0. This is because the flow is intermittent
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for d t  = 9.0 (which is indicated by the secondary Strouhal number), and an average value 

is obtained in the mean flow field.

Figure 3.9 compares the variations of Lw with d t  for T90-R and T90-T90 plates at 

much smaller d t  steps. Unlike the Strouhal numbers in Figure 3.5, Lw can be noticably 

different for these two similar plates. The Lw peaks in Figure 3.9 all coincide with Stc 

jumps, and, what is more interesting is that, the valleys of Lw variations also coincide 

with the transition points from linear to horizontal legs in the Stc map. That is, Lw 

decreases with d t  for plates on a linear leg (almost constant shedding frequencies), and 

increases with d t  for plates on a horizontal leg (decreasing shedding frequencies).

Figure 3.9. Formation lengths for flat plates with 0 = 90° triangular leading edges at Re = 600

Figure 3.9 also shows that, as expected from previous discussions, the triangular 

trailing-edge nose intruding into the near wake tends to push the end of formation region 

away from the body, resulting in a longer Lw. However, Lw peaks at Stc jumps are smaller 

in the presence of a triangular trailing-edge nose. On the other hand, the significant
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discrepancies in Lw observed in Figure 3.9 only lead to minor differences in Stc in Figure 

3.5, indicating that, in the presence of leading-edge shedding, the formation length in the 

wake is no longer the governing length scale of the shedding frequency. Since the 

trailing-edge nose has only a secondary influence on the Strouhal number (which is of 

main interest of the present study), only plates with a rectangular trailing edge will be 

included in the rest of the discussions, so that we can focus on the effects of leading-edge 

geometries and elongation ratios.

3.4.3. Velocity Fields

Mean velocity profiles at a series of locations (pc/t = -4.0 to 1.0 by Ax/t = 0.5) for O-R, 

T90-R and R-R plates with c/t = 7 are presented in Figure 3.10, where x is measured from 

the trailing-edge of the plate, and a distance of Ax/t = 5 is scaled as one unit on the 

horizontal axis in the figure, c/t = 7 is chosen because both the T90-R and R-R plates are 

on the horizontal leg of the second mode, and both leading- and trailing-edge shedding 

are strong on these plates. In Figure 3.10(a) the velocity profiles above the surface of the 

O-R plate mimics that of a classical boundary layer, although slight speed-ups (1.113- 

1.135 in the figure for x/t < 0) are observed at the edge (where the mean velocity reaches 

its maximum) of the surface layer. The thickness of the surface layer (from its edge to the 

plate surface) is around 0.43-0.5/. In the near wake, an intense reverse flow region (Um¡n 

= -0.193(7* at x/t -  0.5) can be observed, where the velocity profile takes a similar shape 

to that in the wake of a circular cylinder. For the T90-R plate (Figure 3.10(b)), a reverse 

flow region (separation bubble) appears on the surface near the leading edge, and a 

higher level of speed-up (1.099-1.196 in the figure for x/t < 0, higher in the reverse flow
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region) is observed. The thickness of the surface layer is thicker in the reverse flow 

region (0.65-0.68? for x/t < -2.0) and thinner in the redevelopment region (0.58-0.66? for 

-1.5< x/t < 0), which is still much thicker than that on an O-R plate. The reverse flow in 

the near wake is less intense, being Um¡n = -0.10167 at x/t = 0.5, which is nearly half of 

that behind an O-R plate. For the rectangular plate in Figure 3.10(c), the separation 

bubble is noticeably larger than that on a T90-R plate, and the speed-up is also higher 

(1.055-1.257 in the figure for x/t < 0, higher in the reverse flow region). As expected, the 

surface layer is also much thicker, which is 0.95-1.14? for x/t < 0.0. The near wake 

reverse flow is even weaker with Umin = -0.0551700 at x/t = 0.5, again nearly half of that in 

the wake of a T90-R plate.

Figure 3.11 presents the streamwise (urms) and cross-stream (vrms) r.m.s. (root- 

mean-square) velocity profiles for O-R, T90-R and R-R plates with c/t = 7 at the same 

series of locations as in Figure 3.10. In the figure x is measured from the trailing-edge of 

the plate, and a distance of Ax/t = 5 is scaled as 0.4 units on the horizontal axis. A simple 

invicid model of a Rankine vortex (which is of size on the order of ?, and strength on the 

order of ¡7®?) convecting near a wall shows that, the vortex induces maximum streamwise 

velocity fluctuations at its top and bottom edges (although the upstream velocity 

fluctuations near the wall is much higher than the streamwise fluctuations at its outer 

edge due to the presence of a wall), and maximum cross-stream velocity fluctuations near 

its upstream and downstream edges. Hence, convecting vortices on the surfaces of the 

plates will manifest themselves on the «„ns curve as two peaks (with the primary one lies 

closer to the wall), and as a single broad peak on the vrms curve between the two peaks on 

the «rms curve (see also Burgmann et al. 2008, and Yarusevych et al. 2009). Also, the
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Figure 3.10. Mean velocity profiles at different locations for flat plates with d t  = 7; (a) O-R; (b) T90-R; (c) 

R-R. x is measured form the trailing edge, Ax/t = 5 is scaled as one unit on the horizontal axis.
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on the horizontal axis
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magnitude of the peaks on the r.m.s curves may be an indication of the strength of the 

convecting vortex, and in the near wake, a secondary peak on the «„ns curve is a 

"footprint" of leading-edge vortices coalescing with the trailing-edge one.

Figure 3.11(a) shows that there is no leading-edge vortex convecting on the 

surface of an O-R plate. In the wake, the alternating vortices shed from either side of the 

trailing edge aligns themselves close to the center line. Hence, a classical "M" shaped wrms 

curve and a "V" shaped vrms curve are observed. In Figures 3.11(b) and (c), the double 

peaks on the wrms curves, and the broad peaks on the vrms curves between the urms peaks 

indicate that there are strong leading-edge vortices regularly convecting along the 

surfaces of both plates, although the size of the vortices on the R-R plate are larger. For 

both plates, the leading-edge vortices convect past the trailing edge and lead to a 

secondary peak on both u[ms curves at x/t = 0.5, which disappears at x/t = 1.0 for the T90- 

R plates while still exists for the R-R plate. Furthermore, much larger slopes of the r.m.s. 

curves away from the plate surface in Figure 3.11(c) indicate that the unsteady vortex 

shedding from the plate is felt by a larger region of the flow.

Figure 3.12 shows the wrms profiles just upstream (upper half) and 0.5/ 

downstream (lower half; before the end of the wake formation region for all plates 

included, see Figure 3.9) of the trailing-edge for a T90-R plate with d t  = 6.5, 7.0, 7.25, 

8.0, and 9.5. Note that both d t  = 6.5 and 7.0 are on the horizontal leg of mode 2, and their 

uTms profiles are similar at both locations, although for the plate with d t  = 6.5 the leading- 

edge vortices are noticeably weaker in the near wake. Just after the Stc jump (d t = 7.25), 

a sudden decrease in the strengths of both the leading- and trailing-edge vortices can be 

inferred from the much weaker peaks on the urms profiles. However, a clear footprint of
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leading-edge vortices coalescing with trailing-edge ones is still observed in the near wake. 

For the plate on the linear leg of the higher mode (d t = 8.0), the secondary peak on the 

urms just upstream of the trailing-edge separation point suggest that the strength of 

leading-edge vortices are now slightly higher than those on the plate with d t = 7.0. The 

low level of wrms near the body surface and the fast decay of um% away from the surface 

may be a result of the coalescing of the leading- and trailing-edge vortices (see) before 

the leading-edge one actually arrives at the trailing edge (see Section 3.5.2). However, 

the secondary peak on the wrms profile in the near wake indicates that the merger of the 

vortices occurs over a distance, and the footprint of the leading-edge may be still 

observed in the near wake. The uvms profiles for the plate with d t = 9.5 are similar to 

those for d t = 6.5 and 7.0, except that the vortices are now stronger.

u IUrms oo
F ig u re  3 .1 2 . S tre a m w is e  r .m .s .  v e lo c i ty  p ro f i le s  fo r  T 9 0 -R  p la te s  w i th  c!t =  6 .5 , 7 .0 , 7 .2 5 , 8 .0 , a n d  9 .5 ;

u p p e r  h a lf :  j u s t  u p s t r e a m  o f  tr a i l in g - e d g e  s e p a ra t io n , lo w e r  h a lf :  0 .5 /  d o w n s tr e a m  o f  tra i l in g -e d g e

s e p a ra t io n
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3.5. THE SHEDDING PROCESS

To understand the effects of geometry on Strouhal numbers illustrated Section 3.3, a 

better understanding of the shedding process is necessary. In this Section, the flow fields 

around elongated bluff bodies are explored to reveal the geometric effects on various 

flow characteristics, based on which the changes in the underlying shedding process that 

lead to the observed Stc jumps, and the linear and horizontal legs (as well as the transition 

between them) in the Stc map, are explained.

3.5.1. The Vorticity Field

Figure 3.13 compares the vorticity fields for four elongated bluff bodies at the moment 

when the lift is at its maximum. For the plate with a streamlined leading edge, there is no 

separation at the leading edge and the boundary layers develop on the upper and lower 

surfaces of the body until the trailing edge is encountered, where the boundary layers 

separate and directly interact with each other in the near wake to form a regular vortex 

street. As a result, the shedding process mimics that from a circular cylinder, although 

some subtle differences exist (see Section 1.3 for a discussion).

The vorticity fields for the two plates with 9=  90 triangular leading edges are 

essentially the same. This is expected since from Figure 3.5 the Strouhal numbers are the 

same for both plates. Figure 3.14 shows how the vorticity fields compare when the 

Strouhal numbers for these two plates with d t  = 7.5 are slightly different. It can be 

observed that the vorticity fields are similar, although the distances between vortices in 

the wake are different (accounting for the different shedding frequencies). However, the
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Figure 3.13. Vorticity fields corresponding to maximum lift for various bluff bodies at Re -  600; (a) O-R 

plate with c/t = 7; (b) T90-R plate with c/t = 7; (c) T90-T90 plate with d t  = 7; (d) R-R plate with d t  = 7.

Figure 3.14. Vorticity fields corresponding to maximum lift for plates with a 6 -  90 triangular leading edge 

at Re -  600; (a) T90-T90 plate with d t  = 7.5; (b) T90-R plate with d t  = 7.5.
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near wake appears to be similar for both plates. In fact, it has been shown in Figure 3.9 

that the length of the formation region for the T90-T90 plate is longer than the triangular 

nose (0.5/), and is very close to that for the T90-R plate. This seems to indicate that, in 

this case, the interference of the trailing-edge nose with the formation region is not the 

main reason for the discrepancy in Strouhal numbers. Actually, a simple calculation 

shows that, Strouhal numbers based on surface lengths for these two plates are almost the 

same. Hence, for this case only, the discrepancy in Stc is mainly caused by the difference 

in surface lengths. The vorticity field for the R-R plate in Figure 3.13 (d) is similar to 

those around the T90-R and T90-T90 plates, although the leading-edge vortices are larger 

and stronger.

Figure 3.15 shows a sequence of snapshots of the vorticity field at time intervals 

of AT = 1 for a T90-T90 plate with c/t = 7 at Re = 600. In frame (a), there is a leading- 

edge vortex on the upper surface convecting towards the trailing edge, and a trailing-edge 

vortex is growing. On the lower surface, a leading-edge vortex is coalescing with the 

trailing-edge one behind the trailing edge, and another leading-edge vortex attached to 

the shear layer is still growing. In frame (b), the merging vortices behind the lower 

trailing-edge are shed as a pair into the wake, and the leading-edge vortex upstream is cut 

from the shear layer and starts to convect to the trailing-edge. On the upper surface, a 

leading-edge vortex is convecting closer to the trailing edge and the trailing-edge vortex 

is still growing. The next frame shows that the upper trailing-edge vortex is about to be 

shed, while a leading-edge vortex has just convected past the trailing edge and starts to 

coalesce with the trailing-edge one. A vortex also starts to grow at the end of the shear 

layer from the upper leading edge. On the lower surface, a leading-edge vortex is moving
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closer to the trailing edge, and a trailing-edge vortex starts to grow. The last frame shows 

the same coalescing process at the upper trailing-edge as in frame (a) at the lower 

trailing-edge, and the lower trailing-edge vortex is growing larger while a leading-edge 

vortex is moving closer. This completes approximately half a shedding cycle. This 

process repeats itself and a regular vortex street is observed in the wake, since the 

trailing- edge merging is regular for this plate.

Figure 3.15. Vorticity field for a T90-T90 plate with d t  = 7 at Re = 600. The time interval between 

successive images in AT = 1.
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It can be observed that trailing-edge vortices only form in-between the passage of 

leading-edge vortices, and the shedding of the coalescing vortices as a pair at the trailing 

edge corresponds to the end of the growth of a leading-edge vortex. As discussed in 

Chapter 1 and Section 2.4.3, this is the reason that the shedding frequencies are locked to 

the chord of the body. Comparing the above observations with those in Section 2.4.3 for a 

rectangular plate shows that the flow patterns and shedding processes are similar for both 

plates.

The Stc maps in Figures 3.3 and 3.4 show a few secondary peaks just before or 

after a jump for some plates. Flow visualizations show that this may be due to 

randomness in the flow, whereby leading-edge vortices do not always merge with 

trailing-edge ones while they move into the wake. This usually happens intermittently 

and, hence, a secondary frequency is observed in the spectral analysis. To fully verify this 

assumption, many more shedding cycles (much longer simulations) would be necessary.

3.5.2. Identified Vortices

Although the contour plots of vorticity fields are helpful to understand the flow fields, 

they are not the best tool for quantitative analysis of the vortices. In this Section, the 

vortices in the flow field are identified for further analysis with the ^-criterion proposed 

by Jeong & Hussain (1995).

Examples of the identified vortices superimposed on contour plots of the vorticity 

field are shown in Figure 3.16. The identified vortices are represented by thick-line 

circles. The centre of the circle is determined from the "centre of mass" of the identified

vortex, while the radius is calculated from the area occupied by the identified vortex.
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Thus, the area of the representing circle is the same as the area of the identified vortex, 

although the shape is different.

Figure 3.16. Identified vortices superimposed on vorticity contours at Re = 600; (a) circular cylinder (b) 

T90-R plate with c / t - 1

The above method is applied to identify the vortices in the flow fields around 

T90-R plates. Table 3.3 lists the maximum number of identified leading-edge vortices 

simultaneously convecting on the upper surface of the plate (Nlevhux) in each shedding 

cycle, in which the mode number is determined from Figure 3.5. Table 3.3 shows that, 

contrary to the conclusion inferred from Chapter 1 -  that the mode number is the same as 

the number of leading-edge vortices simultaneously convecting on the surface -  the latter 

may be less than the former by 1. This occurs for the shorter plates of modes 2 and 3 in 

Table 3.3. A closer look at Figure 3.5 reveals that these plates are all on the linear legs of 

modes 2 and 3. This means that, a jump is not necessarily accompanied by an increase of
o

leading-edge vortices on the surface of the body as it is for rectangular plates (6=  180 ), 

and only when a plate is long enough to allow an Nlevmax that equals the mode number is

it on a horizontal leg in the Stc map.



Table 3.3. Maximum number of identified leading-edge vortices simultaneously convecting on the upper 

surfaces of T90-R plates in each shedding cycle

9 6

Mode 1 2 3

clt 4.0 4.5 5.0 5.5 5.75 6.0 6.5 7.0 7.25 7.5 8.0 8.25 8.5 9.0 9.5

diEVmax 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3

Figure 3.17 shows the distance (dii) between a trailing-edge vortex that just starts 

to form (±0.5t/i7oo since the velocity and vorticity fields were sampled at intervals of AT = 

0.5 before identifying the vortices) and the closest leading-edge vortex for the T90-R 

plates. In the figure, the solid circles are the average values of the data (hollow squares) 

gathered from the identified vortices, solid lines are a fit to the average values, and 

broken lines are reference lines with unity slope (parallel to the line dij-lt = c/t). It can be 

observed that the distance cIl t  increases with d t  until a jump occurs. This jump coincides 

with the jump at the same elongation ratio in the Stc map. For d t  on a linear leg in the Stc 

map, didt increases almost as fast as dt, and the increasing rate starts to level off at an 

elongation ratio corresponding to the transition to a horizontal leg. After the jump the 

process repeats itself. It is interesting to note that, the drastic decrease of d n  at the jump 

(d t = 7.25) in Figure 3.17 is not caused by an increase of the number of leading-edge 

vortices. Rather, it is due to the change of timings of the formation of leading- and 

trailing-edge vortices, which will be explored next.

With the identified vortices, further analyses are carried out for the plates with d t  

= 6.5 (on the horizontal leg of mode 2, see Figure 3.5), 7.0 (before jump to mode 3), 7.25 

(after jump to mode 3), 8.0 (on the linear leg of mode 3) and 9.5 (on the horizontal leg of 

mode 3). Figure 3.18 shows the strengths of the identified leading-edge vortices (rLEy) 

along the surface of the plates, in which x is measured from the tip of the leading-edge
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nosing, and the smooth curves are polynomial fits to the data. It can be observed that, the 

identified leading-edge vortices make their first appearance at almost the same distance 

from the leading edge (3.3-3.5t) for all plates under investigation, and their initial 

strengths are comparable (1.2-1.4¿/«A except for the plate with d t  = 7.25 (immediately 

after the jump) the leading-edge vortices are much weaker. For plates of the same mode 

(e.g., d t  = 6.5 and 7.0) in the Stc map (see Figure 3.5), leading-edge vortices are stronger 

on longer plates, and the evolution of r LEv along the surface shows some similarity (the 

evolution curves are almost parallel to each other). At an Stc jump to a higher mode, r¿Ev 

also jumps to a lower value, and the vortices tend to diffuse more slowly along the plate. 

For plates on horizontal legs in the Stc map, leading-edge vortices may convect beyond 

the trailing edge before coalescing with the trailing edge vortices, while the beginning of 

the merger usually occurs before the trailing edge for plates on a linear leg.

d t
Figure 3.17. Distance between a forming trailing-edge vortex and the closest leading-edge one for a T90-R 

plate



98

(a) (b)

(c)

x/t

(d)

x/t

0 ) (i)

F ig u re  3 .1 8 . S tr e n g th s  o f  id e n t i f ie d  le a d in g - e d g e  v o r t ic e s  a lo n g  th e  s u r fa c e  o f  T 9 0 - R  p la te s .  S m o o th  c u rv e s

a re  p o ly n o m ia l  f i t  to  th e  d a ta ;  (a )  d t  =  6 .5 ; (b )  d t  =  7 .0 ; (c )  d t  =  7 .2 5 ;  (d )  d t  = 8 .0 ; (e )  d t -  9 .5 ; (f)  f i t te d
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The convection speed of leading-edge vortices (Uc) along the surfaces of the 

plates are presented in Figure 3.19. Again the smooth curves are polynomial fits to the 

data. Figure 3.19 shows that, the leading-edge vortex usually begins with a convection 

speed of a little less than half of the freestream velocity, then decelerates quickly until its 

distance from the leading edge is about 4-4.5/, where the speed reaches its minimum 

(Ucmin = 0.35-0.4£/oo) and the vortex starts to accelerate towards the trailing edge. These 

observations are consistent with those reported in Tan et al. (2004).

The solid circles in Figures 3.19 (a-e) mark the data points occur at the same 

moment (±0.5t/Uoo due to the sampling interval of AT = 0.5) when a leading-edge vortex 

merges with a trailing-edge one. It can be observed that, for d t  = 6.5, 7.0, 7.25 and 8.0, a 

coalescing event at the trailing edge usually occurs just after the leading-edge vortex 

reaches Ucm¡n and starts to accelerate towards the trailing edge; while for d t  = 9.5, 

coalescing events occur just before Ucm¡n is reached. Flow visualizations (not shown here) 

have revealed that a leading-edge vortex usually reaches its minimum convection speed 

just before it is cutoff (shed) from the leading-edge shear layer (which is also suggested 

by Tan et al. 2004). This means that, for d t  = 6.5, 7.0, 7.25 and 8.0, the merger of a 

leading-edge vortex and a trailing-edge one at the trailing edge usually leads to the 

shedding of another leading-edge vortex. For d t  = 9.5, however, the merger occurs 

before another leading-edge vortex is shed. An additional analysis shows that this also 

happens when d t  = 9.0. A possible explanation is that, for d t  = 9.0 and 9.5, there are 

always 3 leading edge vortices on the surface of the body, of which the one in the middle 

may interfere with the transmission of the feedback signals produced by the coalescing 

event back to the leading edge.
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The strengths of identified trailing-edge vortices (Ftev) are present in Figure 3.20, 

in which x is measured from the trailing-edge separation point, and the smooth curves are 

again polynomial fits to the data. It can be observed from Figure 3.20 that, for plates on 

horizontal legs in the Stc map, trailing-edge vortices have a better opportunity to develop 

more fully prior to merging with leading-edge one. The strength of the vortex grows 

rapidly while slowly moving away from the body, until it saturates at its maximum value 

(1.4-1.84t/oof in Figure 3.20) and becomes almost constant before the merger occurs. For 

plates on linear Stc legs, the merger usually happens prematurely. In such cases, however, 

the disappearance of trailing-edge vortices in Figure 3.20 does not necessarily mean that 

coalesced vortex has been shed into the wake. Since, as long as the two vortices starts to 

connect, the whole region occupied by both vortices will be identified as a single, larger 

vortex in the vortex identification process. Vorticity field plots show that the merged 

vortex may remain attached to the trailing-edge shear layer, and its strength may continue 

to grow. However, it is reasonable to assume that the drastic change of timing for the 

merger of leading- and trailing-edge vortices for plates with c/t = 7.0 and 7.25 is the 

reason for the Stc jump to occur at c/t = 7.25.

3.5.3. Effects of Geometry on the Shedding Process

Table 3.4 summarizes the effects of increasing c/t on vortex shedding from a T90-R plate 

identified so far in the present investigation. At an Stc jump to a higher mode, where the 

shedding frequency f ,  jumps to a higher value, the reattachment length xr and the 

formation length in the wake Lw both reach their local maxima, and the distance between 

a forming trailing-edge vortex and the closest leading-edge one dir jumps from its local



102

F ig u re  3 .2 0 . S tre n g th s  o f  id e n t i f ie d  tr a i l in g - e d g e  v o r t ic e s  in  th e  n e a r  w a k e  o f  T 9 0 - R  p la te s .  S m o o th  c u rv e s

a re  p o ly n o m ia l  f i t  to  th e  d a ta ;  (a )  d t = 6 .5 ; (b )  d t  =  7 .0 ; (c )  d t  =  7 .2 5 ; (d )  d t  =  8 .0 ; (e )  d t = 9 .5 ; ( f)  f i t te d

c u rv e s ,  x  is  m e a s u r e d  f ro m  th e  tr a i l in g - e d g e  s e p a ra t io n  p o in t.



103

maximum to its local minimum. The strengths of leading-edge vortices r LEv also jump to 

a lower value. After the jump, the variation of Stc follows the linear leg of the higher 

mode, where f v remains almost constant, Lw decreases with dt, while d n  and r LEv keep 

increasing with dt. On the linear leg, the maximum number of leading-edge vortices 

simultaneously convecting on the surface Nlevmax is less than the mode number by one, 

and they start to merge with the trailing-edge ones before they reach the trailing edge. 

Further increase of d t  eventually leads to a transition from the linear leg to the horizontal 

leg, where NLEvm a x  increases by one and is now equal to the mode number, and Lw reaches 

its local minimum. On the horizontal leg, leading-edge vortices tend to convect past the 

trailing edge before they start to merge with the trailing-edge one; f v starts to decrease, 

while xr, Lw, and ¿/¿rail increases with dt, until the next Stc jump is encountered.

Table 3.4. Effects of increasing c!t on vortex shedding from a T90-R plate

At an Stc jump On a linear leg On a horizontal leg

f v Jumps to higher value Almost constant Decreases

xr Local maximum Decreases or increases Increases

Lw Local maximum Decreases Increases

dLT
Jumps from local maximum 
to local minimum Increases as fast as c Increases slower than c

r LEV Jumps to lower value Increases Increases

N L E V m  ax No change < mode number +1 at transition from linear leg 
= mode number

Comments Mode number + 1
Leading- and Trailing- 
edge vortices start to 
merge before trailing edge

Leading- and Trailing- edge 
vortices start to merge after 
trailing edge

Based on the observed effects of geometry on the flow characteristics, the 

changes in the underlying shedding process may be described as follows. Start with a 

horizontal leg on the Stc map, where xr, Lw, and ¿/¿rail increase with dt. An increasing d t
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means a longer distance for the leading-edge vortices to travel, and because the trailing- 

edge shedding only occurs in-between the passage of leading-edge vortices, a larger cIlt 

and a lower shedding frequency are observed. A larger dir leads to a longer and thicker 

shear layer to roll up into a stronger trailing-edge vortex, and, when it is sufficiently long 

(near the end of a horizontal leg), the trailing-edge shedding mimics that from an O-R 

plate. Evidence can be found in Figure 3.8 that formation lengths of a T90-R plate near 

Stc jumps (d t = 5 and 7) are very close to those of an O-R plate. Hence, it is reasonable to 

assume that, when d t  has increased past the end of the horizontal leg, the trailing-edge 

shedding is strong enough to take control of the shedding process, and the trailing-edge 

shedding frequency jumps to a higher value close to that of an O-R plate. Since the 

shedding frequency is now much higher, while d t  is increased and, from Figure 3.19 

there is no significant increase in the convection speed of leading-edge vortices after a 

jump, the adjustment of the timing of the leading-edge vortices arriving at the trailing 

edge is achieved by a noticeable increase in xr. Although dir is at its local minimum 

immediately after the jump, the jump of Flev to a much lower value (which may be due 

to the fact that there is less time for the leading-edge vortex to grow before it is shed at a 

higher frequency) ensures that the trailing-edge shedding is still in control of the 

shedding process, and hence, Stc follows a linear leg (or f ,  is almost constant) with 

increasing dt. The premature coalescence of the leading- and trailing-edge vortices 

before the former reaches the trailing edge (see Section 3.5.2) may also help the trailing- 

edge shedding dominate the shedding process, but the underlying mechanics are not 

entirely clear yet. A further increase in d t  leads to stronger r LEv and larger du. Figure 

3.17 shows that, dLT increases almost as fast as d t  on a linear leg, leaving a stronger
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leading-edge vortex close to the end of the leading-edge shear layer. While not fully 

verified with the present data, it seems reasonable to assume that the leading-edge shear 

layer may re-establish its undisturbed shedding process due to close proximity of a strong 

vortex. When the elongation ratio is increased past the transition point from the linear to 

horizontal leg, an additional leading-edge vortex is shed during each shedding cycle due 

to the re-establishment of the "natural" shedding process of the leading-edge separation 

bubble (see Section 1.2.2), and the leading-edge shedding starts to predominate in the 

overall shedding process (which is described in Chapter 1 for rectangular plates, see also 

Section 3.5.1 for visualizations of the shedding) until the next Stc jump is encountered. It 

can be inferred from the description that, it is the alternate predominance of the leading- 

and trailing-edge shedding in the overall shedding process that leads to the linear and 

horizontal variations, and abrupt jumps of Stc.

For plates with larger separation angles (larger 9), the jumps occur at larger d t  

ratios because longer shear layers (larger du) and stronger trailing-edge shedding are 

necessary to overcome the stronger leading-edge shedding. The linear leg may become 

shorter because the strong leading-edge shedding tends to take back control of the overall 

shedding process quickly after the jump.
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CHAPTER 4

CONCLUDING REMARKS

4.1. SUMMARY AND CONCLUSIONS

In the present study, a 2-D, high-resolution, vortex particle method was 

implemented, and its validity and capabilities were demonstrated through comparisons 

with experimental and numerical data available in the literature for flows around bluff 

bodies. The capability of the code to run long time simulations of bluff-body flows was 

demonstrated by replicating the Si-Re relationships for circular and square cylinders. For 

circular cylinders, the predicted Strouhal numbers are in good agreement with 

experimental data in the laminar flow region, but the present 2-D simulations are unable 

to capture the discontinuities in the transitional region and tend to overpredict Strouhal 

numbers at higher Reynolds numbers. On the other hand, the Strouhal numbers from the 

present simulations for square cylinders are in reasonable agreement with experimental 

data from low to moderate Reynolds numbers. The ability of the method to handle 

complex flow phenomena is further illustrated by long time simulations of flows around 

elongated bodies. The successful replication of the stepwise variation of the chord-based 

Strouhal numbers for rectangular cylinders, and the favorable comparisons of flow 

patterns from the present simulations with experimental observations, again suggest that 

the present code is capable of capturing the physics of interest with reasonable accuracy. 

The fact that the flow patterns from the present 2-D simulations at a moderate Reynolds 

number agree well with experimental observations at much higher Reynolds numbers
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indicates that, although small differences in the flow fields are expected due to the large 

difference in Reynolds numbers and the absence of 3-D effects in these simulations, the 

energy-carrying, large-scale structures in the flows are correctly captured to a significant 

extent. Hence, with the convenience of running simulations on ordinary personal 

computers at low cost, the present 2-D vortex particle code can be a useful engineering 

tool for studies of various flow phenomena related to these large vortical structures, such 

as vortex shedding from bluff bodies.

With the 2-D vortex particle code, many simulations of the flow around flat plates 

with various nosings and elongation ratios were performed to investigate the effects of 

geometry on vortex shedding from elongated bluff bodies. The resultant Stc map 

(variation of chord-based Strouhal number with elongation ratio and nosing angle) 

reveals that there are two limits for Stc variations: horizontal lines (lower limit) where Stc 

is almost constant with increasing elongation ratio (c/t) until a sudden jump occurs, and a 

straight line (upper limit) where Stc varies almost linearly with c/t. By reducing the 

separation angle at the leading edge, the transition from the lower to upper limit appears 

to be continuous: Stc jumps occur earlier, and the sizes of which tend to be smaller, until 

finally they disappear and Stc variation follows a straight line. It was also discovered in 

the present study that, for plates with a smaller separation angle at the leading edge, Stc 

does not always jump directly onto a horizontal leg of a higher mode. Instead it settles at 

a somewhat lower value, and then follows a linear leg which eventually makes transition 

to the horizontal leg. Furthermore, an Stc jump is not necessarily accompanied by an 

increase of leading-edge vortices convecting on the body surface. The additional leading-
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edge vortex appears on the surface only when Stc makes transition from the linear to the 

horizontal leg.

From the analyses of mean flow characteristics (reattachment lengths and 

formation lengths, mean velocity and r.m.s. velocity profiles), visualizations of the 

vorticity field, and quantitative analyses of identified vortices (number of vortices 

convecting on the surface, distance between leading- and trailing-edge vortices, evolution 

of the vortex strengths, and convection speed of the vortices), the effects of geometry on 

a number of properties of the flow around an elongated bluff body, which are linked to 

the jump, linear and horizontal legs of variation, and transition from linear to horizontal 

leg in the Stc map, were identified, and a summary of which for a T90-R plate is given in 

Table 3.4. Based on the observed effects of geometry on the flow characteristics, a 

detailed description of the mechanics leading to various behaviors of Stc was given. It is 

the alternate predominance of the leading- and trailing-edge shedding in the overall 

shedding process that leads to the linear and horizontal variations, and abrupt jumps of Stc. 

When the trailing-edge shedding is in control, the shedding process mimics that from a 

plate with a streamlined leading edge, and the shedding frequency jumps to a higher 

value and Stc tends to follow a linear leg in the map. When the leading-edge shedding 

predominates, Stc tends to follow a horizontal leg.

4.2. RECOMMENDATIONS

To the knowledge of the author, the present study is the first one dedicated to 

systematical investigation of the effects of geometry on vortex shedding from elongated
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bluff bodies with various nosings. In light of the progress made in the present study, a 

few recommendations can be made for future studies.

As mentioned in Chapter 1, the present study is a first step toward a better 

understanding of geometry effects on vortex-induced vibrations of long-span bridges. 

The upper and lower surfaces of a bridge deck are usually asymmetric, while in the 

present study all the bluff bodies are symmetric about its horizontal center line. With a 

better understanding of the effects of leading-edge separation angles and elongation ratios, 

the effects of asymmetry of upper and lower surfaces is the next obstacle to a better 

understanding of vortex shedding from a bridge deck.

It has been shown in the literature that the motion of a bluff body, or external 

forcing, changes flow patterns significantly. A systematical study of the effects of 

geometry on vortex shedding from elongated bluff bodies under free or forced vibrations, 

or external forcing, will be another venue of improving the present understanding of 

vortex-induced vibration of bridges.

Furthermore, experimental studies on vortex shedding from flat plates with 

triangular nosings are rare in the literature. Although the numerical method implemented 

in the present work has been validated against experimental data for rectangular plates, 

many of the new findings made in the present study about geometric effects are 

completely based on numerical simulations at a relatively low Reynolds number. Hence, 

a detailed experimental study with a few carefully selected models (which is now 

possible due to an improved understanding of geometric effects from the present study) at 

higher Reynolds numbers will be an important contribution. As this will not only validate 

the findings in the present study, but it will also fill the gap in the literature.
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APPENDIX A

THE FORMATION OF VORTEX SHEDDING FROM 

CIRCULAR CYLINDERS

Although the motion of the separation points makes it more difficult to understand 

various aspects of the problem, circular cylinders have been the most popular bluff body 

in the literature. Among the vast number of research papers related to this subject 

published during the long course of studies, the number of papers devoted to circular 

cylinders far exceeds the total number of papers dealing with all other bluff bodies 

(Roshko 1993). That is, most of the knowledge accumulated so far in the area of bluff- 

body flows has been contributed by the studies related to circular cylinders. This 

appendix provides a brief overview of the current understanding of the formation of 

vortex shedding from circular cylinders.

A.l. FLOW REGIMES

The flow pattern around a circular cylinder is often described in terms of various 

Reynolds number regimes (Morkovin 1964, Lienhard 1966, Pantazopoulos 1994, 

Williamson 1996), which in fact correspond to different states (turbulent or laminar) of 

the boundary layers before separation (the location of the separation points in turn 

depends on the state of the boundary layer) and the wake. For a smooth circular cylinder 

in uniform flow, the major Reynolds number regimes of vortex shedding are shown in 

Figure A.l.
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Re < 5 REGIME OF UNSEPARATED FLOW.

S TO IS ^ Re < 4 0  A F IXED  PAIR OF FÖ P P L  
VORTICES IN THE WAKE.

40 < Re < 90 ANO 90 < Re < ISO 
TWO REGIMES IN WHICH VORTEX 
STREET IS LAMINAR*

PERIODICITY GOVERNEO IN LOW 
Re RANGE BY WAKE 
INSTABILITY

PERIODICITY GOVERNEO IN HIGH 
Re RANGE BY VORTEX 
SHEDDING.

150 < Re <300 TRANSITION RANGE TO TURBU- 
---------------------- LENCE IN VORTEX.

300 < Re 3x10* VORTEX STREET IS FULLY 
TURBULENT.

3.10*-* Re <3.5»10*
LAMINAR BOUNDARY LAYER HAS UNDERGONE 
TURBULENT TRANSITION. THE WAKE IS 
NARROWER AND DISORGANIZED. NO 
VORTEX STREET IS APPARENT,

3.5 nlO* < Re < 00 <PI
RE-ESTABLISHMENT OF THE TURBU
LENT VORTEX STREET THAT WAS 
EVIDENT IN 300< Re** 3XI0T 
THIS TIME THE BOUNOARY LAYER 
IS TURBULENT AND THE WAKE 
IS THINNER.

Figure A. 1. Regimes of fluid flow past circular cylinders (Lienhard 1966)

According to Pantazopoulos (1994), the Reynolds number range, 300 < Re < 

1.5xl05, is called the subcritical regime, in which the laminar boundary layers separate at 

about 80 after the stagnation point and the vortex shedding is strong and periodic; the 

range, 1.5xl05 < Re < 3.5xl06, is referred to as the transitional (or supercritical) regime 

(which is often further divided into two sub-regimes: the critical regime, 1.5xl05 < Re < 

3.5xl05, and the super critical regime, 3.5x10s < Re < 3.5xl06), where the separation

o

points move to 140 after the stagnation point and the wake narrows substantially, with a 

consequent sharp drop in the drag coefficient of the cylinder. Vortex shedding in this
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range is characterized by a broad spectrum without a dominant frequency. In the 

postcritical (transcritical) regime, where Re > 3.5x106, regular vortex shedding is re

established, and the vortex shedding persists at Reynolds numbers as high as 1011. The 

suppression and re-establishment of the periodic vortex shedding in the transitional and 

postcritical regimes may be explained by the observation that, regular vortex shedding 

can be severely disrupted when the separation line is not straight (Bearman 1984, 

Bearman & Owen 1998). In the transitional regime, the boundary layer is laminar, 

transition to turbulence occurs within a separation bubble on the surface. The separation 

bubble breaks down at random points across the span of the cylinder, which results in a 

separation line that is not straight and thus the regular vortex shedding disappears. In the 

postcritical regime, the transition occurs within the boundary layer and thus a straight 

separation line, and hence, a regular vortex shedding is re-established.

A.2. THE FORMATION OF VORTEX SHEDDING

Due to the viscous effects in the boundary layers before separation, the inner part 

of the free shear layer moves slower than the outer part, and, hence, the shear layer tends 

to roll up into discrete vortices (Blevins 1986). There is no complete solution to the 

problem of vortex shedding, and it is difficult to describe exactly how shedding occurs 

(Pantazopoulos 1994), but previous studies have led to reasonable insight into the 

mechanism. The numerical simulation reported by Abernathy & Kronauer (1962) 

demonstrates that, the interaction between two parallel free shear layers, represented by 

oppositely signed vortex sheets, results in clouds of vortices that resemble the regular 

Karman vortex street. The simulation also predicts a reduction in the net strength of the



125

concentrated clouds to about 60% of the original circulation generated during one vortex 

formation cycle, due to the cancellation of some oppositely signed point vortices mixing 

within the clouds. This is in good agreement with observations in experiments (see e.g., 

Sarpkaya 2004, and Roushan & Wu 2005). In addition, it is estimated by Roushan & Wu 

(2005) that, only about 5% of the work done by the mean flow on the cylinder is 

extracted by the vortices in the wake. Abernathy & Kronauer (1962) emphasize that, it is 

the presence of two vortex sheets that is primarily responsible for the formation of the 

vortex street, while the role of the bluff body is merely to generate the vortex layers. 

Bearman (1984) adds that the presence of the bluff body may also modify the process by 

allowing feedback between the wake and the shedding of circulation at the separation 

points.

The phenomenological description of the mechanics of the vortex formation 

region proposed by Gerrard (1966) is widely accepted as a descriptive model to explain 

many phenomena related to vortex shedding (Berger & Wille 1972, Griffin & Ramberg 

1974, Bearman 1984, Williamson 1996). It is hypothesized in Gerrard (1966) that, a 

vortex will keep growing as long as it is fed by circulation from the shear layer until it is 

strong enough to draw the shear layer on the opposite side across the wake. The 

approaching oppositely signed vorticity from the other shear layer, with sufficient 

concentration, will cut off further supply of circulation to the vortex, which is then shed 

and convected downstream. Gerrard's formation region model is shown in Figure A.2, by 

filament lines in the rolling-up shear layer at the instant when the entrained irrotational 

flow begins to cross the wake axis. Some portion of the entrained fluid is drawn into the 

growing vortex a, the portion b is captured by the shear layer upstream of the vortex, and
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portion c is trapped into the interior of the formation region, which will be cancelled half 

a shedding period later. Since vortex formation involves mixing of oppositely signed 

vortices, the strength of a shed vortex will be less than the total circulation generated 

from one side of a fluff body during a shedding cycle.

Figure A.2. Filament-line sketch of the vortex formation region (after Gerrard 1966)

Gerrard (1966) suggests that there are two characteristic length scales, the length 

of the formation region and the diffusion length (the thickness of the free shear layer at 

the end of the formation region), that govern the vortex-shedding frequency. Gerrard 

defines the end of the formation region as the point where fluid from outside the wake 

first crosses the axis of the wake. He argues that, if the diffusion length is larger (hence 

the vortices in the shear layer are more diffused), it will take longer for a sufficient 

concentration of vorticity to be entrained across the wake and to initiate shedding, hence, 

the shedding frequency will be lower and the formation length will be longer. On the 

other hand, the greater diffusion of the vorticity in the shear layer on the other side also 

leads to less entrainment of oppositely signed vortices into the growing vortex, and thus, 

stronger vortices are observed. He suggests that the relatively constant Strouhal number 

over the whole subcritical Reynolds number range is a consequence of the fact that the
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two major controlling length scales tend to change the frequency in an opposite manner. 

The same reasoning is also applied to explain the effects of turbulence. When the free- 

stream turbulence level is higher, the formation region shrinks, but the diffusion length is 

assumed to increase in such a way that the opposite effects on the frequency are cancelled 

by each other.

A.3. INSTABILITY THEORIES

In the 1980s and 1990s, the theories of absolute and convective instabilities 

received much attention (see, e.g., Koch 1985, Provansal et al. 1987, Monkewitz & 

Nguyen 1987, Triantafyllou et al. 1987, Chomaz et al. 1988, Monkewitz 1988, Huerre & 

Monkewitz 1990, and Oertel 1990). These theories have led to a promising analytical 

approach to understanding the physics of vortex formation. If a small disturbance in a 

flow grows exponentially at the location of its generation and the instability wave travels 

both upstream and downstream, the flow is termed absolutely unstable. Oertel (1990) has 

proved the existence of absolutely unstable regions in bluff-body wakes based on 

experimental evidence and numerical simulations. An absolutely unstable flow is not 

sensitive to external disturbances, and, hence, the flow is likely to develop an "intrinsic 

response". Any transition point in the flow with a real branch-point frequency may serve 

as a "selective reflector" for instability waves of the same frequency, while the solid 

boundary may act as a "broadband reflector" for all instability waves. Hence, a self- 

sustained feedback loop may exist in the flow and lead to resonance phenomena 

(Monkewitz & Nguyen 1987). On the other hand, the flow is considered to be 

convectively unstable if the growing disturbance is convected away from the source and
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both ends of the instability wave propagate downstream. A convectively unstable flow is 

sensitive to external forcing, which is faithfully reflected by the instability wave. The 

term "global instability" was introduced by Chomaz et al. (1988) to emphasize that the 

region of absolute instability must be large enough for a global mode oscillation (e.g., a 

Karman vortex street) to be self-excited. Although the physical mechanism of the vortex 

formation in bluff body wakes is still not fully understood, stability theories have 

demonstrated the ability of explaining many relevant phenomena, such as the self- 

sustained fluid oscillation, frequency and mode selection in the wake, and receptivity to 

external forcing. It is now well established that Kârmân vortex street behind a circular 

cylinder is a result of a Hopf bifurcation to a global instability mode in the flow at a 

Reynolds number above 49 (see Provansal et al. 1987, Griffin & Hall 1991, Williamson 

1996, Prasad & Williamson 1997, and Gal & Croquette 2000), which has been 

demonstrated in Provansal et al. (1987) that it is well described by the Stuart-Landau 

equation. The near wake region (the formation region) is speculated to be globally 

unstable, and is assumed to be responsible for sustaining the continuous formation of the 

vortex street. The shear layers and the flow further downstream in the wake are 

considered to be convectively unstable (Monkewitz & Nguyen 1987, Huerre & 

Monkewitz 1990, Griffin & Hall 1991).

In addition to the primary wake instability that results in the Kârmân vortex street, 

the shear layers separating from a cylinder become unstable Re > 1,200, usually known as 

the "Bloor-Gerrard instability", or the "Kelvin-Helmholtz instability" (Bloor 1964, 

Gerrard 1978, Roshko 1993, Williamson 1996, Prasad & Williamson 1997, Thompson & 

Hourigan 2005). The shear-layer instability is commonly considered to be driven by a
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Kelvin-Helmholtz mechanism, and it scales with the thickness of the shear layer. 

Compared to the primary global instability, which scales with the dimension of the bluff 

body, the time and length scales of the shear-layer instability are much smaller. It is 

speculated that this small-scale instability does not have a significant influence on the 

large-scale vortex formation in the wake, and no evidence of successive coalescence of 

the small vortices into large-scale structures has been observed, but it may contribute to 

the thickening of the mean shear layer (Unal & Rockwell 1988a,b). In her pioneering 

work, Bloor (1964) suggests that this instability is governed by the boundary-layer state 

at separation, and that its frequency normalized by that of large scale vortex shedding in 

the wake scales with Re . This frequency scaling law has led to an ongoing debate in the 

literature (see Roshko 1993, Prasad & Williamson 1997, Thompson & Hourigan 2005, 

and references cited therein). By fitting the available data in the literature over a wide 

range of Reynolds number, and through theoretical reasoning, Prasad & Williamson 

suggest that the exponent is 0.67 instead of 1/2. Thompson & Hourigan find that the data 

may be grouped into two distinct regions of Reynolds numbers, 1,500 < Re < 5,000 and 

Re > 10,000 (which may be associated with the drastic changes in the near wake between 

these two Re ranges). Over these two Re ranges the exponent has two different values, 

0.57 and 0.52 respectively, considerably lower than 0.67 suggested by Prasad & 

Williamson. Thompson & Hourigan further suggest that the slightly higher values than 

1/2 is due to the effect of the mobility of separation point on a circular cylinder, and 

Bloor's relationship may be approximately applied to the two Re regions, but not in- 

between. They also suggest that, for fixed-point separation there should be no such

deviations.
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