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ABSTRACT

An experimental investigation has been carried out in a relatively simple turbulent 

flow in order to directly measure for the first time the Expected Mass Fraction (EMF) of 

the state of a contaminant concentration field within a contaminant cloud. Particle image 

velocimetry (PIV) and Planar laser induced fluorescence (PLIF) were used to measure 

simultaneous velocity and concentration fields, respectively. The EMF is a relatively 

simple measure of the state of a contaminant cloud. It has been shown that the EMF is 

approximately self-similar when concentrations are normalized by the centreline mean 

concentration. It has been shown that a reasonable approximation of the EMF moments is 

possible by using the centreline absolute moments. The results are compared with the 

theoretical and experimental results established for a line source of scalar in grid 

turbulence.

The two closure approximations in the evolution of the moments of the 

probability density function of a scalar concentration are validated experimentally using 

simultaneous measurements of velocity and concentration fields. The effect of molecular 

diffusivity is brought into the convective closure approximation by introducing a 

representative ‘local concentration scale’, which appears to be a robust improvement in 

the approximation and can be estimated directly from the centreline moments. The 

concept of fractal scaling is used in dealing with under-resolved dissipation 

measurements by using an extrapolation scheme. This leads to two distinct self-similar 

regions within the Batchelor scale and the Integral scale, separated by the Kolmogorov 

scale, in the measured constant of the dissipative closure approximation.



K e y  w o rd s :  Turbulent diffusion, Scalar, Contaminant plume, Dispersion, Particle

image velocimetry (PIV), Planar laser induced fluorescence (PLIF), self-similarity, 

Expected mass fraction (EMF), Probability density function (PDF), Moment, Batchelor 

scale.

IV



To my Parents



ACKNOWLEDGEMENTS

I am extremely grateful to my supervisors Dr. Gregory A. Kopp and Dr. Paul J. 

Sullivan for their constant help and motivation during the past four years. They are truly 

great mentors. I would also like to express my sincere gratitude to Dr. Roi Gurka (Ben- 

Gurion University, Israel) for his encouragement and guidance during this study.

I would like to thank Mr. Christopher Vandelaar for his prompt help and support 

in building and maintaining the experimental setup for this study. Special thanks to my 

friends and fellow graduate students for their encouragement and their interest shown in 

this study.

I would like to express my affectionate appreciation to my parents for their 

encouragement and consideration during my long academic education.



TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION ii

ABSTRACT iii

ACKNOWLEDGEMENTS vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES X

LIST OF NOTATIONS xiv

1 Introduction 1
1.1 Background 1
1.2 Why this problem is difficult 2

1.3 A new framework 3
1.4 Plan of the presentation 4

2 Turbulent diffusion 6

2.1 Introduction 6
2.2 Statistical description of scalar diffusion 7
2.3 The location of the cloud 11
2.4 The size of the cloud 13
2.5 The state of the cloud 2 0
2.6 High concentration tails 24
2.7 Moment closure approxmations 26
2.8 Self-similarity in the scalar field 29
2.9 Summary 33

3 Experimental setup and measurement techniques 34
3.1 Introduction 34
3.2 Flow facility -  the water tunnel 34
3.3 The grid and the plume delivery system 39
3.4 Measurement techniques 40

3.4.1 Laser Doppler Velocimetry 40
3.4.2 Particle Image Velocimetry 41
3.4.3 Planar Laser Induced Fluorescence 42

3.5 Hydrodynamic performance of the water tunnel 43
3.6 Calibration of PLIF images 49
3.7 Experimental summary and flow properties 53
3.8 Data processing 54

VII



4.0 Experimental results 90
4.1 Introduction 90
4.2 Location, size and state of a line source plume 90
4.3 Convective closure approximation 93
4.4 Dissipative closure approximation 95
4.5 EMF along a radius of an axisymmetric plume 97

5.0 Discussion of the experimental results 127
5.1 Introduction 127
5.2 Probability density function and moments 128
5.3 The closure approximation 134
5.4 Summary 140

6.0 Conclusions and recommendations 141
6.1 Conclusions 141
6.2 Recommendations 143

REFERENCES 145

APPENDIX A Estimation of turbulence properties 154

APPENDIX B Sources of error and uncertainty analysis 157

APPENDIX C Further details of the experiments 164

CURRICULUM VITAE 167



LIST OF TABLES

Table 3.1: Summary of the experiments 54
Table 3.2: Flow properties of the tunnel flow 54
Table 4.1: Summary of centreline absolute moments 95
Table 5.1: Summary of the EMF moments 131

ix



LIST OF FIGURES

Figure 1.1: Time series of the concentration measurements in a plume (the 
dashed line is the time average of the concentration 
measurements). 4

Figure 1.2: A conceptual framework for contaminant cloud dispersion. 5
Figure 2.1: Apparent eddy diffUsivity as per equation (2.17). 15
Figure 2.2: Schematic of the scalar interface when the Batchelor scale is

resolved. 33
Figure 3.1: Isometric view of the water tunnel. 59
Figure 3.2: (a) Schematic view, (b) top view of the experimental setup. 60
Figure 3.3: Setups of (a) the point source and (b) the line source with the

grid. 61
Figure 3.4: Plume generator. 62
Figure 3.5: (a) Mean velocity profiles at a distance 5 mm downstream of

the nozzle using PIV and LDV; (b) Mean velocity profiles at 
different downstream locations using LDV. 63

Figure 3.6: Variation of the mean streamwise velocity with time on the
centreline at x/h = 1.67. The dashed line represents the 95% 
confidence limits of the LDV measurements. 64

Figure 3.7: a) LDV measurement locations at x/h = 2.33, b) contour plot of
the relative velocity of the tunnel cross-section at x/h = 2.33. 65

Figure 3.8: Centreline profiles of the mean streamwise velocity at several
downstream locations. 66

Figure 3.9: Variation of the mean streamwise centreline velocity. 66
Figure 3.10: Power Spectral Density (PSD) of the streamwise velocity in the

empty tunnel using hot film anemometry (dashed line is for - 
5/3 slope). 67

Figure 3.11: Relative vertical velocity components at different locations
downstream of the grid. 67

Figure 3.12: Centreline profiles in grid turbulence of (a) mean streamwise
velocity, (b) turbulence intensity, and (c) lateral profiles of 
turbulence intensity. 68

Figure 3.13: Comparison of the PIV and LDV measurements of the
streamwise velocities near the wall at x/M= 19.69 (x/h = 1.67). 69



Figure 3.14:

Figure 3.15:

Figure 3.16:

Figure 3.17: 

Figure 3.18:

Figure 3.19: 

Figure 3.20:

Figure 3.21: 
Figure 3.22:

Figure 3.23: 

Figure 3.24: 

Figure 3.25: 

Figure 3.26:

Figure 3.27:

Figure 3.28: 

Figure 3.29:

Downstream variation of the normalized streamwise turbulence 
intensity. The continuous line represents the curve

fit < o
U2

= G
M

Power spectra at (a) x/M = 3.94 (x/h = 0.33) (b) x/M  = 27.56 
(x/h = 2.33) downstream of the grid. The solid line is the von 
Karmdn spectrum.
(a) Mean Intensity flux across a half plume, (b) Variation of 
total intensity flux in streamwise direction.
Calibration curves for a pixel column.

Extension of the calibration factors. Symbol cross (x) 
represents the measured calibration factors, and the lines 
represents the extension of the calibration factors within 
consecutive pixel columns.
Mean concentration profiles at different locations behind (a) 
the line source, (b) the point source.
The least-squares fit to the Gaussian distribution of the mean 
concentration profile behind a point source at a distance 500 
mm from the grid.
Variance growth rate.
Normalized vertical profiles of mean concentration. In the 
legends ‘PS’ represents Point Source and ‘LS’ represents Line 
Source.

Distributed moments behind the line source with predictions 
using a  and /?.
Distributed moments behind the point source with predictions 
using a  and /?.
Development of a  (o), ¡3 (□) with distance behind (a) a line 
source, (b) a point source.
Normalized moments behind a point source; (a) fourth 
moments and (b) fifth moments. The solid line represents the 
least squares fit of the equations shown to the legends.
Normalized moments behind a line source; (a) fourth moments 
and (b) fifth moments. The solid line represents the least 
squares fit of the equations shown to the legends.
Time series of the concentration measurements normalized by 
the observed maximum concentration.
Probability density functions of the concentration
measurements for different supersampling dimensions.

70

71

72
73

73

74

75
75

76

77

78

79

80

81

82

82



Figure 3.30: Convergence in ensemble average of concentration 
measurements. 83

Figure 3.31: (a) A sample of a raw PLIF image showing a scalar filament;
(b) the same image as (a) with averaged intensity over a 4 x 4 
pixel array with a qualitative velocity map on it. 84

Figure 3.32: Simultaneous measurements of fluctuating velocity and 
concentration fields using PIV and PLIF. 84

Figure 3.33: Concentration flux; (a) <uT n+I>, (b) < v T n+1>; (c)y < v T n+J>. 85

Figure 3.34: Schematic of the gradient calculation for convective closure 
validation. 86

Figure 3.35: Gradients of concentration flux terms. 87

Figure 3.36: Streamwise gradients of mean concentration profiles. 88

Figure 3.37: (a) Concentration (pg/l), (c) dr/dx and (c) dr/dy of a single 
PLIF image. 89

Figure 4.1: (a) PDF of the location of centre-of-mass; (b) PDF of the 
spatial variance. 99

Figure 4.2: Schematic of the EMF calculation from a point source plume. 
(An example of the pixel size at x = 0.15 m location is shown 
here). 100

Figure 4.3: EMF with downstream distance. 101

Figure 4.4: EMF behind a line source, vertical bars are standard deviations. 102

Figure 4.5: Representation of Beta functions in order to predict the EMF. 
The blue lines are the Beta function using individual moments, 
the red lines are drawn using moments that are averaged over 
five locations, and green lines are asymptotic solutions using 
(5.25). 103

Figure 4.6: EMF moments are compared with distances. The solid lines are 
the exponential fits. 104

Figure 4.7: Convective closure approximations behind a point source at a 
distance 0.6 m downstream. Horizontal bars are calculated
errors. 105

Figure 4.8: Convective closure approximations behind a point source at a 
distance 0.95 m downstream. 106

Figure 4.9: Convective closure approximations behind a point source at a 
distance 1.5 m downstream. 107

Figure 4.10: Convective closure approximations behind a line source at a 
distance 0.17 m downstream. 108

Xll



109

110

111

112

113

114

115

116
117
120
120

121

122

123

124

125

126

127

156
166

Figure 4.11: 

Figure 4.12: 

Figure 4.13: 

Figure 4.14: 

Figure 4.15: 

Figure 4.16:

Figure 4.17:

Figure 4.18:

Figure 4.19: 
Figure 4.20: 
Figure 4.21: 
Figure 4.22:

Figure 4.23:

Figure 4.24:

Figure 4.25:

Figure 4.26:

Figure 4.27:

Figure 5.1:

Figure Al:

Figure Cl:

Convective closure approximations behind a line source at a 
distance 0.20 m downstream.
Convective closure approximations behind a line source at a 
distance 0.75 m downstream.

Variation of S/U(90*)n with the order of moment behind (a) the 
point source, (b) the line source .
Variation of local mean concentration and local concentration 
scale with downstream distances behind the point source.
Variation of centreline moments with the moment order behind 
(a) the point source; (b) the line source.

Variation of dg with downstream distance behind the point 
source and the line source.
The distributed moments as a function of the mean
concentration behind the point source.
The distributed moments as a function of the mean
concentration behind the line source.
Dissipative closure approximation.
Variation of the proportionality constant with distance.
Variation of the proportionality constant with moment order.
Variation of the constant, B, at the Batchelor scale with 
distance downstream.
Variations of the dimensions of (a) the K-zone and (b) the B- 
zone with Taylor micro-scale Reynolds number.
Least-square fit of the prediction based on dimension in K- 
zone and Taylor micro-scale Reynolds number.
Distribution of the predicted B values at the R-zone (broken 
line) along with the R values in .K-zone behind a line source.
EMF behind a point source, vertical bars are the standard 
deviation.
Self-similar EMF functions behind a point source (continuous 
line is the Beta distribution).
A sketch of the PDF in terms of the source and non-source 
PDFs.
Autocorrelation function at a location 700 mm from the grid by 
using PIV and LDV.
A spatial calibration image for PIV measurements.

xm



LIST OF NOTATIONS

<•>

A

B

B„

C

Co

C'
*c

c

Dk

Db

m
G

G()
I

K

K„

K(t)

L,LX

M

Mn

M

Q
Q
m
Re 

Rea

Ensemble average 

Area

Proportionality constant

Proportionality factor

Parameter for Beta distribution function

Mean concentration

Centreline mean concentration

Relative mean concentration

Normalized mean concentration

Concentration integrated over the cross-section

Dimension of the K-zone

Dimension of the 5-zone

Power spectral density

Proportionality constant

Gamma function

Fluorescence intensity

Pressure drop coefficient
Normalized Central moments

Spatial variance growth rate

Integral length scale

Mesh size of the grid

EMF moments

Normalized EMF moments

Released mass in the contaminant cloud

Average concentration flux across the vertical plume axis

Lagrangian autocorrelation coefficient

Reynolds number

Reynolds number based on Taylor Micro-scale

xiv



5 Proportionality constant

Sc Schmidt number

T, t, f Time

Tl Lagrangian integral constant

U Mean velocity

U0 Nozzle exit velocity

Uref Free stream velocity

X(t) Lagrangian displacement

a, k Distribution parameters

aw Laser attenuation coefficient in water

a0 Laser attenuation coefficient in fluorescence

&n> bn distribution parameters for normalized central moments

a.s. an integral over space

b Universal constant

c Universal constant

d Length scale of the cross-section of a pipe or channel

f Mean concentration of source fluid

f(0 ;x ,t) Probability density functions of source fluid

8 Mean concentration of non-source fluid

g{0;x,t) Probability density functions of non-source fluid

h Height of the water tunnel

l screen mesh size

m„ Absolute moments

P Probability density function

9 Expected Mass Fraction (EMF) function

r(x',t) Location of the centre-of-mass

k Lagrangian time scale

u Streamwise component of velocity

Friction velocity

XV



u'(t) Lagrangian velocity

V Vertical component of velocity

Ur, Ue, ux Components of the velocity in cylindrical coordinate system

v(t) relative velocity of the two particles

w Steady source emission rate

X Location as a vector

X streamwise component of the displacement

x ' streamwise component of the motion relative to an axis

y Lateral component of the displacement

y Location of the centre-of-mass

z Vertical component of the displacement

z0 Roughness height

a Spatial variance

9 Concentration

eQ Source concentration

r Calibrated concentration

K Molecular diffusivity

n Probability of being in marked fluid

5 Delta function

% The Batchelor scale

n The Kolmogorov scale

6oc The Obukhov-Corrsin cut-off length scale

V Kinematic viscosity

s Rate of energy dissipation

T Time lag

6a, 6b Arbitrary values of concentration

6max Maximum measured concentration at a location

Central moments

XVI



a,p

0

e0*

9o

X
X

Mnf

f̂ ng

e,

e2

r> Z
Q

Constant parameters

Distribution parameters

Normalized maximum value of concentration

Parameters used in Beta distribution calculation

Local concentration scale based on convective closure approximation

Local concentration scale based on centreline absolute moments

Open area ratio for screens

Taylor micro-scale

Central moments of /

Central moments of g

Equivalent background concentration 

Equivalent source concentration 

Constants 

Empirical factor

Y V 11



1

Chapter 1: Introduction

1.1 Background

In modem society, the production of hazardous materials has increased 

exponentially, as have their diverse uses. Large numbers of chemical disasters in the past 

show that the accidental release of hazardous materials is an important problem. On top 

of that, regular industrial emissions from stacks or rooftop vents cause a wide range of 

negative consequences for human health and productivity. In hazard studies, it is 

important to know the mixing and transport of such contaminants. In most natural and 

engineered environments the flows are turbulent, greatly increasing both the mixing and 

complexity. Common examples include contaminant discharges in water bodies, smoke 

plumes in the atmosphere, and chemical mixing in reactors.

The problem to be addressed here is accidental releases of hazardous 

contaminants into the atmosphere. In assessing the hazards from an accidental release, the 

greatest danger of exposure comes from the highest concentrations within the cloud of 

the contaminant gas. For flammable gases, a regime of particular interest is when the 

concentrations above the flammable limit or within an arbitrary limit. However, 

sometimes a very small amount of contaminant (parts per billion) can be detected through 

human olfaction (e.g. malodor).
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1.2 Why this problem is difficult

Environmental flows are in a turbulent state of motion. In turbulent flows 

variables such as velocity and scalar concentration are random. The magnitude of the 

fluctuations of scalar concentration is well illustrated by Figure 1.1, which shows a time 

series of a fixed point measurement of concentration downstream of a continuously 

emitting point source. The figure is very much like various observations within the 

atmospheric boundary layer, which show frequent peaks in concentration that are many 

standard deviations above the mean value. A contaminant cloud in atmospheric flows can 

be spread out over kilometers by the large scale turbulent velocity components. However, 

the reduction of concentration values (e.g., the peaks in Figure 1.1) takes place only 

through molecular diffusion at scales comparable with the conduction cut-off length 

(about 1 mm in the atmospheric boundary layer). Normally, one would investigate the 

probability density function (PDF) of concentration as it evolves in time at each location 

in space to quantify the concentration field. The PDF is theoretically difficult -  the 

equations that govern its evolution are intractable in even the simplest flows, and 

challenging to measure in experimental flows. Even in the laboratory, one needs to use 

repeated releases of many clouds to approximate even the crudest statistics. Additional 

difficulties arise in environmental flows in that they are intrinsically, to some extent, 

unsteady and spatially inhomogeneous.

1.3 A new framework

One would like to cast the problem of a sudden release of contaminants in a

simpler framework than provided by the PDF, but one which still contains relevant
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information. This would be practically consistent with release details that would be 

known for the accidental spill of contaminant materials. To this end, we consider the 

problem in three parts. These are the location of the cloud, the size of the cloud and the 

state of the concentration within the cloud (see the sketch in Figure 1.2). The state of the 

concentration in the cloud will be given by the Expected Mass Fraction (EMF) function 

(Heagy and Sullivan 1996), which is the focus of this thesis. All values of concentration 

within each realization of the cloud are used in the compilation of the EMF. Thus, the 

spatial dependence present in the PDF is eliminated, such that relatively little variation 

between realizations is expected and the shape of the EMF is expected to be reasonably 

simple. The Expected Mass Fraction portrays the fraction of the released mass found over 

various concentrations and it records the change of concentration values as the mass 

fraction migrates from higher to lower values of concentration as the cloud evolves in 

time (Heagy and Sullivan 1996). The attractiveness of this concept has led to some 

theoretical discussion and use of indirect approximations based on measured data. One 

such study suggests that the EMF can be simply represented by a Beta function (which 

can be thought of as using the leading term of the Jacobi orthogonal polynomial 

expansion as an approximation). However, no direct measurement of the EMF has been 

made prior to the current investigation. In Chapter 3, a description of the experiments 

using a dye plume from a line source in grid turbulence is given, in which the 

instantaneous concentration is used to compile the EMF. Thus, the objectives of the 

thesis are to measure for the first time the Expected Mass Fraction (EMF) function and to 

assess the other expressions as necessary along the way.



4

1.4 Plan of the presentation

The order of the thesis is as follows. In Chapter 2, a framework for the analysis is 

presented in detail from the existing literature. Chapter 3 describes the experimental 

setup, measurement techniques and flow characteristics. Chapter 4 presents the 

experimental results and a discussion of the results follows in Chapter 5. Concluding 

remarks with recommendations for extending this study are given in Chapter 6.

Figure 1.1: Time series of the concentration measurements in a plume (the dashed 

line is the time average of the concentration measurements).



■ ■ ■ ■
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Figure 1.2: A conceptual framework for contaminant cloud dispersion.
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Chapter 2: Turbulent Diffusion

2.1 Introduction

In this chapter the problem of turbulent diffusion is discussed, within the 

framework set out in Chapter 1, and with particular emphasis on contaminant clouds. In 

particular, a distinction will be drawn between the turbulent motions that contribute to the 

location (§ 2.3), size (§ 2.4) and state (§ 2.5) of contaminant concentration fields. In 

addition, some discussion will be devoted to the high-concentration tails of the 

probability density function in § 2.6. This range of (high) concentration values, with 

possibly low probability of occurrence, can be of inordinately high consequence, as 

discussed in Chapter 1.

The approach taken here is to use lower-order moments to approximate the PDF 

and EMF function. A proposed closure scheme that provides a simple and relatively 

general solution for the equation governing the evolution of moments, and which has 

received some limited but encouraging qualitative comparison with data, is discussed in 

§ 2.7. The primary objective of this experimental investigation is to directly measure the 

EMF function with a secondary objective to assess the terms of the proposed closure 

scheme.

There is an inevitable problem of adequate spatial and temporal resolution in 

measuring concentration values in a turbulent flow. In Chapter 4, an extrapolation 

scheme to approximate continuum-level resolved values from more poorly resolved ones
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is developed. As background to that development, discussion is provided in § 2.8 on self­

similarity within the scalar field.

2.2 Statistical description of scalar diffusion

In this study, we consider the concentration r(x,t), in units of mass per unit 

volume, of a miscible contaminant fluid at a position located by vector, x, at time, t, 

within the turbulent host fluid. Concentration is a random variable in turbulent flows such 

that the only reproducible quantity is an ensemble average. Usually, for steady flows, 

ensemble averages are approximated experimentally by taking time averages. The 

important case of the sudden release of contaminant resulting in a contaminant cloud 

requires a number of repeated releases to approximate the ensemble average.

In assessing the hazards due to an accidental release, the greatest danger from the 

exposure of hazardous gases dispersing in the atmosphere often comes from the highest 

concentrations within the cloud of the contaminant gas (ten Berge et al. 1986; Davies 

1989; Griffiths 1991). In order to evaluate the risk involved in exceeding a dangerous 

level of contaminants, it is natural to investigate the probability density function, p(6;x,t), 

for the contaminant concentration. The probability density function (PDF) is defined as 

p{6\x,t)d6  = prob{d < T{x,t)< 0 + dd}. (2.1)

The equation for the evolution of the PDF can be derived from the convective diffusion 

equation (Chatwin 1990),

^ +v • (p<a|r = 0))= p - ̂ (p<(vr)!|r=e}), (2.2)
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where <-| •> denotes the conditional expected value and k  is the molecular diffusivity. In 

general, knowledge of all of the moments, mn, defined as

mn(x,t)=(r(x,tY ) = \ y np(6;x,t)de , (2.3)

is equivalent to the PDF, and one expects to get a reasonable approximation to the 

probability density function from the inversion of joint set of low order moments 

(Derksen and Sullivan 1990). The equation for the moments is

+ V • <Mr n+1 > = -n(n + l)/c<r"-' (v r)2> + *V2 mn+1. (2.4)
dt

The diffusive term, kV2w„+1, is generally much less than the convective term, 

V •(wT"+!) , and can be ignored. It would appear that the equations for the evolution of 

the moments are less complex than those for the PDF; however, it still remains 

intractable due to the lack of closure of the two terms.

The only agency to reduce concentration is the molecular diffusivity, k. Without 

molecular diffusivity the only outcome at any position, x, and time, t, is either zero or, for 

a uniform source, the initial uniform concentration, 60. In this case, the PDF is 

p(d\ x, t) = (1 -  n(x, t))S(0) + n{x, t)5 {e -e o), (2.5)

where n{x,t) is the probability of being in marked fluid. That is C{x,t) = K 

where we denote the mean concentration, mi(x,t), as C(x,t) hereafter as a matter of 

convention and convenience, and all the moments are

™nA x ’t)= donc(x ’t) ■ (2-6)

The total moments, when k = 0, are conserved,
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¡ m ,J z , t ) d i  = e ;  ¡C(x,t)dx = e:Q. (2.7)
a.s. a.s.

where a.s. denotes the volume integral is taken over all space while Q = jc(x,t)dx is the
a.s.

total release mass in the cloud. The only agency to take moments out of the system is the 

molecular diffusion.

When a “blob” of contaminant is released in a turbulent flow the turbulent 

convective motions stretch the contaminant into ever-thinning sheets and strands until the 

thinning (due to stretching) is balanced by thickening due to molecular diffusivity. This

occurs at the conduction cut-off length, r¡B = (v/cVe)^, where, vis the kinematic viscosity 

and e is the rate of turbulent energy dissipation per unit mass. r¡B is of the order 10'3-10'5

m in most flows. Experimental evidence of both Dahm et al. (1991) and Corriveau and 

Baines (1993) show virtually all of the contaminant to be confined within such sheets and 

strands. This fine scale texture is manifest in fixed point measurements where the “spiky” 

concentration record, as in Figure 1.1, is observed (see for example Mylne and Mason 

1991 for field measurements and Schopflocher 1991 for laboratory results). These high 

concentration spikes, frequently many standard deviations above the mean, cause 

significant measurement issues to arise (pertaining to spatial and temporal resolution 

(Schopflocher and Sullivan 1998)).

The mean concentration is relatively insensitive to either molecular diffusivity or 

experimental resolution. In the equation for the mean concentration (n = 0 in (2.4)), the 

last term on the right hand side, xV2m„+1, is small with respect to the other terms.
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Therefore the mean concentration, although the easiest to predict and to measure, does 

not tell us anything about concentration reduction. Higher order moments are extremely 

sensitive to both k and experimental resolution. The instantaneous gradients that appear 

in the right hand side of the moment equation (2.4) are large over the thin sheets and 

strands. Coarser spatial and temporal resolutions limit the extreme values of 

concentration near zero and the maximum concentration and the moments are 

increasingly reduced with the moment order. For example, in a laboratory experiment on 

the centreline of a contaminant jet, Sakai et al. (discussed in Chatwin and Sullivan 1993) 

showed that the mean square value of concentration, when the spatial resolution is 

improved over the normally used values, to be increased by a factor of two.

Given the complexities of contaminant diffusion in environmental flows, which 

are to some extent intrinsically unsteady and inhomogeneous, making approximations for 

ensemble averages is problematic, and particularly so, in the case of a contaminant cloud. 

It is worth noting that in the well controlled laboratory experiments of Hall et al. (1991), 

where a tent full of contaminant was released in a boundary layer only the mean 

concentration could be measured confidently with 100 repeat releases.

So, it is clearly desirable to obtain a simple measure of the contaminant 

concentration reduction. One can cast the problem of a contaminant cloud into a 

framework in which one seeks the answers to three basic questions. These are: Where is 

it? How big is it? And, what is the state of concentration within the cloud? The answers 

to these questions, as will be discussed in the following, will depend on different (and
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sometimes independent) ranges of scales of turbulent motion and, hence, present different 

problems in determining approximations for ensemble averages.

2.3 The location of the cloud

The question of ‘where the cloud is’ at some time, t, following release at t = 0, is

large initial cloud where ‘meandering’, i.e., the movement of the cloud as a whole by 

large scale turbulent motion, is not an issue. This is found from the so-called ‘one fluid 

particle’ analysis (Batchelor 1949). That is, the initial cloud is made up of elemental fluid 

particles, which do not interfere with each other or change shape during their travel. 

Superposition of trajectories from all of the fluid particles from the initial cloud are then 

used to compile the probable arrival of a particle from the initial cloud at the location 

(within a small volume element centered on), x, at time, t. We note that the differential 

equation governing the mean concentration (equation (2.4) with n = 0) is linear and, as 

such, admits a superposition of solutions. A weighting is used to reflect the initial cloud 

concentration when it is non-uniform and the number of particles located at a particular 

position, normalized by the conserved release mass, provides the mean concentration, 

C(x,t), from which the centre-of-mass, <x(t)>, is derived as

Often symmetry in the turbulent flow structure will obviate the location of <x(t)>. For 

example, in homogeneous turbulence, statistics are determined from the repeated release 

of one typical fluid particle irrespective of release position. In the case of a ground level 

release in the constant stress region of the neutral atmospheric boundary layer (typically

answered by the location of the centre-of-mass, <x(t)>. We will consider the case of a

(2.8)
a.s.
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10-100 m above the ground), the statistical properties of the particles depend only on the 

friction velocity, w*, and time, t, by the Lagrangian similarity analysis of Batchelor 

(1964). That is, the three components of the centre-of-mass are given by

</(<> = 0,

d(z)
dt

= bu., (2.9)

d(x(t)) = u, c(z)^ 
dt k [ za j ;

where x is the streamwise, y  is the lateral and z is the vertical component of the 

displacement vector; b and c are universal constants, which Batchelor estimated to be 

about 0.1 - 0.2 (see also Chatwin 1968); k is von Karman constant (k = 0.4), u, is the

friction velocity; and z0 is the roughness height.

A second special case is the flow within a lengthwise uniform conduit such as a 

pipe or open channel. Here, a marked fluid particle will sample all of the velocity 

variation over the flow cross-section (of area A) during its migration due to the cross­

stream components of turbulent motion. After a sufficient period of time the particle will 

‘forget’ its release position on the flow cross-section and move downstream with the flow 

discharge velocity <x(t)> = Ut where 

U = A '1 Ju(y,z)dA .
A

(2. 10)
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2.4 The size of the cloud

The next question to address in this (simplified) framework is “how big is the 

cloud”? The size of the cloud is measured by the spatial variance of the cloud. For the 

case of a cloud without meandering, as above, we consider the classical analysis of 

Taylor (1921) in isotropic turbulence, and the further analysis of Batchelor (1952) in this 

section. The analysis is readily generalized to shear flows, even with the inclusion of 

molecular diffusivity (Sullivan 2004).

A purely statistical treatment of resolving diffusion from a continuous source was 

first introduced by Taylor (1921). His discussion includes a demonstration that the usual 

laws of differentiation may be applied to the mean values of fluctuating variables and 

their products. If X(t) and u'(t) are the Lagrangian displacement and velocity respectively 

of a typical particle, after time t; (X 2) , the ensemble average of the mean square values 

of X(t), is found from

For homogeneous and stationary turbulence, the average properties are uniform in space

(2 .11)

and steady in time. Hence, the velocity product may be replaced by (u'2)R(t), where

R(r ) _  + (2.12)

is the Lagrangian autocorrelation coefficient, which results in

(2.13)
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and

T t

{ X2) = 2{u'1)\\R {z)d rd t. (2.14)
0 0

Here (X 2)1/2 would represent the standard deviation of spatial displacement of the

particles at time, T. Hence, the mean square of the deviations of the particle is finally 

expressed in terms of the mean square velocity of the particle and the Lagrangian 

correlation coefficient between the velocity of the particle at time, t, and that at time, 

t+ t . The correlation should be unity when r = 0, and is effectively zero for large r . 

Hence,

the integral in the bracket being the Lagrangian time scale, tL.

Batchelor (1949) showed that for the diffusion in homogenous turbulence at short 

time, when the correlation coefficient becomes unity, particle velocity fluctuations of all 

frequencies contribute to the dispersion exactly as they do to the turbulent energy. At 

large time, the slower fluctuations (larger scales) progressively dominate the dispersion; 

in effect the high frequency components merely oscillate the position of the particle, 

whereas the low frequency components tend to displace it in a more sustained way. One 

can define an apparent diffusivity (K) at large time as one half the spatial variance growth 

rate (Pasquill 1974, pp. 126),

( X 2) = (u ,2) T 2 for small T (2.15)

for large T, (2.16)
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*('), =
1 d ( X 2)
2 dt

W 2) Jj?(r)ir.
0

(2.17)

Figure 2.1: Apparent eddy diffusivity as per equation (2.17). [Adapted from Csanady

(1973), pp. 63]

The value of K is initially zero, increases with time, at first approximately linearly and 

then more slowly, finally tending to the constant value of equation (2.17). This is shown 

in Figure 2.1. The observed spread of smoke plumes in the atmosphere over short 

distances show an increase in K with distance of travel. Sullivan and Yip (1985) showed 

that for a continuous source of contaminant, the time dependence was an important 

feature in describing dispersion in the natural atmospheric boundary layer where the use 

of even a spatially dependent ‘eddy diffusivity’ was inadequate.

The main feature here is that the largest scales of turbulent motion make the 

dominant contribution to the variance growth rate at all times. This is particularly 

relevant, for example, in finding average values in field experiments where the relevant 

length and time scales for averaging purposes are many times those scales in the flow. It
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is also worth noting that the variance growth rate only becomes a constant (as in 

molecular diffusivity, where the constant is k) when the integral over the Lagrangian 

autocorrelation function becomes constant.

The formulation can be readily generalized to shear flows such as the flow in a 

channel or pipe. Here, though, the Lagrangian particle displacement and velocities 

depend on release position. We consider the motion relative to an axis moving with the 

discharge velocity, i.e., the streamwise component x'(t) = x(t) -  Ut and u'(t) = u(t) -  U. 

The direct contribution in the lateral and longitudinal direction due to fluctuating 

turbulent motions are comparable to u ,d , where d is the length scale of the cross-section, 

e.g., the diameter of a pipe. By far the largest contribution to variance growth rate is in 

the streamwise direction and comes from the interaction between the cross-stream mixing 

and the mean velocity gradient. That is, the longitudinal growth rate is reduced by cross­

stream mixing from what would be the case if released particles continued to travel with 

the release mean velocity without lateral movement. Thus, neglecting the direct 

contribution from longitudinal fluctuating motions, for a particular release position on the 

cross section, we have

After normalizing with the relevant mean velocity scale, U, and the turbulent cross­

stream mixing time scale, d /u .,

(2.18)

(2.19)
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Following a long period of time from release, when the location of release is ‘forgotten’ 

and the particle has sampled the variation over the cross-section many times the integral 

converges to

1 d(x '2) U2d (Udf (220)
2  dt w, u,d

That is, the variance growth rate is given by the ratio of two diffusivities, the square of a 

diffusivity based on the mean velocity to the cross-stream diffusivity due to the 

fluctuating turbulent motion. An argument can be made based on an extension of the 

central limit theorem that displacements will have a Gaussian distribution about an axis 

moving with the discharge velocity. That is, for the concentration, integrated over the 

cross section, is

C{x,t)= \c{x,t)dA, (2.21)
A

(2.22)

l ^ L  = T — , (2.23)
2  dt u,

where Tl is the Lagrangian integral constant. One notes that when the typical marked 

fluid particles sample the viscous dominated region adjacent to the walls (or equivalent 

recirculating region around roughness elements applies for non-smooth walls), the 

motion is reduced and leading to a long upstream tail in C(x,t), and also delays the 

approach to symmetrical Gaussian form for a long time (Dewey and Sullivan 1977).
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In the special case of the neutral atmospheric boundary layer mentioned above, 

the Lagrangian similarity theory gives the components of the variance as (Batchelor 

1964; Chatwin 1968)

We now consider the case where scales of turbulent motion are large enough to 

transport the cloud in its entirety. This is graphically apparent with a meandering plume 

from a continuous release. Here, we are concerned with the probable location of the 

centre-of-mass of individual clouds and the distribution of concentration in the centre-of- 

mass reference frames. This is referred to as ‘relative diffusion’ in contrast to ‘absolute 

diffusion’ when displacements are referred to a fixed point or inertial reference frame 

system. The variance growth rate here is determined from a two fluid particle analysis in 

which the fluid particles comprising the initial cloud are taken two at a time over all 

possible pairs (Batchelor 1952). The separation between a typical pair of particles y(t) 

contributes to the variance as

where, v(t)is the relative velocity of the two particles.

A very practical advantage in centre-of-mass coordinates is that at any time t, it is 

the length scales of turbulence that are of the size of particle separation that are

( ( x ( t ) - ( x ( t } f )  °c w.V,

<.y(t)2> 00 u2J 2 > 

<(z(0 -<z(/)»2> -  « .v .

(2.24)

(2.25)
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important. Scales that are much larger just move both particles together and do not 

contribute to their separation. Smaller scales just jiggle the particles about and are less 

effective in separating them than scales of the separation size. In absolute diffusion the 

largest scales are always the most important, whereas in relative diffusion and at small 

separations only small scales matter and taking averages are much less problematic.

Another big advantage in relative diffusion occurs for extremely high Reynolds 

numbers. The cascading process in turbulence suggests that large scale eddies that 

contain non-homogeneities such as information on container size, etc. interact with 

smaller scales and so on to the smallest scales of turbulence where energy is taken out of 

the system by viscosity. That is, the inertial terms pump energy down the system without 

redistribution, while the pressure term acts to make the turbulence structure isotropic. For 

a sufficiently high Reynolds number, there will be a range of scales between the large 

energy containing scales and the small dissipation scales -  ‘the inertial sub-range’, that 

only depends on the energy transfer rate, i.e., the rate of energy dissipation per unit mass. 

On simple dimensional grounds Batchelor (1952) shows that if the contaminant cloud is 

in this range, then

Richardson (1926) pointed out that relative dispersion is an accelerating process in which 

an initial marked volume of fluid is spread at a rate dependent upon its size and arrived at 

the ‘4/3 power law’ for the relative diffusion as

(2.26)

2  dt
1 d{y2) 4/3— -Z—L = ay C2.27)
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where a  = ceUi; c is an universal constant of order one, and e is the rate of energy 

dissipation. This was observed with floating particles over a range of 2 m to 2 km in the 

ocean (Richardson and Stommel 1948; Ozmidov 1957, 1960). It should be noted that 

generally, to get a substantial inertial sub-range (usually in the ocean and atmosphere), a 

very high Reynolds number is needed.

The relationship between the mean concentration distributions in absolute 

diffusion is derived from that in relative diffusion with a convolution integral. If we let 

r(x',t) be the probable location of the centre-of-mass x' and C'(y,t) the relative mean 

concentration, the mean concentration in absolute diffusion is (Munro et al. 2003)

oo
C{x,t)= \r{x',t)C'{x-x',t)cbc'. (2.28)

One can note that the probability of the centre-of-mass location can be found from 

C and C' by using a Fourier Transform, for example. It may be equally compelling to 

combine the probable centre-of-mass location and cloud size from a relative framework 

and simply consider the location and size in an inertial framework.

2.5 The state of the cloud

The next issue to be addressed is the ‘state of the cloud’, or, in other words, the 

distribution of concentration values within it. For this, we introduce the Expected Mass 

Fraction (EMF) function defined as
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q{9\t)=Q~' \Op{e-,x,t)dx\ (2.29)

\q{e-t)de = 1 , (2.30)
o

where a.s. indicates an integral over all space (Sullivan and Ye 1997). This has the simple 

and straightforward interpretation that the expected fraction of the release mass, Q, that is 

between 0a and 6b is

The effect of molecular diffusivity, k, to reduce concentration values is observed as the 

area under q(&;t) shifts to lower values of 6. as time increases. It is anticipated that few 

repeat releases of a cloud would be required to get an ensemble average approximation 

since all of the concentration values within the cloud are used at each compilation and the 

variations with location are integrated out. Because the spatial variation is integrated out 

one expects a more simple form of the EMF than would be observed of the PDFs 

throughout the cloud.

The moments of q(d;t) are

(2.31)

« „ ( ')=  Je"q(e-,t)de. (2.32)
o

These are simply related to the moments of the PDF, p(&;x,t), as

(2.33)
a.s.
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It is to be noted that there is a maximum value of concentration, dmax, which is the largest 

initial value of concentration that can never be exceeded. The evolution of the moments 

of the EMF is given by the relatively simple differential equation (Sullivan and Ye 1997),

The function q{d\t) has not yet been directly measured. Approximations suggest 

that there is much less variation between realizations so that convergence is relatively 

fast. We also note that the EMF is the same for relative diffusion and absolute diffusion. 

Slightly modified versions of the EMF have been considered for fixed point 

measurements in plumes (Heagy and Sullivan 1996; Sullivan and Ye 1997).

A simple prescription of central moments, jun (x , t) , of the PDF defined by

was given in Chatwin and Sullivan (1990) and Sawford and Sullivan (1995). These have 

received a considerable amount of validation over a wide range of flows. Sawford and 

Sullivan (1995) also provided a generalized form of normalized moments for a non- 

uniform source concentration case by introducing additional parameters A„ as:

ô (2.34)

(2.35)
o

> (2.36)

7 - £ h r  = c (a\ -  4^C + 6C2 -  3C3 ), 
\apCa)

J
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where, C = ----- , and C0 is a local concentration scale (e.g., the maximum value). The
aC0

parameters«, ¡3 and Xn depend only on time in the case of sudden release or on distance 

downstream in the case of a steady release.

Higher normalized moments were derived by Mole and Clarke (1995) as 

Ka = aAK] +bA
Ks = asK] +b5K3, (2.37)

where, Kn _
M?2

These expressions have had widespread validation in both

laboratory and field experiments. An important and significant feature is that these 

expressions can be validated with isolated fixed point measurements in the field. The 

connection between the coefficients that appear in equations (2.36) and (2.37) was shown 

in Schopflocher and Sullivan (2005) to be

A."’' = (2.38)

It was also shown in Mole et al. (2008) that

a„ na4a5 for n = 6 , 7... (2.39)
a„_, (.5n -  20)a] -  (4n -  20)a5

Schopflocher et al. (2007) used the relationships in (2.36), (2.37) and (2.38) to find the 

moments of the EMF, q, and it was found that the form of EMF should be a simple three 

parameter Beta function

q{9;</>,y/) = 1 - -
G \v -

9max /

rj T ' (2.40)
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where B(<p,y/) is defined in terms of a Gamma function, G(■), as

B(<p,v) =G j M f ) (2.41)
G{<p + if/)

It has a further advantage that the parameters are directly given in terms of the non- 

dimensional moments M n = Mn / C", where M„ are the moments of EMF. The solution is 

given in Schopflocher et al. (2007) as:

(2.42)

where ^ = M,(z/0 ), yy = z~(j> and 0  is the maximum value of concentration 

normalized by C0.

’  M 2 -  M , 2 - M ,  ' z
1

1

KJ __
__

_1
m 3 - m }m 2 - 2 M 2_ 0

i
1 to LO 1__
__

_

The idea of using a few lower order moments to represent the PDF (or the EMF) 

is appealing because of the relative ease of measurement and relative simplicity of the 

equations governing the moments. This procedure should provide a reasonable 

approximation for the bulk of the PDF but not necessarily perform well in the higher 

concentration tails.

2.6 High concentration tails

In order to concentrate on the high concentration tails of the PDF, we can break 

up the PDF in two parts and write moments. From extreme value theory, one can 

anticipate that the high concentration tails are given by the generalized Pareto density 

function (Mole et al, 2008),
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g ( e ) = i i i -
a \

k e V k~x
a y

(2.43)

where k and a are distribution parameters. This is valid for 0 <6<9mix, where

6max = — <0o, 60 being the source concentration. The parameter k determines the slope

of g(0) and it is greater than zero. This has been widely observed in field and laboratory 

measurements over a substantial range (about 60% on centreline and about 80% at one 

spatial variance away) of concentrations (Mole et al. 2008; Schopflocher 2001). The PDF 

of concentration is written as

p( 0 ) = ( l f o r  O < e s 0m , (2 .44)

where g(0) is the GPD and 77 is a positive constant. If it is assumed that at high 

concentration f (d )  is insignificant, then

P(e)*ng(e). (2.45)

If we let 6C be the concentration above which this is valid, then the probability that 

6 > 6C is approximately equal to D, where D is defined by

D = V g{e)dd = î]
f  n V'*
i - A

V m̂ax J
(2.46)

The absolute moments, m„ are

= ( i- r7 ) f”“ S ' f  W e + r, e ’g W e

* (1 -  r? )f  e - f W e + n ( “  e ’g W e -
(2.47)

For a sufficiently large n the contribution from f(6) will be small compared with that from 

g(0); thus,
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m ^ n i ~ e ’g(e)de.

With parameters a and k, g(9) can be written as

f“ dng(e)de = — v nla[ -----r.
«*> (l + ¿X* + 2 &)...(l + nk)

Thus, for sufficiently large n,

(2.48)

(2.49)

mn_x 1 + nk _ 1

na a
f - 1 k+ —. 

a
(2.50)

Therefore, at higher n, it is expected that the ratio of successive moments is a linear 

function of 1/n and one can find the parameters of the Pareto tail and, in particular, the 

Qmax = a/k. It is to be noted that the problems at low concentration values due to the noise 

were avoided in the above approach (Lewis and Chatwin 1995). In the discussion of the 

paper by Mole et al. (2008), it was shown that the parameters and maximum 

concentration did not vary much over a plume cross section.

From the result and observation on the parameters we expect that the high 

concentration range of the EMF will be

q(e)~Q-' \e-n-
, a

( 1 kd'] 'A- , e\\  k0 )l ------ dx = — l -----
V a J a v a ;

x - '
(2.51)

2.7 Moment closure approximations

From the discussion above, it would appear that one can use low order moments 

to approximate q(9,t) and, in particular, to investigate the high concentration tail. To 

solve the moment equations, one would require two closure approximations; one for the
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convective terms and the other for the dissipative terms. A convective closure 

approximation was made by Sullivan (2004) as

= — . (2.52)
dt

Here, the convective term was approximated without regard to molecular diffusion. A 

modified version of the convective closure approximation is proposed here for taking into 

account the effect of molecular diffusion by replacing the source concentration, 90, with a 

representative local concentration scale, 90*.

We consider an axisymmetric plume and cylindrical coordinates for a continuous, 

steady point-source to test the convective approximation, which is

7  W ' )  1 5< ^ r+1> I 1 5<w*r + ,> ■ a<M*r "+1>
R dR R d8 dx

(2.53)

On the right hand side the term
1 0(l4------- ------- = 0. Therefore, the approximation for an
R d9

axisymmetric case using the convective closure is

dC 1oc
dx y  dy& u(e:J

A  two dimensional plume created by a line source is also considered and the convective 

closure approximation is

dC
dx

OC r  v —  (<wTw+,>)+— (<v'r+,>) (2.55)

These approximations need to be validated experimentally using simultaneous 

measurements of velocity and concentration fields.
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A dissipative closure approximation was made in Moseley (1991) with some 

confirmation given in Mole (1995):

(v r) ; -  g (r ~ r -)i , (2.56)
n,

where tjb is the conduction cut off length, B is a proportionality constant and T, is a

threshold concentration (which is set to be zero). The solution of the dissipative 

approximation for plumes behind both the line source and the point source can be written 

as

<rn- 1

Kdxj
>+<rn- 1 —  ) + < r - 1 —  

KdyJ Kdz) >=A<r"*'> ■
Vb

(2.57)

The third term on the left hand side can be approximated to be the same as the other two

terms.

The moment equation with these two approximations (with T, = 0) becomes,

dm.., (— —  + n\n + 
dr

where, r  = KBt/riB2 . The solution for a line source, where t)B is assumed to be constant 

throughout the flow, is

mn+1 (x, r) = 0o"C(x, r) -  n(n + l)0one-nrn+Ur Jc(x, z>"rn+Uzd z . (2.59)
0

Sullivan (2004) has shown that these closures lead to a good qualitative comparison with 

the measurements in the plume from a line source in grid turbulence for the distributed 

four lowest order central moments. To proceed further one needs a direct assessment of 

the relationships given in the closure approximations.

K +1 = e<>
ndC

dr
(2.58)
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2.8 Self-similarity in the scalar field

An important aspect of passive scalar transport in turbulent flows is the fractal 

geometry of interfaces. Turbulent mixing and transport of passive scalars can be 

described as a combination of folding and wrinkling processes (Catrakis 2000). The 

effect of these processes can be studied by quantifying the geometric scale distributions 

of the convoluted structure of passive scalar interfaces within the fluid. The broader 

objective for this study is to utilize the concept of fractals or self-similarity of the passive 

scalar in a turbulent flow in dealing with under-resolved (experimental resolution is 

coarser than the Batchelor scale) dissipation calculation from the measurements.

From the smallest particle in nature to a cluster of galaxies, there has been a 

nested hierarchical organization in structures, which is known as fractal structure 

(Oldershaw 1989). For last few decades there has been a growing interest in the fractal 

properties of nature's geometry that was largely inspired by Mandelbrot (1983). 

However, the idea of self-similarity and fractal characteristics was first introduced by 

Richardson (1922). Fractal structures usually involve self-similarity, a form of invariance 

with respect to shifts in scale, in which small parts of a structure have similar geometrical 

properties as the larger parts of the structure (Oldershaw 1989). This is a key principle in 

the development of the similarity hypothesis for passive scalars in turbulent flow fields.

In the modem era of turbulence research, an emphasis has been given to the 

small-scale structure and the fractal geometry of turbulent passive scalar fields that is
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built on several amendments to Kolmogorov’s hypothesis. The phenomenological model 

of the small-scale passive scalar, introduced by Obukhov (1949) and Corrsin (1951), was 

based on similarity arguments. According to them, there exists an inertial range where the 

turbulent structure of the passive scalar field is independent of the large scales. This 

length scale is know as Obukhov-Corrsin length scale, r¡oc = (ié/e)1/4. Later, Batchelor 

(1959) showed that the Obukhov-Corrsin cutoff length scale was appropriate only for low 

Schmidt number passive scalars (Sc=v/ k« 1 ) and that the strain rate of the fluctuating 

velocity determines the cutoff length scale for scalars with higher Schmidt numbers 

(Sc »  1). This is called the Batchelor scale (tjb= (viJ /e) 1/4).

Passive scalars in turbulent flows are rapidly stretched into thin sheet-like 

structures by the turbulent convective motion. The geometry of the interfacial surface has 

significant practical importance in a number of applications. In non-reactive mixing 

processes, the molecular diffusive flux occurs across concentration gradients at interfaces 

(Schumacher and Sreenivasan 2005). Estimating the resulting mixing is necessary for 

predicting the dilution of the pollutants into the atmosphere or the discharge of 

wastewater into a stream. Molecular diffusion happens within the smallest scales (?7g),

where the concentration gradients are the highest. Sreenivasan (1991) argued that at a 

high Schmidt number, the convolutions of the scalar interface are space filling on scale 

between the Kolmogorov scale (77 = (b?/e)1/4) and the Batchelor scale (rjB). The surface of 

the scalar, where diffusion happens, possesses fractal scaling (Sreenivasan 1991).
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The concept of fractal scaling inspired us in dealing with the under-resolved (i.e., 

the experimental resolution is larger than the Batchelor scale) dissipation calculation in 

the context of this study. Prior to broadening the discussion dealing with the under­

resolved dissipation calculation, it is important to understand the concept of fractals. To 

determine the fractal dimension of a scalar interface (i.e., scalar/non-scalar interface), one 

covers the space by boxes of fixed size and counts in each case the number of boxes that 

contain the scalar interface. If the number of boxes shows a power-law dependence on 

box size, the exponent characterizing the power-law is called the fractal dimension of the 

scalar interface (San Gil 2000). At higher Reynolds number, several scaling regimes may 

exist for a high Schmidt number passive scalar (Dasi 2004). The inertial-convective 

regime ( 7  < length scale(r) < L) is defined as the range with negligible effects of large- 

scale anisotropies, viscosity and diffusivity. In the viscous-convective regime (tjB < r <

if) viscous effects start to play a role while molecular diffusivity does not. The scale 

range between the integral scale (L) and 7  will be called the K-zone, and the scale range 

between 7  and rjB and will be called the 5-zone. The scalings are quite different for these

two ranges. According to Prasad and Sreenivasan (1989) the fractal dimension of the K- 

zone is 2.36 and independent of flow configuration as long as the flow is fully turbulent. 

For large Schmidt numbers the dimension of the B-zone is 2.7. However, the scaling in 

the K-range is expected to be affected by the cut-off scales in particular by Reynolds 

number (Menevau and Sreenivasan 1990), and the mean shear flow (Sreenivasan and 

Dhruva 1998). The studies by Sreenivasan and Dhruva (1998), and Sreenivasan et al 

(1999) pointed out that the shear affects the quality of scaling by introducing a curvature 

type fractal data, which was greatly reduced by removing shear. Frederiksen et al. (1996,
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1997) showed that a constant fractal dimension exists for the B-zone; however, the 

dimension depends on length scales larger than the Kolmogorov scale. Dasi et al. (2007) 

summarized experimental studies of the geometric properties of passive scalar interfaces 

and argued that large-scale anisotropy masks the constant fractal dimension, even if it 

exists.

Sreenivasan et al. (1989) argued that the large scale structure of the turbulence 

determines the precise amount of mixing; however, it is eventually the diffusive action at 

the molecular level that performs the actually mixing. Thus, the dynamics of turbulence 

transmit fractal-like properties to surfaces and the result is a large increase in surface 

area. The diffusive flux across these surfaces follows Fick’s law of diffusion 

(Sreenivasan 1991). Sreenivasan et al. (1989) argued that the gradients across the scalar 

interface are of order Ar/r)B for unit Schmidt number, where AT  is the concentration

difference at the interface. Sreenivasan (1991) developed a relation (equation (3.4) in his 

paper) between the surface area and the resolution of measurement with high Schmidt 

number scalars. The estimate of the gradients for flux across scalar interface is of order 

A r/rip  which shows Reynolds number similarity and Schmidt number similarity in the

K-zone and the B-zone, respectively. The convolutions in the A'-zone are self-similar but 

those in the 5-zone are much more pronounced, where they essentially fill the space and 

render the effective thickness of the interface of order r/ for high Schmidt numbers. The 

physical picture that was depicted in Sreenivasan (1991), is shown here as Figure 2.2.
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Figure 2.2: Schematic of the scalar interface when the Batchelor scale is resolved. (From
Sreenivasan 1991)

This concept of fractal scaling shed light on dealing with the under-resolved dissipation 

calculation from the experiments, and will be utilized in § 4.4.

2.9 Summary

We have set out a new framework in terms of the answers to the following 

questions: where is a contaminant cloud? how big is it? and what is its state? The first 

two questions are determined from a “one particle” analysis (and possibly “two particle” 

analysis if one were to use a relative diffusion). These two questions do not depend on 

molecular diffusion or reduction of concentration values. Much has been done in the 

literature on the mean concentration field (Sullivan and Yip, 1985; Pope, 1998). In 

contrast, our focus in this study is on the ‘state of the cloud’. That is, the reduction of the 

concentration values which only takes place due to molecular diffusion. The objectives of 

this study are to measure for the first time the Expected Mass Fraction (EMF) function 

and to assess the approximation given for closures as well as validate the other 

expressions where possible and as necessary along the way.
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Chapter 3: Experimental Setup and Measurement Techniques

3.1 Introduction

To meet the objectives of the study, the scalar and velocity fields were measured 

downstream of a continuous release of a high Schmidt number passive scalar (Rhodamine 

6 G) into a uniform flow with grid turbulence. High-resolution measurements of the scalar 

and velocity fields were conducted in a centreline vertical plane parallel to the flow using 

Planar Laser Induced Fluorescence (PLIF) and Particle Image Velocimetry (PIV), 

respectively. This chapter provides an overview of the experimental apparatus, 

experiment procedures, and data processing methods. In addition, the experimental 

parameters and flow characteristics are described.

3.2 Flow facility -  the water tunnel

A new water tunnel in the Boundary Layer Wind Tunnel Laboratory (BLWTL) at 

the University of Western Ontario has been built to broaden the scope and capabilities of 

experimental research relevant to fundamental and industrial problems such as the 

dispersion of contaminants in air and water. In this chapter a brief description of the 

water tunnel is presented.

Figure 3.1 shows an overview of the water tunnel, which consists of an inlet 

reservoir, where the water is introduced into the tunnel, followed by a settling chamber 

consisting of a honeycomb and screens, an 8:1 contraction, the test section and a 90 

degree turn to return the water to the sump through a control valve. The total volume of
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the underground sump is 36 m3. The pump capacity is 0.063 m3/s and the present set-up 

allows a maximum flow rate of 0.036 m3/s, corresponding to a maximum average bulk 

velocity of 0.20 m/s. The water tunnel was designed to satisfy the criteria of a uniform 

mean velocity profile within 1% and turbulence intensity of less than 1% in the test 

section. Optical access was given a high priority so that the four walls of the test section 

are made of tempered glass. Details of the components follow below.

A 30 hp sump pump was chosen to generate the necessary head for the desired 

range of flow rates. The pump has 4 blades and a 166 mm diameter impeller and runs 

with a shaft speed of 3560 rpm. The power of the pump was over-designed to allow for 

expanded future scope. The pump supplies water through a 150 mm diameter piping 

system with five elbows. For distributing the flow of water through the piping system 

into the inlet reservoir uniformly, a manifold with a total of eight 50 mm diameter 

vertical pipes, each with 13 mm diameter holes in them, was placed in the inlet reservoir. 

Those small holes were placed at a centre-to-centre distance of 105 mm. The length of 

each of the vertical pipes is 1500 mm and they are separated by 250 mm centre-to-centre.

The inlet reservoir (2440 mm x 2030 mm x 3050 mm), constructed of stainless 

steel, was sized to reduce the turbulence generated from the incoming water through the 

pipe. To remove any bubbles from the flow, a ‘sandwich’ of 10 layers of fiberglass 

screen (each 34% solid) with a wire diameter 0.28 mm is placed in the middle of the inlet 

reservoir. To maintain a constant head in the tank, an overflow pipe is placed at a 

particular height, which drains excess supply water back directly to the underground
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sump. In the reservoir, waves of about 10 mm height were observed on the water surface 

while running the tunnel but this has little effect on the steadiness in the test section, a 

point which is examined further below.

The lateral components of mean velocity and of the larger turbulent eddies can be 

reduced effectively by a honeycomb. Mehta and Bradshaw (1979) suggested that the cell 

length should be about 6 - 8  times its diameter for maximum benefit and the cell size 

should be smaller than the lateral wavelength of the velocity variation. The usual shapes 

of the honeycomb cell are hexagonal, square and triangular. Aluminum honeycombs are 

widely used in wind and water tunnels, as was the case here, where a 12.7 mm square, 

1 0 0  mm long, honeycomb was installed at the settling chamber outlet.

Mehta (1985) carried out an experimental investigation on the effects of different 

types of screens on turbulent flow. A screen, or another uniform hydrodynamic resistance 

in a constant-area passage, experiences a drag force and, therefore, reduces the total 

pressure of the flow passing through it without altering the average velocity. In this case, 

velocity variations will be reduced as well since the drag force would be greater in 

regions where the velocity is higher than average, thus, tending to equalize the total 

pressure over the cross-section (Mehta 1985). A screen will, in principle, reduce the 

velocity defect in a turbulent boundary layer that passes through it. Several expressions 

have been derived over the years for the pressure drop coefficient of a screen, K; many of 

them were based on data from screens with open-area ratios, /  < 0-5, where /  is defined
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as % -  (l ~ » d  is the screen wire diameter and / is screen mesh length. Weighardt’s

(1953) formulation for the prediction of the pressure drop coefficient

K = 6.5 i-z Re' (3.1)

where Re = — , (3.2)
%v

has been found to be accurate over a wide range of velocities (0 < U < 20 m/s; Mehta 

1984). For screens with lower open-area ratios, the jets coming through the open areas 

coalesce into irregular patterns by mutual entrainment and actually produce flow non­

uniformities of their own (Mehta 1985). Therefore, it has been suggested to use screens 

of open-area ratio of greater that 0.58. Screens reduce the longitudinal components of 

turbulence or mean velocity variation to a greater extent than the lateral components, so 

that the number of screens to be used is determined by the acceptable lateral component 

disturbance in the test section. For the pressure drops through the screens to be 

completely independent, the spacing should be such that the static pressure has fully 

recovered from the perturbation before reaching the next screen. For full benefit, from the 

turbulence reduction point of view, the minimum spacing should be of the order of the 

large energy containing eddies. It has been suggested that a screen combination with 

spacing equivalent to about 0 .2 0  settling tank/chamber diameters performs successfully 

(Mehta and Bradshaw 1979). The optimum distance between the last screen and the 

contraction entry has also been found to be about 0.20 cross-section diameters. If this 

distance is much shorter, significant distortion of the flow through the last screen may be 

expected. On the other hand, if this distance is too long then unnecessary boundary layer 

growth may occur. In the design of the water tunnel, three screens were placed
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downstream of a honeycomb. The spacing between the screens is 0.21 *J~A , where A is 

the cross-sectional area of the settling chamber. The square 11 Mesh screens are made of 

stainless steel with a wire diameter of 0.48 mm and an open-area ratio of 0.62. The

distance between the last screen and the entry of the contraction is 0.16lV3?.

The purpose of a contraction is to reduce the relative variations in velocity over 

the cross section by increasing velocity without altering the total pressure. A well 

designed contraction produces a uniform and steady stream at its outlet and avoids flow 

separations. It is possible to avoid separation in the contraction by making it very long, 

however this results in an increase of the tunnel length, cost and exit boundary layer 

thickness. A large contraction ratio is always advantageous; however, it also means 

higher construction and operating costs in addition to possible problems of noise and 

separation near the ends. Therefore, contraction ratios between 6 and 10 are normally 

used for small tunnels (Bell and Mehta 1989). A contraction ratio of 8, with a length of 

1120 mm, has been used for the current water tunnel. The contraction of the low 

turbulence wind tunnel at the University of Toronto (e.g., Kopp and Keffer 1996) was 

followed in the current design.

The test section of the water tunnel is built out of 12.7 mm thick tempered glass 

held together using silicone. The length of the test section was chosen to be 10 times the 

height of the test section in order to allow for the study of developing turbulence. The 

width, w, and height, h, of the test section are 600 mm and 300 mm, respectively, while 

the length is 3000 mm. Three 150 mm diameter openings were placed near the beginning
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of the test section on three sides (one on the top plate and two on the side plates). A 

manual valve is installed at the end of the curved section to control the flow rate. A 

discussion on performance of the water tunnel is presented in § 3.5.

3.3 The grid and plume delivery system

A square mesh grid formed of 6.35 mm diameter bars spaced at 25.4 mm in the 

water tunnel was used to create turbulence. The grid provides a mesh Reynolds number 

of 5000 with the maximum flow velocity of 0.2 m/s. The plume delivery system includes 

a 6.25 mm inner diameter nozzle as a point source located 1 0 0  mm downstream of the 

grid and a series of 3 mm diameter holes with 25.4 mm spacing on a lateral stainless steel 

tube of 6.25 mm diameter as a line source (see Figures 3.3.) attached to the grid. The 

nozzle is aligned with the centreline of the water tunnel and pointed in the downstream 

direction of the flow. A plume generator (Figure 3.4) is designed to maintain a steady 

flow rate of the tracer dye solution through the nozzle. A plume generator is set at the 

same height of the water level in the settling tank of the water tunnel in order to achieve a 

static pressure (i.e., static head) at the nozzle exit similar to the centre of the test section 

of the water tunnel (assuming negligible losses). The plume generator is designed to be 

airtight and the only opening to pass air through is a glass tube inserted into the 

cylindrical container. Another glass tube is inserted into the container, which is connected 

to the nozzle with a plastic tubing system and a control valve. The height difference 

between the lower ends of the two glass tubes generates the head necessary (i.e., driving 

head) to achieve a constant plume exit velocity, which is the same as the free stream 

velocity of the test section. In the experiments with the point source the driving head is
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set at such a level that the plume generator would create a steady flow rate of 4.6 cm3/sec 

to approach the free stream velocity (0.2 m/s) at the nozzle exit. Figure 3.5(a) shows the 

velocity profiles at a distance 5 mm downstream of the nozzle exit relative to the 

centreline exit velocity (U0) measured by PIV and LDV (to be discussed in the following 

sections). A wake region is developed behind the nozzle exit; however, the wake 

disappears further downstream, which is shown in Figure 3.5(b) where velocities are 

normalized by the free stream velocity, Uref.

3.4 Measurement techniques

In the present study, three laser-based measurement techniques were employed. A 

Laser Doppler Velocimetry (LDV) was used to characterize the flow in the water tunnel. 

PIV and PLIF were used to measure simultaneous velocity and concentration fields, 

respectively. Brief descriptions of these measurement techniques are presented here.

3.4.1 Laser Doppler Velocimetry

Point velocity data were obtained using a single component TSI Inc. laser 

Doppler velocimetry (LDV) system in back-scatter mode. The transmitting lens had a 

focal length of 350 mm in air, resulting in a measuring volume diameter and length of 

0.046 mm and 1.2 mm, respectively. A two-axis motor-driven traversing unit was used to 

move the LDV probe in two directions, with a relative position accuracy (precision) of 

0.015mm per 100mm of travel and a minimum displacement of 0.0025mm per step. The 

flow was seeded using Silicon Carbide particles with an average diameter of 2 pm and a 

density of 3200 kg/m3. The accuracy of the velocity measurements depends on the
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capability of the particles to follow the instantaneous motion of the medium. An analysis 

is presented in Appendix C (§ Cl) to justify that for Silicon Carbide.

3.4.2 Particle Image Velocimetry

Particle image velocimetry (PIV) is a non-intrusive technique for measuring 

complex flow fields in a two dimensional plane providing two components of the 

velocity vector with high spatial resolution. In PIY measurements, two consecutive 

images are obtained to capture the light scattered by tracer particles from the laser pulses 

whose timing is precisely controlled. Two dimensional cross-correlations of a small 

interrogation area of the corresponding two images are obtained to deduce the 

displacement of particles in the interrogation areas. Raffel et al. (1998) describe the 

technique in detail.

The PIV system used for the current study makes use of a double pulse Nd:YAG 

laser operating at 15 Hz with energy of 120 mJ/pulse that produces a sheet of light at a 

wavelength of 532 nm illuminating the flow field which is seeded with the same particles 

that were used for the LDV measurements. The scattered light from the particles is 

collected into a CCD camera located 90 degrees to the light sheet. The CCD has an array 

of 1600 x 1 2 0 0  pixels with a 12  bit dynamic range operating in double exposure mode. 

The images are then subsequently transferred to a computer, equipped with TSI 

Insight3G® software (TSI Inc. 2008), for the completion of a two frame cross-correlation 

analysis.
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3.4.3 Planar Laser Induced Fluorescence

Planar laser induced fluorescence (PLIF) is a non-intrusive technique for 

measuring the spatial scalar concentration field in continuous flow. The underlying 

physical principle of this technique is based on the absorption and subsequent reemission 

of photons by fluorescent dye tracers. This allows one, to detect very small changes in the 

concentration very accurately. In order to measure the fluorescence signal, the emitted 

light has to be filtered to avoid signal contamination. Rhodamine 6 G has a peak 

absorption at 530 nm wavelength and a peak emission around 560 nm wavelength 

(Arcoumanis et al. 1990). The concentration field in the laser sheet thus appeared as 

yellow-orange light. Recording the instantaneous intensity field with TSI Insight3G® 

software (TSI Inc. 2008) yielded the instantaneous concentration fields. The calibration 

of PLIF images is presented in § 3.6.

Figure 3.2a represents the schematic view of the experimental set up, where 

positions of the laser, grid, source, and also the coordinates are depicted. The origin of 

the coordinates is considered at the centre of the tunnel cross-section at the inlet of the 

test section. A typical experimental setup in order to measure simultaneous velocity and 

concentration using PIV and PLIF, respectively, is shown in Figure 3.2b, where the top 

view of the tunnel and the relative positions of the two CCD cameras are shown. An 

optical low-pass filter was places in front of the lens of the PLIF camera, which filters 

wavelengths smaller than 550 nm.
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3.5 Hydrodynamic performance of the water tunnel

The hydrodynamic performance of a water tunnel can be characterized by its 

temporal stability, spatial uniformity and the turbulence properties in the test section. The 

temporal stability of the mean flow was measured at a flow velocity of 0.20 m/s. The 

results for a 4 hour long run are presented in Figure 3.6, where normalized centreline 

velocities at a location of x/h = 1.7 downstream of the inlet are shown. Each point in the 

time series is an average of 120 seconds of data at a sampling rate of about 200 Hz. As 

can be seen, the temporal variation of tunnel velocity is less than ±0.50%. Most of the 

measurement points were also clustered in a row within the 95% confidence level of the 

LDV uncertainty. Those few points, outside of the confidence level, were the result of the 

drifting of the tunnel.

Velocity non-uniformity in a cross-sectional plane across the tunnel is also an 

important measure of performance. A total number of 195 measurement positions were 

used at x/h = 2.33, as shown in Figure 3.7(a), to generate a velocity contour across the 

tunnel cross-section. However, for other cross-sectional profiles, 104 measuring points 

were used over 1/2 of the cross-section of the tunnel. Assuming a symmetrical velocity 

distribution on the other half cross-section of the tunnel, it has been calculated that the 

working sections (where the velocity variation is within ± 1%) were found to be 

approximately 85%, 75%, 65% and 55% of the cross section of the tunnel at distances of 

x/h = 0.33, 1.67, 5.33 and 7.67 downstream of the inlet of the test section, respectively. 

These are not shown here for brevity. Contour plots of the relative velocity of the tunnel 

cross-section at x/h = 2.33 are presented in Figure 3.7(b). The speed-up in the upper left
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hand comer of the plot was due to a persistent air bubble on the upper surface of the 

water tunnel during those measurements. Since such bubbles are occasionally found in 

the test section, we made the choice to obtain the data there to determine the effects. The 

maximum speed-up was approximately 1%, which is deemed to be relatively minor 

within the overall performance of the tunnel.

Figure 3.8 shows the streamwise velocity profiles at different locations in the test 

section. One can note that the centreline velocity increases as the distance from the inlet 

increases due to the increasing thickness of the wall boundary layers. This can be more 

clearly seen in Figure 3.9, where only centreline longitudinal velocities at different 

downstream locations are plotted for a nominal free stream (inlet) velocity of 0 .2 0  m/s 

where the increase in speed is observed to be about 8% up to x/h ~ 8 . Figure 3.7 also 

shows clearly the increase in the thickness of the boundary layer for larger longitudinal 

distances from the inlet.

One of the most important measurements is the turbulence intensity in the test 

section. For a low value of turbulence intensity, careful management of the flow using a 

honeycomb and screens is required as well as a large area ratio for the contraction 

(Lumley and McMahon 1967; Robins 1978). The turbulence intensities within the test 

section were found to be uniform except near the boundary layers on the walls. LDV 

cannot reliably measure turbulence intensities less than 1% because of the uncertainty 

introduced by the inherent instability of the Bragg cell oscillator. To overcome this 

problem, hot film anemometry measurements were carried out in the empty water tunnel
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and the measured turbulence intensity was found to be just less than 0.50% on the 

centreline of the tunnel at x/h = 0.5. Figure 3.10 shows the power spectral density of the 

streamwise velocity fluctuations obtained from the hot film measurements. The data were 

collected at a sampling rate of 2000 Hz and were low-pass filtered with a cutoff 

frequency of 50 Hz. This shows no governing frequency in the empty tunnel flow.

Figure 3.11 shows the longitudinal variation of the mean vertical component of 

the velocity on the centreline, relative to the average streamwise centreline velocity. 

Since the maximum variation is about 0.60% of the average streamwise velocity, the 

vertical component is essentially negligible.

Figure 3.12(a) shows mean streamwise velocity profiles at different locations 

downstream of the grid. Turbulence intensities are presented in Figures 3.12(b) - (c) for 

different downstream locations along the lines where z/w = 0  and y/h = 0 , respectively. 

The turbulence intensity along the centreline of the tunnel cross-section varies from 

~12% to 1.2%, decaying with distance from the grid, as expected. This rate of decay will 

be examined in further detail below, but it is clear from Figure 3.12 that the uniformity of 

the grid turbulence is as good as the empty tunnel (no turbulence producing grid at the 

inlet of the test section).

Figure 3.13 compares the mean streamwise velocity profiles measured with LDV 

and PIV systems at a distance of x/M = 19.69 (x/h = 1.67) downstream of the grid. In this 

figure, the streamwise velocities are normalized by the reference velocity at a distance 50
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mm away from the walls, for both cases. These data show that the match between the two 

methods is satisfactory. One can note that the PIV data also shows the speed-up of the 

velocity close to the walls. The horizontal bars are one standard deviation of the LDV 

measurements.

In homogeneous turbulence the average properties of the random motion are 

independent of position in the fluid (Batchelor 1953). A good approximation to 

homogeneous turbulence can be achieved in wind or water tunnel experiments by passing 

a uniform stream through a grid. This homogeneous turbulence decays with distance 

from the grid, since there is no production due to the absence of mean velocity gradients

(Pope 2000). Figure 3.14 shows measurements of (u'2  ̂downstream of a grid, performed 

in the water tunnel. It is evident that the normal stress, («'2), decays as

( u )
U2

= G
/  \ ~ n  { X ' (3.3)

where M  is the mesh size (i.e., 25.4 mm). The value of the decay exponent, n, is found to 

be 1.33 in the current experiment. Previous studies reported the values of the decay 

component between 1.15 and 1.45, with the best value for most experiments being about

1.3 (Mohamed and LaRue 1990). The value of G (~ 0.07 for the present study) varies 

widely depending on the geometry of the grid and the Reynolds number (Pope 2000).

Due to the fact that the flow velocity is sampled in time by random passages of 

the tracer particles through the measurement volume of the LDV, velocity information is 

available in unequally spaced data points over the time span. Therefore, the usual



47

methods for estimating the spectral content of signals using equally spaced data points 

are not applicable here. A number of different methods have been proposed for 

computing the Power Spectral Density (PSD) from LDV measurements, which were 

reviewed by Benedict et al. (2000). The methods based on the reconstruction of the time 

series have widely been used for calculating uniformly sampled time series. The most 

straightforward technique is the zero order interpolation between the unevenly spaced 

samples and subsequent re-sampling of the interpolated process to give a uniformly 

sampled process (Simon and Fitzpatrick 2004). Another technique of the reconstruction 

of the time series is the sample-and-hold technique, which reconstructs the time series by 

holding the value of each validated data point until the next arrival and re-sampling the 

data at equal intervals. Other approaches to time series reconstruction are exponential 

interpolation by Host-Madsen and Caspersen (1995), auto-regressive techniques by 

Veynante and Candel (1988), Kalmen reconstruction (Banning 1997), higher order 

interpolation methods and fractal reconstruction. These techniques have been reviewed 

by Tropea (1995) for spectrum estimation from LDV time series. For the current study, 

the linear interpolation method has been implemented for generating uniformly spaced 

time series.

The power spectral density of streamwise velocity fluctuations are presented in 

Figures 3.15 for time series measured on the centreline of the tunnel at x/M= 3.94 (x/h = 

0.33) and x/M  = 27.56 (x/h = 2.33). The average data rate was greater than 500 Hz. The 

time series was reconstructed using the linear interpolation method, with a re-sampling 

rate of 500 Hz. Following this, the data were low-pass filtered with a cutoff frequency of
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125 Hz. The spectra depicted in Figures 3.15 were obtained from averaging ten, 30 sec 

blocks of data.

The power spectral density is plotted in the non-dimensional form 

F (f)U  l27zLxita versus the non-dimensional frequency, 27$LXIU , where,

oo
Lx = i p / u '2)j(u '(t)u '(t + t))dr is the integral scale. The results in Figures 3.14 are

o

compared with von Karman’s spectrum,

F{f)U  li^nLxu'2 )= (2/zr){l + l .8(2^1, / U)2 }"5/6 (3.4)

(Hinze 1959). Since power spectra of grid turbulence tend to have well defined shapes, it 

follows that the streamwise component of turbulence produced by grids can be described 

by a single velocity scale (ur) and a single length scale (Lx), which have been 

incorporated in von Karman’s spectrum (Bearman and Morel 1983). The current 

measured spectra match well with the von Karman spectrum for both the near grid and 

equilibrium regions.

The Taylor microscales (X=^{<u’2>/<(du’/dx)2>}) at different downstream 

locations of the grid have been estimated to be approximately 5 mm (within the range of 

19.69 < x/M  < 47.24) while at x/M = 3.94, the Taylor microscale was calculated to be 

about 3 mm. Present results show a reasonable match with previously reported results on 

Taylor microscales downstream of grids, where it has also been reported that far 

downstream both the Taylor microscale and the integral scale remain approximately 

constant during decay (Hurst and Vassilicos 2007).
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3.6 Calibration of PLIF images

A new method of calibration for PLIF measurements is used here. This calibration 

method is based on the fact that there is constant flux through each cross-section of the 

fluorescent plume. The source concentration and the volumetric flow rate are known 

parameters for each experiment and provide the mass flow rate of the fluorescent dye 

through a section of the plume. The simultaneous measurements of PIV and PLIF enable 

one to calculate the mean flux across the cross-section in terms of the intensity of the 

emitted light (after subtracting the mean background intensity). This calculation is done 

for every pixel column of PLIF images. The procedure is repeated for different initial 

fluorescent concentrations keeping the relative positions and setup of the laser and the 

cameras the same. Calibration curves are generated with the linear dependence of 

intensity flux on concentration flux for every column of the field of view. Each of the 

calibrated images was also corrected for laser attenuation due to the presence of 

fluorescent dye. The calibration method described here takes into account the streamwise 

variation in the laser intensity and corrects it since the calibration method is based on a 

constant flux across every cross-section of the plume.

Simultaneous PIV and PLIF images are captured for a particular location with 

different source concentrations (e.g., 12, 25, 50, 75, 100, 125 jug/l). For each source 

concentration 1500 images are taken to construct average fields of concentration and 

velocity. The intensity flux (based on intensity of the emitted light) is calculated 

considering the mean plume cross-section, which is assumed to be axisymmetric behind a 

point source and two dimensional behind a line source (equation (3.5) is drawn based on
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axisymmetric plume behind a point source). Using different source concentrations, fluxes 

are calculated by multiplying the intensity (!) and the velocity (u) at a certain point. 

Therefore the formulation of the total intensity flux at a cross-section behind a point 

source is

where y  is the radial distance of the point, Ay is the length of an interrogation area and the

integration is done from the centreline of the mean plume to the furthest point across the

mean plume section, where the value <ul> approaches zero. Figure 3.16(a) depicts a

sample of mean intensity flux across a half plume. Figure 3.16(b) shows the variation of

the total intensity flux in streamwise direction calculated using equation (3.5). The

streamwise variation of the total intensity flux is a result of the variation of the laser

intensity in the same direction. The volumetric flow rate of the plume generator and the

known source concentration provides source flux,

Source flux = volumetric flow ratex concentration
= m3/ secx fxg/litre (3.6)
= Q*r.

Since the intensity of the tracer fluorescence is proportional to the local tracer 

concentration, the source flux is also proportional to the intensity flux. Therefore,

Source flux °c Intensityflux
Q x r In te n s ity flu x  (3.7)

r  o c  {intensityflux)/Q .

y<»n->o

Intensity flux = ^  2n y  Ay (ul ) (3.5)

The fluorescent concentration and emitted light intensity are linearly proportional 

within a certain range (< 120 ptg/1). The linear relationship is used to produce the
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calibration curves. At each location, a set of 4000 simultaneous PIV and PLIF 

measurements are made with a source concentration within the linear range. In order to 

get concentration directly, intensity flux is divided by the source volumetric flow rate, Q 

(m3/s). Hence, calibration curves for each pixel column are developed using the linear 

relationship between source concentration and intensity flux per unit volumetric flow 

rate. A calibration curve for a pixel column is presented in Figure 3.17, which verifies the 

linear relationship between concentration and intensity in these experiments.

It is to be noted that the resolution of the intensity flux is one fourth of the 

resolution of PLIF images because of the PIV resolution (see Appendix C for details). 

Therefore, each calibration curve is used for calibrating four consecutive pixel columns 

of PLIF images with 400 X 300 pixels. Therefore, the calibration factors, which are 

nothing but the slopes of the calibration curves, are extended between consecutive four 

pixel columns as shown in Figure 3.18.

Each image needs to be corrected for vertical laser attenuation due to the presence 

of fluorescent dye. The corrected intensity can be calculated using Beer-Lambert law 

(Ferrier et al. 1993) as

I  = I0 exp{(aw + aor)A y} , (3.8)

where, /  is the intensity (grayscale) at location y+Ay, I0 is the intensity at location y, r is 

the local dye concentration (jug/l), a* and aQ are the attenuation coefficients in water and 

extinction coefficient resulting from the fluorescent dye. The extinction coefficient 

resulting from Rhodamine 6G is a constant and equal to 0.00023 cm'1 (jug/l)'1 and the



52

attenuation coefficients in water vary from 0.0011 to 0.0045 cm'1 (Daviero et al. 2001). In

the above equation, local concentration (/)  comes from previously calculated 

concentration using the linear calibration curve.

An attempt is made here to demonstrate a comparison of the present results with 

some previous studies. Mean concentration profiles in centreline vertical planes at the 

different distances downstream of the grid are shown in Figures 3.19. Each profile can be 

scaled with two parameters; the local centreline mean concentration C0, and the spatial 

variance of the plume, a. The spatial variance can be obtained for each profile using a 

least-squares fit to the Gaussian,

A representative example of the least-squares fit to the Gaussian for all of the line source 

and point source plumes is shown in Figure 3.20 for the mean concentration profile 

behind a point source at a distance 500 mm from the grid. The variance growth rates for 

both the line source and the point source are shown in Figure 3.21. Normalized mean 

concentration at several streamwise locations are shown in Figure 3.22, where each 

profile is scaled with centreline line mean concentration (C0) and spatial variance (a). The 

mean vertical concentration data are clearly Gaussian and self-similar, which is in 

agreement with previous experimental studies (Fackrell and Robins 1982; Bara et al. 

1992; Crimaldi et al. 2002).

(3.9)

Figures 3.23 and 3.24 present the vertical profiles of the distributed moments for 

several locations. The data is fitted using the parameters discussed in equation (2.36) in
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Chapter 2. Sawford & Sullivan (1995) fitted these parameters to the data from a steady 

line source experiment in wind tunnel grid turbulence. The constants a, ft vary with 

downstream distance for a steady release and are shown in Figures 3.25. The trends 

appear to follow the suggested behavior (Chatwin and Sullivan 1990). The expressions 

for K„ given in equation (2.37) in Chapter 2 are used to fit the normalized moments that 

are shown in Figures 3.26 and 3.27. The relationships between the moments predicted by 

Chatwin and Sullivan (1990) and Sawford and Sullivan (1995) have been found to agree 

reasonably well with present measurements, which have been found to be valid from a 

range of experiments including jets, wakes, plumes, uniformly sheared flow and buoyant 

jets (Chatwin and Sullivan 1990; Moseley 1991; Sawford and Sullivan 1995; Ye 1995).

3.7 Experimental summary and flow properties

In total, seven sets of experiment were conducted with two different plume source 

conditions. A summary of the experiments performed is presented in Table 3.1. 

Experiments were carried out using two different plume source conditions. One is a 

continuous point source and the other one is a continuous line source.

The measurements were carried out in grid turbulence generated by a square mesh 

grid, which gives a Reynolds number (Re = UM/v) of 5000 based on the mesh size and a 

flow speed of 0.2 m/sec. The flow properties (Taylor Micro-Scale Reynolds number (Rex 

= ^{<u*>}k/v), dissipation rate (e) and the Kolmogorov scale (ij -  (\?/e)I/4), for details 

check Appendix A) are presented in Table 3.2.
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Table 3.1: Summary of the experiments

Source condition Flow condition Measurement locations (mm)

Point source Grid turbulence 500, 700, 1200, 1800

Line source Grid turbulence 150, 500, 700

Table 3.2: Flow properties of the tunnel flow

x (mm) Taylor Microscale 
Reynolds number (Re^)

Dissipation rate 
( * )

Kolmogorov 
scale (7), mm

Batchelor scale 
( r i a ) ,  mm

500 37 9.2 X  10'6 0.57 0.016

,S  |
700 30 3.8 X  10* 0.72 0.020

1200 22 1.9 x 10* 0.84 0.024

1800 16 1.7 X  10* 0.87 0.025

4>
150 35 9 x ÌÒ'r 0.32 0.009

Li
ne

ou
rc 500 23 8 x 1 Ôr 0.33 0.009

C/3 700 15 1  X  Ì Ò ' r 0.56 0.016

3.8 Data Processing
An important aspect of these experiments is the calculation of higher moments of 

simultaneous velocity and concentration, which involves relatively large experimental 

uncertainties. For the CCD cameras, the noise levels were reported to have a standard 

deviation of the order of two grey scale intensity levels (Ferrier et al. 1993). A series of 

500 images were taken with a dark background (camera was covered with black cloth in 

a dark room) to check the noise levels and the standard deviation was found to be of the 

same order. The error from the camera noise level propagates through the calculations 

(Ferrier et al. 1993). The uncertainty analysis and the propagation of error are discussed 

in the Appendix B.
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There is a tradeoff between experimental resolution and the uncertainties in the 

measurements. The convective closure validation (equation (2.54) and (2.55) in Chapter 

2) is based on simultaneous measurements of velocity and concentration. The resolution 

in velocity measurements is restricted to 16 pixels after using 32 x 32 pixels interrogation 

area with 50% overlap. Therefore, the resolution of the concentration flux (uT) depends 

on the resolution of velocity measurements. If one uses concentration (PLIF) 

measurements with 1600 x 1200 pixels array, the propagated error in the product 

becomes significant (>50%) for higher n values (order of moments). For this study we 

will cap n < 3. Since the resolution of the concentration flux depends on the coarser 

resolution of the PIV measurements, it is reasonable to apply the supersampling (i.e., 

averaging over a pixel array) method to each PLIF image in order to reduce the noise 

levels of the PLIF images. In order to estimate the proper averaging dimension, the time 

series are captured at a fixed location of PLIF images for different supersampling 

(averaging) dimensions (e.g., 2 x 2, 4 x 4, 8 x 8). The results are shown in Figure 3.28, 

where the spikes represent the scalar concentration filaments in the flow field. All three 

dimensions of the supersampling capture the basic “spiky” feature in the concentration 

field because the width of the filaments are of the order of the Kolmogorov scale that is 

larger than the largest supersampling dimension used here (albeit suppressed spikes are 

noticed for the case of 8 x 8 in some places in the time series). Figure 3.29 presents the 

PDFs of the concentration measurements for different supersampling dimensions. The 

three dimensions of the supersampling show a similar distribution. In order to get the 

convergence, the running averages are plotted in Figure 3.30, which shows a similar trend 

i.e., converge within the same number of realizations (samples). From the above analysis,



56

it is evident that from the scalar dissipation calculation point of view, where the actual 

concentration gradients are important, the use of 4 x 4 averaging is a reasonable 

approximation. It has also been observed using the dark background images that 

supersampling over a 4 x 4 pixel array reduces the noise level in PLIF images. The 

method of supersampling produces a PLIF image with a pixel array of 400 X 300 and the 

measurement resolution worsens, for example, to 0.13 mm from 0.033 mm at a distance 

500 mm downstream of the grid behind a point source. The resolution in velocity 

measurements at this location is 0.52 mm. Figures 3.31 depict the resolution in both PLIF 

and PIV measurements. Figure 3.31(a) is a raw PLIF measurement whereas Figure 

3.31(b) shows the same image supersampled over a 4 x 4 pixel array with a qualitative 

velocity map on it. A typical plot of simultaneous measurements of fluctuating velocity 

and intensity fields are shown in Figure 3.32. The supersampled images are calibrated 

using the method described in § 3.6.

The products (< u T n+l> and < \T n+l>) of the convective closure validation were 

calculated by multiplying the fluctuating components of the velocity and the calibrated 

concentration value, raised to the power of n+1, followed by ensemble averaging of 4000 

realizations. Taylor’s “frozen turbulence” hypothesis allows us to use spatial average in 

the flow direction within a small distance where changes in the mean flow properties are 

negligible. The use of spatial averaging is not a sacrifice in individual point resolution in 

the measurements but, rather, an increase in number of points in the ensemble. An 

average of ten columns was taken to represent the final mean profiles of < uT n+l> and 

< vT  ”+/>. Figures 3.33 represent the mean profiles of < uT n+1>, < vT  ”+I> and
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y < \ T n+1> behind a point source. The third term y < v T n+I> was calculated for the 

axisymmetric case only, where y  is the distance from the centreline of the plume. The 

calculated term (< uT n+I>) does not change significantly within one measurement plane 

in streamwise direction. Therefore, the streamwise gradients of mean concentration and 

<u T  n+I> were calculated between two consecutive measurement planes (for example, 

between 500 mm and 700 mm for point source measurements) representing a location at 

x ~ 600 mm. An average profile of y < v T n+I> was generated by taking the average of 

500 mm and 700 mm, for example, to represent the same location (x ~ 600 mm) of the 

streamwise gradients. Figure 3.34 depicts the gradient scheme of the measurements in 

both the streanwise and cross-stream directions. The cross-stream gradients were 

calculated using the linear central difference method within vertical pixels. Figures 

3.35(a, b) show gradients of <u T n+I> and <vT n+I> profiles in two directions. Figure 

3.36 is the representation of streamwise gradients of mean concentration. These three 

terms d(< uT n+I>)/dx, d (y< \T n+>>)/dy and dC/dx are used to validate the convective 

closure approximation.

Figures 3.37 show the gradient calculation of absolute concentration in two 

directions. These gradient terms are squared and multiplied by the local absolute 

concentration powered by n-1, where n is the order of moment. These two terms are then 

added together to construct the LHS of the dissipative closure solution (equation (2.57) in 

Chapter 2) for one realization. This is followed by an ensemble average over 4000 

realizations (images). The RHS of the solution is calculated by an ensemble average over
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4000 images of absolute concentration powered by n+J, <T >. These two terms are 

plotted for first order of moment (Figure 4.19 in Chapter 4).
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Figure 3.1 : Isometric view of the water tunnel.
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Figure 3.2: (a) Schematic view, (b) top view of the experimental setup.
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Figure 3.3: Setups of (a) the point source and (b) the line source with the grid.
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Figure 3.4: Plume generator.
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Figure 3.5 (a) Mean velocity profiles at a distance 5 mm downstream of the nozzle using 

PIV and LDV; (b) Mean velocity profiles at different downstream locations using LDV.
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Figure 3.6: Variation of the mean streamwise velocity with time on the centreline at x/h = 
1.67. The dashed line represents the 95% confidence limits of the LDV measurements.
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Figure 3.7: a) LDV measurement locations at x/h = 2.33, b) contour plot of the relative 
velocity of the tunnel cross-section at x/h = 2.33.
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Figure 3.8: Centreline profiles of the mean streamwise velocity using LDV at several 
downstream locations with no turbulence producing grid.
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Figure 3.9: Variation of the mean streamwise centreline velocity using LDV.
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Figure 3.10: Power Spectral Density (PSD) of the streamwise velocity in the empty 
tunnel using hot film anemometry (dashed line is for -5/3 slope).

Figure 3.11: Relative vertical velocity components at centreline of the water tunnel for 
different locations downstream of the grid.
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Figure 3.12: Centreline profiles in grid turbulence of (a) mean streamwise velocity, (b) 
turbulence intensity, and (c) lateral profiles of turbulence intensity.
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i
Figure 3.13: Comparison of the PIV and LDV measurements of the streamwise velocities

near the wall at x/M= 19.69 (x/h = 1.67).
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Figure 3.14: Downstream variation of the normalized streamwise turbulence intensity.
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Figure 3.15: Power spectra at (a) x/M= 3.94 (x/h = 0.33) (b) x/M= 27.56 (x/h = 2.33) 
downstream of the grid. The solid line is the von Karman spectrum.
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Figure 3.16: (a) Mean Intensity flux across a half plume, (b) Variation of the total 

intensity flux in streamwise direction.



Ca
lib

ra
ti

on
 f

ac
to

r

73
\
\

Figure 3.18: Extension of the calibration factors. Symbol cross (x) represents measured 
calibration factors, and the lines represents the extension of the calibration factors within

consecutive pixel columns.
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C

Figure 3.19: Mean concentration profiles at different locations behind (a) the line source,

(b) the point source.
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Figure 3.20: The least-squares fit to the Gaussian distribution of the mean concentration 

profile behind a point source at a distance 500 mm from the grid.

Figure 3.21 : Variation of spatial variance with downstream distance.
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Figure 3.22: Normalized vertical profiles of mean concentration for different downstream 

locations. In the legends ‘PS’ represents Point Source and ‘LS’ represents Line Source.
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Figure 3.23: Distributed moments behind the line source with predictions (continuous

lines) based on a-p in equation (2.36).
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Figure 3.24: Distributed moments behind the point source with predictions (continuous

lines) based on a-fi in equation (2.36).
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Figure 3.25: Development of a  (o), P (□) with distance behind (a) a line source, (b) a 

point source. Dotted lines are the qualitative behavior suggested by Chatwin and
Sullivan (1990).
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Figure 3.26: Normalized moments behind a point source; (a) fourth moments and (b) fifth 

moments. The solid lines represent the least squares fit of the equations shown to the 

legends using all the locations. (The ranges of the coefficients were calculated using 

individual location, such as 1.64 < a* < 1.78; 1.45 < 6* < 8.9; 3.6 < a5 < 4.1; 3.2 < b5 < 

79.0)
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Figure 3.27: Normalized moments behind a line source; (a) fourth moments and (b) fifth 

moments. The solid lines represent the least squares fit of the equations shown to the 

legends using all the locations. (The ranges of the coefficients were calculated using 

individual location, such as 1.6 < a4 < 1.95; 2.7 < b4< 3.8; 4.0 <as< 5.6; 4.3 <bs< 15.7)
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Figure 3.28: Time series of the concentration measurements normalized by the observed 

maximum concentration. Different color represent different supersampling dimensions.

Figure 3.29: Probability density functions of the concentration measurements for 

different supersampling dimensions.
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Figure 3.30: Convergence in ensemble average of concentration measurements for

different supersampling dimensions.
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Figure 3.31 : (a) A sample of a raw PLIF image showing a scalar filament; (b) the same 

image as (a) with averaged intensity over a 4 x 4 pixel array with a qualitative velocity

map on it.

Figure 3.32: Simultaneous measurements of fluctuating velocity and concentration fields
using PTV and PLIF.
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Figure 3.33: Concentration flux profiles fro n = 1 behind the point source; (a) <uTn+I>,

(b) < v r" +'>; (c



Figure 3.34: Schematic of the gradient calculation for convective closure validation.
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d(<u' r nt1>)/dx

d(y <v' r nt1>)/dy

Figure 3.35: Gradients of concentration flux terms for n = 1 behind the point source.
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dC/dx

Figure 3.36: Streamwise gradients of mean concentration profiles behind the point

source.
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Figure 3.37: (a) concentration (//g//), (b) df/dx and (c) df/dy of a single PLIF image.
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Chapter 4: Experimental Results

4.1 Introduction

Although one would like to directly measure the EMF in a cloud, current 

technology does not enable this. For a cloud one would need the entire concentration 

field in each realization. For the equivalent in a steady plume one would require all of the 

values of concentration over an entire cross-section in each realization. Here, we are able 

to measure the EMF for a line source by using all of the concentration values on a line 

through the plume in each realization. We are also able to measure the simultaneous 

velocity and concentration through a plume from both a line and a point source. Results 

will be presented in this chapter and discussed in the following chapter.

4.2

y =

Location, size and state of a line source plume

The location of the centre-of-mass in each realization is expressed as

Y , y Tdy
E r * ’

(4.1)

where, dy is the pixel size of the PLIF images. The centre-of-mass is calculated for a 

pixel column using the above equation and the PDFs are developed using 4000 

realizations. The PDFs are shown in Figure 4.1a along with the reference Gaussian fit 

(continuous lines).

In Figure 4.1b, the PDFs of the variance of plume cross-section, as compiled in

each realization, are shown. The variance is expressed as,
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cr = 'Eb'-yfrdy 
Zr dy

(4.2)

The PDFs in Figure 4.1b is also compared with the reference Gaussian fit. The values of 

spatial variance are governed by turbulent velocity scales comparable with the plume 

size, which for large Reynolds numbers, are statistically decoupled from the larger scales 

that govern in Figure 4.1a. In practical terms, one may wish to combine the centre-of- 

mass location and variance into one statistic -  the probability of being in marked fluid, 

which is generally, to a good approximation, n(x, t) = C(x,t)/0Os shown in Chapter 3 

(Figure 3.24a), for an initial uniform concentration, 90. Sullivan and Ye (1995) provides 

such an analysis for the neutral atmospheric boundary layer.

In order to calculate the EMF, each PLIF image is considered as a two- 

dimensional array of concentration measurement. A vertical column is chosen from the 

same location of each PLIF image and for one realization is used to calculated the EMF 

(Figure 4.2) as

EMF{0)= , (4.3)
0

where Q  = ~ Z ( ^ Z  AVi)» F< 6< r+ATand Ay is the pixel size. The LAy, corresponds

to the total number of pixels in the vertical pixel column that contain the concentration 

within the specific range given as 6. The mass fractions are averaged over number of 

realizations (TV). Figure 4.3 shows the evolution of the EMF as one proceeds downstream. 

These relatively simple functions are very similar to those generated by a Gaussian strand 

model and shown in Sullivan and Ye (1997) and from point measurements in a line
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source in grid turbulence in Sullivan and Ye (1993). The effect of molecular diffusion in 

reducing contaminant concentration is clearly in evidence in Figure 4.3 as the area under 

the EMF migrates to lower values of concentration as one goes downstream. The most 

important scales for the concentration reduction are near the conduction cut-off length 

(i.e., the Batchelor scale) that are much smaller than scales contributing to the centre-of- 

mass shown in Figure 4.1a and to the spatial variance shown in Figure 4.1b.

In Figures 4.4, the root-mean-square (RMS) values are shown at each 

concentration interval for the EMF. The RMS values are relatively small when one 

considers the fact that the EMF realizations are taken over one thin line through the 

plume. One would expect even relatively smaller values for a point source plume or 

cloud when all the values of concentration over the entire cross-section of the plume or 

throughout the cloud, respectively, are used in each realization.

In Figure 4.5, the EMF functions are compared with a simple Beta distribution as 

suggested in Schopflocher et al. (2007). Here a less demanding procedure is used to fit 

the Beta distribution function wherein a scale larger than the anticipated maximum is 

chosen and only the first two moments of the EMF are used. Example of scale choices of 

2C0 and 3C0 are shown in Figures 4.5. Although the simple Beta function does not 

provide a convincing close fit to the data, taking into account the measurement error, the 

simple Beta function may be an appropriate representation in a practical point of view. 

That is, precise source and flow details are not likely to be available for an accidental 

release of contaminant. Unfortunately, as discussed in Chapter 3, one does not have
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sufficient confidence in measured higher moments to investigate the Generalized Pareto 

Density function application to this range, as discussed in Chapter 2.

One further application on the curves in Figures 4.5 is that the Beta function 

found from the average values of the first and second moments (see Table 5.1), formerly 

used for the Beta function fit, provides an almost similar representation. It would appear 

that when concentration values are normalized with C0 an approximately self-similar 

result is obtained. This result also appears to be applicable from the figures in 

Schopflocher et al. (2007), which were indirectly derived from the a -fi measurements as 

discussed in Chapter 2. In Figure 4.6, the measured value of the EMF moments are 

compared with the exponential fits. In Section 5.2, power law fits are also discussed.

4.3 Convective closure approximation

The appropriate terms for the convective closure approximations (equations 

(2.53) and (2.54) in Chapter 2) are shown in Figures 4.7 - 4.12 for three lower order 

moments at three locations behind a point source and a line source. Although there is 

some inevitable scatter around the linear dependence in the figures, particularly as n 

increases, the trends appear to validate the assumptions made. The diagrams with 

higher n values (>3) are not shown because of the larger experimental uncertainties 

involved in the calculation of the products in (2.53). The slopes, s /u ip ^ , of the

straight lines in Figures 4.6 - 4.12 are shown on Figures 4.13. At all locations it is 

clear that the logarithm of the slope is linearly dependent on moment order n. The 

value of the local concentration scale G0* is determined from Figure 4.13a and those
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values are compared in Figure 4.14 with the centreline mean concentration values 

behind a point source. Here, the local concentration scale, 90*, is shown from the 

point source measurements only. For the line source measurements, the calculated 

terms of (2.53) within one measurement plane do not change significantly, and on the 

other hand, the change between two measurement planes is significantly high, which 

results a discrepancy in measuring 90*. Figure 4.14 indicates a variation of the form 

90* = 14.94 e 0 84x with downstream distance, where x is in meters.

The exact expression for the moments when k -  0 is m„+i = 90 C for the 

uniform source concentration 90. When modified to account for k  *  0 by the use of a 

local concentration scale (depends on distance only) and proportionality factor, Bn, 

also only a function of distance, we have

=  )"c , (4.4)

which will be discussed in Chapter 5.

Measured values of the moments (Table 4.1) along the centreline are shown in 

Figures 4.15 and appear to be of the form (4.4) at each station. It is clear in the figures 

that at each station the logarithm of the moments depends linearly on n. The local

concentration scales (9g ) found from the slopes in Figures 4.15 are plotted with 

downstream distance in Figure 4.16 and are found to follow an exponential form with 

the distance (90 = 13.34 e ,2Ix for the point source and 90 = 0.94 e L58x for the line 

source). Power law fits of local concentration scales are also discussed in Section 5.2.
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Table 4.1: Summary of centreline absolute moments

x(m) C„(pg/1) m2/C02 m3/C03 m4//C04 a ß e0+(ng/i)
0.15 0.71 1.07 1.20 1.42 1.72 0.81 0.82

0.19 0.65 1.04 1.13 1.29 1.79 0.8 0.72
4>
ou 0.22 0.56 1.02 1.14 1.22 1.9 0.8 0.62
o cn 
o> c

0.5 0.34 1.04 1.27 1.50 2.5 0.19 0.38

0.6 0.32 1.07 1.22 0.95 1.84 0.21 0.35

0.7 0.29 1.07 1.23 1.41 1.38 0.34 0.32

0.75 0.28 1.02 1.37 1.63 1.4 0.35 0.32

4) 0.5 1.69 2.08 8.33 49.77 13.6 0.32 8.17
! £- 3 O C/5

.S

0.7 0.91 2.15 9.58 72.48 12.8 0.33 5.26

1.2 0.40 2.56 12.97 121.48 6 0.53 2.75
CL

1.8 0.23 1.51 9.04 75.04 5.85 0.5 1.63

Figures 4.17 and 4.18 show the distributed measured moments as a function of 

mean concentration near the centreline, where the linear dependence shown in the 

figure is consistent with (4.4) particularly for the point source measurements (Figure 

4.17) and for the line source measurements it behaves linearly up to one spatial 

variance distance (Figure 4.18).

4.4 Dissipative closure approximation

The terms of the dissipative closure approximation solution (equation (2.56) in 

Chapter 2) are plotted for the first order of moment in Figure 4.19. The gradient terms in 

the dissipative solution are calculated using each scale case (r = dx = dy) varying from 

the highest experimental resolution at a particular location up to the scale larger than rj. 

The proportionality constant, B, for different r scales are calculated from the linear plots 

(Figure 4.19) as
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<rn-1

B =

<8T}2
\d x ;

> + <r«-1r d r}2
7s

<rn+1>
(4.5)

and are averaged over space. The results are shown in Figure 4.20 with r/rj, where, the 

Batchelor ( tjb) scale at a particular location is assumed to be constant (using equation A8)

but changes with location as in Table 3.1. Figure 4.20 shows two distinct self-similar 

regimes within the Batchelor scale and the Integral scale, separated by the Kolmogorov 

scale. The dimensions (i.e., the slope of the self-similar zone) were calculated for each 

zone from the point source measurements and it was found that the dimension in the K- 

zone has a tendency to follow the -5/3 slope for the first order of moment (n = 1). That is, 

it appeared to be similar to the scaling of the passive scalar spectrum in the inertial- 

convective regime (i.e., the Kolmogorov -5/3 slope). A different dimension of scaling is 

observed in the line source measurements in the K-zone, which is believed to be the result 

of low Reynolds number flow and coarse experimental resolutions. Figure 4.21 shows the 

scaling for different orders of moment. The scaling of the proportionality constant in the 

K-range (viscous-convective regime) is used to extrapolate the constants at the riB scale. 

Figure 4.22 is plotted using the extrapolated proportionality constants at the Batchelor 

scale, B (rj^, with distances downstream.

The resolution in the measurements behind the line source is of the order of the 

Kolmogorov length scale, which hinders one from having a proper scaling in the B-zone. 

An attempt is made here to draw a relationship between the dimensions (Dk and D£) in 

the K-zone and the 13-zone. Figures 4.23 show the variation of the dimensions in the K-
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zone and the 5-zone with Taylor micro-scale Reynolds number. It does not appear that 

the dimensions vary strongly with Taylor micro-scale Reynolds number {Rex), at least at 

low Reynolds numbers obtained in the present study. However, the trends in Figure 4.23b 

show an inverse dependence of Db on Rex powered by one fifth. A scaling is developed 

in order to predict Db by using Rex and Dk based on the point source measurements, that

is,

2.7

Db = 0 . 0 7 1 ^ ^  + 0.65, 
Re,

(4.6)

which is shown in Figure 4.24, and the coefficients are determined based on the best fit 

straight line. It has been assumed that a similar scaling would exist in measurements 

behind the line source. Using the scaling in (4.6) Figures 4.25 are constructed, where the 

proportionality constants (B) in B-zone are plotted against different scale r. The figures 

also show the measured B values in AT-zone for three moments. In order to get a proper 

scaling between the K-zone and the B-zone, one would need to have a flow with higher 

Reynolds number than the present study. However, the attempt that is made here sheds 

light on dealing with the scaling between two self-similar zones.

4.5 EMF along a radius of an axisymmetric plume

An attempt is also made here to calculate the EMF functions along a radius of a 

plume behind the point source. The concentration measurements of the point source that 

were used for closure validations are used here. The EMF function with the root-mean- 

square (RMS) values at each concentration interval are shown in Figure 4.26. Figure 4.27 

shows the self-similar EMF functions when an appropriate scale (10Co) has been chosen.
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A Beta distribution function using the average moments of the normalized EMF functions 

is shown also in the figure.
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a  (mm)

Figure 4.1: (a) PDF of the location of centre-of-mass; (b) PDF of the spatial variance, (o) 
x = 0.15 m, (□) x = 0.5 m, (A) x = 0.7 m. (Continuous lines are best fit Gaussian curves).
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Figure 4.2: Schematic of the EMF calculation from the centreline measurements of a 
point source plume (an example of the pixel size at x = 0.15 m location is shown here).
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Figure 4.3: Expected Mass Fraction (EMF) with downstream distances behind the line 

source. The EMF migrates to lower values of concentration downstream distance.
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Figure 4.4: EMF functions behind the line source are plotted for different distances,

vertical bars are standard deviations.
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Figure 4 .5: Representation of Beta functions behind the line source in order to predict the 
EMF. The blue lines are the Beta function using individual moments, the red lines are drawn 
using moments that are averaged over five locations, and green lines are asymptotic solutions 
using (5.25).



104

Figure 4.6: EMF moments are compared with distances behind the line source. The solid 
lines are the exponential fits. A ‘power law’ representation is also discussed in

Section 5.2.
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Figure 4.7: Convective closure approximations behind a point source at a distance 0.6
downstream (horizontal bars are calculated errors).
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Figure 4.8: Convective closure approximations behind a point source at a distance 0.95 m
downstream (horizontal bars are calculated errors).
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—KwT" 1 > i+ iy(v'rMl>) dx ydy

Figure 4.9: Convective closure approximations behind a point source at a distance 1.5 m
downstream (horizontal bars are calculated errors).
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Figure 4.10: Convective closure approximations behind a line source at a distance 0.17 m
downstream (horizontal bars are calculated errors).
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Figure 4.11: Convective closure approximations behind a line source at a distance 0.20 m
downstream (horizontal bars are calculated errors).
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Figure 4.12: Convective closure approximations behind a line source at a distance 0.75 m
downstream (horizontal bars are calculated errors).
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Figure 4.13: Variation of S/U(60*)n with the order of moment behind (a) the point source,
(b) the line source .
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Figure 4.14: Variation of local mean concentration (o) and local concentration scale (□) 
with downstream distances behind the point source.
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Figure 4.15: Variation of centreline absolute moments with the moment order 
behind (a) the point source; (b) the line source.
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Figure 4.16: Variation of dQ with downstream distance behind the point source (o) and
the line source (□). The solid lines are the exponential fits. In Section 5.2, ‘power law’

fits are also discussed.
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Figure 4.17: The distributed moments as a function of the mean concentration behind the 
point source. Both the axes are normalized by the centreline values.
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Figure 4.18: The distributed moments as a function of the mean concentration behind the 
line source. Both the axes are normalized by the centreline values.
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Figure 4.19: Dissipative closure approximation for n = 1 at four downstream distances 
behind the point source. Linear trends in the figure appear to validate the dissipative

closure approximation.
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Figure 4.19 (continued): Dissipative closure approximation for n = 2 at four downstream
distances.
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Figure 4.19 (continued): Dissipative closure approximation for n = 3 at four downstream
distances.
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Figure 4.20: Variation of the proportionality constant (B) behind the point source with 

increasing scale r for n = 1, which show two distinct self-similar zones separated by the 

Batchelor scale and the Kolmogorov scale.

Figure 4.21: Variation of the proportionality constant for different moment order at a 
downstream distance of 500 mm behind the point source.
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Figure 4.22: Variation of the constant, B, at the Batchelor scale (after extrapolation) with 
distance downstream behind the point source. This shows a plateau in the far field.
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Figure 4.23: Variations of the dimensions of (a) the K-zone and (b) the B-zone with
Taylor micro-scale Reynolds number.
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Figure 4.24: Least-square fit of the prediction based on dimension in the K-zone and
Taylor micro-scale Reynolds number.
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rlr)
Figure 4.25: Distribution of the predicted B values at the B-zone (broken line) along with 

the B values in the K-zone measured behind a line source.
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Figure 4.26: EMF behind a point source, vertical bars are the standard deviation.
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Figure 4.27: Self-similar EMF functions behind a point source (continuous line is the
Beta distribution).



127

Chapter 5: Discussion of the Experimental Results

5.1 Introduction

It would appear from the results shown in Chapter 4 that the EMF is, to a 

reasonable approximation, represented by a simple, approximately self-similar function 

when the concentration is scaled with the centreline mean concentration. It would also 

appear that the distributed moments result from the convection across the plume, by 

plume-scale convective turbulent motions, are of an equivalent dominant local 

concentration scale. This construct leads to the apparently successful validation of the 

convection closure approximation. Further, this construct is consistent, when the 

equivalent local concentrations are in strands of a conduction cut-off size, with the 

apparently successful validation of the dissipative closure approximation. In this chapter, 

an attempt is made to elucidate the underlying physical explanation of the experimental 

observations in Chapter 4.

Figure 5.1 : A sketch of the PDF in terms of the source and non-source PDFs.
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5.2 PDF and Moments

In general the PDF can be expressed (Chatwin and Sullivan, 1989) as

p(d\ x,t) = (l -  n (x,t))g(0 ; x,0+ n(x,t)f(e-, x,t) , (5.1)

where f(d ;x ,t)  and g(9;x,t) are the probability density functions of source and non­

source fluid, respectively, and n(x, t) is the probability of being in source-fluid when 

k  = 0 (see Figure 5.1).

We note that in the evolution ofp(d;x,t), changes in f(0 \x ,t)  and g(9;x,t) (that is 

the transfer from source to non-source fluid) only takes place through molecular 

diffusivity, k, and changes in n  occur via turbulent convective motion and these changes 

are strictly independent of k . The first few moments are:

where g , / ,  png and pnf are the mean and central moments of g and / ,  respectively.

C = (\.-7t)g + 7t f ,

K (5.2)

Near the source, (l-n )g  « k J  and one can neglect the contributions from g, which

results in

C = n  f ,

V f  J
(5.3)



129

One can note by comparison the approximation,

C , (5.4)

from the previous chapter, where the exact k  = 0 result of mn+i = 90 C is modified to 

account for the k * 0 effects on the representative strand concentration now given by the 

local concentration scale, 0O+, and the introduction of the proportionality factor, B„. Here, 

Qo and B„ are functions of time only for a cloud, or distance downstream for a steady 

source.

It is interesting to note the expression for moments given in Mole et al. (2008), 

which derives from (2.36) in Chapter 2,

m2 =p(afiC0)Ç 1 +
1 V

-1 1
+ 1 c

aC„

m3=p{apcjc A 2+3 —-1 C
aC.

• +
o \

- +  2
V c  V

A  aC. )
(5.5)

which become, for a p  ~ 1 near-source approximation,

Â « fr„ ,C 'Y C . (5.6)

Values of the X„ are observed to be close to unity in Schopflocher et al. (2007). It was 

shown in Sullivan and Ye (1996) that if A„ = 1 in (2.36) then the corresponding PDF is 

p{e)= (i-c)ô{d-el)+ cô{e-e2), (5.7)

where C = C/aC0, 6 ,= (]-p)c  and e2 =d,+ a/JC0■ The two-delta function PDF in (5.7) 

represents the background concentration as an equivalent concentration at 6 X and the 

source concentration as an equivalent ‘strand’ concentration, 02 . That is, the ping, ¡unf —>0
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in (5.2). It is interesting to observe in Sullivan and Ye (1996) and Ye (1995) that where 

there was a prominent bimodal PDF, the two-delta function generally agreed in both 

location and relative size with the two humps. Also, in Schopflocher and Sullivan (2002) 

similar agreement of the two-delta solution was found when the PDF was separated into a 

‘strand’ PDF and ‘background’ PDF.

The near-source (fi~ 1) moment approximation from (5.7) is

A comparison of (5.4) and (5.6) suggests that 

Bn = j5 X j  and ~ ctfiC0.

(5.9)

And from (5.3)

e:=f,

( n \
1 - Æ

/ 2
and

B2 = j + Mif +
f 3

V J  J

(5.8)

(5.10)

Observations in Mole et al. (2008) that the parameters of the generalized Pareto 

density function, that describes the high-concentration range, do not appreciably vary 

over the flow cross-section, suggest that f{d\ x,t) remains reasonably unchanged across 

the plume. That is, a basic pattern of strand concentrations are convected by large-scale 

turbulent motions over the entire cross-section. This notion also has some support from
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observations on the strand-background PDF decomposition shown in Schopflocher and 

Sullivan (2002). The distributed moments shown in Figure 4.17 and Figure 4.18 in 

Chapter 4 appear to support this contention, where the distributed measured moments are 

shown as a linear function of mean concentration near the centreline.

The moments of the EMF from (5.4) are

M ,= is X e ; ) ,  (5,ii)

and from (5.3), neglecting the variation of f(0 ;x,t)  over the plume cross-section, are

M ,= ' i+Vf 2
f ,

M 2 = x | Mi f
r

f 2

'\

(5.12)

J

Table 5.1 Summary of the EMF moments behind the line source

x(m ) ou■—S

m 2/c 02 m 3/c 03 eQ+/c 0 a(3 P

0.15 0.744 0.698 0.755 1.15 1.39 0.81

0.19 0.740 0.668 0.669 1.11 1.43 0.8
0.22 0.773 0.716 0.737 1.11 1.52 0.8
0.5 0.703 0.612 0.598 1.12 0.46 0.19 |

0.7 0.784 0.728 0.735 1.10 0.46 0.34 |

Average 0.749 0.684 0.699 1.13 - -

If we set f  = yC0, y = 1.13, M, = i + £ f
/ ’

yC„, then,
y
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>

2
The important practical point here is the small variation of M\/C0 and M /C0 on the

entire experimental range over which the mean concentration has been reduced by more 

than a factor of 100. A similar observation appears in Schopflocher et al. (2007) where 

J.J < M}/C0 <1.5 and 1.3 < M2/C0 < 2.9. These estimates were made using measured a 

and ¡3  values and the difference in spatial resolution in experiments may have contributed 

to the difference in measured moments.

As one goes downstream when rrf « ( l  -n )g  in (5.2) the roles of /  and g are 

reversed. In this range the moments are

C = (l -  7t)g

>
(5.14)

J

As in the discussion above, if one anticipates, one pattern of non-source fluid to be 

convected across the plume reasonably unchanged and identify the dominant

concentration scale from (5.4) to be 6 j  = g and with proportionality factors
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2?,=

B2 =

and,

M ,=

M 2 =

'  u2 > 
1 + - 2̂V s 2 )

^1+/ V +3s ^
t

{ u2  ̂
l + M2g

s 2 ;
g .

?
r .

One can note from (5.5) that

K  = c 0

M 2 =C0

( , 1 - / ? ^  
a/?2 +

V V2

a 'P % '+ W '( \ - P p ^  + (' ^ +2l )

when, for the Gaussian mean concentration functions in this experiment,

fCndA = % - Q  
J Vn

is used. The comparison in Table 5.1 of M//C0 and M /C02 values for the small values of 

P is quite reasonable considering measurement inaccuracies in values of 0.19 < p  < 0.35. 

In Figure 4.6, the measured value of the EMF moments are compared with the 

exponential fits

n-1

(5.15)

(5.16)

> (5.17)

(5.18)

M , = 0.64 e -1 .6 2x

M 2 = 0.50c"3'29*, (5.19)

M3 = 0.45 e -5.02 *
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That is, the form M„ = B„(e'dxf  and the Bn are a reasonable approximation to the values in 

Table 5.1 that is B„ =(Mr/Con)/(0o+/Co)n provides the average values B; = 0.663, B2 = 

0.536 and B3 = 0.498. The n dependence of the exponential is also quite reasonable. It is 

also interesting to compare the local concentration scale 60+ = 0.94eL58x shown in Figure 

4.16 with the e 162x given for Mi. That is, from (5.11) Mi -  B/0O+ such that Bi = 0.64 and 

0o = 0.94eL62x.

It is to be noted that at least a good fit of the EMF moments are given by ‘power-

law’ as

M x =  0.17x-0'6 ,
>

M 2 =  0.056 x ' u , > (5.20)

M 3 =0.008 X ' 1'85.
J

For the local concentration scales, 0o =  0.26x’°6 for the line source and

do = 3.42x126 for the point source were found. The same desirable features for the 

exponents and coefficients, as were true for the exponential fits, are obtained with the 

‘power-law’ fits.

5.3 The Closure Approximations

It appears in Figures 4.7 -  4.12 and Figure 4.19 that both the convective and 

dissipative closure approximations are validated for the point source experiments. For the 

convective approximation a dominant local concentration scale, 0O, which changes 

relatively slowly as one goes downstream, is rapidly convected across the flow by
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turbulent convective motion as shown in Figure 4.13. For the range of experiments 

considered here, 90* appears to decay exponentially as 90* = 15e 084x with downstream 

distance in Figure 4.14 for the point source and too slowly to monitor for the accuracy 

achieved with the line source. The local concentration scale, as given in (5.4), and 

measured directly from the centreline moments, is also shown in Figure 4.16 to decay 

exponentially as 90+ = 13.35eL21x for the point source. Since the mean concentration

decays as C0 ~ x P/2, where p  (= 1, 2, 3) is the dimension of the Gaussian concentration

+
function, the ratio 6 0 /C0 will inevitably go through a maximum as one goes downstream 

(although this may occur too close to the source to be observable in the present 

experiments), and hence, parallel the evolution of the maximum value of concentration

discussed in Mole et al. (2008). This dependence suggests a quantitative, but minor,

+
structural modification to the solution given in Sullivan (2004) wherein 90 simply 

replaces 90 in (2.58).

In principle, the function 90 is calculated using (5.12) and (2.34) using the 

dissipative closure approximation. Alternatively, one could calculate the a  and ¡3 as done 

in Clarke and Mole (1995), Labropulu and Sullivan (1995) and Moseley (1991). In the 

dissipative closure approximation (2.56), the background threshold concentration r t is set 

to zero. This is seen to be an appropriate consideration here for the near-source (J3 ~ 1) 

experiments and consistent with the discussion in § 5.2 where the contribution from the 

non-source PDF g(9;x,t) is neglected. The solution to (2.34) using the closure 

approximation, with B and rjB independent of x is
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Af„ = Ai„(o)eW ”*'W,
~\

>
(5.21)

= M n{o)- ,-iy 1 -  {n - l)y + (« - l)2y +-' j

where y = (kB /U tjb2)x . For y << (n-1)'1 (in the present experiments the largest value of 

y  is about 0.63)

M ,= M ,(o ) \e - ^ .  (5.22)

That is, 0O = e 2y when (5.22) is compared with (5.11). In the present experiments, the 

Batchelor scale varies with downstream distance (Table 3.1) and it would appear in 

Figure 4.20 that the B does as well (B also appears to depend on n). It may also be 

relevant to introduce a threshold concentration, /J, as was done in Smith (2004), Equation 

(5.21) can be modified to account for the downstream variation of B/r} 2 by expanding in 

a Taylor series referred to the release position such that (5.22) becomes

(5.23)

wherey = (kB/Utjb )ox, and

Bn = M n(o)exp -«(« + l)^j(5A7fi2l  ~  + (b / t]b2\  y  + - (5.24)

where ' represents the first derivative, " represents the second derivative, and subscripts 

‘o’ represents the source location. One is, however, encouraged by the consistency of the 

ratio M„/Co observed in Table 5.1. Using the values of U = 0.2 m/s, k  = 8 x 10'10 m2/s, 

tjb = 0.016 & 0.025 mm and B = 0.015 & 0.055 the point source experimental range of y

= (kB/Ut]b2) x is calculated and found to be between 0.12 and 0.63. Since we do not have



137

a very good measurement of B for the line source measurements, we have assumed the 

same values of B from the point source data in order to calculate y  for line source. 

Therefore, using U= 0.1 m/s, rjB = 0.01 & 0.016 mm as a range and the same B values

(0.015 & 0.055) as the point source measurements, y  is found to be between 0.18 to 1.2. 

In order to estimate the exponent constant, £  evolved in equation (5.22) (as e 2y ~ e^x, x is 

the distance in meters downstream from the grid), by using the values of y, which 

provides an estimate of 0.5 < £< 0.7 for the point source and 2.4 < £< 3.4 for the line 

source measurements. However, the constant, C should be analogous to the measured 

exponent constants shown in Figure 4.16, where £ = 1.21 for the point source and (  ~ 

1.58 for the line source.

In the a-P description of (2.36), the a(x) is initially unity, reaches to a value, 

greater than 2, and ultimately returns asymptotically to a value slightly greater than unity. 

The P(x) is initially unity and monotonically falls to zero. Values of are typically 

greater than, however, close to unity. The EMF moments, for the Gaussian mean 

concentration profile of the line source (5.17) can be written as

M. 1
C„I = V 2 +A'

a  • 1

>

M
C.

\ = - L  + a 2p % 2+ -^ a p 2{ l -p )+ ^ (2 p -3 ) ,
S S

(5.25)

and as p  -» 0, M]/C0 ~ 1/V2 and M2/C 2 ~ 1/V3. These asymptotic moments are 

reasonably close to the values shown in Table 5.1. The Beta functions, using the 

asymptotic normalized moments, are shown in Figure 4.5 for comparison.
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It is interesting to note, in comparison with (5.20), the special form 

M „ ( r ) = M » e - ' ;  r  = ^ ,  (5.26)
n,

where t is the time and fjB is a representative average strand length scale comparable 

with r]B, found in Sullivan and Ye (1997) The result in (5.26) is for a model of the 

concentration field texture that consisted of widely separated strands with the Gaussian 

concentration distribution across them. In (5.26) the simple replacement of x = Ut and 

rfB = rjB/ ^ , where £ is a constant, facilitates the comparison of (5.26) and (5.23).

The a-(3 moment prescription (2.36) has received experimental validation over a 

variety of flow and source configurations of continuous scalar contaminant released in 

steady flows. In Chatwin and Sullivan (1990), analysis was provided for a wide range of 

flows including jets, wakes, and plumes in homogeneous turbulence and both smooth- 

walled and rough-walled boundary-layers. Additional confirmation was given in Moseley 

(1991) and Ye (1995) with reference to data from line and point source plumes, 

homogeneous shear flows, buoyant jets as well as data from a cross-flow when a buoyant 

jet is inserted into a smooth-walled boundary-layer. For the most part, the distributed 

second moments have been used for validation. Other notable data sources used to test 

the applicability of the a-ft prescription include Stapountzis et al. (1986), Kamik and 

Tavoularis (1989) and Papantonio and List (1989). The direct validation in the 

atmospheric boundary-layer (or even for a cloud in the laboratory) would require 

measured, distributed moments, which are not available.
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The expressions for the normalized moments have the advantage that they can be 

verified using an isolated fixed-point measurement. That prescription, normally using 

kurtosis and skewness, has been validated in the atmospheric boundary-layer over 

different stability classes (Mole and Clarke 1995; Lewis et al. 1997) and for clouds of 

different densities in the laboratory including the presence of fences in the flow; some 

with crenellation, some without (Chatwin and Robinson, 1997). A remarkable feature of 

the measurements is the very narrow range of observed values of the coefficients. 

Chatwin and Robinson (1997) presented a table of the results for the aforementioned 

cloud experiments where 1 < <24 < 3 and 1 < < 3. This range essentially covers the field

experiments in the atmospheric boundary-layer as well and the present experimental 

values are shown in Chapter 3.

In Schopflocher and Sullivan (2005), it was established that the result given in 

(2.37) for the normalized moments derives from the a-fi moment prescription given in 

(2.36); that is the observation of (2.37) validates (2.36). This connection is also discussed 

in Mole et al. (2008). In that paper, the well-controlled measurements of a plume 

diffusing in grid turbulence were examined and the slight variations of the coefficients 

were observed to be consistent with the a-fi prescription.

We notice that if (4.4) were to apply everywhere, using (2.33) and 60+ = yC0 will

yield

mn+\ _ D yn —
d  rt+I n* nn+1 (5.27)
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That is, the moments of the EMF (as shown in Table 5.1) are directly given by the centre­

line moments shown in Table 4.1. With the introduction of a factor, £ f, to take into 

account the fact that a representative ‘local concentration scale’ would be less than the 

centreline when integration over the flow cross-section is carried out, (5.27) is modified 

to be

= Q"-^±!
C. n+\ (5.28)

The values of m2/C0 and m^C0 in Table 4.1 are essentially constant and provide the 

factor, upon comparison with the values Mi/C0 and M2/C 2 shown in Table 5.1, of Q = 

0.749/1.05 = 0.713 and Q2 = 0.664/1.22 = 0.54; where average values of m2/C 2 and 

m^/Co from Table 4.1 and M]/C0 and M2/C 2 from Table 5.1 are used. Thus one can 

expect a reasonable approximation for the EMF using the centre-line moments and one 

empirical factor, Q. The factor, Q, will no doubt vary to some extent with different flow 

and source configurations. The extent of the Q variation needs to be the subject of future 

experimentation.

5.4 Summary

The objective of this study is to provide a relatively simple and robust procedure 

for assessing the evolution of a contaminant concentration field. Consistent with that 

approach the use of two empirical constants to determine the non-dimensional moments 

and hence the Beta function or other simple function representation of the EMF is 

appropriate. The values of M]/C0 and M2/ C 2 shown in Table 5.1 over the distance in the 

present study show remarkably little change in value.



141

Chapter 6: Conclusions and Recommendations

6.1 Conclusions

This experimental investigation was undertaken in a relatively simple turbulent 

flow in order to directly measure the Expected Mass Fraction (EMF) for the first time, as 

well as to validate the two closure approximations that govern in the evolution of the 

moments of the probability density function of a scalar concentration. One real advantage 

of this choice is that the results can be compared with theoretical and experimental results 

established for a line source of a passive scalar in grid turbulence. In particular, Sawford 

and Sullivan (1995) established that the a-P description of the lowest four distributed 

central moments was valid for 16 measuring stations along a 2.6 m wind tunnel flow. 

Further, using those a-P parameters Schopflocher et al. (2007) showed that the EMF was 

well described by a simple Beta function. In the present study, it has been verified 

experimentally that indeed a simple function is not only appropriate, but the function is 

self-similar when concentrations are normalized with the centreline concentration. That 

is, the a-P moments appear to generate a reasonable EMF function. In fact, the 

asymptotic results appear to provide a reasonable approximation even for the near-source 

measurements investigated in the present study. Thus, the result of the self-similar EMF 

and favorable comparison with that of Schopflocher et al. (2007) that was derived from 

the a-P description of the moments, is fully expected to apply to the atmospheric 

boundary-layer. It has also been shown that a reasonable approximation for the EMF 

moments is possible by using the centreline moments and an empirical factor, Q, which 

could be dependent on different flow and source configurations.
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Measurements of scalar concentration are difficult due to the requirement of a 

spatial resolution smaller than the conduction cut-off length which is 10‘3 to 10'5 m in the 

most flows. The surfaces of the scalar concentration, where diffusion happens, possess 

fractal scaling (i.e., self-similar). The concept of fractal scaling inspired us to deal with 

the under-resolved dissipation calculation in the context of this study. Two distinct self­

similar zones were found and are known as the B-zone and the K-zone. The dimensions 

(i.e., slopes of the self-similar zones) were calculated for each zone from the point source 

measurements and it was found that the dimension in the K-zone has a tendency to follow 

the -5/3 slope. That is, it appeared to be similar to the scaling of the passive scalar 

spectrum in the inertial-convective regime (i.e., the Kolmogorov -5/3 slope) for the first 

order of moment.

The effect of molecular diffusivity is brought into the convective closure 

approximation by introducing a representative ‘local concentration scale’ instead of the 

source concentration, 90, which can be measured directly from the centreline moments. It 

has been observed in attempting to use the dissipative closure approximation that the 

results are sensitive to the physical parameters and, in particular, the dependence of B on 

the distance and order of moments. So, although in principal the moments of the EMF 

(2.34) could be solved for the lowest two moments Mj(x) and M2(x), the uncertainties in 

the estimates of B and ijB would confound the result. Hence, it would appear preferable to

empirically determine the exponent constant, £  for the first two moments of the EMF.
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6.2 Recommendations

An attempt should be taken to measure the cross-sectional plane of a plume 

coming out of a point source by introducing a mirror at far downstream of the source at 

an angle of 45 degree to the flow. This will provide the entire cross-section of the plume 

and the EMF calculations based on the entire cross-section. It would also be good to 

investigate a line source within a laboratory turbulent boundary layer flow. Although a 

direct confirmation with field data will be difficult, one would be encouraged by the 

relative-diffusion analysis of Munro et al. (2003) on the Lidar field measurements of 

Mikkelson et al. (1995) and in particular of the prospect of the utilization of a scanning 

beam as provided in Bennett et al. (1992). The spatial resolution (of about 0.5 m) of the 

Lidar measurements is a drawback; however, it may be possible to use an extrapolative 

scheme as described in Chapter 2 to mitigate this impediment.

Atmospheric dispersion models are the tools to predict the concentrations of a 

pollutant downstream of the source. Such models are employed to determine whether an 

industrial facility will be in compliance with, for example, the National Ambient Air 

Quality Standard (NAAQS) in United States and other countries (Stathopoulos et al. 

2008). The dispersion models, which have been approved by Environmental Protection 

Agency (EPA), mostly use the Gaussian equations, are appropriate for the far distances. 

The ASHRAE model is reliable for predicting dispersion at near fields (Stathopoulos et 

al. 2008). These models are capable of predicting the average concentration at a location 

downstream of the source using the meteorological data, which gives a vague sense of the 

contaminant distribution since the average concentration does not really say anything
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about the molecular level concentration reduction (molecular diffusion). The average 

concentration could be misleading for toxic and flammable chemicals or odor in the 

atmosphere because of the large concentration peaks that are many standard deviations 

beyond average concentrations. These large concentration peaks are usually ignored in 

the dispersion models of any hazardous chemical. The present study should be considered 

as a step forward for the commercial dispersion models in predicting the distribution of 

the contaminant cloud in mass fraction by using the average concentration at a location 

downstream of the source that can be calculated using the dispersion models. Therefore, 

an initiative needs to be taken to make this study (for example, using the far-field 

asymptotic result following (5.25) as an approximation) as an add-on to the dispersion

models.
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Appendix A: Estimation of Turbulence Properties

Defining the length or time scales that are characteristic of the different scales in a 

turbulent flow is of importance to understanding the process of energy production and 

dissipation in the flow. In some cases, a suitable scale can be defined by the physical 

constraints of the flow geometry, for example, in pipe flow the diameter of the pipe is of 

the order of the largest eddies in the flow. In other cases where the largest scale is not 

obvious from the flow geometry, an integral length scale (/¿) can be defined that is a 

measure of the longest connection or correlation distance between two points in the flow 

that are separated either by distance or time (Hinze 1975). The integral length scale of the 

velocity is defined by,

and r is the distance between two points. The Taylor microscale is the largest length scale 

at which fluid viscosity significantly affects the dynamics of turbulent eddies in the flow 

(Tennekes and Lumley 1972). The Taylor microscale (A) is determined by,

(Al)

where, R(x,t) is the autocorrelation function (Figure Al) defined by,

(A2)

(A3)

The Reynolds number based on Taylor microscale is given by,

(A4)
v
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The velocity measurements using PIV are used to compute the integral length scale.

The kinetic energy dissipation rate (fi) is defined by, 

£ = 2v (fa, )2 + (syy f  + (s„ f  + 2 (sxy f  +2(syJ  + 2(szx )2}

du' dv' dw'where, s„ = — , s = —  , sa = —  , and 
dx dy dz

(A5)

1
Sxy 2

du' dv'------ (------
dy dx > S zx ~  «

f du' +
v uz dx j

1
• s- =5

dv' dw’-------j--------
dz dy ydz dx

PIV measurements will permit one to compute only $XX , Syy and s^. The continuity 

equation for incompressible fluids is 

du' dv' dw'V ■ u = —  + —  + = 0,
dx dy dz

(A6)

which is used to approximate the term s::. Both the terms Sy- and are approximated to 

be the same as the term s^. Taylor’s frozen turbulence hypothesis assumes that spatial 

variations of the velocity are fixed and simply advected by the mean flow. This involves 

the use of a local isotropy assumption in order to calculate the average dissipation rate 

( s )  by ensemble averaging in time. The Kolmogorov scale is calculated using the 

following expression,

77 =
j

(A7)

The Batchelor scale is calculated as

7IB =7]SC-'12,

where the Schmidt number (Sc) for Rhodamine 6G is 1250 (Barrett 1989).

(A8)
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Figure A1: Autocorrelation function at a location 700 mm from the grid by using PIV and

LDV.
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Appendix B: Sources of Error and Uncertainty Analysis

B.l Introduction

The errors in experiments have two components: a fixed (bias) error and a random 

(precision) error (Abemethy and Benedict 1995; Wheeler and Ganji 1996). Since a 

measurement can be influenced by several different bias errors the total uncertainty due 

to bias is estimated by using the root-sum-square (RSS) method as follows:

Bx=±jB2+B22+B32+... + Bn2 . (Bl)

As with the bias error, when there are several precision errors affecting a measurement, 

the combined precision error can be estimated as the RSS of the separate uncertainties:

Px = ± j p 2+P22+P32+... + Pn2 ■ (B2)

Once the bias and precision uncertainties have been obtained, the total uncertainty T of a 

measurement can be estimated by combining them as:

T , = j B ; + ( t P , f  , (B3)

where, t is the value of the Student-t statistic for a chosen level of confidence. Student-f 

distribution is used in cases of small sample sizes, to estimate the confidence interval of 

the mean value of the sample for a specific confidence range and for the present study a 

value of 2 is used for a 95% confidence level.

B.2 Uncertainty propagation

In general, a quantity that is being measured is often a function of other measured 

quantities. The Taylor Series Method is applied here to evaluate the propagation of



158

uncertainties of the different variables into a determined quantity. If we consider a 

general case in which a quantity r  is a function of j measured variables X j, 

r = f ( X , , X 2 ,... X  , )  . (B4)

The error in each measured quantity will affect the result by different amounts. The 

expression of the uncertainty of the quantity r was given by Coleman and Steele (2009) 

assuming that the variables Xj and their uncertainties are independent of each other,

T 2 = f  dr ^2 rm 2Ty +X\
\

dr
dX, V + -  +

( dr ^
lx, ’ (B5)

where Tx. are the uncertainty in each measured value X). When the quantity is dependent 

on a product of the measured variables X j\

r = X ° X 2b . . . X ; , (B6)

the uncertainty of the quantity r is (Coleman and Steele 2009)

ZL
r

f  Tv V f  Tv *
a —!

V
+

v
+ . . . +

f  rr \
n -±

V * J J

V.

(B 7)

B.3 Error in the concentration (PLIF) measurements

The uncertainty in a PLIF measurement arises from many contributing factors. 

These include camera noise, laser power fluctuations, attenuation, photobleaching, 

variation in source concentration, and calibration error. Some of them are considered 

negligible in these experiments.

C am era noise: For the CCD camera, the noise levels were reported to have a

standard deviation o f the order of two grey scales (Ferrier et al. 1993). A series of 500
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images were taken with a dark background (camera was covered with black cloth in a 

dark room) to check the noise levels and the standard deviation was found to be of the 

same order. Based on the noise level in the camera sensor, the errors are converted to 

concentration scale (jug/l) for different downstream locations at the centreline of the 

plume. The errors are found to be ± 0.048 /ug/l, ± 0.025 /ug/l, ± 0.04 /ug/l and ± 0.05 jug/l 

at locations 0.5 m, 0.7 m, 1.2 m and 1.8 m downstream respectively.

Laser power fluctuation: The stability of the laser energy was provided by the 

manufacturer (NewWave Corp.), which was 0.59%. Given the linear relationship 

between fluorescence intensity and power of the incident radiation, the resulting 

uncertainty in measured concentration or intensity is also 0.59%.

Attenuation: As the laser sheet passes through water and fluorescent dye, it will 

attenuate as its energy is absorbed by the fluorescent dye. The attenuation correction was 

carried out using Beer-Lambert law (equation (3.6) in Chapter 3). The error in using 

attenuation correction is calculated to be 0.005%.

Photobleachins and thermal bloomins: Photobleaching can have an effect on the 

detected signal as the fluorescence emitted by a fluorescent dye will decrease under 

constant laser irradiation. Thermal blooming can occur if the dyed fluid absorbs energy 

from the laser causing an increase in temperature. This temperature increase can lead to a 

density differences in the fluid and also possibly cause refraction gradients that will affect
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the fluorescence signal (Lavertu et el., 2008). In the present study, the effects of 

photobleaching and thermal blooming are considered to be negligible.

Calibration error: The calibration method described here is based on the fact that 

there is constant flux through each cross-section of the fluorescent plume. Since the 

calculation is based on mean parameters, this reduces a great deal of uncertainty in the 

calibration procedure. The uncertainty involved in the calibration curve is considered 

here and the standard error in the calibration curve (i) is calculated using the following 

formulation (Larose 2006)

5 = -¡M S E  =  J  -S S E  , (B8)
\ n - m - 1

Where, MSE is the mean squared error, SSE is the sum of squared errors, n is the number 

of sample and m = 1 for linear regression. The estimated error involved in the calibration 

curve is found to be 2%.

Among the sources of error described above, the errors in camera noise and laser 

power fluctuation are considered to be bias errors and the errors from attenuation, 

photobleaching and calibration are precision errors. Table B.l represents the sample 

calculations of bias and precision error estimations for a location 0.5 m downstream of a 

point source. The total error at a location 0.5 m behind the point source is calculated to be 

± 0.085 fug/l. Similarly, the total errors in the concentration measurements are calculated 

for further location and found to be ± 0.05 jug/l, ± 0.03 fj.g/1 and ± 0.025 jug/l at 0.7 m, 1.2 

m and 1.8 m downstream respectively. Errors involved in the concentration
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measurements are also estimated here and found to be ± 0.0008 jug/l, ± 0.0006 /ug/l and ± 

0.001 fig/l at 0.15 m, 0.5 m and 0.7 m downstream respectively.

Table B.l: Summary of bias and precision errors at x = 0.5 m behind the point source.

Bias Limit

Camera noise
± 0.048 j-ig/l = ± 3.0 % 

= ±3.0/100

Total Bias Limit

_+ li 3 V i y0 . 5 9 V  
“ Vuooj  1L 100 J

= ±3.06%
Laser power 

fluctuation
±0.59/100

Precision Index

Attenuation ± 0 .005/100
Total Precision Index

 ̂ If. 0 . 0 0 5 V  v  2 V 
VV 100 )  \  1 0 0 J

=  ±  4 .0  %
Calibration ± 2 .0/100

Total Uncertainty - ±  J f 3 ' ° 6 i  + i 4’ ° ]  - ± 5 .0 %  - ±  0.085 jug/l
V U 0 0 J  U 0 0 J

B.4 Error in the velocity (PIV) measurements

The velocity vector obtained through an interrogation area for any flow conditions by the 

PIV system defined as: 

xu = —r
' , (B9)

where x is the average pixel displacement of the particles in the interrogation area, t is the 

time between the two laser pulses and r is the ratio between the object size and the image
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size. In the case where the velocity vector is not rejected by one of the filters it is possible 

to estimate the measured velocity error in the following equation (Gurka 2003):

Aw _ Ax du Ar du At du
u u dx u dr u dt _ (BIO)

The pixel displacement, Ax, was estimated by Westerweel (1997) to be 0.05 pixels for a 

32 x 32 pixels interrogation window. At is assumed to be as one thousand of the time 

between the two laser pulses (At ~ 3/js) based on Gurka (2003). Ar is considered to be the 

same as the calculated value in Gurka (2003) that is lxlO'6 m/pixels. The total error is 

calculated based on the following experiment parameters: w = 0.2 m/s, t = 3000 fjs, x = 5 - 

6 pixels, r = 3.4x10‘5 m/pixel. The error in a velocity measurement is estimated to be 

-1.5%. A rule of thumb of calculating the error in velocity measured by PIV was given 

by Westerweel (1997) that is 0.05 to 0.1 pixels for a 32 x 32 pixel interrogation window, 

which implies a relative measurements error of about 1% for a displacement that is one 

quarter of the interrogation window.

B.5 Error in the closure approximations

In order to calculate the propagated error in closure approximations, equation 

(B7) is used. In the convective closure approximation, the terms d<uT n+l>/dx and 

d(y< vTn+1>)/dy contain highest probable error due to the combined effect of velocity 

and concentration. The errors in the terms u T n+I and v T n+I are calculated and assumed 

to be the same as the error in the gradient terms based on the analysis given in Topping 

(1957) that is the maximum error in a quotient is the sum of the individual errors, where
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the error in dx is negligible compared to the closure terms. The governing formulation 

based on (B7) is

Tr

r

f  t  V  (  T
(« + U —  + '

r \

-, V

(Bll)

where, Tr is the error in the product, 7>and Tu are the errors in concentration and velocity 

measurements. Table B.2 is prepared with the estimated errors in the product for different 

downstream locations for 3 moment values (n= 1,2, 3). The values in Table B.2 are used 

to give the error bar in Figures 4.7 -  4.12.

Table B.2: Summary of the error estimation in the convective closure terms 
-----—— "
Point Source

n = 1 i n = 2 n = 3

x = 0.5 m 10% ; 15% 20%

x = 0.7 m 11% : 16.5% 22%

x = 1.2 m 16% ; 24% 32%

x = 1.8 m 18% : 27% 36%

Line Source

I x = 0.15 m 8.5% i 12.5% 16.5%

x == 0.5 m 9% j 13% 17%

x = 0.7 m 10% : 15% 20%

The uncertainty analysis is kept limited to the convective closure approximation 

calculation due to the fact that the most significant error is involved in only the closure

calculations.
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Appendix C: Further Details of the Experiments

C.l Calculation of particle relaxation time for Silicon Carbide

Both the LDV and PIV rely on scattering particles suspended in the flow to 

provide the velocity information for a continuous medium. Therefore, the accuracy of the 

velocity field depends on the capability of the scattering particles to follow the 

instantaneous motion of the medium (Melling 1997). To determine whether this particle 

size is suitable, the Stokes number was evaluated (AbuOmar 2002), St = vp/ r f  , where

rf  is the time scale of fluid motion and rp is the particle relaxation time. The particle 

relaxation time is defined as

T
P

P p d P

18 r f '
(Cl)

where p p is particle density, dp is particle diameter, p  is the dynamic viscosity of the 

medium, and /  is the ratio of the actual drag to the Stokes drag and can be calculated as,

/  = l + 0.15Re°687 ; Rep = pUsdp , (C2)
p

where p  is the fluid density and Us is the slip velocity and is approximated as the

maximum extreme velocity fluctuation (i.e., three times the maximum standard 

deviation). Particles with Stokes numbers much less than unity have ample time to 

respond to changes in the flow velocity. The particle relaxation time of Silicon Carbide 

for the present flow condition was calculated to be -0.35 milliseconds (ms), which can be 

comparable with the response time of a particle (-0.4 ms) that has been calculated 

applying drag force acting on a sphere (Holmes 2004). Thus, a conservative estimate
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(St < 0.1) based on the particle diameter of 2 pm yields that the particle will follow 

fluctuation of xf  > 3.5 ms or 285 Hz.

C.2 Resolution in simultaneous PIV and PLIF measurements

As it was mentioned in Chapter 3, the CCD cameras had an array of 1600 x 1200 

pixels. In order to get velocity measurements using PIV, the PIV images were divided 

into regular 32 x 32 pixels interrogation bins with a 50% overlap, which gave a total of 

7326 velocity vectors on a measurement plane in an array of 99 x 74. For concentration 

measurements, the PLIF images were divided into regular 4 x 4  pixels interrogation bins, 

averaged over the 4 x 4 pixels, which gave a planar array of 400 x 300 concentration 

measurements. Therefore, for every 4 x 4  concentration array, there was a velocity vector 

representing the instantaneous velocity over the area of 4 x 4 concentration array (see 

Figure 3.21b). In order to compute the instantaneous concentration flux from 

simultaneous velocity and concentration measurements, the velocity was multiplied by 

the concentration value that was averaged over the centre 2 x 2  concentration array. The 

resolutions of the PLIF measurements were 0.13, 0.14, 0.17 and 0.18 mm at distances 

500, 700, 1200 and 1800 mm downstream of the gird, respectively, for the point source 

measurements. For line source measurements the resolution in PLIF measurements was 

0.2 mm. It is evident that the spatial resolution in PIV measurements was four times the 

spatial resolution in PLIF measurements.
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C.3 Spatial calibration of PIV and PLIF measurements

The spatial calibration of PIV and PLIF measurements was done by blocking the laser 

sheet with a black strip of thin metal (dimension was know) at the bottom of the water 

tunnel, which would create a dark strip in the PIV image when the PIV camera was 

lowered vertically from the centreline of the tunnel to the bottom wall of the tunnel. The 

lowering was done carefully so that there were no displacements of the camera in any 

direction other than vertical. A calibration image is presented in Figure Cl.

Figure Cl: A spatial calibration image for PIV measurements.
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