Western University

Scholarship@Western
Digitized Theses Digitized Special Collections

2009

TOWARDS AUTOMATING POLICY- BASED MANAGEMENT
SYSTEMS

Abdelnasser Hassan Ahmed Ouda
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Ouda, Abdelnasser Hassan Ahmed, "TOWARDS AUTOMATING POLICY- BASED MANAGEMENT SYSTEMS"
(2009). Digitized Theses. 4022.

https://ir.lib.uwo.ca/digitizedtheses/4022

This Dissertation is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4022?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4022&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

TOWARDS AUTOMATING POLICY-

BASED MANAGEMENT SYSTEMS

(Spine title: Towards Automating Policy-Based
Management Systems)

(Thesis format: Monograph)

by

Abdelnasser Hassan Ahmed Ouda

Graduate Program
' in
Computer Science

A thesis submitted in partial fulfilment
of the requirements for the degree of
Doctor of Philosophy

School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

©Abdelnasser Hassan Ahmed Ouda 2009

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Joint-Supervisor Examiners
Dr. Hanan Lutfiyya Dr. Michael Katchabaw
Joint-Supervisor Dr. Roberto Solis-Oba
Dr. Michael Bauer Dr. Nicole Haggarty
Supervisory Committee Dr. Jerome Rolia

The thesis by

Abdelnasser Hassan Ahmed Ouda
entitled:
Towards Automating Policy-Based Management Systems
is accepted in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Date

Chair of the Thesis Examination Board

il

Abstract

The goal of distributed systems management is to provide reliable, secure and efficient
utilization of the network, processors and devices that comprise those systems. The management
system makes use of management agents to collect events and data from managed objects while
policies provide information on how to modify the behaviour of a managed system. Systems as
well as policies governing the behaviour of the system and its constituents can change
dynamically, The aim of this work is to provide the services and algorithms needed to
automatically identify and deploy management entities and be able to respond automatically to
both changes to the system itself as well as to changes in the way the system is to be managed,
i.e., changes to the set of management policies or sets of management agents.

One significant challenge in the use of policy-based management systems is finding efficient
mechanisms to address and simplify the gap between expressing and specifying policies and an
actual configuration of a management system that realizes and makes use of policies. Little work
has been done to define how the monitoring operations are to be configured and updated
according to the policies. This Thesis proposes a general architecture for a policy-based
management system for distributed systems which allows for expressing and automating the
deployment of a wide range of management policies. The proposed solution is based on the
matching between the management operations that are carried out by the management agents and
the policies. The matching process relies on the attributes that the agents can monitor and the
extracted attributes from the components of the policies. One major contribution of this Thesis is
to build the policy model and services on existing management services found in commercial
management systems. The work of this Thesis also focuses in finding87 strategies for selecting
~ and configuring agents to be used to keep the time of a policy deployment low.

The Thesis introduces the Policy-Management Agent Integrated Console (PMagic)
prototype. The PMagic prototype has been implemented to provide a practical validation of the
policy based management system model proposed. The approach, architecture and prototype have
demonstrated that it is possible to create a more autonomic management system, particularly one
that can instantiate agents to react to changes in sets of policies.

Keywords: Distributed Systems Management, Management Agents, Policy-Based Management,

Management Configuration, Events Monitoring.

iii

Epigraph

Dedication

to my family

Megjel e

Acknowledgments

[am most grateful to my supervisors, Prof. Hanan Lutfiyya and Prof. Michael Bauer. They

were always ready with support, advice, encouragement and valuable feedback.

Thanks to David Wiseman, the Computer Science Department Systems Administrator, for
his great help specially the installation and trouble shooting of the SNMP work. Thanks to all of
the systems group members; Dave Martin, Scott Feeney, Bruce Richards and Jim Thorsley for
their timely support. Thanks should also go to the administrative staff; Janice Wiersma, Cheryl
McGrath, Angie Kramp and Dianne McFadzean for their friendly treatment, energetic and hard

work.

I would also like to express my appreciation to the examination board for their willingness to
examine my work in this Thesis; Dr. Michael Katchabaw and Dr. Roberto Solis-Oba of the
Computer Science department, University of Western Ontario, Dr. Nicole Haggarty of Ivey
School of Business, University of Western Ontario and Dr. Jerome Rolia of Hewlett Packard

Laboratories (HP-Labs).

Last but in many ways most, I must also express a great thanks to my wife, Nesrin Ouda and
‘my sons Hassan, Ahmed, Ibrahim and Majd Ouda. They have always stood by my side during the
good times and the bad. I owe them everything. This acknowledgment would not be completed
without a word of appreciation to my parents for their continuous encouragement throughout my

studies.

vi

Table of Contents

Certificate of EXaMINAtiON.......cccvcivirieiiiniinnniiiiiiiiii et st sassssbsassssassss

ADSITACL. ...c.virveeieerenieinrere et es e e s e e st s bbb s bR bR e e RO RS sE e R s bR e b e b b e bbb b s R b e e b as
EPIZLaph ..ottt b s s e s b sasae e iv
DIEAICALION.venerrreererrereersesaeaesrerstrcrsecestsssaseassssssesarsversssssssstsstonessesstsssesnesssestsssissirnsssersessessasnssessesssse \4
ACKNOWIEAGIMENLESoouieriirierireiiitresecieceetesee et ese st s bbb st srsaes e bosassssbeshs e bssssbsnebenes vi
Table Of CONLENLS.....c.cviiiiiiiiiiriri e s s ae s sas e sa s n s s nens vii
LSt Of TADIES ...ccvevrevcererrrernriirisese st ccesesneesresseneb st a et e s r s bbb s bbb sa b e s b bR e sR e n e e v e e AR e s xi
LASE OFf FLZUIES...cveiveviiecieinertenseseiseieuecacouessnnesssssessssssssssossessssssanssessastssonse sasesessennensetssessesessasessensnen xii
Chapter 1 - INtrOQUCTION ...cuiierieierrieriesenceesesesteste et esbess et b st esbebssasbessestenssasssessercssasssnsnses 1
1.1 Policy-Based Management SYSIEIMScevvriecriceenernarirmnmesmsmrsreresessessseesesssssmsmsnmsessersorssasssssene 1
1.2 Problem Statement...........ocucvierrreirnrniosesintsinenicint it ssbess st sassssesas s s ssaseanissssassnssssssareanes 4
1.3 THESIS STAIEMENLccveeriiiereerieriereeererestenriretestass e et bsnestsbesestssberesasssbssbessessstansssssssnsarasesesen 6
1.4 Thesis CONIIDULIONScovevieereririerinrerseerrerceretsstes s eseasts et sassssesbestonssssisbssssaestesnasosesssrsanssns 6
1.5 TheSis OULINEc.ccvrmrrerererieniniteniere ettt st rs s e es s esbens b ea s nesscreaes s nasesansanans 7
' Chapter 2 - Background and Related Work..........ccocoveniniiinminminiesnnsesses 8
2.1 Management SYSIEINSocvvveeieriirersmeisisimmiristoinisiorsinsiesiirssensssetosassesssssssorasssressssassaesssssesssenns 8
2.2 Policy Management FIamewWOTKSc.ccoverrireinrmiiiciicnmiiiiie et enenesisssssessssseseses 10
2.2.1 Policy Description Languagec...ccocveienierinnniiiinoiiiieiississsssisssssssins 12
2.2 2 PONACT ...ttt ree e st b e bbbt e s s s bbb R e b R bR et 14
2.2.3 Policy Framework Definition Language............ccccccvinnnnee. fererereare et s i e n et betens 16
2.2.4 Automatic Computing Policy Language..........cococcirmiriircnironnineinnnnissnssensienens 19
2.3 Policy Refinements and SLASccccevrniiiienieinenenineiiniiesisseseseesissssissesessssssssseessssnsssanessens 23
2.5 POHCY CONTIICES ..oveveriririenrreenienierenenissesiasosnesssensssnssssssisssesssesssssssssssssssssssssnsssasssnssisssnensssssssansans 25
2.6 Commercial TOOIS ...c.iecvrrcereiicnnerentninst oottt sbe s s sas s sers s sbasssnansass 28
2.8 SUITIMATY ... coiiiereirirerieereriersennerssesessresasesestssssstsseesesassssosssssstsressesss ssassesssssssssssennensosmsentontsessnenestess 29
Chapter 3 - A Policy Information Model..........ccccoriiiiniiniiiinimins 30
BUL EVEIS ..eeeerteesericsnsenccsestnnensansrnessssssssssstssssessanssenssssstsssssonssssnasissonsstsssssonssassesnssserasssssssssatsnsoses 30
3.1.1 EVent DEfINtiON.c.cccceerurererernieerintsirtetsrinsisinsrisississnstssesnesinsssmsssssesrsnsssrssssassssssorsases 31
3.1 2 EVENt AHIIDULIESoecvciiiiiniiiiniiie sttt oo shbs s sssab s e be st ss b s s s eb st s basbesasares 32
3 1.3 EVENL OPETAOTSo.eciceceneeereisesienienmesess e rsssas st s sse s s bbb sassass b s asas bbb s st bon s 32

|
3.1.4 EVENt SEMANLICS.evvveveerenreresrrossreriesiisestssssissssssssimsssssssssssssssesstsssssssssssssssssasssssssnssssssass 33
3.2 Policy Information MOEL.........ccccvueceiremriniiiiiiiiinesssssnssisissorsmsianessnssscsssasesesssns 36
3.3 CRApIEr SUMMATYcuouecererrrirersicrrarassrisssisssssiesesssisssssissss s b st s st st s s tesenssastsasbatasassssasansessases 41
Chapter 4 - A Model for Policy Based Management...........cooueuirininenmeeninnnsoenennenienneneiescsenes 42
4.1 Proposed PBM System ATCRItECIUTEcvevvreiiriemniiiriiinrersserstesnrisisennsssnssnressssesscssassssnsass 42
4.2 A Roadmap for Automating PBM SySteImns..........cccocivinmmmiininn et 47
Chapter 5 - Management AENLS........occcuvviuimiiiimsiirenmriinnsstosssestssoseensssesesssrssssnssssestossassessussens 48
5.1 INTOAUCHION ..ouvvvrrenienreririreiiesreneteesseseseessesesesasseessstsetssassessorstencessossssessansnsensssssasessssasassesssnass 48
5.2 Management Agent Information Model ..o 50
; 5.3 Management Agent DESINccocoviriiiiiinciiniii e 54
5.4 Management Agent COMPONENES........c.ccovvermiisiininisismmisiisnstoiensteressssssssesesvasssssnsssessassssessssssssses 56
‘ 5.4.1 An Event-Representation COMPONENt.........ocuuvverriiermimorerninsinsinsiiiieessnnesescsesesnssnsnes 56
: 5.4.2 A Policy-Representation COMPONENL...........ccumvuvimminiinininieisisssstsissenssore st ssassassssonsnes 57
| - 5.4.3 A Message-Representation COMPONENLovuvimmmimiisisninnmisnisisssstssisssrs s sseesse 61
5.4.4 An Action-Representation COMPONENLcovviimimiviriivinisiinmeieerisisssisainssssesssasesenes 62
§ 5.5 A Management Agent INEIFaCE.........cccvervrrrrecrenrrcrcrirencseineiierssssrse bttt retsssssans 62
5.6 Types of Management AZENLSc.cvviverivereiiuimisisiiniesiaeniiesiessssssssssassssssssssssestsssessasssansscnss 63
5.6.1 MORILOTING AZENESccvcceierieeererieieseriisieecsscsteressisrsstiras et ats ssasreetssssssessassessassasssnssnesssosess 63
5.6.2 Dynamic Management AZENLS.........c.ccoviirerreimsisresiiruessonmmsssorsesesarssnssssssessarsssssasasssssssasess 65
5.6.3 Manager AZENLS........cccceeiiinieimsiiisimniisiecsiississessasresassssssessssssstesssesssstassenssssasssasssssannes 66
5.6.4 A Manager-Agent Procedure for Handling Events...........cccccoiimmnniiininn, 67
5.6.5 Relationship between the Different Types of AGentsccovveriienivvinicinisineeinnnns 69
5.7 AENt MALCRET ..ottt s e s s e e e 70
: 5.7.1 FINAING ARENLS ..o v rerrereeruieeaenssemcesemesscesesseesersssssssssse s sssssssssssesssssssessssssssssnsessasssssanses 70
| 5.7.2 Finding Agents INSANCEScoevreerrermcucerenicieresinise sttt ssasssssssssenses 74
5.7.3 Configuration of Management AZEnts...........ccoveruieviniiininciennennireresins s sssssssssessssans 74
5.8 DDISCUSSION.coverirrrsierireresiaessenseteseseeersssrsesesssestsstsrssssstonsststeststatssnsstareseassstsnsatasersasssnsnssnssssessasans 77
5.9 Chapter SUMIMATIYcccoormimiiineiiiisieriniis st s st sb st et e s s ssas s e basasnstasenesssssonnrestssonsasas 79
Chapter 6 - Mapping MEChaNiSIMcccieeririvininriniiiiiisiisse st sessssesesssssssssssssesesanses 80
6.1 INETOAUCHIONoveucveiiecereeniereresrenresressunesstebsasss b s ssbsan b b s b s st s b s b e ot obsRasbsan R e s b bsbaanabab e s abaesasnban 80
6.2 Event FOrmat Mappingccccovviernorereeraresesirmsensinercimsensisesussmeresssssissssssssssssssssesssssssasssassesassns 81
6.2.1 Event Format Mapping for Primitive EVENtsccccovvvvvciiniiicnnmnninienonnn 81
; 6.2.2 Event Format Mapping for Composite EVEnts...........coo.viivieminniinniniiniinisssenssines 84
6.3 MBPDING POCIES ... 9
g ..
viii

A M A s 0 VS .

6.3.1 Mapping Policies to a Rule-Engine Platform............ccocovnriiiiiiniiiiinicensisnnenns 91

6.3.2 Constructing Composite Event Detection Rules..........c.coooccoviiiiiniciinnininnnens 95
6.3.3 Mapping a Policy to Management AGENtS...........ccoeiimiiniiiiiniiienininnennieninissssisssenes 101

6.4 DIHSCUSSION.coveurerrierienrerieinicrrstessinessasesestesessseetsrestsastessstsressbensshstsassssresesnsssbesessssetsbosssesssssessasans 102
6.5 Chapter SUIMIMATYc..ccovireirierirrnresiinsertrestesseesasersta st s bessbsr st sir s bbb st 103
Chapter 7 - Implementation and the Prototype..........ccvcvniiiininiiiniciisenne s 104
7.1 PMagic Policy Specification and Agent Definitionscooceviiiermnneininenenisinninesinensnne 106
7.2 PMagic Agent MatCher ...ttt 114
7.3 PMagic Mapping MEChAMISINScc.ccecovrririmcnrmsinissmisnisiniisesisssssssssessssssssssese s ssssssssnsnses 115
7.4 Distribution Mechanisms USed........c..ccviriineiiiiiiiiniiniiiniiniiiieies e sssnascessssons 115
7.5 PMAGIC MANAGETScoveviiirecrieisriiesiiniistssesesisesssssisssiesssissessassesb st sssasassssssesasssassssssssessssssasassasanss 124
7.6 PMagic Event Common ARHDULESccccoiureemeniieriininioisssisinsesesssssssssssisssssssnis 125
7.7 Chapter SUMIMATYccccrtrmieireersrneriiesiiieimitesie s ssessesassessssssssssaesssssssssssssntorssssssasassassnes 125
Chapter 8 - EVAIUALION..........ccoviveeeieeirenrier ettt e b e b s s s nsa st nese o sens 126
8. 1- Experiments ENVITONMENEcocvenrivenrireniiiiiiiiiiiciii i s esieressssssressssssnsssnsasensassons 126
8.2 Basic Experiments Using an Existing Management Systemccocceviinniiennonencsnonneneen 127
8.2.1 Deployment Policies of Primitive Events as Domain Size Increases..........co.voceiiconianiens 128
8.2.2 Deployment of Policies of Composite Events as Domain Size Increases............cccoceunne. 130
8.2.3 Enforcement Of POLCY RUIEScc..cvevrrrevirmirreininirr ettt ssnsssssasssssens 132
8.2.4 Discussion of Experiment RESUISccccccevririvniiniiiiinicriisneessssssseenssssnenes 133

8.3 Alternative Strategies for OptimiZationc..c.cccviiiiiiiiiniiniiniii ettt saeenes 133
8.3.1 Experiments on AGent REUSE......c.ccomeriiiiiiiiiiiisne s ssnsssssanens 134
8.3.2 Experiments on Policy Re-Enforcementccocoeivivienienininniinnninom. 135
8.3.3 Use of Management Agents as Managers..........ccovveerecnvenneee s es 136
8.3.4 Discussion of AIernative SIrategiesc..cccvverieriirininiirtnsssiniesesnosessisssssses 137

8.4 Final Discussion and Conclusions DIaWIcc.ccccvivinininininiiiissssissiosssesmsossssssisersessssssses 138
8.4.1 Mapping Policies t0 TIVOLi......coccoveererireniimisiniiiiinsissieniesistsnssesrnstsosssensessssssessssannes 138
8.4.2 Identifying Management Agents to Support POliCiesccovivvveiriimicvinnniviiiinen, 138
8.4.3 Updating Management Agents to Adopt Policy Changes............ccooerrneerniiiinnnninnn, 140
8.4.4 Management Agent Instances REUSE ..o 140
8.4.5 Manager AZents USAZEc.oviviiiominiinninensinnnsisiisieninissisanesissssissnessssssesassasasessaseses 140
8.4.6 Limitations of Experimental ENVironment............cccoccvvreririnmrmisnnnsmismsnicsineseeninenns 141

8.5 CRAPIEr SUMIMATY ..c.cvveerersicnirnccrenmisietsmsssstoeassttessssessenssssssessissesssssessssssssers s rassonsssssssssssons 141

ix

S

Chapter 9 — Conclusions and Future Work

0.1 CONCIUSIONS ..cvrivirererureirrntrreriisaennirenssresastsessisessersrestsestessstsssssrsssassassnssesestsnsrssssesessrensssasssassensons

0.2 FULUIE WOTK.....oiiiiiiiiiiiei ettt ettt s st st sab et sra e ba b s an b e esreadsuasbsnbas

RELEIEIICESvooviereeiiirieiert et bbb s e e e s b e s b e e s bessasabsassuanaas
Appendix A: The POliCY GIaIMATcoviecrenienenrieiieiisionessresissseisisssesssissnsssssssissississsesssssresses 165
Appendix B: The Example POHCIES........ccccoviemicinniiiiiiiierinniict e sssasnessseses 166
Appendix C: The Implemented Monitoring AZENts..........cocorvrriiririniisicvennsnsisenneiensssenns 184
Appendix D: Tivoli TEC Rule Templates..........c..cccvreieevcrmnsnininniniinsiniennssssssssns 188
Appendix E: Algorithms Used to Implement Event Operatorscccocceviirninennninniiiininienennns 195
Appendix F: Experimental TIMES..........cccooriimiiiininniiininsiseessesessesesssissssssasssseses 200
202

Table 5.1:
Table 7.1:
Table 8.1:
Table 8.2:
‘Table 8.3:
Table 8.4:
Table 8.5:
Table 8.6:
Table 8.7:
Table 8.8:
Table 8.9:

Table 8.10:

List of Tables

Example of the Values the Agent Class Attributes may Hold..............coucuieenec,

PMagic Event Common AttribUutes..........ccceveveririnnieineieinesinssnnnssssssnaasess 125
Deployment Time for Two Different Policies of Primitive Events................... 128
Deployment Time Breakdown for Deploying cpu_Usage policyccuuueee. 129
Deployment Time Breakdown for Deploying process_Monitor policy 129
Deployment Time for Two Different Policies of Composite Events 130
Deployment Time Breakdown for access_Monitor policy.......c.cccevnrerrrnirnnecs 131
Deployment Time Breakdown for load_Control policyccccouviivnnrinioncnes 131
The Enforcement of Policy Rule by using Tivoli.......ccvvviinivninniennnenienennne, 132
The Reuse of Existing Agents’ Instances in Policy Deployment...................... 134
The Re-Enforcement of Three Different Policies using PMagic 135
The Enforcement of Policy Rule by using Management Agents 137

- N

xi

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 2.10:
Figure 2.11:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 4.1:
Figure 5.1:
~Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 6.1:
Figure 6.2:

Figure 6.3:

List of Figures

Common Management ATChiteCtUTE........cocvuvrurnninineiiininsicesscstne st 11
Policies Written in PDL First Construct..........c.ccverinniesrnnieninnienninnnescinens 13
Policies Written in PDL Second COnstruct............ccovvvviiirinmineenesmnninmcesecisee 13
Ponder Obligation Example PONCY.......ccooviininmiiiiciiniiesscicininane 15
Ponder Policy Type Example Policyccovievnmniiniiniinnninicenesenncsannesinnes 15
COPS ATCRITECIUTEcvvevieeerrrricrrcci i sss st saenane 18
ACPL EXample PONCYcccouvuvueiriinciiiinininenienisise s sesiessssssess s senene 20
PMAC ATChItECIUTEevereeeriresnciinencssisristisnsinnistsimreesssesrasssssssnsssssssessnsanesscanes 21
PMAC AUtonomicC ManageTvcvveeireniiiesnnerirersniismiieissssisnserseesesssssssones 22
Relationship between policy refinement techniques..........ccocooveenniineisiccinnnnns 24
Classification of POliCY CONfIICESo.cvveveeenreriniininncnnneiniisenens e 26
The Semantics of the Event Operators Over a Time Window...........ccovvveivininne 35
Policy Information Model..........coociiiiinminnininine e 37
Domain Information Modelcccoivieciinnniiiiisssssnesn 38
EventExpression Information Model............ccoveeiiiiniieninnnneenscncscnenes 38
Proposed PBM System ArchiteCturecccoevvnvinninicnnsssnenesienensieccseninns 43
Agent Information Model ... 51
Management Services INErfacescovuvreierminirniiiiscnnsnee e 55
A Management Agent SIUCIUTEcoviveeveninninmiiisneseneesssen et 56

A Flow Diagram Tllustrating a Manager-Agent Procedure for Handling Events 68

A Communication between Management Agentsccocvveviiinininennesesnisnenennns 70

An Agent Finding AlZOTIthMm........coocovimniiinnniinisienesssseeesienss 71

Tivoli TEC BAROC Template File for Primitive Events.........ccccoovninnninennnen. 83

Tivoli TEC BAROC File for the session_Idle Primitive Event............ccccccovennenn. 83

Tivoli TEC BAROC Template File for Composite Eventscccoouvviivennennns 85
xii

Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:
Figure 6.8:

Figure 6.9:

Figure 6.10:
Figure 6.11:
Figure 6.12:

Figure 6.13:

Figure 7.1:
Figure 7.2:
Figure 7.3:
Figure 7.4:
Figure 7.5:
Figure 7.6:
Figure 7.7:
Figure 7.8:

'Figure 7.9:

Figure 7.10:
Figure 7.11:
Figure 7.12:
Figure 7.13:
Figure 7.14:

Figure 7.15:

A MapEvent AlgOrithmccoecvinninmniiiirirereers s 86
An Example of Composite Event TTecovviniiicrsnievnininsnnnsniicsissssnnns 88
Tivoli TEC BAROC File for the users_Limit Primitive Eventcco...... 89
Tivoli TEC BAROC File for the cpu_process_High Primitive Event................. 89

Tivoli TEC BAROC File for the users_cpu_process_High Composite Event 90
A MapEventDetectionsRules Algorithm..........cccccovveniiiriiveniiinnescnnene, 96
Tivoli TEC Rule for Checking the Policy Interval normal_working_hours........ 99
Tivoli TEC Rule for Detecting the Composite Event users_cpu_process_High100
Tivoli TEC Rule for Enforcing the Policy load_Control............cccocvviiniinnnne, 101

The Processes of Mapping a Policy to an Event-Driven Rule-Based Systems.. 102

Policy-Management Agent Integrated Console Implementation Structure........ 105
Policy-Management Agent Integrated Console-PMagic Main Form................. 106
PMagic Menu SITUCHUTEovvmurmeiiniisiniisnsniisnnris s ssesssssssssssssss s asnsssesessnas 108
A Policy Definition FOrMccccoueeiieiiennininniininninss s, 109
Reusable Building Blocks for POLCIESccoocuivivivrinnieririiiiciiiesaes 110
A POLCY TTEE ..o ccrtieiscctsisissreresescteissss st sass st s sesssssassans 111
Mapping between Actions Parameters and Policy Extracted Attributes 112
A Rule Definition FOrm........cccoccvenirncsnnnniinniinnnccnnn, s 113
The Condition Definition FOMcccocvveciinniiniiini o, 117
The Mathematical Expression FOrM.........ccooiniicvcnnnnccneen, 118
The Event Definition FOIM.....c..ccvvcveeierrrecerinrienesiseessisisnitsnssssosismssesonnis 119
The Interval Definition FOrM..........cccovcrvceiineniiininiiiioisnnesseoeiessonn 120
The Action Definition FOIM ...cc.cccviveevneneciiincniiiesnniniiinsssneisssinssonns 121
The Agent Definition FOrm ... 122
The Management System Attributes Definition Form..........cccoevvvvniniiinnnnnas 123

xiii

Chapter 1

INTRODUCTION

1.1 Policy-Based Management Systems

Enterprise computing systems consist of thousands of heterogeneous computers and devices
connected through communication networks to allow devices, services and applications to
communicate with each other. Management entails the operation, administration and maintenance
of a computing system so that the system behaves as expected with respect to availability,
.performance and security. Systems management includes monitoring of the run-time behaviour of
a system, analysis of monitored data, and determining actions to modify the behaviour of the
system [140].

A management system may make use of policies. Policies are one source of information
which influences the behaviour of objects within a system [100). The use of policies in
management is called Policy-Based Management (PBM) [15,33,34,100,106,141,156]. Using

policies facilitates the management system to be adaptable to changes in management strategies

without requiring the recoding of the management system. A policy typically consists of one
event and one or more rules. These policies can be represented by high-level policy languages.

The definition of policy used in this Thesis is presented in Definition 1.1.

Definition 1.1: A policy is an event-triggered, a set of condition-actions rules [34] i.e., an event

triggers the evaluation of a set of rules of the form if condition then actions.

This form of policy is often refereed as an Event Condition Action (ECA) rule [13]. The event is
referred to as the policy event, while the set of the’ condition-actions rules is referred to as a policy

rule.

Definition 1.2: An event is defined as a message of notification of a change in system state that is

of interest. .

The condition in the rule is used to determine the actions to be executed. It is possible for
. there not to be a condition which indicates that for the event the actions specified in the policy are
always executed. It is possible for an event to have several rules associated with it. An example

policy is the following:
Example 1.1: if a login session is idle for more than 20 minutes then close the session.

System state is characterized by a set of attributes. The idle time of a login session is an
attribute. A change of interest occurs when the idle time exceeds 20 minutes. Thus, the event of
the policy specified in Example 1.1 occurs if a login session is idle for 20 minutes. The
notification message may include values of attributes of interest; in this case these might be the
user identifier, the device used, time of login and session process identifier. There is no condition
that needs to be evaluated to determine if the policy action should be taken. This means that the

action is taken when the event is detected.

Example 1.2: if a Jogin session is idle for more than 20 minutes then notify the system

administrator if login session owner = AAA.

The event specified in Example 1.2 is the same as in Example 1.1 but with a different rule.
In this case, the system administrator is only notified if the condition on the login session owner
is true. It should be noted that if both policies found in Examples 1.1 and 1.2 are applied and the

login session owner is equal to A4A4 then two actions are taken otherwise only one action is taken.

A policy applies to an entity being managed i.e., managed object. Examples of managed
objects include workstations, routers and web servers. The set of managed objects that a specific
policy applies to is called a domain. The policy presented in Example 1.1 applies to a set of host
machines. Many of the policy specification languages provide constructs for defining the
domain and associate it with policies to be applied to that domain. This work uses domains, but
the examples only describe events and rules.

A policy is said to be enforced if the actions specified in the policy are taken when the event
occurs and the condition (if specified) is true. This requires that the attributes used in the
specification of a policy be monitored and evaluated and that actions can be carried out. For the
policy in Example 1.1, this requires that the management system monitor login sessions on each
of the machines in the domain that the policy applies to. Monitoring is done by management

agents.

Definition 1.3: A management agent is defined as a logical entity that provides a single interface
and performs management operations (i.e., monitor and collect data, analyze data collected, carry

out control actions) on managed objects and emits notifications on behalf of managed objects.

There may be multiple policies applied to the same managed object. Example 1.3 specifies a

policy based on attributes of a login session not used in Example 1.1.

Example 1.3: if a login session is from the IP address xxx.xxx.xxx.xxx then notify the system

administrator f the time of occurrence of the login is between 12:00 AM and 5:00 AM.

The IP address initiating the login session is an attribute. The event occurs if a login session
s from the IP address xxx.xxx.xxx.xxx. The action notify the system administrator is taken only if
the condition the time of occurrence of the login is between 12:00 AM and 5:00 AM evaluates to

true.

1.2} Problem Statement

There are several languages for specifying policies as defined in Definition 1.1. Techniques
for analyzing policies (e.g., conflict analysis) have been developed. These languages are
considered independent of any management system. One significant challenge in the use of
policy-based management systems is to configure a management system to monitor the attributes
in the policies, generate the events specified in the policies and match rules with the events.
- There has been little previous work in finding efficient mechanisms to address and simplify the
gap between expressing policies in a high-level specification language and an actual
implementation of a management system that makes use of these policies [117-120]. Existing
management systems do not provide facilities to automate the efficient deployment of
management entities i.e., finding, initiating and deploying management agents that monitor,
anélyze and control the managed system to support policies. Such activities still fall under the
responsibilities of the system administrator, A key element of this Thesis work is policy

deployment, which is defined in Definition 1.4.

Definition 1.4: Policy deployment is defined as the mapping of policies to a configuration of the
management system (e.g., identifying and configuring of management agents and providing

executables rules) so that this management system enforces the policy.

For example, to deploy the policy specified in Example 1.1, a management agent must be
found that can monitor attributes associated with login sessions and then the management agent
must be instantiated to monitor the login sessions and generate events. This Thesis addresses the
~ problem of automatically mapping policies to elements of existing management systems,

including selecting and deploying agents to ensure the enforcement of those policies.

The state of the art in management tools provides functionality that includes monitoring,
software distribution, event generation, event analysis and determining control actions through
rules. Despite the significant contributions made towards the development of management tools
that monitor and control distributed systems, little has been done to address issues such as
optimizing the execution of management functions. Efficient operation of management functions
is important since uncontrolled use could increase the load on the systems at the wrong time [1].
For example, if there is currently an instance of a management agent monitoring attributes
associated with login sessions for the policy in Example 1.1, then it may be possible to reuse this
' same management agent instance to monitor the login sessions for the policy specified in

Example 1.2, thus reducing the number of agent processes.

Both the managed objects and the policies are dynamic. Examples of the dynamic nature are
the following:
(i) The set of machines to which the policies specified in Examples 1.1, 1.2 and 1.3 are

applied to may change over time;

(i) A policy may be changed. The policies in Examples 1.1 and 1.2 may be changed so that
the event occurs when the session is idle for 10 minutes long and not 20 minutes;

(i) Policies may be added at different times. The policies specified in Examples 1.1 and 1.2
do not have to be added at the same time;

(iv) Policies may be activated and deactivated at different times.

e

Management systems are usually assumed to be static [47] i.e., configured at start-up.
Management systems do provide some ability to be changed but there is little work that looks at

the automation of changing the management system configuration in response to changes in the

‘managed objects or the policies. For example, although most management systems allow for

changes in the set of policies, there is relatively little work in having the management system

reconfigure itself to support the changes in policies, much less do this in an optimal or semi-

~ optimal fashion.

This Thesis addresses the problem of automating policy deployment. This work aims to
provide the services and algorithms needed to identify and deploy management entities and be
able to ;‘espond automatically to both changes to the system itself, as well as to changes in the
way the system is to be managed (i.e., changes to the set of management policies or sets of

management agents).

1.3 Thesis Statement

It is possible to provide automated policy-based management (PBM) systems based on a
general model that links the management services and the management policies. The
attributes that describe the system states and specified in the management policies, may be
used both to build such links and to automatically help in finding and configuring the

appropriate management services to support deploying management policies.

1.4 Thesis Contributions

Thg Thesis makes the following significant research contributions:

e A general model for specifying and automatically deploying a wide range of management
policies for PBM systems is defined. Key features of the model are to identify and
deploy management entities and the ability to respond automatically to both changes to

the system itself as well as to changes in the way the system is to be managed.

e The Thesis shows how to build a PBM model on existing management services found in
commercial management systems.

e A prototype implementation is described. This implementation confirms the validity and
provides a means to evaluate the concepts of the proposed PBM system model.

e Several experiments are conducted to demonstrate the successful application of the
model, the prototype and the deployment of different policies into domains with different
numbers of hosts.

. The thesis addresses an alternative deployment approach for optimization, namely one
that utilizes management agents for policy deployment.

¢ Management agents, together with the algorithms needed to handle and processes events,

are introduced, designed and implemented

1.5 Thesis Outline

The Thesis is organized as follows: Chapter 2 introduces, discusses, and assesses a
comprehensive background research and related work to provide the background for this Thesis.
In Chapter 3, an information model used to specify policies is presented and discussed. Chapter 3
~ then emphasizes the semantics of several event operators used to express events. In Chapter 4, we
introduce the proposed policy-based management system (PBM) architecture. Chapter 4 draws
the roadmap for the rest of the Thesis. Chapter 5 presents and discusses an information model
used to define management agents and agent design. Chapter 6 shows a template-based approach
to map the high-level specified policy elements to components of a management system. Chapter
7 introduces the Policy-Management Agent Integrated Console (PMagic) software. Chapter 8
describes the experiments conducted to illustrate the execution, validity and evaluation of our
PMagié policy model. The Thesis contributions, conclusions and future work are presented in

Chapter 9.

Chapter 2

BACKGROUND AND
RELATED WORK

This Chapter introduces, discusses, and assesses related work. The Chapter starts with a
discussion of elements commonly found in existing management systems, and a review of
~ common system management concepts. This is followed by a discussion of policy specification
and deployment. Next, an overview of the efforts related to the work of policy refinements and
policy conflicts is highlighted. Thereafter, the issue of management systems performance will be

addressed. This Chapter concludes by looking at existing commercial management systems tools.

2.1 Management Systems

Several commercial management systems, such as IBM Tivoli [151], HP OpenView [61],
CA-Unicenter [23], Microsoft SMS and MOM [105], support the management of distributed
systems. This Section briefly describes the common elements currently provided by these
systems. These common elements are graphically depicted in Figure 2.1. These elements include

management agents, information repositories, management applications, and event handlers.

Management Agents

Management agents are used to monitor data, analyze monitored data and emit notifications
on behalf of managed objects. A managed object is any distributed system component (e.g.,

. workstations, routers, web servers) that is to be controlled by a management system.

Information Repository

An information repository is used for the storage and retrieval of monitored information,
information about the managed system (e.g., definitions of managed objects, abstractions of
management agents, domains, definitions and interfaces of management applications) and

management information (e.g., policies, events).

Management Applications

A management system may make use of one or more management applications that analyze
monitored data and determine control actions. A management application may analyze data
" collected from multiple management agents over a period of time and determine control actions
that are to be carried out by management agents on managed objects. A management application
is also referred as a manager. An example of a management application often found in
management systems is an application that provides software distribution. Such an application
distributes, configures/reconfigures, and updates software applicatioris, system patches and
Magement agents. Another manager is an event-driven rule-based engine in which events are
associated with rules. For example, the event in Example 1.2 is associated with the rule notify the
system administrator if login session owner = AAA. An example of an event-driven rule-based
engine‘ is found in Tivoli Enterprise Console (TEC) [151]. TEC not only associates an event with
a rule but also supports the detection of a pattern of events based on a time operator. Management
applications often present graphical representations of the system and monitored information. For

example, a graphical display of the status of each router in the network.

10

Management Protocols

Standards for manager and agent communication have been defined. The Simple Network
Management Protocol (SNMP) [65,103,144], Common Management Information Protocol
. (CMIP) [70,70], Application Response Measurement (ARM) [121] and Web-Based Enterprise

Management (WBEM) on top of HTTP [116], are examples of standard management protocols.

Event Handlers

The notification of an event is a message consisting of a set of attributes and values that
profzide information about the change of the state. = For example, the management agent that
monitors the user logins to the system could fire an event whenever user 444 tries to login to the
system; and provide information such as the user identifier, device used and time of login. Events
may be of interest to multiple managers. This requires that for each event, the event handler
keeps track of the managers interested in the event. Management systems often include one or
more event handlers to deal with the collection and distribution of events to other management

'components. There is a distinction between an event-driven rule-based engine and an event
handler. An event-driven rule-based engine would register its interest in specific events with the
~ event handler. An event received by the event handler would be forwarded to the event-driven

rule-based engine if it is of interest.

2.2 Policy Management Frameworks

The general idea of Policy-Based Management (PBM) is not new [33,64,100,134,140].
Every management system provides and utilizes management polices to some extent. This
Section describes frameworks that use a specific policy language for a specific management
system. We can identify two general aspects that need to be addressed in the design and

implementation of any PBM system [120].

Management System

Reports

Polices

Communications m
Methods

Managetf
Objects

Reports

Software
to Distribute

iManagerm
Agents

Managed
Environment

Figure 2.1: Common Management Architecture

The first aspect is policy specification. Policy specification deals with the definition of

policies. The most commonly used forms of policies are those that are defined in Definition 11 or

just the rule part [13,51]. Significant contributions in policy specification include: PDL [86,154],

Ponder [34,92] , PFDL [110,111], Tower [57], Power [109], SNAP [78], Logic [145] , Rei [76],

KAo0S [17,37,57,155], PPL [146], Cfengine [22], ACPL [62].

The second aspect is policy deployment. Policy deployment can make use of a variety of

technologies, including expert-systems, programmable rules, agent-based, and mobile-agents or

some combination of these technologies.

This Section discusses policy-based management modules with respect to two aspects: policy

specification and policy deployment. In this Section we describe four policy management

12

modules or frameworks often cited in the literature. We then describe policy deployment within
these frameworks along with a discussion of the limitations. These four modules are

representative of much of the work in policy specification and deployment.

2.2.1 Policy Description Language

The Policy Description Language (PDL) is a declarative policy definition language from
Bell-Labs [80,86], originally developed for specifying network management policies. PDL has
two constructs for specifying policies. The first construct is the following:

-~ Event CAUSES Action IF Condition

On the occurrence of the event specified in Event, the action specified in the Action clause is
executed if the condition specified in Condition is true. An example of the use of this policy is
presented in Figure 2.2, where SessionldleEvent is the name of the event that causes the action
specified in SendEmail to be carried out only if the condition SessionldleEvent.userid = AAA

evaluates to true. The second construct used to specify policies is the following:

Event TRIGGERS pde (a;=v,,, a,=v,) IF Condition

On the occurrence of the event specified in Event the action is the notification of the event
denoted by pde. The symbol pde represents an event symbol, a; is an event attribute and v; is its
value. Figure 2.3 shows the policy described in Example 2.1 which is specified using the second

" PDL construct.

Example 2.1: if the number of failed login attempts under a specific login name exceeds 3

then Jock the account used in logins.

The event specified in Example 2.1 is failed login attempts under a specific login name
exceeds 3. There is no condition that needs to be evaluated to carry out the policy action lock the

account used in logins. The specification of the above policy as seen in Figure 2.3 defines two

13

events, the LoginFailed event which triggers when any user fails to login to a host in the System
Labs, the second event is ThreeFailedLogins which triggers when the LoginFailed event

triggered three times from the same user.

Events: SessionIdleEvent: system event //event definition
Actions: SendEmail //action definition
Policy Description: //Policy of Example 1.2

SessionIdleEvent causes SendEmail(*admin”, SessionIdleEvent.userid)//parameters

f if (SessionlIdleEvent.userid = “AAA") //condition used

| Figure 2.2: Policies Written in PDL First Construct

Events: LoginFailed: system event , //event definition

1 ThreeFailedLogins : pde //policy define event
Actions: LockAccount //action definition
Policy Description: // Policy of Example 2.1

LoginFailed triggers ThreeFailedLogins (userid=LoginFailed.userid)
if (Count(LoginFailed.userid) = 3)

ThreeFailedLogins causes LockAccount

Figure 2.3: Policies Written in PDL Second Construct

The system described in [129], which was implemented for Lucent switching products,
represents one example of the deployment of PDL policies. There are three main components
[129]: the Policy Enabling Point (PEP), the event handler and the policy engine. The
implementation is in Java. PDL rules are compiled to Java classes. The Directory Server

: anélyzes the policies to extract the different components. Events found in the policies are then
registered with the event handler and rules are registered with the policy engine. The policy
engine is an expert system. When a PEP receives an event from a Lucent switch component, the
PEP sends the event to the event handler. The event handler correlates events from multiple PEPs
to detect more events that may be specified in the policy. The event manager then sends the

detected events to the policy engine. The rules in PDL are translated into a form that can be

understood by the expert system. This system assumes a predefined set of events that are

O e S A O 5

14

generated only for network devices. This work does not address the issue of reconfiguring

monitoring operations for triggering different events.

2.2.2 Ponder

Ponder is a declarative object-oriented language developed primarily to support security and
management policies [34]. Ponder has four basic policy types: authorizations, obligations,
refrains and delegations. There are four composite policy types that are used to compose
policies: groups, roles, relationships and management structures. The Ponder language syntax
allows for the specification of the following:

- Domains: The specification of a set of managed objects.

- Subjects: This refers to management system entities that upon receiving the notification

of an event carry out the action if the specified condition is true.

- Targets: This refers to managed objects to which a policy applies.

An example of a Ponder obligation policy is seen in Figure 2.4. A Ponder obligation policy
can be used to specify the example policies presented in Chapter 1. The management policy in
Figure 2.4 represents the Ponder specification of the policy described in Example 1.2. The policy
épeciﬁes that the domain is the Syslab. The policy in Figure 2.4 states that the automated manager

CSD/TEC will execute the action sendemail, when the event SessionEvent is triggered, and when

-the’ specified condition SessionEvent.sessionidle>20 and SessionEvent.userid=“AAA” is true.

Ponder also introduces the notion of policy types, i.e., parameterized policy templates that can be
instantiated multiple times with different parameters to create new policies. New policy types can
be inheﬁted from existing policy types [41]. For example, Figure 2.6 shows the Ponder
specification of the policy stated in Example 2.1. The policy is triggered when there are n
repeated login failures from the same user identifier. In Figure 2.5, the policy is instantiated with

the automated manger /CSD/TEC (specified using the subject clause). The target /CSD/users (of

15

type <userT>), specifies the domain. The action lock() disables the account of a user identifier

with three failures in logging in. Policy conflicts are addressed in [36,41].

inst oblig SessionIdlePolicy
{ on SessionEvent (userid);
subject 8 = /CSD/TEC;
target t =/CSD/Syslab/UNIXHosts;
do sendemail (“admin”,userid) ;
when SesgionEvent.sessionidletime > 20 and

SessionEvent.userid = *“AAA";

}
Figure 2.4: Ponder Obligation Example Policy

type oblig RepeatedLoginFailure
(subject s, target <userT> t, imt number)

{ on number*LoginFailed(userid);

subject s;

target <userT> t;

do t.lock(userid);
}
inst oblig Three_RepeatedLoginFailure = RepeatedLoginFailure

(/CSD/TEC, /CSD/users, 3);

Figure 2.5: Ponder Policy Type Example Policy

The work in [33] presents a management architecture that assumes Ponder is the policy

specification language. This architecture includes three supporting services: a policy service, a

dqmain service and an event service (essentially an event handler). The Policy Service compiles

\ a pdlicy to a Java class, stores these classes, and creates new policy objects. The Domain Service

manages and maps the name of a domain to the set of target objects that it applies to. The E\?ent

Service receives events and sends these events to the interested management application
(specified as subjects). More details about these services are described in [33].

A Policy Management Agent (PMA) is given a Java object generated from a policy. It is

used to carry out actions i.e., it is a subject. The PMA registers with the event service to receive

16

events of interest (as specified in the policy). The occurrence of an event is sent to the PMA
through the event service.

Events are specified using attributes that represent system and application behavior. These
attributes need to be monitored. The PMA needs to evaluate a condition which is also specified
using attributes representing system and application behavior. It is assumed that the monitoring
is done. The architecture does not specify how the monitoring entities are initialized or
configured. There is no discussion of how monitoring entities are reconfigured in response to

changes in policies.

2.2.3 Policy Framework Definition Language

The three main policy models used in industry are the Directory Enabled Networks (DEN)
model, the Internet Engineering Task Force (IETF) model and the Distributed Management Task
Force (DMTF) model [110,111]. The IETF and DMTF refined the DEN model. The DMTF
model has additional infrastructure not found in the IETF or DEN models. The DEN-ng model
[148) is derived from the DEN and IETF models [92]. In the DEN-ng and DEN models, a policy
is a set of rules that are evaluated when a specified event occurs. The IETF and DMTF do not
specify a condition characterizing the event that triggers evaluation of a rule. This makes it

Adifﬁcult to have interoperable policy-based management systems [147]. Information models are
used to specify the components of the policies and the relationship between these components. A
- conflict occurs when at least two conditions in the rules associated with a policy are satisfied but
the actions cannot be executed at the same time. IETF addresses this with the assignment of
priorities to each rule used in the policy. The rule with the highest priority is executed. The
three models have a concept similar to that of domain. PFDL uses the notion of Policy Role,
which is used to represent a collection of managed resources that share a common policy role.
Generally, a role is a type of property that is used to select one or more policies for a set of

entities and/or components from among a much larger set of available policies [37,39). By using

17

roles, the administrator may assign each resource to one or more roles and specify policies to be

associated with a role.

The IETF/DMTF developed a standard architecture to be used as a guideline for PBM
implementations called the Policy Management Framework (PMF). It uses the Common Open
Policy Service Protocol (COPS) [45,110,147]. The COPS protocol is used between Policy

“Enforcement Point (PEP) (agents) and a Policy Decision Point (PDP) (manager) to exchange the
information needed for policy enforcement as will described in this Section. There are two
'flavors', or models of COPS: The Outsourcing Model and the Provisioning Model.

- In the Outsourcing Model, all policies are stored at the PDP. Whenever the PEP needs to
make a decision, it sends all relevant information to the PDP. The PDP analyzes the
information, makes a decision about an action to be taken, and sends the resuit of the
decision to the PEP. The PEP then carries out the action.

- In the Provisioning Mode! (COPS-PR), the PDP downloads relevant policies to the PEP.
The PEP makes decisions based on these policies. The Provisioning Model uses the

Policy Information Base-PIB, defined in RFC 3159, as a repository of the policies.

More information about COPS and Policy-Based Network Management (PBNM) can be
found in RFC-2748 [66] and RFC-3084 [68]. The COPS architecture, as shown in Figure 2.6,
contains, in addition to PDPs and PEPs, the following components:

- Policy Management Tool (PMT): This manages the policies i.e., create, distribute,

activate, deactivate, modify, check conflicts, etc.

- Policy Repository: This stores policies so that the policies can be accessed and retrieved

by the one or more PDPs.

18

Figure 2.6: COPS Architecture [45]

Examples of the use of the IETF architecture can be found in management tools for Quality
of Service (QoS) and Virtual Private Network (VPN) management (e.g.,[54,96]). In [54]
deployment refers to the sending of a policy to a PDP from the PMT. The work in [54]
investigates the requirements and implementation of a PBNM system to ensure that a policy is
deployed on all target PEPs. The work in [54] does not address the issue of identifying and
configuring monitoring entities. The work in [96] focuses on mapping objectives specified in
policies to system configurations. This is based on previous observations. A change in an
objective in the policy is mapped to a configuration based on a comparison of the objective in
previous observations. This is used to determine configuration parameters which are carried out

by existing management entities.

19

2.2.4 Automatic Computing Policy Language

Automatic Computing Policy Language (ACPL) [62] is used for writing policy rules for
Policy Middleware Automatic Computing (PMAC) from IBM [64]. ACPL is XML-based.
Policies specified using ACPL include the following components:

Scope: This specifies the set of the managed resources that the policy applies to. This is
similar to the domain concept used in Ponder.
Condition: A condition consists of one or more clauses. Only one clause can express a
Boolean expression. If no such Boolean clause exists, then the Boolean clause is assumed
to be always true. The rest of the clauses represent Time-Period elements. If there is no
Time-Period clause in the Condition of a policy, then the policy is always active.
Decision: This specifies how a policy is to be enforced. Decisions include the following:

* Result: This returns a set of required monitoring information from the managed

resources.

« Action: Invokes operations on the managed resources.

» Configuration profile: Applies both Result and Action.
Business value: This specifies the priority of a policy. This is used to enable the manager
to decide which policy should be enforced when multiple policies can be applied. This

allows for the handling of policy conflicts.

ACPL requires the specification of the policy name, decision name (for result and
configuration decisions), the policy version, and the policy description. Figure 2.7 shows the
structure of the policy described in Example 1.2 written in ACPL that utilizes the components
described earlier in this Section. More about ACPL and its use in web services is described in
[62,64]. PMAC also provides a Policy Analysis Toolkit that can be used to identify conflicts in

policy specifications.

20

<!-- Policy Meta Data -->
<acpl:Policy policyEnabled="true”
policyName=*Check_ldle_Logines Sessions “>
<!--the above expression would include other Meta data -->
<acpl:Description>Policy Description</acpl:Description>

<!-- Policy Condition -->
<acpl:Condition>
<exp :And>
< exp:Greater>
<exp:PropertySensor propertyName="SessionIdleTime" />
<IntegerConstant>
<Value>20</Value>
</IntegerConstant>
</exp:Greater>
<exp:Equal>
<exp:PropertySensor propertyName="UserId" />
<exp:StringConstant>
<Value>AAA</Value>
</exp:StringConstant>
</exp:Equal>
</exp:And>
</acpl:Condition>

<!-~ Policy Decision -->
<acpl:Decision>
<acpl:Action>
<acpl:WS_Operation operationname="SendEmail"
portType="MailManagerResource” />
</acpl:Action>
</acpl:Decision>

<!-- Policy Business Value -->
<acpl:BusinessValue>
<Importance>10</Importance>
</acpl:Businessvalue>

<!-- Policy Scope -->
<acpl:Scope>
<acpl:StringScope>
<Value>SysLab/UNIXHosts</Value>
~</acpl:StringScope>
</acpl:Scope>

</acpl:Policy>

Figure 2.7: ACPL Example Policy

21

KEY:

M = Monitor
A = Analyse
P = Plan

E = Execute

Figure 2.8: PMAC Architecture [64]

In PMAC, the Autonomic Managers (AMs), which are equivalent to the concept of PDP,
manage the system by using the machine-readable policies specified using ACPL. The PMAC
framework consists of a policy editing tool, a federator, an autonomic manager and managed
resources (see Figure 2.8). Edited policies (using ACPL) are saved and distributed to the relevant
autonomic managers by the use of federator which acts as a publish/subscribe hub. PMAC uses
the ECA rule paradigm that follows the XML schema (which tends to be quite verbose). The
Simple Policy Language (SPL) [5] can also be used by PMAC to support the specification of
ECA rules. SPL is internally mapped to ACPL which can be understood by the PMAC policy
federator.

Sensors and effectors are the interfaces of the managed resources. Sensors (representing
management agents) provide management information when triggered by get or subscribe
commands while effectors (also representing management agents) apply the management
decisions. Since AMs are considered as managed resources, AMs also have sensors and effectors
to be used by other AMs. PMAC provides support for policy analysis and conflict resolution

using a process called Policy Ratification [6,35]. The autonomic manager (AM) is central to the

22

PMAC infrastructure. The AM is responsible for providing the control-loop (Figure 2.9) to
manage the resources assigned to it. When a managed resource requests guidance, the AM
evaluates all relevant policies and returns a decision. The guidance can also be initiated from the

autonomic manager without a request from the managed resource.

These decisions can be in the form of an action (a process to be run on the managed
resource) or a configuration profile (setting properties) [4,5,47,62,64]. When a change of state
occurs (event), the managed resource notifies the AM-Event Monitoring Subcomponent which
triggers requests for guidance on a decision (see Figure 2.9). All management information that
represents system states also passes to and is retrieved from the Data-Gathering-Subcomponent.
The Rules-Expression-Engine then evaluates the policy rules, which reside in the Runtime-
Conﬁguration—Cache, according to the triggered request, and selects the policy corresponding to
this request. The Policy-Actuator-Subcomponent will enforce the decisioh made by invoking the
effectors on managed-resources. The WSRF (Web Service Resource Framework) interface
implements, supports and supplies the resource properties specifications inside the AMs by the

means of web service standards.

-] AM Sensors }— ["AM Effectors }—

WSR v
. Support |
PMAC Autonomic
Manager

¢ AM Intemal / _ Runtime

Rules
Orchestration t Configuration } Expression
Cache 4 Engine
Event] Data Policy
Monitoring Gathering Actuator
Component Component _ Component

Figure 2.9: PMAC Autonomic Manager [47]

- . o

s g s g 3 8 o

23

To summarize, the PMAC framework provides a language for specifying policy and a policy
enforcement architecture. Policy analysis and refinement operations are also addressed to some
extent [64). However, the management services, which are needed to support and supply the
management information, are assumed to be already defined and executing in the managed
resources. Moreover, there is no indication how PMAC would initiate new services at the

managed resources, i.e., how to configure and/or map the required management operations to the

'Sensors.

2.3 Policy Refinements and SLAs

Policy refinement is the process of mapping high level management policies to an
appropriétc set of policies rules. A Service Level Agreement (SLA) is typically a written
agreement between a service provider and a customer about the quality of service (QoS)
[14,27,79,81,88,94,95,99,130-132,153]. An SLA is one source of the management goals. The
management application that handles SLAs is often called the Service Level Manager (SLM). As
discussed in [89], PBM systems are often considered closely aligned to the SLM. Furthermore,
the work in [75] clearly defines the relationship between SLA and policies, and discusses how
SLAs can be enforced by policies. The goals defined in an SLA must be mapped to a form that
can be understood by the management system. The process of the automation of policy

refinement is a challenging problem. Certain aspects of policy refinement can be achieved when

" the problem is constrained to a well-defined functional area [77], such as extracting the QoS

policies from given SLAs in order to provide policy management rules to reconfigure network
routers to achieve the QoS goals. The work in [77] sketches the relationship between the
generality of the refinement technique used and the amount of automation. As illustrated in
Figure 2-10, refinement techniques that are more domain specific have more opportunities for

automation.

24

More Less
Automation Automation

Policy Refinement Techniques

Domain ii th i in Domain
Specific Independent
Table Lookup Predefined Case based Goal
Templates Reasoning Elaboration

Figure 2.10: Relationship between policy refinement techniques [77]

The work in [11] identifies two main objectives of a policy refinement process as follows:
Determining the resources that are needed to satisfy the requirements of the policy, i.e.,
mapping abstract entities defined as part of a high-level policy to concrete objects/devices
that make up the underlying system. For instance, determining the specific routers that
need to be configured to handle the traffic for “WebServices applications on the
eCommerce Server” [11].

Refinement of high-level goals into operations, supported by the concrete
objects/devices, that when performed will achieve the high-level goal. For instance, the
set of operations, supported by the specified routers that will meet the objective of “Gold

QoS for WebServices Applications on the eCommerce Server” [11].

There is substantial, ongoing work, both commercially and academically, addressing
strategies for expressing, refining and implementing SLAs using policies
[9,11,37,38,52,75,77,89,123,137,152], where several refinement techniques are used. In
[123,143], an approach to refinement is presented that is based on hierarchical architectures that
correspond to different abstraction levels of the management functions or policy expressions. A
role-based mechanism is used in [57] for specifying role-based access control (RBAC) policies,
where the policy is refined into the basic structures of RBAC such as, users, roles, objects,

permissions or privileges. The work in [38] presents an approach using the Common Information

25

Model (CIM) [39] for the SLA-driven management of distributed systems. The SLA is viewed as
a set of services selected and aggregated from provider services matrices. Although this approach
seems to be a realistic approach, such an approach is applicable only for a service provider whose

management system is based on CIM.

The work in [36,37,57,152] introduces SLA decomposition and classification approaches for
~ deriving low level patterns or system thresholds from service level objectives (SLOs) specified in
SLAs. A mapping technique is used in [137] to map firewall rules into policy-rules for better
firewall rule editing and to act as an advisor for anomaly discovery. The work in [52,77]
introduces an approach for modeling and formulating QoS policies, in which the refinement
process exploits the use of integrity constraints within abduction reasoning. The report in [77]
shows how the integration of abduction reasoning with constraint solving can help to increase
automated support for policy refinements. Integrity constraints are rules that specify the
conditions under which the formal model of the system being analysed is inconsistent [77], and is
“typically used for modeling firewall policies. The policy wizard tool “POWER” [109] handles
policy refinement through the use of policy templates. The administrator or the system expert
specifies a set of policy templates, éxpressed as Prolog programs, and then uses the provided
' policy-engine to interpret these programs. Policy templates then guide the user in selecting the

policy elements from an information model.

2.5 Policy Conflicts

As introduced, a policy is a set of rules; these rules consist of an event, conditions and
actions. As in all event-driven rule-based systems, major issues in policy-based management
systems are the analysis, detection and resolution of the conflicts between rules. An example of
two conflicting rules is the following: 1) the rule that has the action to prevent connections from

the source where intrusion was detected will only block connections from that source and 2) the

o itar. e

26

rule that has the action to shutdown the hacked system. Deploying such two conflicting rules may

cause an unstable system. The automation of conflict analysis, detection and resolution are

challenging problems.
Policy Conflict
Conflict of Modalities Conflict of Goals
P T
Conflict of Conflict of
imperatival Authority Goals
Goals
|
_Positive- Conflict Conflict Conflict of Conflict of Muttiple ~ Self- management
negative between of duties interests managers (Subjects-Targets
conflict imperative & priorities (Double (Subjects (Target Objects overiap)
authority overiap) overlap) ovaeriap)

Figure 2.11:Classification of Policy Conflicts [107]

The work in [91,107,142] have considered different cases and types of conflicts by

examining several examples of policy conflicts. Policy conflicts can be classified into two types

as in Figure 2.11 [91,107]:

- Conflicts arising from inconsistencies in policy specification, where the same event and
condition are in two different policies which have conflicting actions, e.g., allow or
prevent the user “4A4A4” access to host “HHH. This conflict type is also called a conflict
of modalities [107].

- Conflicts arising in the policy enforcement, even though there is consistency in the set of
policies being used. These conflicts cannot be determined directly from the policy
specifications, since additional information that relies on the state of the system, is
needed to specify the conditions which result in conflicts. This also known as a semantic
conflict or conflict of goals [107)]. For example, there is a conflict between two policies

that result in the same packet being placed on two different queues [142].

PRINTHONES P

27

The work in [44,91] addresses the two forms of conflict analysis:

- Static analysis is typically performed during policy specification and before deployment.
Section 2.2 discussed some of the different techniques used by the policy specification
languages to handle policy conflicts. However, few conflicts can be detected using the
static analysis, as it is not possible to automatically determine and evaluate policy
conditions which depend on run-time state values.

- Dynamic conflict detection is typically performed at runtime. There is no easy solution to
dynamically relate conflicts, and any solution would have tradeoffs. For instance, an
improved dynamically conflicts resolution technique would potentially be a more

computationally cost approach.

Some conflict resolution techniques include specifying priorities or precedence of policy-
rules, as in [64,142]. This approach is not scalable to large systems with a large number of rules

specified by different administrators. Other work uses action constraints, as in [28,147]. The

‘efficiency of this approach depends on understanding the semantics of the policy actions, which

itself is another challenge. Some other work is based on translating policies into event calculus

for better conflict analysis as in [12,17]. This methodology is impractical and does not scale if

 there are a large number of rules. The model provided in [46] for conflict handling tried to be

independent of the syntax of the policy-specification language used. It‘ a.ssumes that subjects,
targets and action concepts are included in, and common to most policy languages. The model in
[46] relies on defining an intensive relationship among the policy objects to classify any possible
conflicts, which would be very hard for a management environment with a large number of
managcinent policies. The use of meta-policies, which are policies to handle the conflicts among
other policies, is explored in [34,76]. Although this approach has had some success for the
detection of dynamic conflicts, it is a computationally expensive approach. A more successful

approach was presented in [42-44), where the use of multiple techniques for conflict detection

28

and resolution in PBMSs were explored. Generally, there has been little research into the
performance overhead associated with the operations of monitoring, detecting and resolving

conflicts.

2.6 Commercial Tools

Many vendors provide management systems with some policy-based management capability.
“The majority of these solutions are directed towards the configuration and security management
of network devices. Examples of such PBM solutions are: Cisco’s QoS Policy Manager (QPM)
{30] énd Cisco’s CiscoAssure [32], IBM Tivoli Security Policy Manager [151], Nortel’s Optivity
[115], Computer Associates’ eTrust Solutions [23], Hitachi’s JP1-PolicyXpert [59], Lucent
technologies RealNet policy rules [87], Hewlett-Packard’s OpenView [61], and Tivoli Access
Manager-NetView [151].

There are several commercial management systems that provide additional management
functionality, such as event handling, event-driven rule-based engines, logfile analysis, software
distribution, and more. Examples of such systems include: IBM’s Tivoli Framework and related
products [151], Hewlett-Packard’s OpenView [61], Computer Associates’ Unicenter [23],
Microsoft’s SMS and MOM [105], Hitachi’s JP1 Integrated Management [59), Sun’s NI
Datacentre [150]. Such commercial management systems are often derived from traditional
networked environments, where devices use relatively static conﬁgurable’ management software

o perform rather simple management operations, e.g., collect management information and
enforce management actions.

Even with the management operations, such commercial management systems still need to
have dedicated skillful administrators. It is also hard to handle the increased heterogeneity of
resources in large distributed systems. A common feature in commercial tools is a graphical user
interface (GUI), which typically allows the administrator to construct management rules. These

rules are later compiled and loaded into the system manager. In these systems, there is a lack in

U

o R Ao, R

29

the definition of the link between these rules and the management monitoring services (agents)
that execute in order to collect events of interest from managed objects. This relationship between

rules and agents is typically defined and configured by the system administrator. Management

policy can be changed dynamically, which may require a change to the management services to

support these changes. Management systems should be able to provide a dynamic adaptation to

changes in polices.

2.8 Summary

This Chapter has described several policy-based management systems, focusing primarily on
policy specification languages and policy deployment systems. Policy deployment can make use
of a variety of technologies, including expert-systems, programmable rules, agent-based, mobile-
agents or some combination of these technologies. An expert system might use the policies as
rules within its knowledge base to validate and enforce policies. Management based on expert

systems usually focuses on a single type of managed object or application, e.g., access control in

network routers, and does not provide appropriate knowledge representations for use across

different application domains. Policy rules could be pre-programmed through high-level
programming languages to provide decision making of runtime execution. This is static and can
be difficult to adapt in response to changes in policies. Management systems often use
management agents to enable policy deployment. |

While there has been some work on automation of certain aspects of policy-based
management systems, there is clearly a need for more work on the automation of the mapping of
policies to management elements (e.g. agents, rules), the configuration of those management
clements, the efficient runtime use and reuse of those elements, and the efficient reconfiguration
of those elements in response to changes in the system being managed or in policies. This
research focuses on the means for a management system to automatically identify and efficiently

deploy management operations and management system configurations for deploying policies.

30

Chapter 3

A PoLICY INFORMATION MODEL

This Chapter presents an information model for policies. An information model for policies
is an abstraction and representation of the components of policies. For each component this
includes the definition of attributes, operations and relationships. An important aspect of the

information is an event. This Chapter starts with a discussion of events including a definition of

" an event, introduction of event operators and semantics of event operators. This is followed by a

discussion of the policy information model. The information model allows for the specification
of different type of policies in a vendor and device independent way. The specification of
policies is done in a modular fashion i.e., policies are specified and assembled from other

components (e.g., event, condition, action).

3.1 Events

An important component of the policy information model is an event. This Section defines

events, event operators and the semantics of those event operators.

31

3.1.1 Event Definition

There are several different definitions of events found in the distributed system management
literature [19,98,118,127,134,138,160]. The definition of an event for this work (as described in
- Definition 1.2) is the following: 4An event is defined as a message of notification of a change in
system state that is of interest. Examples of events include:

a) router R1 is down;

b) server A is not responding;

.¢) printer LP1 is out of paper;

d) the cpuload of server B is greater than 85;

e) - the average of the cpuload of server A and B is greater than 80 over a 10 minute period;

f) the cpuload of server A is greater than 80 after user K is logged in;

g) user R failed to use su login as root user 2 times;

h) user S has more than 10 sessions open on server A and 3 sessions on server B;

i) user S failed to login to server A three consecutive times within 2 minutes;

j) send the number of current users of a machine to the manager every hour.

As can be seen from these examples, a change in state does not necessarily cause an event.
For example, a change in the CPU load from 60 to 70 does not generate an event. A change from
70 to 90 does generate an event, since the policy may only be concerned with CPU loads at that
lével. Hence, an event is generated when the change in state is of interest. The elapse of a
certain amount of time can also cause an event e.g., the passing of one hour is an event that
causes the number of current users to be sent (example j). Events can be classified into primitive

and composite events [97].

32

Definition 3.1: A primitive event is characterized by a condition on attributes of one or more
managed objects. The logical expression representing the condition uses standard logical

operators.

‘Events described in a) to d) are primitive events. The logical expression that represents the

condition characterizing the event presented in example d is (cpuload>85). The cpuload is the

~ attribute that needs to be monitored on host B.

Definition 3.2: A composite event is characterized by a condition composed of multiple events

(which may be primitive or other composite events) using event operators.

Events described in e) 10 i) are composite events.

3.1.2 Event Attributes

Each event E; has a well-defined set of attributes Az, . A subset of A#; includes a set of
attributes that uniquely identifies the event e.g., event identifier, time of occurrence, source that
generates the event. The set of attributes A#; may also contain attributes that characterize the state

of a managed object, e.g., for a host machine, attributes characterizing its state include cpu load

“and memory usage. It is assumed that the subset of Att;that uniquely identifies the events is used

to uniquely identify the second set of attributes.

© 3.1.3 Event Operators

The event operators considered in this work are described in this Section. The semantics of
these operators are defined in Section 3.1.4. Events specified using event operators are in the
form of E; eop E; or eop E;. The event operators described are E-SEQ, E-AND, E-OR, E-NOT
and E-COUNT (other event operators are possible). It is assumed that events occur in a specific

time window. The event operators are briefly described as follows.

a1

33

= E; E-SEQ E;: The generated event occurs when an instance of E; occurs before an
instance of E;.

- E;E-AND E;: The generated event occurs when instances of both E; and E; occur.

- E; E-OR E;: The generated event occurs when either instance of E; or E; occurs, or both
occur.

= E-NOT E;: The generated event occurs when an instance of E;did not occur.

- E-COUNT E; [n]: The generated event occurs when instances of E; occurs n times.

Example 3.1: if the total number of user logins is greater than 5 followed by the CPU load is
greater than 90 and the total number of processes running is greater than 35, then block any new

user logins.

This pblicy consists of a composite event E; E-SEQ E; where
1) E;is a primitive event that is characterized by the condition the total number of logins is
greater than 5. The logical expression that represents this condition is

usersloginstotal>5.

2) E;is a primitive event which is characterized by the condition the CPU load is greater
than 90 and the total number of processes running is greater than 35. The logical
expression which represents this condition is cpuload>90 && cpuprocesstotal >335.

3.1.4 Event Semantics

This Section describes the semantics of event operators based on first-order predicate logic.

Definition 3.3: A predicate occ is defined as follows: occ(E, ¢, [t,,t.]) is true if E occurs at time ¢

andt, < t<t,, where ¢, and ¢, are the time window start and end points of time respectively.

34

With the E-OR operator applied to E;, E;, an event is generated upon detection of either E; or
E;. The timestamp ¢ of the resulting composite event instance is either the occurrence time of the

instance of the events E; or E; (see Figure 3.1 (1)).

occ(E; E-OR Ej, t,[t,,t)) = (Bt |1, <t; < to, t=t) occ(E; , 4, [t; , 1]) v
@ |, << ¢, t=t) occ(E;, 1, [t , 1))

The attribute set of the resulting composite event is At if either of the following two cases
occurs: (i) occ(E; , t;, [t , L]) is true but occ(E;, ¢, [¢; , t.]) is not true; (ii) occ(E; , t;, [t , t]) is
true and occ(E; , ¢, [t; , t.]) is true but #; < ¢;. Otherwise the attributes set of the resulting

composite event is A#;.

With the E-AND operator applied to E;, Ej, an event is generated upon detection of both E;
and E;. The timestamp ¢ of the resulting composite event instance is the occurrence time of the

last detected instance of the events E; and E; (see Figure 3.1 (2)).

occ(E; E-AND Ej, ¢, [t,, t.])= (3t 4 [, Sti<t< L., t=4)
(occ(E; , 4, [ts,t]) A occ(E; , 8, (L, L)) v
G, 4 | <6< ¢, t=8)
(0cc(Ei b, [t t]) A occ(E), 4, [t ,])))

The attribute set of the resulting composite event is the union of all attributes of both A#;

and A1, i.e., theset Att; U Att; .

With the E-SEQ operator applied to E;, E;, an event is generated upon detection of E;
followed by a detection of E;. The timestamp ¢ of the resulting composite event instance is the

occurrence time of the detected instance of event E; (see Figure 3.1 (3)).

occ(E; E-SEQ E; ,t,[t,tD=Cttp t, St< 4, 1, , 158)

(occ(E; , 8, [t , t:]) Aocc(E; 4, [t L))

35

The attribute set of the resulting composite event would be the union of all attributes of both

Att; and At i.e., theset Att, U An; .

With the E-NOT operator applied to E}, an event is generated upon no detection of Z; in time
window T, i.e., [¢. #.). The timestamp ¢ of the resulting composite event instance is the end time

point, ¢,.

occ(E-NOT E; ¢t ,Jt; , t.D=(Vt: ¢, <t <t)—occ(Ej,t,[t,t])

The attribute set of the resulting composite event is &.

With the E-COUNT operator applied to E; with the argument n, an event is generated after £;
has been detected n times. The timestamp ¢ of the resulting composite event instance is the

th

occurrence time of the n” detected instance of event E;.

occ(E-COUNT E, [n], ¢, [t;, t.)) = (V¢ 1isn, 3|4, <4< t,) occ(E), & [t , £))

The attribute set of the resulting composite event is 4#; of the n” instance of E;.

f

occ(E; E-OR Ej, 1 {1, t]) occlE; E-SEQ Ej, ¢, [t , t])

timestamp

occ(E; E-AND E;, ¢ (1, ¢.])
valid instance

an event occurrence of type E,,

Figure 3.1: The Semantics of the Event Operators Over a Time Window

36

It is possible to express the event operators without explicitly stating a time window. In that
case, the assumption is that the time window is defined by the system. The default time window
defined by the system has f; equal to the current time of the system clock of the device that
generated the event, while ¢, equals the current time plus some defined duration say d (e.g., 20
seconds). For example; if a time window in the E-OR event operator is not explicitly defined,
then the semantics would be as follows:

OCC(E,' E-OR E'j, ¢) = OCC(E,- E-OR Ej' 5, [tcurrent s tcurrent+a'])

3.2 Policy Information Model

The UML depiction of the policy information model is presented in Figure 3.2. A policy is
modelled as an aggregation of an event (modelled by the Event Expression class) and a set of
rules. Rules of the policy can be prioritized. Each rule (modelled by the Rule class) specifies a
condition (modelled by the Condition class which represents a logical expression) which if true,

- specifies the actions (modelled by the Action class) to be executed. An action may have one or
more parameters (modelled by the Parameter class). A policy is associated with a domain which
is a set of computing resources. In this work, it is assumed that these computing resources are

~ hosts (see Figure 3.3). If a subset of these computing resources is to have additional policies, then

these are assumed to be a separate domain with its own set of policies. The work in [39]

establishes a common conceptual framework that describes the managed computing resources.

The information model in [39] represents an abstraction and representation of the elements in

managed computing resources, a basic classification of these managed elements and associations
of managed resources. The classification and relationship between managed objects are beyond

the scope of this Thesis. This task will become easier when standard information models, e.g.

CIM [39], are adopted.

37

Intervals that represent the date and time that a policy is active might be defined and

associated at both the policy and rule levels. This is useful for refining the enforcement of the

policy period. By associating an interval with a rule, typically a sub-interval of the policy interval,

one can allow events to be detected within the policy interval and limit the enforcement of the

associated rule with the detected event within a sub-interval of that of the policy. Evidently, It

may be the case that the rules should be activated at different times of the day e.g., one rule for

daytime hours and one rule for night time hours. By associating an interval with a rule, one can

allow events to be detected within the policy interval and limit the enforcement of the associated

rule with the detected event within a sub-interval of that of the policy. Static analysis of policies

should validate that there is no conflict between the intervals i.e., between the policy interval and

the intervals of its associated rules. Further discussion of several of these classes follows.

Domain

+DomainID
-Domain Description

1

EventExpression
+EventiD

+ConditionID

Figure 3.2:

Policy
-PolicylD _ Policy interval
PolicyStatment I\/a‘liditylﬂ Intervallo
nterval
0.1 -FrompateTime
-ToDateTime
ValidMonths
ValidDaysNames
ValidDaysNumbers
0.1
RulelnPolicy
#RulePriority L -VaRI:J(;ﬁy
Interval
Rule
+RulelD

-RuleStatement

Qx

— ContatnCondition—
1*
Action
Condition +Action|D
-ActionType

-ActionOSType
ActionExecutableHost
ActionExecutableDirectory
ActionLibraryHost
ActionLibraryDirectory
ActionDescription

Policy Information Model

o "* Contain

O Valid _
= Tima

a*
IntervalTimes

+FromTime
+ToTime

ActionInRule

) ®#ActionSequenceNumber

MYV *
Paraniter

+ParameterID
-ParameterType
-ParameterSequenceNumber
-ParameterlnitialValue
-ParameterDescription

38

Figure 3.3: Domain Information Model

Figure 3.4: EventExpression Information Model

Action Class
This class represents information about an action. The attributes characterizing this class include
the following:
- ActionID: This is the action identifier.
- ActionType: This represents the type of the action based on the type of file with the action
code e.g., UNIX scripts, binary executable codes, Java classes, etc. This is referred to as an
action executable. This field helps to construct the action calls that match its type.

- ActionOSType: This specifies the operating system on which this action can execute e.g.,

UNIX, Windows, Linux.

[P ——

39

- ActionExecutableHost: This represents the IP address of the host that stores the action
executable.

- ActionExecutableDirectory: This represents the directory where the action executable file and
any necessary configuration files are placed. The combination of ActionName,
ActionExecutableHost and ActionExecutableDirectory is used to determine the location of a
specific action executable.

- ActionLibraryHost: This represents the IP address of the host that has the libraries needed by
the action for execution.

- ActionLibraryDirectory: This represents the directory where the libraries are located.

- ActionSequenceNumber: Since a rule may spécify multiple actions, the association class
ActionInRule, defines an attribute that represents the sequence order of an action within a

rule.

Parameter Class
‘This class represents information about a parameter that an action may have. An action may have

more than one parameter. The class is characterized as follows:

‘ParameterID: This provides a parameter identifier.

ParameterType: The type of the parameter e.g., string, integer, real, boolean.

ParameterSequenceNumber: This represents the sequence order of a parameter within the

action parameters.

ParameterlnitialValue: This represents the initial value of the parameter.

ParameterDescription: This provides a textual description of the parameter.

Interval Class
This class represents information about an interval. The class is characterized by the following
attributes:

- IntervalID: This provides an interval identifier.

e

40

- FromDateTime: This represents the start of an interval e.g., “2008/01/01 00:00:00”.

- ToDateTime: This represents the end of an interval e.g., “2008/06/30 23:59:59”.

- ValidMonths: This value, if specified, represents the valid months within the start and end
dates of the interval. The default value is that all months are valid. This attribute and the next
two attributes are used to filter the interval.

- ValidDayNames: This value represents the valid days according to their names or order in
the week, e.g., SUNDAY, MONDAY, etc. or 1,2,..,7.

- ValidDayNumbers: This value represents the valid days based on the day of the month.

- The class IntervalTimes represents an additional filter by defining the valid period(s) of time
within a day, e.g., FromTime=12:30:00, ToTime 17:29:59 will limit the policy to be active

within this time period in each day of the policy interval.

EventExpression Class

This class represents information about an event. An event may be characterized by a condition
-or recursively defined from other event expressions using an event operator (see Figure 3.4). We
use the composite design pattern from [47] to compose the tree structure of an event as follows:

- The Condition class (the logical expression) represents a leaf object in the composition.
Leaves represent the primitive events in the composition.

- The CompositeEvent class is an abstract class that defines the attributes EventOperator and
EventTimeWindow. The EventTimeWindow denotes a specific time preiod. More
specifically, EventTimeWindow represents a time period delimited by two specific
boundaries of time points, e.g., 10 minutes from current system time (now), or 10 seconds
from the occurrence of either event of the event expression. In this time window the event

expression should be evaluated.

- The UnaryCompositeEvent class extends the CompositeEvent class, to represent

information about the unary composite event expression

W o e

41

- The BinaryCompositeEvent class extends the CompositeEvent class, to represent and. store
the components of the binary composite event expression, i.e., store two event component

(EventID) which represent the operands in the event expression.

3.3 Chapter Summary

This Chapter presented an information model used to specify policies. The definition of

-events and event operators used in this Thesis were presented as well as the semantics of the

event operators. The purpose of this Chapter is not to provide a unique set of event operators and
semahtics, but rather to present a model we assume for the work presented in this dissertation.
The model and event operators semantics are derived from work found in [56,72,97,98,160]. The
pqlicy ihformation model addressed in this Chapter is the basis for the implementation of the
language used for expressing policies (see Appendix A). Event operators and their semantics are
introduced in this thesis in order to model composite events and to facilitate the development of

the algorithms used to handle composite event operators (sec Appendix E).

42

Chapter 4

A MODEL FOR POLICY BASED
| MANAGEMENT SYSTEMS

This Chapter briefly describes a policy-based management system (PBM) architecture (see
Figure 4.1) that can configure itself in response to changes to the system being managed and
changes in policies. Chapters 5, 6 expand on the components of the architecture in more detail,

while Chapter 7 describes an implementation of the architecture.

4{1 Proposed PBM System Architecture

Figure 4.1 illustrates an architecture for a PBM system model. The model’s components are

discussed in greater detail in the rest of this Section.

Policy Specification
This component is used to specify policies. The specified policies are stored in a repository.

It is assumed that this component can transform the policy into a form understood by the other

43

components, e.g., the Agent Matcher and Mapping Mechanism components. The policy

specification is based on the policy model defined in Section 3.2.1.

Policy
1 WEO
Policies to
be added
Mapping Policy & Agent Agent
Mechanism Repository Matcher
Mapped Selected
Elements Agents
Distribution
Mechanism

Deployment

\\ Manager

Manager

MO=Managed Object

Figure 41: Proposed PBM System Architecture

e S

- et

Agent Matcher

When a policy is activated or an active policy is changed, the Agent Matcher is invoked.
The agents that can be used to enforce the policy are determined and then any possible existing
agent instances that might be used are identified as is or the identified agents can be used with
some changes, e.g., by requesting that a specific condition characterizing an event be monitored.
The three tasks carried out are the following: Agent Finding, Agent Instances Finding and Agent
Configuration.

- Agent Finding: Upon adding or activating a policy, the Agent Matcher searches the
agent repository to find a set of agents that can be used to monitor the attributes specified

| in the policy’s event expression and the conditions used in the rules. A list of agents and
the attributes that it can monitor is created (more on this in Section 5.2).

- Agent Instance Finding: The Agent Instance Finding task is used to determine if
there are instantiations of these agents found in the previous step. It may be possible to
use an existing agent instantiation.

- Agent Configuration: An arrangement of agents is determined that can monitor the
attributes and trigger the events specified in the policy. In the selection of this
arrangement, if an agent instantiation exists that can monitor all or part of attributes used
in the specification of the policy, then this instantiation may be used. In case there are no
available agent instantiations, executables corresponding to the agents found in the search

are used.

Mapping Mechanism
This component maps events and rules specified in the policies to a form that is understood

by the management system.

45

Distribution Mechanism

This component starts an agent instance, sends a new condition to be monitored to an agent
instance, sends a new request for values of a set of attributes that the agent instance can support,
and sends event information and the set of condition-actions rules of the policy to the appropriate

manager.

Manager

There must be at least one manager that is notified about the events received from the event-
handler. Management systems often include one or more event handlers to deal with the
collection of and distribution of events to other management components. The manager evaluates

the rules associated with the events received.

Interactions

To illustrate the interactions among the components, the following example policy is used:

. Example 4.1: If the CPU load is greater than 95 for any of the UNILX system lab hosts then

email the administrator

Assume that this policy is specified and stored in the Policy-Repository. The specification of this
policy requires the following:

A policy named cpu_load_policy is created which has a primitive event named

cpuload_evt and one rule named cpu_load_rule.

- A logical expression named cpuload_exp representing the CPU-Load restriction, i.e.,
(cpu_load >= 95), is created.

- The event-target assigned is TEC (Tivoli Enterprise Console). TEC is the default event
target. The policy domain is the set of all UNIX based hosts in Syslab.

- The cpu_load_rule rule consists of no conditions and one action.

- The action to be taken is send-email.

46

The mapping policy elements (i.e., event and the set of condition-actions rules) will be

discussed in Chapter 6.

The steps needed to find the set of agents that can be used to enforce the example policy is carried

~ out by the Agent Matcher component. These steps include the following:

1.

The Agent Matcher searches the repository to determine the event expression associated
with the event identifier, cpuload_evt.

The attribute identifiers from the event expression and from the condition of the rule
components are extracted, i.e., the attribute cpu_load is extracted. This attribute is used to

search for UNIX based agents (as specified in the policy domain) that can monitor that

attribute. The proposed model allows a single domain to include machines of different

operating systems. For example, if the target machines in the policy domain include both
UNIX and Windows machines, then the Agent Matcher would search in both the UNIX
and Windows based agents to find agents for each OS platform that can monitor the
attribute.

Assume that an agent, cpu_agent, capable of monitoring the attribute cpu_Joad is found.
The Agent Matcher then checks to determine whether there are instantiations of the
cpu_agent in the policy domain hosts. There are two cases; a) no existing instantiation,
then a new instance needs to be configured to support the cpu_load_policy policy (i.e.,
decides the attributes to monitor and the event expression to evaluate), b) there are
instances of the cpu_agent in the policy domain hosts, these existing instances will
reconfigured to support the cpu_load_policy (i.e., existing instances would update to
monitor and fire an event if the cpu_load attribute is greater than or equal to 95). The
Distribution Mechanism is used to place the executables appropriately and start a new
instance. The Distribution Mechanism component is provided with enough information
(e.g., the location of the agents executables and libraries used) to start an agent instance.

In addition, the set of condition-actions rules of the policy is mapped to an executable

T

47

representation and then distributed to a manager that evaluates rules. If the target
machines in the policy domain include UNIX and Windows machines then two agents

instantiations would be required - one for each operating system platform.

4.2 A Roadmap for Automating PBM Systems

below:

This Chapter provides a roadmap for the core work presented in this Thesis, specifically,
the design, development and deployment of the components as illustrated in Figure 4.1. The

details of the framework are described in Chapters 5-8 of the Thesis which are summarized

Chapter S: Management Agents. In this Chapter, the description of
management agents with the depiction of the management agent components and
design that underpins all management agents is developed and described. In
particular, this Chapter describes a service to automate agent finding and agent
configuration.

Chapter 6: Mapping Mechanisms. A policy needs to be understood by a
management system that enforces this policy. The principal focus of this Chapter is
the design of approaches that uses a policy to determine configurations of
management entities. This is referred to as mapping.

Chapter 7: Implementation and the Prototype. Th1s Chapter describes the
implementation of the Policy-Management Agent Integrated Console (PMagic)
prototype. PMagic represents the proof of concept of the approaches developed in
this Thesis towards automating PBM systems.

Chapter 8: Evaluation. This Chapter describes the experiments conducted to
evaluate PMagic and presents the conclusions drawn from these experiments
Chapter 9: Conclusions and Future Work. This Chapter outlines the Thesis

contributions. Conclusions and future work will be highlighted in this Chapter.

ety et §

48

Chapter 5

MANAGEMENT AGENTS

This Chapter begins with a discussion of the required management services for operations
related to management agents to support policy enforcement. The Chapter then presents an

information model that is a representation of the components of an agent and its instantiations.

 This is followed with a discussion of a management agent design and its interface. This is used

as the basis for the Agent Matcher component.

-5 Introduction

As defined in Chapter 1, a management agent is a logical entity that provides a single
interface and performs management operations (i.e., monitor and collect data, analyze data
collected, carry out control actions) on managed objects and emits notifications on behalf of
managed objects. Existing management systems do not provide facilities to automate the
deployment of management entities i.e., finding and configuring management agents that

monitor, analyzc and control the managed system to enforce policies. Currently these types of

49

activities are considered the responsibility of the system administrator. One of the goals of this
work is to have the management system automatically carry out these activities in response to a
change in the policies or in the system being managed. For example, assume that an
administrator has just added the policy specified in Example 3.1. This requires that there are
agents that can monitor the attributes used in the specification of the policy and carry out any
actions specified in the policy. For Example 3.1, the agents needed should be able to monitor the
attributes representing the total number of users logged in (usersloginstotal), the CPU load
(cpuload) and the number of processes (cpuprocesstotal) attributes. A search of the existing set
of agents based on the attributes to be monitored is needed to determine a set of agents that can
used tq enforce the policy.

Searches should not be limited to just the set of agents available. It is important to be able to
determine any existing instantiations of those agents since it may be possible to use these

instantiations. This is illustrated with the following example policies:

- Example 5.1: if su root is used to login into any of the UNLX hosts in the Computer Science

Department then email the administrator if the user is “AAA”

Example 5.2: if the number of failed attempts to log into any of the UNLX hosts in the Computer

Science Department under a specific login name exceeds 3 then lock this account

Both example 5.1 and example 5.2 policies require the monitoring of the syslog file. Assume
that only the management agent syslog _agent monitors the syslog file for each UNIX host
machine. Ideally, it should be possible to activate these policies at different times yet use one
instance of syslog_agent. For the policy stated in Example 5.1, an instance of the management
agent syslog_agent is created to monitor the event su root is used to login. Assume that the
policy specified in Example 5.2 is added later. If the management system also maintained

information about agent instances then the instance of the management agent syslog_agent could

50

also be used for the policy stated in Example 5.2. The management agent instance that is in use
for the policy specified in Example 5.1 needs to be configured to evaluate the event used in the
policy specified in Example 5.2.

Searches for agents and agent instances require an information model that provides
information about agents, agent instances and their relationship. Section 5.2 describes an

information model.

5.2 Management Agent Information Model

To facilitate the usage of management agents for supporting policies, a management system
should have a service that finds agents. Therefore, for each agent the following information is
needed:

1. The attributes that can be monitored.

2. Information characterizing an agent executable e.g., the path of an agent executable such
as /PMagic_Manager/agents/cpu_agent. In this work, the term agent refers to the agent
executable.

3. Information characterizing an instantiation of an agent i.e., the agent that is in execution.

This is called an agent instantiation or agent instance in this work.

The information model (graphically depicted in Figure 5.1 using UML) that represents this
in‘f'ormation is described in this Section. This information model is used as the basis for the agent
repository in the prototype introduced in this Thesis (see Chapter 7 for more details). Information
about the agent is represented by the Agent class and information about a specific instantiation is

represented by the AgentInstantiation class. A description of these classes is provided below.

51

Figure 5.1: Agent Information Model

The Agent class represents information about an agent. The attributes characterizing this class

include the following:

AgentlD: This is the agent identifier.

AgentOSType: This specifies the operating system under which this agent can execute e.g.,
UNIX, Windows, OS2, Linux.

AgentExecutableHost: This represents the IP address of the host that stores the agent
executable.

AgentExecutableDirectory: This represents the directory of the agent executable file. The
AgentExecutableDirectory is the path to the directory of the agent executable and supporting
files e.g., adapter configuration files. The combination of AgentiD, AgentExecutableHost and
AgentExecutableDirectory is used to determine the location of a specific agent executable.
AgentLibraryHost: This represents the IP address of the host that has the libraries needed by

the agent for execution.

52

- AgentLibraryDirectory: This represents the directory where the libraries are located.
- InformationServiceDirectory: This is the path to a directory with the executable of an
information service. Not all agents need to assign a value for this.

- AgentDescription: This provides a textual description of the agent.

Table 5.1 represents an example of the values that the Agent class attributes may hold.

Attribute Name Value
AgentID cpu_agent_|
AgentOSType UNIX
AgentExecutableHost 129.100.18.32

AgentExecutableDirectory “/sl/wolfbiter/PMagic_Manager/agents/cpu_agent_I/”

AgentLibraryHost 129.100.18.32
AgentlLibraryDirectory “Isl/wolfbiter/PMagic_ Manager/libraries/”
AgentDescription “an agent to monitor the cpu and processes on managed host”

Table 5.1: Example of the Values the Agent Class Attributes may Hold

Instances of agents monitor attributes characterizing the behaviour in a system (e.g.,
cpu_load attribute). Attribute information is represented by the Attribute class. Information about
an attribute includes a unique attribute name, the type of the attribute and a description. As
represented in the model, an attribute can be monitored by more than one agent and an agent can
monitor more than one attribute. It may be the case that there are different agent executables with
the same functionality that execute under different operating systems. In this model, these agents

are represented by different Agent objects.

The AgentinstanticitionClciss class represents information about an instantiation of an agent.
It is possible to have multiple agent instances of an agent. Thus there is a zero-to-many
relationship between Agent and Agentinstantiation. An agent instance may be an initialization of

an agent executable or a dynamically created agent or a manager agent. More details about

53

management agent types are described in Section 5.6. Each agent instance is associated with a
host. An agent instantiation has a unique identifier, AgentinsIiD, e.g., the combination of the
AgentID, AgentinstanceCommunicationPort (i.e., the communication port number that this
instance uses to communicate with the host) and the HostName.

Agent instantiations are used to monitor attributes to determine if a condition that
characterizes an event is satisfied. An event is modelled by the class EventExpression. An agent
instantiation may generate more than one event and an event may be generated by more than one
agent instance. Thus there is a many to many association between the Agentinstantiation class
and the EventExpression class. Upon detecting an event, the agent instantiations send a
notification of that event to the designated target (e.g., management application). The
information (e.g., host name and port number) about the designated target is represented by the

EventTarget class.

The work in [16,25] addresses the issue of canonical and common base event data. The
management agents introduced in this Chapter are designed to construct event notification
messages with important data, such as data that uniquely identifies the managed object, the source
of the event (the component that is generating the event) and the timestamp of the event. The data
necessary to synchronize and aggregate events with other events, in composite events situation,
are also included in the generated event messages. More about the data maintained in event

messages can be found in Chapter 7.

Information about what an agent instance supports is maintained and is represented by the
Registry class. An agent instance can support one or more policies in that it can either generate
events specified in the policy or monitor attributes specified in the policy (but not actually

generate an event). The manager uses and updates the Registry class information in the agent

54

configuration task. More details about agent configuration tasks will be elaborated in Section 5.6,

5.7.2, and Chapter 6.

5.3 Management Agent Design

An agent monitors attributes that characterize the state of the system. There are many
information services that provide monitoring mechanisms to get values of the attributes represent
the state of the system. Provide. Examples of information services are; Simple Network
Management Protocol (SNMP) agents [65,103,144], Application Response Measurement (ARM)
[121] and Tivoli monitoring agents [151], Web-Based Enterprise Management with CIM
(WBEM/CIM services) [58,116], Java Management Extensions (JMX) [149] , Windows
Management Instrumentation (WMI) [105], Web Service Distributed Management (WSDM)
[158], scripts, and logfile analyzers. There are two challenges in using these services:

6)) The information services directly extract information from the object being
monitored. An information service typically involves some form of instrumentation.
Each information service has an interface, but these interfaces are different for
different information services.

(ii) Events may be specified using attributes from different managed objects. An event
may be characterized by a condition that checks the status of a printer and the size of
the document that needs to be printed. Such a condition would include attributes from
different managed objects. This condition may need two information services to

collect the attribute values needed to evaluate the condition characterizing the event.

To automate the identification of and search for the services that can monitor the system
attributes requires that all management agents must have a common interface. Figure 5.2 shows
how the proposed monitoring structure as outlined in this Thesis would communicate with

existing monitoring mechanisms that have different interfaces. The arrows indicate a flow of

55

information. A management agent can request information from an information service. The
information service responds to the management agent with the requested information. This
requires that the management agent that interacts with the information service use the API of the
infonnation service.

A proposed management agent design is shown in Figure 5.3. In this design, management
agents have an interface that is known to the managers and other agents, and through that
interface the manager can configure management agents (upon creating an agent instance),
reconfigure management agents based on the policy specification and terminate management
agents. A management agent is designed to maintain information about what it asked to support,
e.g., events to be monitored. More details about this information and about the interface are

described in this Section.

56

5.4 Management Agent Components

A management agent is designed to maintain the information needed to support policy
deployment and to carry out the enforcement of the policy rules if asked to do so. The
management agent has the PoiicyRepresentation, EventRepresentation, MessageRepresentation

and ActionRepresentation components.

Figure 5.3: A Management Agent Structure

5.4.1 An Event-Representation Component

For each event to be managed by the management agent instance, the EventRepresentation
component maintains a set of event tuples, denoted by Events, where each tuple represents
information about an event that is to be monitored and triggered by the management agent

instance. The event tuple is of the form;

-EventID, EventExpression, EventAttrtibutes>

57

The components of the event tuple are briefly described as follows:

- EventID: The event identifier.

- EventExpression: The event expression represents the event. In case the event is a
primitive event, this is the logical expression (condition) that characterizes the event
that the management agent is expected to monitor. In case the event is a composite
event, this is the event expression that represents the event composition that the
management agent is expected to evaluate.

- EventAttributes: This is a set of the attribute names used in the specification of the
event.

As an example consider the policy specified in Example 1.1. Assume that the event identifier is
sessionidle_exp. The set, EventAttributes, consists of a single attribute, sessionidle, and the
event expréssion stored is sessionidle >20.
The EventRepresentation component maintains information about events that is independent of a
’ policy. If the policy specified in Example 1.2 is added to the of active policies then the tuple
created for Example 1.1 will also apply to the policy in Example 1.2.

If the expression characterizing an event changes then it is associated with a new event

identifier.

5.4.2 A Policy-Representation Component

The PolicyRepresentation component maintains information about each policy associated
with the management agent instance. There are two sets of tuples maintained by this component.
Information about an event that is specific to a policy is stored as a tuple in the Policy-Event set.
The tuples are in this form:;

<PolicyID, EventID, EventTargets>
The event specified in the policy is referred to as a policy event. The following is a brief

descriptioh of the tuple elements:

58

PolicyID: The policy identifier.

EventID: The event identifier.

EventTargets: This is a set in which each element of the set represents information
about a target (handler) that is interested in receiving and handling a notification of
the event occurrence. The general form of an EventTarget element is the following:

<Target, {WaitPeriod|EventTimeWindows}>

Target: This is a handle (a handle is the information needed to communicate with the
process) representing the process to be notified of the event occurrence. Since an
event may be common to more than one policy there is the potential for an event
target to receive multiple event notifications. Our design assumes that the
" management agent which sends the event notifications also filters out multiple event
notifications. The reason for doing this is that if a target is a manager then the
manager would have to deal with multiple notifications. Our approach means that
managers do not have this responsibility.

WaitPeriod: The WaitPeriod is used only for primitive events. It is not applicable to
composite events. The WaitPeriod is the time between evaluations of the condition
specified in EventExpression. The management agent design takes into account that it
may not be needed for a management agent instance to verify every condition at
once. For example, consider a management agent instance that can evaluate the event
expression (logical expression) usersloginstotal >5 (used in the policy specified in
Example 3.1) and the logical expression sessionidle>20 (used in the policy specified
in Example 1.1). The first logical expression may need to be verified every two
minutes while the second logical expression needs to be verified every 10 minutes.
This implies that a management agent instance should maintain how often an event

expression (characterizing an event) should be evaluated. The reason for why the

59

time between condition evaluations may vary is that monitoring and evaluation of

¥ monitored data consumes resources. Providing a mechanism to control condition

evaluations provides some control over resource consumption. Frequency is

controlled by WaitPeriod. We assume that if this is not specified in the policy that a

default frequency is assumed. This assumes that the policy specification language

does allow for the specification frequency. The prototype in Chapter 7 supports this
ability.

- EventTimeWindow: This is defined only for composite events and is not applicable to
primitive events. The EventTimeWindow is the time period in which the event
expression should be evaluated. More specifically, EventTimeWindow represents a
time period that is delimited by two specific boundaries of time points, e.g., 10

“minutes from current system time (now). This time period is used to evaluate the

occurrence of a composite event.

Information that relates a policy, events and rules is represented as a tuple in PolicySet:

<PolicyID, EventID, EventTree, PolicyInterval, Rules>

The elements of the tuple are briefly described as follows:

- PolicyID: The policy identifier.

- EvemtID: The event identifier of the event which is either the policy event or a
constituent event of the policy event of the policy identified by PolicyID. Example
3.1 has a policy event in the form of E; E-SEQ E; where E; and E; are events that
may be monitored by different management agents. The management agent
monitoring for E; would have a tuple with the policy identifier associated with the
example, the event identifier for E; and the event tree associated with E;. The

" management agent monitoring for E; would have a tuple with the policy identifier

60

associated with the example, the event identifier for E; and the event tree associated
with E;.
EventTree: This component maintains the event tree for the event identifier specified
in EventID. We use an event tree to represent the relationship the event identified by
EventID has with other events. Each node of the event tree corresponds to an event.
The root node of the tree is the event associated with EventID. The leaf nodes of the
event tree correspond to primitive events while all other nodes of the event tree
represent composite events. An event tree with one node means that the event
associated with Eventld is primitive; otherwise the event associated with Eventld is
composite. The information for each node of the event tree is found in the Policy-
Event set. We will show later in this Chapter how EventTree is used for composite
“event detection.
PolicyInterval: This denotes the interval associated with the policy as discussed in
Section 3.2.
Rules: This is a set where each element of the set represents information about a
policy rule. For example, consider a management agent instance that monitors the
event used in the policy specified in Example 1.1, i.e., the agent instance evaluates
the event that is characterized by the condition sessionidle>20. This agent instance
may be configured to evaluate the policy rule close the session. Note that the policy
rule associated with the policy of Example 1.1 has no condition that needs to be
evaluated before enforcing the action. Thus a rule could end up being an action. The
Rules set may be empty. For example 3.1 the management agent monitoring E; would
have this set be empty since it is not the policy event but rather a constituent event of
the policy event. The general form of a rule is the following:

<Logical Expression, ActionInfo>

61

where LogicalExpression represents the condition and Actionlnfo is information
about the action. This is described in more detail later in this Section.

The use of the PolicyRepresentation component by agents is discussed in Section 5.6.

5.4.3 A Message-Representation Component

It may not be possible for one management agent to monitor all of the attributes used in the
specification of a primitive event. An arrangement of agents may be required to monitor all
attributes of a primitive event. More on this is discussed in Sections 5.6 and 5.7. Agents that
coilectively monitor the attributes periodically exchange information through messages. A
message is a collection of attribute/value pairs. A management agent is designed to maintain a
set, Messages, of message tuples related to the messages that need to be sent by an instance.

This message tuple has the form:

<PolicyID, EventID, MessageAttributes, MessageTarget, PolicyInterval, WaitPeriod>

. The components of the message tuple are briefly described as follows:

- PolicyID: The policy identifier.

- EventID: The event identifier of the event for which a message of attribute values is
needed

- MessageAttributes: This is a set of the attribute names whose values are included in the
message sent.

- MessageTarget: This indicates where to send the message. Typically, a message is sent
to one or more other management agents.

- PolicyInterval: This denotes the associated interval with the policy as discussed in
Section 3.2,

- WaitPeriod: This is the time to wait between sending of multiple instances of this

message to its target.

62

A tuple is needed when an agent is only able to monitor part of a condition characterizing a
primitive event and the attributes it is monitoring are sent to another agent that is collecting

attribute values in order to evaluate the condition.

5.4.4 An Action-Representation Component

Management agents can be used to carry out actions, some of which may be on a periodic
basis. For example, an agent may be used to execute the virus checking software every night at
2:00 AM. The management agent design maintains a list of action tuples where each tuple has

the following form:

<ActionID, ActionExecutableHandle, ManagedResoursesList, {Schedule}>

“where:
- ActionID: The action identifier.

- ActionExecutableHandle: Information about the action, e.g., the directory where the
action executable resides, the library directories, how to call this action, etc.

- ManagedResoursesList: A list of the managed resources on which the agent carries
out the action.

- Schedule: The time when the action should execute (optional). If the action is used in

a rule then it is assumed that the Schedule is not used.

-5;5 A Management Agent Interface

The interface has a method that enables the manager to configure the state of the
management agent, such as asking the agent instance to sleep or shutdown if there are no active
policies for the agent to support. The interface also provides methods that allow a manager to
add, delete or modify policy and event tuples in a management agent instance. Similar methods

are defined for message and action tuples.

63

5.6 Types of Management Agents

All agents have methods that permit for the manipulation of information described in Section
5.3.1. This Section describes how the interface is extended for three types of agents: monitoring

agents, dynamic monitoring agents and manager agents. These agents have specific purposes.

Definition 5.1: A monitoring agent (ma) is a management agent that communicates with existing
information services, is able to detect primitive events and is able to send messages of

attributes/values pairs to dynamic monitoring agents.

Definition 5.2: A dynamic monitoring agent (dma) is a dynamically created management agent
that collects data from monitoring agents. A dynamic monitoring agent is used to detect a

primitive event that cannot be detected by single monitoring agent.

Definition 5.3: A manager agent (manager_agent) is a dynamically created management agent

_ that is dedicated to detecting composite events.

The rest of this Section describes these agents.

5.6.1 Monitoring Agents

Primitive events require direct extraction of the information from the object being
mohitored. This requires some form of instrumentation which is specific to the managed object.
There are many information services that provide some form of instrumentation. Each
information service has an interface, but these interfaces are different for different information
serviceé. A monitoring agent (ma) is a management agent that communicates with existing
information services, is able to detect primitive events and send notification messages of the
detected events to the event targets. These targets could be manager agents and/or eventhandlers.

The ma is able to send messages of attributes/values pairs to dynamic monitoring agents. Let us

64

consider the policy (denoted by cpu_load_policy) of Example 4.1. In this example, the attribute
cpu_load, representing cpu load, is monitored. We assume that the monitoring is done by an
information service e.g.,, SNMP agent. In the case of an SNMP agent the monitoring agent uses
the SNMP GET command to get the current cpu load. The monitoring agent (denoted by
cpu_agent) uses these values to determine if cpu_load>95. Thus the monitoring agent has a tuple
in the Events set of this form <cpu_load_evt, cpu_load>935, {cpu_load}>. The monitoring agent
has a tuple in the Policy-Event set of this form <cpu_load_policy, cpu_load_evt, {cpu_agent}, 1
mi‘nutc>. Assume that the information service that monitors the cpu load can also monitor
memory usage. It is then easy to add a policy that specifies an event based on the memory usage
by asking the monitoring agent to add the event information to the Events set and information
about the event and policy to the Policy-Event set.

The event target is the agent itself and the 1 minute indicates how often the monitoring agent is
to get a cpu load value. The monitoring agent may either poll the information service or have the
' information service push the information. This is considered implementation dependent. If the
information service is an SNMP agent and polling is used then the monitoring agent may issue a
GET command to the SNMP agent every minute. There are different possibilities for the target
of the event notification including the following: (i) If the association between an event and a
rule is through an event-driven rule-based engine then a possible target of the event notification is
an-event handler; (ii) If the agent is to carry out the policy rules enforcement then the target
may be itself; (iii) If the event is a constituent event in a policy event monitored by another

management agent then the target is that management agent.

Attributes are associated with monitoring agents. When searching for an agent to use (more
on this in Section 5.7), the search is based on the monitoring agents. The implementation of a
monitoring agent uses an executable that has the code for maintaining event and policy

information as described earlier in this Chapter. However, assume the monitoring agent needs to

65

interact with an information service such as SNMP. There are two cases. The first is that the
service is already assumed to be started. This is often the case with SNMP which is started when
the system boots. This is relatively easy to test by assuming that the monitoring agent has a
method that tests to see if the information service is started. The second case is that the
information service is not started. In this case it is assumed that the locations of the information
service executables is known and can be found and used by the Distribution Mechanism
(Chapter 4).

For the policy specified in Example 3.1, there is a monitoring agent for event E; and another
monitoring agent for E;. These agents use UNIX scripts to collect the required monitoring
information, i.e., the required attributes/values. If a new policy is added that requires that an event
is to be generated if the CPU load is greater than 95, then this can be accomplished by requesting

that the agent instance monitoring E; also monitors this new event.

' 5.6.2 Dynamic Management Agents

A dynamic monitoring agent is dynamically instantiated and dedicated to detecting a
primitive event when all the attributes in this primitive event cannot be collected by a single
monitoring agent. The monitoring agents are dynamically configured to send the attributes/values
pairs almost simultaneously to the dynamic monitoring with which they communicate. The code
of the dynamic monitoring agent maintains the information discussed in Section 5.4. It provides
the interface in 5.5 but it has additional methods that are used to configure the agent so that the

relevant monitoring agents can communicate with it.

For Example 3.1, if the management system provides a monitoring agent that monitors users
logins, another monitoring agent that monitors CPU load, and a third monitoring agent that
monitors processes, then a dynamic monitoring agent is dynamically instantiated to receive the

values of CPU load and the number of running processes attributes from the last two monitoring

66

agents, and then the dynamic monitoring agent is used to detect instances of the primitive event
E;. We note that the monitoring agents have a tuple in the set of tuples managed by the Message-

Representation component.

5.6.3 Manager Agents
As indicated in Section 2.1, management systems provide an event handler to deal with the
collection and distribution of events to other management components. One of these components
may associate events with rules. An example is the Tivoli Enterprise Console (TEC). This type
of component is sometimes referred to as an event-driven rule-based engine and typically has
functionality that can be configured to implement the event operators introduced in Chapter 3 and
thus allow for a complex analysis of the received events before determining an action. A useful
| mechanism to have is a management agent that can determine the action without having to send
an event to the rule base engine. This allows for a distribution of event handling. Therefore, the
manager agent is introduced. A manager agent is dynamically instantiated when the policy event
is of type composite event. The manager-agent has an additional component, EventMemory,
which maintains a list of the event notification messages received. The event notification
messages to be received by a manager agent are those for the policy assigned to that agent. The

EventMemory list consists of the following tuples:

<EventID, EventTimeStamp, EventAttributesValues, EventStatus>
where:
- EventID: The event identifier.
- EventTimeStamp: The time that the event occurred.
- EventAttributesValues: A list of the attribute name and value pairs.
- EventStatus: The status of the event, e.g. Open or Closed which indicates whether the

event has already been processed or not.

67

The manager agent is dynamically configured to receive events from other management
agents. These events are the constituent events that are used in the construction of the composite
events this manager agent detects. The detection of composite events using manager agents is

explained in Section 5.6.4.

5.6.4 A Manager-Agent Procedure for Handling Events

The diagram in Figure 5.4 illustrates a procedure for processing an event as it is received by
the manager-agent. When an event is received, the procedure determines if the received event
occurs within the time frame specified in the policy interval. If this is not the case, the procedure
terminates. Otherwise the event is added to the set of event tuples maintained by the
EventMemory component. The procedure then determines if the policy event or its constituent
events have occurred. For an event in the set maintained by the EventTree of the
PolicyRepresentation component, if all the preceding events have occurred then the event being
examined has occurred subject to any existing timing constraints. For example, the occurrence of
" an event expression using the E_SEQ operator needs the two constituent events, LHS and RHS,

events to occur and the LHS event in the expression to occur before RHS event.

The occurrence of an event causes a notification message to be sent to the targets specified in
EventTargets and the EventMemory component to be updated. When thé policy event, which is
thé last event represented in the EventTree component, occurs, then the rules specified in the
policy, and represented in Rules of the PolicyRepresentation component, are executed and the

procedure terminates.

Figure 5.4

A Flow Diagram Illustrating a Manager-Agent Procedure for Handling Events

68

69

The procedure is designed to process the event expressions, represented in the
EventRepresentation component, with events in EventMemory on a periodic basis, e.g., every 5
minutes, as long as no new event is received. The periodic execution of the procedure is
necessary to detect events that are characterized by an event expression where the time constraint
associated with the event represents an earlier time frame than the current time (e.g., the event

should have happened 10 minutes ago).

5.6.5 Relationship between the Different Types of Agents

Figure 5.5 shows the communications between the three types of the management agents.
For instance, a rmi can detect primitive events and sends primitive event notification messages to
man-agent(s). A ma can send messages of attribute/value pairs only to dma(s). A dma receives
messages of attribute/value pairs from mas. A dma detects a primitive event and can send a
notification message of this primitive event to man-agent(s). A manager_agent receives
notification messages of primitive events from ma(s) and dma(s). A manager_agent can receive
notification messages of composite events from other manager_agent(s). A manager_agent
detects a composite event and can send a notification message of this composite event to other

man-agent(s).

For Example 3.1, if the management system relies on agents only to deploy the policy in this
example (see Chapter 6 for another deployment approach), then a manager agent is dynamically
created to receive the primitive events Et and Ej from monitoring agents, and then the manager
agent is used to detect instances of the composite event E. More details on how a manager-agent

handles and detects a composite event are outlined in Section 5.6.4.

70

Figure 5.5: A Communication between Management Agents

5.7 Agent Matcher

The Agent Matcher component, introduced in Section 4.1, is used to Find and configure the
management agents that can enforce the policies. There are three tasks involved: finding potential
agents, finding existing agent instances and developing an agent configuration. This Section

describes these tasks and addresses the algorithms used to achieve these tasks.

5.7.1 Finding Agents

Upon adding a policy to the system, the Agent Matcher searches the agent repository to find
a set of agents that can be used to monitor the system being managed so that the policy can be
enforced. The matching process is based on the attributes extracted from the policy and the
attributes that a management agent monitors. The agent finding algorithm is invoked when a

policy is added (see Figure 5.6).

71

TR SRR TR Eea e SS6s =1 SRAR mhsua

Algorithm AgentFind (P, P, Ppevents)

Input: 1) Pis the policy
2) P,.is a set of attributes extracted from the elements of P
3) Ppevens is @ set of primitive events specified in P
Output: 1) Agents,.(g, Epevents) iS an associative array that associates each selected agent g to a set of
primitive events gpevents & Ppevents Where for each event e in gpevems agent g can monitor all
the e attributes.

2) Agents,:(g, Bmessages) is an associative array that associates each selected agent g with an
associative array gmesssges- TN€ Emessages (€) Emessage aet) IS N associative array that
associates with each primitive event e, which g can partially support, to a set of attributes
emessige st & € Where e, is the set of attributes of the primitive evente.

1 Agents, = Find_Agents (P,y)
2 Eventsemp = Ppevents
3. foreach e € Ppeyeny; do
4. g = FindAgent_All_Attributes (Agents,, €,)
5 if (g # null) then
6. if (g € Agents,, . keys) then
7 Bpevents = Bpevents U { € }
8. else
9. Agentspe(8) Bpevenss) = Agents,e(g,{e})
10. end if
1. EventSeemp = Eventsempi{e}
12. end if
13. end for
14. if (Eventsiemp == &) then
15. return (Agents,.(g, Epevents) »)
16. end if
17. for each e € Events,nm, do
18. Agentsi.mp = Agents,
19. while (e, # @) and (Agentsiem, * &) do
20, g = FindAgent_Any_Attributes (Agentsiemp , €t)
21, if (g == null) then
22. FAIL
23. else
24. if (g € Agents,y . keys) then ‘
25. Bmessag (e,e v_att)'-'g g (eremn Bt)
26. else
27' Agentsan(g) gmessages) = Agentsatt(8 » gmessages (e » eatt ﬂ gatt))
28. end if
29. end if
30. Agentsiemp = Agentseem\{ g}
31. € = €5\ Batt
32. end while
33. if (e, @)then
34. FAIL
35. else
36. Agentspe(£ Bpevents) = Agentspe(Be-dynamic » { e })
37. end if
38. end for
39. return (Agentspe(8 » Bpevents), Agentsan(B » Bmessages)
exit algorithm

Figure 5.6: An Agent Finding Algorithm

72

The variable P,, represents the set of attributes extracted from the policy elements e.g.,
conditions. The variable Pp,.... represents the primitive events specified in the policy P. The
algorithm in Figure 5.6 uses an associative array to represent the output of the algorithm. An
associative array (or container), is a collection of keys and values, where each key is associated
with one value. The key is an agent and a value is a set of events. The associative array, Agent,.,
represents agents that can monitor all of the attributes specified in at least one of the primitive
events in Pp.vens . The associative array, Agent,,, represents agents that can monitor some of the

attributes specified in at least one of the primitive events in Ppeyens .

The algorithm first determines the set of monitoring agents, represented by Agents,, that can
monitor any of the attributes found in P,, (Step 1). In Steps 3 to 13 the algorithm finds a subset
of Agents,, that can be used to monitor all the attributes associated with primitive events specified
in Ppevens. However, it is not necessarily the case that all attributes in an event can be monitored
by a single agent. Thus it is necessary to find a set of agents that collectively can monitor all the
" attributes used in the specification of a primitive event. This is done in Steps 17 to 36 of the

algorithm.

For each event e in Py the algorithm searches to find a monitoring agent g that can
monitor all the attributes specified in e (Step 4). If there is such an agent then in Step 6 the
algorithm checks if the returned agent, g, can monitor other events in Pp.s . This is done by
checking (Line 6) if g is a key in Agents,, (the set of keys is denoted by Agents,. . keys). Ifgisa
key, then the algorithm (Step 7) adds an event e to the set of events g.ns that g is able to

monitor. If g is not a key then an entry (Step 9) is created in Agents,, .

In Step 11 the algorithm reduces the set of primitive events by the event e since there is an
agent that can be used to monitor all of the attributes used in the specification of e. After all |

events have been examined, the events in Events,.n, are events for which there is no single agent

73

that can monitor all of the attributes used in the specification of these events. If Events,.n, is
empty then the algorithm finishes and returns Agents,. (Step 15). Otherwise, Steps 17 to 35
compute for each event e in Events,, a set of agents that can be used to monitor all of the
attributes used in the specification of e. The approach is similar to that used in lines 3 to 13.
The difference is in the purpose of the set of agents found and added to Agents,, . Agents in
Agents,, are selected such that each agent monitors a non-empty subset of the attributes in e,
An event’s attributes may be monitored by several monitoring agents. A monitoring agent may
be used to monitor parts of multiple primitive events. The Zmessages (€ » €message_an) 1S AN
associative array that associates each primitive event e, which g can partially support, to a set of
attributes €message ar » WHETE €message an 18 @ subset of euy. The Gressages represents the values of

Agents,,.

If the algorithm does not find an agent g in Step 20, then the algorithm terminates indicating
a failure to find the agents needed to support a policy. The algorithm checks to see if g is already
" selected to partially monitor other events (Step 24). If so, then in Step 25 the algorithm
associates the event e with the set of attributes that results from the intersection of e,, and the
agent attributes gu; i messagess Otherwise, i.e., g is not selected to partially monitor any other
events yet (Steps 26 and 27). In this case, the algorithm in Step 27 associates g the Zessages » after

adding an association in uesages Of € With the result set of the intersection between e, and g,

The algorithm fails if any of the attributes of any primitive event cannot be monitored (Step
34). The algorithm only succeeds when all the attributes of all primitive events of the policy can
be monitored. In Step 36, an entry of the dynamic monitoring agent g, qyuamic, Which needs to be
dynamically created to monitor the event e, is created in Agents,.. As seen (Step 36) the algorithm
not only finds the monitoring agents, but also determines the dynamic monitoring agents needed
to support a policy. It is possible that an agent may be in both Agents,, and Agents,, meaning that

an agent can generate an event and monitor attributes’ values for other agents. If the algorithm

74

succeeds, the outputs represented in Step 37 are the two associative arrays Agents,, and
Agents .

In considering the time complexity of the algorithm, let us assume the following:

e n is the number of distinct attributes that are monitored by (i.e., associated with) any

monitoring agent within the repository.

e m is the number of the primitive events in Ppeyens.

The worst case is when each attribute can only be monitored by a single agent, i.e., the
number of monitoring agents is also n. Considering the first and second for loops of the algorithm
that iterate over the number of the primitive events m, these loops have a worst case running time
of O(n). Thus, the worst case the time complexity of the algorithm is O(mn). More discussion

can be found in Section 8.4.2.

5.7.2 Finding Agents Instances

Let X be the union of the set of keys of Agents,. and the set of keys of Agents,, . The
next step is to determine for each agent in X if there is an instantiation of that agent i.e., to
determine the set instances(X) of already defined instances of agent classes found in X. The
~ algorithm to find instances(X) is a straightforward searching algorithm in the database of the
existing agent instances. Therefore the set X "=X | instances(X) is the set of agent classes that

need to be instantiated.

5.7.3 Configuration of Management Agents

Deploying and enforcing a policy by management agents (monitoring, dynamic monitoring
and/or manager agents) requires the configuration of (i.e., instantiation of or the addition to or
updating) the PolicyRepresentation, EventRepresentation MessageRepresentation and/or
ActionRepresentation components of the management agents using the corresponding specified

policy elements. This Section addresses these configurations. If the Finding Agents algorithm in

75

Section 5.7.1 successfully terminated, i.e., finds monitoring agents that can support the added
policy P by monitoring all the attributes that are used in the specification of policy P’s primitive

events (denoted by Pe.ns), then the algorithm will output the following two associate arrays:

1. Agents,. (g, Zpevens) 1S an associative array that associates each selected agent g to a set
of the primitive events Zpevents » Zpevents & Ppevens Where for each event e in g, the agent

g can monitor all the attributes of e.

2. Agents,; (8 , Smessages) 1S AN associative array that associates each selected agent g with
an associative array Zmessages - L1NE Cmessages (€ » Emessage_anr) 1S an associative array that
associates with each primitive event e, which g can partially support, to a set of attributes

Cmessage_ant €an Where e, is the set of attributes of the primitive event e.

There are several cases to be considered in instantiating agents:

1. The policy event is a primitive event, e, and one monitoring agent, g, can monitor all the
attributes in that event. In this case Agents,e (€ , Zpevens) has one key and value pair
where the key is g and the value is e. The array Agents,, (£ , Smessages) is NULL. The
deployment of policy P requires the following tuples:

e The tuple <P, ¢, e.tree, P.Interval, Rules> in the PolicySet set of g.

e Thetuple <P, e, {g, e.waitperiod}> in the Policy-Event setof g.

e The tuple <e, e.expression, e.attributes> in the Events set of g.

where e.tree, e.waitperiod, e.expression, e.attributes denote the event tree associated
with e, the wait period associated with e, the event expression characterizing e, and
the attributes used in the specification of e. The notation P.Interval is used to denote

the interval associated with policy P.

76

2. The policy event is a primitive event, e, and multiple monitoring agents are needed to

3.

monitor all the attributes in event e. In this case Agents,e (£ , Zpevenss) has one key and

value pair where the key is dynamic monitoring agent g and the value is e. Let G denote

the set of keys in Agents,, . This corresponds to the set of agents that collectively can

monitor the attributes of e. The deployment of the policy P requires the following tuples:

The tuple <P, e, e.tree, P.Interval, Rules> in the PolicySet set of g.

The tuple <P, e, {g, e.waitperiod}> in the Policy-Event set of g.

The tuple < e, e.expression, e.attributes™> in the Events set of g.

for each g; in G the following tuple needs to be added to the Messages set of g;.

<P, €, €message_att> &> P.Interval, e.waitperiod >

The policy event, e, is a composite event of the form e; e-op e;. Assume that g;and g;are

agent instances configured to monitor e; and ¢; respectively. Assume that g is the manager

agent used to detect the policy event e and carry out the policy rules. We assume that the

agent instantiations needed to monitor all other events in the event tree have been

determined and configured. Thus the focus in the discussion in this case is g, g;and g;.

The deployment of policy P requires the following tuples:

The tuple <P, e, e.tree, P.Interval, Rules> in the PolicySet set of g.

The tuple <P, ¢, {e.targets, e.timewindow}> in the Policy-Event set of g.

The tuple < e, e.expression, e.attributes> in the Events set of g.

The tuple <P,e;, {g, ;. waitperiod |e; timewindow}> in the Policy-Event set of g;.
The tuple <P, e;,{g, e;.waitperiod |e;timewindow}> in the Policy-Event set of g;.
The tuple < e;, e;.expression, e;.attributes> in the Events set of g;.

The tuple < ¢;, €;.expression, ¢;.attributes> in the Events set of g;.

77

There is one note to be made about this case. First, g, g; an g are not necessarily distinct.
In other words, g could be used to detect ¢; and ¢;, if ¢; and ¢; are composite events.
Currently in our prototype if e; and e, are composite events then g is configured to detect
these events. This is done for efficiency reasons. The goal of this thesis is not to
determine an optimal arrangement of agents but rather to ensure that the agent model is
flexible enough to support a wide range of arrangements. The flexibility of the model
comes from the features of the model which enable it to accommodate any arrangement
of agents that might be adopted to deploy policies. Future work will carefully explore

issues related to optimal arrangements of agents.

5.8 Discussion

Support for Legacy Code: The design of management agents needed to address several
challenges. First, legacy information services such as SNMP and scripts need to be supported.
This is done by having monitoring agents. The monitoring agents have the interface described in
5.5; however these agents hide their interaction with the legacy agents, i.e., information services.
For example, a monitoring agent that interacts with an SNMP agent is implemented with the
interface described in Section 5.5 but it is also implemented to be able to compose and receive
messages from SNMP agents. In Section 5.6.1 it is assumed that the monitoring agent
implementation is based on two executables, with one of those executables being an SNMP agent
.or some other legacy information service and the other being the executable of the monitoring
agent itself. The instantiation of a monitoring agent requires that the legacy information service
be instantiated and that the executable that has the code for event handling be retrieved. In
Chapter 4, we described the need for a Distribution Mechanism component that is provided with
enough information to start an agent instance. This information includes the location of

executables needed. The model introduced in this chapter allows for implementations including:

78

The use of mobile agents (e.g.,[48,123,160]). This approach typically assumes that the
legacy information service already resides on the managed object. The executable that
deals with event handling is similar to the concept of mobile agent.

¢ The two executables that constitute a monitoring agent are instantiated together.

¢ The executable with the legacy code is instantiated but not the other executable. It is

often the case that SNMP agents already exist as a process.

Currently the implementation uses the second and third approaches. The use of mobile
agents typically assumes the existence of a process that can take mobile code, which normally
requires an infrastructure in place. We wanted to use an approach that is relatively easy to
incorporate within existing management systems.

We would like to note that the development of monitoring agents where the information

service is SNMP can be aided by tools such as those found in {126].

Distribution of Management functionality: Centralized management systems do not scale
well (e.g., [134,135,149]). A good deal of work has been done to address this including
(e.g.,[52,161]). The work in [161] first introduced the concept of distributed management
functionality in the seminal work on the Management by Delegation (MbD) model. The IETF
has integrated the MbD model into their management frameworks based on the work found in
[1 35] which uses the IETF Script MIB to transfer management scripts to a manager that is able to
receive these scripts and execute them. Examples of implementations are found in [7,101]. Our
design allows for this functionality with its ability to allow actions to be associated with rules.
The actions can be implemented using scripts. There have been attempts to develop peer-to-peer
management systems (e.g., [30,123,160]). This requires flexibility in sending event notifications.
Although our work does not assume peer-to-peer management systems, we believe that the agent

design described here can be used in these types of management systems.

79

Support for Agent Finding and Agent Matching: Chapter 4 describes the need for several
services to determine agents that can support the policy. This chapter presented an Agent
Finding service based on associating attributes with monitoring agents. Chapter 8 provides an

analysis of this algorithm.

Relationship to Existing Management Systems: Event notifications can be used by multiple
management applications. The agent design requires that event targets be defined. These targets
can be management entities that include an event-driven rule-based engine, an event handler or
any other management application. Agent executables can be placed on machines using existing

management system distribution mechanisms as seen in Chapter 7.

5.9 Chapter Summary

The Chapter presented an information model for agents and their instantiations. The
management agent design, interface, components and types are addressed. The information model
~ was used as the basis for the Agent Matcher component. This Chapter highlights how our
proposed PBM system architecture can automatically identify and conﬁ’gure and reconfigure
management agents in response to changes in policies. The proposed solution is based on the
matching between the management operations that are carried out by the management agents and
the policies. The matching process relies on the attributes that the agents can monitor and the

extracted attributes from the components of the policies.

s i o

Chapter 6

MAPPING MECHANISMS

Chapter 3 defines an event as a message that notifies of a change in system state that is of

interest. Different management systems have different formats of these messages. Events are

associated with rules. Managers that interpret rules may use an event-driven rule-based engine.

The rules interpreted by a specific event-driven rule-based engine require that rules be specified

in a particular format. This Chapter discusses the generation of the event messages and the rules

" from the language used to specify the policy.

6.1 Introduction

A set of templates is used to guide mapping from the specification of a policy to the
generation of messages associated with events and rules that can be understood by the
management system’s event-driven rule-based engine. A template is associated with a policy

element. Each class in the policy information model defined in Figure 3.2 is a policy element. A

.

81

template has a set of variables. The template variables are instantiated based on a mapping that
defines how a policy element should instantiate the template variables. More formally we have

the following:

Definition 6.1: A transformation rule r = (p,o.t) is a triple where
p : This is the specified policy element
t : This is the template associated with the policy element, p.

a : This is a mapping that defines how the variables of t are assigned values.

Multiple transformations rules are applied to a policy. A transformation is associated with a
policy element. A transformation rule may be applied more than once in transforming policy
elements, typically for the elements of the same type. It should be noted that not all policy
elements need to have transformation rules. For example, actions correspond to names of

executables. It is not necessary to use a template for this.

6.2 Event Format Mapping

The class representing EventExpression in the UML diagram in Figure 3.2 is further
expanded in Figure 3.4. There are two subclasses. One is labelled condition. This models a
condition and is used to characterize a primitive event. The other subclass models a composite
‘event. A transformation is associated with each of these classes. The rest of this Section
discusses the transformations needed for mapping specified events to a form that can be

understood by management systems.

6.2.1 Event Format Mapping for Primitive Events
Typically in management systems, event class definitions are used to define an event type.

Instances of events of the same type have an identical message structure. The event class

4t &

82

definitions define a set of attribute names and the type of each of these attributes. Some of the
attributes are found in each event type e.g., source identifier that generated the event, timestamp,

event name and condition name. These are refetred to as common attributes. The rest of the

~ attributes are specific to the policy e.g., an attribute representing the length of an idle session.

These are referred to as policy-specific attributes. In HP-Openview [61] and CA-Unicenter [23]

event types are expressed using the C language structure type, while in Tivoli [151] event types

are expressed using the Basic Recorder of Objects in C (BAROC) language where the attributes

are called slots.
The following example shows how templates can be used to generate the definition of event

types that can be understood by Tivoli.

Example 6.1:
This example is based on the example policy stated in Example 1.1. The condition

characterizing the event is restated here: login session is idle for more than 20 minutes. The

‘policy element, p, is the event expression. The template for primitive events is shown in Figure

6.1. The resulting BAROC file is shown in Figure 6.2. The mapping o determines the list of
policy-specific attributes, which is used to instantiate a template variable that represents a list of
policy-specific attributes. Other template variables that need values to be assigned include the
event name and the condition name. Slots of the common attributes include the event namé and
the condition name. Slots of the policy-specific attributes include the length of the idle session
(sessionidlelong), the process identifier of the session (processid) and the user that initiated the
session (userid). The policy-specific attributes are assigned values when the event is generated.
The management agent that monitors the attributes and generates an instance of the event has a

method that is able to create the event message in the correct format.

HHHHHAAAHHHBRHAHH AR HAAH AR B HAAHH BB HAAH AR B HHAH AR B HHAHH AR RHAHH AR HHAHS
Main Class Definition for Primitive Event ’Event-ID-Variable'
Automatically generated by the PMagic Model

on System Date-Time at Template Instantiation
HHH R R R R R R R R R R R R

TEC_CLASS:
Event-ID-Variable 1Sa event
DEFINES {
source: default= "PMagic”;
sub_source: default= "PMagic_Agents®;
sub_source_port: INTEGER , default=0 ;
operation_number: [INTEGER , default=0 ;
severity: default = HARMLESS;
eventname: STRING, default-='Event-ID-Variable';
condition_name: string, default”~"Condition-ID-Variable' ;
[Attribute-Name: Attrubute-Type;]*
>,
END

HUHHBHHBHHH AR HH R HH AR HH AR HHBHHH AR HH AR S HH
End Event Event-ID-Variable' class

Figure 6.1: Tivoli TEC BAROC Template File for Primitive Events

HBHB R R R R R R R R AR R A R R A

Main Class Definition for Primitive Event “session_ldle”

Automatically generated by the PMagic Model

On Sun Nov 16 04:44:45 EST 2008

HHHHH B R HRHHHH R AR R R R R R R

TEC_CLASS:
session_Ildle ISA EVENT
DEFINES {
source: default= “"PMagic";
sub_source: default= "PMagic_Agents”;
sub_source_port: INTEGER , default=0 ;
operation_number: INTEGER , default=0 ;
severity: default = HARMLESS;
eventname: STRING, default=’session_Ildle";
condition_name: STRING, default="session_ldle_20_mins";
processid: INTEGER;
sessionidlelong: INTEGER;
userid: STRING;
b
END

HAHHRHBHBHHBHARHBHBHAHAHARHBHBHBHBHBHBHAH

End Event “session_ldle® Class
HHE TR T ST I T

Figure 6.2: Tivoli TEC BAROC File for the session_ldle Primitive Event

84

6.2.2 Event Format Mapping for Composite Events
The event specified in Example 6.1 is a primitive event. However, the event could be a
composite event. As stated in Chapter 3, composite events are specified in one of these two
forms:
Ei eop Ej., where eop is either E-SEQ, E-OR or E-AND

eop Ej [arg], where eop is either E-COUNT or E-NOT.

Each composite event requires that the constituent events are determined. An event tree
needs to be created where each node corresponds to an event. The leaf nodes of the event tree
correspond to primitive events while all other nodes of the event tree represent composite events.
A post-order traversal (the reason for this will become clear in Section 6.3.1) of this tree is carried
out where the appropriate transformation rule is applied to each node. A transformation is needed
for a composite event element. The specification of a composite event type typically consists of
attributes for the event name, event operator and the operands of the events. The algorithm

MapEvent is shown in Figure 6.4 and will be described later.

Example 6.2:

For Tivoli a template for composite events is seen in Figure 6.3. This template is used with either
of the composite events forms that are used to specify the composite events. An example of the
resulting BAROC file is shown in Figure 6.8. A more detailed discussion of this template is

presented later in this Section.

85

HRH R R R R R R R R R R R R R R R R

Main Class Definition for Composite Event 'Event-ID-Variable'
Automatically generated by the PMagic Model

stem Date-Time at Template Instantiation
######### HHBHHHH R

TEC_CLASS:
Event-ID-Variable isa Event

DEFINES {
source: default= “PMagic”;

sub_source: default= F"TEC";

sub_source_port: INTEGER, default=0;
operation_number: INTEGER, default=0;

severity: default = HARMLESS;

event_name: STRING, default-='Event-ID-Variablel
event_operator: string, default=1Event-Operator-Variable
left_event_name: STRING, default=-Left-Event-ID-Variable ;
left_date reception: INT32, default=0;
left_server_handle: [INTEGER, default=0;
left_event_handle: INTEGER, default=0;

right_event_name:STRING,default=" Right-Event-ID-Variable' ;
right_date_reception: INT32, default=0;
right_server_handle: INTEGER, default=0;
right_event_handle: INTEGER, default=0;

count_number: INTEGER, default=0;

END }

R R R T R R
End Event Event-ID-Variablel class

HH T R R OO

Figure 6.3: Tivoli TEC BAROC Template File for Composite Events

The MapEvent Algorithm

The algorithm MapEvent is depicted in Figure 6.4. In this algorithm the variable E represents
an event tree node. The algorithm determines (line 1) if the event node E has any outgoing edges
i.e.,, whether the node is a leaf node. A leaf node indicates that the node corresponds to a
primitive event. In the case of a primitive event, the algorithm returns the result of instantiating a
template with the event in node E (line 2) using the ApplyprimitiveJTemplate function.

Apply_Primitive_Template represents the transformation rule that applies to policy elements that

86

are primitive events, while Apply_Composite_Template represents the algorithm of the

transformation rule that applies to policy elements that are composite events.

Algorithm MapEvent (E)
Input: 1) Elsaneventtree node

Output: 1) Emapped is 2 set of instantiated templates representing the specified event in the node E.

begin

1. if (OutgoingNodes(E)==0) then

2. return Apply_Primitive_Template (E)

3. end if

4. if (OutgoingNodes(E) == 1)

5. Emapped = MapEvent (leftnode(E)) U Apply_Composite_Template(E)

6. return Emapped

7. else

8. Emapped = MapEvent (leftnode(E)) U MapEvent (rightnode(E)) U
Apply_Composite_Template(E)

9. return Emapped

10. end if

end ‘

Figure 6.4: A MapEvent Algorithm

Composite events are the focus of lines 4 to 10 of the algorithm. There are two cases that
aré characterized by the number of outgoing edges from node E. If the event node E represents a
composite event that uses a unary operator (line 4) then there is one outgoing edge from E. A
template is initialized, using the function Apply_Composite_Template, for representing the
composite event E. The algorithm is recursively called with the child of E to generate the
templates corresponding to the events in the sub-tree rooted at the child of E (line 5). Lines 7 to
10 of the algorithm handle an event node representing a composite event that uses a binary

operator.

87

The Apply_Composite_Template function represents the mapping o from Definition 6.1. For
Tivoli, the Apply_Composite_Template function extracts from E the values of the slots
event_name, event_operator, left_event_name, right_event_name and count_number. The
left_event_name and right_event_name represent the names of the events that compose the

composite event in E.

The slots lefi_date_reception, left_server_handle, left_event_handle, right_date_reception,
right_server_handle and right_event_handle represent the BAROC implementation slots that
uniquely identify the events instances (i.c., the left and right events in the event expression) that
trigger the composite event. These slots, i.e., the slots that uniquely identify the event instances,
are assigned values when the event is generated. The date_reception is the event timestamp slot;
fhe value represents the number of seconds since the epoch (i.e., since midnight of January 1,
1970) to the occurrence of the event. If more than one instance of the event is received within the
same second, the event_handle slot is used to distinguish between such instances. For the first
~ event instance received, the event_handle will be given the value 1 and incremented for each
subsequent event instance received within the second. The server_handle slot value represents the
event server location, e.g., event_server slot value is 1 for the event server in the local Tivoli
Management Region.

We note that although the Apply_Composite_Template function is specific for a management
system the implementation of MapEvent is not. A Java abstract class can be defined with the

MapEvent method. This class can be subclassed for each specific management system.

Example 6.3:
This example is based on the example policy stated in Example 3.1. The event expression is
that the total number of user logins is greater than 5 followed by the CPU load is greater than 90

and the total number of processes running is greater than 3.

88

This policy consists of a composite event, users_cpu__process_High of the form users_Limit
E-SEQ cpu_process_High, with two primitive events where,

1) users_Limit is a primitive event that is characterized by the condition total number o flogins
is greater than 5. The logical expression that represents this condition is usersloginstotal>5.

2) cpu_process_High is a primitive event which is characterized by the condition the CPU load
is greater than 90 and the total number ofprocesses running is greater than 35. The logical
expression which represents this condition is cpuload>90 && cpuprocesstotal >35, i.e., the
cpu_process_High event condition has two attributes to be evaluated.

The users_cpu_process_High event is parsed into an event tree, as shown in Figure 6.4.

The application of the MapEvent algorithm, results in three BAROC classes:
users_Limit.baroc, cpu_process_High.baroc and users_cpu_process_High.baroc (Figures 6.6 ,
6.7 and 6.8 respectively). The users_Limit.baroc and cpu_process_High.baroc classes are
constructed using the transformation rule for primitive events. The
users_cpu_process_High.baroc class is constructed using the transfonnation rule for composite
events that assumes that the event operator is binary. The variables of this template include the
event_name users_cpu__process_High, the left_event_name usersJLimit, the right_event_name

cpu_process_High and the event_operator E_SEQ.

o L

R

89

HHRBHBERRARER RN NR B RN R R R AR RS R RR R R RRE RS E R R SRR RS
Main Class Definition for Primitive Event 'users_Limit'
Automatically generated by the PMagic Model
On Sun Nov 16 15:44:11 EST 2008
BHUSHRRRBERRRREERRRRBERRRRRRERRRE RN R R AR R R R AR SRR R SRR
TEC_CLASS:
users_Limit ISA EVENT
DEFINES {
source: default= 'PMagic’;
sub_source: default= 'PMagic_Agents';
sub_source_port: INTEGER , default=0 ;
operation_number: INTEGER , default=0 ;
severity: default = HARMLESS;
eventname: STRING, default='users_Limit';
condition_name: STRING, default='users_More_than_5';
hostname: STRING;
userlogintotal: INTEGER;
};
END
FREFBRBRBFERFRRBEERERRURERRERR IR DRV RREH
End Event 'users_Limit' Class
HEERESBERBHERERNRBHREREREER AR ERBRERRERE

Figure 6.6: Tivoli TEC BAROC File for the users_Limit Primitive Event

BRERARHBURRBERRREHRRSRERBENRB R RN SR B RRRRE SRR R RRB U S BH RS HH SR
Main Class Definition for Primitive Event ’'cpu_process_High'
Automatically generated by the PMagic Model
On Sun Nov 16 15:44:11 EST 2008
HHBHERERREBUEARRRBRER R R R ERRR R R R R R RS R RS S G R R R SR8
TEC_CLASS: '
cpu_process_High ISA EVENT
DEFINES {
source: default= 'PMagic’';
sub_source: default= 'PMagic_Agents';
sub_source_port: INTEGER , default=0 ;
operation_number: INTEGER , default=0 ;
severity: default = HARMLESS;
eventname: STRING, default='cpu_process_High';
condition_name: STRING,default='cpu_over_90_and_process_Cond';
cpuload: REAL;
cpuprocesstoltal: INTEGER;
hostname: STRING;
}i
END
HAURHEREFRBHERAERHRARRARRR AR SR BB SRR AR 44
End Event 'cpu_process_High' Class
HERRERERRERGERFERRRRR R R AR ERB R R R GRS

Figure 6.7: Tivoli TEC BAROC File for the cpu_process_High Primitive Event

90

HHRHBRBUFER AR B AR RFRREHBERH R B S BR BB AR R R R R R ER R B R R R4
Main Class Definition for Composite Event 'users_cpu_process_High'
Automatically generated by the PMagic Model
On Sun Nov 16 15:44:11 EST 2008
HERFSRBUHEHRARRRE R AR HBRRR AR R R R G RR R R R R H R R B RSB RR S SRR R R
TEC_CLASS:

users_cpu_process_High ISA Event

DEFINES {
source: default= 'PMagic';

sub_source: default= 'TEC’;

sub_source_port: INTEGER, default=0;
operation_number: INTEGER, default=0;

severity: default = HARMLESS;

event_name: STRING, default='users_cpu_process_High';
event_operator: STRING, default='E_SEQ';
left_event_name: STRING, default='users_Limit';
left_date_reception: INT32, default=0;
left_server_handle: INTEGER, default=0;
left_event_handle: INTEGER, default=0;
right_event_name: STRING,default='cpu_process_High';
right_date_reception: INT32, default=0;
right_server_handle: INTEGER, default=0;
right_event_handle: INTEGER, default=0;
count_number: INTEGER, default=0;

};
END
FHEGHEFBEHRERFRRB AR HRF SR BRSNS R R RE R H R
End Event 'users_cpu_process_High' Class
iz idiiiiaiiiiiiiiiiiidiadidaiiiiiiidiiiid

Figure 6.8: Tivoli TEC BAROC File for the users_cpu_process High Composite Event

6.3 Mapping Policies

Mapping policy events to an event definition in the underlying management system is just
one part of the overall process. This Section addresses the subsequent problem of m#pping
policy to a form that can be understood by the management system. There are two issues related
to mapping that must be considered. The first is that of composite event detection. Detecting
primitfve events is not sufficient for determining if a composite event has been used. The
approach commonly used in management systems is to use a rule-base system. A second issue is

that once an event is detected, the set of if condition then actions rules associated with the specific

91

event should be evaluated. An event-driven rule-based system can also be used for this
evaluation. More details about the structure and the components of event-driven rule-based
systems can be found in [71, 73, 90]. However, event-driven rule-based systems imply that
event detection is centralized. Computation can be offloaded by allowing management agents to
detect composite events and evaluating if condition then actions rules. This Chapter discusses

mappings from policies to both of these approaches.

6.3.1 Mapping Policies to a Rule-Engine Platform

Management systems such as Tivoli [151], HP-Openview [61], CA-Unicenter[23], etc, are
event-driven rule-based systems. An event-driven rule-based system has a set of rules, which is

referred to as a rulebase, where a rule has the following form:

on event [event filter]
[when condition)

do action

When an event instance is received then a condition is evaluated to determine actions to be
taken. Event-driven Rule-based systems maintain information about event instances that have
been received. The term event is used to denote any event type of received event instance. The
term event filter is used to denote the set or subset of event types fou.ﬁd in specification of the
poiicy event. When an event instance is received, if the type of the received event instance is
found in event filter, then a condition is evaluated to determine if the specified action should be
executed. The event-driven rule-based system evaluates the rules in the order that the rules are
presented in the rulebase. For a received event instance there is a possibility that it can satisfy
multiple event filters. There are two reasons for this: The first reason is that for an event there

might be multiple actions possible depending on the values of the attributes of the event. The

v

92

second reason is that an event can be used in the specification of the event expression in multiple

policies.

Example 6.4: This example shows how the policy of Example 1.1 is mapped to a rule
typically found in a rule base system. In this example, the set of events specified in the policy

of Example 1.1 contains only one event, the session_Idle event. It is assumed that E, denotes the

type of the received event instance.

on E, in {session_ldle }

do close the idle session

Example 6.5: This example describes the rules for the event-driven rule-based system for the
policy specified in Example 6.3; if the total number of user logins is greater than 5 followed by
the CPU load is greater than 90 and the total number of processes running is greater than 35,
then block any new user logins. A policy interval associated with this policy is denoted by
r;ormal_working_hodrs. Example 6.3 specifies the policy event as a composite event

users_cpu_process_High in this form:
users_cpu_process_High = users_Limit E-SEQ cpu_process_High,

where users_Limit and cpu_process_High are primitive events. The received event instance is

denoted by e, and e, timestamp denotes the time that it was generated at. E, denotes the type of

* the received event instance.

As discussed in Chapter 3, the policy interval is used to specify the interval in which the
policy is valid or active. This suggests that the policy event as well as the constituent parts of the
policy event should only be checked if these events occur within the policy interval. Rule 1 is
used to determine if the event instance received occurs in the specified policy interval. The
interval is checked only if the type of the received event instance is of the composite event or one

of the constituent events.

93

Rule 1: om E, in { users_Limit, cpu_process_High, users_cpu_process_High }
when checkInterval(normal_working_hours , e,.timestamp)

do continue

This rule should be before any of the other rules generated for this example policy. If the
received event does not occur within the specified interval then no further processing is needed.

Rule 2 is used to generate a notification of event users_cpu_process_High if E, is either of type
users_Limit or cpu_process_High. 1t is assumed that occ(users_Limit E-SEQ cpu_process_High)
is able to check if instances of type users_Limit and cpu_process_High have both occurred since
rule base systems can keep track of event instances that have been received. Assume T is the time

window for the event expression that characterizes the composite event.

Rule 2: on E, in { users_Limit, cpu_process_High }
when occ (users_Limit E-SEQ cpu_process_High) T

do trigger a message notifying the occurrence of event users_cpu_process_High

The third rule, Rule 3, associates the action to be taken if the composite event, which is the policy
event, has occurred.

Rule 3: om E, in { users_cpu_process_High}

do execute action block any new user logins

Policy Mapping
As can be seen from Example 6.5, mapping a policy to rules in a rule-based system requires
the following issues to be addressed: determining the policy interval, ensuring policy enforcement

and handling composite events.

94

Interval Checking: A policy may specify an interval in which constituent events of the policy
event must occur. A rule is needed to determine if a received event instance occurs within the
desired interval. The template includes a variable x for the event filter. This variable denotes a set
of event types and thus should be instantiated with the type of the events used in the specification
of the policy event. There is another variable y for the specified interval that should be checked
in the condition. The transformation rule instantiates these variables based on the corresponding

policy specified elements. The following is an example of the Interval Checking rule:

onE, in {x}
when checklInterval(y, e.timestamp)
do continue
We note that the above is an abstract representation of an actual template that would be used. An

example template used for Tivoli is found in Appendix D.

" Policy Enforcement: The template has variables representing the information of the routine to
be invoked, e.g., the routine name, routine type (such as Java, UNIX shell script, etc.) and the
pa'ramete;‘s of the routine. ~ The transformation rule instantiates these variables based on the
policy rule e.g., the specified set of the condition-actions rules of the policy and the policy event
attribute names. Other variables represent the policy event name and thé event time window. An

example template used for Tivoli is found in Appendix D.

Policy Composite Events: For each composite event in the policy event tree a detection rule is
created. To facilitate the creation of this rule a template is needed for each event operator. One
variable of the template denoted by x, is the event filter. The transformation rule initializes this
variable with the set of event types that constitute the composite event which are denoted by x;

and x;. Another variable of the template is the time window, denoted by y, which is definable

95

with the composite event expression. The action to be taken is to send a notification message,
denoted by template variable z, of the detected composite event. The following is an example

rulebase representation for a binary event operator that denoted by EOP:

onkE,in {x}
when occ (x; EOP x;) y

do trigger a message notifying occurrence of event z

Unary event operators require another rulebase representation. More details on the construction of

the detection rules are described in Section 6.3.2 and Appendix D.

6.3.2 Constructing Composite Event Detection Rules

The MapEventDetectionsRules algorithm (presented in Figure 6.9) is used to create a set of
rules to be used for composite event detection. Leaf nodes in the event tree represent primitive
events. All other nodes represent composite events. The rules generated for detecting events at
the i+] ™ level of the event tree must precede the rules that detect events at the i level of the
event tree. The reason for this has to do with the way event-driven rule-based systems are

organized. Rules are evaluated in the same order that they are presented.

We note that the algorithms for generating instantiated templates) representing messages
notifying of an event (MapEvent) and the algorithm MapEventDetectionsRules for generating
rules for complex event detection are presented separately. This is done for presentation purposes.

Practically, only one traversal of the event tree is actually needed.

There is a template associated with each composite event operator. The event operator, eop,
in Lines 6, 8, 13, 15 and 17 correspond to each of the event operators: E_COUNT, E_NOT,
E_SEQ, E_AND, and E_OR respectively (see Appendix D for examples of Tivoli TEC Rule

Templates)‘.

96

Algorithm MapEventDetectionsRules (E)
Input: 1) Eis an event tree node

Output: 1) Enueq is a set of instantiated templates representing the rules for detecting the specified
composite event in nodeE .

begin
1. if (OutgoingNodes(E)==0) then
2. return {}
3. end if
4. if (OutgoingNodes(E)==1)
5. if (eop == “E_COUNT”)
6. Enwes = MapEvent DetectionsRules(leftnode(E)) U
Apply_E_COUNT_Template (E)
7. else
8. Enes = MapEvent DetectionsRules(leftnode(E)) U
_ Apply E_Not_Template (E)
9. endif
10. return Epyeq
1. else
12. if (eop == “E_SEQ")
13. Eiea = MapEvent DetectionsRules(leftnode(E)) U
MapEvent DetectionsRules(rightnode(E)) | Apply_E_SEQ_Template (E)
14. else if (eop ==“E_AND”)
15. Eried = MapEvent DetectionsRules(leftnode(E)) U
MapEvent DetectionsRules(rightnode(E)) | Apply_E_AND_Template (E)
16. else
17. Enee = MapEvent DetectionsRules(leftnode(E)) U
: MapEvent DetectionsRules(rightnode(E)) U Apply_E_OR_Template (E)
18. end if
19. return Epyieq
20. end if
end

Figure 6.9: A MapEventDetectionsRules Algorithm

The mapping to an event-driven rule-based system is illustrated with the Tivoli TEC event-

driven rule-based engine platform. The rule language provides a simplified interface to the

-

Prolog pmMg language, which is the language actually used internally by the TEC event-
driven rule-based platform. A TEC event server can have only one active rulebase. A rulebase is a
collection of definitions of event classes and rules that apply to those event classes. The
following example shows how the use of templates and the transformation rules steer the

automatic mapping of polices to Tivoli.

~ Example 6.6: This example shows the mapping of the policy described in Example 6.3 to
TEC event-driven rule-based system. The generated rules are put into a text file called

load_Control.ris.

e The first rule, which handles the verification of a policy interval, is appended to the TEC
ruleset load_Control.rls. This rule will be created using the transformation rule that
uses the template IntervalChecking. A Tivoli TEC rule template for IntervalChecking
is given in Appendix D. The variables for this template include the policy_name,
interval_name and a set of event names that constitute the policy event. The
transformation rule instantiates these variables based on the policy specified elements,
e.g., policy_name to load_Control, interval_name to normal_working_hours and a set
of events names: wusers_Limit, cpu_process_High and users_cpu_process_High. The
policy element p in the used transformation rule is | the policy interval

normal_working_hours. The result of the transformation rule is shown in Figure 6.10.

o The second rule appended to load_Control.ris will be the rule for detecting the policy
composite event users_cpu_process_High which is the policy element p. The E_SEQ
template is used which corresponds to the E_SEQ event operator. This template is
another TEC rule that is constructed to evaluate any event expression that uses the
E_SEQ event operator. A Tivoli TEC rule template for composite event detection of

the E_SEQ operator is given in Appendix D. The template’s variables are the

98

composite event name, the composite event constituent events and the event time
windows that are specified in the event expression. The transformation rule
automatically instantiates these variables based on the policy specified elements, e.g.,
the composite event name to users_cpu_process_High, the composite event constituent
events to users_Limit and cpu_process_High , etc. The result of the transformation rule

is shown in Figure 6.11.

e The last rule to be appended to load_Control.ris is the one that constructs the
enforcement rule. The policy element p is the policy event. The PolicyEnforce template
used is also a TEC rule that was developed to guide enforcement of policy rules by
calling an enforcement routine (the template used is presented in Appendix D). The
enforcement routine is the executable to be called to handle the policy rules. The
template’s variables are the policy event name, an enforcement routine name,
enforcement routine type, and other information for the location of the enforcement
routine executables and the executable libraries. The transformation rule instantiates
these variables, e.g., policy event name to users_cpu_process_High, the routine name
to RuleEnforcementForTEC, routine type to Java class, etc. This rule determines if the
event represented by the policy has occurred and, if so, initiates a call to the manager
routine that handles the conditions-actions part, e.g., én the occurrence of
users_cpu_process_High event execute the RuleEnforcementForTEC Java class. The

output of the transformation rule is shown in Figure 6.12.

99

SAETLBLLALLLLILFLLLLLAABBAHLLLULLLALBLLLLLALBB[LLLLILLBLITLUUBVLI9%%

% This TEC rule is to validate the policy 'load_Control' which has the

% event 'users_cpu_process_High' and the interval 'normal_Working Hours'
% Automatically generated by the PMagic Model

% On Sun Nov 16 15:51:11 EST 2008

LB ELABLLLLAILLIBBLVILATLAFLLLLLLLILLLDVLLBLLLVLUVLLLLLLLVHUHUL4%%

% First Rule is to validate the policy interval 'normal_Working_Hours'

rule: 'load_Control_normal_Working_ Hours':
{
description: 'Verify the policy interval normal_Working_ Hours',

% Following set represents events specified in policy 'load_Control’
event: _ev_at_interval_check of_class within

('cpu_process_High' ,

'users_Limit',

'users_cpu_process_High']
where [] ,

reception_action:
action_load_Control_normal_Working_Hours_check:
(
exec_program(_ev_at_interval_check,
*/sl/wolfbiter/java/jdk.16.0_10/bin/java -cp
/sl/wolfbiter/PMagic_Manager/classes/ PMagic.classes.IntervalChecking'

,'%8 %s'
['normal_Working_Hours',
' /s8l/wolfbiter/PMagic_Manager/TEC_Policies/load_Control']
., 'YES')} ,
fopen(_f£fp
, '/sl/wolfbiter/PMagic_Manager/TEC_Policies/load_Control/
normal_Working_ Hours_result.txt'

.),
readln(_fp, _result),
fclose(_£fp) .,
(_result == true ,

commit_action
% exit this action and continue the reset of the rule
H % else
commit_rule
% exit the whole rule at this point
)
)
).
% End of the rule: 'load_Control=norma1_WOrking=Hours'

Figure 6.10: Tivoli TEC Rule for Checking the Policy Interval normal_working_hours

100

FHLLBLBLBULBLUBAILLLILBALBAHLBLUVLUVLLLLBITULLLLTLLALILLULVLTLHLLULIL9%
% This TEC rule is to generate the event 'users_cpu_process_High' which
% occurs when the event 'users_Limit’

% and then event 'cpu_process_High' occurred in SEQUENCE.
FEAHLLLLALIBFUABBHTLBBLUVLLVLLVLUVLLLVLBULULALLVLLLLAALUBLLLILLLHRL%Y

rule: 'users_Limit_E_SEQ_cpu_process_High':
(
description: 'Generate event users_cpu_process_High',

event: _evl_at_ESEQ of_class 'users_Limit'
where [date_reception: _left_date_reception,
server_handle: _left_server_handle,
event_handle: _left_event_handle] ,

% The E_SEQ rule generates the result as a new event 'users_cpu_process_High'
$ by using the exec_program that calls an external program.

reception_action:
action_users_Limit_E SEQ_cpu_process_High:
(
first_instance(event: _ev2_at_ESEQ
of_class 'cpu_process_High'
where [date_reception: _right_date_reception
greater_than _left_date_reception,
server_handle: _right_server_handle,
event_handle: _right_event_handle] ,

_evl_at_ESEQ - 0 - 360) ,
% The time window for searching the _ev2_at_ESEQ is surrounding by the
% 360 seconds after the _evl_at_ESEQ time

exec_program{_ev2_at_ESEQ,
'/sl/wolfbiter/java/jdk.16.0_10/bin/java -cp
/sl/wolfbiter/PMagic_Manager/classes/ PMagic.classes.EventGeneration'

'%s %s %s %s %1d %d %d %s %1d %4 %d w4’

['users_cpu_process_High', 'createESEQRule' , 'E_SEQ'
'users_Limit', _left_date_reception
_left_server_handle , _left_event_handle

'cpu_process_High', _right_date_reception
_right_server_handle , _right_event_handle, 0], 'YES') ,

L T

commit_action % exit the action regarding the scanned events
)
)

$ End of the rule: 'users_Limit E_SEQ cpu process_High'

Figure 6.11: Tivoli TEC Rule for Detecting the Composite Event users_cpu_process_High

101

£ A 1AL R L A E R e R R R T T LT T Y

% This TEC rule is to enforce the specified rule if the event

% 'users_cpu_process_High', which considers the main event of the policy
% 'load_Control', triggered.

L1 R T L e L T T T T 1)

rule: 'load_Control_Rule_Enforcement':

(
description: 'Fire the rule(s)of the policy load_Control' ,

event: _ev_rule_main of_class 'users_cpu_process_High'

where [date_reception: _ev_date_reception ,
server_handle: -ev_server_handle ,
event_handle: _ev_event_handle ,
hostname: —ev_hostname ,
sub_source: _ev_sub_source ,

sub_source_port: _ev_sub_source_port] ,
reception_action:
action_load_Control_users_cpu_process_High_enforce_rule:

(
exec_program(_ev_rule_main ,
'/sl/wolfbiter/java/jdk.16.0_10/bin/java -cp
/s8l/wolfbiter/PMagic_Manager/classes/
PMagic.classes.RuleEnforcementForTEC'

'$s %5 %s %8 %4 %14 %4 w4’

’

. ['load_Control’, 'users_cpu_process_High' , _ev_hostname

, _ev_sub_source , _ev_sub_source_port , _ev_date_reception
, —ev_server_handle , _ev_event_handle], 'YES') ,

commit_rule

)
).
% End of the rule: '1oad=Control=Ru1e=Enforcement'

Figure 6.12: Tivoli TEC Rule for Enforcing the Policy load_Control

- 6.3.3 Mapping a Policy to Management Agents

Mapping a specified policy to be deployed and enforced by management agents requires the
configuration of the components of the management agents using the corresponding specified
p;)Iicy elements as described in Section 5.7.3. The use of template-based mapping approach
applies as follows. There are templates for policy elements such as primitive events, composite
events and rules. The templates needed here are of a different form than seen earlier. Here
template refers to a method that uses the agent interface methods to add the appropriate tuples to
the différent sets. The template variables are two associative arrays (see Section 5.7.3). The
transformation rule calls the Finding Agents algorithm described in Section 5.7.1 to determine the

associative arrays to be assigned to the template variables.

6.4 Discussion

102

This section discusses issues related to policy mapping. This chapter assumes that policies are

mapped to an event-driven rule-based system or to management agents. We focused on these two

mappings since these are most commonly used. Figure 6.13 summarizes the processes needed to

map a specified policy to an event-driven rule-based system. The only manual operations (see

Figure 6.13) are those of the creation of the templates, which once defined by the administrator,

can be used repeatedly by the mapping processes. A set of templates, as described in this Chapter

and as seen Figure 6.13, is needed for each management system that used to deploy and enforce

policies through it.
Fully Automated Created Once Manually
The Specified Policy
/—;)- Map Specified Policy Events to
Format Understood by
Management System used
1 Mapping Primitive| | use of Primitive Event Format
Events Template
V-
12 Mapping use of | |Composite Event Format
Composite Events Template
V
20 Map the Policy itself to Set of
Rules Understood by
Management System used
Construct a Rule t e
21 onstruct a Late to of | | Interval Checking Rule
s Evaluate the Policy Template
interval pum
use
2 Construct Rule(s) to of Composite Event \
[> Detect Policy Operator Rule Template |,
1
Composite Event(s) CIEEEEEEEEEE :;_g
use
23 Construct a Rule that of | | Policy Enforcement Rule
— Associates Policy Event Template
with Policy Rules

Figure 6.13: The Processes of Mapping a Policy to an Event-Driven Rule-Based Systems

103

The numbers shown in Figure 6.13 illustrate the order of the mapping processes. The mapping

order shown should be followed for the following reasons:

1-

Some processes are dependent on others. For example, composite events should be
mapped after primitive events. Thg reason is that identifiers are assigned to primitive
events and these are used in the definition of the composite event.

The first rule to be constructed is the rule that checks if the received event is within the
policy interval. This means that if it is not, then there is no reason to evaluate other related
rules.

The set of rules that evaluate the detection of the policy composite events should be
generated second. Within this set of rules the order mentioned in Section 6.3.2 for
composite event detection rules should be followed.

The fule that aséociates the policy event with the policy rules should be the last rule to be

generated.

6.5 Chapter Summary

The research work presented in this Thesis has been motivated by the need to bridge the gap

_ between specifying management policies and mapping these polices to manage distributed

systems environments so that the policies can be realized. The Chapter has shown how to build

the policy model and services on existing management services found in commercial

management systems. Practically, we have shown how to map the high-level specified policies

elements to events format files (as in BAROC) and to executable rules (as in TEC rules) by using

the developed reusable templates that steer the automated mapping mechanism. The methodology

shown represents a general approach that can be adapted not only by Tivoli, but also could be

implemented for other management systems such as HP-OpenView, CA-Unicenter, etc. This

Chapter also addressed the mapping of a policy to management agents.

104

Chapter 7

IMPLEMENTATION AND
THE PROTOTYPE

The Policy Management Agent Integrated Consol (PMagic) prototype is the implementation
of the policy-based model presented in this Thesis. The PMagic sofiware is implemented using
Java JDK version 1.6. The repository is implemented using IBM DB2 version 8.2. The
management system used is the IBM Tivoli Management Framework version 4.1 (TMF) and
Tivoli Enterprise Console (TEC) version 3.9. The prototype’s software (TMF, TEC, gateway,
Java and DB2 server) are installed on a Sun Blade 1000 Workstation with 1.5GB of memory that
uses Solaris 5.8. There is 1 GB of memory dedicated to the Java JVM.

Figure 7.1 shows the design and implementation structure of PMagic. The main PMagic
implemented components are the following: PMagic GUI User Interface, Agent Matcher,
Mapping Mechanisms and PMagic Management Agents. The following Sections address the

implementation of each of these components.

105

PMagic User Interface PMagic GUI
Specify and Enforce Policies
Define Agents
(Java)
PMagic Main Modules - — \ Agent Matcher ™
Mapping Mechanisms N
— Agent Finding
(" Event Format) Policies and g (Java)
il Mapping N Age'nts. \ J
(Java) Repositories e
\- — (DB2) ([AgentInstance)

- Finding (Java)
Policy to RuleBase) \—t/ \ /
- Rules Mapping |« #

(Java)) Agent Distributions f Agent Conﬁgurationw
S RMI (Java)
\ J/
e mm i m—m——————————) S I
Tivoli Modules (Optional)
A 4
Event Server Start,
T Tivoli Events Configuring,
Tivoli TMF BAROC Event Files Repository Updating
Prolog TEC Rules an
& (DB2) Respond
. PMagic|Management Agents T
Composite
Events
Primitive Primitive
< Dynamic Eents Monitoring Events Manager Agent
®)_ Monitoring Agent 3 Agent kY Java & RMI
Java & RMI "5\ Java & RMI o,
¥ Messages e Primitive Events o ey u
Primitive Evenis Eomp osite
vents
'Manageé I*Sn\-nr-on-ment ' .
Monitoring Information and Actions
y
Managed 1 Managed f| Managed
Resource i Resource Resource
T Define as Tivoli End-Pbints T

Figure 7.1: Policy-Management Agent Integrated Console Implementation Structure

106

7.1 PMagic Policy Specification and Agent Definitions
PMagic provides a GUI that allows a user to specify management policies. The start screen

for PMagic is seen in Figure 7.2. The PMagic main menu organization is shown in Figure 7.3.

Figure 7.2: Policy-Management Agent Integrated Console-PMagic Main Form

The policy information model is described in Chapter 3. The information model allows for
the specification of different types of policies. Figure 7.4 presents the screen that provides a
Policy Definition form that consists of several tabs for specifying policies. A policy is specified
by assembling its components from predefined definitions for events, rules, conditions, actions,
intervals, and domains. For instance, Figure 7.5 shows the selection of the policy rules. The
definitions for rules, events, conditions, actions, intervals and domains are reusable components.
The tree shown in Figure 7.6, which is the Policy Tree tab of the Policy Definition form,
represents the components (attributes, domains, events, rules, conditions and actions) of a policy.
Users are able to click on a node to get more information. A policy needs to be fully specified
before it can be enforced. The policy grammar is given in Appendix A. PMagic detects some
conflicts in the policy specification. Specifically, a check is made to ensure that the rule interval

and/or rule domain specification is within the specified policy interval and/or policy domain.

107

The Rule Definition form shown in Figure 7.8 is used to enter rules. The Rule Definition
form consists of 4 tabs: Rule, Rule Conditions, Rule Actions and Rule Tree. The Rule Definition
form can be called from the main menu using the Policy drop menu of Figure 7.3 or from within

the Policy Definition form (Figure 7.5) by clicking the Rules button.

Once the event and rule components of a policy have been specified, PMagic extracts the
attribute names to be used from the drop list of attributes that can be used in the specification of

parameter names for actions (Figure 7.7).

The condition form presented in Figure 7.9 is used to specify logical expressions. These
logical expressions do not have temporal operators. The user enters the logical expressions by
selecting the suitable expression elements (e.g., attributes, mathematical expressions, logical and
relational operators) from drop lists of these elements. To build a mathematical expression, users
click the Mathematical Expression button shown in Figure 7.9. The mathematical expression
form is shown in Figure 7.10. When the user clicks Exit in Figure 7.10, the constructed
mathematical expression returns to the Value field of Figure 7.9. The forms ensure the user enters

a syntactically correct condition.

The event definition form shown in Figure 7.11 is used to specify primitive and composite
events. The bottom left hand side of Figure 7.11 shows the attributes extracted from an event
specification. An event expression can also be entered by the user by using temporal operators on

events already entered. There are drop lists for specified events and for the temporal operators.

Figure 7.12 shows the Interval Definition form that is used to specify intervals. As can be
seen, intervals can be defined as a period between two dates. An interval can also be any selected
date or time between two dates e.g., every Sunday in the next five years. For this reason, the
interval entry form allows for the specification of a selection of dates or a period within an

interval between two dates.

...Open Edit File

.. Import/Export Policy
L. Exit

Condition Definition....j

Event Definition...\

Events Query.......]

PMagic

Window
[.. Host Definition ...Minimize
[....Domain Definition I...Maximize
I Managed Resources Construction Implementation
Query [...Attribute Definition \....Topics
[...Interval DefinitionSearch
. . L..Action Definition ...About
[....Policy Set Definition

[.. Policy Definition j--.. Tivoli Desktop

Agent Definition...\ L Policy Query [....Tivoli Enterprise Console

Agent Instances].... L_I1BM DB/2 Console

Agents Query.... [..- Policy Enforcement

i... Policy Follow Up

Figure 7.3: PMagic Menu Structure

2 Policy Definition - Form

Policy Name:

Policy Statment:

Event Name:

Insert

Policy Name r
tivoli_Monitor
system_Defaults
session_Control
root_Access_Monitor
process_Monitor
process_Control
performancejssue
net_Monitor
memory_Usage
load_Control
hd_Monitor
email Monitor

Policy Domain Rules Policy Tree

session_Control| Intervals forever

Ifa login session is Idle for more than 20 minutes for any ofthe Unix System Lab hosts

then close the session

session Idle

Update

Policy Statement
Ifthe Tivoli Tec event server..
Ifthe defined allowed maxn...
ifa login session is Idle for...
If su root successfully used ..
Ifany process .that navigati...
If any userrunning a progra...
Ifthe total number of proces..
Ifthe number of errors pack...
If real memory is used over...
Ifthe total number of users 1.
If any file system is used to ..
If any user uses quarrel hos...

Figure 7.4:

Events
Delete Clear
£
Event Name

.tec_Down

max_Processes_InsutTicient
IsessionJdle
su_root_Successfully_Used

navigating_Internet_Process_Size_High

sudoko_is_used

. process_Initiated_High

net_Error_P ackets_High
memoryjoaded
users_cpu_process_High
hd_Loaded

email Used

A Policy Definition Form

Bt igyot

Interval Name

forever
forever
forever
forever
forever
forever
forever
forever
forever
forever
forever
forever

Mo Ll

=0

ji>l Policy Definition - Form

Policy Policy Domain Rules

Policy Name: session Control

FUile Name:

Policy-Rule Description change_Priority

closeldle_Session

Insert Upda db2 Conditioned Start
db2_Start
email_Administrator
kill_Process

Sequence Ruli monitor Internet use
close Idle

v it

Policy Tree

Rules

Clear

Interval Name
forever

Figure 7.5: Reusable Building Blocks for Policies

Actions Paramters

Rule Order: v

Exit

Rule Description

Figure 7.6:

A Policy Tree

TTT

1r , -
i Policy Definition - Form

Policy Policy Domain Rules Policy Tree Actions Paramters

Policy Name: session Control Rule Name: close Idle Session

Condition Name: always_True close user session.sh

Action Name:

Rule Name Condition Name Action Name
close Idle Session always_True lose user session.sh
Parameter Name: host name Attribute Name:

P ter Order: L

arameter Oraer: processid

sessionidlelong
Parameter Value: userid
Insert Update Delete Clear Exit
Parameter Sequence Parameter Name Parameter Value Parameter Attribute Name

1 host_name hostname

2 processjd processid

Figure 7.7: Mapping between Actions Parameters and Policy Extracted Attributes

A

A

A A

A

MEMMEEMEMEMEMKKMM

Figure 7.8:

A Rule Definition Form

INHH

114

The Action Definition form shown in Figure 7.13 is used to specify information about
actions. Actions are classified based on the executable code e.g., a Java Class, C Executable, a
UNIX Shell Script. The names and order of the action parameters must be specified in the same
- way action arguments are built. A mapping between the attributes specified in the policy event
and conditions to actions’ parameters may be needed to facilitate the instantiation of the action

parameters with the attributes values at runtime. Figure 7.7 shows this mapping.

PMagic provides several forms to maintain information about the management agents.
Figure 7.14 shows the Agent Definition form that allows information about an agent to be
specified based on the agent information model defined in Chapter 5. This form is used to specify
~ agents and the attributes these agents can monitor. It should be noted that one of the attributes is
the operating system which implies that if two agents monitor the same attributes but for two
different platforms, then those are considered different agents. For example, the memory_agent is
specified to monitor memory usage in UNIX systems, while another agent memory_agent_ WIN

" monitors memory usage in Windows systems.

The Attribute Definition form shown in Figure 7.15 shows the entry form used to specify the
. attributes that can be monitored by PMagic agents. Based on these attributes, users build the

logical expressions that characterize the primitive events.

7.2 PMagic Agent Matcher

The Agent Matcher component is implemented in Java and takes as input a policy that has
been added to the system. Information about agents, as defined by the information model, is
stored in DB/2. Currently, the agent finding task is an implementation of the matching algorithm
shown in Figure 5.6. The Agent Matcher component depicted in Figure 7.1 represents three tasks:
Agent Finding, Agent Instance Finding and Agent Configuration. All monitoring agents and

manager agents are implemented using Java. Note that the implementation of the information

115

services that provide monitoring mechanisms (see Section 5.3 for more details) do not have to be

implemented using Java.

7.3 PMagic Mapping Mechanisms

Policy deployment is the mapping of management policy elements (rules, events, conditions,
actions) to the services needed to support execution and enforcement of the policy elements. The
approaches and designs to carry out these mapping mechanisms were described in Chapter 6.
The Mapping Mechanisms component depicted in Figure 7.1 represents the desired mapping.
Chapter 6 presented two algorithms for mapping. The implementation of the algorithms is
independent of the management system. The functions that implement the transformation rules
are specific to the management system. However, an abstract class can be defined. The abstract
class has the methods for the transformation rules. A subclass represents a specific
implementation of these methods that is specific for the management system. The implementation

was done using Java.

7.4 Distribution Mechanisms Used

To deploy a policy, the executables of the agents that support this policy need to be
transferred as required e.g., a management agent that monitors login sessions needs to be located
on the machine that it is to monitor. The executable may be on another machine. In most cases,
distribution refers to starting agent executables on the machine to be monitored. In case of
collecting attributes from different machines, the executable of dynamic and/or manager agents
will be‘placed on one of the machines that is to be monitored.

To show the flexibility of this work two approaches were used for the start-up of the agent
executables. Management systems often have an application for software distribution. Such an
application distributes, configures or reconfigures and updates software applications, system

patches and management agents. We used Tivoli Software Distribution version 4.2. To use the

116

software distribution from Tivoli to distribute agents, the agent executables must be added to the
distribution profile. In a Tivoli environment, a profile is a container for application-specific
information about a particular type of resource, e.g., agent executabies. Every managed host,
where the profile needs to be distributed, must be defined in TMF as an end-point. In a Tivoli
environment, an end-point is the computer system that is the ultimate target for most Tivoli
operations. Assigning the end points to the Tivoli distribution profile will depend on the domain
associated with the policy. These tasks are carried out by PMagic. PMagic uses the Tivoli profile
feature for the distribution of and starting of agents. This feature requires the specification of
information needed (e.g., hostname and directory path of an agent executable and associated
files). We can use the Tivoli profile feature to update agents when a change in policy occurs by

sending a new agent executable configured to support the changes.

Another approach for distribution of executables is the UNIX remote shell sk and cp copy
commands for UNIX machines. To enable copies and/or executes of executables from UNIX to
* Windows machines, the remote shell software Winsock RSHD/NT [157] was installed in the
Windows host machines. In this case, PMagic starts the management agents on the remote
managed hosts using remote shell commands from within the PMagic Java classes. The two
approaches were implemented to show the independence of the mapping process from any

specific distribution mechanism.

Java’s Remote Method Invocation (RMI) was chosen for implementing the communication
between the agents and the PMagic manager processes, and for communication among the
monitoring, dynamic monitoring and manager agents. RMI was chosen for its built-in simplicity
and the fast prototype development that it enables. PMagic relies on RMI to communicate with

managers.

jfg Conditions Definitions - Form,

Condition Name:

Relational Expression
Not

*=531

max_allowed_processes_below_1000

Operators
O Not Value: O Not Value:
<NA>
Attribute Name: cpuload (REAL) :Relational Operatorie: cPuload (REAL)

== (String)

Mathematical Expression Mathematical Expression
1= (String)

Function-Call Expression < Function-Call Expression
< (String)
<=

Attributes Form | <- (String) E OR

Logical Expression

(maxprocessesallowed <1000) && (hostname.equalsC'wolfbiteO)

Condition Name /
email_used_using_quarrel
hd_used_over_89
login_falied
max allowed processes_below_1000
rnemory_over_95
navigatejnternet_Process_over_10240K

Insert Update Delete Clear Exit

Condition Statement
(useroperationused equalsCsend_emair)) && (hostname equalsC'quarrel")) S.& (userid.compareT..
(hdsizecapacity>= 89) && (hostname compareToO 50)
(useroperationused equalsC'login®)) && (useroperationresult.equalsC'failed"”))
(maxprocessesallowed « 1000) 8& (hostname.equalsfwolfbiter*'))
(memoryrealused >95) && (hostname.compareToC™) >=0)
(processcommand.containsC'netscape”) || processcommand.containsC'exploreO || processcomman..

Attributes Within this Expression Restraints' Match Attributes Within this Expression

Figure 7.9: The Condition Definition Form

LTT

TEEEtEEEEIEM EIEEIEEENEEEIEtEEEEELENNEHEL).

w
w
H
{0
w
w
X
i
aw
s
£
£
B
«

EiEtEEIEtEIIEWEEEEEHEEAEItIEE

IB&gHPOOQ EEEEEEE EEHEIIEEEEEIIE]

J»j Events Definitions - Form

Primitive

O

Event Name:

Logical Expression:

N3 users_cpu_process_High

9 (i3 ATTRIBUTES

Q
Q
Q
Q

cpuload
cpuprocesstotal
hostname

userlogintotal

9 C3 E_SEQ
£ [3 users_Limit
o- O ATTRIBUTES

o-

F

CONDITION

cpu_process_High

0- Q ATTRIBUTES

o-

CONDITION

Insert

users_cpu_process_High

Event Expression Preperation

Logical Expressions

users_Limit

Update

Event Name r
users_cpu_process_High
users_Limit
tec_Down
sudoko_is_used
su_root_Successfully_U...
sessionjdle
process_|Initiated_High
net_Error_P ackets_H igh

navigating_Internet_Proc...

memoryjoaded

max_Processes_Insuffic..

login_Falied
hd_Loaded
email_Used

Event Operators

v Value: 0 yr
rrr— |-
E_SEQ v
v Event Name: cpu_process_High
_ Delete Clear I Exit
Condition Name L.H.S. | Operator R.H.S. 1 RepeatCount

users_Limit E_SEQ
users_More_tha...
tec_is_down
process_of_Sud..
su_root_used_b...
session Jdle_2...
processesjotal..
net_error_packet...
navigatejnternet..
memory_over_95
max_allowed _pr...
login_falied
hd_used_over_89

email_used_usi...
.0

Attributes within this Event

Figure 7.11:

The Event Definition Form

cpu_process_High 0

DOOOQOOOOOOOOO

Event's Restraint Attributes

Intervals - Form

Interval Name: everySunday

From Date.'Time To Date/Time

2007 Vv 01 01 ®mv 00 yr 00 V 00 v 2010

Interval Range Filters

Month of the Year Day of the Week
1 2 3 4 56 7 8 9 10 11 12 12 3 4
O uDD'

Day of the Month Sunday

1 2 3 4 5 6 7 8 9 1011 1213 14 15 w IT I1e 1

00000000O000O0O0O0O0O00OO0OCOOG®G

Insert Update Delete Update 1

Defined Interval

Interval Name ! From Date/Time To Date/Time Vaild ft
ieverySunday “120070101000000 20101231235959 11111111
forever [20070101000000 {20101231235959 11111111

12 Vv

31 yr 23

Intervals - Form

Interval Name:

From Time
00 w 00 ~ 00
Insert Update

i mies miei vais

000000

From Time

Figure 7.12: The Interval Definition Form

59 Vv 59

everySunday

To Time

23 yr 59

Delete

1235959

Clear
R E—

To Time

59 yr

Exit

Executable Direcorty:

Action Description:

Insert

Action Name /
close_user_session.sh
db2_START
kili_process.sh
kill_process_by_processid
logout_user.sh
process_Reduce_Priority
send_email.sh
tec_START

CE

SH

SH
SH
SH
SH
SH
SH
SH
SH

Parameter Name: Parameter Order: 01
n

Parameter Type: string Parameter Initial Value:

Usage Description:

gt i ivgeee”'®
Parameter Name Parameter Order m Parameter Type Initial Value
userjd 1 string
processjd 2 integer
lerminal_used 3 string
host_name 4 string

Figure 7.13: The Action Definition Form

Exit

Usage Description

Figure 7.14: The Agent Definition Form

Z71

wIMLMEmUTIEN

Management Systems Attributes

Attribute Name:

Attribute Type: STRING
Attribute Usage:
Attribute Descriptions:
Insert Update
Attribute Name > Attribute Type

cpuload REAL
cpuloadidle REAL
cpuloadiowait REAL
cpuloadkernel REAL
cpuloadswap REAL
cpuloaduser REAL
cpuprocessloadaverage REAL
cpuprocessrunning INTEGER
cpuprocesssleeping INTEGER
cpuprocesstotal INTEGER
datetime STRING
db2state STRING
dbactiveconnections INTEGER
dbname STRING
eventname STRING
hdmountedon STRING
hdname STRING
hdsize INTEGER
hdsizeavailable INTEGER
hdsizecapacity INTEGER
hdsizeused INTEGER
hostname STRING
inputpackets INTEGER
inputpacketserror INTEGER
interfacename STRING
localipaddress STRING
maxpacketsize INTEGER
rnaxprocessesallowed INTEGER
memoryrealfree REAL
rnemoryrealtotal REAL
memoryrealused REAL
memoryswapfree REAL
memoryswaptotal REAL

123

Delete Clear Exit

Attribute Usage

the percentage of CPU time in gene...
the percentage of CPU time in idle ...
the percentage of CPU time in iowai...
the percentage of CPU time in kern...
the percentage of CPU time in swap...
the percentage of CPU time in user..
the average of CPU/processes

the total number running processes
the total number sleeping processes
the total number of existing process...

Attribute Description

The state ofthe db2"DOWN" or "ST...
The active connections to the datab
The database name

The name of event

the monuted directory of the filesyst...
Name of the filesystem

size ofthe filesystem

the free size ofthe filesystem

the percentage used from the filesy...
the total amount used from the files...
holds the host name data

The number of the input packets

The number ofthe input error packets
The name of the interface used for 1.
The local IP address

The maximum packet size

The maximum number of processe..
Total real system memory free in VB
Total real system memory in VB
Total real system memory used in MB
Total swap memon/free in VB |
Total swap memory total in VB v

Figure 7.15: The Management System Attributes Definition Form

124

7.5 PMagic Managers

The work in Chapter 6 assumes that there is an event-driven rule-based engine. PMagic
uses the Tivoli Enterprise Console (TEC) component from Tivoli. PMagic software creates
BAROC files and TEC rules. This is implemented in Java, as is the implementation of the
manager agents. Most methods implemented for finding agents, finding agent instances, agent
configuration, distribution of agents, policy rules enforcement, etc., are designed to send
information to one central log file that resides in the PMagic manager. This log file is useful for
analyzing the results of the experiments described in Chapter 8. Information columns in a log line
are separated by one *#’ character. The information columns in the order they appear on a log file

line, are as follows:

Timestamp: The number of milliseconds since the epoch to the time when this log
recorded.

Full-Date: The date/time when this log recorded.

Operation-Number: Each operation used to enforce a policy or a set of policies is
assigned a number by PMagic, where numbers are incrementally increased. Numbers
cannot be reused unless PMagic resets the database.

Host-Name: The name of the host from which this log is sent.

Agent-Name: The name of the agent instance that sends this log or GNA in the case of no
agent instance, e.g., the method is AgentFinding that runs by the manager at wolfbiter
host.

Agent-Port: The port number of the agent instance, or TNA otherwise.

Method-Name: The name of the method that sends this log.

Method-State: There are three states; IN, OUT and EX?'.exception-
name: :exception_message.

Policy-Name: The name of the policy.

Event-Name: The name of the event that the method handles or ENA otherwise.

125

Rule-Name: The name of the rule that the method handles or RNA otherwise.
Condition-Name: The name of the condition that the method handles or CNA otherwise.
Action-Name: The name of the action that handles the method or ANA otherwise.
TEC-Used: A Boolean value (true or false) that indicates whether this operation uses

TEC or not.

7.6 PMagic Event Common Attributes

Table 7.1 represents the common attributes that each event notification message includes.

Additional attributes are specified in an event according to the state that the event represents.

Attribute Name Descriptions

eventname Specifies the name of the event

timestamp The number of milliseconds since the epoch to the time when
this event occurred.

source PMagic Prototype

sub_source The name of the management agent that triggered the event

sub_source_port The port number that the management agent which triggered
the event used for communication

hostname The name of host on which the event occured

origin The name of the host where the management agent resides.
Hostname and origin may be the same

severity Specifies the severity of the event, e.g. UNKOWN, HARMLESS,
WARNING, MINOR, CRITICAL, FATAL

status Specifies the status of the event, e.g. CLOSED, OPEN.

operation_number Each policy deployment has a unique operation_number; this
number is used for the audit trail in the PMagic log file

msg A description message of the event
Table 71: PMagic Event Common Attributes

7.7 Chapter Summary

This Chapter presented the Policy-Management Agent Integrated Console (PMagic)

software.

126

Chapter 8

Evaluation

This Chapter describes the experiments conducted to evaluate PMagic and presents several

conclusions drawn from these experiments.

8.1 Experiments Environment

There are 18 policies used in the evaluation. These policies are shown in Appendix B. The
policies were chosen to represent a variety of system, application and network management tasks.
Several policies measure resource usage and take action if the usage exceeds a threshold. Several
policies are used to configure the system. Two policies do event correlation and take an action in
support of a fault management task.

The experiments required the use of twelve monitoring agents. The descriptions of these

agents are in Appendix C. These agents cover almost 74 attributes and this number can

127

incrementally increase if we consider the attributes of SNMP agents. Management agents use the
postemsg command from the Tivoli Management Framework (TMF). The postemsg command
sends an event to Tivoli. This command does not require defining each managed host as an end-
point, while the wpostemsg command does. There are eleven managed host machines. Ten of
these machines use a UNIX platform and one uses Windows XP. In the experiments conducted in
this Chapter, the remote shell command rsh is used to start agents at remote hosts (as described in
Section 7.4). The experimental times shown in this Chapter were the best times; see Appendix F

for more details about averages times and the standard deviations.

8.2 Basic Experiments Using an Existing Management System

The basic experiments make use of Tivoli Enterprise Console (TEC) as the event server and
rule-engine. In deploying policies, the PMagic Management Agents will be configured to send all
events to TEC. The basic experiments focus on the deployment time of policies. Deploying a
policy requires the following tasks to be carried out:

1 Find the agents that can support the policy to be deployed.

2. Find any agent instances of agents that were found in Step 1

3. Configure agent instances to support the added policy. Configuring an agent instance

involves updating the Registry repository (see Chapter 5, the Agent Information Model).

e

Create the BAROC files and TEC rules as shown in Chapter 6.

o

Import, compile and load the BAROC files and TEC rules created in Step 5 to Tivoli
TEC engine.

6. Start and/or update agent instances at remote hosts.
We are specifically interested in these times:

e Overall Time -OT: This is the time taken to finish Steps 1to 6.

e PMagic Time - PT: is the time taken to complete Steps 1to 4 and 6.

e Remaining Time - RT: This is the time taken to complete Step 5.

128

8.2.1 Deployment Policies of Primitive Events as Domain Size Increases

The purpose of this experiment is to study the impact on the time to deploy a policy as the
number of host machines to which the policy applies increases. The results described in this
Section are based on two policies. Each of these policies uses primitive events. These two
policies differ in the number of management agents needed. The deployment of each policy
assumes that there are no existing agent instances.

The first policy is the cpuJUsage (see Policy number 1 in Appendix B). The deployment of
this policy requires one monitoring agent, one BAROC file and a TEC rule set of two rules. The
first column in Table 8.1 represents the overall time in seconds to deploy the cpuJUsage policy.

The second policy is the processJAonitor (see Policy number 7 in Appendix B). The
deployment of this policy requires two monitoring agents, one dynamic monitoring agent, one
BAROC file and a TEC rule set of two rules. The second column in Table 81 represents the

overall time in seconds to deploy the process_Monitor policy.

Policies cpullsage process_Monitor
1 Host 25 29
2 Hosts 27 31
3 Hosts 28 34
5 Hosts 30 38
7 Hosts 32 43
10 Hosts 36 46

Table 8.1: Deployment Time for Two Different Policies of Primitive Events

The results in Table 8.1 show that the time it takes to deploy each policy is approximately
linear with respect to the number of hosts. Table 8.2 shows the time breakdown of the 25 seconds
taken to deploy the cpuJUsage policy in one managed host, and Table 8.3 shows the breakdown

of the 29 seconds spent to deploy the process_Monitor policy in one managed host.

129

As can be seen from Tables 8.2 and 8.3, the PT time is relatively small compared to the RT
and the OT. We will not breakdown the other times in Table 81 to deploy either of the two
policies to different number of hosts since the incremental time is approximately linear with
respect to the number of hosts. In addition, the increment in the deployment time of both policies
as the number of hosts increases is reasonable. Note that the only times affected as the number of
hosts increase are the times for the Agent-Configuration and Agent-Startup tasks. The time
needed for other tasks remains almost the same. This is because the number of agent instances

that need to be configured and started up increases as the number of managed hosts increases.

Time Group Task Time in Seconds
PT Agent-Finding 1681
Agent-Instance-Finding 0.205
Agent-Configuration 879
Agent-Startup 239
Mapping To Tivoli 122
PT 3.126
RT BAROC Import 6.010
Rule Set Import 5201
Rule-Base Compile 6.122
Rule-Base Load 5.022
RT 22.355

OT 25.481
Table 8.2. Deployment Time Breakdown for Deploying cpu_Usage policy

Time Group Task Time in Seconds
PT Agent-Finding 2412
Agent-Instance-Finding 0.293
Agent-Configuration 2747
Agent-Start-up 1.090
Mapping To Tivoli 135
PT 6.677
RT BAROC Import 5771
Rule Set Import 5.233
Rule-Base Compile 6.431
Rule-Base Load 5.192
RT 22.627

oT 29.304
Table 8.3: Deployment Time Breakdown for Deploying process_Monitor policy

130

8.2.2 Deployment of Policies of Composite Events as Domain Size Increases

The purpose of this experiment is similar to the experiment described in Section 8.2.1, i.e., to
study the impact on the time to deploy a policy as the number of host machines to which the
policy applies increases. However, the results described in this Section are based on two policies
that use composite events. These two policies differ in the number of agents needed and the
number of BAROC files and TEC rules. The deployment of each policy assumes that there are no
existing agent instances.

The first policy is the access._Monitor (Policy number 17 in Appendix B). The deployment
of this policy requires one monitoring agent, two BAROC files and a TEC rule set of two rules.
The first column in Table 8.4 represents the overall time in seconds to deploy the access_Monitor
policy.

The second policy is the loadjControl policy (Policy number 15 in Appendix B). The
deployment of this policy requires two monitoring agents, three BAROC files and a TEC rule set
of 3 rules. The second column in Table 8.4 represents the overall time in seconds to deploy the

loadjControl policy.

Policies access_Monitor load_Control
1 Host 33 44
2 Hosts 34 46
3 Hosts 35 49
5 Hosts 37 52
7 Hosts 39 55
10 Hosts 43 59

Table 8.4: Deployment ime for Two Different Policies of Composite Events

The results in Table 8.4 show that the overall time it takes to deploy each policy is

approximately linear with respect to the number of hosts. Table 8.5 shows the time breakdown of

131

the 33 seconds taken to deploy the access_Monitor policy in one managed host, while, Table 8.6
shows the breakdown of the 44 seconds spent to deploy the loadjControl policy in one managed
host.

As can be seen from Tables 8.5 and 8.6, the PT time is relatively small compared to the RT
and the OT. We can observe from Table 8.4 that the incremental increase in the deployment

overall time is approximately linear with respect to the number of hosts and the incremental

amount of time is reasonable.

Time Group Task Time in Seconds
PT Agent-Finding 1151
Agent-Instance-Finding 0.108
Agent-Configuration 1335
Agent-Start-up 454
Mapping To Tivoli 187
PT 3.235
RT BAROC Import 13.904
Rule Set Import 5793
Rule-Base Compile 5.936
Rule-Base Load 4.487
RT 30.120
OT 33.355
Table 8.5: Deployment Time Breakdown for access_Monitor policy
Time Group Task Time in Seconds
PT Agent-Finding 2.667
Agent-Instance-Finding 0.464
Agent-Configuration 1.985
Agent-Start-up .691
Mapping To Tivoli 501
PT 6.398
RT BAROC Import 15.443
Rule Set Import 7.201
Rule-Base Compile 8411
Rule-Base Load 6.500

Tivoli Tasks Total 37.555
OT 43.953
Table 8.6: Deployment Time Breakdown for load_Control policy

132

8.2.3 Enforcement of Policy Rules

The purpose of this experiment is to study the impact on the time to enforce a policy rule
using a centralized event handler. Particularly, this experiment determines the time of carrying
out the action as the number of host machines to which the policy applies increases and as the
number of triggered events increases. The results described in this Section are based on
enforcement of the action close the session of the sessionjControl policy. The session_Control
policy uses a primitive event (Policy number 3 in Appendix B). Deployment of this policy is done
in the same way as described in the previous two experiments. The time shown in Table 8.7
represents the time from the detection of the first event (i.e., the first event detected in any of the
managed hosts) and the action taken that corresponds to the last event detected (i.e., the last event
detected in any of the managed hosts). This means that the time of 44 seconds shown in column 2
row 2 of Table 8.7 represents the time between the detection of the first event at one of the two

hosts and the time the action is taken to close the last idle session found in one of the two hosts.

session_Control Policy
Time Between the first Detected Event and Last Action Taken (in Seconds)

1 Event 2 Events 5 Events 10 Events
1 Host 12 31 69 104
2 Hosts 14 44 82 125
5 Hosts 17 63 101 153
10 Hosts 20 82 122 189

Tab e 8.7: The Enforcement of Policy Rule by using Tivoli

133

8.2.4 Discussion of Experiment Results

The experiments in Sections 8.2.1 and 8.2.2 addressed the time of deployment of specific
policies using PMagic as the number of hosts grow. We found that the policy deployment time is
acceptable with regards to increases in the number of hosts. We also found that the PT time is less
than the RT and OT policy deployment times. Generally, most of the deployment time goes into
importing, compiling and loading the TEC configurations that represent policies in TEC. This
may suggest that configuring management agents, as addressed in Chapters 5 and 6, to carry out
the policy rules enforcement could reduce the deployment overhead time.

The experiment in Section 8.2.3 studied the time to enforce a policy using TEC as a
centralized event handler. The times showed that when several events came from the same host,
the actions taken by TEC are delayed a bit. Generally, the times reported in this experiment show
some delay in enforcement of the policy rules, especially when the number of hosts and event
notification messages increase. This suggests that there may be some advantage to using a more
decentralized policy enforcement approach instead of sending events to a central event processing
engine. For instance, we may ask the management agents to operate as managers that process
events and enforce policy rules (see Chapter 5 for more details). The next Section will explore

this alternative.

8.3 Alternative Strategies for Optimization

This Section explores alternatives introduced in the Thesis, such as the reuse of existing
agent instances to support more policies and the updating of the agent instances to adopt changes
in policies. This Section also explores the use of management agents as managers to process

events and enforce policy rules.

134

8.3.1 Experiments on Agent Reuse

In the experiments in Section 8.2 experiments we assumed that no agent instances are
already instantiated. The experiments conducted in this Section compare the PT time of deploying
policies when agent instances do not exist and when they do exist. The reuse of an existing agent
instance to support an added policy means that existing management agent instances should be
reconfigured to monitor and trigger the events of the added policy. Section 8.3.2 addresses how to
facilitate the configuration of existing agent instances.

For the experiment of this Section, we selected the three policies: cpuJUscige,
process.JAonitor and loadjControl (see Section 8.2 for more details about these policies). Table
8.10 shows comparisons between the PT times to deploy the policy when there are no existing
agent instances and the time to configure existing agent instances which are already instantiated
in the remote hosts that constitute the domain of the added policy.

We can see from the results shown in Table 8.8 that the reuse of existing agent instances will
save almost half of the PT deployment time. Though it is not tested, we infer that the reuse of
existing agent instances to support more policies could require less computational overhead in

managed hosts than creating more instances of management agents.

Policies cpu_Usage process_Monitor load_Control

No Instance Instance Exists No Instances Instances Exist No Instances Instances Exist

1 Host 3 17 6.3 23 6.4 23
2 Hosts 4 24 7 3 75 3
3 Hosts 5 3 7.6 33 8 34
5 Hosts 7 35 8.7 4.2 9 42
7 Hosts 8 4 10 51 10 52
10 Hosts 10 52 12 6.3 13 6.3

Tabie 8.8: The Reuse of Existing Agents’ Instances in Policy Deployment

135

8.3.2 Experiments on Policy Re-Enforcement

The proposed model addressed in Chapter 4 was structured in order to be able to provide
dynamic adaptation to changes in polices. A change in an existing policy means that one or more
thresholds of the conditions characterizing the primitive events are changed. These changes need
to be reflected in the management agent instances used to generate the events. Section 8.3.1 has
addressed the reuse of the management agent instances. To enable such reuse, the management
agent instances need to be configured at runtime to support more policies. The reuse and updating
of management agent instances suggests that direct communication between the manager and the
management agent instances is needed. Updating the executing management agent instances with
new changes and/or new configurations is typically done on the fly using direct communications
(see Chapter 5 for more details). Management agents need to be built to allow such direct
communications. RMI and Web-Services are examples of communications mechanisms that
could be used in management agents. In our particular case, we chose Java RMI, but other
communication mechanisms are also possible. The experiments in this Section measure the time

in seconds it takes to reconfigure the agent instances to adopt the changes in policies.

Policies cpulisage process_Monitor load_Control
PT Update PT Update PT Update

1 Host 3 1 6.3 15 64 16
2 Hosts 4 12 7 2 75 2
3 Hosts 5 15 7.6 21 8 21
5 Hosts 7 2 87 24 9 24
7 Hosts 8 23 10 3 10 3
10 Hosts 10 34 12 4 13 4

Table 8.9: The Re-Enforcement of Three Different Policies using PMagic

136

The experiments in this Section make use of the policies that were used in the deployment
experiments in Section 8.3.1. The goal of this experiment is to compare the time for updating
agents with a new configuration (i.e., an existing policy has been changed such that one or more
thresholds of the conditions characterizing the primitive events are changed) to the time required
if these management agents were first found and then deployed (i.e., PMagic deploy time PT).
An example of a possible change is a change of the cpuJUsage policy to alter the condition
cpuload>90 to cpulocid>85. Such a change in a policy should be adopted by the agent instance
that supports this policy, i.e., the agent instance needs to be asked to handle the new condition
instead of the old one. Table 8.9 presents comparisons between the time for deploying and
configuring management agents from scratch and the time to update to the configuration of
management agent instances. As we can see from the results of Table 8.9, PMagic can update
management agent instances to adopt the changes in the policies in a reasonable time even as the
number of hosts scale.

Note that there are no Agent-Finding and Agent-Startup tasks performed in this re-
enforcement experiment, since we assumed that the changes were only in the thresholds of the
conditions in existing policies. However, if the changes involve a change in the attributes which
must be monitored, for example in the construction of the condition of a primitive event, we may
still need to do a full PMagic deployment, i.e., we still need to find and start the agents that can
monitor the attributes specified in the condition. In such a case it may be necessary to keep track

of what changes were done. This is considered to be future work.

8.3.3 Use of Management Agents as Managers

Experiments conducted in Section 8.2 assumed the use of TEC as the event-driven rule-based
engine for handling and processing events and directing the enforcement of the policy rules.
Chapter 6 also proposed that management agents could detect events and evaluate policy rules.

By detecting events we mean the detection of both primitive and composite events. Chapter 5

137

described how primitive events can be detected by using monitoring and dynamic monitoring
agents, and composite events can be detected using manager agents. We conducted the
experiments of Section 8.2 such that the management agent be configured to carry out the policy
rules, i.e., perform the enforcement of the policies the management agent supports. This means
that events do not have to be sent to TEC for further processing and also that policies do not need
to be mapped to Tivoli configurations. Specifically, we make use of management agents to work
as managers for enforcing the policy rules that are associated with the triggered events these
agents detect. In this case, we found that the policy deployment OT times were less than or
almost equal to the PT times shown in Section 8.2 experiments.

We also conducted the same experiments as in Section 8.2.3, but with management agents
configured to carry out both event detection and policy enforcement. The results are shown in
Table 8.10. These results represent times that are substantially shorter compared to the times

presented in Table 8.7.

session_Control Policy
Time Between the first Detected Event and Last Action Taken (in Seconds)

1 Event 2 BEvents 5 Bvents 10 Events
1 Host 028 .097 621 1.603
2 Hosts 035 120 887 1.917
5 Hosts 041 174 1.011 2.389
10 Hosts 066 251 1.633 2.907

Table 8.10: The Enforcement of Policy Rule by using Management Agents

8.3.4 Discussion of Alternative Strategies
The results of the experiments presented in the previous Sections show that the alternative

strategies of utilizing management agents to support policies offer promising results.

138

Specifically, we found that: 1) The reuse of existing instances of management agents is better
than creating new management agent instances to support the added policies; 2) Updating
management agent instances to adopt the changes in policies is better than starting the
management agents from scratch with the new changes, 3) Using management agents as
managers for policy enforcements beside the event detections tasks, could be a promising

direction.

8.4 Final Discussion and Conclusions Drawn
This Section discusses several key points that were addressed in the Thesis based on the

experiments in this Chapter.

8.4.1 Mapping Policies to Tivoli

In the early Chapters of this Thesis we highlighted how the use of policies can facilitate the
management system to be adaptable to changes in management strategies without requiring the
recoding of the management system. The policies can be represented and specified by high-level
policy languages. The principle foci of this Thesis are the design of approaches to map the
specified policies to be realized by management systems. Chapter 6, together with the
experiments of Section 8.2, show and validate how the proposed PMagic model does map
different specified policies to Tivoli. Practically, we have shown and validated the mapping of the
high-level specified policies elements to event format files (as in BAROC files) and to executable
rules (as in TEC rules) by using the developed reusable templates that steer the automated

mapping mechanism.

8.4.2 Identifying Management Agents to Support Policies
Existing management systems do not provide facilities to automate the efficient deployment
of management entities i.e., finding, initiating and deploying management agents that monitor,

analyze and control the managed system to support policies. More explicitly, existing

139

management systems are lacking in the definition of the link between their management rules and
the management monitoring services (agents) that execute in order to collect events of interest to
these rules from managed objects. This relationship between rules and agents is typically defined
and configured by the system administrator. A key element of this Thesis work is policy
deployment. All experiments conducted in this Chapter have validated that PMagic is bridging
and automating the gap between expressing policies in a high-level specification language and the

deployment of management agents to support policies.

One kind of question that may be raised is how efficient the agent finding algorithm is when
there are many agents, i.e., when the number of agents scale. Let us briefly analyze this situation.
The Agent-Finding algorithm tries to find agents that can monitor the policy primitive events.
Normally, the number of specified primitive events in a policy is small. The search is done by
matching the attribute names specified in these events to the attribute names that are associated
with management agents. Specifying management agents and the associated attributes is done
once and used many times, i.e., the Insert and Update operations to the database tables represent a
n¢gligible number of operations compared to the search (Select) operations in these tables. With
respect to this fact, we construct the database agent attributes table to be indexed by the attribute
names. The time to find an attribute name in a table indexed by attribute names is determined by
the number of reads in a binary tree needed to find that attribute name. If » is the number of
:;lt'tribute rows in the agent attributes table, the number of reads is bounded by log:(n). For
example, for 1,024 rows 10 reads are required and for 1,048,576 rows 20 reads, etc. More details
on the power of indexing are in [SS5, 63]. These facts indicate that the increment in the number of

management agent would have minimal effect on the performance of the agent finding algorithm.

141

However, this centralized rule-engine could potentially be a bottleneck. Thus, Chapter 6
proposed that management agents detect events and evaluate policy rules. Specifically, we used
management agents as managers in enforcing the policy rules that were associated with the events
these agents were detecting. To facilitate the decentralized event processing, the Thesis
introduced manager agents to detect composite events. The algorithms used by the manager
agents to evaluate the five composite event operators that were introduced in the Thesis are given
in Appendix E. The initial results of experiments in Section 8.3.3 for using management agents as
managers show promising results. Practically, more work is needed to decide when manager

agents should be used versus just deploying an agent to detect primitive events.

8.4.6 Limitations of Experimental Environment

As introduced in Chapter 7, the prototype’s software (TMF, TEC, gateway, Java and DB2
server) are installed on an old Sun Blade 100 Workstation with one 32 bit CPU of 0.49 GHz with
1.5GB of memory that uses Solaris 5.8. All communications in PMagic use Java RMI. This
configuration is likely the cause of some slowness in deployment and enforcement times reported

in the experiments discussed in this Chapter.

8.5 Chapter Summary

This Chapter described the experiments conducted to validate and evaluate PMagic and

presented the conclusions drawn from these experiments.

142

Chapter 9

- CONCLUSIONS AND
FUTURE WORK

In this Chapter we review the contributions of the Thesis and discuss open issues and

directions for future work.

9.1 Conclusions

The Thesis has reviewed and described several policy-based managément systems, focusing
primarily on policy specification languages and policy deployment systems. While there has been
some work on automation of some aspects of policy-based management systems, there is clearly
a need for more work on the automation of the mapping of policies to management elements (e.g.
agents, rules), configuration of those management elements, the efficient runtime use and reuse of
those elements, and the efficient reconfiguration of those elements in response to changes in the
system being managed or in policies. This research focused on the means for a management

system to automatically identify and deploy management operations, and management system

143

configurations for deploying policies. A central part of this research is the agent matcher concept
which opens the door for more self-configuring management systems. The contributions of the
Thesis can be considered as first steps towards the goal of automating policy-based management

systems. The main contributions can be reviewed and summarized as follows:

A Model for PBM System: A general PBM system model was proposed based upon
features of the problem. The model is practical and also represents an abstract object
model. The model provided a high-level language for representing policies and a means
to abstractly characterize management agents. The model’s primary characteristics are
its ability to identify and deploy management entities and its ability to respond
automatically to both changes to the system itself and to changes in the way the system is
to be managed, i.e., changes to the set of management policies or sets of managgment

agents. The model can be applied to any management system.

The use of an existing management system: The Thesis has shown how to build the
policy model and services on existing management services found in commercial
management systems. We have shown, through Chapter 6 and with the experiments of
Chapter 8, how to map different policies to Tivoli, and in particular, to event format files
(BAROC files) and to executable rules (TEC rules) by using repsable templates to steer
the automated mapping mechanism. The template-based approach introduced in the
mapping of policies to any event-driven rule-based management system, enables the

construction of more dynamic self-configuring PBM systems.

Policy deployment algorithms: The Thesis has shown the needed services and sketched

the necessary algorithms to identify, deploy and utilize management entities for policy

deployment.

144

A PMagic prototype implementation: The implementation demonstrated that a modular

policy language could be implemented and used to specify policies. The prototype

implementation successfully incorporated the agent finding algorithm and successfully

demonstrated steps towards automating PBM systems with minimal administrator

interaction. Construction of the implementation produced a number of insights into the

challenges of automating policy-based management systems. These challenges are

summarized in the following:

1.

It may be the case where one monitoring agent (ma) can not monitor all attributes
of a primitive event. In this case a dynamic monitoring agent (dma) is
instantiated to evaluate the condition that characterized the primitive event. For
instance, in Example 6.3 (see also Appendix B Policy 16), if the management
system provides a ma that monitors the usersloginstotal attribute, another ma that
monitors the cpuload attribute, and a third ma that monitors the cpuprocesstolal
attribute, then a dma is dynamically instantiated to receive the values of cpuload
and cpuprocesstolal attributes from the last two mas. The dma is used to detect
instances of the primitive event characterized by the condition “cpuload>90 &&
cpuprocesstotal>35”. The dma itself may be executed in one managed resource
and receive messages of the required information from mas in other managed
resources. The problem here is that the monitoring information can be mixed
when there are several resources (e.g., the value of cpuload of a host and the
value cpuprocesstotal of another host), while the expression might need to be
evaluated on information collected from the same managed resource. Thus, the
values of cpuload and cpuprocesstotal need to be checked to confirm that they
came from the same managed resource (i.e., host in our example case). We call
this problem the Information Collecting Challenge. In PMagic, a logical

expression can be associated with a set of attributes called the Restraints Match

145

Attributes for this Expression that defines the set of the attributes that need to be
matched first by the dma among the received messages. Restraints Match
Attributes for this Expression set can be entered using the PMagic interface and
stored in the policy repository. If the received messages have a matching source,
the dma then proceed to evaluate the condition.

A second issue, similar to the one addressed in the first point, deals with the
event notifications messages, i.e., correlating the notification messages
representing event instances can be mixed up from several resources. More
practically, correlation of the received event instances to detect a composite
event, which is constituted from these event instances, might be needed to
evalutae only the received event instances that came from the same managed
resource. Thus, correlation may rely on the values of some attributes in the event
notification messages that need to be matched first. We call this problem Event
Correlating Challenge. In PMagic a composite event can be associated with a set
of attributes called Event’s Restraint Attributes that defines the set of the
attributes to be match among the events instances that constitute the composite
event, e.g., hotsname could be one of the Event’s Restraint Attributes that need to
be matched in all the received events instances before any correlation.

The release of enforced actions when the system state represented in the triggered
event, which causes the enforcement of the action, changes. In PMagic, the
administrator might specify another new policy in which he/she specifies the
policy event to be the composite event resulted from the application of the E-Not
event operator to the event in our addressed case. The policy rule of the new
policy in this case has a condition to check if the enforeced action that need to be

released stills active and if so, the policy rule action of the new policy is to stop

{ 146

or kill the enforcement of the action that needs to be released. More details on

this are discussed in Section 9.2 on Future Work.

e Experiments: The experiments demonstrated the successful application of the model, the

prototype and deployment of different policies into domains of differing numbers of
; hosts. The results of the basic experiments that evaluated the policy deployment using
services of existing management systems motivated us to look for an alternative
deployment approach for optimization, namely, one that relied on utilizing management

agents for policy deployment.

® Reuse of management entities: Experimental results have demonstrated that reuse is a
good strategy for management systems. Results show that it is possible to have a
management system adapts to changes in the policies within a reasonable time as the
number of hosts scale by reusing existing management agent instances. This strategy can
be adopted and incorporated in any existing management framework, providing that the
communications between the manager and the management agents instances to facilitate

agent reuse and update exists.

® Decentralized event-handling mechanism: The Thesis introduced a further policy
deployment approach in which policies are mapped to a configuration of management
agents. Typically this approach requires management agents to work as managers for
enforcing the policy rules that are associated with the events. This led to the introduction,
design and implementation of the manager agents together with the algorithms needed to

detect composite events.

9.2 Future Work

Although the work in this Thesis has achieved encouraging results, the research towards an

optimal or a semi-optimal automated policy-based management system is still developing. There

147

a number of issues based upon the work in this Thesis and related research that have not been

addressed that form the basis for future research:

Searching and Agent Configuration: The algorithm described for agent finding can also
be applied to agent instantiations, thus meaning that agent instantiations are first
searched. A policy that is activated after an initial set of policies has been activated can
minimize the number of instances of agents since information about agent instances is
maintained. This in itself is not sufficient. Future algorithms should consider resource
constraints and restrictions on the location and number of agent instantiations. A
representation of this information, and mapped to an optimization model is needed. Work
in [1] describes possible optimization models. These could be incorporated into the Agent
Matcher component. Another possibility related to the management agents that were
intfoduced in Chapter 5 would be to consider a single implementation of the three
management agent types which could perform any of the tasks of ma, dma and/or
manager_agents. This needs to be reviewed, and the performance and overhead of such a

general agent would need to be carefully evaluated.

Adding Consistency and Policy Conflicts Checking: Though the prototype provides
consistency checking between policy intervals and policy rule iptewals (if the latter are
associated with a rule), there are still some areas that need consistency checks such as
domains associated at the policy and policy rules levels. Also, as introduced in Chapter 2,
the background and related work Chapter, the detection of policy conflicts is a
challenging research problem that should be studied and incorporated in any production

of PBM systems.

' Reuse of Mapping: The Thesis describes a template-based approach for generating event

formats and rules from the policy specification. The actual template is management

system specific. The mapping consists of parsing the policy specification to its

4

148

constituent components, e.g., events, where a mapping is defined from the constituent
event to a template. The parsing is independent of the management system. For each
management system a class could be defined where each method is associated with a
policy element. This class is sub-classed for each management system. This approach

makes it easier to use this work for different management systems.

Communications Performance: The Thesis presented the design of management agents
that can make use of existing (or legacy) agents. This adds an extra level of indirection
which did result in additional overhead. However, recent work shows that the use of web
services can be made feasible {112]. Our future work includes studying the specifications
OASIS Management Using Web Services (MUWS) and DMTF Web Services for
Management (WSManagement). Future work would look at using the work from the

DMTF WBEM initiative.

Actions Need Release: As a result of event triggering within the policy, actions of the
policy rule will be enforced if some specified conditions are true. We consider the action
of the policy of Example 6.3 (see also Policy number 16 in Appendix B) that arose from
the deployment and enforcement of the policy load_Control. The action block any new
user logins used in this example policy is executed remotely by a Java agent that
continuously logs out any new user who tries to login to the host that triggered an
instance of the event wusers_cpu_process_High once, i.e., violated the policy
(users_cpu_process_High described before in our example policy load_Control). The
action block any new user logins will be executed and will continue its job of logging out

new users from the violated hosts without checking if wusers_cpu_process_High is

‘triggered again or not. Such action needs to be released at the “not” occurrence of

users_cpu_process_High. Although, PMagic has its vision on how to solve this challenge

(see Section 9.1); future research will address this issue.

149

Verify the Duplication in Logical-Expressions: One way to reduce the number of
primitive events is to determine if the logical-expressions in primitive events are
equivalent. The use of Reduced Ordered Binary Decision Diagram (ROBDD [133)), is a
canonical form for the same logical expressions if the BDD is built using the same order
of the labels of propositional formulas. The propositional formula corresponds to the
Logical Factor used in the PMagic grammar (see Appendix A). This technique could
also help to verify that the changes in the logical-expression that include attribute names
are properly adopted by the agent instance (see Section 8.3.2 for more discussion about

this problem).

Adding Security: The PBM system model that has been presented in the Thesis does not
explicitly address security, assuming an existing trust relationship between the manager
and the managed resources. In addition, management agents are free to monitor the states
of the managed resources. In many real-world environments, the authority to monitor,
determine and change the configuration of a machine may be restricted and/or may have
different security rights that assign to different groups or users. For the production of the

proposed model this issue needs to be addressed.

Evaluation for other Management Systems: Other areas of future work include
evaluating the entire process within the scope of a different management system, such as
CA Unicenter or HP Openview. Our inspection of these products suggests that our

approach would work well, but this is clearly an area for more study.

Larger Experimentation Environment: PMagic has only been evaluated within a limited
environment. Future work is needed to test the algorithms and their scalability in a larger

experimental environment.

150

References

1.

H. Abdu, H. Lutfiyya and M. Bauer, “A Framework for Determining Efficient
Management Configurations”, Journal of Computer Networks, Volume 46, Issue 4,
November 2005, pp 437-463

I. Adhicandra, C. Pattinson and E. Shaghouei, “Using Mobile Agents to Improve
Performance of Network Management Operations”, Postgraduate Networking Conference
(PGNET 2003), Liverpool, UK, 2003, Available Online,
http://www.cms.livjm.ac.uk/pgnet2003/submissions/Paper-12.pdf, Last accessed date June
15, 2009.

K. Al-Agha, M. Gerla and G. Pyjolle, “Adaptive QoS Management for IEEE 802.11 Future
Wireless ISPs”, Journal of Ad-Hoc Networking ACM Wireless Networks Journal, Kluwer,
Volume 10, Issue 4, July 2004, pp 413-421.

D. Agrawal, W. Lee and J. Lobo, “Policy-Based Management of Networked Computing
Systems”, IBM T. J. Watson Research Center, [EEE Communications Magazine, October
2005, pp 69-75.

D. Agrawal, C. Seraphin, W. Lee and J. Lobo, “Issues in Designing a Policy Language for
Distributed Management of IT Infrastructures”, In Proceedings of the 10" IEEE/IFIP
International Symposium on Integrated Network Management (IM 2007), Munich,
Germany, May 2007, pp 30-39.

D. Agrawal, J. Giles, W. Lee and J. Lobo, “Policy Ratification”, In Proceedings of the 6™
IEEE International Workshop on Policies for Distributed Systems and Networks
(Policy2005), Stockholm, Sweden, June 2005, pp 223-232.

T. Ahmed, A. Mehaoua and R. Boutaba, “Dynamic QoS Adaptation using COPS and
Network Monitoring Feedback”, In Proceedings of the IFIP/IEEE International Conference

on Management of Multimedia Networks and Services, Santa Barbara, CA, October 2002,
pp 250-262.

O. D. Alcéntara and D. McCluskey, “Towards Policy-Based Management QoS in
Multicommunicative Education”, Lecture Notes in Computer Science (LNCS), Springer,
Volume 2105, 2001, pp 237-248.

L. Aib, N. Agoulmine and G. Pujolle, “A Multi-Party Approach to SLA Modeling,
Application to WLANs”, In Proceedings of the 2™ IEEE Consumer Communications and
Networking Conference (CCNC’05), Las Vegas, USA, January 2005, pp 451-455.

http://www.cms.liyjm.ac.uk/pgnet2003/submissions/Paper-12.pdf

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

151

M. Baldi and G. P. Picco, “Evaluating the Tradeoffs of Mobile Code Design Paradigms in
Network Management Applications”, In Proceedings of the 20™ IEEE International
Conference on Software Engineering, Kyoto, Japan, April 1998, pp 146-155.

A. Bandara, E. Lupu, J. Moffett and A. Russo, “A Goal-Based Approach to Policy
Refinement”, In Proceedings of the 5™ IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy2004), New York, USA, April 2004, pp 223-
232.

A. Bandara, E. Lupu and A. Russo, “Using Event Calculus to Formalize Policy
Specification and Analysis”, In Proceedings of the 4™ IEEE Workshop on Policies for
Distributed Systems and Networks (Policy2003), Como, Italy, June 2003, pp 26-39.

C. Baral, M. Gelfond, and A. Provetti, “Representiing Actions: Laws, Observations and
Hypothesis”, Journal of Logic Programming, Volume 31, Issue 3, October 1997, pp 201-
244,

M. Bauer and H. Akhand, “Managing Quality of Service in Intemet Applications using
Differentiated Services”, Journal of Network and Systems Management, Volume 10, Issue
1, March 2002, pp 39-62.

M. Bearden, S. Garg, and W. Lee, “Integrating Goal Specification in Policy-Based
Management”, In Proceedings of the 2™ IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy2001), Bristol, UK, January 2001, pp 29-31.

BMC Software Common Event Format, Version 2.1.0,
http://documents.bmc.com/products/documents/37/30/53730/53730.pdf, Last accessed date
June 15, 2009.

J. Bradshaw and P. Beautement, A. Raj, M. Johnson, S. Kulkarni and N. Suri, “Chapter12:
Making agents acceptable to people”, In N. Zhong and J. Liu (Eds.) 2002, Handbook of
Intelligent Information Technology, Amsterdam, The Netherlands, Available Online,
http://www.ihmc.us/research/projects/K AoS/biit-jeff.pdf, Last accessed date June 15, 2009.

L. Brownston, R. Farrell and E. Kant, “Programming Expert Systems in OPS5 Reading”,
Addison-Wesley. 1995.

F. Bry, M. Eckert and P. Patranjan, “Reactivity on the Web: Paradigms and applications of
the language XChange”, Journal of Web Engineering, Volume 5, Issue 1, May 2006, pp 3-
24,

M. Brunner and J. Quittek, “MPLS Management Using Policies”, In Proceedings of the 7"
IFIP/IEEE International Symposium on Integrated Network Management (IM2001),
Seattle, WA, USA, May. 2001, pp 515-528.

http://documents.bmc.com/products/documents/37/30/53730/53730.pdf
http://www.ihmc.us/research/projects/KAoS/biit-jeff.pdf

21.

22,

23.

24,

25.

26.

27

28.

30.

31.

152

M. Brunner and A. Prieto, “SLS to DiffServ Configuration Mappings”, In Proceedings of
the 12" IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management (DSOM?2001), Nancy, France, October 2001, pp 15-17.

M. Burgess, “Cfengine: a system configuration engine”, Technical report number 1993-9,
University of Oslo, October 1993, Available Online,
http://www.iu.hio.no/~mark/papers/cfengine history.pdf, Last accessed date June 15, 2009.

CA-Unicenter, http://www.ca.com, Last accessed date June 15, 2009.

S. Calo and M. Sloman, “Policy-Based Management of Networks and Services”, Journal of
Network and Systems Management, Springer Netherlands, Volume 11, Issue 3, September
2003, pp 249-377.

Canonical Situation Data Format: The Common Base Event,
http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/CommonBaseEvent
_SituationData_V1.0.1.pdf, Last accessed date June 15, 2009.

N. Carver, “A Revisionist View of Blackboard Systems”, In Proceedings of the 8"
Midwest Artificial Intelligence and Cognitive Science Society Conference (MAICS '97),
Dayton, Ohio, USA, May 1997, pp 15-22.

H. Chaouchi and A. Munaretto, “Adaptive QoS Management for IEEE 802.11 Future
Wireless ISPs, Center for Telecommunications Research”, In Wireless Networks, Volume
10, Issue 4, July 2004, pp 413-421.

J. Chomicki and J. Lobo, “A Logic Programming Approach to Conflict Resolution in
Policy Management”, In Proceedings of the 7™ International Conference on Principles of
Knowledge Representation and Reasoning (KR2000), Breckenridge, Colorado, USA, April
2000, pp 121-132, |

J. Chomicki and J. Lobo, “Monitors for history-based policies”, In Proceedings of the 2™
IEEE Workshop on Policies for Distributed Systems and Networks (Policy2001), Bristol,
UK, January 2001, pp 57-72.

L. Choonhwa, A. Helal, N. Desai and V. Verma, B. Arslan, “Konark: A system and
protocols for device independent, peer-to-peer discovery and delivery of mobile services”,

In the Proceedings of the IEEE Transactions on Systems and Humans, Volume 33, Issue 6,
November 2003, pp 682-696.

QPM-Cisco’s QoS Policy Manager,
http://www.cisco.com/en/US/products/sw/cscowork/ps2064/index.html, Last accessed date
June 15, 2009.

http://www.iu.hio.no/~mark/papers/cfengine_historv.pdf
http://www.ca.com
http://www.eclipse.org/tptp/platform/documents/resources/cbel01spec/CommonBaseEvent
http://www.cisco.com/en/US/products/sw/cscowork/ps2064/index.html

32.

33.

34,

35.

36.

37.

38,

39.

40.

41.

42.

153

CiscoAssure, http://newsroom.cisco.com/dlls/prod_031098.html, Last accessed date June
15, 2009.

N. Damianou, “A Policy Framework for Management of Distributed Systems”, PhD
Thesis, Department of Computing, Imperial College, London, UK, March 2002.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “Ponder: A Language for Specifying
Security and Management Policies for Distributed Systems: The Language Specification
(version 2.2)”, Technical report number 2000-01, Deptartment of Computing, Imperial
College, London, UK, April 2000.

V. Danciu and B. Kempter, “From Processes to Policies -Concepts for Large Scale Policy
Generation”, In Proceedings of the 9" IEEE/IFIP Network Operations and Management
Symposium (NOMS2004), Seoul, Korea, April 2004, pp 17-30.

R. Darimont and A. Lamsweerde, “GRAIL/KAOS: An environment for goal-driven

requirements engineering”, In Proceedings of the 19™ IEEE International Conference on
Software Engineering (ICSE1997), Kyoto, Japan, April 1997, pp 612-613.

R. Darimont and A. Lamsweerde, “Formal Refinement Patterns for Goal-Driven
Requirements Elaboration”, In Proceedings of the 4" ACM Symposium on the Foundations
of Software Engineering (FSE4), November 1996, pp 179-190.

M. Debusmann and A. Keller, “SLA-driven Management of Distributed Systems using the
Common Information Model”, In Proceedings of the 8™ IEEE/IFIP International
Symposium on Integrated Network Management (IM2003), Colorado, USA, March 2003,
pp 563-576.

DMTF, CIM Core Model White Paper (CIM Version 2.4), 2002, www.dmtf.org, Last
accessed date June 15, 2009.

DMTF, CIM Policy Model White Paper (CIM Version 2.7). 2003, www.dmtf.org, Last
accessed date June 15, 2009.

N. Dulay, E. Lupu, M. Sloman and N. Damianou, “A Policy Deployment Model for the
Ponder Language”, In Proceedings of the 7" IEEE/IFIP International Symposium on
Integrated Network Management (IM2001), Seattle, WA, USA, May 2001, pp 529-543.

N. Dunlop, J. Indulska and K. Raymond, “Dynamic Policy Model for Large Evolving
Enterprises”, In Proceedings of the 5" IEEE Enterprise Distributed Object Computing
Conference, Seattle, WA, USA, September 2001, pp 193-197.

http://newsroom.cisco.com/dlls/prod_031098.html
http://www.dmtf.org
http://www.dmtf.org

[T

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

154

N. Dunlop, J. Indulska and K. Raymond, “Dynamic Conflict Detection in Policy-Based
Management Systems”, In Proceedings of the 6™ IEEE Enterprise Distributed Object
Computing Conference EDOC'02), Lausanne, Switzerland ,September 2002, pp 15-26.

N. Dunlop, J. Indulska and K. Raymond, “Methods for Conflict Resolution in Policy-Based
Management Systems”, In Proceedings of the 7" IEEE International Enterprise Distributed
Object Computing Conference, Brisbane, Australia, September 2003, pp 98-109.

D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, “The COPS (Common
Open Policy Service) Protocol”, Standards Track RFC 2748, IETF, Network Working
Group, January 2000.

T. Dursun, T. Uekae and P. Yolum., “A Generic Policy-Conflict Handling Model”,
Lecture Notes in Computer Science (LNCS), Springer, May 2005, Volume 3733, pp. 193-
204,

L. Fallon, D. Parker, M. Zach, M. Leitner and S. Collins, “Self-Forming Network
Management Topologies in the Madeira Management System”, Lecture Notes in
Computer Science (LNCS), Springer, July 2007, Volume 4543, pp 61-72.

M. Ferudin, W. Kasteleign and W. Krause, “Distributed Management with Mobile
Components”, In Proceedings of the 6™ IFIP/IEEE International Symposium on Integrated
Network Management (IM1999), Boston, MA, USA, May 1999, pp 515-528.

R. Helm, R. Johnson, and J. Vlissides, “Design Patterns- Elements of Reusable Object”,
Addison Wesley, November 1995, pp. 163-195.

A. Gilbert and C. Schaubach, “What is PMAC (Policy Management for Autonomic
Computing?)”, IBM alphworks presentation, 2005.

C. Goh, “A Generic Approach to Policy Description in System Management”, In
Proceedings of the 8" IFIP/IEEE International Workshop on Distributed Systems:

~ Operations and Management (DSOM1997), Sydney, Australia, October 1997, pp. 1-12.

G. Goldszmidt and Y. Yemini, “Delegated agents for network management” IEEE
Communications Magazine, Volume 36, Issue 3, March 1998, pp. 66-70.

Gorgias: Argumentation and Abduction, http://www?2.cs.ucy.ac.cy/~nkd/gorgias/, Last
accessed date June 15, 2009.

L. Z. Granville, R. S. Alves, M. J. Almeida and L. M. Tarouco, “Proposal, Implementation,
and Analysis of an Atomic Policy Deployment Protocol for QoS-Enabled Networks”,
Lecture Notes in Computer Science (LNCS), Springer, October 2006, Volume 4268, pp
132-143.

http://www2.cs.ucy.ac.cy/~nkd/gorgias/

Hpimaidigngi b

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.

68.

155

P. Gulutzan and T. Pelzer, “SQL Performance Tuning”, Addison Wesley, September 2002.

M. Hasan, “The Management of Data, Events, and Information Presentation for Network
Management”, PhD Thesis, Computer Science Departement, University of Waterloo, May
1996.

W.J. Heaven and A. Finkelstein, “A UML Profile to Support Requirements Engineering
with KAOS”, IEEE Software, Volume 151, Issue 1, September 2004, pp.10-27.

H. G. Hegering, S. Abeck and B. Neumair, “Integrated Management of Networked
Systems: Concepts, Architectures and Their Operational Application”, Morgan Kaufmann,
November 1999,

Hitachi JP1/Integrated Management, http://secunia.com/advisories/product/20778/, Last
accessed date June 15, 2009.

M. Hitchens and V. Varadharajan, “Tower: A Language for Role Based Access Control”,
In Proceedings of the 2™ IEEE Workshop on Policies for Distributed Systems and
Networks (Policy2001), Bristol, UK, January 2001, pp 88-106.

HP Openview, http://www.hp.com, Last accessed date June 15, 2009.

IBM, Autonomic Computing Policy Language, 2005,
http://www .research.ibm.com/people/k/kangwon/publications/policy_comm_mag.pdf,
Last accessed date June 15, 2009.

IBM DB2 UDB Version 8 Product ManualsAdministration Guide: Performance,
ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/db2d3e81.pdf, Last
accessed date June 15, 2009.

IBM, Policy Management for Autonomic Computing,
http://www.alphaworks.ibm.com/tech/pmac, Last accessed date June 15, 2009.

IETF, http://www.ietf.org, Last accessed date June 15, 2009.

IETF, RFC 2748, The COPS (Common Open Policy Service) Protocol,
http://www.ietf.org/rfc/rfc2748.txt, Last accessed date June 15, 2009.

IETF, RFC 2790, Host Resources Mib, http://www.ietf.org/rfc/rfc2790.txt, Last accessed
date June 15, 2009.

IETF, RFC 3084, COPS Usage for Policy Provisioning (COPS-PR),
http://www.ietf.org/rfc/rfc3084.txt, Last accessed date June 15, 2009.

http://secunia.com/advisories/product/20778/
http://www.hp.com
http://www.research.ibm.eom/people/k/kangwon/publications/policy_comm_mag.pdf
ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/db2d3e81
http://www.alphaworks.ibm.com/tech/pmac
http://www.ietf.org
http://www.ietf.org/rfc/rfc2748.txt
http://www.ietf.org/rfc/rfc2790.txt
http://www.ietf.org/rfc/rfc3084.txt

69.

70.
71.

72.

73.

74.
75.

76.

77.

78.

79.

80.

156

IETF, RFC 3198 - Terminology for Policy-Based Management, 2001,
http://www.ietf.org/rfc/rfc3198.txt, Last accessed date June 15, 2009.

International Organization for Standardization (ISO), http://www.iso.ch, Last accessed date
June 15, 2009.

G. Jakobson and M. D. Weissman, “Alarm Correlation”, IEEE Network, Volume 7, Issue
6, November 1993, pp 52-59.

G. Jakobson, J. Buford, and L. Lewis, “Towards an Architecture for Reasoning about
Complex Event-Based Dynamic Situations”, In Proceedings of the 3™ International
Workshop on Distributed Event Based Systems (DEBS 2004), Edinburgh, UK, May 2004,
pp 62-67.

P. Jackson, “Introduction to Expert Systems”, Addison-Wesley, 1999.

JESS- The Rule Engine for the Java Platform, http://www _jessrules.com/, Last accessed
date June 15, 2009.

T. Jonatan, “SLA Enforced by Policy”, A M.Sc. Thesis, Computer Science Department,
University of Twente, June 2001.

L. Kagal, “Rei: A Policy Language for the Me-Centric Project. Enterprise Systems Data
Management Laboratory”, Technical report number HPL-2002-270, HP Laboratories,
September 30, 2002, Available Online,
http://ebiquity.umbc.edu/_file_directory_/papers/57.pdf, Last accessed date June 15, 2009.

A. Kakas, A. Bandara, A. Russo, E. Lupu, M. Sloman and N. Dulay, “Reasoning
Techniques for Analysis and Refinement of Policies for Service Management”, Technical
report number 2005-7, Department of Computing, Imperial College London, UK, June
2005. ‘

Y. Kanada, “A Representation of Network Node QoS Control Policies Using Rule-Based
Building Blocks”, In Proceedings of the 8™ IEEE International Workshop on Quality of
Service (IWQOS2000), Pittsburgh, PA, USA, June 2000, pp 161-163.

A. Keller and H. Ludwig, “The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services”, IBM Research Division, INSM, Volume 11, Issue 1,
March 2003.

M. Kona and C. Z. XU, “An Integrated Mobile Agent Framework for Distributed Network
Management”, The International Journal of Paraliel, Emergent and Distributed Systems,
Volume 20, Issue 1, March 2005, pp 39-55.

http://www.ietf.org/rfc/rfc3198.txt
http://www.iso.ch
http://www.jessrules.com/
http://ebiquity.umbc.edu/_file_directory_/papers/57.pdf

81.

82.

83.

84,

85.

86.

87

88.

89.

90.

91.

157

D. Lamanna, J. Skene and W. Emmerich, “SLAng: A Language for Defining Service Level
Agreements”, In Proceedings of the 9™ IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS2003), San Juan, Puerto Rico, USA, May 2003, pp 100-106.

A. Liotta, G. Pavlou, and G. Knight, “Exploiting Agent Mobility for Large-Scale Network
Monitoring”, In IEEE Network, Volume 16, Issue 3, June 2002, pp 7-15.

A. Liotta, G. Pavlou, and G. Knight, “On the Efficiency and Scalability of Decentralized
Monitoring using Mobile Agents”, In Proceedings of the 6" On-Line HP Openview
University Association Plenary Workshop (Hp-OVUA’99), Bologna, Italy, June 1999.

A. Liotta, G. Pavlou, and G. Knight, “Decomposition Patterns for Mobile-Code-based
Management”, In Proceedings of the 5" On-Line HP Openview University Association
Plenary Workshop (Hp-OVUA’98), ENST de Bretagne, Rennes, France. April 1998.

A. Liotta, G. Pavlou, and G. Knight, “Modelling Network and System Monitoring over the
Internet with Mobile Agents”. In Proceedings of the 6™ IEEE/IFIP Network Operations and
Management Symposium (NOMS1998), Louisiana, USA, April 1998, pp 303-312.

J. Lobo, R. Bhatia and S. Naqvi, “A Policy Description Language”, In Proceedings of the
16™ IEEE National Conference on Artificial Intelligence (AAAI1999), Orlando, Florida,
USA, June 1999, pp 291-298.

Lucent Technologies RealNet Policy Rules,
http://www.lucent.com/wps/portal/Solutions/detail?LMSG_CABINET=Solution_Product_
Catalog& LMSG_CONTENT_FILE=Solutions/Solution_Detail_000035.xml, Last accessed
date June 15, 2009.

H. Lutfiyya, G. Molenkamp, M. Katchabaw and M.Bauer, “Issues in Managing Soft QoS
Requirements in Distributed Systems Using a Policy-Based Framework”, In Proceedings of
the 2™ IEEE Workshop on Policies for Distributed Systems and Networks (Policy2001),
Bristol, UK, January 2001, pp 185-201.

L. Lewis, “On the Integration of Service Level Management and Policy-Based Control”, In
Proceedings of the 1* IEEE Workshop on Policies for Distributed Systems and Networks
(Policy1999), Bristol, UK, November 1999.

L. Lewis, “Service Level Management for Enterprise Networks”, Artech House, October
1999.

E. Lupu, M. Sloman, “Conflict Analysis for management Policies”, In Proceedings of the
IFIP/IEEE International Symposium on Integrated Network Management (IM1997), San
Diego, California, USA, May 1997, pp 430-443.

http://www.lucent.com/wps/portal/Solutions/detail7LMSG_CAB

92.

93.

94.

95.

96.

97

98.

99.

100.

101.

158

L. Lymberopoulos, E. Lupu and M. Sloman, “Using CIM to Realize Policy Validation
within the Ponder Framework”, In Proceedings of the DMTF Global Management
Conference (DMTF2003), San Jose, CA, USA, June 2003, pp 16-19.

L. Lymberopoulos, E. Lupu and M. Sloman, “Ponder Policy Implementation and
Validation in a CIM and Differentiated Services Framework”, In Proceedings of the ot
IFIP/IEEE Network Operations and Management Symposium (NOMS2004), Seoul, Korea,
April 2004, pp 31-44.

L. Lymberopoulos, E. Lupu, and M. Sloman, “An Adaptive Policy Based Management
Framework for Differentiated Services Networks”, In Proceedings of the 3 IEEE
Workshop on Policies for Distributed Systems and Networks (Policy2002), Monterey, CA,
USA, June 2002, pp 147-158.

V. Machiraju, A. Sahai and A. Moorsel, “Web Services Management Network: An overlay
network for federated service management”, In Proceedings of the 8" IFIP/IEEE
International Symposium on Integrated Network Management (IM2003), Colorado, USA,
March 2003, pp 351-364.

S. Mandis, B. Seraphin and D. Verma, “Policy Transformation Techniques in Policy-based
Systems Management”, In Proceedings of the 5™ IEEE International Workshop on Policies
for Distributed Systems and Networks (Policy2004), New York, USA, April 2004, pp 13-
22.

M. Mansouri, “Monitoring of Distributed Systems”, PhD Thesis, Department of
Computing, Imperial College, London, UK, December 1995.

M. Mansouri and M. Sloman, “GEM: A generalized event monitoring language for
distributed systems”, Journal of Distributed Systems Engineering, Volume 4, Issue 2, July
1997, pp 96-108.

E. Marilly, O. Martinot, S. Betge-Brezetz and G. Delegue, “Requirements for service level
agreement management”, In Proceedings of the IEEE Workshop on IP Operations and
Management (IPOM2002), Dallas, Texas USA, October 2002, pp 57-62.

D. Marriott and M. Sloman, “Management Policy Service for Distributed Systems”, In
Proceedings of the 3™ International Workshop on Services in Distributed and Networked
Environments (SDNE1996), Macau, China, June 1996, pp 2-9.

M. Martinez,M. Brunner, J. Quittek, F. Straub, J. Schonwilder, S. Mertens and T. Klie,
“Using the Script MIB for Policy-based Configuration Management”, In Proceedings of
the 8 IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Genova, Italy, April 2002, pp 187-202.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

159

M. Masullo and S. Calo, “Policy Management: An architecture and approach”, In
Proceedings of the 1* IEEE International Workshop On System Management Techniques,
Processes, and Services (SMTPS1993) , Los Angeles, CA, USA, April 1993, pp 13-26.

S. Mazumdar and K. Swanson, “WEB Based Management CORBA/SNMP Gateway
Approach”, In Proceedings of the 7™ IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM1996), L’ Aquila, Italy, October 1996, pp
110-121.

S. Mazumdar, “Mapping of Common Management Information Service (CMIS) to
CORBA Object Services”, Technical report number BL0112540-96.09.30-02, Bell
Laboratories, September 1996.

Microsoft SMS and MOM, http://www.microsoft.com, Last accessed date June 15, 2009.

J. Moffett and M. Sloman, “Policy Hierarchies for Distributed Systems Management”, In
Proceedings of the IEEE Special Issue on Network Managemnet (JSAC), Volume 11, Issue
9, December 1994, pp 1404-1414.

J. Moffett and M. Sloman, “Policy Conflict Analysis in Distributed System Management”,
Journal of Organizational Computing, Volume 4, Issue 1, April 1994, pp 1-22.

G. Molenkamp, H. Lutfiyya, M. Katchabaw and M. Bauer, “Diagnosing Quality of Service
Faults in Distributed Applications”, In Proceedings of the 21* IEEE International
Conference on Performance, Computing, and Communications, Phoenix, AZ, USA, April
2002, pp 375-382.

M. C. Mont, A. Baldwin, and C. Goh, “POWER Prototype: Towards Integrated Policy-
Based Management”, In Proceedings of the 7" IEEE/IFIP Network Operations and
Management Symposium (NOMS2000), Honolulu, HI, USA, April 2000, pp 789-802.

B. Moore, E. Ellesson, J. Strassner and A. Westerinen, “Policy Core Information Model-
PCIM Version 1 Specification”, Standards Track RFC 3060, IETF, Network Working
Group, February 2001.

B. Moore, “Policy core information model extensions”, Internet Engineering Task Force
RFC 3460, January 2003.

G. Moura, G. Silvestrin, L. Gaspary, L. Zambenedetti, “On the Performance of Web
Services Management Standards — An Evaluation of MUWS and WS-Management for
Network Management”, In Proceedings of the 10" IEEE/IFIP International Symposium on
Integrated Network Management (IM2007), Munich, Germany, May 2007, pp 459-468.

http://www.microsoft.com

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

160

N. Muruganantha and H. Lutfiyya, “Policy Specification and Architecture for Quality of
Service Management”, In Proceedings of the 8" IFIP/IEEE International Symposium on
Integrated Network Management (IM2003), Colorado, USA, March 2003, pp 535-548.

NerveCenter - Network Management and Event Correlation System,
http://sun.systemnews.com/articles/58/1/marketplace/8418, Last accessed date June 15,
2009.

Nortel’s Optivity, http://products.nortel.com/go/product_index.jsp, Last accessed date June
15, 2009.

Joint XOpen/NM Forum Inter-Domain Management Taskforce, “Comparison of the OSI
Management, OMG and Internet Management Object Models”, OMG Document Number
94.3.7, March 1994,

A. N. Ouda, H. Lutfiyya, and M. Bauer, “Mapping Policies to Management Systems”, In
Proceedings of the 10™ IEEE Workshop on Policies for Distributed Systems and Networks
(Policy2009), London, UK, July 2009, pp under publishing.

A. N. Ouda, H. Lutfiyya, and M. Bauer, “Towards Self-Configuring Policy-Based
Management Systems”, In Proceedings of the 9™ IEEE Workshop on Policies for
Distributed Systems and Networks (Policy2008), Palisades, New York, USA, June 2008,
pp 215-218

A. N. Ouda, H. Lutfiyya, and M. Bauer, “Towards Automating the Adaptation of
Management Systems to Changes in Policies”, In Proceedings of the 10™ IEEE/IFIP
Network Operations and Management Symposium (NOMS2006), Vancouver, Canada,
April 2006, pp 1-4.

A.N. Ouda, H. Lutfiyya, and M. Bauer, “Understanding the Relationship Between High-
Level Specification of Policies and Management Processes”, In Proceedings of the 10™
On-Line of HP Openview University Association, Plenary Workshop (Hp-OVUA’03),
Geneva, Switzerland, July 2003.

Application Response Measurement (ARM),
http://regions.cmg.org/regions/cmgarmw/marcarm.html, Last accessed date June 15, 2009.

RFC-4498, http://www.rfc-archive.org/getrfc.php?rfc=4498, Last accessed date June 15,
2009.

P. D. Rosa, C. Melchiors and L.Granville, “Designing the Architecture of P2P-Based
Network Management Systems”, In Proceedings of the 11" IEEE Symposium on
Computers and Communications (ISCC2006), New York, USA, June 2006, pp 69-75.

http://sun.systemnews.eom/articles/58/l/marketplace/8418
http://products.nortel.com/go/product_index.jsp
http://regions.cmg.org/regions/cmgarmw/marcarm.html
http://www.rfc-archive.org/getrfc.php?rfc=4498

124.

125.

126.

127.

128.

129.

- 130.

131

132.

133.

134.

135.

161

B. Pagurek, Y. Wang and T. White, “Integration of Mobile Agents with SNMP: Why and
How”, In Proceedings of the 7™ IEEE/IFIP Network Operations and Management
Symposium (NOMS2000), Honolulu, HI, USA, April 2000, pp 609-622.

P. Pereiral, D. Sadok and P. Pinto, “Service Level Management of Differentiated Services
Networks with Active Policies”, In Proceedings of the 3 Conference on
Telecommunications (ConfTele2001), Figueira da Foz, Portugal, April 2001, pp 542-546.

G. Perrow, J. Hong, H. Lutfiyya and M. Bauer, “The Abstraction and Modelling of
Management Agents”, In Proceedings of the 5" IFIP/IEEE International Symposium on
Integrated Network Management(IM1995), Santa Barbara CA, USA, May 1995, pp 466-
478.

P. R. Pietzuch, B. Shand and J. Bacon, “A Framework for Event Composition in
Distributed Systems”, In Proceedings of the IEEE International Middleware Conference,
Rio de Janeiro, Brazil, June 2003, pp 62-82.

R. Pinheiro,A. Poylisher and H. Caldwell, “Mobile Agents for Aggregation of Network
Management Data”, In Proceedings of the 3" IEEE International Symposium on Mobile
Agents, Palm Springs, CA, USA, March 1999, pp 130-140.

A. Ramnath and L. Ratan, “The Lucent Technologies Softswitch - Realizing the promise
of convergence”, Bell Labs Technical Online Journal, August 2002, pp 174-195.

G. Rodosek, “A Generic Model for IT Services and Service Management”, In Proceedings
of the 8" IFIP/IEEE International Symposium on Integrated Network Management
(IM2003), Colorado, USA, March 2003, pp 171-184.

A. Sahai, V. Machiraju, M. Sayal, A. Moorsel and F. Casati, “Automated SLA Monitoring
for Web Services”, In Proceedings of the 13™ IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management (DSOM2002), Montreal, Canada,
October 2002, pp 28-41.

M. Sallé and C. Bartolini, “Management by Contract”, In Proceedings of the 9" IEEE/IFIP
Network Operations and Management Symposium (NOMS2004), Seoul, Korea, April
2004, pp 787-800.

K. Schneider, “Verification of reactive Systems — Formal Methods and Algorithms”,
Springer, 2004.

J. Schonwalder, “Method and System for Network Management with Backup Status
Gathering”, United States Patent 7305461, Issued on December 4, 2007,

J. Schonwalder and J. Quittek,. “Secure Internet Management By Delegation”, IEEE
Computer Networks, Volume 35, Issue 1, January 2001, pp 39-56.

136.

137.

138.

139.

140.
141,

142.

143,

144.

145.

146.

147.

162

S. Schwiderski, “Monitoring the Behaviour of Distributed Systems”,PhD Thesis, Computer
Laboratory, University of Cambridge, April 1996.

E. Al-Shaer and H. Hamed, “Firewall policy advisor for anomaly detection and rule
editing”, In Proceedings of the 8" IFIP/IEEE International Symposium on Integrated
Network Management (IM2003), Colorado, USA, March 2003, pp 17-30.

E. Al-Shaer and B. Zhang, “HiFi+: A Monitoring Virtual Machine for Autonomic
Distributed Management”, In Proceedings of the 15™ IFIP/IEEE Distributed Systems:
Operations and Management (DSOM2004), November 2004, pp 28-39.

M. Sloman, “Network and Distributed Systems Management”, Addison Wesley, 1994.

M. Sloman, “Policy Driven Management for Distributed Systems”, Journal of Network and
Systems Management, Volume 2, Issue 4, December 1994, pp 333-360.

M. Sloman, “Specifying Policy for Management of Distributed Systems”, In Proceedings
of the 4™ IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management (DSOM1993), Long Branch, USA, October 1993, pp. 52-67.

M. Sloman and E. Lupu, “Security and Management Policy Specification”, IEEE Network,
Volume 16, Issue 2, April 2002, pp. 10-19.

N. Smith, J.Leaney and T. Hunter, “A Policy-Driven Autonomous System for Evaluative
and Adaptive Management of Complex Services and Networks”, In Proceedings of the 12™
IEEE International Conference and Workshops on the Engineering of Computer-Based
Systems (ECBS’05), Greenbelt, Maryland, USA, April 2005, pp 389-397.

SNMP-Simple Network Management Protocol, http://www.fags.org/rfcs/rfc1157 html,
Last accessed date June 15, 2009. ‘

T. C. Son and J. Lobo, “Reasoning about Policies using Logic Programs”, In Proceedings
of the 1*' International Workshop on Answer Set Programming, Towards Efficient and
Scalable Knowledge Representation and Reasoning (ASP2001), Stanford, CA, USA,
March 2001, pp 210-216.

G. Stone, B. Lundy and G. Xie, “Network Policy Languages: A survey and a new
approach”, IEEE Network, Volume 15, Issue 1, February 2001, pp 10-21.

5. Strassner, “Policy-Based Network Management, Solutions for the Next Generation”,
Morgan-Kaufmann, August 2003.

http://www.faqs.org/rfcs/rfcl_157.html

148.

149.

150.
151.

152.

153.

154.

" 155.

156.

157.

158.

159.

160.

163

J. Strassner, “DEN-ng: Achieving Business-Driven, Network Management”, In
Proceedings of the 8" IEEE/IFIP Network Operations and Management Symposium
(NOMS2002), Genova, Italy, April 2002, pp 753-766.

R. Subramanyan, J. Miguel-Alonso, J. Fortes, “A Reconfigurable Monitoring System for
Large-Scale Network Computing”, Euro-Par 2003 Parallel Processing, 2003, pp. 98-108.

Sun Microsystems, http://java.com/en/, Last accessed date June 15, 2009.

Tivoli, http://www tivoli.com, Last accessed date June 15, 2009.

Y. Udupi, A. Sahai and S. Singhal, “A Classification-Based Approach to Policy
Refinement”, In Proceedings of the 10™ IEEE/IFIP International Symposium on Integrated
Network Management (IM2007), Munich, Germany, May 2007, pp 785-788.

D. Verma, M. Beigi and R. Jennings, “Policy Based SLA Management in Enterprise
Networks”, IBM Thomas] Watson Research Center, Yorktown Heights, NY USA, 2007,

‘Available Online,

http://www .research.ibm.com/people/d/dverma/papers/PolicyWkShop2001.pdf, Last
accessed date June 15, 2009.

D. Verma, “Policy-Based Networking: Architecture and Algorithms”, New Riders,
November 2000.

D. Verma, “Simplifying Network Administration Using Policy-Based Management”,
IEEE Network, Volume 16, Issue 2, April 2002, pp 20-26.

R. Wies, “Using a Classification of Management Policies for Policy Specification and
Policy Transformation”, In Proceedings of the 5" IFIP/IEEE International Symposium on
Integrated Network Management(IM1995), Santa Barbara CA, USA, May 1995, pp 44-56.

Winsock RSHD/NT, http://www .denicomp.com/rshdnt.htm, Last accessed date June 15,
2009.

WSDM Management white paper, May 2007,
http://www.ibm.com/developerworks/library/specification/ws-wsdmmgmt/, Last accessed
date June 15, 2009.

Understanding X.500 - The Directory, http://sec.cs.kent.ac.uk/x500book/, Last accessed
date June 15, 2009.

H. Xu, and D. Xiao, “Towards P2P-based Computer Network Management”, International
Journal of Future Generation Communication and Networking, Volume 2, Issue 1, March
2009, pp 25-32.

http://java.com/en/
http://www.tivoli.com
http://www.research.ibm.eom/people/d/dverma/papers/PolicyWkShop2001
http://www.denicomp.com/rshdnt.htm
http://www.ibm.com/developerworks/library/specification/ws-wsdmmgmt/
http://sec.cs.kent.ac.uk/x500book/

164

161. Y. Yemini, G. Goldzmidt, and S. Yemini, "Network management by delegation", In
l' Proceedings of the International Symposium on Integrated Network Management, April
1991, pp 95-107.

162. M. Zapf, K. Herrmann, K. Geihs “Decentralized SNMP Management Agents”, In
Proceedings of the 6th IFIP/IEEE International Symposium on Integrated Network
Management (IM1999), Boston, MA, USA, May 1999, pp. 623-635.

163. D. Zhu and A. S. Sethi., “SEL, a New Event Pattern Specification Language for Event
Correlation”, In Proceedings of the 10" IEEE International Conference on Computer
Communications and Networks (ICCCN2001), Phoenix, AZ, USA, September 2001, pp
586-589.

165

Appendix A: The Policy Grammar

<Policy> ::= <Policy-Identification> <Domain-Identification> <Event-Expression>{<Rule>} +
(“in” <Interval>)
<Rule> ::= <Logical-Expression>? {<Action>}+ (“in” <Interval>)?
<Action> := <Function-Call-Expression>

<Logical-Expression>

<Event-Expression> “E-AND” <Event-Expression> (“in” < Event-Time-Window>)?
<Event-Expression> “E-OR” <Event-Expression> (“in” < Event-Time-Window>)?
<Event-Expression> “E-SEQ” <Event-Expression> (“in” < Event-Time-Window>)?

<Event-Expression> ::=

<Logical-Expression> ::
<Logical-Term> ::

<Logical-Factor> ::

<Equality-Expression>

<Relational-Expression> ::
<Mathematical-Expression> ::
<Mathematical-Term> ::

<Mathematical-Factor> ::

<Simple-Reference> ::

<_Fuhction-Call-Expression> :
<Parameter-List> ::

<Interval> ::

<Valid-Time-Interval> ::

< Event-Time-Window> ::

“E-NOT” <Event-Expression> (“in” < Event-Time-Window>)?

|
|
I
| “E-COUNT” <Event-Expression> <Number> (“in” < Event-Time-Window>)?
|
I

“(** <Event-Expression> “Y”
<Logical-Term> {“||* <Logical-Term>}
<Logical-Factor> { “&&” <Logical-Factor> }

“” <Logical-Factor>
<Equality-Expression>
<Simple-Reference>
<Boolean-Constant>
<Date-Time-Instance>

“(” <Logical-Expression> “)”

// “TRUE” | “FALSE”
/' e.g.,*2006/10/10 10:10:10”

<Relational-Expression>{ (“==" | “!=") <Relational-Expression> }
<Mathematical-Expression> (“=="| “!=") <Mathematical-Expression>

<Mathematical-Expression>(“*<”|“<="]">"|*>=")<Mathematical-Expression>
<Mathematical-Term> { (“+” | “-”) <Mathematical-Term> }

<Mathematical-Factor> { (“*” | */*) <Mathematical-Factor> }

“ 9

<Mathematical-Factor>
<Simple-Reference>
<Simple-Constant>

“(” <Mathematical-Expression> **)”

<Attribute-Identification>
<Function-Call-Expression>

<Function-Identification> “(”* [<Parameter-List>] *)”
<Parameter-Expression> {“,” <Parameter-Expression>}

<Start-Date-Time> “to” <End-Date-Time> // e.g.,“2006/10/10 00:00:00
<Valid-Month-Number-List>?
<Valid-Day-Number-List>?
<Valid-Day-Name-List>?
{<Valid-Time-Interval>}
<From-Time> “to” <To-Time> // Time instance, e.g., 10:10:00am

Within n seconds from a specific <Point-of-Time>

/I n could be +ve or —ve. Specific left to determines by implementation algorithms

166
Appendix B: The Example Policies

Policy 1: cpuJUsage

if cpu load is over 90% for any ofthe UNIX machines in the Systems lab

then email administrator

Policy Elements Description
Statement cpu load is over 90%
Event Type Primitive

Logical Expression cpuload>90

Rule Condition Always true

Action Description email administrator

Attributes cpuload This represents the cpu load used

Domain This policy applies to any of the UNIX machines in the
Systems Lab. This will be denoted by Syslab UNIX Hosts

Possible Monitoring Agent(s) cpu_agent

Validation Achieved The deployment of this policy validates that a single

management agent, i.e., a monitoring agent, can enforce such
policy.

167

Policy 2: memoryJUsage

if memory usage is over 95% for any ofthe Systems lab machines

then email administrator

Policy Elements Description
Statement memory usage is over 95%
Event Type Primitive

Logical Expression memoryused >95

Rule Condition Always true

Action Description email administrator

Attributes memoryused This represents memory usage

Domain All Syslab Hosts

Possible Monitoring Agent(s) memory_agent

Validation Achieved » The deployment of this policy validates that a single

management agent can enforce such policy.

e The domain would include Unix hosts systems and
Windows systems.

* The deployment of this policy validates that our model can
be implemented and deployed in a heterogeneous
distributed systems.

Policy 3: sessionjControl

168

if a login session is idle for more than 20 minutesfor any o fthe UNIX System lab hosts

Policy Elements

Statement
Event Type

Logical Expression
Rule Condition

Action Description

Attributes sessionidlelong

processid

Domain
Possible Monitoring Agent(s)
Validation Achieved

then close the session

Description
a login session is idle for more than 20 minutes
Primitive

sessionidlelong>20

Always true

close the session

This represents time elapsed (idle) since the user's last
activity

Phis represents the process identifier

Syslab UNIX Hosts
session_agent

» The extracted attributes represent; one attribute
sessionidlelong which specified in the logical expression
and another attribute processid that extracted from
attributes defined in the action parameter.

 The deployment of this policy validates that the event
notification message should include attributes that is used
to carry actions.

 The action executable objects can be distributed with
agents. The action can also be called from remote managed
resources and executed locally in these managed resources.

169

Policy 4: root_Access_Monitor

if su root successfully used by user Nasser to any ofthe UNIX System lab machines

then email administrator

Policy Elements Description
Statement su root successfully used by user Nasser
Event Type Primitive

Logical Expression suroot.equals(“true”) && userid.equals(*“nasser™)

Rule Condition Always true
Action Description email administrator
Attributes userid This represents the user identifier that issued the su root
suroot This is the boolean attribute that indicates that a su root
occurred and suroot is true when successful or false on fail
of su root.
Domain Syslab UNIX Hosts
Possible Monitoring Agent(s) syslogTrapper_agent
Validation Achieved « The deployment of this policy validates that a single

management agent can enforce such policy.

» The management agent used shows that our model does
make use of the monitoring information that already
collected by other monitoring information services, i.e., the
UNIX syslog in this policy.

Policy 5: email_Monitor

170

if a user uses quarrel.syslab.csd.uwo.ca to send email

Policy Elements

Statement
Event Type

Logical Expression
Rule Condition

Action Description

Attributes fromuserid

sendemail

Domain
Possible Monitoring Agent(s)

Validation Achieved

then email administrator

Description
a user uses quarrel.syslab.csd.uwo.ca to send email
Primitive

sendemail.equals(“true”™)

Always true

email administrator

This is the user identifier of the user that sent the email

This is a boolean attribute that indicates an email sent,
sendemail is true when message accepted for delivery or false
otherwise

Host quarrel
syslogTrapper_agent

* The deployment of this policy validates the reuse of already
existing management agent instance that used in Policy
example 4.

» The domain consists of only one host.

* The reconfiguration of the agent instance would be hold only
to the instance that serves the host quarrel.

Policy 6: process Control

171

if a user is running a Sudoku program Sudoku from any ofthe UNIX System lab hosts

then stop this program and email administrator

Policy Elements

Statement
Event Type

Logical Expression
Rule Condition

Actions
Descriptions

Attributes processcommand

processid
userid

Domain

Possible Monitoring Agent(s)

Validation Achieved

Description

a user running a sudoku program (which is a game).

Primitive

processcommand.equals(“sudoku™)

Always true

1 Stop this program

2. email administrator
The command used
The process identification
The process own user identification
Syslab UNIX Hosts

process_agent

The deployment of this policy validates the enforcement of
more than one action within one rule, i.e., several actions to

enforce when a specific event triggered.

Policy 7: process Monitor

172

ifany process navigating Internet has a size over 10240Kfrom any ofthe UNIX System

and ifthe process owner is Nasser then kill this process

Policy Elements

Statement
Event Type

Logical Expression
Rulel Condition

Actions Descriptions
Rule2 Condition

Actions Descriptions

Attributes processcommand
processid
processsize
userid

Domain

Possible Monitoring Agent(s)

Validation Achieved

lab hosts

any process navigating Internet has a size over 10240K

Primitive

(processcommand.contains(“netscape") ||
processcommand.contains(“explorer”) ||
processcommand.contains("foxpror")) &&
(processsize >= 10240)

Always true

email administrator

userid.equals(*“Nasser”)

kill this process

The command used

then email administrator

Description

The process identification

The process size in KB

The process own user identification

Syslab UNIX Hosts

process_agent and processWithCommand_agent

« The deployment of this policy validates the reuse of
already existing management agent instance that used in

Policy example 6.

« fhe use of dynamic monitoring agent that communicates

with two montoring agents.

« A policy that has more than one policy rule.
* A bit complicated logical expression.

Policy 8: hd_monitor

173

if anyfile system is filled to over 89% for any ofthe UNIX System lab hosts

Policy Elements

Statement
Event Type

Logical Expression
Rule Condition

Action Description

Attributes hdname

hdsizecapacity

Domain
Possible Monitoring Agent(s)

Validation Achieved

then email administrator

Description
any file system is at 89% capacity
Primitive
hdcapacity >89
Always true

email administrator

The file system name

The percentage used from the file system

Syslab UNIX Hosts
hd_agent

The use of different management agent that can monitor more
other attributes of the system state.

174

Policy 9: db2_Control

if the DB2 database engine is down on wolfbiter

then start the DB2 database

Policy Elements Description
Statement The DB2 database engine is down
Event Type Primitive

Logical Expression db2state.equals(“stop™)

Rule Condition Always true

Action Description Start the DB2 database

Attributes db2state This represents the state of DB2. The state of DB2 is either
that it has started or is down.

Domain Host wolfbiter

Possible Monitoring Agent(s) db2_agent

Validation Achieved The use of different management agent that can monitor and

control software application.

175

Policy 10: db2_Monitor

if the number ofactive connections to DB2 database exceeds 5

then email administrator

Policy Elements Description

Statement the current application’s connections to DB2 database
Event exceeds 5

Type Primitive

Logical Expression db2activeconnections>5
Rule Condition Always true

Action Description email administrator

Attributes db2activeconnections An attribute indicates the number of active connections to

the DB2.
Domain Host wolfbiter
Possible Monitoring Agent(s) db2_agent
Validation Achieved The reuse of management agent that can monitor and

control software application.

176

Policy 11: system_Defaults

if the maximum number ofprocesses allowed in wolfbiter is less 1000

then email administrator

Policy Elements Description

Statement The maximumnumber of processes allowed is less 1000
Event Type Primitive

Logical Expression maxprocessesdefmed< 1000
Rule Condition Always true

Action Description email administrator

Attributes maxprocessesdefined The defined maximum number of processes that can
initiated in a system

Domain Host wolfbiter
Possible Monitoring Agent(s) handleSNMP_agent
Validation Achieved The use of management agent that can get the management

information via the SNMP information services.

177

Policy 12: printer_Monitor

if the spool queue has more than 30jobs to print

then email administrator

Policy Elements Description
Statement the spool queue has more than 30 jobs to Print
Event Type Primitive
Logical Expression spooljobstotal>30
Rule Condition Always true
Action Description email administrator
Attributes printemame The name of the printer
spooljobstotal The number ofjobs in the spool queue
Domain Syslab UNIX Hosts
Possible Monitoring Agent(s) printer_agent
Validation Achieved The use of different management agent that can monitor

more other attributes of the system state, i.e., printer in this
policy.

178

Policy 13: printerjControl

if the mandas printed failed

then email administrator

Policy Elements Description
Statement the mandas printer failed
Event Type Primitive

Logical Expression printerstat.equals(“failed”) &&
printername.equals(“mandas”)

Rule Condition Always true

Action Description email administrator

Attributes printemame The name of the printer
printerstate The printer status
Domain Syslab UNIX Hosts

Possible Monitoring Agent(s) printer_agent

Validation Achieved The reuse of management agent that can monitor and control
system state.

179

Policy 14: net_Monitor

if the number of packet errors is greater than 10 packets for wolfbiter

then email administrator

Policy Elements Description
Statement the number of packet errors greater than 10 packet
Event Type Primitive
Logical Expression inputpacketerror>10 | outputpacketerror>10
Rule Condition Always true
Action Description email administrator
Attributes inputpacketerror The number of the input error packets
outputpacketerror The number of the output error packets
ipaddress The IP address
Domain Host wolfbiter
Possible Monitoring Agent(s) net_agent
Validation Achieved The use of different management agent that can monitor

more other attributes of the network state.

180

Policy 15: performac_lIssue

if the total number o f processes on wolfbiter is greater than 100

then change the processes priority owned by the user Nasser one degree

Policy Elements Description
Statement the total number of processes on woltbiter is greater than
Event 100
Type Primitive
Logical Expression cpuprocesstotal> 100
Rule Condition userid.equals(“Nasser”)
Action Description change the processes priority
cpuprocesstotal The total number of initiating processes
Attributes
userid The process own user identification
processid The process identifier
pocesspriority The process priority
Domain Host woltbiter
Possible Monitoring Agent(s) cpu_agent and process_agent
Validation Achieved The use of different management agent that can monitor and

carry actions.

Policy 16: loadjControl

181

if the total number ofuser logins isgreater than 5for any ofthe UNIX System lab hosts

followed by the CPU load is greater than 90 and the total number ofprocesses running

isgreater than 35

then block any new user logins

Policy Elements

Event

Rule

Attributes

Domain

Statement

Type
Logical 1
Expression 2

Event Expression

Condition

Action Description

usersloginstotal
cpuload

cpuprocesstotal

Possible Monitoring Agent(s)

Validation Achieved

Description

the total number of user logins is greater than 5 followed by
the CPU load is greater than 90 and the total number of
processes running is greater than 35

Composite
usersloginstotal>5
cpuload>90 && cpuprocesstotal>35

Event characterized by logical expression in 1
E-SEQ

Event characterized by logical expression in 2
Always true

block any new user logins

The total number of current logins users sessions
The cpu load

The total number of initiating processes
Syslab hosts
session_agent and cpu_agent

« The configuration of the event format files. The format file
is understood by a management system event handler
TEC.

* The ability to automatically map a policy to TEC rules,
i.e., to a configuration of a management system to enforce
the policy.

» The creation and use of mapping templates.

Policy 17: tivoli_Monitor

182

if the Tivoli TEC event sender is down on wolfbiter

then

ifthe DB2 is down then start DB2

ifDB2 is started then start the TEC event sender

Policy Elements

Statement
Event Type

Logical Expression
Rule 1 Condition

Action Description
Rule 2 Condition

Action Description

teceventserverstat
Attributes

db2state
Domain

Possible Monitoring Agent(s)

Validation Achieved

Description
The Tivoli TEC event server is down on wolfbiter
Primitive
teceventserverstat.equalsO”top”)

db2state.equals(“stop™)
Start the DB2 database

db2state.equals(“start™)

Start the TEC event server

An attribute indicates that the state of the TEC event server. It
has the value of i.e., stop when the TEC event server is down
or not started and has the value start when the event server is
already started

An attribute indicates that the state of the data base engine. It
has the value of i.e., stop when the DB engine is down or not
started and has the value start when the DB engine is already
started or active

Host wolfbiter
tivoli_agent, db2_agent

* The deployment of this policy validates the reuse of already
existing management agent instance.

* The policy has more than one rule.

« Each rule includes a condition that need to be verified before
enforcing the action.

 The distribution of agents that monitor the events as well as
the agent that monitor the conditions.

Policy 18: access_Monitor

183

if the number offailed login attempts under a specific login name exceeds 3

for any ofthe UNIX System lab hosts

Policy Elements

Statement
Event
Pattern
Logical Expression
Event Expression
Rule Condition
Action Description
usersid
Attributes
userlogin
Domain

Possible Monitoring Agent(s)

Validation Achieved

then email administrator

Description

the number of failed login attempts under a specific login
name exceeds 3

Composite

userlogin.equals(*“fail™)

E-COUNT
Event characterized by logical expression
3 times

Always true

Email administrator

The user identification

An attribute indicates the state of the user login, i.e.,
‘success’ when the user successfully logins or “fail’
otherwise.

Syslab UNIX Hosts
syslogTrapper_agent

* The ability to automatically create a manager agent that
can detect the composite event .The manager agent
represents also the mapping of the policy.

» The use of other event operator, E-COUNT.

184

Appendix C: The Implemented Monitoring Agents

Agent

session agent

This agent monitors
information about open
user sessions.

Can Support Policies:
3and 17

cpu agent

This agent
monitorwsand collects
the information about
UNIX CPU usage
information.

Can Support Policies:

1, 15and 17

hd agent

This agent monitors
information about

UNIX filesystems.

Can Support Policies:
8

memory agent

I'his agent monitors
host memory .

(I'here is another agent,

memory agent WIN
for Windows)

Can Support Policies:
2

Attribute Name

userid
sessionstate
terminalid
processid
sessiontime

sessionidlelong

sessioncomments
cpuloaduser
cpuidle
cpuloadkernel
cpuiowait

cpuswap
cpuprocessloadaverages
cputotalprocesses
cpuprocesssleeping
cpuprocessrunning
hdname
hdmountedon
hdsize

hdsizeused
hdsizeavaliable
hdsizecapacity
memoryrealtotal
memoryused
memoryfree
memoryswapused

memoryswapfree

Attribute Description

User's login name

The capability of writing to the terminal
The name of the line found in /dev

The user's process id

The time since user's login

The time elapsed (idle) since the user's last
activity

The session comments

The percentage of CPU time in user mode
The percentage of CPU time in idle mode
The percentage of CPU time in kernel mode
The percentage of CPU time in iowait mode
The percentage of CPU time in swap mode
The average of CPU/processes,

The total number processes,

The total number sleeping processes,

The total number running processes,

The filesystem name

The filesystem mounted on drive

The filesystem total size

The filesystem size used in KB

The filesystem size available in KB

The filesystem size used percentage

The total real system memory

The total real system memory used.

The total real system memory free

The total swap memory used.

The total swap memory free.

Agent
process osent
This agent monitors

information about UNIX
processes .

Can Support Policies:
6, 7 and 15

process WithCommand asent

This agent monitors
information about UNIX
processes with detail
information about the

command used in the process .

Can Support Policies:
6, 7 and 15

Attribute Name

processid
userid

processthreadso

pocesspriority

processnice

processsize

pocessresident

processtime

processcpuusage

processstate

processcommandclass
processid
userid

processthreadso

processsize

terminalid

processstate

processcpupercentage

processmemprecentage

processstarttime

processcom mand

185

Attribute Description

The process task id
The process task user name

The number of execution threads in the
process

The process task priority

If it be run with a different system
scheduling priority, -ve nice values are
higher priority

The size of the task's code plus data
plus stack space, in KB

The total amount of physical memory
used by the task, in KB

Total CPU time the task has used since
it started

Total CPU percentage used

The state of the task is either sleep or
Cpu running.

The class of the used command
The process task id
The process task user name

The number of execution threads in the
process

The size of the task's code plus data
plus stack space, in KB

The terminal id from where this
process was issued.

The state of the task is either Sor R or
OorT.

The % percentage this process uses
from the CPU

The % percentage this process uses
from memory.

The time when this process was started

The full command that used in the
process

Agent

Db2 usent

This agent monitors DB2 .
Can Support Policies:

9, 10 and 16

svslosTrupper usent

This agent parses newly
added log lines to the syslog

file.

Can Support Policies:
4,5and 18

tivoli usent
This agent monitors Tivoli

Can Support Policies:
16

net usent

This agent monitors and
collects information about
the system network
communications.

Can Support Policies:
14

Attribute Name
db2state

db2activeconnections

suroot

userid
fromuserid

sendemail

userlogin

teceventserverstat

interfacename

ipaddress
netipaddress
inputpacket
inputpacketerror
outputpacket
outputpacketerror

186

Attribute Description

An attribute indicates the state of the DB,
i.e., stop when the DB2 down or not
started and start when the DB2 is already
active

An attribute indicates the number of
active connections to the DB2.

A Boolean attribute indicates a su root
occurred and suroot is true when
successful or false on fail of su root.

The user identification
The user identification that sent the email

A Boolean attribute indicates an email
sent and sendemail is true when
message accepted for delivery or false
otherwise

An attribute indicates the state of the
user’s login, i.e., ‘success’ when the user
successfully logins or “fail’ otherwise.

An attribute indicates the state of the
TEC event server, i.e., stop when it is
down or not started and start when the
event server is already started

Name of the interface used for IP traffic,
e.g. interface, host, network and default
routers.

The local IP address

The net/distinction IP address

The number of the input packets

The number of the input error packets
The number of the output packets

The number of the output error packets

Agent

printer usent

This agent monitors and
collects the information
about the printers.

Can Support Policies:
12 and 13

handleSNMP usent

This agent monitors and
collects the information
about the system by querying
the SNMP information
services to get the required
attributes, principally, the
Host-Resources-MIB.

Can Support Policies:
n

Attribute Name

printemame
spooljobstotal

printerstate

maxprocessesdefined

187

Attribute Description
The name of the printer
The number ofjobs in the spool queue

The printer status

The defined maximum number of
processes that can initiated in a system

188

Appendix D: Tivoli TEC Rule Templates

A Tivoli TEC Rule Template for Interval Checking

% This TEC rule is to validate the policy <Policy-Name-Variable' whi
% the event Event-ID-Variable and the interval Interval-Name-Variable
% Automatically generated by the PMagic Model

% First Rule is to validate the policy interval r~Interval-Name-Variabie'
rule: 'Policy-Name-Variable_Interval-Name-Variable«:
description: “Verify the policy interval Interval-Name-Variable',

% Following set represents events specified in policy "Policy-Name-Variable
event: _ev_at_interval_check of class within

[[Event-ID-Variable ,]*]
where [1 .,

reception_action:
action_Policy-Name-VariableJnterval-Name-Variablecheck:

exec_program (_ev_at_interval_check,” Program-Call-Method-Variable’

, "%s %s-*
, [®mnterval-Name-Variable', Result-File-Name-Variable']
YES®) ,
fopen(_fp
, IResult-File-Name-Variable Interval-Name-Variable”result. txt «

. N,
readIn(_fp, _result),
fclose(_fp) ,
(_result == true ,
commit_action
% exit this action and continue the reset of the rule
; % else
conunit_rule
% exit the whole rule at this point

)
)
)

% End of the rule: wPolicy-Name-Variablejnterval-Name-Variable'

189

A Tivoli TEC Rule Template for Rule Enforcement

%%9%0%%%%%%%%%%%%%%%%%%%%%%% %% % %% %% %% %% %% %% % %% %% % % %% % %% % % %% %% %% % %% %% %% % %% %
% This TEC rule is to enforce the specified rule if the event

% 'Event-ID-Variable' which considers the main event of the policy

% Policy

rule: "Policy-Name-Variable rRule_Enforcement”:

description: “Fire the rule () of the policy Policy-Name-Variable'
event: _ev_rule_main of _class 'Event-ID-Variable'
where [date_reception: _ev_date_reception ,
server_handle: _ev_server_handle ,
event_handle: _ev_event_handle ,
hostname: _ev_hostname ,
sub_source: _ev_sub_source ,
sub_source_port: _ev_sub_source_port] ,
reception_action:
action_Policy-Name-Variable_Event-ID-Variable_enforce_rule:
exec_program(_ev_rule_main , *Program-Call-Method-Variable'
,"%s %s %s %s %d %ld %d %d®
, [mPolicy-Name-Variable , Event-ID-Variable , _ev__.hostname
, _ev_sub_source , _ev_sub_source_port , _ev_date_reception
, _ev_server_handle , _ev_event_handle], °YES") ,
commit_rule

% End of the rule: ’PoilCy-Name-Vaf/a£>/e Rule Enforeement ™"

A Tivoli TEC Rule Template for Composite Event Detection of E_SEQ Operator

%Thls TEC rule is to generate the event EventID Varlable which
% occurs when the event 'Left Event-ID- Varlablel

rule: "Left-Event-ID-Variable_E_SEQ_Right-Event-ID-Variable-:
(

description: "Generate event Event-ID-Variable',

event: _evi_at ESEQ of_class 'Left-Event-ID-Variablc
where [date_reception: _left _date_reception,
server_handle: _left_server_handle,

event_handle: _left_event_handle] ,

% The E_SEQ rule generates the result as a new event Event-ID-Variable
% by using the exec_program that calls an external program.

reception_action:
action Left-Event-ID-Variable E SEQ Right-Event-ID-Variable:

first_instance(event: _ev2_at_ ESEQ
of_class "Right-Event-ID-Variable «
where [date_reception: _right_date_reception
greater_than _left_date_reception,
server_handle: _right_server_handle,
event_handle: _right_event_handle] ,

_evi_at_ESEQ - o - Max-Seconds-From-LHS-Event-Variable) ,
% The time window for searching the _ev2 at ESEQ is surrounding by the

% Max-Seconds-From-LHS-Event-Variable seconds after the _evi_at_ESEQ time

exec_program(_ev2_at_ESEQ, 'EventGeneration-Program-Variable

,'%s %s %s %s %0ld %d %d %s %ld %d %d %d”
, [Event-ID-Variable', “createESEQRule* , "e_seq”

, Left-Event-ID-Variable', _..eft_date_reception
, _left_server_handle , _left_event_handle

, mRight-Event-ID-Variable-, _right_date_reception
, _right_server_handle , _right_event_handle, 0], °YES") ,

commit_action % exit the action regarding the scanned events

)
% End of the rule: I1eft-Event-ID-Variable_E_SEQ_Right-Event-ID-Variable'

191

A Tivoli TEC Rule Template for Composite Event Detection of E_AND Operator

% This TEC rule is to generate the event "Event-ID-Variable' which occurs when
% both events Left-Event-ID-Variable' and event*Right-Event-ID-Variableloccurred.
%%%%%%%%%%%%%%%%%%% %% % %% %% %% %% % % %% % %% % %% % %% % %% % %% % % %% % %% % %% % %% % %% % %%

rule: “Left-Event-ID-Variable_e_and_A?/g/7f-Event-ID- Variable

(

description: “Generate event 'Event-ID-Variable',

event: _evi_at_EAND of ciass within [Left-Event-ID-Variablel
, Right-Event-ID-Variable]
where [date_reception: _evl_date_reception ,
server_handle: _evl_server_handle ,
event handle: _evl_event_handle] ,
% The E_AND rule generates the result as a new event “Event-ID-Variable'
% by using the exec_program that calls an external program.
reception_action:
action. Left-Event-ID-Variable_E_AND_Right-Event-ID-Variable
(bo_get_class_of(_evl_at EAND, _evl_name) ,

(_evl_name == Left-Event-ID-Variable', % if
_ev2_name = ’Right-Event-ID-Variable -
; _ev2_name = eLeft-Event-ID-Variable' % else
) .

Ffirst_instance(event: _ev2_at EAND of _class _ev2_name
where [date_reception: _ev2_date_reception ,
server_handle: _ev2_server_handle ,
event_handle: _ev2_event_handle] ,
_evl_at _EAND -
Min-Seconds-From-Event-Variable - Min-Seconds-From-Event-Variable),
% The time window for searching the _ev2_at EAND is surrounding by the
% Min-Seconds-From-Event-Variable seconds before _evl _at EAND time and by the

% Max-Seconds-From-Event-Variable seconds after evi_at EAND time

(_evl_name == Event-ID-Variable', % if
_left_date_reception _evl_date_reception
_left_server_handle _evl_server_handle ,
_left_event_handle _evl_event_handle ,
_right_date_reception _ev2_date_reception
_right_server_handle _ev2_server_handle ,
_right_event_handle _ev2_event_handle

% else
_left_date_reception _ev2 _date _reception
_left_server_handle _ev2_server_handle ,
_left_event_handle _ev2_event_handle ,
_right_date_reception _evl_date_reception
_right_server_handle _evl_server_handle ,
_right_event_handle evl event handle
)

exec_program(_ev2_at_EAND, e<EventGeneration-Program-Variable
s %s %s %s %ld %d %d %s %Ild %d %d %d %d®

[Event-ID-Variable', -createEANDRuiem , ee_and 1
Left-Event-ID-Variable , _left_date_reception

_left_server_handle , left_event _handle
'Right-Event-ID-Variable', _right_date_reception
_right_server_handle , _right_event_handle, O , 0], °YES")

commit_action % exit the action regarding the scanned events

).
% End of the rule: I1left-Event-ID-Variable E XND _Right-Event-ID-Variable'

A Tivoli TEC Rule Template for Composite Event Detection of E_OR Operator

%
%

This TEC rule is to generate the event "Event-ID-Variable' whic
occurs when either event 'Left-Event-ID-Variable'

rule: Left-Event-ID-Variable_E_OR_Right-Event-ID-Variable

(

%
%

)

%

description: "Generate event Event-ID-Variable',

event: _evl_at EOR of class within [Left-Event-ID-Variable

, Right-Event-ID-Variable]
where [date_reception: _evl_date reception ,
server_handle: _evl_server_handle ,
event_handle: _evl_event_handle] ,

The E_OR rule generates the result as a new event “Event-ID-Variable'
by using the exec_program that calls an external program.

reception_action:
actionLeft-Event-ID-Variable_E_OR_Right-Event-ID- Variable -

bo_get_class_of(_evl_at_EOR, _evl_name) ,

(_evl_name == F“Left Event-ID Variable® , % if
_left_date_reception = _evl_date_reception
_left_server_handle _evl_server_handle
_left_event_handle = _evl_event_handle
_right_date_reception = 0x0 ,
_right_server_handle =0
_right_event_handle =0
_count_number =0
; else
_left_date_reception =~ 0x0 ,
_left_server_handle =0
_left_event_handle =0

_right_date_reception
_right_server_handle
_right_event_handle
_count_number

) ., %end if

_evl_date_reception
_evl_server_handle
_evl_event_handle

0

exec_program(_evi_at_EOR, 'EventGeneration-Program-Variable

,"%s %s %s %s %ld %d %d %s %ld %d %d %d %d*

, [mEvent-ID-Variablel, -createEORRuie® , - _or”
, 'Left-Event-ID-Variable , _left_date_reception
, _left_server_handle , _left_event_handle

, "Right-Event-ID-Variable', _right_date_reception
, _right_server_handle , _right_event_handle, 0, 0], "YES”) ,

commit_action % exit the action regarding the scanned event

)

End of the rule: Left-Event-ID-Variable_e or_Right-Event-ID-Variable'

192

A Tivoli TEC Rule Template for Composite Event Detection of EjC O UNT Operator

% This TEC rule is to generate the event 'Event-ID-Variable' which occurs
% when the event °Right-Event-ID-Variable' is repeated tl-Variable times.
%9%%%%%%%%% %% %% %% %% %% %% %% %%%%%%% %% %% %% %% %% %% %% % %% % % %% %% %% %% %% %% %% %% %%

rule: ee_count Right-Event-ID-Variable_n-vVariable_check m:

(

description: “Check for repeated event Event-1D Variable*

event: _ev_at_ECOUNT of_class Right-Event-ID-Variablel
where [date_reception: _left_date_reception,
server_handle: _left_server_handle,

event_handle: _left_event_handle
[Event-Variable-To-Match,]*],

reception_action:
action_e_count_Right-Event-ID-Variable_n-Variable_add :

first_duplicate(_ev_at ECOUNT, event: _ev_d_at_ECOUNT
where [status: outside ["CLOSED"] ,

[Event-Variable-To-Match-Comparison,]*],
_ev_at_ECOUNT -

193

Min-Seconds-From-Event-Variable - Max-Seconds-From-Event-Variable),
% The time window for searching instances of _ev_at ECOUNT is surrounding by

% Min-Seconds-From-Event-Variable seconds before last instance _ev_at ECOUNT

% time and by Max-Seconds-From-Event-Variable seconds after this instance time

add_to_repeat_count(_ev_d_at ECOUNT ,1)
drop_received_event ,
commit_action

)
).
% End of the rule: "e_count Right-Event-ID-Variablen-Variable
% The E_COUNT rule generates the result as new event Event-ID-Variable'
% by using the exec_program that calls an external program.
rule: "E_comT_Right-Event-ID-Variable_n-Variable =

(

description: "Generate event Event-ID-Variable',

event: _ev_at_EcouNT of class Right-Event-ID-Variable
where [date_reception: _right_date_reception ,
server_handle: _right_server_handle ,
event_handle: _right_event_handle] ,
reception_action:
act ion_E_couNT_ Right-Event-ID-Variable_n-Variable_iimi t_heid:
(.count is n-Variable - 1 ,
first_duplicate(_ev_at ECOUNT, event: _ev_d_at_ ECOUNT
where [repeat_count: greater_or_equals .count]) ,
exec_program (_ev_d_at_ECOUNT, 'EventGeneration-Program-Variable
,"%s %s %s %s %ld %d %d %s %ld %d %d %d %d"
, [[Event-ID-Variablel, mcreateECouNTRule® , "e_count”
, Right-Event-ID-Variable', _right_date_reception
, _right_server_handle , _right_event_handle
, "none” , Ox0O , 0,0, n-Variable , 0], *yes® ,
drop_received_event ,
commit_action

)
)

% End of the rule: 1F couNT_ Right-Event-ID-Variable n-Variable

% This TEC rule is to generate the event “Event-ID-Variable'which occurs
% when the event “Right-Event-ID-Variable’

% is NOT occurred between From-Time-Variable and To-Time-Variable period
%%%%%%%%%%%%%%%%% % %% %% %% %% % %% %% %% % %% % %% % %% % %% % %% % % %% % %% % %% % %% % %% % %% %

rule: "ENOTRight-Event-ID-Variablecheck -
(

description: “Check for occurrence of event Event-ID-Variable',

event: _ev_any of_class _any class
where [date_reception: _right _date_reception ,
server_handle: _right_server_handle,
event_handle: _right_event_handle]

reception_action:
action_E_NOT_ Right-Event-ID-Variable®search:
(
pointertoatom(_fromtime, From-Time-Variable) ,
pointertoatom(_totime, To-Time-Variable) ,
_right_date_reception >= _totime ,
(first_instance(event: _ev_at _ENOT
of_class mRight-Event-ID-Variable’
where [date_reception: _ev2_date_reception
greater_or_equals _fromtime ,
date_reception: _ev2_date_reception
smaller_or_equals _totime]) ,
commit_action
;% else
% The E_NOT rule generates the result as a new event Event-ID-Variable'
% by using the exec_program that calls an external program.

exec_program (_ev_any, “EventGeneration-Program-Variable -

Y%s %s %s %s %Id %d %d %s %ld %d %d %d %d"

[Event-ID-Variablem, ecreateENOTRule”™ , ee_not =
*=,0,0,0

Right-Event-ID-Variable', _totime , _right_server_handle
_right_event_handle, 0, 0], °YES") ,

commit action

)
% End of the rule: I1E NOT Right-Event-ID-Variable'

194

195

Appendix E: Algorithms Used to Implement Event Operators

The concepts of the algorithms in this Appendix are built using the semantics of the event
operators that introduced in Chapter 3. More in composite event detections can be found in [56].

Algorithm ESEQ isthe algorithm used to implement the detection of an event that characterized by an
event expression uses E SEQ event operator. []

Algorithm E SEQ (E , ELHE Name , ER-E Name , Tnin, Tmax, CloseUsedInstance)
Input:
1) E isanevent that needs to detect an instance of.
2) ELWFE Name is the event name of the LHs of the event expression
3) EREName is the event name of the rHs of the event expression
4) Tminis the min time in seconds between the occurrence of events instances of EL-and ER-6

5) is the max time in seconds between the occurrence of events instances of EiHs and Ep
6) CloseUsedlInstance is a Boolean value to specify to close the events instances after process
or not

Output: 1) e is an instance E, which is the correlation of event instances ellF6E SEQ eR$

--EventMemory is a list of the event notification messages received, the list is assumed to be ordered by the

newest received messages.

1. EventslHs =SublList (EventMemory , ELHS Name)
- - SublList is a function that returns a sub-list from the EventMemory events list. In this case, the

returned sub-list events are of event type ELHS.

2. if(EventslHs ™~ 0)then

3. for each event instance elks e EventslHs do

4- Grhs =FindEventinstance (EventMemory, ERS Name , elHs-timeStamp , Trin , Tmax)
-- FindEventinstance is a function that returns a specific event instance from the
EventMemory list. In the above initialization of FindEventlnstance, the returned
event instance must be of type ERHSand satisfies the time constrains that delimited

by elHS.timeStamp, TmMn >Tmax =

3. if (eR ~ null) then

6. e = GenerateEventinstance(E ,e lHs,e RHs,eRHs.timeStamp)
-- GenerateEventinstace is a function that creates an event notification
message (event instance) of agiven type, which isin this case of type E.
The other parameters are to help constructing the message information,

i.e., the event instance attributes name/value pairs.

7. if (CloseUsedInstance) then
8. MarkClose(elH

9. MarkClose(eRH)

10. end if

11. return (€)

12. end if

13. end for

14. end if

13. return (null)

exit algorithm

196

Algorithm EAND is the algorithm used to implement the detection of an event that characterized by an

event expression uses E AND event operator.

Algorithm E AND (E, ELHS Name , ERHS Name , Tmin, Tmax, CloseUsedInstance)

Input:

1) E isan event that needs to detect an instance of.

2) ElHs_Name is the event name of the LHS of the event expression

3) ER$E Name is the event name of the RHS of the event expression

4) Tninis the min time in seconds between the occurrence of events instances of ELFsand ER-S

5) Tnais the max time in seconds between the occurrence of events instances of ELlFsand ER-S
6) CloseUsedInstance IS aBoolean value to specify to close the events instances after process

Output: 1) e is an instance E, which is the correlation of event instances ellF5E AND eR$

10.

11

iB-
14.

16.
17.
18.

EventslHs =SubList (EventMemory , ELHs_Name)
--SublList is a function that returns asub-list from the EventMemory events list. In this case, the
returned sub-list events are of event type ElLHs
if (Eventslks ™ 0)then
EventsR-5=SublList (EventMemory , ER-E Name)

if (EventsRiHs ~ 0) then
for each event instance elHbe EventslHs do
eRB=FindEventinstance (EventsRHS ERHE Name, elHstimeStamp, Tmin, Tmax)
-- FindEventinstance is a function that returns a specific event instance
from the EventsRHS sub-list. In the above initialization of FindEventinstance,
the returned event instance must satisfy the time constrains that delimited
by elHs*timeStamp , Tmin , «yax «
if (eRb ™ null)then
e=GenerateEventinstance(E elH5e R, nriax(eRHs-timeStamp,eRHs-timeStamp))
--GenerateEventinstace is a function that creates an event
notification message (event instance) of agiven type, which is in
this case of type E. The other parameters are to help constructing
the message information, i.e., the event instance attributes
name/value pairs.

if (CloseUsedInstance) then
MarkClose(elHd
MarkClose(eR+)

end if
return (€)
end if
end for
end if

end if

return (null)

exit algorithm

197

Algorithm E_OR is the algorithm used to implement the detection of an event that characterized by an
event expression uses E_OR event operator.

Algorithm E_OR (E , ELHS Name , ERHS Name ,Tmin, T raosellsedlnstance)

Input:
1) E isan event that needs to detect an instance of.
2) ELHE Name is the event name of the LHS of the event expression
3) ERE Name is the event name of the RHS of the event expression
4) Tninis the min time in seconds needed between the current time and either instances of ELHSor

Erhs
5) 1mex is the max time in seconds needed between the current time and either instances of EL-5or

Erhs
6) Closellsedinstance isa Boolean value to specify to close the events instances after process or not

Output: 1) e is an instance E, which is the correlation of event instances elks E OR eR$§

1. elHs=FindEventinstance (EventMemory, ELHS Name , , Tnin, Tmax)

2. if (elks ™ null) then

3. e=GenerateEventinstance(E , elH§ , elHs-timeStamp)
-- GenerateEventinstace is a function that creates an event notification message (event
instance) of agiven type, which is in this case of type E. The other parameters are to help
constructing the message information, i.e., the event instance attributes name/value pairs.

4. if (ClosellsedInstance) then

5 MarkClose(elH)

6 end if

7. return (e)

8. else

9 eRB=FindEventinstance (EventMemory , ER-5E Name ,, Tnin, Tmax)
10. if(eRB ™ null)then

11. e=GenerateEventinstance(E , eR 8>, eR$-timeStamp)
12. if (ClosellsedInstance) then

13. MarkClose(eRH)

14. end if

13. return (e)

16. end if

17. end if

18. return (null)

exit algorithm

198

Algorithm ENOT is the algorithm used to implement the detection of an event that characterized by an
event expression uses E NOT event operator.

Algorithm E NOT (E , ER-E Name , Tnin, Tmax, CloseUsedInstance)
Input:

1) E isanevent that needs to detect an instance of.

2) ER-B Name is the event name of the RHS of the event expression

3) Tninis the lower single point boundary timestamp to check events instances against

4 Trex is the upper single point boundary timestamp to check events instances against

5 CloseUsedinstance is a Boolean value to specify to close the events instances after process or not

Output: 1) eisan instance E, which is the correlation of event instances E NOT eR§

R

o

10.

11,

12.

14.
15.

16.
17.

18.
19.
20.

do Loop
if (CurrentSystemTime.TimeStamp >=Tminm) then
eRB=FindEventinstance (EventMemory, ER§ Name , , Tnin, Tmax)
if(e b = null && CurrentSystemTime.TimeStamp >=Tmex) then

e=GenerateEventinstance(E , eRB5 , T mex)
return (e)
else
if (CurrentSystemTime.TimeStamp <Tnex) then
wait (WaitPeriod)

--This isthe WaidPeriod time defines for the manage agent, that is the time
between periodic evaluations of the expression(s) represented in the
EventRepresentation component.

else

if (CloseUsedInstance) then
MarkClose(eR+)
end if
return (null)
end if
end if
else
wait (WaitPeriod)
end if
repeat Loop

exit algorithm

199

Algorithm ECOUNT is the algorithm used to implement the detection of an event that characterized by
an event expression uses E COUNT event operator.

Algorithm E COUNT (E, ER-E Name , Countnumber, Tnin, Tmax, CloseUsedInstance)

E is an event that needs to detect an instance of.

ER-5 Name is the event name of the RHS of the event expression

Tnin is the lower single point boundary timestamp to check events instances against

Tnax is the upper single point boundary timestamp to check events instances against
CloseUsedInstance is a Boolean value to specify to close the events instances after process or not

e is an instance E, which is the correlation of event instances E_COUNT eR-SCountrumer

if (CurrentSystemTime.TimeStamp >=Tmim) then

EventsR-B5=SublList (EventMemory , El6_Name , Tnmin, T max)

if (EventsRHS. Length >=Countnurber) then
e=GenerateEventinstance(k, eR5 , CurrentSystemTime.TimeStamp)
return ()

else

if (CurrentSystemTime.TimeStamp <TmeX then
wait (WaitPeriod)
else
if (CloseUsedInstance) then
for each event instance eRb e EventsR+ do
MarkClose(eRb
end for
end if
return (null)
end if
end if

wait (WaitPeriod)

Input:
1)
2)
3
4)
5)

Output: 1)

1. do Loop

2.

3

4

5

6.

7-

8.

(%

10.

11.

12.

13

H.

13-

15.

16.

17. else

18.

19- end if

20.

exit algorithm

repeat Loop

200

Appendix F: Experimental Times

The Best and Average times (for 3 tests) , Standard Deviations (S.D.) and Population
Standard deviation (P.S.D) for Section 8.2.1 experiment:

Policies cpu_Usage process_Monitor

Best Average S. D. P.S.D. Best Average S. D. P.S.D.
1 Host 25.48 26.52 0.99 0.81 29.30 30.42 1.01 0.82
2 Hosts 27.21 28.99 1.78 1.45 31.41 32.84 1.33 1.08
3 Hosts 28.43 30.22 1.79 1.46 34.43 35.64 1.06 0.86
5 Hosts 30.39 33.13 2.76 2.25 38.39 39.60 1.50 1.23
7 Hosts 32.16 33.25 1.25 1.02 43.35 45.09 1.78 1.45
10 Hosts 36.44 37.90 1.42 1.16 46.49 48.47 2.26 1.84

Deployment Time for Two Different Policies of Primitive Events

Time Group Task Best Average S. D. P.S.D.
PT Agent-Finding 1.681 1.711 0.027 0.022
Agent-Instance-Finding 0.205 0.218 0.013 0.011
Agent-Configuration 0.879 0.888 0.009 0.007
Agent-Startup 0.239 0.260 0.020 0.016
Mapping To Tivoli 0.122 0.135 0.012 0.010

PT 3.126 3.212
RT BAROC Import 6.010 6.083 0.064 0.052
Rule Set Import 5.201 5.275 0.068 0.056
Rule-Base Compile 6.122 6.439 0.354 0.289
Rule-Base Load 5.022 5.514 0.452 0.369

RT 22.355 23.311

oT 25.481 26.523

Deployment Time Breakdown for Deploying cpu_Usage policy (First Table Time 25.48)

Time Group Task Best Average S. D. P.S.D.
PT Agent-Finding 2.412 2.463 0.047 0.039
Agent-Instance-Finding 0.293 0.302 0.010 0.008
Agent-Configuration 2.747 2.772 0.027 0.022
Agent-Startup 1.090 1.222 0.130 0.110
Mapping To Tivoli 135 .146 0.010 0.008

PT 6.677 6.905
RT BAROC Import 5.771 5.836 0.070 0.057
Rule Set Import 5.233 5.330 0.087 0.071
Rule-Base Compile 6.431 6.708 0. 283 0.231
Rule-Base Load 5.192 5.636 0.458 0.374

RT 22.627 23.510

oT 29.304 30.415

Deployment Time Breakdown for Deploying process_Monitor policy (First Table Time 29.30)

201

Section 8.2.2 experiment times have almost the same averages and standard deviation ratios
as those for experiment times of Section 8.2.1 experiment. Thus, there is no need to outline a
detail times tables.

Sections 8.3.1 and 8.3.2 experiments times are all very close (i.e., a maximum of 0.35 second
in difference) to the best time, that shown in Table 8.8: The Reuse of Existing Agents’
Instances in Policy Deployment) and Table 8.9: The Re-Enforcement of Three Different
Policies using PMagic). Therefore we found that no need to go further in analyzing these
experiments times.

The Best and Average times (Avg.) (for 2 tests) and Population Standard deviation (P.S.D)
for Section 8.2.3 experiment:

session_Control Policy
Time Between the first Detected Event and Last Action Taken (in Seconds)

1 Event 2 Events 5 Events 10 Events
Best Avg. P.S.D. Best Avg. P.S.D. Best Avg. P.SD. Best Avg. P.S.D.
1 Host 1219 1276 0.57 31.03 3227 124 6933 7317 385 104.31 123.11 18.79
2 Hosts 1442 14.93 051 4423 4543 120 8229 8671 442 12533 14233 17.00
5 Hosts 17.11 1795 0.84 63.17 64.64 1.47 101.07 111.13 10.06 153.29 174.41 21.12
10 Hosts 20.26 21.13 0.87 8211 89.57 7.45 12229 139.15 16.86 189.41 219.40 29.99

The Enforcement of Policy Rule by using Tivoli

The Best and Average times (Avg.) (for 2 tests) and Population Standard deviation (P.S.D)
for Section 8.3.3 experiment:

session_Control Policy
Time Between the first Detected Event and Last Action Taken (in Seconds)

1 Event 2 Events 5 Events 10 Events
Best Avg. P.S.D. Best Avg. P.S.D. Best Avg. P.SD. Best Avg. P.S.D.
1 Host 0.028 0.032 0.004 0.097 0.099 0.002 0.621 063 0.009 1603 1707 0.104
2 Hosts 0.035 0.036 0.001 0.120 0.129 0.009 0.887 0.925 0.038 1.917 2172 0.255
5 Hosts 0.041 0.047 0.006 0.174 0.186 0.015 1011 1.400 0.389 2.389 2752 0.363
10 Hosts 0.066 0.074 0.008 0.251 0.281 0.030 1.633 2.094 0.461 2907 3.342 0.438

The Enforcement of Policy Rule by using Management Agents

	TOWARDS AUTOMATING POLICY- BASED MANAGEMENT SYSTEMS
	Recommended Citation

	tmp.1685126792.pdf.h0SbS

