
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2009

TOWARDS AUTOMATING POLICY- BASED MANAGEMENT TOWARDS AUTOMATING POLICY- BASED MANAGEMENT

SYSTEMS SYSTEMS

Abdelnasser Hassan Ahmed Ouda
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Ouda, Abdelnasser Hassan Ahmed, "TOWARDS AUTOMATING POLICY- BASED MANAGEMENT SYSTEMS"
(2009). Digitized Theses. 4022.
https://ir.lib.uwo.ca/digitizedtheses/4022

This Dissertation is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4022&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4022?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4022&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

TOWARDS AUTOMATING POLICY-

BASED MANAGEMENT SYSTEMS

(Spine title: Towards Automating Policy-Based
Management Systems)

(Thesis format: Monograph)

by

Abdelnasser Hassan Ahmed Ouda

Graduate Program
in

Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

©Abdelnasser Hassan Ahmed Ouda 2009

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Joint-Supervisor

Dr. Hanan Lutfiyya

Joint-Supervisor

Dr. M ichael Bauer

Supervisory Committee

Examiners

Dr. Michael Katchabaw

Dr. Roberto Solis-Oba

Dr. Nicole Haggarty

Dr. Jerome Rolia

The thesis by

Abdelnasser Hassan Ahmed Ouda

entitled:

Towards Automating Policy-Based Management Systems

is accepted in partial fulfillment o f the
requirements for the degree o f

Doctor o f Philosophy

Date_____________________________ __________________________________ _
Chair o f the Thesis Examination Board

u

Abstract

The goal of distributed systems management is to provide reliable, secure and efficient

utilization o f the network, processors and devices that comprise those systems. The management

system makes use of management agents to collect events and data from managed objects while

policies provide information on how to modify the behaviour of a managed system. Systems as

well as policies governing the behaviour of the system and its constituents can change

dynamically. The aim of this work is to provide the services and algorithms needed to

automatically identify and deploy management entities and be able to respond automatically to

both changes to the system itself as well as to changes in the way the system is to be managed,

i.e., changes to the set of management policies or sets of management agents.

One significant challenge in the use of policy-based management systems is finding efficient

mechanisms to address and simplify the gap between expressing and specifying policies and an

actual configuration of a management system that realizes and makes use of policies. Little work

has been done to define how the monitoring operations are to be configured and updated

according to the policies. This Thesis proposes a general architecture for a policy-based

management system for distributed systems which allows for expressing and automating the

deployment o f a wide range of management policies. The proposed solution is based on the

matching between the management operations that are carried out by the management agents and

the policies. The matching process relies on the attributes that the agents can monitor and the

extracted attributes from the components of the policies. One major contribution of this Thesis is

to build the policy model and services on existing management services found in commercial

management systems. The work of this Thesis also focuses in finding87 strategies for selecting

and configuring agents to be used to keep the time of a policy deployment low.

The Thesis introduces the Policy-Management Agent Integrated Console (PMagic)

prototype. The PMagic prototype has been implemented to provide a practical validation of the

policy based management system model proposed. The approach, architecture and prototype have

demonstrated that it is possible to create a more autonomic management system, particularly one

that can instantiate agents to react to changes in sets of policies.

Keywords: Distributed Systems Management, Management Agents, Policy-Based Management,

Management Configuration, Events Monitoring.

in

Epigraph

Dedication

ffleä stis?

C ^ O d á O S t ,

Acknowledgments

I am most grateful to my supervisors, Prof. Hanan Lutfiyya and Prof. Michael Bauer. They

were always ready with support, advice, encouragement and valuable feedback.

Thanks to David Wiseman, the Computer Science Department Systems Administrator, for

his great help specially the installation and trouble shooting of the SNMP work. Thanks to all of

the systems group members; Dave Martin, Scott Feeney, Bruce Richards and Jim Thorsley for

their timely support. Thanks should also go to the administrative staff; Janice Wiersma, Cheryl

McGrath, Angie Kramp and Dianne McFadzean for their friendly treatment, energetic and hard

work.

I would also like to express my appreciation to the examination board for their willingness to

examine my work in this Thesis; Dr. Michael Katchabaw and Dr. Roberto Solis-Oba of the

Computer Science department, University of Western Ontario, Dr. Nicole Haggarty of Ivey

School of Business, University of Western Ontario and Dr. Jerome Rolia of Hewlett Packard

Laboratories (HP-Labs).

Last but in many ways most, I must also express a great thanks to my wife, Nesrin Ouda and

my sons Hassan, Ahmed, Ibrahim and Majd Ouda. They have always stood by my side during the

good times and the bad. I owe them everything. This acknowledgment would not be completed

without a word of appreciation to my parents for their continuous encouragement throughout my

studies.

vi

Table of Contents

Certificate of Examination.. ii

Abstract.. iii

Epigraph.. iv

Dedication... v

Acknowledgments.. vi

Table of Contents... vii

List o f Tables... xi

List of Figures...xii

Chapter 1 - Introduction...1

1.1 Policy-Based Management Systems..1

1.2 Problem Statement...4

1.3 Thesis Statement.............................. 6

1.4 Thesis Contributions..6

1.5 Thesis Outline..7

Chapter 2 - Background and Related Work..8

2.1 Management Systems..8

2.2 Policy Management Frameworks..10

2.2.1 Policy Description Language..12

2.2.2 Ponder... 14

2.2.3 Policy Framework Definition Language...16

2.2.4 Automatic Computing Policy Language...19

2.3 Policy Refinements and SLAs.. 23

2.5 Policy Conflicts.. 25

2.6 Commercial Tools.. 28

2.8 Summary... 29

Chapter 3 - A Policy Information Model... 30

3.1 Events... 30

3.1.1 Event Definition............................. .. 31

3.1.2 Event Attributes... 32

3.1.3 Event Operators... 32

vii

3.1.4 Event Semantics.. 33

3.2 Policy Information Model... 36

3.3 Chapter Summary... 41

Chapter 4 - A Model for Policy Based Management..42

4.1 Proposed PBM System Architecture.. 42

4.2 A Roadmap for Automating PBM Systems.. 47

Chapter 5 - Management Agents.. 48

5.1 Introduction.. 48

5.2 Management Agent Information Model... 50

5.3 Management Agent Design.. 54

5.4 Management Agent Components... 56

5.4.1 An Event-Representation Component.. 56

5.4.2 A Policy-Representation Component... 57

5.4.3 A Message-Representation Component... 61

5.4.4 An Action-Representation Component.. 62

5.5 A Management Agent Interface...62

5.6 Types of Management Agents...63
5.6.1 Monitoring Agents..63

5.6.2 Dynamic Management Agents... 65
5.6.3 Manager Agents..66

5.6.4 A Manager-Agent Procedure for Handling Events.. 67

5.6.5 Relationship between the Different Types of Agents.. 69

5.7 Agent Matcher...70

5.7.1 Finding Agents..70

5.7.2 Finding Agents Instances... 74

5.7.3 Configuration of Management Agents... 74

5.8 Discussion..77

5.9 Chapter Summary... 79

Chapter 6 - Mapping Mechanism...80

6.1 Introduction.. 80

6.2 Event Format Mapping... 81
6.2.1 Event Format Mapping for Primitive Events... 81

6.2.2 Event Format Mapping for Composite Events... 84

6.3 Mapping Policies.. 90

viii

6.3.1 Mapping Policies to a Rule-Engine Platform..91

6.3.2 Constructing Composite Event Detection Rules...95

6.3.3 Mapping a Policy to Management Agents..101

6.4 Discussion... 102

6.5 Chapter Summary... 103

Chapter 7 - Implementation and the Prototype...104

7.1 PMagic Policy Specification and Agent Definitions.. 106

7.2 PMagic Agent Matcher..114

7.3 PMagic Mapping Mechanisms..115

7.4 Distribution Mechanisms Used..115

7.5 PMagic Managers.. 124

7.6 PMagic Event Common Attributes..125

7.7 Chapter Summary..125

Chapter 8 - Evaluation...126

8.1 Experiments Environment...126

8.2 Basic Experiments Using an Existing Management System...127

8.2.1 Deployment Policies of Primitive Events as Domain Size Increases.............................. 128

8.2.2 Deployment of Policies of Composite Events as Domain Size Increases.......................130

8.2.3 Enforcement of Policy Rules.. 132

8.2.4 Discussion of Experiment Results..133

8.3 Alternative Strategies for Optimization.. 133

8.3.1 Experiments on Agent Reuse..134

8.3.2 Experiments on Policy Re-Enforcement.. 135

8.3.3 Use of Management Agents as Managers............................ .. 136

8.3.4 Discussion of Alternative Strategies.. 137

8.4 Final Discussion and Conclusions Drawn.. 138

8.4.1 Mapping Policies to Tivoli..138

8.4.2 Identifying Management Agents to Support Policies.. 138

8.4.3 Updating Management Agents to Adopt Policy Changes...140

8.4.4 Management Agent Instances Reuse... 140

8.4.5 Manager Agents Usage.. 140

8.4.6 Limitations of Experimental Environment... 141

8.5 Chapter Summary.. 141

IX

Chapter 9 - Conclusions and Future Work.. 142
9.1 Conclusions.. 142

9.2 Future Work.. 146

References.. 150

Appendix A: The Policy Grammar... 165

Appendix B : The Example Policies... 166

Appendix C: The Implemented Monitoring Agents...184

Appendix D: Tivoli TEC Rule Templates..188

Appendix E: Algorithms Used to Implement Event Operators..195

Appendix F: Experimental Times... 200

VITA..202

x

List of Tables

Table 5.1: Example of the Values the Agent Class Attributes may Hold............................... 52

Table 7.1: PMagic Event Common Attributes...125

Table 8.1: Deployment Time for Two Different Policies of Primitive Events..................... 128

Table 8.2: Deployment Time Breakdown for Deploying cpu_Usage policy....................... 129

Table 8.3: Deployment Time Breakdown for Deploying process_Monitor policy.............. 129

Table 8.4: Deployment Time for Two Different Policies of Composite Events.................. 130

Table 8.5: Deployment Time Breakdown for access_Monitor policy................................... 131

Table 8.6: Deployment Time Breakdown for load_Control policy..131

Table 8.7: The Enforcement of Policy Rule by using Tivoli.. 132

Table 8.8: The Reuse of Existing Agents’ Instances in Policy Deployment.........................134

Table 8.9: The Re-Enforcement of Three Different Policies using PMagic.........................135

Table 8.10: The Enforcement of Policy Rule by using Management Agents.......................... 137

. •>

9

xi

Figure 2.2: Policies Written in PDL First Construct.. 13

Figure 2.3 : Policies Written in PDL Second Construct..13

Figure 2.4: Ponder Obligation Example Policy.. 15

Figure 2.5: Ponder Policy Type Example Policy... 15

Figure 2.6: COPS Architecture...18

Figure 2.7: ACPL Example Policy... 20

Figure 2.8: PMAC Architecture... 21

Figure 2.9: PMAC Autonomic Manager.. 22

Figure 2.10: Relationship between policy refinement techniques..24

Figure 2.11: Classification of Policy Conflicts.. 26

Figure 3.1: The Semantics of the Event Operators Over a Time Window...............................35

Figure 3.2: Policy Information Model.. 37

Figure 3.3: Domain Information Model... 38

Figure 3.4: EventExpression Information Model... 38

Figure 4.1: Proposed PBM System Architecture... 43

Figure 5.1: Agent Information Model...51

Figure 5.2: Management Services Interfaces... 55

Figure 5.3: A Management Agent Structure.. 56

Figure 5.4: A Flow Diagram Illustrating a Manager-Agent Procedure for Handling Events 68

Figure 5.5: A Communication between Management Agents... 70

Figure 5.6: An Agent Finding Algorithm... 71

Figure 6.1 : Tivoli TEC BAROC Template File for Primitive Events.................................... 83

Figure 6.2: Tivoli TEC BAROC File for the sessionjdle Primitive Event........................... 83

Figure 6.3: Tivoli TEC BAROC Template File for Composite Events................................. 85

List of Figures
Figure 2.1: Common Management Architecture..11

xii

Figure 6.5: An Example of Composite Event Tree... 88

Figure 6.6: Tivoli TEC BAROC File for the users_Limit Primitive Event............................89

Figure 6.7: Tivoli TEC BAROC File for the cpu_process_High Primitive Event................. 89

Figure 6.8: Tivoli TEC BAROC File for the users_cpu__process_High Composite Event.... 90

Figure 6.9: A MapEventDetectionsRules Algorithm..96

Figure 6.10: Tivoli TEC Rule for Checking the Policy Interval normal_working_hours.......99

Figure 6.11: Tivoli TEC Rule for Detecting the Composite Event users_cpu_process_High 100

Figure 6.12: Tivoli TEC Rule for Enforcing the Policy loadControl................................... 101

Figure 6.13: The Processes of Mapping a Policy to an Event-Driven Rule-Based Systems.. 102

Figure 7.1: Policy-Management Agent Integrated Console Implementation Structure.......105

Figure 7.2: Policy-Management Agent Integrated Console-PMagic Main Form................. 106

Figure 7.3: PMagic Menu Structure...108

Figure 7.4: A Policy Definition Form..109

Figure 7.5: Reusable Building Blocks for Policies..110

Figure 7.6: A Policy Tree... I l l

Figure 7.7: Mapping between Actions Parameters and Policy Extracted Attributes............ 112

Figure 7.8: A Rule Definition Form... 113

Figure 7.9: The Condition Definition Form... 117

Figure 7.10: The Mathematical Expression Form..118

Figure 7.11: The Event Definition Form.. 119

Figure 7.12: The Interval Definition Form... 120

Figure 7.13: The Action Definition Form.. 121

Figure 7.14: The Agent Definition Form... 122

Figure 7.15: The Management System Attributes Definition Form... 123

Figure 6.4: A MapEvent Algorithm.. 86

XIII

Chapter 1

Introduction

1.1 Policy-Based Management Systems

Enterprise computing systems consist of thousands of heterogeneous computers and devices

connected through communication networks to allow devices, services and applications to

communicate with each other. Management entails the operation, administration and maintenance

of a computing system so that the system behaves as expected with respect to availability,

performance and security. Systems management includes monitoring of the run-time behaviour of

a system, analysis of monitored data, and determining actions to modify the behaviour of the

system [140].

A management system may make use of policies. Policies are one source of information

which influences the behaviour of objects within a system [100]. The use of policies in

management is called Policy-Based Management (PBM) [15,33,34,100,106,141,156]. Using

policies facilitates the management system to be adaptable to changes in management strategies

2

without requiring the recoding of the management system. A policy typically consists of one

event and one or more rules. These policies can be represented by high-level policy languages.

The definition of policy used in this Thesis is presented in Definition 1.1.

Definition 1.1: A policy is an event-triggered, a set of condition-actions rules [34] i.e., an event

triggers the evaluation of a set of rules of the form if condition then actions.

This form of policy is often refereed as an Event Condition Action (ECA) rule [13]. The event is

referred to as the policy event, while the set of the* condition-actions rules is referred to as a policy

rule.

Definition 1.2: An event is defined as a message of notification of a change in system state that is

of interest.

The condition in the rule is used to determine the actions to be executed. It is possible for

there not to be a condition which indicates that for the event the actions specified in the policy are

always executed. It is possible for an event to have several rules associated with it. An example

policy is the following:

Example 1.1: if a login session is idle fo r more than 20 minutes then close the session.

System state is characterized by a set of attributes. The idle time of a login session is an

attribute. A change of interest occurs when the idle time exceeds 20 minutes. Thus, the event of

the policy specified in Example 1.1 occurs if a login session is idle fo r 20 minutes. The

notification message may include values of attributes of interest; in this case these might be the

user identifier, the device used, time of login and session process identifier. There is no condition

that needs to be evaluated to determine if the policy action should be taken. This means that the

action is taken when the event is detected.

3

Example 1.2: if a login session is idle fo r more than 20 minutes then notify the system

administrator if login session owner = AAA.

The event specified in Example 1.2 is the same as in Example 1.1 but with a different rule.

In this case, the system administrator is only notified if the condition on the login session owner

is true. It should be noted that if both policies found in Examples 1.1 and 1.2 are applied and the

login session owner is equal to AAA then two actions are taken otherwise only one action is taken.

A policy applies to an entity being managed i.e., managed object. Examples of managed

objects include workstations, routers and web servers. The set of managed objects that a specific

policy applies to is called a domain. The policy presented in Example 1.1 applies to a set of host

machines. Many of the policy specification languages provide constructs for defining the

domain and associate it with policies to be applied to that domain. This work uses domains, but

the examples only describe events and rules.

A policy is said to be enforced if the actions specified in the policy are taken when the event

occurs and the condition (if specified) is true. This requires that the attributes used in the

specification of a policy be monitored and evaluated and that actions can be carried out. For the

policy in Example 1.1, this requires that the management system monitor login sessions on each

o f the machines in the domain that the policy applies to. Monitoring is done by management

agents.

Definition 1.3: A management agent is defined as a logical entity that provides a single interface

and performs management operations (i.e., monitor and collect data, analyze data collected, carry

out control actions) on managed objects and emits notifications on behalf of managed objects.

There may be multiple policies applied to the same managed object. Example 1.3 specifies a

policy based on attributes of a login session not used in Example 1.1.

4

Example 1.3: if a login session is from the IP address xxx.xxx.xxx.xxx then notify the system

administrator if the time o f occurrence o f the login is between 12:00 AM and 5:00 AM.

The IP address initiating the login session is an attribute. The event occurs if a login session

is from the IP address xxx.xxx.xxx.xxx. The action notify the system administrator is taken only if

the condition the time o f occurrence o f the login is between 12:00 AM and 5:00 AM evaluates to

true.

1.2 Problem Statement

There are several languages for specifying policies as defined in Definition 1.1. Techniques

for analyzing policies (e.g., conflict analysis) have been developed. These languages are

considered independent of any management system. One significant challenge in the use of

policy-based management systems is to configure a management system to monitor the attributes

in the policies, generate the events specified in the policies and match rules with the events.

There has been little previous work in finding efficient mechanisms to address and simplify the

gap between expressing policies in a high-level specification language and an actual

implementation o f a management system that makes use of these policies [117-120]. Existing

management systems do not provide facilities to automate the efficient deployment of

management entities i.e., finding, initiating and deploying management agents that monitor,

analyze and control the managed system to support policies. Such activities still fall under the

responsibilities of the system administrator. A key element of this Thesis work is policy

deployment, which is defined in Definition 1.4.

Definition 1.4: Policy deployment is defined as the mapping of policies to a configuration of the

management system (e.g., identifying and configuring of management agents and providing

executables rules) so that this management system enforces the policy.

5

For example, to deploy the policy specified in Example 1.1, a management agent must be

found that can monitor attributes associated with login sessions and then the management agent

must be instantiated to monitor the login sessions and generate events. This Thesis addresses the

problem of automatically mapping policies to elements of existing management systems,

including selecting and deploying agents to ensure the enforcement of those policies.

The state of the art in management tools provides functionality that includes monitoring,

software distribution, event generation, event analysis and determining control actions through

rules. Despite the significant contributions made towards the development of management tools

that monitor and control distributed systems, little has been done to address issues such as

optimizing the execution of management functions. Efficient operation of management functions

is important since uncontrolled use could increase the load on the systems at the wrong time [1].

For example, if there is currently an instance of a management agent monitoring attributes

associated with login sessions for the policy in Example 1.1, then it may be possible to reuse this

same management agent instance to monitor the login sessions for the policy specified in

Example 1.2, thus reducing the number of agent processes.

Both the managed objects and the policies are dynamic. Examples o f the dynamic nature are

the following:

(i) The set of machines to which the policies specified in Examples 1.1, 1.2 and 1.3 are

applied to may change over time;

(ii) A policy may be changed. The policies in Examples 1.1 and 1.2 may be changed so that

the event occurs when the session is idle for 10 minutes long and not 20 minutes;

(iii) Policies may be added at different times. The policies specified in Examples 1.1 and 1.2

do not have to be added at the same time;

(iv) Policies may be activated and deactivated at different times.

6

Management systems are usually assumed to be static [47] i.e., configured at start-up.

Management systems do provide some ability to be changed but there is little work that looks at

the automation of changing the management system configuration in response to changes in the

managed objects or the policies. For example, although most management systems allow for

changes in the set o f policies, there is relatively little work in having the management system

reconfigure itself to support the changes in policies, much less do this in an optimal or semi-

optimal fashion.

This Thesis addresses the problem of automating policy deployment. This work aims to

provide the services and algorithms needed to identify and deploy management entities and be

able to respond automatically to both changes to the system itself, as well as to changes in the

way the system is to be managed (i.e., changes to the set of management policies or sets of

management agents).

1.3 Thesis Statement

It is possible to provide automated policy-based management (PBM) systems based on a

general model that links the management services and the management policies. The

attributes that describe the system states and specified in the management policies, may be

used both to build such links and to automatically help in finding and configuring the

appropriate management services to support deploying management policies.

1.4 Thesis Contributions

The Thesis makes the following significant research contributions:

• A general model for specifying and automatically deploying a wide range of management

policies for PBM systems is defined. Key features of the model are to identify and

deploy management entities and the ability to respond automatically to both changes to

the system itself as well as to changes in the way the system is to be managed.

• The Thesis shows how to build a PBM model on existing management services found in

commercial management systems.

• A prototype implementation is described. This implementation confirms the validity and

provides a means to evaluate the concepts of the proposed PBM system model.

• Several experiments are conducted to demonstrate the successful application of the

model, the prototype and the deployment of different policies into domains with different

numbers of hosts.

• The thesis addresses an alternative deployment approach for optimization, namely one

that utilizes management agents for policy deployment.

• Management agents, together with the algorithms needed to handle and processes events,

are introduced, designed and implemented

1.5 Thesis Outline

The Thesis is organized as follows: Chapter 2 introduces, discusses, and assesses a

comprehensive background research and related work to provide the background for this Thesis.

In Chapter 3, an information model used to specify policies is presented and discussed. Chapter 3

then emphasizes the semantics of several event operators used to express events. In Chapter 4, we

introduce the proposed policy-based management system (PBM) architecture. Chapter 4 draws

the roadmap for the rest of the Thesis. Chapter 5 presents and discusses an information model

used to define management agents and agent design. Chapter 6 shows a template-based approach

to map the high-level specified policy elements to components of a management system. Chapter

7 introduces the Policy-Management Agent Integrated Console (PMagic) software. Chapter 8

describes the experiments conducted to illustrate the execution, validity and evaluation of our

PMagic policy model. The Thesis contributions, conclusions and future work are presented in

Chapter 9.

8

Chapter 2

Background and
Related Work

This Chapter introduces, discusses, and assesses related work. The Chapter starts with a

discussion of elements commonly found in existing management systems, and a review of

common system management concepts. This is followed by a discussion of policy specification

and deployment. Next, an overview of the efforts related to the work of policy refinements and

policy conflicts is highlighted. Thereafter, the issue o f management systems performance will be

addressed. This Chapter concludes by looking at existing commercial management systems tools.

2.1 Management Systems

Several commercial management systems, such as IBM Tivoli [151], HP OpenView [61],

CA-Unicenter [23], Microsoft SMS and MOM [105], support the management of distributed

systems. This Section briefly describes the common elements currently provided by these

systems. These common elements are graphically depicted in Figure 2.1. These elements include

management agents, information repositories, management applications, and event handlers.

9

Management Agents

Management agents are used to monitor data, analyze monitored data and emit notifications

on behalf of managed objects. A managed object is any distributed system component (e.g.,

workstations, routers, web servers) that is to be controlled by a management system.

Information Repository

An information repository is used for the storage and retrieval of monitored information,

information about the managed system (e.g., definitions of managed objects, abstractions of

management agents, domains, definitions and interfaces of management applications) and

management information (e.g., policies, events).

Management Applications

A management system may make use of one or more management applications that analyze

monitored data and determine control actions. A management application may analyze data

collected from multiple management agents over a period of time and determine control actions

that are to be carried out by management agents on managed objects. A management application

is also referred as a manager. An example of a management application often found in

management systems is an application that provides software distribution. Such an application

distributes, configures/reconfigures, and updates software applications, system patches and

management agents. Another manager is an event-driven rule-based engine in which events are

associated with rules. For example, the event in Example 1.2 is associated with the rule notify the

system administrator if login session owner = AAA. An example of an event-driven rule-based

engine is found in Tivoli Enterprise Console (TEC) [151]. TEC not only associates an event with

a rule but also supports the detection of a pattern of events based on a time operator. Management

applications often present graphical representations of the system and monitored information. For

example, a graphical display of the status of each router in the network.

10

Management Protocols

Standards for manager and agent communication have been defined. The Simple Network

Management Protocol (SNMP) [65,103,144], Common Management Information Protocol

(CMIP) [70,70], Application Response Measurement (ARM) [121] and Web-Based Enterprise

Management (WBEM) on top o f HTTP [116], are examples of standard management protocols.

Event Handlers

The notification of an event is a message consisting of a set of attributes and values that

provide information about the change of the state. For example, the management agent that

monitors the user logins to the system could fire an event whenever user AAA tries to login to the

system, and provide information such as the user identifier, device used and time of login. Events

may be of interest to multiple managers. This requires that for each event, the event handler

keeps track of the managers interested in the event. Management systems often include one or

more event handlers to deal with the collection and distribution of events to other management

components. There is a distinction between an event-driven rule-based engine and an event

handler. An event-driven rule-based engine would register its interest in specific events with the

event handler. An event received by the event handler would be forwarded to the event-driven

rule-based engine if it is of interest.

2.2 Policy Management Frameworks

The general idea of Policy-Based Management (PBM) is not new [33,64,100,134,140].

Every management system provides and utilizes management polices to some extent. This

Section describes frameworks that use a specific policy language for a specific management

system. We can identify two general aspects that need to be addressed in the design and

implementation of any PBM system [120].

11

iManagerm
Agents

Managetf
Objects

Management System

ReportsReports

Software
to Distribute

Polices

Com m unications ■
Methods :

Managed
Environment

Figure 2.1: Common Management Architecture

The first aspect is policy specification. Policy specification deals with the definition of

policies. The most commonly used forms of policies are those that are defined in Definition 1.1 or

just the rule part [13,51]. Significant contributions in policy specification include: PDL [86,154],

Ponder [34,92] , PFDL [110,111], Tower [57], Power [109], SNAP [78], Logic [145] , Rei [76],

KAoS [17,37,57,155], PPL [146], Cfengine [22], ACPL [62].

The second aspect is policy deployment. Policy deployment can make use of a variety of

technologies, including expert-systems, programmable rules, agent-based, and mobile-agents or

some combination of these technologies.

This Section discusses policy-based management modules with respect to two aspects: policy

specification and policy deployment. In this Section we describe four policy management

12

modules or frameworks often cited in the literature. We then describe policy deployment within

these frameworks along with a discussion of the limitations. These four modules are

representative of much of the work in policy specification and deployment.

2.2.1 Policy Description Language

The Policy Description Language (PDL) is a declarative policy definition language from

Bell-Labs [80,86], originally developed for specifying network management policies. PDL has

two constructs for specifying policies. The first construct is the following:

Event CAUSES Action IF Condition

On the occurrence of the event specified in Event, the action specified in the Action clause is

executed if the condition specified in Condition is true. An example of the use of this policy is

presented in Figure 2.2, where SessionldleEvent is the name of the event that causes the action

specified in SendEmail to be carried out only if the condition SessionldleEvent.userid = AAA

evaluates to true. The second construct used to specify policies is the following:

Event TRIGGERSpde (ai~vi, an=vn) IF Condition

On the occurrence of the event specified in Event the action is the notification of the event

denoted by pde. The symbol pde represents an event symbol, a, is an event attribute and v, is its

value. Figure 2.3 shows the policy described in Example 2.1 which is specified using the second

PDL construct.

Example 2.1: if the number o f failed login attempts under a specific login name exceeds 3

then lock the account used in logins.

The event specified in Example 2.1 is failed login attempts under a specific login name

exceeds 3. There is no condition that needs to be evaluated to carry out the policy action lock the

account used in logins. The specification of the above policy as seen in Figure 2.3 defines two

13

events, the LoginFailed event which triggers when any user fails to login to a host in the System

Labs, the second event is ThreeFailedLogins which triggers when the LoginFailed event

triggered three times from the same user.

Events: SessionldleEvent: system event //event definition
Actions: SendEmail //action definition
Policy Description: //Policy of Example 1.2
SessionldleEvent causes SendEmail("admin",SessionldleEvent.userid)//parameters
if (SessionldleEvent.userid = "AAA") //condition used

Figure 2.2: Policies Written in PDL First Construct

Events: LoginFailed: system event , //event definition
ThreeFailedLogins : pde //policy define event

Actions: LockAccount //action definition
Policy Description: //Policy of Example 2.1
LoginFailed triggers ThreeFailedLogins (userid=LoginFailed.userid)

if (Count(LoginFailed.userid) = 3)
ThreeFailedLogins causes LockAccount

Figure 2.3: Policies Written in PDL Second Construct

The system described in [129], which was implemented for Lucent switching products,

represents one example of the deployment of PDL policies. There are three main components

[129]: the Policy Enabling Point (PEP), the event handler and the policy engine. The

implementation is in Java. PDL rules are compiled to Java classes. The Directory Server

analyzes the policies to extract the different components. Events found in the policies are then

registered with the event handler and rules are registered with the policy engine. The policy

engine is an expert system. When a PEP receives an event from a Lucent switch component, the

PEP sends the event to the event handler. The event handler correlates events from multiple PEPs

to detect more events that may be specified in the policy. The event manager then sends the

detected events to the policy engine. The rules in PDL are translated into a form that can be

understood by the expert system. This system assumes a predefined set of events that are

14

generated only for network devices. This work does not address the issue of reconfiguring

monitoring operations for triggering different events.

2.2.2 Ponder

Ponder is a declarative object-oriented language developed primarily to support security and

management policies [34]. Ponder has four basic policy types: authorizations, obligations,

refrains and delegations. There are four composite policy types that are used to compose

policies: groups, roles, relationships and management structures. The Ponder language syntax

allows for the specification o f the following:

Domains: The specification of a set of managed objects.

Subjects: This refers to management system entities that upon receiving the notification

of an event carry out the action if the specified condition is true.

Targets: This refers to managed objects to which a policy applies.

An example of a Ponder obligation policy is seen in Figure 2.4. A Ponder obligation policy

can be used to specify the example policies presented in Chapter 1. The management policy in

Figure 2.4 represents the Ponder specification of the policy described in Example 1.2. The policy

specifies that the domain is the Syslab. The policy in Figure 2.4 states that the automated manager

CSD/TEC will execute the action sendemail, when the event SessionEvent is triggered, and when

the specified condition SessionEvent.sessionidle>20 and SessionEvent.userid- “AAA ” is true.

Ponder also introduces the notion of policy types, i.e., parameterized policy templates that can be

instantiated multiple times with different parameters to create new policies. New policy types can

be inherited from existing policy types [41]. For example, Figure 2.6 shows the Ponder

specification o f the policy stated in Example 2.1. The policy is triggered when there are n

repeated login failures from the same user identifier. In Figure 2.5, the policy is instantiated with

the automated manger /CSD/TEC (specified using the subject clause). The target / CSD/users (of

15

type <userT>), specifies the domain. The action lock() disables the account of a user identifier

with three failures in logging in. Policy conflicts are addressed in [36,41].

in*t oblig SessionldlePolicy
{ on SessionEvent (userid);

subject ■ - /CSD/TEC;
target t «/CSD/Syslab/UNIXHosts;
do sendemail("admin",userid) ;
when SessionEvent.sessionidletime > 20 and

SessionEvent.userid = "AAA";
}

Figure 2.4: Ponder Obligation Example Policy

type oblig RepeatedlioginFai lure
(subject s, target <userT> t, lnt number)

{ on number*LoginFailed(userid);
subject s;
target <userT> t;
do t.lock(userid);

>
Inst oblig Three_RepeatedLoginFailure = RepeatedLoginFailure

(/CSD/TEC, /CSD/users, 3);
Figure 2.5: Ponder Policy Type Example Policy

The work in [33] presents a management architecture that assumes Ponder is the policy

specification language. This architecture includes three supporting services: a policy service, a

domain service and an event service (essentially an event handler). The Policy Service compiles

a policy to a Java class, stores these classes, and creates new policy objects. The Domain Service

manages and maps the name of a domain to the set of target objects that it applies to. The Event

Service receives events and sends these events to the interested management application

(specified as subjects). More details about these services are described in [33].

A Policy Management Agent (PMA) is given a Java object generated from a policy. It is

used to carry out actions i.e., it is a subject. The PMA registers with the event service to receive

16

events of interest (as specified in the policy). The occurrence of an event is sent to the PMA

through the event service.

Events are specified using attributes that represent system and application behavior. These

attributes need to be monitored. The PMA needs to evaluate a condition which is also specified

using attributes representing system and application behavior. It is assumed that the monitoring

is done. The architecture does not specify how the monitoring entities are initialized or

configured. There is no discussion of how monitoring entities are reconfigured in response to

changes in policies.

2.2.3 Policy Framework Definition Language

The three main policy models used in industry are the Directory Enabled Networks (DEN)

model, the Internet Engineering Task Force (IETF) model and the Distributed Management Task

Force (DMTF) model [110,111]. The IETF and DMTF refined the DEN model. The DMTF

model has additional infrastructure not found in the IETF or DEN models. The DEN-ng model

(148] is derived from the DEN and IETF models [92]. In the DEN-ng and DEN models, a policy

is a set o f rules that are evaluated when a specified event occurs. The IETF and DMTF do not

specify a condition characterizing the event that triggers evaluation of a rule. This makes it

difficult to have interoperable policy-based management systems [147]. Information models are

used to specify the components of the policies and the relationship between these components. A

conflict occurs when at least two conditions in the rules associated with a policy are satisfied but

the actions cannot be executed at the same time. IETF addresses this with the assignment of

priorities to each rule used in the policy. The rule with the highest priority is executed. The

three models have a concept similar to that of domain. PFDL uses the notion of Policy Role,

which is used to represent a collection of managed resources that share a common policy role.

Generally, a role is a type of property that is used to select one or more policies for a set of

entities and/or components from among a much larger set of available policies [37,39]. By using

17

roles, the administrator may assign each resource to one or more roles and specify policies to be

associated with a role.

The IETF/DMTF developed a standard architecture to be used as a guideline for PBM

implementations called the Policy Management Framework (PMF). It uses the Common Open

Policy Service Protocol (COPS) [45,110,147]. The COPS protocol is used between Policy

Enforcement Point (PEP) (agents) and a Policy Decision Point (PDP) (manager) to exchange the

information needed for policy enforcement as will described in this Section. There are two

'flavors', or models of COPS: The Outsourcing Model and the Provisioning Model.

In the Outsourcing Model, all policies are stored at the PDP. Whenever the PEP needs to

make a decision, it sends all relevant information to the PDP. The PDP analyzes the

information, makes a decision about an action to be taken, and sends the result of the

decision to the PEP. The PEP then carries out the action.

In the Provisioning Model (COPS-PR), the PDP downloads relevant policies to the PEP.

The PEP makes decisions based on these policies. The Provisioning Model uses the

Policy Information Base-PIB, defined in RFC 3159, as a repository of the policies.

More information about COPS and Policy-Based Network Management (PBNM) can be

found in RFC-2748 [66] and RFC-3084 [68]. The COPS architecture, as shown in Figure 2.6,

contains, in addition to PDPs and PEPs, the following components:

Policy Management Tool (PMT): This manages the policies i.e., create, distribute,

activate, deactivate, modify, check conflicts, etc.

- Policy Repository: This stores policies so that the policies can be accessed and retrieved

by the one or more PDPs.

18

Figure 2.6: COPS Architecture [45]

Examples of the use of the IETF architecture can be found in management tools for Quality

of Service (QoS) and Virtual Private Network (VPN) management (e.g.,[54,96]). In [54]

deployment refers to the sending of a policy to a PDP from the PMT. The work in [54]

investigates the requirements and implementation of a PBNM system to ensure that a policy is

deployed on all target PEPs. The work in [54] does not address the issue of identifying and

configuring monitoring entities. The work in [96] focuses on mapping objectives specified in

policies to system configurations. This is based on previous observations. A change in an

objective in the policy is mapped to a configuration based on a comparison of the objective in

previous observations. This is used to determine configuration parameters which are carried out

by existing management entities.

19

2.2.4 A utom atic C om puting Policy Language

Automatic Computing Policy Language (ACPL) [62] is used for writing policy rules for

Policy Middleware Automatic Computing (PMAC) from IBM [64]. ACPL is XML-based.

Policies specified using ACPL include the following components:

Scope: This specifies the set of the managed resources that the policy applies to. This is

similar to the domain concept used in Ponder.

Condition: A condition consists of one or more clauses. Only one clause can express a

Boolean expression. If no such Boolean clause exists, then the Boolean clause is assumed

to be always true. The rest of the clauses represent Time-Period elements. If there is no

Time-Period clause in the Condition of a policy, then the policy is always active.

Decision: This specifies how a policy is to be enforced. Decisions include the following:

• Result: This returns a set of required monitoring information from the managed

resources.

• Action: Invokes operations on the managed resources.

• Configuration profile: Applies both Result and Action.

Business value: This specifies the priority of a policy. This is used to enable the manager

to decide which policy should be enforced when multiple policies can be applied. This

allows for the handling of policy conflicts.

ACPL requires the specification of the policy name, decision name (for result and

configuration decisions), the policy version, and the policy description. Figure 2.7 shows the

structure of the policy described in Example 1.2 written in ACPL that utilizes the components

described earlier in this Section. More about ACPL and its use in web services is described in

[62,64]. PMAC also provides a Policy Analysis Toolkit that can be used to identify conflicts in

policy specifications.

20

<!-- Policy Meta Data -->
<acpl:Policy policyEnabled=*true"

policyName="Check_Idle_Logines Sessions ">
<!--the above expression would include other Meta data -->

<acpl:Description>Policy Description«/acpl:Description>

<!-- Policy Condition -->
<acpl:Condition>

<exp:And>
< exp:Greater>

<exp:PropertySensor propertyName="SessionldleTime" />
<IntegerConstant>

<Value>2 0</Value>
</IntegerCons tant>

</exp:Greater>
<exp:Equal>

<exp:PropertySensor propertyName="UserId" />
<exp:StringConstant>

<Value>AAA</Value>
</exp:StringConstant>

</exp:Equal>
</exp:And>

</acpl:Condition>

<!-- Policy Decision -->
<acpl:Decision>

<acpl:Action>
<acpl:WS_Operation operationname="SendEmail"

portType="MailManagerResource* />
</acpl:Action>

</acpl:Decision>

<!-- Policy Business Value -->
<acpl:BusinessValue>

<Importance>10 </Importance>
</acpl:BusinessValue>

<!-- Policy Scope -->
<acpl:Scope>

<acpl:StringScope>
<Value>SysLab/UNIXHosts</Value>

</acpl:StringScope>
</acpl:Scope>

</acpl:Policy>
Figure 2.7: ACPL Example Policy

21

KEY:
M = Monitor
A = Analyse
P = Plan
E = Execute

Figure 2.8: PMAC Architecture [64]

In PMAC, the Autonomic Managers (AMs), which are equivalent to the concept of PDP,

manage the system by using the machine-readable policies specified using ACPL. The PMAC

framework consists of a policy editing tool, a federator, an autonomic manager and managed

resources (see Figure 2.8). Edited policies (using ACPL) are saved and distributed to the relevant

autonomic managers by the use of federator which acts as a publish/subscribe hub. PMAC uses

the ECA rule paradigm that follows the XML schema (which tends to be quite verbose). The

Simple Policy Language (SPL) [5] can also be used by PMAC to support the specification of

ECA rules. SPL is internally mapped to ACPL which can be understood by the PMAC policy

federator.

Sensors and effectors are the interfaces of the managed resources. Sensors (representing

management agents) provide management information when triggered by get or subscribe

commands while effectors (also representing management agents) apply the management

decisions. Since AMs are considered as managed resources, AMs also have sensors and effectors

to be used by other AMs. PMAC provides support for policy analysis and conflict resolution

using a process called Policy Ratification [6,35]. The autonomic manager (AM) is central to the

22

PMAC infrastructure. The AM is responsible for providing the control-loop (Figure 2.9) to

manage the resources assigned to it. When a managed resource requests guidance, the AM

evaluates all relevant policies and returns a decision. The guidance can also be initiated from the

autonomic manager without a request from the managed resource.

These decisions can be in the form of an action (a process to be run on the managed

resource) or a configuration profile (setting properties) [4,5,47,62,64]. When a change of state

occurs (event), the managed resource notifies the AM-Event Monitoring Subcomponent which

triggers requests for guidance on a decision (see Figure 2.9). All management information that

represents system states also passes to and is retrieved from the Data-Gathering-Subcomponent.

The Rules-Expression-Engine then evaluates the policy rules, which reside in the Runtime-

Configuration-Cache, according to the triggered request, and selects the policy corresponding to

this request. The Policy-Actuator-Subcomponent will enforce the decision made by invoking the

effectors on managed-resources. The WSRF (Web Service Resource Framework) interface

implements, supports and supplies the resource properties specifications inside the AMs by the

means of web service standards.

Figure 2.9: PMAC Autonomic Manager [47]

23

To summarize, the PM AC framework provides a language for specifying policy and a policy

enforcement architecture. Policy analysis and refinement operations are also addressed to some

extent [64]. However, the management services, which are needed to support and supply the

management information, are assumed to be already defined and executing in the managed

resources. Moreover, there is no indication how PMAC would initiate new services at the

managed resources, i.e., how to configure and/or map the required management operations to the

sensors.

2.3 Policy Refinements and SLAs

Policy refinement is the process of mapping high level management policies to an

appropriate set of policies rules. A Service Level Agreement (SLA) is typically a written

agreement between a service provider and a customer about the quality of service (QoS)

[14,27,79,81,88,94,95,99,130-132,153]. An SLA is one source of the management goals. The

management application that handles SLAs is often called the Service Level Manager (SLM). As

discussed in [89], PBM systems are often considered closely aligned to the SLM. Furthermore,

the work in [75] clearly defines the relationship between SLA and policies, and discusses how

SLAs can be enforced by policies. The goals defined in an SLA must be mapped to a form that

can be understood by the management system. The process of the automation of policy

refinement is a challenging problem. Certain aspects of policy refinement can be achieved when

the problem is constrained to a well-defined functional area [77], such as extracting the QoS

policies from given SLAs in order to provide policy management rules to reconfigure network

routers to achieve the QoS goals. The work in [77] sketches the relationship between the

generality of the refinement technique used and the amount of automation. As illustrated in

Figure 2-10, refinement techniques that are more domain specific have more opportunities for

automation.

24

More Less
Automation Automation

Policy Refinement Techniques

D o m a in i
S p e cific

i t \ i i i ̂ D o m a in
In d e p e n d e n t

Table Lookup Predefined Case based Goal
Templates Reasoning Elaboration

Figure 2.10: Relationship between policy refinement techniques [77]

The work in [11] identifies two main objectives of a policy refinement process as follows:

Determining the resources that are needed to satisfy the requirements of the policy, i.e.,

mapping abstract entities defined as part of a high-level policy to concrete objects/devices

that make up the underlying system. For instance, determining the specific routers that

need to be configured to handle the traffic for “WebServices applications on the

eCommerce Server” [11].

Refinement of high-level goals into operations, supported by the concrete

objects/devices, that when performed will achieve the high-level goal. For instance, the

set of operations, supported by the specified routers that will meet the objective of “Gold

QoS for WebServices Applications on the eCommerce Server” [11].

There is substantial, ongoing work, both commercially and academically, addressing

strategies for expressing, refining and implementing SLAs using policies

[9,11,37,38,52,75,77,89,123,137,152], where several refinement techniques are used. In

[123,143], an approach to refinement is presented that is based on hierarchical architectures that

correspond to different abstraction levels of the management functions or policy expressions. A

role-based mechanism is used in [57] for specifying role-based access control (RBAC) policies,

where the policy is refined into the basic structures of RBAC such as, users, roles, objects,

permissions or privileges. The work in [38] presents an approach using the Common Information

25

Model (CIM) [39] for the SLA-driven management of distributed systems. The SLA is viewed as

a set of services selected and aggregated from provider services matrices. Although this approach

seems to be a realistic approach, such an approach is applicable only for a service provider whose

management system is based on CIM.

The work in [36,37,57,152] introduces SLA decomposition and classification approaches for

deriving low level patterns or system thresholds from service level objectives (SLOs) specified in

SLAs. A mapping technique is used in [137] to map firewall rules into policy-rules for better

firewall rule editing and to act as an advisor for anomaly discovery. The work in [52,77]

introduces an approach for modeling and formulating QoS policies, in which the refinement

process exploits the use of integrity constraints within abduction reasoning. The report in [77]

shows how the integration of abduction reasoning with constraint solving can help to increase

automated support for policy refinements. Integrity constraints are rules that specify the

conditions under which the formal model of the system being analysed is inconsistent [77], and is

typically used for modeling firewall policies. The policy wizard tool “POWER” [109] handles

policy refinement through the use of policy templates. The administrator or the system expert

specifies a set of policy templates, expressed as Prolog programs, and then uses the provided

policy-engine to interpret these programs. Policy templates then guide the user in selecting the

policy elements from an information model.

2.5 Policy Conflicts

As introduced, a policy is a set of rules; these rules consist of an event, conditions and

actions. As in all event-driven rule-based systems, major issues in policy-based management

systems are the analysis, detection and resolution of the conflicts between rules. An example of

two conflicting rules is the following: 1) the rule that has the action to prevent connections from

the source where intrusion was detected will only block connections from that source and 2) the

26

rule that has the action to shutdown the hacked system. Deploying such two conflicting rules may

cause an unstable system. The automation of conflict analysis, detection and resolution are

challenging problems.

Policy Conflict

Conflict of Modalities Conflict of Goals

Positive- Conflict
negative between
conflict imperative &

authority

1
Conflict of

----------------------------------!---------------------------

Conflict of
Imperatival Authority Goals

Goals i
I 1 1------------- 11

Conflict
1

Conflict of Conflict of
1

Multiple Self- management
of duties interests managers (Subjects-T argets

priorities (Double (Subjects (Target Objects overlap)

overlap) overlap) overlap)

Figure 2.11 ¡Classification of Policy Conflicts [107]

The work in [91,107,142] have considered different cases and types of conflicts by

examining several examples o f policy conflicts. Policy conflicts can be classified into two types

as in Figure 2.11 [91,107]:

Conflicts arising from inconsistencies in policy specification, where the same event and

condition are in two different policies which have conflicting actions, e.g., allow or

prevent the user “AAA” access to host “HHH”. This conflict type is also called a conflict

o f modalities [107].

Conflicts arising in the policy enforcement, even though there is consistency in the set of

policies being used. These conflicts cannot be determined directly from the policy

specifications, since additional information that relies on the state of the system, is

needed to specify the conditions which result in conflicts. This also known as a semantic

conflict or conflict o f goals [107]. For example, there is a conflict between two policies

that result in the same packet being placed on two different queues [142].

27

The work in [44,91] addresses the two forms of conflict analysis:

Static analysis is typically performed during policy specification and before deployment.

Section 2.2 discussed some of the different techniques used by the policy specification

languages to handle policy conflicts. However, few conflicts can be detected using the

static analysis, as it is not possible to automatically determine and evaluate policy

conditions which depend on run-time state values.

- Dynamic conflict detection is typically performed at runtime. There is no easy solution to

dynamically relate conflicts, and any solution would have tradeoffs. For instance, an

improved dynamically conflicts resolution technique would potentially be a more

computationally cost approach.

Some conflict resolution techniques include specifying priorities or precedence of policy-

rules, as in [64,142]. This approach is not scalable to large systems with a large number of rules

specified by different administrators. Other work uses action constraints, as in [28,147]. The

efficiency of this approach depends on understanding the semantics of the policy actions, which

itself is another challenge. Some other work is based on translating policies into event calculus

for better conflict analysis as in [12,17]. This methodology is impractical and does not scale if

there are a large number of rules. The model provided in [46] for conflict handling tried to be

independent of the syntax of the policy-specification language used. It assumes that subjects,

targets and action concepts are included in, and common to most policy languages. The model in

[46] relies on defining an intensive relationship among the policy objects to classify any possible

conflicts, which would be very hard for a management environment with a large number of

management policies. The use of meta-policies, which are policies to handle the conflicts among

other policies, is explored in [34,76]. Although this approach has had some success for the

detection of dynamic conflicts, it is a computationally expensive approach. A more successful

approach was presented in [42-44], where the use of multiple techniques for conflict detection

28

and resolution in PBMSs were explored. Generally, there has been little research into the

performance overhead associated with the operations of monitoring, detecting and resolving

conflicts.

2.6 Commercial Tools

Many vendors provide management systems with some policy-based management capability.

The majority o f these solutions are directed towards the configuration and security management

of network devices. Examples of such PBM solutions are: Cisco’s QoS Policy Manager (QPM)

[30] and Cisco’s CiscoAssure [32], IBM Tivoli Security Policy Manager [151], Nortel’s Optivity

[115], Computer Associates’ eTrust Solutions [23], Hitachi’s JPl-PolicyXpert [59], Lucent

technologies RealNet policy rules [87], Hewlett-Packard’s OpenView [61], and Tivoli Access

Manager-NetView [151].

There are several commercial management systems that provide additional management

functionality, such as event handling, event-driven rule-based engines, logfile analysis, software

distribution, and more. Examples of such systems include: IBM’s Tivoli Framework and related

products [151], Hewlett-Packard’s OpenView [61], Computer Associates’ Unicenter [23],

Microsoft’s SMS and MOM [105], Hitachi’s JP1 Integrated Management [59], Sun’s N1

Datacentre [150]. Such commercial management systems are often derived from traditional

networked environments, where devices use relatively static configurable management software

to perform rather simple management operations, e.g., collect management information and

enforce management actions.

Even with the management operations, such commercial management systems still need to

have dedicated skillful administrators. It is also hard to handle the increased heterogeneity of

resources in large distributed systems. A common feature in commercial tools is a graphical user

interface (GUI), which typically allows the administrator to construct management rules. These

rules are later compiled and loaded into the system manager. In these systems, there is a lack in

29

the definition of the link between these rules and the management monitoring services (agents)

that execute in order to collect events of interest from managed objects. This relationship between

rules and agents is typically defined and configured by the system administrator. Management

policy can be changed dynamically, which may require a change to the management services to

support these changes. Management systems should be able to provide a dynamic adaptation to

changes in polices.

2.8 Summary

This Chapter has described several policy-based management systems, focusing primarily on

policy specification languages and policy deployment systems. Policy deployment can make use

of a variety o f technologies, including expert-systems, programmable rules, agent-based, mobile-

agents or some combination of these technologies. An expert system might use the policies as

rules within its knowledge base to validate and enforce policies. Management based on expert

systems usually focuses on a single type of managed object or application, e.g., access control in

network routers, and does not provide appropriate knowledge representations for use across

different application domains. Policy rules could be pre-programmed through high-level

programming languages to provide decision making of runtime execution. This is static and can

be difficult to adapt in response to changes in policies. Management systems often use

management agents to enable policy deployment.

While there has been some work on automation of certain aspects of policy-based

management systems, there is clearly a need for more work on the automation of the mapping of

policies to management elements (e.g. agents, rules), the configuration of those management

elements, the efficient runtime use and reuse of those elements, and the efficient reconfiguration

o f those elements in response to changes in the system being managed or in policies. This

research focuses on the means for a management system to automatically identify and efficiently

deploy management operations and management system configurations for deploying policies.

30

Chapter 3

j
*
•j

{
}

A P olicy Inform ation Mo d el
!

This Chapter presents an information model for policies. An information model for policies

is an abstraction and representation of the components of policies. For each component this

includes the definition of attributes, operations and relationships. An important aspect of the

information is an event. This Chapter starts with a discussion of events including a definition of

an event, introduction of event operators and semantics of event operators. This is followed by a

discussion of the policy information model. The information model allows for the specification

of different type of policies in a vendor and device independent way. The specification of

policies is done in a modular fashion i.e., policies are specified and assembled from other

components (e.g., event, condition, action).

3.1 Events

An important component of the policy information model is an event. This Section defines

events, event operators and the semantics of those event operators.

31

3.1.1 Event Definition

There are several different definitions of events found in the distributed system management

literature [19,98,118,127,134,138,160]. The definition of an event for this work (as described in

Definition 1.2) is the following: An event is defined as a message o f notification o f a change in

system state that is o f interest. Examples of events include:

a) router R1 is down;

b) server A is not responding;

c) printer LP1 is out of paper;

d) the cpuload of server B is greater than 85;

e) the average of the cpuload of server A and B is greater than 80 over a 10 minute period;

f) the cpuload of server A is greater than 80 after user K is logged in;

g) user R failed to use su login as root user 2 times;

h) user S has more than 10 sessions open on server A and 3 sessions on server B;

i) user S failed to login to server A three consecutive times within 2 minutes;

j) send the number of current users of a machine to the manager every hour.

As can be seen from these examples, a change in state does not necessarily cause an event.

For example, a change in the CPU load from 60 to 70 does not generate an event. A change from

70 to 90 does generate an event, since the policy may only be concerned with CPU loads at that

level. Hence, an event is generated when the change in state is of interest. The elapse of a

certain amount of time can also cause an event e.g., the passing of one hour is an event that

causes the number of current users to be sent (example j). Events can be classified into primitive

and composite events [97].

32

Definition 3.1: A primitive event is characterized by a condition on attributes o f one or more

managed objects. The logical expression representing the condition uses standard logical

operators.

Events described in a) to d) are primitive events. The logical expression that represents the

condition characterizing the event presented in example d is (cpuload>85). The cpuload is the

attribute that needs to be monitored on host B.

Definition 3.2: A composite event is characterized by a condition composed of multiple events

(which may be primitive or other composite events) using event operators.

Events described in e) to i) are composite events.

3.1.2 Event Attributes

Each event Et has a well-defined set of attributes Att, . A subset o f Att, includes a set of

attributes that uniquely identifies the event e.g., event identifier, time of occurrence, source that

generates the event. The set of attributes AtU may also contain attributes that characterize the state

of a managed object, e.g., for a host machine, attributes characterizing its state include cpu load

and memory usage. It is assumed that the subset of Att ¡that uniquely identifies the events is used

to uniquely identify the second set of attributes.

3.1.3 Event Operators

The event operators considered in this work are described in this Section. Hie semantics of

these operators are defined in Section 3.1.4. Events specified using event operators are in the

form of Ej eop Ej. or eop Ej. The event operators described are E-SEQ, E-AND, E-OR, E-NOT

and E-COUNT (other event operators are possible). It is assumed that events occur in a specific

time window. The event operators are briefly described as follows.

33

Ej E-SEQ Ej: The generated event occurs when an instance of Ej occurs before an

instance of Ej.

EjE-ANDEj: The generated event occurs when instances of both Ej and Ej occur.

Ei E-OR Ej: The generated event occurs when either instance of Ej or Ej occurs, or both

occur.

E-NOT Ej: The generated event occurs when an instance o f Ej did not occur.

E-COUNT Ej [n]: The generated event occurs when instances o f Ej occurs n times.

Example 3.1: if the total number o f user logins is greater than 5 followed by the CPU load is

greater than 90 and the total number o f processes running is greater than 35, then block any new

user logins.

This policy consists of a composite event Ei E-SEQ E} where

1) Ei is a primitive event that is characterized by the condition the total number o f logins is

greater than 5. The logical expression that represents this condition is

usersloginstotal>5.

2) Ej is a primitive event which is characterized by the condition the CPU load is greater

than 90 and the total number o f processes running is greater than 35. The logical

expression which represents this condition is cpuload>90 && cpuprocesstotal >35.

3.1.4 Event Semantics

This Section describes the semantics of event operators based on first-order predicate logic.

Definition 3.3: A predicate occ is defined as follows: occ(E, t, [ts,te]) is true if E occurs at time t

and ts < t <, te , where ts and te are the time window start and end points of time respectively.

34

With the E-OR operator applied to Eh Ej, an event is generated upon detection of either Et or

Ej. The timestamp 2 of the resulting composite event instance is either the occurrence time of the

instance of the events £, or Ej (see Figure 3.1 (1)).

occ(Ei E-OR Ej, t, [ts , 2e]) = ((32, | ts < t> < te , 2=2,) occ(£ , , t,, [2*, te\)) v

((32; | ts < tj < te , t=tj) OCC{Ej, tj, [2S, te]))

The attribute set of the resulting composite event is Attj if either o f the following two cases

occurs: (i) occ(E,, 2,, [ts , te]) is true but occ{Ej, tj, [2,, 2e]) is not true; (ii) occ(is,, 2,, [ts , te]) is

true and occ(E} , t j , [2, , te]) is true but 2, < 2,. Otherwise the attributes set of the resulting

composite event is Attj.

With the E-AND operator applied to Eh Ej, an event is generated upon detection of both E,

and Ej. The timestamp 2 of the resulting composite event instance is the occurrence time of the

last detected instance of the events Ej and Ej (see Figure 3.1 (2)).

occ(Ej E-AND Ej, t, [2*, 2e]) s ((32,, tj | ts < tj < tj < te , t=tj)

(occ{E,, tj, [ts , te}) A OCC(JEj , tj, [2,, 2j)>) v

((32,, tj | ts < tj < 2, < te , 2=2,)

(occ(Ej, tj, [2j, 2j) A occ(Ej, tj, [2S, 2j)))

The attribute set of the resulting composite event is the union of all attributes of both Attj

and Attj, i.e., the set Attj u Attj .

With the E-SEQ operator applied to Ej, Ej, an event is generated upon detection of Ej

followed by a detection of Ej. The timestamp 2 of the resulting composite event instance is the

occurrence time of the detected instance of event Ej (see Figure 3.1 (3)).

occ(Ej E-SEQ E j , t , [t s , 2j) s (32,, 2/ ts < 2,< tj < te , t=tj)

(occ(Ej, tj, [2S, 2,]) a occ(Ej, tj, [tj, 2e]))

35

The attribute set o f the resulting composite event would be the union o f all attributes of both

Ail, and Attj, i.e., the set Attj u Attj .

With the E-NOT operator applied to Ej, an event is generated upon no detection o f Ej in time

window T, i.e., [/s, Q. The timestamp t of the resulting composite event instance is the end time

point, te.

occ(E-NOT E j , te ,[i ,, te]) = (V i: ts < t< te) -,occ(Ej , t ,[ts , te\)

The attribute set of the resulting composite event is 0 .

With the E-COUNT operator applied to Ej with the argument n, an event is generated after Ej

has been detected « times. The timestamp t o f the resulting composite event instance is the

occurrence time of the n"' detected instance of event Ej.

occ(E-COUNT Ej [n], t, [ts , i j)) = (Vi, l< i<n, 3i,-1 ts <t,< te) occ(Ej, th [is , i j)

The attribute set of the resulting composite event is Attj of the n‘h instance of Ej.

time

(1)

t timestamp

valid instance
e„ an event occurrence of type E„
e„m mlh event occurrence of type E„

e] ei3 e\ el e

occ(Ei E-OR Ej, t, [i,, /,]) 0) occ(Ej E-SEQ Ej, t, [f,, /,])

(2) occ(Ei E-AND Ej, t, [(,, /,])

Figure 3.1: The Semantics o f the Event Operators Over a Time Window

36

It is possible to express the event operators without explicitly stating a time window. In that

case, the assumption is that the time window is defined by the system. The default time window

defined by the system has ts equal to the current time of the system clock o f the device that

generated the event, while te equals the current time plus some defined duration say d (e.g., 20

seconds). For example; if a time window in the E-OR event operator is not explicitly defined,

then the semantics would be as follows:

OCC(E, E-OR Ej , t) = OCC(E, E-OR Ej,t, [tcurreM , tcurrent+d])

3.2 Policy Information Model

The UML depiction of the policy information model is presented in Figure 3.2. A policy is

modelled as an aggregation of an event (modelled by the Event Expression class) and a set of

rules. Rules o f the policy can be prioritized. Each rule (modelled by the Rule class) specifies a

condition (modelled by the Condition class which represents a logical expression) which if true,

specifies the actions (modelled by the Action class) to be executed. An action may have one or

more parameters (modelled by the Parameter class). A policy is associated with a domain which

is a set of computing resources. In this work, it is assumed that these computing resources are

hosts (see Figure 3.3). If a subset of these computing resources is to have additional policies, then

these are assumed to be a separate domain with its own set of policies. The work in [39]

establishes a common conceptual framework that describes the managed computing resources.

The information model in [39] represents an abstraction and representation of the elements in

managed computing resources, a basic classification of these managed elements and associations

of managed resources. The classification and relationship between managed objects are beyond

the scope of this Thesis. This task will become easier when standard information models, e.g.

CIM [39], are adopted.

37

Intervals that represent the date and time that a policy is active might be defined and

associated at both the policy and rule levels. This is useful for refining the enforcement of the

policy period. By associating an interval with a rule, typically a sub-interval of the policy interval,

one can allow events to be detected within the policy interval and limit the enforcement of the

associated rule with the detected event within a sub-interval of that of the policy. Evidently, It

may be the case that the rules should be activated at different times of the day e.g., one rule for

daytime hours and one rule for night time hours. By associating an interval with a rule, one can

allow events to be detected within the policy interval and limit the enforcement of the associated

rule with the detected event within a sub-interval of that of the policy. Static analysis of policies

should validate that there is no conflict between the intervals i.e., between the policy interval and

the intervals of its associated rules. Further discussion of several of these classes follows.

Domain

♦Domain ID
-Domain Description

0 ..*

Policy

-PolicylD
PolicyStatment

_ Policy
Validity
Interval“ 0..1

interval

Intervallo
-FromDateTime
-ToDateTime
ValidMonths
ValidDaysNames
ValidDaysNumbers

RulelnPolicy

♦RulePriority <---------- Rute
-Validity

Interval

0 "* Contain
Valid _
TimaO -

0..1 o..*
IntervalTimes

♦FromTime
♦ToTIme

1
Rule

EventExpression ♦RulelD
-RuleStatement♦EventlD

0..*

— Con tat nCondi tion—

Y
\

ActionlnRule

♦ActìonSequenceNumber)

Condition

♦ConditionlD

1..*
Action

♦Action ID
-ActionType
-ActionOSType
Action ExecutableHost
ActionExecutableDirectory
Action Li braryHost
ActionLibraryDirectory
Action Description

Mf V *

Para niter

♦ParameterlD
-ParameterType
-ParameterSequenceNumber
-Para meterlnitia IValue
-ParameterDescription

Figure 3.2: Policy Information Model

38

Figure 3.3: Domain Information Model

Figure 3.4: EventExpression Information Model

Action Class

This class represents information about an action. The attributes characterizing this class include

the following:

- ActionID: This is the action identifier.

- ActionType: This represents the type of the action based on the type of file with the action

code e.g., UNIX scripts, binary executable codes, Java classes, etc. This is referred to as an

action executable. This field helps to construct the action calls that match its type.

- ActionOSType: This specifies the operating system on which this action can execute e.g.,

UNIX, Windows, Linux.

39

- ActionExecutableHost: This represents the IP address of the host that stores the action

executable.

- ActionExecutableDirectory: This represents the directory where the action executable file and

any necessary configuration files are placed. The combination of ActionName,

ActionExecutableHost and ActionExecutableDirectory is used to determine the location of a

specific action executable.

- ActionLibraryHost: This represents the IP address of the host that has the libraries needed by

the action for execution.

- ActionLibraryDirectory: This represents the directory where the libraries are located.

- ActionSequenceNumber: Since a rule may specify multiple actions, the association class

ActionlnRule, defines an attribute that represents the sequence order of an action within a

rule.

Parameter Class

This class represents information about a parameter that an action may have. An action may have

more than one parameter. The class is characterized as follows:

- Parameter©: This provides a parameter identifier.

- ParameterType: The type of the parameter e.g., string, integer, real, boolean.

- ParameterSequenceNumber: This represents the sequence order of a parameter within the

. action parameters.

- ParameterlnitialValue: This represents the initial value of the parameter.

- ParameterDescription: This provides a textual description of the parameter.

Interval Class

This class represents information about an interval. The class is characterized by the following

attributes:

- Interval©: This provides an interval identifier.

40

- FromDateTime: This represents the start of an interval e.g., “2008/01/01 00:00:00”.

- ToDateTime: This represents the end of an interval e.g., “2008/06/30 23:59:59”.

- ValidMonths: This value, if specified, represents the valid months within the start and end

dates of the interval. The default value is that all months are valid. This attribute and the next

two attributes are used to filter the interval.

- ValidDayNames: This value represents the valid days according to their names or order in

the week, e.g., SUNDAY, MONDAY, etc. or 1,2,..,7.

- ValidDayNumbers: This value represents the valid days based on the day of the month.

- The class IntervalTimes represents an additional filter by defining the valid period(s) of time

within a day, e.g., FromTime=12:30:00, ToTime 17:29:59 will limit the policy to be active

within this time period in each day of the policy interval.

EventExpression Class

This class represents information about an event. An event may be characterized by a condition

or recursively defined from other event expressions using an event operator (see Figure 3.4). We

use the composite design pattern from [47] to compose the tree structure of an event as follows:

- The Condition class (the logical expression) represents a leaf object in the composition.

Leaves represent the primitive events in the composition.

- The CompositeEvent class is an abstract class that defines the attributes EventOperator and

EventTimeWindow. The EventTimeWindow denotes a specific time preiod. More

specifically, EventTimeWindow represents a time period delimited by two specific

boundaries of time points, e.g., 10 minutes from current system time (now), or 10 seconds

from the occurrence of either event of the event expression. In this time window the event

expression should be evaluated.

- The UnaryCompositeEvent class extends the CompositeEvent class, to represent

information about the unary composite event expression

41

- The BinaryCompositeEvent class extends the CompositeEvent class, to represent and store

the components of the binary composite event expression, i.e., store two event component

(EventID) which represent the operands in the event expression.

3.3 Chapter Summary

This Chapter presented an information model used to specify policies. The definition of

events and event operators used in this Thesis were presented as well as the semantics of the

event operators. The purpose of this Chapter is not to provide a unique set of event operators and

semantics, but rather to present a model we assume for the work presented in this dissertation.

The model and event operators semantics are derived from work found in [56,72,97,98,160]. The

policy information model addressed in this Chapter is the basis for the implementation of the

language used for expressing policies (see Appendix A). Event operators and their semantics are

introduced in this thesis in order to model composite events and to facilitate the development of

the algorithms used to handle composite event operators (see Appendix E).

42

Chapter 4

A Model fo r P olicy Ba se d
Ma n a g em en t System s

This Chapter briefly describes a policy-based management system (PBM) architecture (see

Figure 4.1) that can configure itself in response to changes to the system being managed and

changes in policies. Chapters 5, 6 expand on the components of the architecture in more detail,

while Chapter 7 describes an implementation of the architecture.

4.1 Proposed PBM System Architecture

Figure 4.1 illustrates an architecture for a PBM system model. The model’s components are

discussed in greater detail in the rest o f this Section.

Policy Specification

This component is used to specify policies. The specified policies are stored in a repository.

It is assumed that this component can transform the policy into a form understood by the other

43

components, e.g., the Agent Matcher and Mapping Mechanism components. The policy

specification is based on the policy model defined in Section 3.2.1.

Mapping
Mechanism

Mapped
Elements

r—

Policy

1__ WÊ0
Policies to
be added

Policy & Agent
Repository

Agent
Matcher

Distribution
Mechanism

Selected
Agents

Deployment
• ®

\ \ Manager

Manager

MO= Man aged Object

Figure 4.1 : Proposed PBM System Architecture

44

Agent Matcher

When a policy is activated or an active policy is changed, the Agent Matcher is invoked.

The agents that can be used to enforce the policy are determined and then any possible existing

agent instances that might be used are identified as is or the identified agents can be used with

some changes, e.g., by requesting that a specific condition characterizing an event be monitored.

The three tasks carried out are the following: Agent Finding, Agent Instances Finding and Agent

Configuration.

Agent Finding: Upon adding or activating a policy, the Agent Matcher searches the

agent repository to find a set of agents that can be used to monitor the attributes specified

in the policy’s event expression and the conditions used in the rules. A list of agents and

the attributes that it can monitor is created (more on this in Section 5.2).

Agent Instance Finding: The Agent Instance Finding task is used to determine if

there are instantiations of these agents found in the previous step. It may be possible to

use an existing agent instantiation.

Agent Configuration: An arrangement of agents is determined that can monitor the

attributes and trigger the events specified in the policy. In the selection of this

arrangement, if an agent instantiation exists that can monitor all or part of attributes used

in the specification of the policy, then this instantiation may be used. In case there are no

available agent instantiations, executables corresponding to the agents found in the search

are used.

Mapping Mechanism

This component maps events and rules specified in the policies to a form that is understood

by the management system.

45

Distribution Mechanism

This component starts an agent instance, sends a new condition to be monitored to an agent

instance, sends a new request for values of a set of attributes that the agent instance can support,

and sends event information and the set of condition-actions rules of the policy to the appropriate

manager.

Manager

There must be at least one manager that is notified about the events received from the event-

handler. Management systems often include one or more event handlers to deal with the

collection o f and distribution of events to other management components. The manager evaluates

the rules associated with the events received.

Interactions

To illustrate the interactions among the components, the following example policy is used:

Example 4.1: If the CPU load is greater than 95 fo r any o f the UNIX system lab hosts then

email the administrator

Assume that this policy is specified and stored in the Policy-Repository. The specification of this

policy requires the following:

A policy named cpu_load_policy is created which has a primitive event named

cpuload_evt and one rule named cpu_load_rule.

A logical expression named cpuload_exp representing the CPU-Load restriction, i.e.,

(cpu_load >= 95), is created.

The event-target assigned is TEC (Tivoli Enteiprise Console). TEC is the default event

target. The policy domain is the set of all UNIX based hosts in Syslab.

The cpu_load_rule rule consists of no conditions and one action.

- The action to be taken is send-email.

46

The mapping policy elements (i.e., event and the set of condition-actions rules) will be

discussed in Chapter 6.

The steps needed to find the set of agents that can be used to enforce the example policy is carried

out by the Agent Matcher component. These steps include the following:

1. The Agent Matcher searches the repository to determine the event expression associated

with the event identifier, cpuload_evt.

2. The attribute identifiers from the event expression and from the condition of the rule

components are extracted, i.e., the attribute cpu_load is extracted. This attribute is used to

search for UNIX based agents (as specified in the policy domain) that can monitor that

attribute. The proposed model allows a single domain to include machines of different

operating systems. For example, if the target machines in the policy domain include both

UNIX and Windows machines, then the Agent Matcher would search in both the UNIX

and Windows based agents to find agents for each OS platform that can monitor the

attribute.

3. Assume that an agent, cpu_agent, capable of monitoring the attribute cpu_load is found.

4. The Agent Matcher then checks to determine whether there are instantiations of the

cpu_ageni in the policy domain hosts. There are two cases; a) no existing instantiation,

then a new instance needs to be configured to support the cpu_load_policy policy (i.e.,

decides the attributes to monitor and the event expression to evaluate), b) there are

instances of the cpu_agent in the policy domain hosts, these existing instances will

reconfigured to support the cpu_load_policy (i.e., existing instances would update to

monitor and fire an event if the cpu_Joad attribute is greater than or equal to 95). The

Distribution Mechanism is used to place the executables appropriately and start a new

instance. The Distribution Mechanism component is provided with enough information

(e.g., the location of the agents executables and libraries used) to start an agent instance.

In addition, the set of condition-actions rules of the policy is mapped to an executable

47

representation and then distributed to a manager that evaluates rules. If the target

machines in the policy domain include UNIX and Windows machines then two agents

instantiations would be required - one for each operating system platform.

4.2 A Roadmap for Automating PBM Systems

This Chapter provides a roadmap for the core work presented in this Thesis, specifically,

the design, development and deployment of the components as illustrated in Figure 4.1. The

details of the framework are described in Chapters 5-8 of the Thesis which are summarized

below:

• Chapter 5: Management Agents. In this Chapter, the description of

management agents with the depiction of the management agent components and

design that underpins all management agents is developed and described. In

particular, this Chapter describes a service to automate agent finding and agent

configuration.

• Chapter 6: Mapping Mechanisms. A policy needs to be understood by a

management system that enforces this policy. The principal focus of this Chapter is

the design of approaches that uses a policy to determine configurations of

management entities. This is referred to as mapping.

• Chapter 7: Implementation and the Prototype. This Chapter describes the

implementation of the Policy-Management Agent Integrated Console (PMagic)

prototype. PMagic represents the proof of concept of the approaches developed in

this Thesis towards automating PBM systems.

• Chapter 8: Evaluation. This Chapter describes the experiments conducted to

evaluate PMagic and presents the conclusions drawn from these experiments

• Chapter 9: Conclusions and Future Work. This Chapter outlines the Thesis

contributions. Conclusions and future work will be highlighted in this Chapter.

48

Chapter 5

Ma n a g em en t Ag en ts

This Chapter begins with a discussion of the required management services for operations

related to management agents to support policy enforcement. The Chapter then presents an

information model that is a representation of the components of an agent and its instantiations.

This is followed with a discussion of a management agent design and its interface. This is used

as the basis for the Agent Matcher component.

5.1 Introduction

As defined in Chapter 1, a management agent is a logical entity that provides a single

interface and performs management operations (i.e., monitor and collect data, analyze data

collected, carry out control actions) on managed objects and emits notifications on behalf of

managed objects. Existing management systems do not provide facilities to automate the

deployment of management entities i.e., finding and configuring management agents that

monitor, analyze and control the managed system to enforce policies. Currently these types of

49

activities are considered the responsibility of the system administrator. One of the goals of this

work is to have the management system automatically carry out these activities in response to a

change in the policies or in the system being managed. For example, assume that an

administrator has just added the policy specified in Example 3.1. This requires that there are

agents that can monitor the attributes used in the specification of the policy and carry out any

actions specified in the policy. For Example 3.1, the agents needed should be able to monitor the

attributes representing the total number of users logged in (usersloginstotal), the CPU load

(cpuload) and the number of processes (cpuprocesstotal) attributes. A search of the existing set

of agents based on the attributes to be monitored is needed to determine a set of agents that can

used to enforce the policy.

Searches should not be limited to just the set of agents available. It is important to be able to

determine any existing instantiations of those agents since it may be possible to use these

instantiations. This is illustrated with the following example policies:

Example 5.1: if su root is used to login into any o f the UNIX hosts in the Computer Science

Department then email the administrator if the user is “AAA ”

Example 5.2: if the number offailed attempts to log into any o f the UNIX hosts in the Computer

Science Department under a specific login name exceeds 3 then lock this account

Both example 5.1 and example 5.2 policies require the monitoring o f the syslog file. Assume

that only the management agent syslog_agent monitors the syslog file for each UNIX host

machine. Ideally, it should be possible to activate these policies at different times yet use one

instance of syslog_agent. For the policy stated in Example 5.1, an instance of the management

agent syslog_agent is created to monitor the event su root is used to login. Assume that the

policy specified in Example 5.2 is added later. If the management system also maintained

information about agent instances then the instance of the management agent syslogjigent could

50

also be used for the policy stated in Example 5.2. The management agent instance that is in use

for the policy specified in Example 5.1 needs to be configured to evaluate the event used in the

policy specified in Example 5.2.

Searches for agents and agent instances require an information model that provides

information about agents, agent instances and their relationship. Section 5.2 describes an

information model.

5.2 Management Agent Information Model

To facilitate the usage of management agents for supporting policies, a management system

should have a service that finds agents. Therefore, for each agent the following information is

needed:

1. The attributes that can be monitored.

2. Information characterizing an agent executable e.g., the path of an agent executable such

as /PMagic_Manager/agents/cpu_agent. In this work, the term agent refers to the agent

executable.

3. Information characterizing an instantiation of an agent i.e., the agent that is in execution.

This is called an agent instantiation or agent instance in this work.

The information model (graphically depicted in Figure 5.1 using UML) that represents this

information is described in this Section. This information model is used as the basis for the agent

repository in the prototype introduced in this Thesis (see Chapter 7 for more details). Information

about the agent is represented by the Agent class and information about a specific instantiation is

represented by the Agentlnstantiation class. A description of these classes is provided below.

51

Figure 5.1: Agent Information Model

The A gent class represents information about an agent. The attributes characterizing this class

include the following:

- AgentID: This is the agent identifier.

- AgentOSType: This specifies the operating system under which this agent can execute e.g.,

UNIX, Windows, OS2, Linux.

- AgentExecutableHost: This represents the IP address of the host that stores the agent

executable.

- AgentExecutableDirectory: This represents the directory of the agent executable file. The

AgentExecutableDirectory is the path to the directory of the agent executable and supporting

files e.g., adapter configuration files. The combination of AgentID, AgentExecutableHost and

AgentExecutableDirectory is used to determine the location of a specific agent executable.

- AgentLibraryHost: This represents the IP address of the host that has the libraries needed by

the agent for execution.

52

- AgentLibraryDirectory: This represents the directory where the libraries are located.

- InformationServiceDirectory: This is the path to a directory with the executable of an

information service. Not all agents need to assign a value for this.

- AgentDescription: This provides a textual description of the agent.

Table 5.1 represents an example of the values that the Agent class attributes may hold.

A ttribu te Nam e Value

AgentID cpu_agent_l

A gentO SType UNIX

A gentExecutab leH ost 129.100.18.32

A gentExecutab leD irectory “/sl/wolfbiter/PMagic_Manager/agents/cpu_agent_l/”

A gentLibraryH ost 129.100.18.32

A gentLibraryD irectory “/sl/wolfbiter/PMagic_ Manager/libraries/”

A gentD escrip tion “an agent to monitor the cpu and processes on managed host”
Table 5.1: Example of the Values the Agent Class Attributes may Hold

Instances of agents monitor attributes characterizing the behaviour in a system (e.g.,

cpu_load attribute). Attribute information is represented by the Attribute class. Information about

an attribute includes a unique attribute name, the type of the attribute and a description. As

represented in the model, an attribute can be monitored by more than one agent and an agent can

monitor more than one attribute. It may be the case that there are different agent executables with

the same functionality that execute under different operating systems. In this model, these agents

are represented by different Agent objects.

The AgentlnstanticitionClciss class represents information about an instantiation of an agent.

It is possible to have multiple agent instances of an agent. Thus there is a zero-to-many

relationship between Agent and Agentlnstantiation. An agent instance may be an initialization of

an agent executable or a dynamically created agent or a manager agent. More details about

53

management agent types are described in Section 5.6. Each agent instance is associated with a

host. An agent instantiation has a unique identifier, AgentlnslD , e.g., the combination of the

AgentID , Agent InstanceCommunicationPort (i.e., the communication port number that this

instance uses to communicate with the host) and the HostName.

Agent instantiations are used to monitor attributes to determine if a condition that

characterizes an event is satisfied. An event is modelled by the class EventExpression. An agent

instantiation may generate more than one event and an event may be generated by more than one

agent instance. Thus there is a many to many association between the Agentlnstantiation class

and the EventExpression class. Upon detecting an event, the agent instantiations send a

notification of that event to the designated target (e.g., management application). The

information (e.g., host name and port number) about the designated target is represented by the

EventTarget class.

The work in [16,25] addresses the issue of canonical and common base event data. The

management agents introduced in this Chapter are designed to construct event notification

messages with important data, such as data that uniquely identifies the managed object, the source

of the event (the component that is generating the event) and the timestamp of the event. The data

necessary to synchronize and aggregate events with other events, in composite events situation,

are also included in the generated event messages. More about the data maintained in event

messages can be found in Chapter 7.

Information about what an agent instance supports is maintained and is represented by the

Registry class. An agent instance can support one or more policies in that it can either generate

events specified in the policy or monitor attributes specified in the policy (but not actually

generate an event). The manager uses and updates the Registry class information in the agent

54

configuration task. More details about agent configuration tasks will be elaborated in Section 5.6,

5.7.2, and Chapter 6.

5.3 Management Agent Design

An agent monitors attributes that characterize the state of the system. There are many

information services that provide monitoring mechanisms to get values of the attributes represent

the state o f the system. Provide. Examples of information services are; Simple Network

Management Protocol (SNMP) agents [65,103,144], Application Response Measurement (ARM)

[121] and Tivoli monitoring agents [151], Web-Based Enterprise Management with CIM

(WBEM/CIM services) [58,116], Java Management Extensions (JMX) [149] , Windows

Management Instrumentation (WMI) [105], Web Service Distributed Management (WSDM)

[158], scripts, and logfile analyzers. There are two challenges in using these services:

(i) The information services directly extract information from the object being

monitored. An information service typically involves some form of instrumentation.

Each information service has an interface, but these interfaces are different for

different information services.

(ii) Events may be specified using attributes from different managed objects. An event

may be characterized by a condition that checks the status of a printer and the size of

the document that needs to be printed. Such a condition would include attributes from

different managed objects. This condition may need two information services to

collect the attribute values needed to evaluate the condition characterizing the event.

To automate the identification of and search for the services that can monitor the system

attributes requires that all management agents must have a common interface. Figure 5.2 shows

how the proposed monitoring structure as outlined in this Thesis would communicate with

existing monitoring mechanisms that have different interfaces. The arrows indicate a flow of

55

information. A management agent can request information from an information service. The

information service responds to the management agent with the requested information. This

requires that the management agent that interacts with the information service use the API of the

infonnation service.

A proposed management agent design is shown in Figure 5.3. In this design, management

agents have an interface that is known to the managers and other agents, and through that

interface the manager can configure management agents (upon creating an agent instance),

reconfigure management agents based on the policy specification and terminate management

agents. A management agent is designed to maintain information about what it asked to support,

e.g., events to be monitored. More details about this information and about the interface are

described in this Section.

56

5.4 Management Agent Components

A management agent is designed to maintain the information needed to support policy

deployment and to carry out the enforcement of the policy rules if asked to do so. The

management agent has the Poi icy Representation, Event Representation, MessageRepresentation

and ActionRepresentation components.

Figure 5.3: A Management Agent Structure

5.4.1 An E vent-R epresentation C om ponent

For each event to be managed by the management agent instance, the EventRepresentation

component maintains a set of event tuples, denoted by Events, where each tuple represents

information about an event that is to be monitored and triggered by the management agent

instance. The event tuple is of the form:

-EventID, EventExpression, EventAttrtibutes>

57

The components of the event tuple are briefly described as follows:

EventID'. The event identifier.

EventExpressiorv. The event expression represents the event. In case the event is a

primitive event, this is the logical expression (condition) that characterizes the event

that the management agent is expected to monitor. In case the event is a composite

event, this is the event expression that represents the event composition that the

management agent is expected to evaluate.

EventAttributes: This is a set of the attribute names used in the specification of the

event.

As an example consider the policy specified in Example 1.1. Assume that the event identifier is

sessionidle_exp. The set, EventAttributes, consists of a single attribute, sessionidle, and the

event expression stored is sessionidle >20.

The EventRepresentation component maintains information about events that is independent of a

policy. If the policy specified in Example 1.2 is added to the of active policies then the tuple

created for Example 1.1 will also apply to the policy in Example 1.2.

If the expression characterizing an event changes then it is associated with a new event

identifier.

5.4.2 A Policy-Representation Component

The PolicyRepresentation component maintains information about each policy associated

with the management agent instance. There are two sets of tuples maintained by this component.

Information about an event that is specific to a policy is stored as a tuple in the Policy-Event set.

The tuples are in this form:

<PolicyID, EventID, EventTargets>

The event specified in the policy is referred to as a policy event. The following is a brief

description of the tuple elements:

58

PolicylD: The policy identifier.

EventID: The event identifier.

EventTargets: This is a set in which each element of the set represents information

about a target (handler) that is interested in receiving and handling a notification of

the event occurrence. The general form of an EventTarget element is the following:

<Target, {WaitPeriod|EventTimeWindows}>

Target: This is a handle (a handle is the information needed to communicate with the

process) representing the process to be notified of the event occurrence. Since an

event may be common to more than one policy there is the potential for an event

target to receive multiple event notifications. Our design assumes that the

management agent which sends the event notifications also filters out multiple event

notifications. The reason for doing this is that if a target is a manager then the

manager would have to deal with multiple notifications. Our approach means that

managers do not have this responsibility.

WaitPeriod: The WaitPeriod is used only for primitive events. It is not applicable to

composite events. The WaitPeriod is the time between evaluations of the condition

specified in EventExpression. The management agent design takes into account that it

may not be needed for a management agent instance to verify every condition at

once. For example, consider a management agent instance that can evaluate the event

expression (logical expression) usersloginstotal >5 (used in the policy specified in

Example 3.1) and the logical expression sessionidle>20 (used in the policy specified

in Example 1.1). The first logical expression may need to be verified every two

minutes while the second logical expression needs to be verified every 10 minutes.

This implies that a management agent instance should maintain how often an event

expression (characterizing an event) should be evaluated. The reason for why the

59

time between condition evaluations may vary is that monitoring and evaluation of

monitored data consumes resources. Providing a mechanism to control condition

evaluations provides some control over resource consumption. Frequency is

controlled by WaitPeriod. We assume that if this is not specified in the policy that a

default frequency is assumed. This assumes that the policy specification language

does allow for the specification frequency. The prototype in Chapter 7 supports this

ability.

- EventTimeWindow: This is defined only for composite events and is not applicable to

primitive events. The EventTimeWindow is the time period in which the event

expression should be evaluated. More specifically, EventTimeWindow represents a

time period that is delimited by two specific boundaries of time points, e.g., 10

minutes from current system time (now). This time period is used to evaluate the

occurrence of a composite event.

Information that relates a policy, events and rules is represented as a tuple in PolicySet:

<PolicyID, EventID, EventTree, Policylnterval, Rules>

The elements of the tuple are briefly described as follows:

PolicylD: The policy identifier.

EventID: The event identifier of the event which is either the policy event or a

constituent event of the policy event of the policy identified by PolicylD. Example

3.1 has a policy event in the form of 2?, E-SEQ E j, where Ej and Ej are events that

may be monitored by different management agents. The management agent

monitoring for E, would have a tuple with the policy identifier associated with the

example, the event identifier for Ej and the event tree associated with Ej. The

management agent monitoring for Ej would have a tuple with the policy identifier

60

associated with the example, the event identifier for Ej and the event tree associated

with Ej.

EventTree: This component maintains the event tree for the event identifier specified

in EventID. We use an event tree to represent the relationship the event identified by

EventID has with other events. Each node of the event tree corresponds to an event.

The root node of the tree is the event associated with EventID. The leaf nodes of the

event tree correspond to primitive events while all other nodes of the event tree

represent composite events. An event tree with one node means that the event

associated with Eventld is primitive; otherwise the event associated with Eventld is

composite. The information for each node of the event tree is found in the Policy-

Event set. We will show later in this Chapter how EventTree is used for composite

event detection.

Policylntervah This denotes the interval associated with the policy as discussed in

Section 3.2.

Rules: This is a set where each element of the set represents information about a

policy rule. For example, consider a management agent instance that monitors the

event used in the policy specified in Example 1.1, i.e., the agent instance evaluates

the event that is characterized by the condition sessionidle>20. This agent instance

may be configured to evaluate the policy rule close the session. Note that the policy

rule associated with the policy of Example 1.1 has no condition that needs to be

evaluated before enforcing the action. Thus a rule could end up being an action. The

Rules set may be empty. For example 3.1 the management agent monitoring E, would

have this set be empty since it is not the policy event but rather a constituent event of

the policy event. The general form of a rule is the following:

<Logical Expression, ActionInfo>

61

where LogicalExpression represents the condition and Actionlnfo is information

about the action. This is described in more detail later in this Section.

The use o f the PolicyRepresentation component by agents is discussed in Section 5.6.

5.4.3 A Message-Representation Component

It may not be possible for one management agent to monitor all of the attributes used in the

specification of a primitive event. An arrangement of agents may be required to monitor all

attributes o f a primitive event. More on this is discussed in Sections 5.6 and 5.7. Agents that

collectively monitor the attributes periodically exchange information through messages. A

message is a collection of attribute/value pairs. A management agent is designed to maintain a

set, Messages, of message tuples related to the messages that need to be sent by an instance.

This message tuple has the form:

<PolicyID, EventID, MessageAttributes, MessageTarget, PolicyInterval,WaitPeriod>

The components o f the message tuple are briefly described as follows:

PolicylD : The policy identifier.

EventID: The event identifier of the event for which a message of attribute values is

needed

MessageAttributes1. This is a set of the attribute names whose values are included in the

message sent.

MessageTarget This indicates where to send the message. Typically, a message is sent

to one or more other management agents.

Policylnterval: This denotes the associated interval with the policy as discussed in

Section 3.2.

WaitPeriod: This is the time to wait between sending of multiple instances of this

message to its target.

62

A tuple is needed when an agent is only able to monitor part of a condition characterizing a

primitive event and the attributes it is monitoring are sent to another agent that is collecting

attribute values in order to evaluate the condition.

5.4.4 An Action-Representation Component

Management agents can be used to carry out actions, some of which may be on a periodic

basis. For example, an agent may be used to execute the virus checking software every night at

2:00 AM. The management agent design maintains a list of action tuples where each tuple has

the following form:

<ActionID, ActionExecutableHandle, ManagedResoursesList, {Schedule }>

where:
ActionID: The action identifier.

ActionExecutableHandle'. Information about the action, e.g., the directory where the

action executable resides, the library directories, how to call this action, etc.

ManagedResoursesList'. A list of the managed resources on which the agent carries

out the action.

Schedule'. The time when the action should execute (optional). If the action is used in

a rule then it is assumed that the Schedule is not used.

5.5 A Management Agent Interface

The interface has a method that enables the manager to configure the state of the

management agent, such as asking the agent instance to sleep or shutdown if there are no active

policies for the agent to support. The interface also provides methods that allow a manager to

add, delete or modify policy and event tuples in a management agent instance. Similar methods

are defined for message and action tuples.

63

5.6 Types of Management Agents

All agents have methods that permit for the manipulation of information described in Section

5.3.1. This Section describes how the interface is extended for three types of agents: monitoring

agents, dynamic monitoring agents and manager agents. These agents have specific purposes.

Definition 5.1: A monitoring agent (ma) is a management agent that communicates with existing

information services, is able to detect primitive events and is able to send messages of

attributes/values pairs to dynamic monitoring agents.

Definition 5.2: A dynamic monitoring agent (dma) is a dynamically created management agent

that collects data from monitoring agents. A dynamic monitoring agent is used to detect a

primitive event that cannot be detected by single monitoring agent.

Definition 5.3: A manager agent (manager_agent) is a dynamically created management agent

that is dedicated to detecting composite events.

The rest of this Section describes these agents.

5.6.1 M o n ito ring Agents

Primitive events require direct extraction of the information from the object being

monitored. This requires some form of instrumentation which is specific to the managed object.

There are many information services that provide some form of instrumentation. Each

information service has an interface, but these interfaces are different for different information

services. A monitoring agent (ma) is a management agent that communicates with existing

information services, is able to detect primitive events and send notification messages of the

detected events to the event targets. These targets could be manager agents and/or eventhandlers.

The ma is able to send messages of attributes/values pairs to dynamic monitoring agents. Let us

64

consider the policy (denoted by cpujoad_policy) of Example 4.1. In this example, the attribute

cpu_load, representing cpu load, is monitored. We assume that the monitoring is done by an

information service e.g., SNMP agent. In the case of an SNMP agent the monitoring agent uses

the SNMP GET command to get the current cpu load. The monitoring agent (denoted by

cpu_agent) uses these values to determine if cpu_load>95. Thus the monitoring agent has a tuple

in the Events set of this form <cpu_load_evt, cpu_load>95, {cpu_load}>. The monitoring agent

has a tuple in the Policy-Event set of this form <cpu_load_policy, cpu_load_evt, {cpu_agent}, 1

minute>. Assume that the information service that monitors the cpu load can also monitor

memory usage. It is then easy to add a policy that specifies an event based on the memory usage

by asking the monitoring agent to add the event information to the Events set and information

about the event and policy to the Policy-Event set.

The event target is the agent itself and the 1 minute indicates how often the monitoring agent is

to get a cpu load value. The monitoring agent may either poll the information service or have the

information service push the information. This is considered implementation dependent. If the

information service is an SNMP agent and polling is used then the monitoring agent may issue a

GET command to the SNMP agent every minute. There are different possibilities for the target

o f the event notification including the following: (i) If the association between an event and a

rule is through an event-driven rule-based engine then a possible target o f the event notification is

an event handler; (ii) If the agent is to carry out the policy rules enforcement then the target

may be itself; (iii) If the event is a constituent event in a policy event monitored by another

management agent then the target is that management agent.

Attributes are associated with monitoring agents. When searching for an agent to use (more

on this in Section 5.7), the search is based on the monitoring agents. The implementation of a

monitoring agent uses an executable that has the code for maintaining event and policy

information as described earlier in this Chapter. However, assume the monitoring agent needs to

65

interact with an information service such as SNMP. There are two cases. The first is that the

service is already assumed to be started. This is often the case with SNMP which is started when

the system boots. This is relatively easy to test by assuming that the monitoring agent has a

method that tests to see if the information service is started. The second case is that the

information service is not started. In this case it is assumed that the locations of the information

service executables is known and can be found and used by the Distribution Mechanism

(Chapter 4).

For the policy specified in Example 3.1, there is a monitoring agent for event E, and another

monitoring agent for Ej. These agents use UNIX scripts to collect the required monitoring

information, i.e., the required attributes/values. If a new policy is added that requires that an event

is to be generated if the CPU load is greater than 95, then this can be accomplished by requesting

that the agent instance monitoring £}also monitors this new event.

5.6.2 Dynamic Management Agents

A dynamic monitoring agent is dynamically instantiated and dedicated to detecting a

primitive event when all the attributes in this primitive event cannot be collected by a single

monitoring agent. The monitoring agents are dynamically configured to send the attributes/values

pairs almost simultaneously to the dynamic monitoring with which they communicate. The code

of the dynamic monitoring agent maintains the information discussed in Section 5.4. It provides

the interface in 5.5 but it has additional methods that are used to configure the agent so that the

relevant monitoring agents can communicate with it.

For Example 3.1, if the management system provides a monitoring agent that monitors users

logins, another monitoring agent that monitors CPU load, and a third monitoring agent that

monitors processes, then a dynamic monitoring agent is dynamically instantiated to receive the

values of CPU load and the number of running processes attributes from the last two monitoring

66

agents, and then the dynamic monitoring agent is used to detect instances of the primitive event

Ej. We note that the monitoring agents have a tuple in the set of tuples managed by the Message-

Representation component.

5.6.3 Manager Agents

As indicated in Section 2.1, management systems provide an event handler to deal with the

collection and distribution of events to other management components. One of these components

may associate events with rules. An example is the Tivoli Enterprise Console (TEC). This type

of component is sometimes referred to as an event-driven rule-based engine and typically has

functionality that can be configured to implement the event operators introduced in Chapter 3 and

thus allow for a complex analysis of the received events before determining an action. A useful

mechanism to have is a management agent that can determine the action without having to send

an event to the rule base engine. This allows for a distribution of event handling. Therefore, the

manager agent is introduced. A manager agent is dynamically instantiated when the policy event

is of type composite event. The manager-agent has an additional component, EventMemory,

which maintains a list of the event notification messages received. The event notification

messages to be received by a manager agent are those for the policy assigned to that agent. The

EventMemory list consists of the following tuples:

<EventID, EventTimeStamp, EventAttributesValues, EventStatus>

where:

EventID: The event identifier.

- EventTimeStamp: The time that the event occurred.

EventAttributesValues: A list of the attribute name and value pairs.

EventStatus: The status of the event, e.g. Open or Closed which indicates whether the

event has already been processed or not.

6?

The manager agent is dynamically configured to receive events from other management

agents. These events are the constituent events that are used in the construction of the composite

events this manager agent detects. The detection of composite events using manager agents is

explained in Section 5.6.4.

5.6.4 A Manager-Agent Procedure for Handling Events

The diagram in Figure 5.4 illustrates a procedure for processing an event as it is received by

the manager-agent. When an event is received, the procedure determines if the received event

occurs within the time frame specified in the policy interval. If this is not the case, the procedure

terminates. Otherwise the event is added to the set of event tuples maintained by the

EventMemory component. The procedure then determines if the policy event or its constituent

events have occurred. For an event in the set maintained by the EventTree of the

PolicyRepresentation component, if all the preceding events have occurred then the event being

examined has occurred subject to any existing timing constraints. For example, the occurrence of

an event expression using the E_SEQ operator needs the two constituent events, LHS and RHS,

events to occur and the LHS event in the expression to occur before RHS event.

The occurrence of an event causes a notification message to be sent to the targets specified in

EventTargets and the EventMemory component to be updated. When the policy event, which is

the last event represented in the EventTree component, occurs, then the rules specified in the

policy, and represented in Rules of the PolicyRepresentation component, are executed and the

procedure terminates.

68

Figure 5.4: A Flow Diagram Illustrating a Manager-Agent Procedure for Handling Events

69

The procedure is designed to process the event expressions, represented in the

EventRepresentation component, with events in EventM emory on a periodic basis, e.g., every 5

minutes, as long as no new event is received. The periodic execution of the procedure is

necessary to detect events that are characterized by an event expression where the time constraint

associated with the event represents an earlier time frame than the current time (e.g., the event

should have happened 10 minutes ago).

5.6.5 Relationship between the Different Types of Agents

Figure 5.5 shows the communications between the three types of the management agents.

For instance, a rmi can detect primitive events and sends primitive event notification messages to

m an-agent(s). A ma can send messages of attribute/value pairs only to dma(s). A dma receives

messages of attribute/value pairs from mas. A dma detects a primitive event and can send a

notification message of this primitive event to man-agent(s). A manager_agent receives

notification messages of primitive events from ma(s) and dma(s). A manager_agent can receive

notification messages of composite events from other manager_agent(s). A manager_agent

detects a composite event and can send a notification message of this composite event to other

man-agent(s).

For Example 3.1, if the management system relies on agents only to deploy the policy in this

example (see Chapter 6 for another deployment approach), then a manager agent is dynamically

created to receive the primitive events E t and Ej from monitoring agents, and then the manager

agent is used to detect instances of the composite event E. More details on how a manager-agent

handles and detects a composite event are outlined in Section 5.6.4.

70

Figure 5.5: A Communication between Management Agents

5.7 Agent Matcher

The Agent Matcher component, introduced in Section 4.1, is used to Find and configure the

management agents that can enforce the policies. There are three tasks involved: finding potential

agents, finding existing agent instances and developing an agent configuration. This Section

describes these tasks and addresses the algorithms used to achieve these tasks.

5.7.1 F inding Agents

Upon adding a policy to the system, the Agent Matcher searches the agent repository to find

a set of agents that can be used to monitor the system being managed so that the policy can be

enforced. The matching process is based on the attributes extracted from the policy and the

attributes that a management agent monitors. The agent finding algorithm is invoked when a

policy is added (see Figure 5.6).

71

A lg o rith m A g en tF in d (P , P « ,, Pp*vems)
Input: 1) P is the policy

2) Pa„ is a se t of attributes extracted from th e e lem ents of P
3) Ppeventi is a se t of prim itive events specified in P

O utp u t: 1) Agents,,« (g , g peveiTts) is an associative array that asso ciates each se lected agent g to a set of
prim itive events g ,* « * , C P ,* « « , w h ere for each event e in gpe»,** agent g can m onitor all
the e attributes.

2) A gents« , (g , gmessages) is an associative array that asso ciates each se lected agent g w ith an
associative array gm.«^«,. The gm„ „ g « (e , e n g a g e .» «) is an associative array that
associates w ith each prim itive eve n t e , w hich g can partially support, to a se t of attributes
e_____ r , tt c eatt w h e re e« , is th e set o f attributes of th e prim itive event e.

1 . AgentSp = F ind _A g en ts (Patt)
2 . EventStemp = Ppevents

3- fo r each e e Ppeven.s do
4- g = F in d A g e n tA llA tt r ib u te s (A gentSp, eatt)

5- if (g ^ n u ll) th en
6 . if (g e AgentSpe. k e y s) th en
7- Spevents = Spevents U { ® }
8 . e lse
9- AgentSpe (g , gpevents) = A gentspe (g , { e })
1 0 . end if
1 1 . Events,*mp = EventStemp \ { e }
12 . end if
13- end fo r

14- if (EventStemp == 0) th en
13- re tu rn (A g en tsp* (g , g pevents) . 0)
1 6 . end if

17- fo r ea ch e e Events,emP do
18 . A g en ts,emP = AgentSp

19- w h ile (e att ^ 0) and (Agents,emP ^ 0) do
2 0 . g = Find A g ent_A ny_A ttrib utes (A gents, *mP , eatt)
2 1 . if (g == n u ll) then
22 . FAIL
23- e lse
2 4 . if (g € A g e n ts « ,. k e y s) then
25- ^messages (€ t 6message_att) = ^messages (C ; ®att 0 §att)
2 6 . e lse
27- AgentSatt (S t ^messages) = AgentSatt (S * ^messages (6 > 6att f l Satt))

2 8 . end if
29- end if
3 0 . Agents,emp = Agents,emp\ { g }
31- Satt = Sat, \ g att

32- end w h ile

33- if (ea« ^ 0) t h e n
34- FAIL
35- e lse
3 6 . AgentSpe (S f Spevents) = AgentSpe (ge-dynamic t { ® })
37- end if
3 8 . end fo r

39- retu rn (A g en tspe (g , gpevents) , A g en ts« , (g , gmessages))
ex it algorithm

Figure 5.6: An Agent Finding Algorithm

72

The variable Pall represents the set o f attributes extracted from the policy elements e.g.,

conditions. The variable Ppevents represents the primitive events specified in the policy P. The

algorithm in Figure 5.6 uses an associative array to represent the output of the algorithm. An

associative array (or container), is a collection of keys and values, where each key is associated

with one value. The key is an agent and a value is a set of events. The associative array, Agentpe,

represents agents that can monitor all o f the attributes specified in at least one o f the primitive

events in Ppevents • The associative array, Agenta„ , represents agents that can monitor some of the

attributes specified in at least one of the primitive events in Ppevents ■

The algorithm first determines the set of monitoring agents, represented by Agentsp, that can

monitor any of the attributes found in Pa« (Step 1). In Steps 3 to 13 the algorithm finds a subset

of AgentSp that can be used to monitor all the attributes associated with primitive events specified

in Ppevents- However, it is not necessarily the case that all attributes in an event can be monitored

by a single agent. Thus it is necessary to find a set of agents that collectively can monitor all the

attributes used in the specification of a primitive event. This is done in Steps 17 to 36 of the

algorithm.

For each event e in Ppevents the algorithm searches to find a monitoring agent g that can

monitor all the attributes specified in e (Step 4). If there is such an agent then in Step 6 the

algorithm checks if the returned agent, g, can monitor other events in Ppevents • This is done by

checking (Line 6) if g is a key in AgentSpe (the set of keys is denoted by Agentspe. keys). If g is a

key, then the algorithm (Step 7) adds an event e to the set of events gpeVents that g is able to

monitor. If g is not a key then an entry (Step 9) is created in Agentspe.

In Step 11 the algorithm reduces the set of primitive events by the event e since there is an

agent that can be used to monitor all of the attributes used in the specification of e. After all

events have been examined, the events in Events,emp are events for which there is no single agent

fllMi&l

73

that can monitor all of the attributes used in the specification of these events. If Eventstemp is

empty then the algorithm finishes and returns AgentSpe (Step 15). Otherwise, Steps 17 to 35

compute for each event e in Events,,emp a set of agents that can be used to monitor all of the

attributes used in the specification of e. The approach is similar to that used in lines 3 to 13.

The difference is in the purpose of the set of agents found and added to Agentsa„ . Agents in

AgentSa,, are selected such that each agent monitors a non-empty subset of the attributes in ea„.

An event’s attributes may be monitored by several monitoring agents. A monitoring agent may

be used to monitor parts of multiple primitive events. The gmessages (e , emessagea„) is an

associative array that associates each primitive event e, which g can partially support, to a set of

attributes emessage_a„ , where emessagê „ is a subset of eatl. The gmessages represents the values of

Agentsa„.

If the algorithm does not find an agent g in Step 20, then the algorithm terminates indicating

a failure to find the agents needed to support a policy. The algorithm checks to see if g is already

selected to partially monitor other events (Step 24). If so, then in Step 25 the algorithm

associates the event e with the set of attributes that results from the intersection of ea„ and the

agent attributes ga„ in gmessages', otherwise, i.e., g is not selected to partially monitor any other

events yet (Steps 26 and 27). In this case, the algorithm in Step 27 associates g the gmessages, after

adding an association in gmessages of e with the result set of the intersection between ea„ and ga„.

The algorithm fails if any of the attributes of any primitive event cannot be monitored (Step

34). The algorithm only succeeds when all the attributes of all primitive events of the policy can

be monitored. In Step 36, an entry of the dynamic monitoring agent gê v„flm,c, which needs to be

dynamically created to monitor the event e, is created in Agentspe. As seen (Step 36) the algorithm

not only finds the monitoring agents, but also determines the dynamic monitoring agents needed

to support a policy. It is possible that an agent may be in both Agents^ and Agentsa„ meaning that

an agent can generate an event and monitor attributes’ values for other agents. If the algorithm

74

succeeds, the outputs represented in Step 37 are the two associative arrays Agents^ and

Agentsa„.

In considering the time complexity of the algorithm, let us assume the following:

• n is the number of distinct attributes that are monitored by (i.e., associated with) any

monitoring agent within the repository.

• m is the number of the primitive events in Ppevems-

The worst case is when each attribute can only be monitored by a single agent, i.e., the

number of monitoring agents is also n. Considering the first and second fo r loops of the algorithm

that iterate over the number of the primitive events m, these loops have a worst case running time

of O(w). Thus, the worst case the time complexity of the algorithm is O(mn). More discussion

can be found in Section 8.4.2.

5.7.2 Finding Agents Instances

Let X be the union of the set of keys of Agents^ and the set of keys of Agentsat, . The

next step is to determine for each agent in X if there is an instantiation of that agent i.e., to

determine the set instances(X) of already defined instances of agent classes found in X. The

algorithm to find instances(X) is a straightforward searching algorithm in the database of the

existing agent instances. Therefore the set X /=X 1 instances(X) is the set of agent classes that

need to be instantiated.

5.7.3 Configuration of Management Agents

Deploying and enforcing a policy by management agents (monitoring, dynamic monitoring

and/or manager agents) requires the configuration of (i.e., instantiation of or the addition to or

updating) the PolicyRepresentation, EventRepresentation MessageRepresentation and/or

ActionRepresentation components of the management agents using the corresponding specified

policy elements. This Section addresses these configurations. If the Finding Agents algorithm in

Section 5.7.1 successfully terminated, i.e., finds monitoring agents that can support the added

policy P by monitoring all the attributes that are used in the specification of policy P ’s primitive

events (denoted by Ppevem). then the algorithm will output the following two associate arrays:

1. Agentspe (g , gpevems) is an associative array that associates each selected agent g to a set

of the primitive events gpevents, gpevents c; P pevmts where for each event e in gpevents the agent

g can monitor all the attributes of e.

2. AgentsaU (g , gmm(Ig„) is an associative array that associates each selected agent g with

an associative array gmeaagei. The gmejMg„ (e , emessagê ,„) is an associative array that

associates with each primitive event e, which g can partially support, to a set of attributes

6message_ait c ea„ where eatt is the set of attributes of the primitive event e.

There are several cases to be considered in instantiating agents:

1. The policy event is a primitive event, e, and one monitoring agent, g, can monitor all the

attributes in that event. In this case Agents^ (g , gpevents) has one key and value pair

where the key is g and the value is e. The array Agentsa„ (g , gmessages) is NULL. The

deployment of policy P requires the following tuples:

• The tuple <P, e, e.tree, P.Interval, Rules> in the PolicySet set of g.

• The tuple <P, e, {g, e.waitperiod}> in the Policy-Event set of g.

• The tuple <e, e.expression, e.attributes> in the Events set of g.

where e.tree, e.waitperiod, e.expression, e.attributes denote the event tree associated

with e, the wait period associated with e, the event expression characterizing e, and

the attributes used in the specification of e. The notation P.Interval is used to denote

the interval associated with policy P.

75

76

2. The policy event is a primitive event, e, and multiple monitoring agents are needed to

monitor all the attributes in event e. In this case Agents^ (g , gpevents) has one key and

value pair where the key is dynamic monitoring agent g and the value is e. Let G denote

the set of keys in Agentsa„ . This corresponds to the set of agents that collectively can

monitor the attributes of e. The deployment of the policy P requires the following tuples:

• The tuple <P, e, e.tree, P.Interval, Rules> in the PolicySet set of g.

• The tuple <P, e, {g, e.waitperiod}> in the Policy-Event set of g.

• The tuple < e, e.expression, e.attributes> in the Events set of g.

• for each g, in G the following tuple needs to be added to the Messages set of g,.

<P, e, e message_atb g, P.Interval, e.waitperiod >

3. The policy event, e, is a composite event of the form e, e-op e,. Assume that g, and gj are

agent instances configured to monitor e, and e, respectively. Assume that g is the manager

agent used to detect the policy event e and carry out the policy rules. We assume that the

agent instantiations needed to monitor all other events in the event tree have been

determined and configured. Thus the focus in the discussion in this case is g, g, and gj.

The deployment of policy P requires the following tuples:

• The tuple <P, e, e.tree, P.Interval, Rules> in the PolicySet set of g.

• The tuple <P, e, {e.targets, e.timewindow}> in the Policy-Event set of g.

• The tuple < e, e.expression, e.attributes> in the Events set of g.

• The tuple <P,ej,{g, ej.waitperiod |ej.timewindow}> in the Policy-Event set ofgj.

• The tuple <P, ej, {g, ej.waitperiod |ej.timewindow}> in the Policy-Event set ofgj.

• The tuple < e*, ej.expression, ei.attributes> in the Events set of g,.

• The tuple < ej, ej.expression, ej.attributes> in the Events set of gj.

77

There is one note to be made about this case. First, g, g, an gj are not necessarily distinct.

In other words, g could be used to detect e, and e j , if e, and e, are composite events.

Currently in our prototype if e-, and ej are composite events then g is configured to detect

these events. This is done for efficiency reasons. The goal of this thesis is not to

determine an optimal arrangement of agents but rather to ensure that the agent model is

flexible enough to support a wide range of arrangements. The flexibility of the model

comes from the features of the model which enable it to accommodate any arrangement

of agents that might be adopted to deploy policies. Future work will carefully explore

issues related to optimal arrangements of agents.

5.8 Discussion

Support fo r Legacy Code: The design of management agents needed to address several

challenges. First, legacy information services such as SNMP and scripts need to be supported.

This is done by having monitoring agents. The monitoring agents have the interface described in

5.5; however these agents hide their interaction with the legacy agents, i.e., information services.

For example, a monitoring agent that interacts with an SNMP agent is implemented with the

interface described in Section 5.5 but it is also implemented to be able to compose and receive

messages from SNMP agents. In Section 5.6.1 it is assumed that the monitoring agent

implementation is based on two executables, with one of those executables being an SNMP agent

or some other legacy information service and the other being the executable of the monitoring

agent itself. The instantiation of a monitoring agent requires that the legacy information service

be instantiated and that the executable that has the code for event handling be retrieved. In

Chapter 4, we described the need for a Distribution Mechanism component that is provided with

enough information to start an agent instance. This information includes the location of

executables needed. The model introduced in this chapter allows for implementations including:

78

• The use of mobile agents (e.g.,[48,123,160]). This approach typically assumes that the

legacy information service already resides on the managed object. The executable that

deals with event handling is similar to the concept of mobile agent.

• The two executables that constitute a monitoring agent are instantiated together.

• The executable with the legacy code is instantiated but not the other executable. It is

often the case that SNMP agents already exist as a process.

Currently the implementation uses the second and third approaches. The use of mobile

agents typically assumes the existence of a process that can take mobile code, which normally

requires an infrastructure in place. We wanted to use an approach that is relatively easy to

incorporate within existing management systems.

We would like to note that the development of monitoring agents where the information

service is SNMP can be aided by tools such as those found in [126].

Distribution o f Management functionality: Centralized management systems do not scale

well (e.g., [134,135,149]). A good deal of work has been done to address this including

(e.g.,[52,161]). The work in [161] first introduced the concept of distributed management

functionality in the seminal work on the Management by Delegation (MbD) model. The IETF

has integrated the MbD model into their management frameworks based on the work found in

[135] which uses the IETF Script MIB to transfer management scripts to a manager that is able to

receive these scripts and execute them. Examples of implementations are found in [7,101]. Our

design allows for this functionality with its ability to allow actions to be associated with rules.

The actions can be implemented using scripts. There have been attempts to develop peer-to-peer

management systems (e.g., [30,123,160]). This requires flexibility in sending event notifications.

Although our work does not assume peer-to-peer management systems, we believe that the agent

design described here can be used in these types of management systems.

79

Support fo r Agent Finding and Agent Matching: Chapter 4 describes the need for several

services to determine agents that can support the policy. This chapter presented an Agent

Finding service based on associating attributes with monitoring agents. Chapter 8 provides an

analysis o f this algorithm.

Relationship to Existing Management Systems: Event notifications can be used by multiple

management applications. The agent design requires that event targets be defined. These targets

can be management entities that include an event-driven rule-based engine, an event handler or

any other management application. Agent executables can be placed on machines using existing

management system distribution mechanisms as seen in Chapter 7.

5.9 Chapter Summary

The Chapter presented an information model for agents and their instantiations. The

management agent design, interface, components and types are addressed. The information model

was used as the basis for the Agent Matcher component. This Chapter highlights how our

proposed PBM system architecture can automatically identify and configure and reconfigure

management agents in response to changes in policies. The proposed solution is based on the

matching between the management operations that are carried out by the management agents and

the policies. The matching process relies on the attributes that the agents can monitor and the

extracted attributes from the components of the policies.

80

Chapter 6

Mapping Mechanisms

Chapter 3 defines an event as a message that notifies of a change in system state that is of

interest. Different management systems have different formats of these messages. Events are

associated with rules. Managers that interpret rules may use an event-driven rule-based engine.

The rules interpreted by a specific event-driven rule-based engine require that rules be specified

in a particular format. This Chapter discusses the generation of the event messages and the rules

from the language used to specify the policy.

6.1 Introduction

A set o f templates is used to guide mapping from the specification of a policy to the

generation o f messages associated with events and rules that can be understood by the

management system’s event-driven rule-based engine. A template is associated with a policy

element. Each class in the policy information model defined in Figure 3.2 is a policy element. A

81

template has a set of variables. The template variables are instantiated based on a mapping that

defines how a policy element should instantiate the template variables. More formally we have

the following:

Definition 6.1: A transformation rule r = (p,a,t) is a triple where

p : This is the specified policy element

t : This is the template associated with the policy element, p.

a : This is a mapping that defines how the variables of t are assigned values.

Multiple transformations rules are applied to a policy. A transformation is associated with a

policy element. A transformation rule may be applied more than once in transforming policy

elements, typically for the elements of the same type. It should be noted that not all policy

elements need to have transformation rules. For example, actions correspond to names of

executables. It is not necessary to use a template for this.

6.2 Event Format Mapping

The class representing EventExpression in the UML diagram in Figure 3.2 is further

expanded in Figure 3.4. There are two subclasses. One is labelled condition. This models a

condition and is used to characterize a primitive event. The other subclass models a composite

event. A transformation is associated with each of these classes. The rest of this Section

discusses the transformations needed for mapping specified events to a form that can be

understood by management systems.

6.2.1 Event Format Mapping for Primitive Events

Typically in management systems, event class definitions are used to define an event type.

Instances o f events of the same type have an identical message structure. The event class

82

definitions define a set of attribute names and the type of each of these attributes. Some of the

attributes are found in each event type e.g., source identifier that generated the event, timestamp,

event name and condition name. These are referred to as common attributes. The rest of the

attributes are specific to the policy e.g., an attribute representing the length of an idle session.

These are referred to as policy-specific attributes. In HP-Openview [61] and CA-Unicenter [23]

event types are expressed using the C language structure type, while in Tivoli [151] event types

are expressed using the Basic Recorder o f Objects in C (BAROC) language where the attributes

are called slots.

The following example shows how templates can be used to generate the definition of event

types that can be understood by Tivoli.

Example 6.1:

This example is based on the example policy stated in Example 1.1. The condition

characterizing the event is restated here: login session is idle fo r more than 20 minutes. The

policy element, p, is the event expression. The template for primitive events is shown in Figure

6.1. The resulting BAROC file is shown in Figure 6.2. The mapping a determines the list of

policy-specific attributes, which is used to instantiate a template variable that represents a list of

policy-specific attributes. Other template variables that need values to be assigned include the

event name and the condition name. Slots of the common attributes include the event name and

the condition name. Slots o f the policy-specific attributes include the length of the idle session

(sessionidlelong), the process identifier of the session (processid) and the user that initiated the

session {userid). The policy-specific attributes are assigned values when the event is generated.

The management agent that monitors the attributes and generates an instance of the event has a

method that is able to create the event message in the correct format.

83

#
Main Class Definition for Primitive Event ’ Event-ID-Variable'
Automatically generated by the PMagic Model
on System Date-Time at Template Instantiation

TEC_CLASS:

Event-ID-Variable is a event
DEFINES {

source: default= 'PMagic';
sub_source: default= 'PMagic_Agents';
sub_source_port: INTEGER , default=0 ;
operation_number: INTEGER , default=0 ;
severity: default = HARMLESS;
eventname: STRING, default = ' Event-ID-Variable' ;

condition_name: s t r i n g, default^'Condition-ID-Variable' ;
[Attribute-Name: Attrubute-Type;]*

>;
END
#
End Event Event-ID-Variable' class
###____________________________

Figure 6.1: Tivoli TEC BAROC Template File for Primitive Events

###
Main Class Definition for Primitive Event 'session_Idle'
Automatically generated by the PMagic Model
On Sun Nov 16 04:44:45 EST 2008

TEC_CLASS:

session_Idle ISA EVENT
DEFINES {

source: default= 'PMagic';
sub_source: default= 'PMagic_Agents';
sub_source_port: INTEGER , default=0 ;
operation_number: INTEGER , default=0 ;
severity: default = HARMLESS;
eventname: STRING, default=’session_Idle';
condition_name: STRING, default='session_Idle_20_mins';
processid: INTEGER;
sessionidlelong: INTEGER;
userid: STRING;

} ;
END
#
End Event 'session_Idle' Class
###

Figure 6.2: Tivoli TEC BAROC File for the session_Idle Primitive Event

84

6.2.2 E ven t F o rm a t M apping for Com posite Events

The event specified in Example 6.1 is a primitive event. However, the event could be a

composite event. As stated in Chapter 3, composite events are specified in one of these two

forms:

Ei eop Ej., where eop is either E-SEQ, E-OR or E-AND

eop Ej [arg], where eop is either E-COUNT or E-NOT.

Each composite event requires that the constituent events are determined. An event tree

needs to be created where each node corresponds to an event. The leaf nodes of the event tree

correspond to primitive events while all other nodes of the event tree represent composite events.

A post-order traversal (the reason for this will become clear in Section 6.3.1) of this tree is carried

out where the appropriate transformation rule is applied to each node. A transformation is needed

for a composite event element. The specification of a composite event type typically consists of

attributes for the event name, event operator and the operands of the events. The algorithm

M apEvent is shown in Figure 6.4 and will be described later.

Example 6.2:

For Tivoli a template for composite events is seen in Figure 6.3. This template is used with either

of the composite events forms that are used to specify the composite events. An example of the

resulting BAROC file is shown in Figure 6.8. A more detailed discussion of this template is

presented later in this Section.

85

###
Main Class Definition for Composite Event 'Event-ID-Variable'
Automatically generated by the PMagic Model
on System Date-Time at Template Instantiation
###
TEC_CLASS:

Event-ID-Variable isa Event
DEFINES {

source: default= 'PMagic';
sub_source: default= 'TEC';
sub_source_port: INTEGER, default=0;
operation_number: INTEGER, default=0;
severity: default = HARMLESS;
event_name: STRING, default = ' Event-ID-Variable1;

event_operator: s t r i n g, default=1 Event-Operator-Variable ;
lef t_event_name: STRING, default=' Left-Event-ID-Variable ;
left_date_reception: INT32, default=0;
left_server_handle: INTEGER, default=0;
left_event_handle: INTEGER, default=0;
right_event_name:STRING,default=' Right-Event-ID-Variable' ;
right_date_reception: INT32, default=0;
right_server_handle: INTEGER, default=0;
right_event_handle: INTEGER, default=0;
count_number: INTEGER, default=0;

};
END
###
End Event Event-ID-Variable1 class
############################tt############___

Figure 6.3: Tivoli TEC BAROC Template File for Composite Events

The M apE ven t A lgorithm

The algorithm M apEvent is depicted in Figure 6.4. In this algorithm the variable E represents

an event tree node. The algorithm determines (line 1) if the event node E has any outgoing edges

i.e., whether the node is a leaf node. A leaf node indicates that the node corresponds to a

primitive event. In the case of a primitive event, the algorithm returns the result of instantiating a

template with the event in node E (line 2) using the A pplyprim itiveJT em pla te function.

Apply_Prim itive_Template represents the transformation rule that applies to policy elements that

86

are primitive events, while Apply_Composite_Template represents the algorithm of the

transformation rule that applies to policy elements that are composite events.

A lg o r i t h m M a p E v e n t (E)

I n p u t : 1) E is an event tree node

O u t p u t : 1) Em appw i is a set of instantiated templates representing the specified event in the node E .

b e g in

1. I f (OutgoingNodes(E) == o) t h e n

2. r e t u r n Apply_Primitive_Template (E)

3- e n d i f

4- i f (OutgoingNodes(E) = 1)

5- m̂apped = MapEvent (leftnode(E)) (J Apply_Composite_Template(E)

6. return Emgpped

7- e l s e

8. Emapped = MapEvent (leftnode(E)) U MapEvent (rightnode(E)) (J

9-

Apply_Composite_Template(E)

return Emappcd

10. e n d i f

e n d

Figure 6.4: A MapEvent Algorithm

Composite events are the focus of lines 4 to 10 of the algorithm. There are two cases that

are characterized by the number of outgoing edges from node E. If the event node E represents a

composite event that uses a unary operator (line 4) then there is one outgoing edge from E. A

template is initialized, using the function Apply_Composite_Template, for representing the

composite event E. The algorithm is recursively called with the child of E to generate the

templates corresponding to the events in the sub-tree rooted at the child of E (line 5). Lines 7 to

10 o f the algorithm handle an event node representing a composite event that uses a binary

operator.

87

The ApplyjCompositeJTemplate function represents the mapping a from Definition 6.1. For

Tivoli, the ApplyjCompositeJTemplate function extracts from E the values of the slots

event_jiame, event_operator, left_event_jiame, right_eventjiam e and count_jiumber. The

left_event_name and righ jeven tjiam e represent the names o f the events that compose the

composite event in E.

The slots left_date_reception, left_jerver_Jtandle, left_eventJiandle, right_date_reception,

right_jierver_Jiandle and right_eventjiandle represent the BAROC implementation slots that

uniquely identify the events instances (i.e., the left and right events in the event expression) that

trigger the composite event. These slots, i.e., the slots that uniquely identify the event instances,

are assigned values when the event is generated. The date_reception is the event timestamp slot;

the value represents the number of seconds since the epoch (i.e., since midnight of January 1,

1970) to the occurrence of the event. If more than one instance of the event is received within the

same second, the eventjiandle slot is used to distinguish between such instances. For the first

event instance received, the eventjiandle will be given the value 1 and incremented for each

subsequent event instance received within the second. The serverjiandle slot value represents the

event server location, e.g., event_jerver slot value is 1 for the event server in the local Tivoli

Management Region.

We note that although the ApplyjCompositeJTemplate function is specific for a management

system the implementation of MapEvent is not. A Java abstract class can be defined with the

MapEvent method. This class can be subclassed for each specific management system.

Example 63 :

This example is based on the example policy stated in Example 3.1. The event expression is

that the total number o f user logins is greater than 5 followed by the CPU load is greater than 90

and the total number o f processes running is greater than 3.

88

This policy consists of a composite event, users_cpu__process_High of the form users_Limit

E-SEQ cpu_process_High, with two primitive events where,

1) users_Limit is a primitive event that is characterized by the condition total number o f logins

is greater than 5. The logical expression that represents this condition is usersloginstotal>5.

2) cpu_process_High is a primitive event which is characterized by the condition the CPU load

is greater than 90 and the total number o f processes running is greater than 35. The logical

expression which represents this condition is cpuload>90 && cpuprocesstotal >35, i.e., the

cpu_process_High event condition has two attributes to be evaluated.

The users_cpu_process_High event is parsed into an event tree, as shown in Figure 6.4.

The application of the MapEvent algorithm, results in three BAROC classes:

users_Limit.baroc, cpu_process_High.baroc and users_cpu_process_High.baroc (Figures 6.6 ,

6.7 and 6.8 respectively). The users_Limit.baroc and cpu_process_High.baroc classes are

constructed using the transformation rule for primitive events. The

users_cpu_process_High. baroc class is constructed using the transfonnation rule for composite

events that assumes that the event operator is binary. The variables of this template include the

event_name users_cpu__process_High, the left_event_name usersJLimit, the right_event_name

cpu_process_High and the event_operator E_SEQ.

89

###########*###############*###*##*#######*#*####################
Main Class Definition for Primitive Event 'users_Limit'
Automatically generated by the PMagic Model
On Sun Nov 16 15:44:11 EST 2008
##################################**###########*#################
TEC_CLASS:

users_Limit ISA EVENT
DEFINES {

source: default= 'PMagic';
sub_source: default= 'PMagic_Agents';
sub_source_port: INTEGER , default=0 ;
operation_number: INTEGER , default=0 ;
severity: default = HARMLESS;
eventname: STRING, default='users_Limi t ';
condition_name: STRING, default='users_More_than_5';
hos tname: STRING ;
userlogintotal: INTEGER;

};
END
###############*####*#########*#####**###
End Event 'users_Limit' Class
#########»#######»##########»############____________________________

Figure 6.6: Tivoli TEC BAROC File for the u sers jim it Primitive Event

###
Main Class Definition for Primitive Event 'cpu_process_High'
Automatically generated by the PMagic Model
On Sun Nov 16 15:44:11 EST 2008
#######*#*#########*##*##*#*##*####*####*####«###*###*###*#######
TEC_CLASS:

cpu_process_High ISA EVENT
DEFINES {

source: default= 'PMagic';
sub_source: default= 'PMagic^Agents';
sub_source_port: INTEGER , default=0 ;
operation_number: INTEGER , default=0 ;
severity: default = HARMLESS;
eventname: STRING, default='cpu_process_High';
condition_name: STRING,default=’cpu_over_90_and_process_Cond' ;
cpuload: REAL;
cpuprocesstoltal: INTEGER;
hos tname: STRING;

};
END
#*###*########***###***########*######**#
End Event 'cpu_process_High' Class

Figure 6.7: Tivoli TEC BAROC File for the cpu_process_High Primitive Event

90

################*#*#####*##*###########*########*#*########*###
Main Class Definition for Composite Event 'users_cpu_process_High'
Automatically generated by the PMagic Model
On Sun Nov 16 15:44:11 EST 2008
###'#*#######*########*##*******#***####*##*#**##*##**#**#***#####
TEC_CLASS:

users_cpu_process_High ISA Event
DEFINES {

source: default= 'PMagic';
sub_source: default= 'TEC';
sub_source_port: INTEGER, default=0;
operation_number: INTEGER, default=0;
severity: default = HARMLESS;
event_name: STRING, default='users_cpu_process_High';
event_operator: STRING, default='E_SEQ';
left_event_name: STRING, default='users_Limit';
left_date_reception: INT32, default=0;
left_server_handle: INTEGER, default=0;
left_event_handle: INTEGER, default=0;
right_event_name:STRING,default='cpu_process_High';
right_date_reception: INT32, default=0;
right_server_handle: INTEGER, default=0;
right_event_handle: INTEGER, default=0;
count_number: INTEGER, default=0;

};
END
###***##«#####**#*«###*##*#***####*##*###
End Event 'users_cpu_process_High' Class
##»#####»#»#»»»»#»###»#»»##»#»####*#»»#»»___________________________________
Figure 6.8: Tivoli TEC BAROC File for the usere_cpu_process_fligh Composite Event

6.3 Mapping Policies

Mapping policy events to an event definition in the underlying management system is just

one part o f the overall process. This Section addresses the subsequent problem of mapping

policy to a form that can be understood by the management system. There are two issues related

to mapping that must be considered. The first is that of composite event detection. Detecting

primitive events is not sufficient for determining if a composite event has been used. The

approach commonly used in management systems is to use a rule-base system. A second issue is

that once an event is detected, the set of i f condition then actions rules associated with the specific

91

event should be evaluated. An event-driven rule-based system can also be used for this

evaluation. More details about the structure and the components of event-driven rule-based

systems can be found in [71, 73, 90]. However, event-driven rule-based systems imply that

event detection is centralized. Computation can be offloaded by allowing management agents to

detect composite events and evaluating i f condition then actions rules. This Chapter discusses

mappings from policies to both of these approaches.

6.3.1 Mapping Policies to a Rule-Engine Platform

Management systems such as Tivoli [151], HP-Openview [61], CA-Unicenter[23], etc, are

event-driven rule-based systems. An event-driven rule-based system has a set of rules, which is

referred to as a rulebase, where a rule has the following form:

on event [event filter]

[when condition]

do action

When an event instance is received then a condition is evaluated to determine actions to be

taken. Event-driven Rule-based systems maintain information about event instances that have

been received. The term event is used to denote any event type of received event instance. The

term event filte r is used to denote the set or subset of event types found in specification of the

policy event. When an event instance is received, if the type of the received event instance is

found in event filter, then a condition is evaluated to determine if the specified action should be

executed. The event-driven rule-based system evaluates the rules in the order that the rules are

presented in the rulebase. For a received event instance there is a possibility that it can satisfy

multiple event filters. There are two reasons for this: The first reason is that for an event there

might be multiple actions possible depending on the values of the attributes of the event. The

92

second reason is that an event can be used in the specification of the event expression in multiple

policies.

Example 6.4: This example shows how the policy of Example 1.1 is mapped to a rule

typically found in a rule base system. In this example, the set of events specified in the policy

o f Example 1.1 contains only one event, the session_Jdle event. It is assumed that Er denotes the

type o f the received event instance.

on Er in { session_Jdle }

do close the idle session

Example 6.5: This example describes the rules for the event-driven rule-based system for the

policy specified in Example 6.3; if the total number o f user logins is greater than 5 followed by

the CPU load is greater than 90 and the total number o f processes running is greater than 35,

then block any new user logins. A policy interval associated with this policy is denoted by

normal_working_Jiours. Example 6.3 specifies the policy event as a composite event

users_cpu_processJfiigh in this form:

users__cpu_process_fiigh = users_fim it E S E Q cpu_process_fiigh,

where users_fim it and cpujprocessJiigh are primitive events. The received event instance is

denoted by er and er. timestamp denotes the time that it was generated at. Er denotes the type of

the received event instance.

As discussed in Chapter 3, the policy interval is used to specify the interval in which the

policy is valid or active. This suggests that the policy event as well as the constituent parts of the

policy event should only be checked if these events occur within the policy interval. Rule 1 is

used to determine if the event instance received occurs in the specified policy interval. The

interval is checked only if the type of the received event instance is of the composite event or one

of the constituent events.

93

Rule 1: on E, in { usersJLimit, cpu_process_fligh, users_cpu_process_High }

when checklnterval(normal working hours, e^ times tam p)

do continue

This rule should be before any o f the other rules generated for this example policy. If the

received event does not occur within the specified interval then no further processing is needed.

Rule 2 is used to generate a notification of event users_cpu_process_High if Er is either of type

users JLim it or cpu_process_Jiigh. It is assumed that occ(users_]Limit E-SEQ cpu_process_fiigh)

is able to check if instances o f type users JLimit and cpu_process_Jtigh have both occurred since

rule base systems can keep track of event instances that have been received. Assume T is the time

window for the event expression that characterizes the composite event.

Rule 2: on Er in { users_Eimit, cpu_process_Jiigh }

when occ (users_Eimit E-SEQ cpu_process_High) T

do trigger a message notifying the occurrence of event users_cpu_process_}iigh

The third rule, Rule 3, associates the action to be taken if the composite event, which is the policy

event, has occurred.

Rule 3: on Er in { users_cpu_process_iiigh}

do execute action block any new user logins

Policy M ap p in g

As can be seen from Example 6.S, mapping a policy to rules in a rule-based system requires

the following issues to be addressed: determining the policy interval, ensuring policy enforcement

and handling composite events.

94

Interval Checking: A policy may specify an interval in which constituent events of the policy

event must occur. A rule is needed to determine if a received event instance occurs within the

desired interval. The template includes a variable x for the event filter. This variable denotes a set

of event types and thus should be instantiated with the type of the events used in the specification

o f the policy event. There is another variable y for the specified interval that should be checked

in the condition. The transformation rule instantiates these variables based on the corresponding

policy specified elements. The following is an example of the Interval Checking rule:

on Er in {*}

when checklnterval(y , times tam p)

do continue

We note that the above is an abstract representation of an actual template that would be used. An

example template used for Tivoli is found in Appendix D.

Policy Enforcem ent: The template has variables representing the information of the routine to

be invoked, e.g., the routine name, routine type (such as Java, UNIX shell script, etc.) and the

parameters o f the routine. The transformation rule instantiates these variables based on the

policy rule e.g., the specified set of the condition-actions rules of the policy and the policy event

attribute names. Other variables represent the policy event name and the event time window. An

example template used for Tivoli is found in Appendix D.

P olity Composite Events: For each composite event in the policy event tree a detection rule is

created. To facilitate the creation of this rule a template is needed for each event operator. One

variable o f the template denoted by x, is the event filter. The transformation rule initializes this

variable with the set of event types that constitute the composite event which are denoted by xt

and Xj. Another variable of the template is the time window, denoted by y, which is definable

95

with the composite event expression. The action to be taken is to send a notification message,

denoted by template variable z, of the detected composite event. The following is an example

rulebase representation for a binary event operator that denoted by EOP:

on Er in {x }

when occ fo EOP X j J y

do trigger a message notifying occurrence o f event z

Unary event operators require another rulebase representation. More details on the construction of

the detection rules are described in Section 6.3.2 and Appendix D.

6.3.2 Constructing Composite Event Detection Rules

The MapEventDetectionsRules algorithm (presented in Figure 6.9) is used to create a set of

rules to be used for composite event detection. Leaf nodes in the event tree represent primitive

events. All other nodes represent composite events. The rules generated for detecting events at

the i+1 '* level o f the event tree must precede the rales that detect events at the i‘h level of the

event tree. The reason for this has to do with the way event-driven rale-based systems are

organized. Rules are evaluated in the same order that they are presented.

We note that the algorithms for generating instantiated templates representing messages

notifying o f an event (MapEvent) and the algorithm MapEventDetectionsRules for generating

rales for complex event detection are presented separately. This is done for presentation purposes.

Practically, only one traversal of the event tree is actually needed.

There is a template associated with each composite event operator. The event operator, eop,

in Lines 6, 8, 13, 15 and 17 correspond to each of the event operators: E_COUNT, E_NOT,

E_SEQ, E_AND, and E_OR respectively (see Appendix D for examples of Tivoli TEC Rule

Templates).

96

A l g o r i t h m M a p E v e n t D e t e c t io n s R u le s (E)

I n p u t : 1) E is a n e v e n t tre e node

O u t p u t : i) EruM is a s e t o f instantiated te m p la te s re p re se n tin g th e rules fo r d etecting th e sp ec ified
c o m p o s ite e v e n t in node E .

b e g in

1 . i f (O u tg o in g N o d e s(E) == o) t h e n

2 . r e t u r n { }

3- e n d i f

4- i f (O u tg o in g N o d e s(E) == 1)

5- i f (e o p s s "E_C O U N T ”)

6. EruM = M ap E ve n t D e te c t io n sR u le s(le ftn o d e (E)) U

7-
A p p ly _E _C O U N T _T em p late (E)

e l s e

8. * M ap E ve n t D e te c t io n sR u le s(le ftn o d e (E)) U

9-
A p p ly _E _N o t_T em p la te (E)

e n d i f

1 0 . re tu rn E ^

1 1 . e l s e

12 . I f (e o p == “ E _S E Q ”)

13- EmM = M ap E ve n t D e te c t io n sR u le s(le ftn o d e (E)) U

14*

M a p E ve n t D e te c t io n sR u le s(r ig h tn o d e (E)) y A p p ly _E _S E Q _T e m p la te (E)
e l s e I f (eo p == “ E_A N D ”)

15- En,i«j = M ap E ve n t D e te c t io n sR u le s(le ftn o d e (E)) (J

1 6 .
M a p E ve n t D e te c t io n sR u le s(r ig h tn o d e (E)) (J A p p ly _E_A N D _T em p la te (E)

e l s e

17- Erui«i = M a p E v e n t D e te c t io n sR u le s(le ftn o d e (E)) |J

18.
M a p E v e n t D e te ct io n sR u le s(r ig h tn o d e (E)) (J A p p ly _E _O R _T e m p la te (E)

e n d i f

19- re tu rn E^ed

2 0 . e n d i f

e n d

Figure 6.9: A MapEventDetectionsRules Algorithm

The mapping to an event-driven rule-based system is illustrated with the Tivoli TEC event-

driven rule-based engine platform. The rule language provides a simplified interface to the

97

Prolog programming language, which is the language actually used internally by the TEC event-

driven rule-based platform. A TEC event server can have only one active rulebase. A rulebase is a

collection o f definitions o f event classes and rules that apply to those event classes. The

following example shows how the use of templates and the transformation rules steer the

automatic mapping o f polices to Tivoli.

Example 6.6: This example shows the mapping of the policy described in Example 6.3 to

TEC event-driven rule-based system. The generated rules are put into a text file called

loadjControl.rls.

• The first rule, which handles the verification of a policy interval, is appended to the TEC

ruleset loadjControl. rls. This rule will be created using the transformation rule that

uses the template Intervalchecking. A Tivoli TEC rule template for Intervalchecking

is given in Appendix D. The variables for this template include the policy_name,

intervaLpame and a set o f event names that constitute the policy event. The

transformation rule instantiates these variables based on the policy specified elements,

e.g., policyjiame to loadjControl, intervaLname to normal_yvorkingJiours and a set

o f events names: usersJLimit, cpu_process_IIigh and users_cpu_process_fIigh. The

policy element p in the used transformation rule is the policy interval

normal_workingJtours. The result o f the transformation rule is shown in Figure 6.10. •

• The second rule appended to loadJControl.rls will be the rule for detecting the policy

composite event users_cpu_process_JIigh which is the policy element p. The EJSEQ

template is used which corresponds to the E_SEQ event operator. This template is

another TEC rule that is constructed to evaluate any event expression that uses the

E_SEQ event operator. A Tivoli TEC rule template for composite event detection of

the EJSEQ operator is given in Appendix D. The template’s variables are the

98

composite event name, the composite event constituent events and the event time

windows that are specified in the event expression. The transformation rule

automatically instantiates these variables based on the policy specified elements, e.g.,

the composite event name to users_cpu„process_fiigh, the composite event constituent

events to users_fim it and cpu_process_Jiigh, etc. The result o f the transformation rule

is shown in Figure 6.11.

• The last rule to be appended to load_Control.rls is the one that constructs the

enforcement rule. The policy element p is the policy event. The PolicyEnforce template

used is also a TEC rule that was developed to guide enforcement o f policy rules by

calling an enforcement routine (the template used is presented in Appendix D). The

enforcement routine is the executable to be called to handle the policy rules. The

template’s variables are the policy event name, an enforcement routine name,

enforcement routine type, and other information for the location of the enforcement

routine executables and the executable libraries. The transformation rule instantiates

these variables, e.g., policy event name to users_cpu_process_High, the routine name

to RuleEnforcementForTEC, routine type to Java class, etc. This rule determines if the

event represented by the policy has occurred and, if so, initiates a call to the manager

routine that handles the conditions-actions part, e.g., on the occurrence of

users_cpu_process_fiigh event execute the RuleEnforcementForTEC Java class. The

output of the transformation rule is shown in Figure 6.12.

99

%%
% This TEC rule is to validate the policy 1load_Control' which has the
% event 'users_cpu_process_High' and the interval ' normal_Working_Hours'
% Automatically generated by the PMagic Model
% On Sun Nov 16 15:51:11 EST 2008
%%

% First Rule is to validate the policy interval 'normal_Working_Hours'

rule: ' load_Control_normal_Working_Hours':
(
description: 'Verify the policy interval normal_Working_Hours1,

% Following set represents events specified in policy 'load_Control'
event: _ev_at_interval_check of_class within

['cpu_process_High' ,
■users_Limit',
'users_cpu_process_High']

where [] ,

reception_action:
action_load_Control_normal_Working_Hours_check:

(
exec_program(_ev_at_interval_check,
'/sl/wolfbiter/java/jdk.16.0_10/bin/java -cp
/sl/wolfbiter/PMagic_Manager/classes/ PMagic.classes.Intervalchecking'

,’%s %s'
, ['normal_Working_Hours',

'/sl/wolfbiter/PMagic_Manager/TEC_Policies/load_Control']
, ’YES') ,

fopen(_fp
, ' /sl/wolfbiter/PMagic_Manager/TEC_Policies/load_Control/

normal_Working_Hours_result. txt'
, r) ,

readln(_fp, _result),
fclose(_fp) ,

(„result == true ,
commit_action
% exit this action and continue the reset of the rule
; % else
commit_rule
% exit the whole rule at this point

)
)

) •
% End of the rule: ' load_Control_normal_Working_Hours'__________________

Figure 6.10: Tivoli TEC Rule for Checking the Policy Interval normaLworkingJiours

100

%%%
% This TEC rule is to generate the event 'users_cpu_process_High' which
% occurs when the event ,users_Limit'
% and then event 'cpu_process_High' occurred in SEQUENCE.
%%%

rule: 'users_Limi t_E_SEQ_cpu_process_High':
(
description: 'Generate event users_cpu_process_High',

event: _evl_at_ESEQ of_class 'users_Limit'
where [date_reception: _left_date_reception,

server_handle: _left_server_handle,
event_handle: _left_event_handle] ,

% The E_SEQ rule generates the result as a new event 'users_cpu_process_High'
% by using the exec_program that calls an external program.

reception_action:
action_users_Limit_E_SEQ_cpu_process_High:

(
f irst_instance(event: _ev2_at_ESEQ

of_class 'cpu_process_High'
where [date_reception: _right_date_reception

greater_than _lef t_date_reception,
server_handle: _right_server_handle,
event_handle: _right_event_handle] ,

_evl_at_ESEQ - 0 - 360) ,
% The time window for searching the _ev2_at_ESEQ is surrounding by the
% 360 seconds after the _evl_at_ESEQ time

exec_program(_ev2_at_ESEQ,
'/sl/wolfbiter/java/jdk.16.0_10/bin/java -cp
/sl/wolfbiter/PMagicJlanager/classes/ PMagic.classes.EventGeneration'

, '%s %s %s %s %ld %d %d %s %ld %d %d %d'
, ['users_.cpu_process_.High1, ' createESEQRule' , ' E_SEQ'
, 'users_Limit', _left_date_reception
, _lef t_server_handle , _left_event_handle
, 'cpu_process_High', _right_date_reception
, _right_server_handle , _right_event_handle, 0],, ’YES') ,

commit_action % exit the action regarding the scanned events
)

) •

% End of the rule: 'users_Limit_E_SEQ cpu_process_High1____________________

Figure 6.11: Tivoli TEC Rule for Detecting the Composite Event users_cpu_process_JIigh

101

%%
% This TEC rule is to enforce the specified rule if the event
% ' users_cpu_process_High', which considers the main event of the policy
% ■load_Control', triggered.
%%

rule: 'load_Control_Rule_Enforcement':
(
description: 'Fire the rule(s)of the policy load_Control' ,
event: _ev_rule_jnain of_class 'users_cpu_process_High'

where [date_reception: _ev_date_reception ,
server_handle : _ev_server_handle ,
event_handle : _ev_event_handle ,
hostname: _ev_hostname ,
sub_source : _ev_sub_source ,
sub_source_port: _ev_sub_source_port] ,

reception_action:
action_load_Control_users_cpu_process_High_enforce_rule:

(
exec_program(_ev_rule_main ,
'/sl/wolfbiter/java/j dk.16.0_10/bin/java -cp
/si/wolfbiter/PMagic_Manager/classes/
PHagic.classes.RuleEnforcementForTEC '

,'%s %s %s %s %d %ld %d %d'
, [' load_Control ', 'users_cpu_process_High' , _ev_hostname
, _ev_sub_source , _ev_sub_source_port , _ev_date_reception
, _ev_server_handle , _ev_event_handle], ' YES1) ,

commit_rule
)

) .

% End of the rule : 1 load_Control_Rule_Enf orcement '__________________________

Figure 6.12: Tivoli TEC Rule for Enforcing the Policy load_Control

6.3.3 Mapping a Policy to Management Agents

Mapping a specified policy to be deployed and enforced by management agents requires the

configuration o f the components o f the management agents using the corresponding specified

policy elements as described in Section 5.7.3. The use of template-based mapping approach

applies as follows. There are templates for policy elements such as primitive events, composite

events and rules. The templates needed here are of a different form than seen earlier. Here

template refers to a method that uses the agent interface methods to add the appropriate tuples to

the different sets. The template variables are two associative arrays (see Section 5.7.3). The

transformation rule calls the Finding Agents algorithm described in Section 5.7.1 to determine the

associative arrays to be assigned to the template variables.

102

6.4 Discussion

This section discusses issues related to policy mapping. This chapter assumes that policies are

mapped to an event-driven rule-based system or to management agents. We focused on these two

mappings since these are most commonly used. Figure 6.13 summarizes the processes needed to

map a specified policy to an event-driven rule-based system. The only manual operations (see

Figure 6.13) are those of the creation of the templates, which once defined by the administrator,

can be used repeatedly by the mapping processes. A set of templates, as described in this Chapter

and as seen Figure 6.13, is needed for each management system that used to deploy and enforce

policies through it.

Figure 6.13: The Processes of Mapping a Policy to an Event-Driven Rule-Based Systems

103

The numbers shown in Figure 6.13 illustrate the order of the mapping processes. The mapping

order shown should be followed for the following reasons:

1- Some processes are dependent on others. For example, composite events should be

mapped after primitive events. The reason is that identifiers are assigned to primitive

events and these are used in the definition of the composite event.

2- The first rule to be constructed is the rule that checks if the received event is within the

policy interval. This means that if it is not, then there is no reason to evaluate other related

rules.

3- The set o f rules that evaluate the detection of the policy composite events should be

generated second. Within this set of rules the order mentioned in Section 6.3.2 for

composite event detection rules should be followed.

4- The rule that associates the policy event with the policy rules should be the last rule to be

generated.

6.5 Chapter Summary

The research work presented in this Thesis has been motivated by the need to bridge the gap

between specifying management policies and mapping these polices to manage distributed

systems environments so that the policies can be realized. The Chapter has shown how to build

the policy model and services on existing management services found in commercial

management systems. Practically, we have shown how to map the high-level specified policies

elements to events format files (as in BAROC) and to executable rules (as in TEC rules) by using

the developed reusable templates that steer the automated mapping mechanism. The methodology

shown represents a general approach that can be adapted not only by Tivoli, but also could be

implemented for other management systems such as HP-Open View, CA-Unicenter, etc. This

Chapter also addressed the mapping of a policy to management agents.

104

Chapter 7

Im plem entation and
t h e P rototype

The Policy Management Agent Integrated Consol (PMagic) prototype is the implementation

of the policy-based model presented in this Thesis. The PMagic software is implemented using

Java JDK version 1.6. The repository is implemented using IBM DB2 version 8.2. The

management system used is the IBM Tivoli Management Framework version 4.1 (TMF) and

Tivoli Enterprise Console (TEC) version 3.9. The prototype’s software (TMF, TEC, gateway,

Java and DB2 server) are installed on a Sim Blade 1000 Workstation with 1.5GB of memory that

uses Solaris 5.8. There is 1 GB of memory dedicated to the Java JVM.

Figure 7.1 shows the design and implementation structure of PMagic. The main PMagic

implemented components are the following: PMagic GUI User Interface, Agent Matcher,

Mapping Mechanisms and PMagic Management Agents. The following Sections address the

implementation of each of these components.

105

Figure 7.1: Policy-Management Agent Integrated Console Implementation Structure

106

7.1 PMagic Policy Specification and Agent Definitions

PMagic provides a GUI that allows a user to specify management policies. The start screen

for PMagic is seen in Figure 7.2. The PMagic main menu organization is shown in Figure 7.3.

Figure 7.2: Policy-Management Agent Integrated Console-PMagic Main Form

The policy information model is described in Chapter 3. The information model allows for

the specification of different types of policies. Figure 7.4 presents the screen that provides a

Policy Definition form that consists of several tabs for specifying policies. A policy is specified

by assembling its components from predefined definitions for events, rules, conditions, actions,

intervals, and domains. For instance, Figure 7.5 shows the selection of the policy rules. The

definitions for rules, events, conditions, actions, intervals and domains are reusable components.

The tree shown in Figure 7.6, which is the Policy Tree tab of the Policy Definition form,

represents the components (attributes, domains, events, rules, conditions and actions) of a policy.

Users are able to click on a node to get more information. A policy needs to be fully specified

before it can be enforced. The policy grammar is given in Appendix A. PMagic detects some

conflicts in the policy specification. Specifically, a check is made to ensure that the rule interval

and/or rule domain specification is within the specified policy interval and/or policy domain.

107

The Rule Definition form shown in Figure 7.8 is used to enter rules. The Rule Definition

form consists of 4 tabs: Rule, Rule Conditions, Rule Actions and Rule Tree. The Rule Definition

form can be called from the main menu using the Policy drop menu of Figure 7.3 or from within

the Policy Definition form (Figure 7.5) by clicking the Rules button.

Once the event and rule components of a policy have been specified, PMagic extracts the

attribute names to be used from the drop list of attributes that can be used in the specification of

parameter names for actions (Figure 7.7).

The condition form presented in Figure 7.9 is used to specify logical expressions. These

logical expressions do not have temporal operators. The user enters the logical expressions by

selecting the suitable expression elements (e.g., attributes, mathematical expressions, logical and

relational operators) from drop lists of these elements. To build a mathematical expression, users

click the Mathematical Expression button shown in Figure 7.9. The mathematical expression

form is shown in Figure 7.10. When the user clicks Exit in Figure 7.10, the constructed

mathematical expression returns to the Value field of Figure 7.9. The forms ensure the user enters

a syntactically correct condition.

The event definition form shown in Figure 7.11 is used to specify primitive and composite

events. The bottom left hand side of Figure 7.11 shows the attributes extracted from an event

specification. An event expression can also be entered by the user by using temporal operators on

events already entered. There are drop lists for specified events and for the temporal operators.

Figure 7.12 shows the Interval Definition form that is used to specify intervals. As can be

seen, intervals can be defined as a period between two dates. An interval can also be any selected

date or time between two dates e.g., every Sunday in the next five years. For this reason, the

interval entry form allows for the specification of a selection of dates or a period within an

interval between two dates.

PMagic

...Open Edit File

.. Import/Export Policy

L. Exit

Condition Definition.... j
Event Definition... \

Events Query.......]

Window

[... Host Definition
:

[....Domain Definition
I Managed Resources

Query
Construction Implementation

Agent Definition.....\

Agent Instances]....

[....Policy Set Definition

[... Policy Definition

L Policy Query

...Minimize

I...Maximize

[...Attribute Definition

[...Interval Definition

L...Action Definition

j.....Tivoli Desktop

[....Tivoli Enterprise Console

L_IBM DB/2 Console

\....Topics

....Search

....About

Agents Query.....j [...Policy Enforcement

i...Policy Follow Up

Figure 7.3: PMagic Menu Structure

—

2 Policy Definition - Form

Policy Domain Rules Policy Tree

Policy Name:

Policy Statment:

session_Control| Intervals forever

If a login session is Idle for more than 20 minutes for any of the Unix System Lab hosts
then close the session

Event Name: session Idle Events

Insert Update Delete
_______________ £-----

Clear Exit ¡¡¡gyggt̂ i

Policy Name r Policy Statement Event Name Interval Name
tivoli_Monitor If the Tivoli Tec event server... tec_Down forever
system_Defaults If the defined allowed maxn... max_Processes_lnsutTicient forever
session_Control ilf a login session is Idle for... Isession Jd le forever
root_Access_Monitor If su root successfully used ... su_root_Successfully_Used forever
process_Monitor If any process .that navigati... navigating_lnternet_Process_Size_High forever
process_Control If any userrunning a progra... sudoko_is_used forever
performancejssue If the total number of proces... process_lnitiated_High forever
net_Monitor If the number of errors pack... n et_E rro r_P a c kets_H i g h forever
memory_Usage If real memory is used over... memoryjoaded forever
load_Control If the total number of users 1... users_cpu_process_High forever
hd_Monitor If any file system is used to ... hd_Loaded forever
email Monitor If any user uses quarrel hos... email Used forever

M I I n i I |l||

F igure 7.4: A Policy D efin ition Form olD

j j[>| Policy Definition - Form
-____

Policy Policy Domain Rules Policy Tree Actions Paramters

Policy Name:

FUile Name:

Policy-Rule Description

session Control

Insert

Sequence

Upda

Ruli
close Idle

▼

▲
change_Priority
closeJdle_Session
db2 Conditioned Start _
db2_Start
email_Administrator
kill_Process
monitor Internet use ▼ 1

Rules Rule Order: ▼

it Interval Name
forever

Clear Exit
— _____________________________________

Rule Description

Figure 7.5: R eusable B uild ing B locks for Policies
o

F igure 7.6: A Policy Tree

111

1 r , ■
i Policy Definition - Form

Policy Policy Domain Rules Policy Tree Actions Paramters

Policy Name: session Control Rule Name: close Idle Session

Condition Name: always_True close user session.sh
Action Name:

close Idle Session
Rule Name Condition Name

always_True ï Action Name
lose user session.sh

Parameter Name:

Parameter Order:

Parameter Value:

host name Attribute Name:

□
processid
sessionidlelong
userid

Insert Update
__ ï____________________________________

Delete Clear Exit

Parameter Sequence Parameter Name Parameter Value Parameter Attribute Name
1 host_name hostname
2 processjd processid

—---------—......------------------------ ----------- ------—----—------------------
Figure 7.7: M apping betw een A ctions P aram eters and Policy E xtracted A ttributes

m
Êm

m
ÊÊ

m
Êm

Êm
tÊ

m
KK

m
M

ÊÊ
Êi

iÊ
ÊÊ

iÊ
ÊÊ

m
m

m

Figure 7.8: A R ule D efinition Form I—4 U)

ÌN
H

H
é

b

114

The Action Definition form shown in Figure 7.13 is used to specify information about

actions. Actions are classified based on the executable code e.g., a Java Class, C Executable, a

UNIX Shell Script. The names and order of the action parameters must be specified in the same

way action arguments are built. A mapping between the attributes specified in the policy event

and conditions to actions’ parameters may be needed to facilitate the instantiation of the action

parameters with the attributes values at runtime. Figure 7.7 shows this mapping.

PMagic provides several forms to maintain information about the management agents.

Figure 7.14 shows the Agent Definition form that allows information about an agent to be

specified based on the agent information model defined in Chapter 5. This form is used to specify

agents and the attributes these agents can monitor. It should be noted that one of the attributes is

the operating system which implies that if two agents monitor the same attributes but for two

different platforms, then those are considered different agents. For example, the memory_agent is

specified to monitor memory usage in UNIX systems, while another agent memory__agent_WIN

monitors memory usage in Windows systems.

The Attribute Definition form shown in Figure 7.15 shows the entry form used to specify the

attributes that can be monitored by PMagic agents. Based on these attributes, users build the

logical expressions that characterize the primitive events.

7.2 PMagic Agent Matcher

The Agent Matcher component is implemented in Java and takes as input a policy that has

been added to the system. Information about agents, as defined by the information model, is

stored in DB/2. Currently, the agent finding task is an implementation of the matching algorithm

shown in Figure 5.6. The Agent Matcher component depicted in Figure 7.1 represents three tasks:

Agent Finding, Agent Instance Finding and Agent Configuration. All monitoring agents and

manager agents are implemented using Java. Note that the implementation of the information

115

services that provide monitoring mechanisms (see Section 5.3 for more details) do not have to be

implemented using Java.

7.3 PMagic Mapping Mechanisms

Policy deployment is the mapping of management policy elements (rules, events, conditions,

actions) to the services needed to support execution and enforcement of the policy elements. The

approaches and designs to carry out these mapping mechanisms were described in Chapter 6.

The Mapping Mechanisms component depicted in Figure 7.1 represents the desired mapping.

Chapter 6 presented two algorithms for mapping. The implementation of the algorithms is

independent of the management system. The functions that implement the transformation rules

are specific to the management system. However, an abstract class can be defined. The abstract

class has the methods for the transformation rules. A subclass represents a specific

implementation of these methods that is specific for the management system. The implementation

was done using Java.

7.4 Distribution Mechanisms Used

To deploy a policy, the executables of the agents that support this policy need to be

transferred as required e.g., a management agent that monitors login sessions needs to be located

on the machine that it is to monitor. The executable may be on another machine. In most cases,

distribution refers to starting agent executables on the machine to be monitored. In case of

collecting attributes from different machines, the executable of dynamic and/or manager agents

will be placed on one of the machines that is to be monitored.

To show the flexibility of this work two approaches were used for the start-up of the agent

executables. Management systems often have an application for software distribution. Such an

application distributes, configures or reconfigures and updates software applications, system

patches and management agents. We used Tivoli Software Distribution version 4.2. To use the

116

software distribution from Tivoli to distribute agents, the agent executables must be added to the

distribution profile. In a Tivoli environment, a profile is a container for application-specific

information about a particular type of resource, e.g., agent executables. Every managed host,

where the profile needs to be distributed, must be defined in TMF as an end-point. In a Tivoli

environment, an end-point is the computer system that is the ultimate target for most Tivoli

operations. Assigning the end points to the Tivoli distribution profile will depend on the domain

associated with the policy. These tasks are carried out by PMagic. PMagic uses the Tivoli profile

feature for the distribution of and starting of agents. This feature requires the specification of

information needed (e.g., hostname and directory path of an agent executable and associated

files). We can use the Tivoli profile feature to update agents when a change in policy occurs by

sending a new agent executable configured to support the changes.

Another approach for distribution of executables is the UNIX remote shell rsh and cp copy

commands for UNIX machines. To enable copies and/or executes of executables from UNIX to

Windows machines, the remote shell software Winsock RSHD/NT [157] was installed in the

Windows host machines. In this case, PMagic starts the management agents on the remote

managed hosts using remote shell commands from within the PMagic Java classes. The two

approaches were implemented to show the independence of the mapping process from any

specific distribution mechanism.

Java’s Remote Method Invocation (RMI) was chosen for implementing the communication

between the agents and the PMagic manager processes, and for communication among the

monitoring, dynamic monitoring and manager agents. RMI was chosen for its built-in simplicity

and the fast prototype development that it enables. PMagic relies on RMI to communicate with

managers.

jfaj Conditions Definitions - Form

Not

□

:___________
•=531

Condition Name:

Relational Expression

m a x _ a llo w e d _ p ro c e s s e s _ b e lo w _ 1 000

□ Not Value:

Attribute Name:

Operators

cpu lo ad (R E A L)

Mathematical Expression

Function-Call Expression

Attributes Form___________ _I

Logical Expression

<NA>

== (String)

!= (String)

<
< (String)

<=
< - (String)

: R e la tio n a l O p e ra to r ie :

□ Not Value:

cpu lo ad (R E A L)

Mathematical Expression

Function-Call Expression

E_I__ _ OR

(m a x p ro c e s s e s a l lo w e d < 1 0 0 0) && (h o s tn a m e .e q u a lsC 'w o lfb ite O)

Insert
...»...

Update_______ _ j —
Delete_______ _ Clear Exit________

C o nd itio n N a m e / Co nd ition S ta tem en t
e m a il_ u s e d _ u s in g _ q u a r re l (u se ro p e ra t io n u se d e q u a ls C s e n d _ e m a ir ‘)) && (h o stn a m e eq u a lsC 'q u a rre l")) S.& (u s e r id .c o m p a re T ..
h d _ u s e d _ o v e r_ 8 9 (h d s iz e c a p a c ity > = 8 9) && (h o s tn a m e c o m p a re T o O 15 0)
lo g in _ fa lie d (u se ro p e ra tio n u se d eq ua lsC 'lo g in ")) && (u se ro p e ra tio n re su lt .e q u a lsC 'fa ile d "))
m a x a llo w ed p r o c e s s e s _ b e lo w _ 1 000 (m a x p ro c e s se sa llo w e d « 1 0 0 0) && (h o stn a m e .e q u a ls fw o lfb ite r* '))
rn e m o ry _o v e r_9 5 (m e m o ry re a lu se d > 9 5) && (h o stn a m e .co m p a re T o C ”') >= 0)
n a vi g a t e j nte rn e t_ P ro c e s s _ o ve r _ 1 0 2 4 0 K (p ro c e s sc o m m a n d .c o n ta in sC 'n e ts c a p e ") || p ro c e ssc o m m a n d .c o n ta in sC 'e x p lo re O || p ro c e s s c o m m a n ...

Attributes Within this Expression Restraints' Match Attributes Within this Expression

Figure 7.9: T he C ond ition D efinition Form

117

IB
&

gH
P

0
0

g^
Ë

Ê
ÊÊ

»Ê
ËÈ

ltÊ
iÎÊ

ItÊ
ltt

lÊ
ÊÊ

ÊÊ
IiÊ

iÊ
Ë

Èi
Êt

ÊÊ
iÊ

tË
lli

lÊ
l»t

Ê
ÊÊ

ÊÊ
tt

ÊË
â

È
iit

tlÉ
È

È
iii

Èi
iii

lâ
*

m
im

ta
Ê

ËK
Êl

Ê
Ë

tlÊ
ÎÊ

IIÊ
lit

ÎË
Ê

Êt
ÊÊ

ÊÈ
IÊ

M
Ê

lÈ
Êl

Ë
ÊÊ

IIÊ
Ê

ÈI
Ê

tÊ
ÊÊ

ÊÊ
tÈ

lll
llË

H
Êt

).

J»j Events Definitions - Form ,c=r|

Event Name: u se rs _ c p u _p ro c e s s _H ig h

Primitive

□

Event Expression Preperation

Logical Expression: ▼ Event Operators

r r r — I—

Value: 0 yr

Logical Expressions
E_SEQ ▼

u se rs _ L im it ▼ Event Name: cp u _p ro ce ss_H ig h ▼

Insert— Update Delete— Clear__________I Exit
— ____

^3 u s e rs _ c p u _p ro c e s s _H ig h
9 (¡3 ATTRIBUTES

Q cpuload

Q cpu processto ta l

Q ho stnam e

Q userlogintota l

9 C 3 E_SEQ
<? [3 u s e rs _ L im it

o- Ö ATTRIBUTES
o- CONDITION

<f cp u _p ro c e ss_H ig h
o- Q ATTRIBUTES
o- CONDITION

Even t N am e r Condition N am e L .H .S . I Operator R .H .S ._______ 1 R e p e a t Count
u s e rs _ c p u _p ro c e s s _H ig h u s e rs _ L im it E _ S E Q cp u _p ro ce ss_H ig h ¡0
u s e rs _ L im it u se rs_M o re_th a ... 0
tec_D ow n te c_ is_d o w n 0
su d o k o _ is _u s e d p ro c e s s _o f_S u d ... 0
su _ro o t_S u c c e ss fu lly _U ... su _ ro o t_u se d _b ... 0
s e s s io n jd le se s s io n J d le _ 2 . . . 0
p ro cess_ ln itia ted _H ig h p r o c e s s e s jo ta l . . 0
n e t_E rro r_P a c ke ts_H i g h net_erro r_packet... 0
n avi g ati n g _l nte rn e t_P ro c ... n a v ig a te jn te rn e t... 0
m e m o ry jo a d e d m em ory_over_95 0
m a x _P ro c e s s e s _ ln s u ff ic ... m ax_a llo w ed _p r... Cl
lo g in _Fa lied login_falied 0
h d _Lo aded h d _u se d _o v e r_8 9 0
e m a il_U se d e m a il_u se d _u s i... 0

__________________________ ¿o ________________ n_______________

Attributes within this Event
__________________ Event's Restraint Attributes

li
Figure 7.11: T he Event D efin ition Form

<D

...
...

...
...

...
...

...
...

...
...

...
...

...

...
...

...
..

1—

—

...
...

...
...

...
...

...
...

...
...

...
..

....
...

...
..

...
..■

...
...

...
...

...
...

...
..

...
...

...
...

...
...

...
.■

■■

__
__

__
__

__
__

__

Intervals - Form
è,

Interval Name: everySunday

From Date.'Time

2 0 0 7 ▼ 01 01 ■v 0 0 y r 0 0 ▼ 0 0 ▼

To Date/Time

2 0 1 0 ▼ 12 ▼ 31 y r 2 3 ▼ 5 9 ▼ 5 9 ▼
.

Interval Range Filters

Month of the Year

1 2 3 4 5 6 7 8 9 10 11 12

Day of the Month

Day of the Week

1 2 3 4

0 u D D '

Sunday
re 11 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 14 15 W I T I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6

Intervals - Form

Insert Update Delete Update 1

Defined Interval

Interval Name ! From Date/Time To Date/Time Vaild It
¡everySunday “120070101000000 20101231235959 11111111
forever i2 0070101000000_i____________________ ¡20101231235959 11111111

In terval Nam e: everySunday

From Time

00 'w 00 ▼ 00

To Time

23 y r 5 9 59 y r

Insert Update Delete Clear Exit_,______

i mies miei vais
From Time To Time

000000 1235959

— a
Figure 7.12: T he Interval D efin ition Form ro

o

CE
Executable Direcorty: JA><

Action Description:
SH

Insert U|

Action Name /
close_user_session.sh SH
db2_START SH
kili_process.sh SH
kill_process_by_processid SH
logout_user.sh SH
process_Reduce_Priority SH
send_email.sh SH
tec_START SH

Parameter Name: Parameter Order: 01
■

Parameter Type:

Usage Description:

string Parameter Initial Value:

Insert
________I— I— J L iÜÉÉÈÉ

Clear Exit

Param eter Nam e Param eter Order ■ Param eter Type Initial Value U sage Description
u s e r jd 1 string
p ro c e s s jd 2 integer
1erm inal_used 3 string
host_nam e 4 string

Figure 7.13: T he A ction D efinition Form

F igure 7.14: T he A gent D efin ition Form

ZZ
I

123

■IMl.MtmÜ.IÏÏIÉ̂ I

M a n a g e m e n t System s Attributes

GïD n iiiii^ —» r

Attribute Name:

Attribute Type:

Attribute Usage:

Attribute Descriptions:

STRING

Insert Update Delete Clear Exit

Attribute Name > Attribute Type Attribute Usage Attribute Description
cpuload REAL the percentage of CPU time in gene...
cpuloadidle REAL the percentage of CPU time in idle ...
cpuloadiowait REAL the percentage of CPU time in iowai...
cpuloadkernel REAL the percentage of CPU time in kern...
cpuloadswap REAL the percentage of CPU time in swap...
cpuloaduser REAL the percentage of CPU time in user...
cpuprocessloadaverage REAL the average of CPU/processes
cpuprocessrunning INTEGER the total number running processes
cpuprocesssleeping INTEGER the total number sleeping processes
cpuprocesstotal INTEGER the total number of existing process...
datetime STRING
db2state STRING The state of the db2"DOWN" or "ST...
dbactiveconnections INTEGER The active connections to the datab
dbname STRING The database name
eventname STRING The name of event
hdmountedon STRING the monuted directory of the filesyst...
hdname STRING Name of the filesystem
hdsize INTEGER size of the filesystem
hdsizeavailable INTEGER the free size of the filesystem
hdsizecapacity INTEGER the percentage used from the filesy...
hdsizeused INTEGER the total amount used from the files...
hostname STRING holds the host name data
inputpackets INTEGER The number of the input packets
inputpacketserror INTEGER The number of the input error packets
interfacename STRING The name of the interface used for 1...
localipaddress STRING The local IP address
maxpacketsize INTEGER The maximum packet size
rnaxprocessesallowed INTEGER The maximum number of processe..
memoryrealfree REAL Total real system memory free in MB
rnemoryrealtotal REAL Total real system memory in MB
memoryrealused REAL Total real system memory used in MB
memoryswapfree REAL Total swap memon/free in MB
memoryswaptotal REAL Total swap memory total in MB ▼

I

Smi
Figure 7.15: The Management System Attributes Definition Form

124

7.5 PMagic Managers

The work in Chapter 6 assumes that there is an event-driven rule-based engine. PMagic

uses the Tivoli Enterprise Console (TEC) component from Tivoli. PMagic software creates

BAROC files and TEC rules. This is implemented in Java, as is the implementation of the

manager agents. Most methods implemented for finding agents, finding agent instances, agent

configuration, distribution of agents, policy rules enforcement, etc., are designed to send

information to one central log file that resides in the PMagic manager. This log file is useful for

analyzing the results of the experiments described in Chapter 8. Information columns in a log line

are separated by one *#’ character. The information columns in the order they appear on a log file

line, are as follows:

Timestamp: The number of milliseconds since the epoch to the time when this log

recorded.

Full-Date: The date/time when this log recorded.

Operation-Number: Each operation used to enforce a policy or a set of policies is

assigned a number by PMagic, where numbers are incrementally increased. Numbers

cannot be reused unless PMagic resets the database.

Host-Name: The name of the host from which this log is sent.

Agent-Name: The name of the agent instance that sends this log or GNA in the case of no

agent instance, e.g., the method is AgentFinding that runs by the manager at wolfbiter

host.

Agent-Port: The port number of the agent instance, or TNA otherwise.

M ethod-Name: The name of the method that sends this log.

M ethod-State: There are three states; IN, OUT and EX?'.exception-

name: :exception_message.

Policy-Name: The name of the policy.

Event-Name: The name of the event that the method handles or ENA otherwise.

125

Rule-Name: The name of the rule that the method handles or RNA otherwise.

Condition-Name: The name of the condition that the method handles or CNA otherwise.

Action-Name: The name of the action that handles the method or ANA otherwise.

TEC-Used: A Boolean value (true or false) that indicates whether this operation uses

TEC or not.

7.6 PMagic Event Common Attributes

Table 7.1 represents the common attributes that each event notification message includes.

Additional attributes are specified in an event according to the state that the event represents.

A t t r ib u t e N a m e D e s c r ip t io n s

e v e n t n a m e Specifies the name of the event

t im e s t a m p The number of milliseconds since the epoch to the time when
this event occurred.

s o u r c e PMagic Prototype

s u b _ s o u r c e The name of the management agent that triggered the event

s u b _ s o u r c e _ p o r t The port number that the management agent which triggered
the event used for communication

h o s t n a m e The name of host on which the event occured

o r ig in The name of the host where the management agent resides.
Hostname and origin may be the same

s e v e r i t y Specifies the severity of the event, e.g. UNKOWN, HARMLESS,
WARNING, MINOR, CRITICAL, FATAL

s t a t u s Specifies the status of the event, e.g. CLOSED, OPEN.

o p e r a t io n _ n u m b e r Each policy deployment has a unique operation_number; this
number is used for the audit trail in the PMagic log file

m sg A description message of the event
Table 7.1 : PMagic Event Common Attributes

7.7 Chapter Summary

This Chapter presented the Policy-Management Agent Integrated Console (PMagic)

software.

126

Chapter 8

E v a l u a t i o n

This Chapter describes the experiments conducted to evaluate PMagic and presents several

conclusions drawn from these experiments.

8.1 E x p e r im e n ts E n v iro n m e n t

There are 18 policies used in the evaluation. These policies are shown in Appendix B. The

policies were chosen to represent a variety of system, application and network management tasks.

Several policies measure resource usage and take action if the usage exceeds a threshold. Several

policies are used to configure the system. Two policies do event correlation and take an action in

support of a fault management task.

The experiments required the use of twelve monitoring agents. The descriptions of these

agents are in Appendix C. These agents cover almost 74 attributes and this number can

127

incrementally increase if we consider the attributes of SNMP agents. Management agents use the

postem sg command from the Tivoli Management Framework (TMF). The postem sg command

sends an event to Tivoli. This command does not require defining each managed host as an end

point, while the wpostemsg command does. There are eleven managed host machines. Ten of

these machines use a UNIX platform and one uses Windows XP. In the experiments conducted in

this Chapter, the remote shell command rsh is used to start agents at remote hosts (as described in

Section 7.4). The experimental times shown in this Chapter were the best times; see Appendix F

for more details about averages times and the standard deviations.

8.2 Basic Experiments Using an Existing Management System

The basic experiments make use of Tivoli Enterprise Console (TEC) as the event server and

rule-engine. In deploying policies, the PMagic Management Agents will be configured to send all

events to TEC. The basic experiments focus on the deployment time of policies. Deploying a

policy requires the following tasks to be carried out:

1. Find the agents that can support the policy to be deployed.

2. Find any agent instances of agents that were found in Step 1.

3. Configure agent instances to support the added policy. Configuring an agent instance

involves updating the Registry repository (see Chapter 5, the Agent Information Model).

4. Create the BAROC files and TEC rules as shown in Chapter 6.

5. Import, compile and load the BAROC files and TEC rules created in Step 5 to Tivoli

TEC engine.

6. Start and/or update agent instances at remote hosts.

We are specifically interested in these times:

• Overall Time -O T : This is the time taken to finish Steps 1 to 6.

• PM agic Time - PT: is the time taken to complete Steps 1 to 4 and 6.

• Rem aining Time - RT: This is the time taken to complete Step 5.

128

8.2.1 D eploym ent Policies of P rim itive Events as Domain Size Increases

The purpose of this experiment is to study the impact on the time to deploy a policy as the

number of host machines to which the policy applies increases. The results described in this

Section are based on two policies. Each of these policies uses primitive events. These two

policies differ in the number of management agents needed. The deployment of each policy

assumes that there are no existing agent instances.

The first policy is the cpuJUsage (see Policy number 1 in Appendix B). The deployment of

this policy requires one monitoring agent, one BAROC file and a TEC rule set of two rules. The

first column in Table 8.1 represents the overall time in seconds to deploy the cpuJUsage policy.

The second policy is the processJA onitor (see Policy number 7 in Appendix B). The

deployment of this policy requires two monitoring agents, one dynamic monitoring agent, one

BAROC file and a TEC rule set of two rules. The second column in Table 8.1 represents the

overall time in seconds to deploy the process_M onitor policy.

P o lic ie s c p u J J s a g e p r o c e s s _ M o n it o r

1 H o s t 2 5 2 9

2 H o s ts 2 7 3 1

3 H o s ts 2 8 3 4

5 H o s ts 3 0 3 8

7 H o s ts 3 2 4 3

1 0 H o s ts 3 6 4 6

Table 8.1: Deployment Time for Two Different Policies of Primitive Events

The results in Table 8.1 show that the time it takes to deploy each policy is approximately

linear with respect to the number of hosts. Table 8.2 shows the time breakdown of the 25 seconds

taken to deploy the cpuJUsage policy in one managed host, and Table 8.3 shows the breakdown

of the 29 seconds spent to deploy the process_M onitor policy in one managed host.

129

As can be seen from Tables 8.2 and 8.3, the PT time is relatively small compared to the RT

and the OT. We will not breakdown the other times in Table 8.1 to deploy either of the two

policies to different number of hosts since the incremental time is approximately linear with

respect to the number of hosts. In addition, the increment in the deployment time of both policies

as the number of hosts increases is reasonable. Note that the only times affected as the number of

hosts increase are the times for the Agent-Configuration and Agent-Startup tasks. The time

needed for other tasks remains almost the same. This is because the number of agent instances

that need to be configured and started up increases as the number of managed hosts increases.

Time Group Task Time in Seconds
PT Agent-Finding 1.681

Agent-Instance-Finding 0.205
Agent-Configuration .879
Agent-Startup .239
Mapping To Tivoli .122

PT 3 .1 2 6

RT BAROC Import 6.010
Rule Set Import 5.201
Rule-Base Compile 6.122
Rule-Base Load 5.022

R T 2 2 .3 5 5

OT 2 5 .4 8 1

Table 8.2: Deployment Time Breakdown for Deploying cpu_Usage policy

T im e G ro u p T a s k T im e in S e c o n d s

P T Agent-Finding 2.412
Agent-Instance-Finding 0.293
Agent-Configuration 2.747
Agent-Start-up 1.090
Mapping To Tivoli .135

PT 6 .6 7 7

R T BAROC Import 5.771
Rule Set Import 5.233
Rule-Base Compile 6.431
Rule-Base Load 5.192

R T 2 2 .6 2 7

O T 2 9 .3 0 4

Table 8.3: Deployment Time Breakdown for Deploying process_Monitor policy

130

8.2.2 D eploym ent of Policies of Com posite Events as Domain Size Increases

The purpose of this experiment is similar to the experiment described in Section 8.2.1, i.e., to

study the impact on the time to deploy a policy as the number of host machines to which the

policy applies increases. However, the results described in this Section are based on two policies

that use composite events. These two policies differ in the number of agents needed and the

number of BAROC files and TEC rules. The deployment of each policy assumes that there are no

existing agent instances.

The first policy is the access._Monitor (Policy number 17 in Appendix B). The deployment

of this policy requires one monitoring agent, two BAROC files and a TEC rule set of two rules.

The first column in Table 8.4 represents the overall time in seconds to deploy the access_M onitor

policy.

The second policy is the loadjC ontrol policy (Policy number 15 in Appendix B). The

deployment of this policy requires two monitoring agents, three BAROC files and a TEC rule set

of 3 rules. The second column in Table 8.4 represents the overall time in seconds to deploy the

loadjC ontro l policy.

P o lic ie s a c c e s s _ M o n it o r lo a d _ C o n t ro l

1 H o s t 3 3 4 4

2 H o s ts 3 4 4 6

3 H o s ts 3 5 4 9

5 H o s ts 3 7 5 2

7 H o s ts 3 9 5 5

1 0 H o s ts 4 3 5 9

Table 8.4: Deployment ime for Two Different Policies of Composite Events

The results in Table 8.4 show that the overall time it takes to deploy each policy is

approximately linear with respect to the number of hosts. Table 8.5 shows the time breakdown of

131

the 33 seconds taken to deploy the access_M onitor policy in one managed host, while, Table 8.6

shows the breakdown of the 44 seconds spent to deploy the loadjC ontrol policy in one managed

host.

As can be seen from Tables 8.5 and 8.6, the PT time is relatively small compared to the RT

and the OT. We can observe from Table 8.4 that the incremental increase in the deployment

overall time is approximately linear with respect to the number of hosts and the incremental

amount of time is reasonable.

Time Group Task Time in Seconds
PT Agent-Finding 1.151

Agent-Instance-Finding 0.108
Agent-Configuration 1.335
Agent-Start-up .454
Mapping To Tivoli .187

PT 3 .2 3 5

RT BAROC Import 13.904
Rule Set Import 5.793
Rule-Base Compile 5.936
Rule-Base Load 4.487

RT 3 0 .1 2 0

OT 3 3 .3 5 5

Table 8.5: Deployment Time Breakdown for access_Monitor policy

Time G ro u p Task Time in Seconds
P T Agent-Finding 2.667

Agent-Instance-Finding 0.464
Agent-Configuration 1.985
Agent-Start-up .691
Mapping To Tivoli .591

P T 6 .3 9 8

R T BAROC Import 15.443
Rule Set Import 7.201
Rule-Base Compile 8.411
Rule-Base Load 6.500

T iv o li T a s k s T o ta l 3 7 .5 5 5

O T 4 3 .9 5 3

Table 8.6: Deployment Time Breakdown for load_Control policy

132

8.2.3 E nfo rcem en t of Policy Rules

The purpose of this experiment is to study the impact on the time to enforce a policy rule

using a centralized event handler. Particularly, this experiment determines the time of carrying

out the action as the number of host machines to which the policy applies increases and as the

number of triggered events increases. The results described in this Section are based on

enforcement of the action close the session of the sessionjC ontrol policy. The session_Control

policy uses a primitive event (Policy number 3 in Appendix B). Deployment of this policy is done

in the same way as described in the previous two experiments. The time shown in Table 8.7

represents the time from the detection of the first event (i.e., the first event detected in any of the

managed hosts) and the action taken that corresponds to the last event detected (i.e., the last event

detected in any of the managed hosts). This means that the time of 44 seconds shown in column 2

row 2 of Table 8.7 represents the time between the detection of the first event at one of the two

hosts and the time the action is taken to close the last idle session found in one of the two hosts.

s e s s io n _ C o n t r o l P o lic y
Time Between the first Detected Event and Last Action Taken (in Seconds)

1 E v e n t 2 E v e n t s 5 E v e n t s 1 0 E v e n ts

1 H o s t 12 31 69 104

2 H o s ts 14 44 82 125

5 H o s ts 17 63 101 153

1 0 H o s ts 20 82 122 189

Tab e 8.7: The Enforcement of Policy Rule by using Tivoli

133

The experiments in Sections 8.2.1 and 8.2.2 addressed the time of deployment of specific

policies using PMagic as the number of hosts grow. We found that the policy deployment time is

acceptable with regards to increases in the number of hosts. We also found that the PT time is less

than the RT and OT policy deployment times. Generally, most of the deployment time goes into

importing, compiling and loading the TEC configurations that represent policies in TEC. This

may suggest that configuring management agents, as addressed in Chapters 5 and 6, to carry out

the policy rules enforcement could reduce the deployment overhead time.

The experiment in Section 8.2.3 studied the time to enforce a policy using TEC as a

centralized event handler. The times showed that when several events came from the same host,

the actions taken by TEC are delayed a bit. Generally, the times reported in this experiment show

some delay in enforcement of the policy rules, especially when the number of hosts and event

notification messages increase. This suggests that there may be some advantage to using a more

decentralized policy enforcement approach instead of sending events to a central event processing

engine. For instance, we may ask the management agents to operate as managers that process

events and enforce policy rules (see Chapter 5 for more details). The next Section will explore

this alternative.

8.3 Alternative Strategies for Optimization

This Section explores alternatives introduced in the Thesis, such as the reuse of existing

agent instances to support more policies and the updating of the agent instances to adopt changes

in policies. This Section also explores the use of management agents as managers to process

events and enforce policy rules.

8.2.4 D iscussion of E xperim ent Results

134

In the experiments in Section 8.2 experiments we assumed that no agent instances are

already instantiated. The experiments conducted in this Section compare the PT time of deploying

policies when agent instances do not exist and when they do exist. The reuse of an existing agent

instance to support an added policy means that existing management agent instances should be

reconfigured to monitor and trigger the events of the added policy. Section 8.3.2 addresses how to

facilitate the configuration of existing agent instances.

For the experiment of this Section, we selected the three policies: cpuJUscige,

process.JAonitor and loadjC ontrol (see Section 8.2 for more details about these policies). Table

8.10 shows comparisons between the PT times to deploy the policy when there are no existing

agent instances and the time to configure existing agent instances which are already instantiated

in the remote hosts that constitute the domain of the added policy.

We can see from the results shown in Table 8.8 that the reuse of existing agent instances will

save almost half of the PT deployment time. Though it is not tested, we infer that the reuse of

existing agent instances to support more policies could require less computational overhead in

managed hosts than creating more instances of management agents.

8.3.1 E xperim en ts on A gent Reuse

P o lic ie s c p u _ U s a g e p r o c e s s _ M o n it o r lo a d _ C o n t r o l

N o Instance Instance Exists N o Instances Instances Exist N o Instances Instances Exist

1 H o s t 3 1.7 6.3 2.3 6.4 2.3

2 H o s ts 4 2.4 7 3 7.5 3

3 H o s t s 5 3 7.6 3.3 8 3.4

5 H o s t s 7 3.5 8.7 4.2 9 4.2

7 H o s t s 8 4 1 0 5.1 1 0 5.2

1 0 H o s t s 1 0 5.2 12 6.3 13 6.3
Tabi e 8.8: The Reuse of Existing Agents’ Instances in Policy Deployment

135

The proposed model addressed in Chapter 4 was structured in order to be able to provide

dynamic adaptation to changes in polices. A change in an existing policy means that one or more

thresholds of the conditions characterizing the primitive events are changed. These changes need

to be reflected in the management agent instances used to generate the events. Section 8.3.1 has

addressed the reuse of the management agent instances. To enable such reuse, the management

agent instances need to be configured at runtime to support more policies. The reuse and updating

of management agent instances suggests that direct communication between the manager and the

management agent instances is needed. Updating the executing management agent instances with

new changes and/or new configurations is typically done on the fly using direct communications

(see Chapter 5 for more details). Management agents need to be built to allow such direct

communications. RMI and Web-Services are examples of communications mechanisms that

could be used in management agents. In our particular case, we chose Java RMI, but other

communication mechanisms are also possible. The experiments in this Section measure the time

in seconds it takes to reconfigure the agent instances to adopt the changes in policies.

8.3.2 E xperim en ts on Policy R e-Enforcem ent

P o lic ie s c p u J J s a g e p r o c e s s _ M o n it o r lo a d _ C o n t r o l

PT U pdate PT U p d ate PT U p d ate

1 H o s t 3 1 6.3 1.5 6.4 1.6

2 H o s t s 4 1.2 7 2 7.5 2

3 H o s ts 5 1.5 7.6 2.1 8 2.1

5 H o s t s 7 2 8.7 2.4 9 2.4

7 H o s ts 8 2.3 10 3 10 3

1 0 H o s t s 10 3.4 12 4 13 4

Table 8.9: The Re-Enforcement of Three Different Policies using PMagic

136

The experiments in this Section make use of the policies that were used in the deployment

experiments in Section 8.3.1. The goal of this experiment is to compare the time for updating

agents with a new configuration (i.e., an existing policy has been changed such that one or more

thresholds of the conditions characterizing the primitive events are changed) to the time required

if these management agents were first found and then deployed (i.e., PMagic deploy time PT).

An example of a possible change is a change of the cpuJUsage policy to alter the condition

cpuload>90 to cpulocid>85. Such a change in a policy should be adopted by the agent instance

that supports this policy, i.e., the agent instance needs to be asked to handle the new condition

instead of the old one. Table 8.9 presents comparisons between the time for deploying and

configuring management agents from scratch and the time to update to the configuration of

management agent instances. As we can see from the results of Table 8.9, PMagic can update

management agent instances to adopt the changes in the policies in a reasonable time even as the

number of hosts scale.

Note that there are no Agent-Finding and Agent-Startup tasks performed in this re

enforcement experiment, since we assumed that the changes were only in the thresholds of the

conditions in existing policies. However, if the changes involve a change in the attributes which

must be monitored, for example in the construction of the condition of a primitive event, we may

still need to do a full PMagic deployment, i.e., we still need to find and start the agents that can

monitor the attributes specified in the condition. In such a case it may be necessary to keep track

of what changes were done. This is considered to be future work.

8.3.3 Use o f M anagem ent Agents as M anagers

Experiments conducted in Section 8.2 assumed the use of TEC as the event-driven rule-based

engine for handling and processing events and directing the enforcement of the policy rules.

Chapter 6 also proposed that management agents could detect events and evaluate policy rules.

By detecting events we mean the detection of both primitive and composite events. Chapter 5

137

described how primitive events can be detected by using monitoring and dynamic monitoring

agents, and composite events can be detected using manager agents. We conducted the

experiments of Section 8.2 such that the management agent be configured to carry out the policy

rules, i.e., perform the enforcement of the policies the management agent supports. This means

that events do not have to be sent to TEC for further processing and also that policies do not need

to be mapped to Tivoli configurations. Specifically, we make use of management agents to work

as managers for enforcing the policy rules that are associated with the triggered events these

agents detect. In this case, we found that the policy deployment OT times were less than or

almost equal to the PT times shown in Section 8.2 experiments.

We also conducted the same experiments as in Section 8.2.3, but with management agents

configured to carry out both event detection and policy enforcement. The results are shown in

Table 8.10. These results represent times that are substantially shorter compared to the times

presented in Table 8.7.

s e s s io n _ C o n t r o l P o lic y
Time Between the first Detected Event and Last Action Taken (in Seconds)

1 Event 2 Events 5 Events 10 Events

1 Host .028 .097 .621 1.603

2 Hosts .035 .120 .887 1.917

5 Hosts .041 .174 1.011 2.389

10 Hosts .066 .251 1.633 2.907

Table 8.10: The Enforcement of Policy Rule by using Management Agents

8.3.4 D iscussion o f A lternative Strategies

The results of the experiments presented in the previous Sections show that the alternative

strategies of utilizing management agents to support policies offer promising results.

138

Specifically, we found that: 1) The reuse of existing instances of management agents is better

than creating new management agent instances to support the added policies; 2) Updating

management agent instances to adopt the changes in policies is better than starting the

management agents from scratch with the new changes, 3) Using management agents as

managers for policy enforcements beside the event detections tasks, could be a promising

direction.

8.4 Final Discussion and Conclusions Drawn

T his Section discusses several key points that were addressed in the Thesis based on the

experiments in this Chapter.

8.4.1 M apping Policies to Tivoli

In the early Chapters of this Thesis we highlighted how the use of policies can facilitate the

management system to be adaptable to changes in management strategies without requiring the

recoding of the management system. The policies can be represented and specified by high-level

policy languages. The principle foci of this Thesis are the design of approaches to map the

specified policies to be realized by management systems. Chapter 6, together with the

experiments of Section 8.2, show and validate how the proposed PMagic model does map

different specified policies to Tivoli. Practically, we have shown and validated the mapping of the

high-level specified policies elements to event format files (as in BAROC files) and to executable

rules (as in TEC rules) by using the developed reusable templates that steer the automated

mapping mechanism.

8.4.2 Iden tify ing M anagem ent Agents to Support Policies

Existing management systems do not provide facilities to automate the efficient deployment

of management entities i.e., finding, initiating and deploying management agents that monitor,

analyze and control the managed system to support policies. More explicitly, existing

139

management systems are lacking in the definition of the link between their management rules and

the management monitoring services (agents) that execute in order to collect events of interest to

these rules from managed objects. This relationship between rules and agents is typically defined

and configured by the system administrator. A key element of this Thesis work is policy

deployment. All experiments conducted in this Chapter have validated that PMagic is bridging

and automating the gap between expressing policies in a high-level specification language and the

deployment of management agents to support policies.

One kind of question that may be raised is how efficient the agent finding algorithm is when

there are many agents, i.e., when the number of agents scale. Let us briefly analyze this situation.

The Agent-Finding algorithm tries to find agents that can monitor the policy primitive events.

Normally, the number of specified primitive events in a policy is small. The search is done by

matching the attribute names specified in these events to the attribute names that are associated

with management agents. Specifying management agents and the associated attributes is done

once and used many times, i.e., the Insert and Update operations to the database tables represent a

negligible number of operations compared to the search (Select) operations in these tables. With

respect to this fact, we construct the database agent attributes table to be indexed by the attribute

names. The time to find an attribute name in a table indexed by attribute names is determined by

the number of reads in a binary tree needed to find that attribute name. If n is the number of

attribute rows in the agent attributes table, the number of reads is bounded by log2(n). For

example, for 1,024 rows 10 reads are required and for 1,048,576 rows 20 reads, etc. More details

on the power of indexing are in [55, 63]. These facts indicate that the increment in the number of

management agent would have minimal effect on the performance of the agent finding algorithm.

141

However, this centralized rule-engine could potentially be a bottleneck. Thus, Chapter 6

proposed that management agents detect events and evaluate policy rules. Specifically, we used

management agents as managers in enforcing the policy rules that were associated with the events

these agents were detecting. To facilitate the decentralized event processing, the Thesis

introduced manager agents to detect composite events. The algorithms used by the manager

agents to evaluate the five composite event operators that were introduced in the Thesis are given

in Appendix E. The initial results of experiments in Section 8.3.3 for using management agents as

managers show promising results. Practically, more work is needed to decide when manager

agents should be used versus just deploying an agent to detect primitive events.

8.4.6 Limitations o f Experimental Environment

As introduced in Chapter 7, the prototype’s software (TMF, TEC, gateway, Java and DB2

server) are installed on an old Sun Blade 100 Workstation with one 32 bit CPU of 0.49 GHz with

1.5GB of memory that uses Solaris 5.8. All communications in PMagic use Java RMI. This

configuration is likely the cause of some slowness in deployment and enforcement times reported

in the experiments discussed in this Chapter.

8.5 Chapter Summary

This Chapter described the experiments conducted to validate and evaluate PMagic and

presented the conclusions drawn from these experiments.

142

Chapter 9

C o n c lu sio n s and
F u tu re W ork

In this Chapter we review the contributions of the Thesis and discuss open issues and

directions for future work.

9.1 Conclusions

The Thesis has reviewed and described several policy-based management systems, focusing

primarily on policy specification languages and policy deployment systems. While there has been

some work on automation of some aspects of policy-based management systems, there is clearly

a need for more work on the automation of the mapping of policies to management elements (e.g.

agents, rules), configuration of those management elements, the efficient runtime use and reuse of

those elements, and the efficient reconfiguration of those elements in response to changes in the

system being managed or in policies. This research focused on the means for a management

system to automatically identify and deploy management operations, and management system

143

configurations for deploying policies. A central part of this research is the agent matcher concept

which opens the door for more self-configuring management systems. The contributions of the

Thesis can be considered as first steps towards the goal of automating policy-based management

systems. The main contributions can be reviewed and summarized as follows:

• A Model for PBM System: A general PBM system model was proposed based upon

features of the problem. The model is practical and also represents an abstract object

model. The model provided a high-level language for representing policies and a means

to abstractly characterize management agents. The model’s primary characteristics are

its ability to identify and deploy management entities and its ability to respond

automatically to both changes to the system itself and to changes in the way the system is

to be managed, i.e., changes to the set of management policies or sets of management

agents. The model can be applied to any management system.

• The use o f an existing management system: The Thesis has shown how to build the

policy model and services on existing management services found in commercial

management systems. We have shown, through Chapter 6 and with the experiments of

Chapter 8, how to map different policies to Tivoli, and in particular, to event format files

(BAROC files) and to executable rules (TEC rules) by using reusable templates to steer

the automated mapping mechanism. The template-based approach introduced in the

mapping of policies to any event-driven rule-based management system, enables the

construction of more dynamic self-configuring PBM systems.

• Policy deployment algorithms: The Thesis has shown the needed services and sketched

the necessary algorithms to identify, deploy and utilize management entities for policy

deployment.

144

• A PMagic prototype implementation: The implementation demonstrated that a modular

policy language could be implemented and used to specify policies. The prototype

implementation successfully incorporated the agent finding algorithm and successfully

demonstrated steps towards automating PBM systems with minimal administrator

interaction. Construction of the implementation produced a number of insights into the

challenges of automating policy-based management systems. These challenges are

summarized in the following:

1. It may be the case where one monitoring agent (ma) can not monitor all attributes

of a primitive event. In this case a dynamic monitoring agent (dma) is

instantiated to evaluate the condition that characterized the primitive event. For

instance, in Example 6.3 (see also Appendix B Policy 16), if the management

system provides a ma that monitors the usersloginstotal attribute, another ma that

monitors the cpuload attribute, and a third ma that monitors the cpuprocesstolal

attribute, then a dma is dynamically instantiated to receive the values of cpuload

and cpuprocesstolal attributes from the last two mas. The dma is used to detect

instances of the primitive event characterized by the condition “cpuload>90 &&

cpuprocesstotal>35”. The dma itself may be executed in one managed resource

and receive messages of the required information from mas in other managed

resources. The problem here is that the monitoring information can be mixed

when there are several resources (e.g., the value of cpuload of a host and the

value cpuprocesstotal of another host), while the expression might need to be

evaluated on information collected from the same managed resource. Thus, the

values of cpuload and cpuprocesstotal need to be checked to confirm that they

came from the same managed resource (i.e., host in our example case). We call

this problem the Information Collecting Challenge. In PMagic, a logical

expression can be associated with a set of attributes called the Restraints Match

145

Attributes fo r this Expression that defines the set of the attributes that need to be

matched first by the dma among the received messages. Restraints Match

Attributes fo r this Expression set can be entered using the PMagic interface and

stored in the policy repository. If the received messages have a matching source,

the dma then proceed to evaluate the condition.

2. A second issue, similar to the one addressed in the first point, deals with the

event notifications messages, i.e., correlating the notification messages

representing event instances can be mixed up from several resources. More

practically, correlation of the received event instances to detect a composite

event, which is constituted from these event instances, might be needed to

evalutae only the received event instances that came from the same managed

resource. Thus, correlation may rely on the values of some attributes in the event

notification messages that need to be matched first. We call this problem Event

Correlating Challenge. In PMagic a composite event can be associated with a set

of attributes called Event’s Restraint Attributes that defines the set of the

attributes to be match among the events instances that constitute the composite

event, e.g., hotsname could be one of the Event’s Restraint Attributes that need to

be matched in all the received events instances before any correlation.

3. The release of enforced actions when the system state represented in the triggered

event, which causes the enforcement of the action, changes. In PMagic, the

administrator might specify another new policy in which he/she specifies the

policy event to be the composite event resulted from the application of the E-Not

event operator to the event in our addressed case. The policy rule of the new

policy in this case has a condition to check if the enforeced action that need to be

released stills active and if so, the policy rule action of the new policy is to stop

146

or kill the enforcement o f the action that needs to be released. More details on

this are discussed in Section 9.2 on Future Work.

• Experiments: The experiments demonstrated the successful application of the model, the

prototype and deployment of different policies into domains of differing numbers of

hosts. The results of the basic experiments that evaluated the policy deployment using

services of existing management systems motivated us to look for an alternative

deployment approach for optimization, namely, one that relied on utilizing management

agents for policy deployment.

• Reuse o f management entities: Experimental results have demonstrated that reuse is a

good strategy for management systems. Results show that it is possible to have a

management system adapts to changes in the policies within a reasonable time as the

number of hosts scale by reusing existing management agent instances. This strategy can

be adopted and incorporated in any existing management framework, providing that the

communications between the manager and the management agents instances to facilitate

agent reuse and update exists.

• Decentralized event-handling mechanism: The Thesis introduced a further policy

deployment approach in which policies are mapped to a configuration of management

agents. Typically this approach requires management agents to work as managers for

enforcing the policy rules that are associated with the events. This led to the introduction,

design and implementation of the manager agents together with the algorithms needed to

detect composite events.

9.2 Future Work

Although the work in this Thesis has achieved encouraging results, the research towards an

optimal or a semi-optimal automated policy-based management system is still developing. There

147

a number o f issues based upon the work in this Thesis and related research that have not been

addressed that form the basis for future research:

• Searching and Agent Configuration: The algorithm described for agent finding can also

be applied to agent instantiations, thus meaning that agent instantiations are first

searched. A policy that is activated after an initial set of policies has been activated can

minimize the number of instances of agents since information about agent instances is

maintained. This in itself is not sufficient. Future algorithms should consider resource

constraints and restrictions on the location and number of agent instantiations. A

representation of this information, and mapped to an optimization model is needed. Work

in [1] describes possible optimization models. These could be incorporated into the Agent

Matcher component. Another possibility related to the management agents that were

introduced in Chapter 5 would be to consider a single implementation of the three

management agent types which could perform any of the tasks of ma, dma and/or

manager_agents. This needs to be reviewed, and the performance and overhead of such a

general agent would need to be carefully evaluated.

• Adding Consistency and Policy Conflicts Checking: Though the prototype provides

consistency checking between policy intervals and policy rule intervals (if the latter are

associated with a rule), there are still some areas that need consistency checks such as

domains associated at the policy and policy rules levels. Also, as introduced in Chapter 2,

the background and related work Chapter, the detection of policy conflicts is a

challenging research problem that should be studied and incorporated in any production

o f PBM systems.

• Reuse o f Mapping: The Thesis describes a template-based approach for generating event

formats and rules from the policy specification. The actual template is management

system specific. The mapping consists of parsing the policy specification to its

148

constituent components, e.g., events, where a mapping is defined from the constituent

event to a template. The parsing is independent of the management system. For each

management system a class could be defined where each method is associated with a

policy element. This class is sub-classed for each management system. This approach

makes it easier to use this work for different management systems.

• Communications Performance: The Thesis presented the design of management agents

that can make use of existing (or legacy) agents. This adds an extra level of indirection

which did result in additional overhead. However, recent work shows that the use of web

services can be made feasible [112]. Our future work includes studying the specifications

OASIS Management Using Web Services (MUWS) and DMTF Web Services for

Management (WSManagement). Future work would look at using the work from the

DMTF WBEM initiative.

• ' Actions Need Release: As a result of event triggering within the policy, actions of the

policy rule will be enforced if some specified conditions are true. We consider the action

of the policy of Example 6.3 (see also Policy number 16 in Appendix B) that arose from

the deployment and enforcement of the policy loadjControl. The action block any new

user logins used in this example policy is executed remotely by a Java agent that

continuously logs out any new user who tries to login to the host that triggered an

instance of the event users_cpu_process_High once, i.e., violated the policy

(users_cpu_process_High described before in our example policy loadjControl). The

action block any new user logins will be executed and will continue its job of logging out

new users from the violated hosts without checking if users_cpu_process_High is

triggered again or not. Such action needs to be released at the “not” occurrence of

users_cpu_process_fiigh. Although, PMagic has its vision on how to solve this challenge

(see Section 9.1); future research will address this issue.

149

• Verify the Duplication in Logical-Expressions: One way to reduce the number of

primitive events is to determine if the logical-expressions in primitive events are

equivalent. The use of Reduced Ordered Binary Decision Diagram (ROBDD [133]), is a

canonical form for the same logical expressions if the BDD is built using the same order

of the labels of propositional formulas. The propositional formula corresponds to the

Logical Factor used in the PMagic grammar (see Appendix A). This technique could

also help to verify that the changes in the logical-expression that include attribute names

are properly adopted by the agent instance (see Section 8.3.2 for more discussion about

this problem).

• Adding Security: The PBM system model that has been presented in the Thesis does not

explicitly address security, assuming an existing trust relationship between the manager

and the managed resources. In addition, management agents are free to monitor the states

of the managed resources. In many real-world environments, the authority to monitor,

determine and change the configuration of a machine may be restricted and/or may have

different security rights that assign to different groups or users. For the production of the

proposed model this issue needs to be addressed.

• Evaluation fo r other Management Systems: Other areas of future work include

evaluating the entire process within the scope of a different management system, such as

CA Unicenter or HP Openview. Our inspection of these products suggests that our

approach would work well, but this is clearly an area for more study. •

• Larger Experimentation Environment: PMagic has only been evaluated within a limited

environment. Future work is needed to test the algorithms and their scalability in a larger

experimental environment.

150

References
1. H. Abdu, H. Lutfiyya and M. Bauer, “A Framework for Determining Efficient

Management Configurations”, Journal of Computer Networks, Volume 46, Issue 4,
November 2005, pp 437-463

2. I. Adhicandra, C. Pattinson and E. Shaghouei, “Using Mobile Agents to Improve
Performance of Network Management Operations”, Postgraduate Networking Conference
(PGNET 2003), Liverpool, UK, 2003, Available Online,
http://www.cms.liyjm.ac.uk/pgnet2003/submissions/Paper-12.pdf, Last accessed date June
15, 2009.

3. K. Al-Agha, M. Gerla and G. Pujolle, “Adaptive QoS Management for IEEE 802.11 Future
Wireless ISPs”, Journal of Ad-Hoc Networking ACM Wireless Networks Journal, Kluwer,
Volume 10, Issue 4, July 2004, pp 413-421.

4. D. Agrawal, W. Lee and J. Lobo, “Policy-Based Management of Networked Computing
Systems”, IBM T. J. Watson Research Center, IEEE Communications Magazine, October
2005, pp 69-75.

5. D. Agrawal, C. Séraphin, W. Lee and J. Lobo, “Issues in Designing a Policy Language for
Distributed Management of IT Infrastructures”, In Proceedings of the 10th IEEE/IFIP
International Symposium on Integrated Network Management (IM 2007), Munich,
Germany, May 2007, pp 30-39.

6. D. Agrawal, J. Giles, W. Lee and J. Lobo, “Policy Ratification”, In Proceedings of the 6th
IEEE International Workshop on Policies for Distributed Systems and Networks
(Policy2005), Stockholm, Sweden, June 2005, pp 223-232.

7. T. Ahmed, A. Mehaoua and R. Boutaba, “Dynamic QoS Adaptation using COPS and
Network Monitoring Feedback”, In Proceedings of the IFIP/IEEE International Conference
on Management of Multimedia Networks and Services, Santa Barbara, CA, October 2002,
pp 250-262.

8. O. D. Alcántara and D. McCluskey, “Towards Policy-Based Management QoS in
Multicommunicative Education”, Lecture Notes in Computer Science (LNCS), Springer,
Volume 2105, 2001, pp 237-248.

9. I. Aib, N. Agoulmine and G. Pujolle, “A Multi-Party Approach to SLA Modeling,
Application to WLANs”, In Proceedings of the 2nd IEEE Consumer Communications and
Networking Conference (CCNC’05), Las Vegas, USA, January 2005, pp 451-455.

http://www.cms.liyjm.ac.uk/pgnet2003/submissions/Paper-12.pdf

151

10. M. Baldi and G. P. Picco, “Evaluating the Tradeoffs of Mobile Code Design Paradigms in
Network Management Applications”, In Proceedings of the 20th IEEE International
Conference on Software Engineering, Kyoto, Japan, April 1998, pp 146-155.

11. A. Bandara, E. Lupu, J. Moffett and A. Russo, “A Goal-Based Approach to Policy
Refinement”, In Proceedings of the 5th IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy2004), New York, USA, April 2004, pp 223-
232.

12. A. Bandara, E. Lupu and A. Russo, “Using Event Calculus to Formalize Policy
Specification and Analysis”, In Proceedings of the 4th IEEE Workshop on Policies for
Distributed Systems and Networks (Policy2003), Como, Italy, June 2003, pp 26-39.

13. C. Barai, M. Gelfond, and A. Provetti, “Representiing Actions: Laws, Observations and
Hypothesis”, Journal of Logic Programming, Volume 31, Issue 3, October 1997, pp 201-
244.

14. M. Bauer and H. Akhand, “Managing Quality of Service in Internet Applications using
Differentiated Services”, Journal of Network and Systems Management, Volume 10, Issue
1, March 2002, pp 39-62.

15. M. Bearden, S. Garg, and W. Lee, “Integrating Goal Specification in Policy-Based
Management”, In Proceedings of the 2nd IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy2001), Bristol, UK, January 2001, pp 29-31.

16. BMC Software Common Event Format, Version 2.1.0,
http://documents.bmc.com/products/documents/37/30/53730/53730.pdf, Last accessed date
June 15, 2009.

17. J. Bradshaw and P. Beautement, A. Raj, M. Johnson, S. Kulkami and N. Suri, “Chapterl2:
Making agents acceptable to people”, In N. Zhong and J. Liu (Eds.) 2002, Handbook of
Intelligent Information Technology, Amsterdam, The Netherlands, Available Online,
http://www.ihmc.us/research/projects/KAoS/biit-jeff.pdf, Last accessed date June 15, 2009.

18. L. Brownston, R. Farrell and E. Kant, “Programming Expert Systems in OPS5 Reading”,
Addison-Wesley. 1995.

19. F. Bry, M. Eckert and P. Patranjan, “Reactivity on the Web: Paradigms and applications of
the language XChange”, Journal of Web Engineering, Volume 5, Issue 1, May 2006, pp 3-
24.

20. M. Brunner and J. Quittek, “MPLS Management Using Policies”, In Proceedings of the 7th
IFEP/IEEE International Symposium on Integrated Network Management (IM2001),
Seattle, WA, USA, May. 2001, pp 515-528.

http://documents.bmc.com/products/documents/37/30/53730/53730.pdf
http://www.ihmc.us/research/projects/KAoS/biit-jeff.pdf

152

21. M. Brunner and A. Prieto, “SLS to DiffServ Configuration Mappings”, In Proceedings of
the 12th IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management (DSOM2001), Nancy, France, October 2001, pp 15-17.

22. M. Burgess, “Cfengine: a system configuration engine”, Technical report number 1993-9,
University of Oslo, October 1993, Available Online,
http://www.iu.hio.no/~mark/papers/cfengine historv.pdf. Last accessed date June 15, 2009.

23. CA-Unicenter, http://www.ca.com, Last accessed date June 15, 2009.

24. S. Calo and M. Sloman, “Policy-Based Management of Networks and Services”, Journal of
Network and Systems Management, Springer Netherlands, Volume 11, Issue 3, September
2003 , pp 249-377.

25. Canonical Situation Data Format: The Common Base Event,
http://www.eclipse.org/tptp/platform/documents/resources/cbel01spec/CommonBaseEvent
_SituationData_V 1.0.1 .pdf, Last accessed date June 15, 2009.

26. N. Carver, “A Revisionist View of Blackboard Systems”, In Proceedings of the 8th
Midwest Artificial Intelligence and Cognitive Science Society Conference (MAICS '97),
Dayton, Ohio, USA, May 1997, pp 15-22.

27. H. Chaouchi and A. Munaretto, “Adaptive QoS Management for IEEE 802.11 Future
Wireless ISPs, Center for Telecommunications Research”, In Wireless Networks, Volume
10, Issue 4, July 2004, pp 413-421.

28. J. Chomicki and J. Lobo, “A Logic Programming Approach to Conflict Resolution in
Policy Management”, In Proceedings of the 7th International Conference on Principles of
Knowledge Representation and Reasoning (KR2000), Breckenridge, Colorado, USA, April
2000, pp 121-132.

29. J. Chomicki and J. Lobo, “Monitors for history-based policies”, In Proceedings of the 2nd
IEEE Workshop on Policies for Distributed Systems and Networks (Policy2001), Bristol,
UK, January 2001, pp 57-72.

30. L. Choonhwa, A. Helal, N. Desai and V. Verma, B. Arslan, “Konark: A system and
protocols for device independent, peer-to-peer discovery and delivery of mobile services”,
In the Proceedings of the IEEE Transactions on Systems and Humans, Volume 33, Issue 6,
November 2003, pp 682-696.

31. QPM-Cisco ’ s QoS Policy Manager,
http://www.cisco.com/en/US/products/sw/cscowork/ps2064/index.html, Last accessed date
June 15, 2009.

http://www.iu.hio.no/~mark/papers/cfengine_historv.pdf
http://www.ca.com
http://www.eclipse.org/tptp/platform/documents/resources/cbel01spec/CommonBaseEvent
http://www.cisco.com/en/US/products/sw/cscowork/ps2064/index.html

153

32. CiscoAssure, http://newsroom.cisco.com/dlls/prod_031098.html, Last accessed date June
15, 2009.

33. N. Damianou, “A Policy Framework for Management of Distributed Systems”, PhD
Thesis, Department of Computing, Imperial College, London, UK, March 2002.

34. N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “Ponder: A Language for Specifying
Security and Management Policies for Distributed Systems: The Language Specification
(version 2.2)”, Technical report number 2000-01, Deptartment of Computing, Imperial
College, London, UK, April 2000.

35. V. Danciu and B. Kempter, “From Processes to Policies -Concepts for Large Scale Policy
Generation”, In Proceedings of the 9th IEEE/IFIP Network Operations and Management
Symposium (NOMS2004), Seoul, Korea, April 2004, pp 17-30.

36. R. Darimont and A. Lamsweerde, “GRAIL/KAOS: An environment for goal-driven
requirements engineering”, In Proceedings of the 19th IEEE International Conference on
Software Engineering (ICSE1997), Kyoto, Japan, April 1997, pp 612-613.

37. R. Darimont and A. Lamsweerde, “Formal Refinement Patterns for Goal-Driven
Requirements Elaboration”, In Proceedings of the 4th ACM Symposium on the Foundations
o f Software Engineering (FSE4), November 1996, pp 179-190.

38. M. Debusmann and A. Keller, “SLA-driven Management of Distributed Systems using the
Common Information Model”, In Proceedings of the 8th IEEE/IFIP International
Symposium on Integrated Network Management (IM2003), Colorado, USA, March 2003,
pp 563-576.

39. DMTF, CIM Core Model White Paper (CIM Version 2.4), 2002, www.dmtf.org, Last
accessed date June 15, 2009.

40. DMTF, CIM Policy Model White Paper (CIM Version 2.7). 2003, www.dmtf.org, Last
accessed date June 15, 2009.

41. N. Dulay, E. Lupu, M. Sloman and N. Damianou, “A Policy Deployment Model for the
Ponder Language”, In Proceedings of the 7th IEEE/IFIP International Symposium on
Integrated Network Management (IM2001), Seattle, WA, USA, May 2001, pp 529-543.

42. N. Dunlop, J. Indulska and K. Raymond, “Dynamic Policy Model for Large Evolving
Enterprises”, In Proceedings of the 5th IEEE Enterprise Distributed Object Computing
Conference, Seattle, WA, USA, September 2001, pp 193-197.

http://newsroom.cisco.com/dlls/prod_031098.html
http://www.dmtf.org
http://www.dmtf.org

154

43. N. Dunlop, J. Indulska and K. Raymond, “Dynamic Conflict Detection in Policy-Based
Management Systems”, In Proceedings of the 6th IEEE Enterprise Distributed Object
Computing Conference EDOC'02), Lausanne, Switzerland September 2002, pp 15-26.

44. N. Dunlop, J. Indulska and K. Raymond, “Methods for Conflict Resolution in Policy-Based
Management Systems”, In Proceedings of the 7th IEEE International Enterprise Distributed
Object Computing Conference, Brisbane, Australia, September 2003, pp 98-109.

45. D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, “The COPS (Common
Open Policy Service) Protocol”, Standards Track RFC 2748, IETF, Network Working
Group, January 2000.

46. T. Dursun, T. Uekae and P. Yolum., “A Generic Policy-Conflict Handling Model”,
Lecture Notes in Computer Science (LNCS), Springer, May 2005, Volume 3733, pp. 193-
204,

47. L. Fallon, D. Parker, M. Zach, M. Leitner and S. Collins, “Self-Forming Network
Management Topologies in the Madeira Management System”, Lecture Notes in
Computer Science (LNCS), Springer, July 2007, Volume 4543, pp 61-72.

48. M. Ferudin, W. Kasteleign and W. Krause, “Distributed Management with Mobile
Components”, In Proceedings of the 6th IFIP/IEEE International Symposium on Integrated
Network Management (IM1999), Boston, MA, USA, May 1999, pp 515-528.

49. R. Helm, R. Johnson, and J. Vlissides, “Design Patterns- Elements o f Reusable Object,
Addison Wesley, November 1995, pp. 163-195.

50. A. Gilbert and C. Schaubach, “What is PMAC (Policy Management for Autonomic
Computing?)”, IBM alphworks presentation, 2005.

51. C. Goh, “A Generic Approach to Policy Description in System Management”, In
Proceedings of the 8th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM1997), Sydney, Australia, October 1997, pp. 1-12.

52. G. Goldszmidt and Y. Yemini, “Delegated agents for network management” IEEE
Communications Magazine, Volume 36, Issue 3, March 1998, pp. 66-70.

53. Gorgias: Argumentation and Abduction, http://www2.cs.ucy.ac.cy/~nkd/gorgias/, Last
accessed date June 15, 2009.

54. L. Z. Granville, R. S. Alves, M. J. Almeida and L. M. Tarouco, “Proposal, Implementation,
and Analysis of an Atomic Policy Deployment Protocol for QoS-Enabled Networks”,
Lecture Notes in Computer Science (LNCS), Springer, October 2006, Volume 4268, pp
132-143.

http://www2.cs.ucy.ac.cy/~nkd/gorgias/

155

55. P. Gulutzan and T. Pelzer, “SQL Performance Tuning”, Addison Wesley, September 2002.

56. M. Hasan, “The Management of Data, Events, and Information Presentation for Network
Management”, PhD Thesis, Computer Science Departement, University of Waterloo, May
1996.

57. W. J. Heaven and A. Finkelstein, “A UML Profile to Support Requirements Engineering
with KAOS”, IEEE Software, Volume 151, Issue 1, September 2004, pp. 10-27.

58. H. G. Hegering, S. Abeck and B. Neumair, “Integrated Management o f Networked
Systems: Concepts, Architectures and Their Operational Application”, Morgan Kaufmann,
November 1999.

59. Hitachi JP1 /Integrated Management, http://secunia.com/advisories/product/20778/. Last
accessed date June 15, 2009.

60. M. Hitchens and V. Varadharajan, “Tower: A Language for Role Based Access Control”,
In Proceedings o f the 2nd IEEE Workshop on Policies for Distributed Systems and
Networks (Policy2001), Bristol, UK, January 2001, pp 88-106.

61. HP Openview, http://www.hp.com, Last accessed date June 15, 2009.

62. IBM, Autonomic Computing Policy Language, 2005,
http://www.research.ibm.eom/people/k/kangwon/publications/policy_comm_mag.pdf,
Last accessed date June 15,2009.

63. IBM DB2 UDB Version 8 Product ManualsAdministration Guide: Performance,
ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/db2d3e81 .pdf, Last
accessed date June 15, 2009.

64. IBM, Policy Management for Autonomic Computing,
http://www.alphaworks.ibm.com/tech/pmac, Last accessed date June 15, 2009.

65. IETF, http://www.ietf.org, Last accessed date June 15, 2009.

66. IETF, RFC 2748, The COPS (Common Open Policy Service) Protocol,
http://www.ietf.org/rfc/rfc2748.txt, Last accessed date June 15, 2009.

67. IETF, RFC 2790, Host Resources Mib, http://www.ietf.org/rfc/rfc2790.txt, Last accessed
date June 15, 2009.

68. IETF, RFC 3084, COPS Usage for Policy Provisioning (COPS-PR),
http://www.ietf.org/rfc/rfc3084.txt, Last accessed date June 15,2009.

http://secunia.com/advisories/product/20778/
http://www.hp.com
http://www.research.ibm.eom/people/k/kangwon/publications/policy_comm_mag.pdf
ftp://ftp.software.ibm.com/ps/products/db2/info/vr82/pdf/en_US/db2d3e81
http://www.alphaworks.ibm.com/tech/pmac
http://www.ietf.org
http://www.ietf.org/rfc/rfc2748.txt
http://www.ietf.org/rfc/rfc2790.txt
http://www.ietf.org/rfc/rfc3084.txt

156

69. IETF, RFC 3198 - Terminology for Policy-Based Management, 2001,
http://www.ietf.org/rfc/rfc3198.txt, Last accessed date June 15,2009.

70. International Organization for Standardization (ISO), http://www.iso.ch, Last accessed date
June 15, 2009.

71. G. Jakobson and M. D. Weissman, “Alarm Correlation”, IEEE Network, Volume 7, Issue
6, November 1993, pp 52-59.

72. G. Jakobson, J. Buford, and L. Lewis, “Towards an Architecture for Reasoning about
Complex Event-Based Dynamic Situations”, In Proceedings of the 3rd International
Workshop on Distributed Event Based Systems (DEBS 2004), Edinburgh, UK, May 2004,
pp 62-67.

73. P. Jackson, “Introduction to Expert Systems”, Addison-Wesley, 1999.

74. JESS- The Rule Engine for the Java Platform, http://www.jessrules.com/, Last accessed
date June 15, 2009.

75. T. Jonatan, “SLA Enforced by Policy”, A M.Sc. Thesis, Computer Science Department,
University of Twente, June 2001.

76. L. Kagal, “Rei: A Policy Language for the Me-Centric Project. Enterprise Systems Data
Management Laboratory”, Technical report number HPL-2002-270, HP Laboratories,
September 30,2002, Available Online,
http://ebiquity.umbc.edu/_file_directory_/papers/57.pdf, Last accessed date June 15,2009.

77. A. Kakas, A. Bandara, A. Russo, E. Lupu, M. Sloman and N. Dulay, “Reasoning
Techniques for Analysis and Refinement of Policies for Service Management”, Technical
report number 2005-7, Department of Computing, Imperial College London, UK, June
2005.

78. Y. Kanada, “A Representation of Network Node QoS Control Policies Using Rule-Based
Building Blocks”, In Proceedings o f the 8th IEEE International Workshop on Quality of
Service (IWQOS2000), Pittsburgh, PA, USA, June 2000, pp 161-163.

79. A. Keller and H. Ludwig, “The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services”, IBM Research Division, JNSM, Volume 11, Issue 1,
March 2003.

80. M. Kona and C. Z. XU, “An Integrated Mobile Agent Framework for Distributed Network
Management”, The International Journal of Parallel, Emergent and Distributed Systems,
Volume 20, Issue 1, March 2005, pp 39-55.

http://www.ietf.org/rfc/rfc3198.txt
http://www.iso.ch
http://www.jessrules.com/
http://ebiquity.umbc.edu/_file_directory_/papers/57.pdf

157

81. D. Lamanna, J. Skene and W. Emmerich, “SLAng: A Language for Defining Service Level
Agreements”, In Proceedings of the 9th IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS2003), San Juan, Puerto Rico, USA, May 2003, pp 100-106.

82. A. Liotta, G. Pavlou, and G. Knight, “Exploiting Agent Mobility for Large-Scale Network
Monitoring”, In IEEE Network, Volume 16, Issue 3, June 2002, pp 7-15.

83. A. Liotta, G. Pavlou, and G. Knight, “On the Efficiency and Scalability of Decentralized
Monitoring using Mobile Agents”, In Proceedings of the 6th On-Line HP Openview
University Association Plenary Workshop (Hp-OVUA’99), Bologna, Italy, June 1999.

84. A. Liotta, G. Pavlou, and G. Knight, “Decomposition Patterns for Mobile-Code-based
Management”, In Proceedings of the 5th On-Line HP Openview University Association
Plenary Workshop (Hp-OVUA’98), ENST de Bretagne, Rennes, France. April 1998.

85. A. Liotta, G. Pavlou, and G. Knight, “Modelling Network and System Monitoring over the
Internet with Mobile Agents”. In Proceedings of the 6th IEEE/IFIP Network Operations and
Management Symposium (NOMS1998), Louisiana, USA, April 1998, pp 303-312.

86. J. Lobo, R. Bhatia and S. Naqvi, “A Policy Description Language”, In Proceedings of the
16th IEEE National Conference on Artificial Intelligence (AAAI1999), Orlando, Florida,
USA, June 1999, pp 291-298.

87. Lucent Technologies RealNet Policy Rules,
http://www.lucent.com/wps/portal/Solutions/detail7LMSG_CAB INET=Solution_Product_
Catalog&LMSG_CONTENT_FILE=Solutions/Solution_Detail_000035 .xml, Last accessed
date June 15, 2009.

88. H. Lutfiyya, G. Molenkamp, M. Katchabaw and M.Bauer, “Issues in Managing Soft QoS
Requirements in Distributed Systems Using a Policy-Based Framework”, In Proceedings of
the 2nd IEEE Workshop on Policies for Distributed Systems and Networks (Policy2001),
Bristol, UK, January 2001, pp 185-201.

89. L. Lewis, “On the Integration of Service Level Management and Policy-Based Control”, In
Proceedings of the 1st IEEE Workshop on Policies for Distributed Systems and Networks
(Policy1999), Bristol, UK, November 1999.

90. L. Lewis, “Service Level Management fo r Enterprise Networks”, Artech House, October
1999.

91. E. Lupu, M. Sloman, “Conflict Analysis for management Policies”, In Proceedings of the
IFIP/IEEE International Symposium on Integrated Network Management (IMI997), San
Diego, California, USA, May 1997, pp 430-443.

http://www.lucent.com/wps/portal/Solutions/detail7LMSG_CAB

158

92. L. Lymberopoulos, E. Lupu and M. Sloman, “Using CIM to Realize Policy Validation
within the Ponder Framework”, In Proceedings of the DMTF Global Management
Conference (DMTF2003), San Jose, CA, USA, June 2003, pp 16-19.

93. L. Lymberopoulos, E. Lupu and M. Sloman, “Ponder Policy Implementation and
Validation in a CIM and Differentiated Services Framework”, In Proceedings of the 9th
IFIP/IEEE Network Operations and Management Symposium (NOMS2004), Seoul, Korea,
April 2004, pp 31-44.

94. L. Lymberopoulos, E. Lupu, and M. Sloman, “An Adaptive Policy Based Management
Framework for Differentiated Services Networks”, In Proceedings of the 3rd IEEE
Workshop on Policies for Distributed Systems and Networks (Policy2002), Monterey, CA,
USA, June 2002, pp 147-158.

95. V. Machiraju, A. Sahai and A. Moorsel, “Web Services Management Network: An overlay
network for federated service management”, In Proceedings of the 8th IFIP/IEEE
International Symposium on Integrated Network Management (IM2003), Colorado, USA,
March 2003, pp 351-364.

96. S. Mandis, B. Séraphin and D. Verma, “Policy Transformation Techniques in Policy-based
Systems Management”, In Proceedings of the 5th IEEE International Workshop on Policies
for Distributed Systems and Networks (Policy2004), New York, USA, April 2004, pp 13-
22.

97. M. Mansouri, “Monitoring of Distributed Systems”, PhD Thesis, Department of
Computing, Imperial College, London, UK, December 1995.

98. M. Mansouri and M. Sloman, “GEM: A generalized event monitoring language for
distributed systems”, Journal of Distributed Systems Engineering, Volume 4, Issue 2, July
1997, pp 96-108.

99. E. Marilly, O. Martinot, S. Betge-Brezetz and G. Delegue, “Requirements for service level
agreement management”, In Proceedings of the IEEE Workshop on IP Operations and
Management (IPOM2002), Dallas, Texas USA, October 2002, pp 57-62.

100. D. Marriott and M. Sloman, “Management Policy Service for Distributed Systems”, In
Proceedings of the 3rd International Workshop on Services in Distributed and Networked
Environments (SDNE1996), Macau, China, June 1996, pp 2-9.

101. M. Martinez,M. Brunner, J. Quittek, F. Straub, J. Schönwälder, S. Mertens and T. Klie,
“Using the Script MIB for Policy-based Configuration Management”, In Proceedings of
the 8th IEEE/IFIP Network Operations and Management Symposium (NOMS2002),
Genova, Italy, April 2002, pp 187-202.

159

102. M. Masullo and S. Calo, “Policy Management: An architecture and approach”, In
Proceedings of the 1st IEEE International Workshop On System Management Techniques,
Processes, and Services (SMTPS1993), Los Angeles, CA, USA, April 1993, pp 13-26.

103. S. Mazumdar and K. Swanson, “WEB Based Management CORBA/SNMP Gateway
Approach”, In Proceedings of the 7th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM1996), L’Aquila, Italy, October 1996, pp
110- 121.

104. S. Mazumdar, “Mapping of Common Management Information Service (CMIS) to
CORBA Object Services”, Technical report number BL0112540-96.09.30-02, Bell
Laboratories, September 1996.

105. Microsoft SMS and MOM, http://www.microsoft.com, Last accessed date June 15, 2009.

106. J. Moffett and M. Sloman, “Policy Hierarchies for Distributed Systems Management”, In
Proceedings of the IEEE Special Issue on Network Managemnet (JSAC), Volume 11, Issue
9, December 1994, pp 1404-1414.

107. J. Moffett and M. Sloman, “Policy Conflict Analysis in Distributed System Management”,
Journal of Organizational Computing, Volume 4, Issue 1, April 1994, pp 1-22.

108. G. Molenkamp, H. Lutfiyya, M. Katchabaw and M. Bauer, “Diagnosing Quality of Service
Faults in Distributed Applications”, In Proceedings of the 21s1 IEEE International
Conference on Performance, Computing, and Communications, Phoenix, AZ, USA, April
2002, pp 375-382.

109. M. C. Mont, A. Baldwin, and C. Goh, “POWER Prototype: Towards Integrated Policy-
Based Management”, In Proceedings of the 7th IEEE/IFIP Network Operations and
Management Symposium (NOMS2000), Honolulu, HI, USA, April 2000, pp 789-802.

110. B. Moore, E. Ellesson, J. Strassner and A. Westerinen, “Policy Core Information Model-
PCIM Version 1 Specification”, Standards Track RFC 3060, IETF, Network Working
Group, February 2001.

111. B. Moore, “Policy core information model extensions”, Internet Engineering Task Force
RFC 3460, January 2003.

112. G. Moura, G. Silvestrin, L. Gaspary, L. Zambenedetti, “On the Performance of Web
Services Management Standards - An Evaluation of MUWS and WS-Management for
Network Management”, In Proceedings of the 10th IEEE/IFIP International Symposium on
Integrated Network Management (IM2007), Munich, Germany, May 2007, pp 459-468.

http://www.microsoft.com

160

113. N. Muruganantha and H. Lutfiyya, “Policy Specification and Architecture for Quality of
Service Management”, In Proceedings of the 8th IFIP/IEEE International Symposium on
Integrated Network Management (IM2003), Colorado, USA, March 2003, pp 535-548.

114. NerveCenter - Network Management and Event Correlation System,
http://sun.systemnews.eom/articles/58/l/marketplace/8418, Last accessed date June 15,
2009.

115. Nortel’s Optivity, http://products.nortel.com/go/product_index.jsp, Last accessed date June
15, 2009.

116. Joint XOpen/NM Forum Inter-Domain Management Taskforce, “Comparison of the OSI
Management, OMG and Internet Management Object Models”, OMG Document Number
94.3.7, March 1994.

117. A. N. Ouda, H. Lutfiyya, and M. Bauer, “Mapping Policies to Management Systems”, In
Proceedings of the 10th IEEE Workshop on Policies for Distributed Systems and Networks
(Policy2009), London, UK, July 2009, pp under publishing.

118. A. N. Ouda, H. Lutfiyya, and M. Bauer, “Towards Self-Configuring Policy-Based
Management Systems”, In Proceedings of the 9th IEEE Workshop on Policies for
Distributed Systems and Networks (Policy2008), Palisades, New York, USA, June 2008,
pp 215-218

119. A. N. Ouda, H. Lutfiyya, and M. Bauer, “Towards Automating the Adaptation of
Management Systems to Changes in Policies”, In Proceedings of the 10th IEEE/IFIP
Network Operations and Management Symposium (NOMS2006), Vancouver, Canada,
April 2006, pp 1-4.

120. A. N. Ouda, H. Lutfiyya, and M. Bauer, “Understanding the Relationship Between High-
Level Specification of Policies and Management Processes”, In Proceedings of the 10th
On-Line of HP Openview University Association, Plenary Workshop (Hp-OVUA’03),
Geneva, Switzerland, July 2003.

121. Application Response Measurement (ARM),
http://regions.cmg.org/regions/cmgarmw/marcarm.html, Last accessed date June 15, 2009.

122. RFC-4498, http://www.rfc-archive.org/getrfc.php?rfc=4498, Last accessed date June 15,
2009.

123. P. D. Rosa, C. Melchiors and L.Granville, “Designing the Architecture of P2P-Based
Network Management Systems”, In Proceedings of the 11th IEEE Symposium on
Computers and Communications (ISCC2006), New York, USA, June 2006, pp 69-75.

http://sun.systemnews.eom/articles/58/l/marketplace/8418
http://products.nortel.com/go/product_index.jsp
http://regions.cmg.org/regions/cmgarmw/marcarm.html
http://www.rfc-archive.org/getrfc.php?rfc=4498

161

124. B. Pagurek, Y. Wang and T. White, “Integration of Mobile Agents with SNMP: Why and
How”, In Proceedings of the 7th IEEE/IFIP Network Operations and Management
Symposium (NOMS2000), Honolulu, HI, USA, April 2000, pp 609-622.

125. P. Pereiral, D. Sadok and P. Pinto, “Service Level Management o f Differentiated Services
Networks with Active Policies”, In Proceedings of the 3rd Conference on
Telecommunications (ConfTele2001), Figueira da Foz, Portugal, April 2001, pp 542-546.

126. G. Perrow, J. Hong, H. Lutfiyya and M. Bauer, “The Abstraction and Modelling of
Management Agents”, In Proceedings of the 5th IFIP/IEEE International Symposium on
Integrated Network Management(IM1995), Santa Barbara CA, USA, May 1995, pp 466-
478.

127. P. R. Pietzuch, B. Shand and J. Bacon, “A Framework for Event Composition in
Distributed Systems”, In Proceedings of the IEEE International Middleware Conference,
Rio de Janeiro, Brazil, June 2003, pp 62-82.

128. R. Pinheiro,A. Poylisher and H. Caldwell, “Mobile Agents for Aggregation of Network
Management Data”, In Proceedings of the 3th IEEE International Symposium on Mobile
Agents, Palm Springs, CA, USA, March 1999, pp 130-140.

129. A. Ramnath and L. Ratan, “The Lucent Technologies Softswitch - Realizing the promise
of convergence”, Bell Labs Technical Online Journal, August 2002, pp 174-195.

130. G. Rodosek, “A Generic Model for IT Services and Service Management”, In Proceedings
of the 8th IFIP/IEEE International Symposium on Integrated Network Management
(IM2003), Colorado, USA, March 2003, pp 171-184.

131. A. Sahai, V. Machiraju, M. Sayal, A. Moorsel and F. Casati, “Automated SLA Monitoring
for Web Services”, In Proceedings of the 13th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management (DSOM2002), Montreal, Canada,
October 2002, pp 28-41.

132. M. Sallé and C. Bartolini, “Management by Contract”, In Proceedings of the 9th IEEE/IFIP
Network Operations and Management Symposium (NOMS2004), Seoul, Korea, April
2004, pp 787-800.

133. K. Schneider, “ Verification o f reactive System - Formal Methods and Algorithms”,
Springer, 2004.

134. J. Schonwalder, “Method and System for Network Management with Backup Status
Gathering”, United States Patent 7305461, Issued on December 4, 2007.

135. J. Schonwalder and J. Quittek,. “Secure Internet Management By Delegation”, IEEE
Computer Networks, Volume 35, Issue 1, January 2001, pp 39-56.

162

136. S. Schwiderski, “Monitoring the Behaviour of Distributed Systems”,PhD Thesis, Computer
Laboratory, University of Cambridge, April 1996.

137. E. Al-Shaer and H. Hamed, “Firewall policy advisor for anomaly detection and rule
editing”, In Proceedings of the 8th IFIP/IEEE International Symposium on Integrated
Network Management (IM2003), Colorado, USA, March 2003, pp 17-30.

138. E. Al-Shaer and B. Zhang, “HiFi+: A Monitoring Virtual Machine for Autonomic
Distributed Management”, In Proceedings of the 15th IFIP/IEEE Distributed Systems:
Operations and Management (DSOM2004), November 2004, pp 28-39.

139. M. Sloman, “Network and Distributed Systems Management”, Addison Wesley, 1994.

140. M. Sloman, “Policy Driven Management for Distributed Systems”, Journal of Network and
Systems Management, Volume 2, Issue 4, December 1994, pp 333-360.

141. M. Sloman, “Specifying Policy for Management of Distributed Systems”, In Proceedings
of the 4th IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management (DSOM1993), Long Branch, USA, October 1993, pp. 52-67.

142. M. Sloman and E. Lupu, “Security and Management Policy Specification”, IEEE Network,
Volume 16, Issue 2, April 2002, pp. 10-19.

143. N. Smith, J.Leaney and T. Hunter, “A Policy-Driven Autonomous System for Evaluative
and Adaptive Management of Complex Services and Networks”, In Proceedings of the 12th
IEEE International Conference and Workshops on the Engineering of Computer-Based
Systems (ECBS’05), Greenbelt, Maryland, USA, April 2005, pp 389-397.

144. SNMP-Simple Network Management Protocol, http://www.faqs.org/rfcs/rfcl 157.html.
Last accessed date June 15, 2009.

145. T. C. Son and J. Lobo, “Reasoning about Policies using Logic Programs”, In Proceedings
of the 1st International Workshop on Answer Set Programming, Towards Efficient and
Scalable Knowledge Representation and Reasoning (ASP2001), Stanford, CA, USA,
March 2001, pp 210-216.

146. G. Stone, B. Lundy and G. Xie, “Network Policy Languages: A survey and a new
approach”, IEEE Network, Volume 15, Issue 1, February 2001, pp 10-21.

147. J. Strassner, “Policy-Based Network Management, Solutions fo r the Next Generation”,
Morgan-Kaufmann, August 2003.

http://www.faqs.org/rfcs/rfcl_157.html

163

148. J. Strassner, “DEN-ng: Achieving Business-Driven, Network Management”, In
Proceedings of the 8th IEEE/IFIP Network Operations and Management Symposium
(NOMS2002), Genova, Italy, April 2002, pp 753-766.

149. R. Subramanyan, J. Miguel-Alonso, J. Fortes, “A Reconfigurable Monitoring System for
Large-Scale Network Computing”, Euro-Par 2003 Parallel Processing, 2003, pp. 98-108.

150. Sun Microsystems, http://java.com/en/, Last accessed date June 15, 2009.

151. Tivoli, http://www.tivoli.com, Last accessed date June 15, 2009.

152. Y. Udupi, A. Sahai and S. Singhal, “A Classification-Based Approach to Policy
Refinement”, In Proceedings of the 10th IEEE/IFIP International Symposium on Integrated
Network Management (IM2007), Munich, Germany, May 2007, pp 785-788.

153. D. Verma, M. Beigi and R. Jennings, “Policy Based SLA Management in Enterprise
Networks”, IBM Thomas J Watson Research Center, Yorktown Heights, NY USA, 2007,
Available Online,
http://www.research.ibm.eom/people/d/dverma/papers/PolicyWkShop2001 .pdf, Last
accessed date June 15, 2009.

154. D. Verma, “Policy-Based Networking: Architecture and Algorithms”, New Riders,
November 2000.

155. D. Verma, “Simplifying Network Administration Using Policy-Based Management”,
IEEE Network, Volume 16, Issue 2, April 2002, pp 20-26.

156. R. Wies, “Using a Classification of Management Policies for Policy Specification and
Policy Transformation”, In Proceedings of the 5th IFIP/IEEE International Symposium on
Integrated Network Management(IM1995), Santa Barbara CA, USA, May 1995, pp 44-56.

157. Winsock RSHD/NT, http://www.denicomp.com/rshdnt.htm, Last accessed date June 15,
2009.

158. WSDM Management white paper, May 2007,
http://www.ibm.com/developerworks/library/specification/ws-wsdmmgmt/, Last accessed
date June 15, 2009.

159. Understanding X.500 - The Directory, http://sec.cs.kent.ac.uk/x500book/, Last accessed
date June 15, 2009.

160. H. Xu, and D. Xiao, “Towards P2P-based Computer Network Management”, International
Journal of Future Generation Communication and Networking, Volume 2, Issue 1, March
2009, pp 25-32.

http://java.com/en/
http://www.tivoli.com
http://www.research.ibm.eom/people/d/dverma/papers/PolicyWkShop2001
http://www.denicomp.com/rshdnt.htm
http://www.ibm.com/developerworks/library/specification/ws-wsdmmgmt/
http://sec.cs.kent.ac.uk/x500book/

164

161. Y. Yemini, G. Goldzmidt, and S. Yemini, "Network management by delegation", In
Proceedings of the International Symposium on Integrated Network Management, April
1991, pp 95-107.

162. M. Zapf, K. Herrmann, K. Geihs “Decentralized SNMP Management Agents”, In
Proceedings of the 6th IFIP/IEEE International Symposium on Integrated Network
Management (IM1999), Boston, MA, USA, May 1999, pp. 623-635.

163. D. Zhu and A. S. Sethi., “SEL, a New Event Pattern Specification Language for Event
Correlation”, In Proceedings of the 10th IEEE International Conference on Computer
Communications and Networks (ICCCN2001), Phoenix, AZ, USA, September 2001, pp
586-589.

165

Appendix A: The Policy Grammar

<Policy> ::=

<Rule>

<Action> ::=

<Event-Expression> ::=

<Logical-Expression>

<Logical-Term> :::

<Logical-Factor> ::!

<Equality-Expression> :::
I

<Relational-Expression>

<Mathematical-Expression> ::■

<Mathematical-Term>

<Mathematical-Factor> :::
I
I
I

<Simple-Reference> :::
I

<Function-Call-Expression> :::

<Parameter-List> :::

<lnterval> :::

<Valid-Time-Interval> :::

< Event-Time-Window>

<Policy-Identification> <Domain-Identification> <Event-Expression>{<Rule>} +
(“in” <Interval>)

<Logical-Expression>? {<Action>}+ (“in” <Interval>) ?

<Function-Call-Expression>

<Logical-Expression>
<Event-Expression> “E-AND” <Event-Expression> (“in” < Event-Time-Window>)?
<Event-Expression> “E-OR” <Event-Expression> (“in” < Event-Time-Window>)?
<Event-Expression> “E-SEQ” <Event-Expression> (“in” < Event-Time-Window>)?
“E-COUNT” <Event-Expression> <Number> (“in” < Event-Time-Window>)?
“E-NOT” <Event-Expression> (“in” < Event-Time-Window>)?
“(“ <Event-Expression> “)”

<Logical-Term> { “||” <Logical-Term> }

<Logical-Factor> { “&&” <Logical-Factor> }

“!” <Logical-Factor>
<Equality-Expression>
<Simple-Reference>
<Boolean-Constant> // “TRUE” | “FALSE”
<Date-Time-lnstance> // e.g.,“2006/10/10 10:10:10”
“(” <Logical-Expression> “)”

<Relational-Expression> {(“==” | “ !=”) <Relational-Expression> >
<Mathematical-Expression> (“==” | “ !=”) <Mathematical-Expression>

<Mathematical-Expression>(“<”|“<=”|“>”|“>=”)<Mathematical-Expression>

<Mathematical-Term> { (“+” |) <Mathematical-Term> }

<Mathematical-Factor> { (“*” | “/”) <Mathematical-Factor> [

<Mathematical-Factor>
<Simple-Reference>
<Simple-Constant>
“(” <Mathematical-Expression> “)”

<Attribute-Identification>
<F unction-Call-Expression>

<Function-ldentification> “(” [<Parameter-List>] “)”

<Parameter-Expression> {“,” <Parameter-Expression>}

<Start-Date-Time> “to” <End-Date-Time> // e.g.,“2006/10/10 00:00:00
<V alid-Month-Number-List>?
<Valid-Day-Number-List>?
<Valid-Day-Name-List>?
{<Valid-Time-Interval>}

<From-Time> “to” <To-Time> // Time instance, e.g., 10:10:00am

Within n seconds from a specific <Point-of-Time>
// n could be +ve or-ve. Specific left to determines by implementation algorithms

166

Appendix B: The Example Policies

Policy 1: cpuJUsage

if cpu load is over 90% for any o f the UNIX machines in the Systems lab

then email administrator

Policy Elements Description

Event
Statement cpu load is over 90%

Type Primitive

Logical Expression cpuload>90

Rule Condition Always true

Action Description email administrator

Attributes cpuload This represents the cpu load used

Domain This policy applies to any of the UNIX machines in the
Systems Lab. This will be denoted by Syslab UNIX Hosts

Possible Monitoring Agent(s) cpu_agent

Validation Achieved The deployment of this policy validates that a single
management agent, i.e., a monitoring agent, can enforce such
policy.

167

Policy 2: memoryJUsage

if memory usage is over 95% for any o f the Systems lab machines

then email administrator

Policy Elements Description

Event
Statement memory usage is over 95%
Type Primitive
Logical Expression memoryused >95

Rule Condition Always true

Action Description email administrator

Attributes memoryused This represents memory usage

Domain All Syslab Hosts

Possible Monitoring Agent(s) memory_agent

Validation Achieved • The deployment of this policy validates that a single
management agent can enforce such policy.

• The domain would include Unix hosts systems and
Windows systems.

• The deployment of this policy validates that our model can
be implemented and deployed in a heterogeneous
distributed systems.

168

Policy 3: sessionjControl

if a log in session is id le fo r m o re than 2 0 m inutes f o r a ny o f the U N IX System lab hosts

then c lose the session

Policy Elements Description

Event
Statement a login session is idle for more than 20 minutes

Type Primitive

Logical Expression sessionidlelong>20

Rule Condition Always true

Action Description close the session

Attributes sessionidlelong This represents time elapsed (idle) since the user's last
activity

processid Phis represents the process identifier

Domain Syslab UNIX Hosts

Possible Monitoring Agent(s) session_agent

Validation Achieved • The extracted attributes represent; one attribute
sessionidlelong which specified in the logical expression
and another attribute processid that extracted from
attributes defined in the action parameter.

• The deployment of this policy validates that the event
notification message should include attributes that is used
to carry actions.

• The action executable objects can be distributed with
agents. The action can also be called from remote managed
resources and executed locally in these managed resources.

169

Policy 4: root_Access_Monitor

if su root successfully used by user N asser to any o f the U N IX System lab machines

then em ail adm inistrator

Policy Elements Description

Event
Statement su root successfully used by user Nasser

Type Primitive

Logical Expression suroot.equals(“true”) && userid.equals(“nasser”)

Rule Condition Always true

Action Description email administrator

Attributes userid This represents the user identifier that issued the su root

suroot This is the boolean attribute that indicates that a su root
occurred and suroot is true when successful or false on fail
of su root.

Domain Syslab UNIX Hosts

Possible Monitoring Agent(s) syslogT rapper_agent

Validation Achieved • The deployment of this policy validates that a single
management agent can enforce such policy.

• The management agent used shows that our model does
make use of the monitoring information that already
collected by other monitoring information services, i.e., the
UNIX syslog in this policy.

170

if a user uses quarrel.syslab .csd .uw o .ca to sen d em ail

then em ail a dm in istra tor

Policy 5: email_Monitor

Policy Elements Description

Event
Statement a user uses quarrel.syslab.csd.uwo.ca to send email

Type Primitive

Logical Expression sendemail. equals(“true”)

Rule Condition Always true

Action Description email administrator

Attributes fromuserid This is the user identifier of the user that sent the email

sendemail This is a boolean attribute that indicates an email sent,
sendemail is true when message accepted for delivery or false
otherwise

Domain Host quarrel

Possible Monitoring Agent(s) syslogT rapper_agent

Validation Achieved • The deployment of this policy validates the reuse of already
existing management agent instance that used in Policy
example 4.

• The domain consists of only one host.
• The reconfiguration of the agent instance would be hold only

to the instance that serves the host quarrel.

171

Policy 6: process Control

if a u ser is ru n n in g a Sudoku p ro g ra m Sud o ku fr o m any o f the U N IX System lab hosts

then sto p th is p ro g ra m a n d em a il a d m in istra to r

Policy Elements Description

Event
Statement a user running a sudoku program (which is a game).
Type Primitive
Logical Expression processcommand.equals(“sudoku”)

Rule Condition Always true

Actions
Descriptions

1. Stop this program

2. email administrator

Attributes processcommand The command used

processid The process identification
userid The process own user identification

Domain Syslab UNIX Hosts

Possible Monitoring Agent(s) process_agent

Validation Achieved The deployment of this policy validates the enforcement of
more than one action within one rule, i.e., several actions to
enforce when a specific event triggered.

172

Policy 7: p rocess Monitor

if a n y p ro c e s s n a v ig a tin g In tern e t has a s ize over 10240K fr o m a ny o f the U N IX System

lab hosts

then em a il a d m in istra tor

and i f the process owner is N asser then kill this process

Policy Elements Description

Event
Statement any process navigating Internet has a size over 10240K
Type Primitive
Logical Expression (processcommand.contains("netscape") ||

processcommand.contains("explorer") ||
processcommand.contains("foxpror")) &&
(processsize >= 10240)

Rulel Condition Always true

Actions Descriptions email administrator

Rule2 Condition userid.equals(“Nasser”)

Actions Descriptions kill this process

Attributes processcommand The command used

processid The process identification
processsize The process size in KB
userid The process own user identification

Domain Syslab UNIX Hosts

Possible Monitoring Agent(s) process_agent and processWithCommand_agent

Validation Achieved • The deployment of this policy validates the reuse of
already existing management agent instance that used in
Policy example 6.

• fhe use of dynamic monitoring agent that communicates
with two montoring agents.

• A policy that has more than one policy rule.
• A bit complicated logical expression.

173

Policy 8: hd_monitor

if any f i le system is filled to over 89% for any o f the U N IX System lab hosts

then em ail adm inistrator

Policy Elements Description

Event
Statement any file system is at 89% capacity

Type Primitive

Logical Expression hdcapacity >89

Rule Condition Always true

Action Description email administrator

Attributes hdname The file system name

hdsizecapacity The percentage used from the file system

Domain Syslab UNIX Hosts

Possible Monitoring Agent(s) hd_agent

Validation Achieved The use of different management agent that can monitor more
other attributes of the system state.

174

if the D B 2 d a ta b a se eng ine is dow n on w o lfb iter

then s ta r t the D B 2 da tabase

Policy 9: db2_Control

Policy Elements Description

Event
Statement The DB2 database engine is down

Type Primitive

Logical Expression db2state.equals(“stop”)

Rule Condition Always true

Action Description Start the DB2 database

Attributes db2state This represents the state of DB2. The state of DB2 is either
that it has started or is down.

Domain Host wolfbiter

Possible Monitoring Agent(s) db2_agent

Validation Achieved The use of different management agent that can monitor and
control software application.

175

Policy 10: db2_Monitor

if the num ber o f active connections to DB2 database exceeds 5

then em ail adm inistrator

Policy Elements Description

Event
Statement the current application’s connections to DB2 database

exceeds 5

Type Primitive

Logical Expression db2activeconnections>5

Rule Condition Always true

Action Description email administrator

Attributes db2activeconnections An attribute indicates the number of active connections to
the DB2.

Domain Host wolfbiter

Possible Monitoring Agent(s) db2_agent

Validation Achieved The reuse of management agent that can monitor and
control software application.

176

Policy 11: system_Defaults

if the maximum num ber o f processes allow ed in wolfbiter is less 1000

then em ail adm inistrator

Policy Elements Description

Event
Statement The maximumnumber of processes allowed is less 1000

Type Primitive

Logical Expression maxprocessesdefmed< 1000

Rule Condition Always true

Action Description email administrator

Attributes maxprocessesdefined The defined maximum number of processes that can
initiated in a system

Domain Host wolfbiter

Possible Monitoring Agent(s) handleSNMP_agent

Validation Achieved The use of management agent that can get the management
information via the SNMP information services.

177

if the sp o o l q u eue has m ore than 30 jo b s to p r in t

then em a il a d m in istra tor

Policy 12: printer_Monitor

Policy Elements Description

Event
Statement the spool queue has more than 30 jobs to Print

Type Primitive

Logical Expression spooljobstotal>30

Rule Condition Always true

Action Description email administrator

Attributes printemame The name of the printer

spooljobstotal The number of jobs in the spool queue

Domain Syslab UNIX Hosts

Possible Monitoring Agent(s) printer_agent

Validation Achieved The use of different management agent that can monitor
more other attributes of the system state, i.e., printer in this
policy.

178

Policy 13: printerjControl

if the m andas p r in te d fa iled

then em a il a d m in istra to r

Policy Elements Description

Event
Statement the mandas printer failed
Type Primitive
Logical Expression printerstat.equals(“failed”) &&

printername.equals(“mandas”)

Rule Condition Always true

Action Description email administrator

Attributes printemame The name of the printer

printerstate The printer status

Domain Syslab UNIX Hosts

Possible Monitoring Agent(s) printer_agent

Validation Achieved The reuse of management agent that can monitor and control
system state.

179

Policy 14: net_Monitor

if the num ber o f packet errors is greater than 10 packets fo r w olfbiter

then em ail adm inistrator

Policy Elements Description

Event
Statement the number of packet errors greater than 10 packet

Type Primitive

Logical Expression inputpacketerror>10 || outputpacketerror>10

Rule Condition Always true

Action Description email administrator

Attributes inputpacketerror The number of the input error packets

outputpacketerror The number of the output error packets

ipaddress The IP address

Domain Host wolfbiter

Possible Monitoring Agent(s) net_agent

Validation Achieved The use of different management agent that can monitor
more other attributes of the network state.

180

if the to ta l num ber o f p ro cesse s on w o lfb iter is g re a te r than 100

then ch ange the p ro cesses p r io r ity o w n ed by the user N a sser one degree

Policy 15: performac_Issue

Policy Elements Description

Event
Statement the total number of processes on woltbiter is greater than

100

Type Primitive

Logical Expression cpuprocesstotal> 100

Rule Condition userid.equals(“Nasser”)

Action Description change the processes priority

Attributes
cpuprocesstotal The total number of initiating processes

userid The process own user identification

processid The process identifier

pocesspriority The process priority

Domain Host woltbiter

Possible Monitoring Agent(s) cpu_agent and process_agent

Validation Achieved The use of different management agent that can monitor and
carry actions.

181

if the to ta l n u m b er o f user logins is g re a te r than 5 f o r a ny o f the U N IX System lab hosts

followed by the C P U load is g rea ter than 90 a n d the to ta l n u m b er o f p ro cesse s runn ing

is g re a te r than 35

then block a ny n ew user log ins

Policy 16: loadjControl

Policy Elements Description

Event
Statement the total number of user logins is greater than 5 followed by

the CPU load is greater than 90 and the total number of
processes running is greater than 35

Type Composite

Logical
Expression

1 usersloginstotal>5

2 cpuload>90 && cpuprocesstotal>35

Event Expression Event characterized by logical expression in 1
E-SEQ
Event characterized by logical expression in 2

Rule Condition Always true

Action Description block any new user logins

Attributes
usersloginstotal The total number of current logins users sessions

cpuload The cpu load

cpuprocesstotal The total number of initiating processes

Domain Syslab hosts

Possible Monitoring Agent(s) session_agent and cpu_agent

Validation Achieved • The configuration of the event format files. The format file
is understood by a management system event handler
TEC.

• The ability to automatically map a policy to TEC rules,
i.e., to a configuration of a management system to enforce
the policy.

• The creation and use of mapping templates.

182

Policy 17: tivoli_Monitor

if the Tivoli TE C even t sender is dow n on w olfb iter

then

i f the D B 2 is dow n then s ta rt D B 2

i fD B 2 is s ta r ted then s ta r t the TE C even t sender

Policy Elements Description

Event
Statement The Tivoli TEC event server is down on wolfbiter

Type Primitive

Logical Expression teceventserverstat.equalsO^top”)

Rule 1 Condition db2state.equals(“stop”)

Action Description Start the DB2 database

Rule 2 Condition db2state.equals(“start”)

Action Description Start the TEC event server

Attributes
teceventserverstat An attribute indicates that the state of the TEC event server. It

has the value of i.e., stop when the TEC event server is down
or not started and has the value start when the event server is
already started

db2state An attribute indicates that the state of the data base engine. It
has the value of i.e., stop when the DB engine is down or not
started and has the value start when the DB engine is already
started or active

Domain Host wolfbiter

Possible Monitoring Agent(s) tivoli_agent, db2_agent

Validation Achieved • The deployment of this policy validates the reuse of already
existing management agent instance.

• The policy has more than one rule.
• Each rule includes a condition that need to be verified before

enforcing the action.
• The distribution of agents that monitor the events as well as

the agent that monitor the conditions.

183

Policy 18: access_Monitor

if th e n u m b er o f fa i le d login a ttem pts under a sp ec ific log in nam e exceeds 3

f o r any o f the U N IX System lab hosts

then em ail ad m in istra to r

Policy Elements Description

Event
Statement the number of failed login attempts under a specific login

name exceeds 3

Pattern Composite

Logical Expression userlogin. equals(“fail”)

Event Expression E-COUNT
Event characterized by logical expression
3 times

Rule Condition Always true

Action Description Email administrator

Attributes
usersid The user identification

userlogin An attribute indicates the state of the user login, i.e.,
‘success’ when the user successfully logins or ‘fail’
otherwise.

Domain Syslab UNIX Hosts

Possible Monitoring Agent(s) syslogT rapper_agent

Validation Achieved • The ability to automatically create a manager agent that
can detect the composite event .The manager agent
represents also the mapping of the policy.

• The use of other event operator, E-COUNT.

184

Appendix C: The Implemented Monitoring Agents

A gent A ttrib u te N am e A ttrib u te D escription

session agent userid User's login name

This agent monitors
information about open

sessionstate The capability of writing to the terminal

terminalid The name of the line found in /dev
user sessions. processid The user's process id

Can Support Policies: sessiontime The time since user's login
3 and 17 sessionidlelong The time elapsed (idle) since the user's last

activity

sessioncomments The session comments

cpu agent cpuloaduser The percentage of CPU time in user mode

This agent
monitorwsand collects

cpuidle The percentage of CPU time in idle mode

cpuloadkernel The percentage of CPU time in kernel mode
the information about
UNIX CPU usage
information.

cpuiowait The percentage of CPU time in iowait mode

cpuswap The percentage of CPU time in swap mode

Can Support Policies: cpuprocessloadaverages The average of CPU/processes,

1, 15 and 17 cputotalprocesses The total number processes,

cpuprocesssleeping The total number sleeping processes,

cpuprocessrunning The total number running processes,

hd agent hdname The filesystem name

This agent monitors
information about

hdmountedon The filesystem mounted on drive

hdsize The filesystem total size
UNIX filesystems. hdsizeused The filesystem size used in KB

Can Support Policies: hdsizeavaliable The filesystem size available in KB
8 hdsizecapacity The filesystem size used percentage

memory agent memoryrealtotal The total real system memory

I'his agent monitors
host memory .

memoryused The total real system memory used.

memoryfree The total real system memory free
(I here is another agent, memoryswapused The total swap memory used.

memory agent WIN
for Windows)

memoryswapfree The total swap memory free.

Can Support Policies:
2

185

A gent A ttribu te Name A ttribu te Description

process osent processid The process task id

This agent monitors
information about UNIX
processes .

Can Support Policies:
6, 7 and 15

userid The process task user name

processthreadso The number of execution threads in the
process

pocesspriority The process task priority

processnice If it be run with a different system
scheduling priority, -ve nice values are
higher priority

processsize The size of the task's code plus data
plus stack space, in KB

pocessresident The total amount of physical memory
used by the task, in KB

processtime Total CPU time the task has used since
it started

processcpuusage Total CPU percentage used

processstate The state of the task is either sleep or
cpu running.

processcommandclass The class of the used command

process With Command asent processid The process task id

This agent monitors
information about UNIX
processes with detail
information about the
command used in the process .

Can Support Policies:
6, 7 and 15

userid The process task user name

processthreadso The number of execution threads in the
process

processsize The size of the task's code plus data
plus stack space, in KB

terminalid The terminal id from where this
process was issued.

processstate The state of the task is either S or R or
O orT .

processcpupercentage The % percentage this process uses
from the CPU

processmemprecentage The % percentage this process uses
from memory.

processstarttime The time when this process was started

processcommand The full command that used in the
process

186

A gent A ttribu te Name A ttribu te D escription

Db2 usent

This agent monitors DB2 .

Can Support Policies:
9, 10 and 16

db2state An attribute indicates the state of the DB,
i.e., stop when the DB2 down or not
started and start when the DB2 is already
active

db2activeconnections An attribute indicates the number of
active connections to the DB2.

svslosTrupper usent

This agent parses newly
added log lines to the syslog
file.

Can Support Policies:
4, 5 and 18

suroot A Boolean attribute indicates a su root
occurred and suroot is true when
successful or false on fail of su root.

userid The user identification

fromuserid The user identification that sent the email

sendemail A Boolean attribute indicates an email
sent and sendemail is true when
message accepted for delivery or false
otherwise

userlogin An attribute indicates the state of the
user’s login, i.e., ‘success’ when the user
successfully logins or ‘fail’ otherwise.

tivoli usent

This agent monitors Tivoli

Can Support Policies:
16

teceventserverstat An attribute indicates the state of the
TEC event server, i.e., stop when it is
down or not started and start when the
event server is already started

net usent

This agent monitors and
collects information about
the system network
communications.

Can Support Policies:
14

interfacename Name of the interface used for IP traffic,
e.g. interface, host, network and default
routers.

ipaddress The local IP address

netipaddress The net/distinction IP address

inputpacket The number of the input packets

inputpacketerror The number of the input error packets

outputpacket The number of the output packets

outputpacketerror The number of the output error packets

187

A gent A ttrib u te Name A ttribu te D escription

printer usen t printemame The name of the printer

This agent monitors and
collects the information
about the printers.

spooljobstotal The number of jobs in the spool queue

printerstate The printer status

Can Support Policies:
12 and 13

handleSN M P u sen t maxprocessesdefined The defined maximum number of

This agent monitors and
collects the information
about the system by querying
the SNMP information
services to get the required
attributes, principally, the
Host-Resources-MIB.

processes that can initiated in a system

Can Support Policies:
11

188

Appendix D: Tivoli TEC Rule Templates
A Tivoli TEC Rule Template for Interval Checking

%%
% This TEC rule is to validate the policy ' Policy-Name-Variable' which has
% the event Event-ID-Variable and the interval Interval-Name-Variable
% Automatically generated by the PMagic Model
% on System Date-Time at Template Instantiation
%%

% First Rule is to validate the policy interval ' Interval-Name-Variabie'

ru le : ' Policy-Name- Variable_lnterval-Name- Variable • :
(
description: 'Verify the policy interval Interval-Name-Variable' ,

% Following set represents events specified in policy ' Policy-Name-Variable
event: _ev_at_interval_check of_class within

[[Event-ID-Variable ,]*]
where [] ,

reception_action:
ac t i on _Policy-Name- VariableJnterval-Name- Variablecheck:

(
exec_program (_ev_at_interval_check,' Program-Call-Method-Variable'

, '%s %s'
, [■ Interval-Name-Variable', Result-File-Name-Variable']
, ’YES') ,

fopen(_fp
, 1 Result-File-Name-Variable Interval-Name-Variable ̂ re s u lt . txt •
, r) ,

readln(_fp, _result),
fclose(_fp) ,
(_result == true ,

commit_action
% exit this action and continue the reset of the rule

; % else
conunit_rule

% exit the whole rule at this point
)

)
) .

% End of the rule: ■ Policy-Name-Variablejnterval-Name-Variable'_________________

189

%%
% This TEC rule is to enforce the specified rule if the event
% ' Event-ID-Variable' , which considers the main event of the policy
% Policy-Name-Variable , triggered.
%%

rule: ' Policy-Name- Variable Ru 1 e_Enf orcement' :
(
description: 'Fire the rule (s) of the policy Policy-Name-Variable' ,

event: _ev_rule_main of_class ' Event-ID-Variable'
where [date_reception: _ev_date_reception ,

server_handle: _ev_server_handle ,
event_handle: _ev_event_handle ,
hostname: _ev_hostname ,
sub_source: _ev_sub_source ,
sub_source_port: _ev_sub_source_port] ,

reception_action:
ac t i on _Policy-Name- Variable_E vent-ID- Variable_en f or c e_r u l e :

(
exec_program(_ev_rule_main , * Program-Call-Method-Variable'

,'%s %s %s %s %d %ld %d %d'
, [■ Policy-Name-Variable , Event-ID-Variable , _ev_ .hostname
, _ev_sub_source , _ev_sub_source_port , _ev_date_reception
, _ev_server_handle , _ev_event_handle], ’YES') ,
commit_rule

)
) .

% End of the rule: ’ PoilCy-Name-Va f/a£>/e_Rule_En fore emen t '

A Tivoli TEC Rule Template for Rule Enforcement

190

%%
% This TEC rule is to generate the event ' Event-ID-Variable' which
% occurs when the event ' Left-Event-ID-Variable1
% and then event ' Right-Event-ID-Variable' occurred in SEQUENCE.
%%

rule: ' Left-Event-ID-Variable_E_SEQ_Right-Event-ID-Variable•:
(
description: 'Generate event Event-ID-Variable' ,

event: _evi_at_ESEQ of_class 'Left-Event-ID-Variablc
where [date_reception: _left_date_reception,

server_handle: _lef t_server_handle,
event_handle: _left_event_handle] ,

% The E_SEQ rule generates the result as a new event Event-ID-Variable'
% by using the exec_program that calls an external program.

reception_action:
ac tio n Left-Event-ID-Variable_E_SEQ_ Right-Event-ID- Variable:

(
first_instance(event: _ev2_at_ESEQ

of_class ' Right-E vent-ID- Variable •
where [date_reception: _right_date_reception

greater_than _left_date_reception,
server_handle: _right_server_handle,
event_handle: _right_event_handle] ,

_evi_at_ESEQ - o - Max-Seconds-From-LHS-Event-Variable) ,
% The time window for searching the _ev2_at_ESEQ is surrounding by the
% Max-Seconds-From-LHS-Event-Variable seconds after the _evi_at_ESEQ time

exec_program(_ev2_at_ESEQ, ' EventGeneration-Program-Variable

, ' %s %s %s %s %ld %d %d %s %ld %d %d %d'
, [Event-ID-Variable', 'createESEQRule* , 'e_s e q '
, Left-Event-ID-Variable', _ . .e f t_da t e_r ec ep t i on
, _left_server_handle , _left_event_handle
, ■ Right-E vent-ID- Variable •, _right_date_reception
, _right_server_handle , _right_event_handle, 0], ’YES') ,
commit_action % exit the action regarding the scanned events

)
) .

A Tivoli TEC Rule Template for Composite Event Detection of E_SEQ Operator

% End of the rule: 1 Left-Event-ID-Variable_E_SEQ_Right-Event-ID-Variable'_______

191

A Tivoli TEC Rule Template for Composite Event Detection of E_AND Operator

where [date_reception:
server_handle:
event handle:

%%
% This TEC rule is to generate the event ' Event-ID-Variable' which occurs when
% both events Left-Event-ID-Variable' and event'Right-Event-ID-Variable1 occurred.
%%
rule: ' Left-Event-ID- Variable_e_a n d_A?/g/7f-Event-ID- Variable :
(
description: 'Generate event ' Event-ID-Variable' ,
event: _evi_at_EAND of_ciass within [Left-Event-ID-Variable1

, Right-Event-ID-Variable]
_evl_date_reception ,
_evl_server_handle ,
_evl_event_handle] ,

% The E_AND rule generates the result as a new event ' Event-ID-Variable'
% by using the exec_program that calls an external program.

reception_action:
action. Left-Event-ID-Variable_E_AND_Right-Event-ID-Variable :

(bo_get_class_of(_evl_at_EAND, _evl_name) ,
(_evl_name == Left-Event-ID-Variable', % if

_ev2_name = ’ Right-Event-ID- Variable •
; _ev2_name = • Left-Event-ID-Variable' % else

) ,
first_instance(event: _ev2_at_EAND of_class _ev2_name
where [date_reception: _ev2_date_reception ,

server_handle: _ev2_server_handle ,
even t_hand1e : _ev2_even t_hand1e] ,

_evl_at_EAND -
Min-Seconds-From-Event-Variable - Min-Seconds-From-Event-Variable),

% The time window for searching the _ev2_at_EAND is surrounding by the
% Min-Seconds-From-Event-Variable seconds before _evl_at_EAND time and by the
% Max-Seconds-From-Event-Variable seconds after evi_at_EAND time

(_evl_name == Event-ID-Variable', % if
_left_date_reception
_lef t_server_handle
_1e f t_even t_hand1e
_right_date_reception
_right_server_handle
_right_event_handle
% else

_left_date_reception
_lef t_server_handle
_lef t_event_handle
_right_date_reception
_right_server_handle
_r i gh t_even t_hand1e

_evl_date_reception
_evl_server_handle ,
_evl_event_handle ,
_ev2_da te_rec ep t i on
_ev2_server_handle ,
_ev2 _event_hand1e

_ev2 _da t e_rec ep t i on
_ev2_server_handle ,
_ev2_event_handle ,
_evl_date_reception
_evl_server_handle ,
evl event handle

) ,

exec_program(_ev2_at_EAND, • EventGeneration-Program-Variable
'%s %s %s %s %ld %d %d %s %ld %d %d %d %d'
[' Event-ID-Variable', • createEANDRuie■ , • e_a nd 1
Left-Event-ID-Variable , _left_date_reception

_left_server_handle , _left_event_handle
' Right-Event-ID-Variable', _right_date_reception
_right_server_handle , _right_event_handle, 0 , 0], ’YES')

commit_action % exit the action regarding the scanned events
) .

% End of the rule: 1 Left-Event-ID-Variable_E_XND__Right-Event-ID-Variable'

192

%%
% This TEC rule is to generate the event ' Event-ID-Variable' which
% occurs when either event ' Left-Event-ID-Variable'
% or event ' Right-E vent-ID- Variable • occurred.
%%

rule: Left-E vent-ID- Variable_E_OR_ Right-E vent-ID- Variable :
(
description: 'Generate event Event-ID-Variable' ,

event: _evl_at_EOR of_class within [' Left-E vent-ID- Variable
, Right-Event-ID-Variable]

where [date_reception: _evl_date_reception ,
server_handle: _evl_server_handle ,
event_handle: _evl_event_handle] ,

% The E_OR rule generates the result as a new event ' Event-ID-Variable'
% by using the exec_program that calls an external program.

reception_action:
ac t i o n Le ft-E vent-ID- Variable_E_OR_Right-Event-ID- Variable •

(
bo_get_class_of(_evl_at_EOR, _evl_name) ,
(_evl_name == 'Left Event-ID Variable' , % if

A Tivoli TEC Rule Template for Composite Event Detection of E_OR Operator

_left_date_reception = _evl_date_reception
_lef t_server_handle _evl_server_handle
_1e ft_even t_hand1e = _evl_even t_hand1e
_right_date_reception = 0x0 ,
_right_server_handle = 0
_right_event_handle = 0
_count_number = 0
; else
_left_date_reception = 0x0 ,
_lef t_server_handle = 0
_lef t_event_handle = 0
_right_date_reception = _evl_date_reception
_right_server_handle = _evl_server_handle
_right_event_handle = _evl_event_hand1e
_count_number = 0

) , % end i f

exec_program(_evi_at_EOR, ' EventGeneration-Program-Variable

, '%s %s %s %s %ld %d %d %s %ld %d %d %d %d'
, [■ Event-ID-Variable1, -createEORRuie' , -e_o r '
, ' Left-Event-ID-Variable , _left_date_reception
, _left_server_handle , _left_event_handle
, ' Right-Event-ID-Variable' , _right_date_reception
, _right_server_handle , _right_event_handle, 0, 0], 'YES’) ,

commit_action % exit the action regarding the scanned event

)
) .

% End of the rule: Left-Event-ID-Variable _ e_ or_ Right-Event-ID-Variable'______

193

%%
% This TEC rule is to generate the event ' Event-ID-Variable' which occurs
% when the event ’ Right-Event-ID-Variable' is repeated tl-Variable times.
%%
rule: • e_count R i g h t - E v e n t - I D - V a r i a b l e __ n -V a r i a b le _check ■:
(
description: 'Check for repeated event Event-ID Variable' ,
event: _ev_at_ECOUNT of_class Right-Event-ID-Variable1

where [date_reception: _left_date_reception,
server_handle: _lef t_server_handle,
event_handle: _left_event_handle ,

[Event-Variable-To-Match,]*],
reception_action:
ac t i on_ e_c o u n t_ R igh t-E vent-ID- Variable_n- Variable_a dd:

(
first_duplicate(_ev_at_ECOUNT, event: _ev_d_at_ECOUNT
where [status: outside ['CLOSED'] ,

[Event-Variable-To-Match-Comparison,]*],
_ev_at_ECOUNT -

Min-Seconds-From-Event-Variable - Max-Seconds-From-Event-Variable),
% The time window for searching instances of _ev_at_ECOUNT is surrounding by
% Min-Seconds-From-Event-Variable seconds before last instance _ev_at_ECOUNT
% time and by Max-Seconds-From-Event-Variable seconds after this instance time

add_to_repeat_count(_ev_d_at_ECOUNT ,1) ,
drop_received_event ,
commit_action

)
) .

% End of the rule: 'e_c ou nt Right-Event-ID-Variablen-Variable
% The E_COUNT rule generates the result as new event Event-ID-Variable'
% by using the exec_program that calls an external program.
rule: 'E_comT_Right-Event-ID-Variable_n-Variable ■.
(
description: 'Generate event Event-ID-Variable' ,
event: _ev_at_EcouNT of_class Right-Event-ID-Variable

where [date_reception: _right_date_reception ,
server_handle: _right_server_handle ,
event_handle: _right_event_handle] ,

reception_action:
ac t ion_E_couNT_ Right-Event-ID- Variable_n- Variable_iimi t_heid:

(.count is n-Variable - l ,
first_duplicate(_ev_at_ECOUNT, event: _ev_d_at_ECOUNT

where [repeat_count: greater_or_equals .count]) ,
exec_program (_ev_d_at_ECOUNT, ' EventGeneration-Program- Variable
,'%s %s %s %s %ld %d %d %s %ld %d %d %d %d'
, ['Event-ID-Variable1, ■ createECouNTRule' , 'e_c o u n t '
, Right-Event-ID-Variable', _right_date_reception
, _right_server_handle , _right_event_handle
, 'none' , 0x0 , o , o , n-Variable , 0], ’y e s ') ,
drop_received_event ,
commit_action

)
) .

A Tivoli TEC Rule Template for Composite Event Detection of E jC O U N T Operator

% End of the rule: 1 F_couNT_ Right-Event-ID-Variable n-Variable______________________

194

A Tivoli TEC Rule Template for Composite Event Detection of E_NOT Operator
%%
% This TEC rule is to generate the event ' Event-ID-Variable' which occurs
% when the event ' Right-Event-ID-Variable'
% is NOT occurred between From-Time-Variable and To-Time-Variable period
%%

rule: ' ENOTRight-Event-ID-Variablecheck -:
(
description: 'Check for occurrence of event Event-ID-Variable' ,

event: _ev_any of_class _any_class
where [date_reception: _right_date_reception ,

server_handle: _right_server_handle,
even t_hand1e : _r ight_even t_hand1e]

reception_action:
ac t i on_E_NOT_ Right-E vent-ID- Variable^ search:

(
pointertoatom(_fromtime, From-Time-Variable) ,
pointertoatom(_totime, To-Time-Variable) ,
_right_date_reception >= _totime ,
(

first_instance(event: _ev_at_ENOT
of_class ■ Right-Event-ID-Variable'

where [date_reception: _ev2_date_reception
greater_or_equals _fromtime ,

date_reception: _ev2_date_reception
smaller_or_equals _totime]) ,

commit_action
; % else

% The E_NOT rule generates the result as a new event Event-ID-Variable'
% by using the exec_program that calls an external program.

exec_program (_ev_any, ' EventGeneration-Program-Variable •
1%s %s %s %s %ld %d %d %s %ld %d %d %d %d'
[' E vent-ID- Variable ■, • c r ea t eENOTRu l e ' , • e_not •
' ' , 0 , 0 , 0
Right-Event-ID-Variable', _totime , _right_server_handle

_right_event_handle, 0, 0], ’YES') ,
commit action

)

% End of the rule: 1 E_NOT_Right-Event-ID-Variable'

195

Appendix E: Algorithms Used to Implement Event Operators
The concepts of the algorithms in this Appendix are built using the semantics of the event

operators that introduced in Chapter 3. More in composite event detections can be found in [56].

Algorithm E S E Q is the algorithm used to implement the detection of an event that characterized by an
event expression uses E SEQ event operator. []

Algorithm E SEQ (E , ELHS_Name , ERHS_Name , T min , T max, CloseUsedlnstance)

Input:
E is an event that needs to detect an instance of.
ELHS_Name is the event name of the L H S of the event expression
ERHS_Name is the event name of the R H S of the event expression
T min is the min time in seconds between the occurrence of events instances of ELHS and ERHS

1)
2)
3)
4)
5)
6) CloseUsedlnstance is a Boolean value to specify to close the events instances after process
or not

is the max time in seconds between the occurrence of events instances of E 1Hs and E p

Output: 1) e is an instance E, which is the correlation of event instances eLHS E SEQ eRHS

- - E v e n tM e m o ry is a list of th e e ve n t notification messages received, the list is assum ed to be ord e re d by the

ne w est received m essages.

1 . EventsLHs = SubList (EventMemory , ELHS_Name)
- - S ubList is a fu n c tio n th a t re tu rn s a sub-list fro m the E v e n tM e m o ry e ven ts list. In this case, th e

re tu rn e d sub-list e ve n ts are o f e ve n t ty p e ELHS.

2 . if(E v e n tsLHs ^ 0)th e n

3 . for each event instance eLHs e EventsLHs do

4- Grhs = FindEventlnstance (EventMemory, ERHS_Name , eLHs-timeStamp , Tmin , Tmax)
- - F in d E ve n tln sta n ce is a fu n ctio n that re tu rn s a specific even t instance fro m the

E v e n tM e m o ry list. In the ab o ve initia lizatio n of Find E ve n tln sta n ce , th e re tu rn e d

e ve n t instance m ust be of typ e ERHSand satisfies th e tim e constra ins th a t d e lim ite d

b y eLHS.t im e S ta m p , T mjn > Tmax •

3 . if (eRHs ^ null) then

6 . e = G e n e r a t e E v e n t ln s t a n c e (E , e LHs , e RH s ,e RHs .t im e S t a m p)

- - G ene ra te E ve n tln sta ce is a fu n ctio n th a t creates an e ve n t n o tifica tio n

m essage (e v e n t instan ce) of a g ive n ty p e , w h ic h is in this case of ty p e E.

T h e o th e r p a ra m e te rs are to h elp c o n stru c tin g the m essage in fo rm a tio n ,

i.e., th e e ve n t instance a ttrib u te s nam e/value pairs.

7 . if (CloseUsedlnstance) then

8 . MarkClose(eLHS)
9 . MarkClose(eRHs)
1 0 . end if

11. return (e)
12. end if

1 3 . end for

14. end if

1 3 . return (nu ll)

exit algorithm

196

A lg o r i t h m E A N D (E , E LHS_ N a m e , E RHS_ N a m e , T min , T max, C lo s e U s e d ln s ta n c e)

In p u t :

Algorithm EAND is the algorithm used to implement the detection of an event that characterized by an
event expression uses E AND event operator.

1) E is an event that needs to detect an instance of.
2) ELHs_Name is the event name of the LHS of the event expression
3) ERHS_Name is the event name of the RHS of the event expression
4) Tmin is the min time in seconds between the occurrence of events instances of ELHS and ERHS
5) Tmax is the max time in seconds between the occurrence of events instances of ELHS and ERHS
6) C lo s e U s e d ln s ta n c e is a Boolean value to specify to close the events instances after process

O u t p u t : 1) e is an instance E, which is the correlation of event instances eLHS E AND eRHS

1 . EventsLHs = SubList (EventMemory , ELHs_Name)
- - S ubList is a fu n c tio n th a t re tu rn s a sub-list f ro m th e E v e n tM e m o ry events list. In this case, th e

re tu rn e d sub-list e ven ts are o f e v e n t ty p e ELHs-

2 . if (EventsLHs ^ 0) t h e n

3 . EventsRHS = SubList (EventMemory , ERHS_Name)
4 . if (E v e n t s RHs ^ 0) th e n

5 . f o r each event instance eLH$ e EventsLHS d o

6 . eRHS = FindEventlnstance (EventsRHS, ERHS_Name, eLHS.timeStamp, Tmin, Tmax)
- - F in d E ve n tln sta n ce is a fu n ctio n that re tu rn s a specific e ve n t instance

fro m th e E v e n ts RHS sub-list. In th e ab o ve initia lization of F in d E ve n tln sta n ce ,

th e re tu rn e d e v e n t instance m ust satisfy the tim e constra ins th a t d e lim ite d

by e LHs*tim eStam p , T mln , *^*max •m ax •

7-
8 .

if (eRHs ^ null) t h e n

e=GenerateEventlnstance(E,eLHS,eRHs,nriax(eRHs-timeStamp,eRHs-timeStamp))
- - G e n e ra te E ve n tln sta ce is a fu n ctio n th a t creates an e ve n t

n o tific a tio n m essage (e v e n t instan ce) of a g ive n ty p e , w h ic h is in

th is case o f ty p e E. T h e o th e r p a ra m e te rs are to help co n stru c tin g

th e m essage in fo rm a tio n , i.e., th e e ve n t instance a ttrib u te s

nam e/value pairs.

11.

9-
1 0 .

if (CloseUsedlnstance) t h e n

MarkClose(eLHS)
MarkClose(eRHs)

1 2 . e n d if

iB-

14.

15-

r e t u r n (e)
e n d if

e n d f o r

1 6 . e n d if

1 7 . e n d if

1 8 . r e t u r n (null)

exit algorithm

197

A lg o r i t h m E _ O R (E , E LHS_ N a m e , E RHS_ N a m e , T min , Tmax, C lo s e lls e d ln s ta n c e)

In p u t :

1) E is an event that needs to detect an instance of.
2) ELHS_Name is the event name of the LHS of the event expression
3) ERHS_Name is the event name of the RHS of the event expression
4) Tmin is the min time in seconds needed between the current time and either instances of ELHS or
Erhs
5) T max is the max time in seconds needed between the current time and either instances of ELHS or
Erhs
6) C lo se llse d ln sta n ce is a Boolean value to specify to close the events instances after process or not

O u t p u t : 1) e is an instance E, which is the correlation of event instances eLHs E_OR eRHS

Algorithm E_OR is the algorithm used to implement the detection of an event that characterized by an
event expression uses E_OR event operator.

1 . eLHs = FindEventlnstance (EventMemory, ELHS_Name , , Tmin , Tmax)
2 . if (eLHs ^ nu ll) then

3 . e=GenerateEventlnstance(E , eLHS, , eLHS-timeStamp)
- - G e n e ra te E ve n tln s ta ce is a fu n ctio n th a t creates an e ve n t n o tifica tio n m essage (e v e n t

in sta n ce) o f a g ive n typ e , w h ich is in this case of ty p e E. T h e o th e r p a ra m e te rs are to help

c o n s tru c tin g th e m essage in fo rm a tio n , i.e., th e e ve n t instance a ttrib u te s nam e/value pairs.

4. if (Closellsedlnstance) then

5 . MarkClose(eLHs)
6. end if

7 . return (e)
8. else

9 . eRHS = FindEventlnstance (EventMemory , ERHS_Name , , Tmin , Tmax)
1 0 . i f (e RHS ^ n u ll)then

1 1 . e=GenerateEventlnstance(E , eRHS> , eRHs-timeStamp)
1 2 . if (Closellsedlnstance) then

1 3 . MarkClose(eRHs)
14. end if

1 3 . return (e)
1 6 . end if

1 7 . end if

1 8 . return (nu ll)

exit algorithm

198

Algorithm ENOT is the algorithm used to implement the detection of an event that characterized by an
event expression uses E NOT event operator.

Algorithm E NOT (E , ERHS_Name , Tmin , Tmax, CloseUsedlnstance)
Input:

1)
2)
3)
4)
5)

Output: 1)

E is an event that needs to detect an instance of.
ERHS_Name is the event name of the RHS of the event expression
Tmin is the lower single point boundary timestamp to check events instances against
Tmax is the upper single point boundary timestamp to check events instances against
CloseUsedlnstance is a Boolean value to specify to close the events instances after process or not
e is an instance E, which is the correlation of event instances E NOT eRHS

1. do Loop

2 . if (CurrentSystemTime.TimeStamp >= T mim) then

3- eRHS = FindEventlnstance (EventMemory, ERHS_Name , , Tmin , T max)
4- ¡ f (e RHs == null && CurrentSystemTime.TimeStamp >= Tmax) then

5. e=GenerateEventlnstance(E , eRHS, , T max)

6. return (e)
7 . else

8 . if (CurrentSystemTime.TimeStamp < T max) then

9 . wait (WaitPeriod)
- - Th is is th e W a id P e rio d tim e defines fo r th e m an age a g e n t, th a t is the tim e

b e tw e e n p e rio d ic eva lu a tio n s o f th e e x p re ss io n (s) re p re se n te d in the

E ve n tR e p re se n ta tio n c o m p o n e n t.

1 0 . else

1 1 . if (CloseUsedlnstance) then

1 2 . MarkClose(eRHs)
1 3 . end if

1 4 . return (nu ll)
15. end if

16 . end if

1 7 . else

1 8 . wait (WaitPeriod)
19 . end if

2 0 . repeat Loop

exit algorithm

199

Algorithm ECOUNT is the algorithm used to implement the detection of an event that characterized by
an event expression uses E COUNT event operator.

Algorithm E COUNT (E , ERHS_Name , Countnumber, T min , T max, CloseUsedlnstance)
Input:

1) E is an event that needs to detect an instance of.
2) ERHS_Name is the event name of the RHS of the event expression
3) T min is the lower single point boundary timestamp to check events instances against
4) Tmax is the upper single point boundary timestamp to check events instances against
5) CloseUsedlnstance is a Boolean value to specify to close the events instances after process or not

Output: 1) e is an instance E, which is the correlation of event instances E_COUNT eRHS Countnumber

1 . do Loop

2 . if (CurrentSystemTime.TimeStamp >= T mim) then

3- EventsRHS = SubList (EventMemory , EUHs_Name , T min , T max)
4- if (EventsRHS. Length >= Countnumber) then

5- e=GenerateEventlnstance(E, eRHS, , CurrentSystemTime.TimeStamp)
6 . return (e)
7- else

8 . if (CurrentSystemTime.TimeStamp < T max) then

9- wait (WaitPeriod)
1 0 . else

1 1 . if (CloseUsedlnstance) then

1 2 . for each event instance eRHs e EventsRHs do

13. MarkClose(eRHS)
H . end for

13- end if

return (nu ll)
1 5 . end if

1 6 . end if

1 7 . else

1 8 . wait (WaitPeriod)
19- end if

2 0 . repeat Loop

exit algorithm

200

Appendix F: Experimental Times
The Best and Average times (for 3 tests) , Standard Deviations (S.D.) and Population

Standard deviation (P.S.D) for Section 8.2.1 experiment:

P o lic ie s c p u _ U s a g e p r o c e s s _ M o n it o r

B e s t A v e ra g e S . D . P .S .D . B e s t A v e ra g e S. D. P .S .D .

1 H o s t 25 .48 26.52 0 .99 0 .81 29.30 30.42 1 . 0 1 0.82

2 H o s ts 27 .21 28.99 1.78 1.45 31.41 32.84 1.33 1.08

3 H o s ts 28 .43 30 .22 1.79 1.46 34.43 35 .64 1.06 0.8 6

5 H o s ts 30 .39 33 .13 2.76 2.25 38.39 39.60 1.50 1.23

7 H o s ts 32 .16 33 .25 1.25 1 .0 2 43.35 45 .09 1.78 1.45

1 0 H o s ts 36 .44 37.90 1.42 1.16 46.49 48 .47 2.26 1.84

Deployment Time for Two Different Policies of Primitive Events

T im e G ro u p T a s k B e s t A v e ra g e S . D . P .S .D .

P T A g e n t-F in d in g 1.681 1.711 0 .027 0 .0 2 2

A g e n t- In s ta n c e -F in d in g 0.205 0.218 0.013 0 . 0 1 1

A g e n t-C o n f ig u ra t io n 0 .879 0.888 0.009 0.007

A g e n t-S ta rtu p 0.239 0.260 0 .0 2 0 0.016

M a p p in g T o T ivo li 0 .1 2 2 0.135 0 .0 1 2 0 .0 1 0

P T 3 .126 3.212

R T B A R O C Im p o rt 6 .0 1 0 6.083 0 .064 0.052

R u le S e t Im p o rt 5 .201 5.275 0.068 0.056

R u le -B a s e C o m p ile 6 .1 2 2 6.439 0 .354 0.289

R u le -B a s e Lo ad 5.022 5.514 0.452 0.369

R T 22 .355 23.311

O T 25.481 26.523

Deployment Time Breakdown for Deploying cpu_Usage policy (First Table Time 25.48)

T im e G ro u p T a s k B e s t A v e ra g e S . D . P .S .D .

P T A g e n t-F in d in g 2.412 2.463 0.047 0.039

A g e n t- In s ta n c e -F in d in g 0.293 0.302 0 .0 1 0 0.008

A g e n t-C o n f ig u ra t io n 2.747 2.772 0.027 0 .0 2 2

A g e n t-S ta rtu p 1.090 1 .2 2 2 0.130 0 . 1 1 0

M a p p in g T o T ivo li .135 .146 0 .0 1 0 0.008

PT 6.677 6.905

R T B A R O C Im p o rt 5 .771 5.836 0.070 0.057

R u le S e t Im p o rt 5.233 5.330 0.087 0.071

R u le -B a s e C o m p ile 6 .431 6.708 0. 283 0 .231

R u le -B a s e Load 5.192 5.636 0.458 0.374

R T 22 .627 23.510

O T 29 .304 30.415

Deployment Time Breakdown for Deploying process_Monitor policy (First Table Time 29.30)

201

Section 8.2.2 experiment times have almost the same averages and standard deviation ratios
as those for experiment times of Section 8.2.1 experiment. Thus, there is no need to outline a
detail times tables.

Sections 8.3.1 and 8.3.2 experiments times are all very close (i.e., a maximum of 0.35 second
in difference) to the best time, that shown in Table 8.8: The Reuse of Existing Agents’
Instances in Policy Deployment) and Table 8.9: The Re-Enforcement of Three Different
Policies using PMagic). Therefore we found that no need to go further in analyzing these
experiments times.

The Best and Average times (Avg.) (for 2 tests) and Population Standard deviation (P.S.D)
for Section 8.2.3 experiment:

s e s s io n _ C o n t r o l P o lic y
Time Between the first Detected Event and Last Action Taken (in Seconds)

1 E v e n t 2 E v e n t s 5 E v e n t s 1 0 E v e n ts

Best Avg. P.S.D. Best Avg. P.S.D. Best Avg. P.S.D. Best Avg. P.S.D.

1 H o s t 12.19 12.76 0.57 31.03 32.27 1.24 69.33 73.17 3.85 104.31 123.11 18.79

2 H o s ts 14.42 14.93 0.51 44.23 45.43 1.20 82.29 86.71 4.42 125.33 142.33 17.00

5 H o s ts 17.11 17.95 0.84 63.17 64.64 1.47 101.07 111.13 10.06 153.29 174.41 21.12

1 0 H o s ts 20.26 21.13 0.87 82.11 89.57 7.45 122.29 139.15 16.86 189.41 219.40 29.99

The Enforcement of Policy Rule by using Tivoli

The Best and Average times (Avg.) (for 2 tests) and Population Standard deviation (P.S.D)
for Section 8.3.3 experiment:

s e s s io n _ C o n t r o l P o lic y
Time Between the first Detected Event and Last Action Taken (in Seconds)

1 E v e n t 2 E v e n t s 5 E v e n t s 1 0 E v e n ts

Best Avg. P.S.D. Best Avg. P.S.D. Best Avg. P.S.D. Best Avg. P.S.D.

1 H o s t 0.028 0.032 0.004 0.097 0.099 0.002 0.621 0.63 0.009 1.603 1.707 0.104

2 H o s ts 0.035 0.036 0.001 0.120 0.129 0.009 0.887 0.925 0.038 1.917 2.172 0.255

5 H o s ts 0.041 0.047 0.006 0.174 0.186 0.015 1.011 1.400 0.389 2.389 2.752 0.363

1 0 H o s ts 0.066 0.074 0.008 0.251 0.281 0.030 1.633 2.094 0.461 2.907 3.342 0.438

The Enforcement of Policy Rule by using Management Agents

	TOWARDS AUTOMATING POLICY- BASED MANAGEMENT SYSTEMS
	Recommended Citation

	tmp.1685126792.pdf.h0SbS

