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 Abstract 

 

 The cross-modal relationship between language and mathematics is extensively 

debated (see for review, Peng et al., 2020). The present research examined the nature of this 

cross-modal relationship across three experiments. Experiment 1 examined whether training 

participants in linguistic problem-solving facilitates performance in mathematical problems. 

Participants were 156 adults recruited using Amazon Mechanical Turk and randomly 

assigned to one of three linguistic training conditions (i.e., linguistic reasoning, structural 

priming, or no-training) and tested on mathematical problems. No significant difference in 

mathematical performance was found across training conditions [F(2, 153) = 1.69, p = .18]. 

Experiment 2 examined whether training participants to solve mathematical problems 

facilitates performance in linguistic problems. Participants were 144 adults assigned to one of 

three mathematical training conditions (i.e., mathematical reasoning, structural priming, or 

no-training) and tested on linguistic problems. Results showed a significant difference in 

linguistic performance across training conditions [F(2, 142) = 3.86, p = .02, η2 = .05]. Post-

hoc analysis revealed a significant difference between the structural priming (M = 9.37, SD = 

1.99) and no-training conditions (M =8.04, SD=2.66). Experiment 3 examined whether the 

explicitness of mathematical training differently impacts linguistic problem-solving. 

Participants were 75 undergraduate students assigned to one of three mathematical training 

conditions (i.e., explicit training, structural priming, or no-training) and tested on linguistic 

problems. A significant difference between training conditions was found [F(2, 72) = 5.40, p 

= .006, η2 = .13]. Post-hoc analysis showed a significant difference between explicit 

instruction (M = 9.00, SD = 2.61) and no-training (M =7.32, SD=2.88), as well as structural 

priming (M = 9.40, SD = 1.32) and no training (M =7.32, SD=2.88). Implications of these 

results and avenues for future research are discussed. 

 Keywords: language, mathematics, reasoning, problem-solving 
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Chapter 1: General Introduction 

The presence of a cross-domain interaction between language and mathematics has 

been extensively debated in the literature (for a recent meta-analysis, see Peng et al., 2020). 

Evidence for the relationship between these two domains comes from two distinct lines of 

research with different linguistic populations. On one hand, cross-linguistic studies show that 

individuals who speak different languages (e.g., Spelke & Tsivkin, 2001) or have varied 

levels of proficiency in one language (e.g., Planas, 2014) show differences in performance on 

mathematical problems. On the other hand, studies comparing children with linguistic 

difficulties to typically-developing counterparts show difference in mathematical 

performance between the two linguistic groups (e.g., Cross et al., 2019). Both lines of 

research suggest that language acquisition and development are associated with numerical 

development and mathematical performance. 

Although these population differences lend insight into the possible role of language 

in mathematical cognition, literature on the subject remains disconnected, and experimental 

evidence connecting these two domains is limited. Cross-linguistic studies suggest that 

language and mathematics rely on domain-specific features that might support cross-modal 

interactions (e.g., Purpura et al., 2019; Spelke, 2017), whereas research on co-morbid 

linguistic and mathematical difficulties suggests that the two abilities might also rely on 

domain-general cognitive processes to facilitate cross-modal processing and performance 

(e.g., DeSmedt et al., 2010; Fazio, 1999). The current research aims to move beyond 

population-based descriptions of this cross-modal association and investigate the domain-

specific and domain-general processes underlying the relationship between language and 

mathematics. 
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Domain-Specific Features 

 Evidence for domain-specific transfer and exchange between language and 

mathematics representations comes from literature studying the role of linguistic processes in 

the development of number and mathematics. Several domain-specific features of language 

may contribute to cross-linguistic variations in number cognition and mathematical 

development. Domain-specific linguistic features, including symbolic awareness, vocabulary, 

grammatical cues, etc. may be involved in the development of number knowledge. For 

example, young children’s understanding of numbers may be influenced by linguistic word-

learning. Number words are the first symbolic quantitative knowledge acquired by young 

children, who develop the ability to pair number words with items in a set through counting 

(Fuson, 1988). Understanding the cardinal values of number words represents the first 

explicit understanding of formal mathematical concepts in young children. Success in 

determining the meaning of one number word, along with repeated contextual cues allows 

young children to understand both cardinality and succession (Carey, 2004; Le Corre & 

Carey, 2007). 

Children may use the morphological distinction between singular and plural to 

determine the exact meaning of the number ‘one’ against larger numerals (Le Corre & Carey, 

2007). For example, Sarnecka et al. (2007) found that English-speaking- and Russian-

speaking children learned the exact meaning of ‘one’ earlier than Japanese-speaking children. 

This difference in acquisition may be explained by the fact that both English and Russian 

have consistent morphological markers (e.g., use of the letter ‘s’ in English) to distinguish 

singular and plural words, but Japanese does not. It is possible that such syntactic regularities 

in the number system of a language influence the rote-counting abilities of young children. 

Moreover, syntactic irregularities in the number systems of different languages 

influence the acquisition of rules needed to produce count sequences correctly. Young 



Language and Mathematics                                                                                                      3 

 

 

 

children’s understanding of the structure of the count list in a language may impact how they 

represent the relative distances between number words in that language. Miller and Stigler 

(1987) found that Chinese-speaking children are able to count significantly higher than age-

matched English-speakers. The authors suggest that this difference shows up in the ‘teen 

numbers (11-19) where English, unlike Chinese, lacks a consistent rule for generating 

number names. Chinese number names are more linguistically transparent than English 

number names. For instance, the English number word ‘eleven’ translates to ‘ten-one’ in 

Chinese, communicating a clearer syntactic operation underlying the number word. In a 

similar study, LeFevre et al. (2002) found that Canadian English-speakers were able to 

master the count sequence earlier than French-speakers. This difference may be due to greater 

syntactic irregularities in the French number system, compared to the English system. One 

example of this is the ‘teen’ numbers of both languages. Both English and French have 

similarly irregular numbers for 11 and 12 (eleven, twelve vs. onze, douze). However, the 

numbers 13 to 19 are more predictable in English than in French. In English, all numbers 

between 13 and 19 end in the word ‘teen’, and most combine the unit-word with teen (e.g., 

sixteen, seventeen), such that only ‘thirteen’ and ‘fifteen’ are not entirely consistent with the 

simple rule, but share the same structure as all other ‘teen’ words. By comparison, in French 

the number-names continue to remain irregular till the number 16 (treize (13), quatorze (14), 

quinze (15), seize (16)). Following this, a new rule is used to generate the last three ‘teen’ 

number words. i.e., where the unit word follows ten (dix-sept (17), dix-huit (18), and dix-neuf 

(19)). It is possible that greater predictability of the English count system, compared to the 

French system makes counting in English comparatively easier to master. Both these studies 

suggest that the syntactic regularity of a count systems impacts the ways in which number 

words in that language are learned. 
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Spelke (2017) proposed that the grammar of conjunctive noun phrases (i.e., two cats 

and three dogs) and prepositional phrases (i.e., three piles of two waffles) facilitates the 

acquisition of new number words. To test this, Guerrero and colleagues (2020) conducted 

two independent studies in English and Korean to assess 4-to-10-year-old children’s 

understanding of numerical syntax, using a novel (Give-a-number Base-10) task designed to 

probe their knowledge about the embedded structure of cardinal numbers. Children were 

asked to give a large number of items (e.g., 32 items) from a pool of items organized in sets 

of ten. The task was used to assess children’s awareness of the embedded structure of 

numbers, i.e., knowing that 32 items are composed of three sets of ten and two ones. Korean-

speaking children understood the embedded structure of cardinal numbers earlier than 

English-speaking children. These variations in acquisition maybe due to the ways in which 

the English and Korean number systems are syntactically different. The Korean number 

system is considered more syntactically regular than the English system, such that it reflects 

clear arithmetic operations whereas English system does not. In Korean, the number 12 is  

‘sib-ee’ or ‘ten-two’, and the number 20 is ‘ee-sib’ or two-ten’, wherein the same digit and 

multiplier are merged to represent the additive relationship (10+2) and the multiplicative 

relationship (10x2) respectively. By contrast, the English number words for 12 and 20 are 

lexically non-transparent. These results indicate that the regularity of the numerical syntax of 

a language may impact the point at which children understand the embedded structure of 

cardinal numbers. Therefore, understanding the meaning or cardinal value of each recursively 

embedded number word of a complex numeral and their operational relations is important for 

acquiring number concepts. 

Linguistic influence on mathematical symbols extends beyond whole numbers to 

young children’s part-whole thinking and fraction competence. Miura et al. (1999) compared 

the initial fraction ideas of first and second-grade Korean, Croatian, and American students. 
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According to the Korean naming system, a direct translation of a fraction such as 1/3 is “of 

three parts, one”. In comparison, the fraction is referred to as “one-third” in both English and 

Croatian. The Korean system allows for a direct mental representation of the magnitude, 

which is less clear in the other systems. As such, the researchers predicted a greater 

foundational knowledge of fractions in Korean, compared to Croatian and American students. 

The results of the study supported their hypothesis. These findings demonstrate that linguistic 

differences may influence the ways in which young children employ part-whole thinking to 

understand how different elements or quantities combine and decompose to solve fractions, 

and basic symbolic and non-symbolic arithmetic problems. 

Beyond these developmental studies, research conducted with adults suggest that 

there may be a cognitive cost associated with shifting from one language to another. Spelke 

and Tsivkin (2001) trained bilingual adults in arithmetic fact retrieval, and found a language-

specific advantage on exact arithmetic in trained, compared to untrained languages. Results 

demonstrated that participants needed more time to solve exact arithmetic problems when the 

language of training differed from the test language, compared to when the training and test 

language were the same. No language-related response latencies were found in the 

approximate number problems. In a similar study, Venkatraman et al. (2006) trained English-

Chinese bilinguals on an exact base-7 addition task, as well as an approximate number task, 

which required percentage value estimations. Participants completed trained problems faster 

than untrained problems, and took less time to solve the exact base-7 addition task, than the 

approximate percentage estimation task. Presumably, the approximate number task required 

greater processing demands than the exact number task. Moreover, fMRI data showed a 

language-switching effect in the language-related areas of the brain (left inferior frontal gyrus 

(Left IFG) and left inferior parietal lobule extending to the angular gyrus) when switching 

from the trained to the untrained language during the exact number task. In the approximate 



Language and Mathematics                                                                                                      6 

 

 

 

number task, language-switching effects were predominantly found in the bilateral posterior 

intraparietal sulcus, a region typically involved in visuospatial attention and non-verbal 

processing, as well as the left IFG, slightly dorsal to the activation seen during the exact 

number task. These results indicate there are costs to language-switching for the retrieval of 

number facts, and highlight the ways in which exact number processing relies on verbal and 

language-related networks. These findings are also supported by research on multiplication 

and subtraction. Grabner and colleagues (2012) trained Italian-German bilinguals on two-

digit multiplication and subtraction problems in both languages in an fMRI study. 

Participants were tested on both previously trained and novel problems. Results demonstrated 

language-switching costs, accompanied by activation of brain areas involved in numerical-

stimulus recognition, magnitude-comparisons, visuo-spatial imagery, and executive 

functions. These differences may be due to some additional calculation processes required to 

transfer knowledge from the language of instruction to the language of retrieval. From these 

studies, it seems that individuals may be required to translate their knowledge from the 

language of learning to the language of application, and additional task-specific information 

processing may be required while switching languages. 

Taken together, these studies demonstrate that linguistic processes may be recruited 

in, and crucial to mathematical problem-solving. Numerical development might rely heavily 

on domain-specific features of language, such that symbolic representations, morphology, 

syntax, and phonological cues might be important for accessing the cognitive processes – 

such as sound-symbol associations, number word-learning, and arithmetic fact retrieval – that 

are important for mathematical performance. 

Domain-General Representations 

 Although this evidence from cross-linguistic developmental research suggests that 

domain-specific linguistic competence may be crucial for mathematical performance, a range 
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of studies on children with co-morbid language and mathematics difficulties show that 

domain-general factors may also facilitate the cross-modal relationship between language and 

mathematics. 

Key skills of language and mathematics, such as literacy (the ability to read and write) 

and arithmetic (the study of numbers and the operations between them) may draw on some 

shared domain-general representations. Children who have difficulties with mathematics 

often face challenges with literacy and language problems. For instance, Willcutt et al. (2013) 

found that students with mathematics or reading difficulties both demonstrated low verbal 

comprehension, and students who showed combined mathematics and reading difficulties 

showed additive negative effects. It is possible that the decoding skills – which refer to the 

ability to identify symbols and make phonological sound-symbol associations from memory 

– required for reading, may also be elicited during arithmetic fact retrieval, which is essential 

for mathematical competence. Arithmetic fact retrieval may recruit the same areas of the 

brain and may also share the same neurocognitive processes as reading (De Smedt et al., 

2010). 

This possible reliance on domain-general mechanisms is supported by research on 

children with Developmental Language Disorder (DLD), who perform less accurately on 

timed arithmetic problems compared to age-matched and younger typically-developing 

children. They also recall math facts less accurately than age-matched controls (Fazio, 1996; 

1999). However, when calculation and performance was not constrained by time, Fazio 

(1999) found that children with DLD performed similarly to age-matched controls on 

arithmetic problems. No time-related improvements were found in the age-matched and 

younger control groups, suggesting that additional time for DLD children may facilitate fact 

retrieval, which in turn contributes to more efficient processing similar to typically-

developing controls. It is possible that more time might allow children with DLD to access 
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the resources they need to retrieve arithmetic facts from memory and solve arithmetic 

problems. These findings suggest that children with DLD may face difficulties using fact 

retrieval strategies to solve arithmetic problems, since they might have trouble with the recall 

of linguistic representations. 

Further evidence for this comes from children with DLD who experience difficulty in 

mathematics development and performance. Kleemans et al. (2011) examined the extent to 

which 5-to-7-year-old children with DLD differ from typically-developing controls in early 

numeracy skills. Children were tested on their backwards and forward rote counting skills, as 

well as their ability to count organized and disorganized quantities of objects. A regression 

model showed that phonological awareness and grammar were significant predictors of count 

task performance. A significant relationship between naming speed and count tasks was 

found in the DLD group, but not the control group. By contrast, no significant relationship 

was found between nonverbal numeracy measures and verbal tasks, such as naming speed, 

grammar, and phonological awareness. The authors suggest that numerical representations 

and logical operations might draw on linguistic capacities such as phonological awareness 

and grammar, but variance in numerical estimation might be explained by domain-general 

factors, such as intelligence and visuo-spatial memory. In a similar study, Cowan et al. (2006) 

found that individual differences in language predicted count performance, in addition to 

other domain-general cognitive processes, including working memory and nonverbal 

reasoning in children with DLD. 

 Children with DLD have a lower count range compared to age-matched and 

vocabulary-matched typically-developing controls. Nys and colleagues (2013) examined the 

impact of linguistic skills on the later development of exact and approximate number skills in 

children with DLD compared to typically-developing children. Children with DLD 

performed worse on exact arithmetic tasks compared to age-matched and vocabulary-
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matched controls; performance was related to phonological measures. By contrast, children 

with DLD performed worse than age-matched controls on the symbolic approximate tasks, 

but there was no difference between children with DLD and younger vocabulary-matched 

controls. There was no significant difference between children with DLD and the two control 

groups on non-symbolic approximate tasks. More importantly. accuracy in approximate 

number tasks was not related to linguistic measures. According to the authors, linguistic 

competencies might be recruited for exact number tasks, but not approximate number 

performance. 

Altogether these studies suggest that count proficiency might depend on domain-

specific linguistic skills, but also on more domain-general cognitive processes. From these 

findings, it seems that domain-specific featural cues of language may play a role in the 

development of number concepts and mathematical performance. However, there is little to 

no evidence exploring the opposite pathway, i.e., the use of mathematical competencies in the 

development of linguistic concepts. Moreover, given the intermodal exchange (e.g., 

individuals relying on different cognitive processes, such as phonological processing, 

symbolic representations, etc.), it is possible that children who experience linguistic and 

mathematical difficulties might also recruit domain-general competencies, such as attention, 

working memory, and general intelligence for linguistic and mathematical representations. 

Different cognitive processes may be recruited, both within and outside language and 

mathematics. 

Common Structural Representations 

These two lines of evidence leave several questions open for consideration. Although 

there is evidence for a connection between linguistic and mathematical processes, the 

association between them, as described in the literature, is based entirely on population 

differences. There is little clarity about the nature of the cognitive processes underlying 
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language and mathematics. Cross-linguistic studies suggest that domain-specific features of 

language may be important for mathematical development and processing, whereas research 

on children with co-morbid difficulties in the two domains suggest that other domain-general 

mechanisms, such as memory and intelligence may be crucial for cross-modal cognitive 

development. The research discussed thus far does not provide a sufficient explanation for the 

ways in which the two domains interact or draw from each other, or any other cognitive 

processes underlying the two domains. It might be possible that both language and 

mathematics draw on common or shared featural cues that are readily available to engage 

when solving linguistic and mathematical problems. 

One way to think about the relationship between language and mathematics is to 

consider that linguistic and mathematical processes may draw on some common structural 

representations, such that access to specific featural cues might facilitate the cross-modal 

relationship between the two domains. Some limited experimental research from structural 

priming studies show evidence for this. Scheepers et al. (2011) demonstrated evidence for 

shared structural representations between the two domains. Participants were primed using 

mathematical equations either with parentheses, i.e., 80 – (9 +1) x 5 or without parentheses, 

i.e., 80 – 9 + 1 x 5. They were subsequently presented with a target sentence fragment, such 

as “I visited a friend of a colleague who lived in Spain.” There were two alternative 

interpretations to this sentence: a high-attachment or low-attachment. In the high-attachment 

alternative, the relative clause “who lived in Spain” attaches with the complex noun-phrase “a 

friend of a colleague” to imply that the friend lived in Spain. In the low-attachment 

alternative, the relative clause modifies the most recent simple noun-phrase to suggest that 

the colleague lived in Spain. The researchers found that when the mathematical equations 

were solved correctly, their structure – either with parentheses (high attachment) or without 
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parentheses (low attachment) – influenced the noun-phrase that was chosen to complete the 

target sentence. 

In a follow-up experiment, Scheepers and Sturt (2014) examined the cross-domain 

representation of structural information between language and mathematics by investigating 

the effects of the structure of a correctly solved mathematical equation on subsequent 

sentences containing high-attachment versus low-attachment relative clause ambiguities, and 

vice-versa. Participants solved structurally left-branching equations (5 x 2 + 7) or right-

branching equations (5 + 2 x 7). They provided sensicality ratings (on a 5-point Likert scale 

from ‘makes no sense’ to ‘makes perfect sense’) for adjective-noun-noun compounds that 

were either left-branching (Alien monster movie) or right-branching (lengthy monster 

movie). In the first experiment, mathematical expressions were used as primes, and linguistic 

expressions were used as targets. In the second experiment, linguistic expressions were used 

as primes, whereas mathematical expressions were used as targets.  A bi-directional priming 

effect – from language to arithmetic, and from arithmetic to language – was found.  The 

results of these two studies suggest that some shared knowledge of the rules governing 

similar linguistic and mathematical problems may impact reasoning in the two domains.  

Nakai and Okayona (2018) assessed whether neural activation reflected the structural 

integration between language and arithmetic demonstrated by Scheepers and colleagues 

(2011) in an fMRI study. Sentences and arithmetic expressions with the same and different 

syntactic structures were prepared, and presented in consecutive structurally congruent or 

incongruent pairs. A significant repetition suppression effect was observed in regions 

including the bilateral inferior frontal gyrus. Neural activation with an arithmetic expression 

decreased after a sentence with the same syntactic structure was presented, and vice versa. 

These results support the idea of a shared neural basis for processing language and arithmetic 

syntactic structures. Taken together with Scheepers et al. (2011) and Scheepers and Sturt 
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(2014), these findings suggest that structural similarity between language and mathematics 

problems may be a key element facilitating cross-modal interactions between the two 

domains. 

The Current Research 

Extensive research over the last few decades suggests that language and mathematics 

are related and interacting domains (e.g., Peng et al., 2020; Donlan et al., 2007; Geary et al., 

1993). However, possible explanations for such findings remain largely absent from the 

literature. Experimental research assessing the connection between the two domains through 

training studies, interventions, etc. is limited. 

This lack of experimental evidence limits our understanding of the role of other 

domain-general cognitive factors, such as intelligence, and working memory, as well as 

social factors, such as socio-economic status, educational attainment, age, and experience in 

potentially facilitating or confounding the cross-domain interaction between language and 

mathematics. It is possible that shared structural representations between the two domains 

facilitates cross-modal interaction, but the extent to which domain-specific featural cues – 

including symbolic letter and number representations, syntactic elements such as grammar 

and order of operations, as well as semantic associations like word-meaning – are limited to 

one domain or facilitate development across both language and mathematics also remains 

unclear. Additionally, and perhaps more importantly, it is not entirely clear whether this 

connection between language and mathematics is functional, which means that language is 

needed for communicating and engaging with mathematics, or whether the two domains rely 

on some shared structural integration or processing resource. The latter explanation would 

imply that the connection between the two domains is bi-directional – i.e., not only would 

language be needed for mathematics, but mathematics may also facilitate language 
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development and skill – and that the same or similar cognitive systems may be recruited for 

processing linguistic and mathematical reasoning.  

The current set of studies seeks to explore the nature of the cross-modal relationship 

between language and mathematics. Broadly, these studies seek to examine whether language 

serves a functional purpose, i.e., serves as a means to mathematics, or whether the two 

domains rely on some shared or interacting cognitive resource. The second chapter 

investigates the role of different domain-specific featural cues in facilitating linguistic and 

mathematical performance. The third chapter explores the role of explicitness of these cues in 

facilitating performance across the two-domains. Both studies seek to understand the role of 

domain-general competencies such as part-whole thinking and relational reasoning on 

performance in both domains. 
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Chapter 2: Introduction 

Extensive evidence from studies with multi-lingual populations, children with 

developmental language disorders, and some limited experimentation and intervention 

suggests that the development of language and mathematics is interconnected and possibly 

interdependent. While some research argues that language may serve a functional purpose as 

a means to mathematics, other evidence suggests that language and mathematics rely on some 

shared common resource or deep structure that supports the development of both domains.  

Language as a Pathway to Mathematics 

Various models of cognitive development propose that language is a means to 

mathematics, i.e., individuals draw on their linguistic knowledge to perform mathematical 

tasks. LeFevre et al. (2010) proposed a pathway model of mathematics development, such 

that the development of early numeracy is dependent on three precursor pathways: 

quantitative skills, spatial skills, and linguistic skills. These pathways contribute 

independently to the development of early numeracy in preschool-aged children and 

kindergarteners. The three skills were differentially related to performance on different 

mathematical outcomes two years later. Linguistic skills (i.e., vocabulary and elision) were 

related to number naming, but not non-linguistic arithmetic, whereas quantitative skills (i.e., 

subitizing latency) were related to non-linguistic arithmetic performance. Spatial skills were 

related to number naming and numerical magnitude, supporting the idea that three 

independent precursor pathways contribute to mathematical development and performance. 

All three precursor pathways relate differently to different mathematical skills, but linguistic 

skills were found to be a consistent and stronger predictor of mathematical skill across tasks. 

This model suggests that mathematical performance may rely on underlying language 

competencies. However, it does not provide an explanation for the ways in which the 
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linguistic and mathematical pathways are integrated, and the role of domain-general factors, 

such as attention and working memory in their integration. 

In a similar proposal, the triple-code model of number processing suggests that 

representations from both verbal and non-verbal domains are involved in mathematics 

(Dehaene, 1992; Dehaene & Cohen, 1995). Similar to the pathways model, this model 

proposes that three mental representations (codes) support performance on numerical tasks: 

first, the visual Arabic numeral form, which represents numbers as digit strings (e.g., 5); 

second, the verbal word frame, which represents numbers in linguistic form (e.g., five); and 

third, the analogue magnitude representation frame, which is comprised of semantic 

representations of magnitudes and approximations (e.g., a dotted array with five dots). One or 

more codes is accessed when performing numerical tasks. There are multiple routes linking 

one code to another, such that two types of codes can be accessed, without accessing the 

third. These two models suggest that language facilitates access to numerical representations, 

and that linguistic competencies support mathematical development in some way. Evidence 

supporting these models suggests that mathematical processing draws on some linguistic 

knowledge. 

These two developmental models of cognition purport that language is a way of 

understanding mathematics. This would fall in line with existing research which suggests that 

linguistic processes are involved in the development of number concepts. Presumably if the 

relationship is pathway-dependent and unidirectional – such that linguistic competencies are 

accessed during mathematical cognition – then exposure to, or priming in language ought to 

facilitate better mathematical performance compared to no-exposure to linguistic stimuli. In 

addition, if linguistic representations are a unidirectional pathway to mathematical skills, 

similar exposure to mathematical representations ought not to impact linguistic performance. 

This means that exposure, to or priming in mathematics would not facilitate linguistic 
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performance compared to no-exposure to mathematical stimuli. The current study 

investigates whether exposure to linguistic problems would facilitate performance in 

mathematics, and vice versa, i.e., whether the cross-modal relationship between language and 

mathematics is unidirectional (i.e., pathway-dependent as suggested by the multiple pathways 

and triple-code model) or bi-directional. 

Shared Deep Structures  

 Contrary to the pathways models of cognitive development, another line of research 

argues that rather than one domain (language) facilitating the other (mathematics), the two 

domains have some common or shared deep structure or resource to draw on. 

Chi and van Lehn (2012) suggested that academic tasks (e.g., reading and arithmetic) 

employ both surface features and deep structures: surface features include letters and words 

for literacy, and numbers and operational symbols for arithmetic, whereas deep structures 

refer to the rules, schemas, and principles involved in the linguistic or mathematical academic 

task. Collin and Laski (2019) suggested that early literacy and numeracy vary in surface level 

features, but have two common deep structures: symbolic mapping and relational reasoning. 

First, shared symbolic mapping refers to the process of fluently accessing the name and 

meaning of symbols. This includes letter identification, numerical identification, letter-sound 

knowledge, and numerical-quantity knowledge. Second, shared relational reasoning refers to 

rhyme awareness, magnitude comparison, phonological operations, and non-symbolic 

arithmetic problems. Relational reasoning involves pattern-extrapolation, analogical 

reasoning, part-whole thinking, and comparative thinking. Children are required to 

understand the ways in which different symbols relate to one-another by comparing and 

decomposing different words, quantities, and sounds. Additionally, knowledge about how 

small units of information (parts) combine to create larger units of meaning (wholes) is 

required in both early literacy and early mathematics. These two deep structures – symbolic 
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mapping and relational reasoning – are involved in both linguistic and mathematical 

representations and problem-solving. 

The current study tests these two deep structures proposed by Collins and Laski 

(2019) – symbolic mapping and relational reasoning – through different tasks. This study 

examines whether training participants to draw on different aspects of their knowledge, i.e., 

symbolic mapping or relational reasoning in one domain – language or mathematics – will 

impact their performance in the other domain.  

The linguistic and mathematical reasoning conditions in this study ask participants 

solve different word and number analogies respectively. These problems ask participants to 

understand the ways in which two words in a pair relate to each other, and further explore the 

ways in which one word-pair might relate to a similar pair. Presumably, the task elicits some 

form of relational reasoning in one domain – language or mathematics – that can then be 

transferred to the other domain. The task is intended to highlight the presence of more 

domain-general cognitive mechanisms, such as working memory and intelligence, that might 

be involved in relational reasoning across the two domains. If participants are successful in 

solving these word or number analogies, they should be able to extrapolate similar patterns in 

different reasoning problems – either alphabetical sequences or number sequences – 

presented at test. By comparison, two structural prime conditions ask participants to solve 

sequences in one domain – alphabetical or numerical – and then ask them to solve 

corresponding sequences in the other domain. This task is intended to elicit the second of the 

deep structures: symbolic mapping. Participants need to draw on their knowledge of different 

letters and numbers and understand what they mean, and how they relate to each other. This 

task is intended to highlight a domain-specific featural cue in language and mathematics. 

Presumably, understanding the ways in which different symbols connect in one domain 

should facilitate participants’ ability to do so in another domain. 
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These different tasks are intended to elicit different shared deep structures – symbolic 

mapping or relational reasoning – in facilitating the cross-modal interaction between 

language and mathematics. More broadly, these two tasks aim to understand the ways in 

which different domain-specific and domain-general featural cues are accessed to perform 

both linguistic and mathematical tasks. 

The two experiments in this chapter examine whether the cross-modal relationship 

between language and mathematics is functional, i.e., linguistic knowledge facilitates 

mathematical understanding, or whether language and mathematics draw on some shared 

common resource or deep structure that facilitates performance in both domains. Experiment 

1 focuses on the language to mathematics training-transfer and attempts to shed light on the 

directionality of this cross-modal relationship, whereas Experiment 2 focuses on the 

mathematics to language training-transfer. Both experiments explore the role of common or 

shared domain-specific and domain-general representations of language and mathematics in 

facilitating cross-modal interaction. The specific research questions asked in these two 

experiments are as follows: 

1. Does training adults to extrapolate patterns and engage in linguistic reasoning in 

facilitate performance in corresponding mathematical reasoning, and vice-versa? 

2. Does exposure to structurally and symbolically similar linguistic questions facilitate 

performance in corresponding mathematical questions, and vice-versa?  

Experiment 1 

Method 

Participants 

Participants were 156 adults aged 18 to 72 years (M = 38.60 years), who were fluent 

in the English language and had completed secondary or high school-level education. All 

participants reported English as their first language. Participants were randomly assigned to 
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one of three language training conditions: linguistic reasoning, structural priming, and a no-

training control condition. A total of 52 participants were assigned to each training group. 

Materials  

Participants were trained on a set of novel linguistic stimuli and tested on 

corresponding mathematical stimuli. These included:  

Word Analogies  

The word analogies require participants to use their vocabulary knowledge to engage 

in analogical reasoning. Participants need to discern the pattern between each term in a 

problem and decide which of the given options best fits the problem. These were used as 

training items for the linguistic reasoning group. Examples include: 

Warm : Hot :: ______ : Hilarious  

Options: (a) humid  (b) summer  (c) sunny  (d) funny 

 

Reading : Books :: ______ : Movies   

Options: (a) watching  (b) eating  (c) TV  (d) listening 

 

Alphabetical Sequences 

The alphabetical sequencing task recruit participants’ letter recognition and 

sequencing knowledge. Participants need to identify individual letters and how they might 

relate to other letters or letter series in a given problem. These were used as training items in 

the structural priming group. Examples include:  

Complete the series: A  C  E  G  ? 

 

Complete the series: jJ  kK  lL  mM  nN  ? 

Number Sequences 

 Participants need to identify the value of individual numbers and recognize how they 

might relate to the other numbers or number sequences in a meaningful manner. These were 

used as test items. Examples include: “Complete the series: 1  3  5  7  ?  

                                Complete the series: 4  8  12  16  20  ? 
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 Pilot data collected prior to this experiment using a sample of 104 participants showed 

moderate correlations between these training and test items, as depicted in Table 1. 

Table 1. The Correlations between All Novel Training and Test Items Used in the Study. 

         Pearson's r*  Lower 95% CI  Upper 95% CI  

Number Analogies   -   Word Analogies   
0.54  

 
0.38  0.66 

Number Analogies   -   Number Sequences   
0.47  

 
0.30  0.60  

Number Analogies   -   Alphabetical Sequences   
0.44  

 
0.27  0.58 

Word Analogies   -   Number Sequences   
0.35  

 
0.16  

 

0.50 

 

 

Word Analogies   -   Alphabetical Sequences   
0.42  

 
 0.25  0.57 

Number Sequences   -   Alphabetical Sequences   
0.63  

 
 0.49  0.73 

*p < .001 

In addition to these training and test stimuli, participants were asked to report their age and 

whether English was their first language. 

Procedure  

 Participants were trained on linguistic problems and tested on mathematical problems. 

They were randomly assigned to one of three training conditions: linguistic reasoning, 

structural priming, or a no-training control condition.  

In the linguistic reasoning condition, participants were asked to complete a series of 

12 word-analogies that were progressive in difficulty. Feedback was provided on each 

question. Once a question was answered, participants were able to review an explanation and 

solution for it. In the structural priming condition, participants were presented a series of 12 

alphabetical sequences that were progressive in difficulty. Participants were given no 

feedback on their responses. In the no-training control condition, participants received no 

linguistic training and were directed to the test phase. 
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Training criterion was set at eight correct responses for both training conditions – 

linguistic reasoning and structural priming. Participants who received a score of eight or more 

were considered trained. Conversely, participants who received a score of seven or less in 

either of the two training conditions were removed from the study. In the test phase, all 

participants answered 12 number sequence questions that were progressive in difficulty. 

Participants had one minute to answer each question and received no feedback on their 

responses. 

Results 

A One-Way Analysis of Variance (ANOVA) was conducted to analyse the 

effectiveness of the three different types of linguistic training – linguistic reasoning, 

structural priming, and no-training – on mathematical performance. Results indicated no 

significant difference between training conditions F(2, 153) = 1.69, p = .18, on participants’ 

mathematical performance. 

These results suggest that linguistic training does not impact mathematical 

performance, highlighting that the relationship between language and mathematics is not 

pathway-dependent, i.e., language is not a functional means to mathematics. To understand 

whether this association might be guided by other common or shared representations, the next 

experiment explores whether mathematical training facilitates performance in linguistic 

problem-solving. 

Experiment 2 

Method 

Participants 

Participants were 144 adults aged 18 to 69 years (M = 39.29 years), who were fluent 

in the English language and had completed secondary or high school-level education. All 

participants reported English as their first language. Participants were randomly assigned to 
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one of three mathematical training conditions: mathematical reasoning, structural priming, 

and a no-training control condition. A total of 48 participants were assigned to each training 

group. 

Materials 

Participants were trained on a set of novel mathematical stimuli and tested on 

corresponding linguistic stimuli. The correlations between these items are referenced in Table 

1. These include :-  

Number Analogies 

 Number analogies require participants to use their knowledge of numbers and 

arithmetic facts to engage in analogical reasoning. Participants need to discern the pattern 

which connects the different numbers in a given problem, and decide which of the given 

options best fits the problem. These were used as training items for the mathematical 

reasoning condition. Examples include:  

3 : 1 :: 7 : ______   

Options: (a) 3  (b) 5  (c) 6  (d) 1 

 

4 : 6 :: ______ : 16   

Options (a) 14  (b) 11  (c) 2  (d) 8 

 

Number Sequences  

 These items are the same as the sequences used in the test phase in Experiment 1. 

These were used in the structural priming condition for this experiment.  

Alphabetical Sequences 

 These items are the same as the sequences used in the structural priming training 

condition in Experiment 1. These were used in the test phase of this experiment. 
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Procedure  

 

This experiment was conducted in a similar fashion to Experiment 1. Participants 

were randomly assigned to one of three training conditions: mathematical reasoning, 

structural priming, or a no-training control condition.  

Similar to the linguistic reasoning condition, participants in the corresponding 

mathematical reasoning condition were asked to complete a series of 12 number-analogies 

that were progressive in difficulty. Feedback was provided on each question. Once a question 

was answered, participants were able to review an explanation and solution for it. Similarly, 

in the structural priming condition, participants were presented a series of 12 number 

sequences that were progressive in difficulty. Participants were given no feedback on their 

responses. In the no-training control condition, participants received no mathematical training 

and were directed to the test phase. Following the same training criterion, participants who 

received a score of eight or more on either of the mathematical training paradigms – 

mathematical reasoning or structural priming – were considered trained. 

In the test phase, all participants answered 12 alphabetical sequencing questions that 

were progressive in difficulty. Participants had one minute to answer each question, and 

received no feedback on their responses. 

Results 

 A One-Way Analysis of Variance (ANOVA) was conducted to analyse the 

effectiveness of the three different types of mathematical training – mathematical reasoning, 

structural priming, and no-training – on linguistic performance. Results indicated a 

significant difference between training conditions F(2, 142) = 3.86, p = .02, η2 = .05. on 

participants’ linguistic performance (Figure 1). 
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Figure 1.  Line Graph Depicting the Three Different Types of Mathematical Training (i.e., 

Mathematical Reasoning, Structural Priming, and No Training) on the x-axis, and 

Participants’ Subsequent Linguistic Performance on a scale of 0 to 12 on the y-axis. 

 

A Tukey post-hoc test showed a significant difference between the structural priming 

(M = 9.37, SD = 1.99) and no-training conditions (M =8.04, SD=2.66). However, no 

significant difference was found between the mathematical reasoning (M = 8.37, SD = 2.65) 

and no-training conditions (M =8.04, SD=2.66). Similarly, there was no significant difference 

in mathematical performance between the mathematical reasoning (M = 8.37, SD = 2.65) and 

structural priming (M = 9.37, SD = 1.99) conditions. 

Discussion  

 The current study examined whether training in language would facilitate 

performance in mathematics, and vice versa. Moreover, it investigated whether the nature of 

training – either highlighting commonalities in relational reasoning or priming symbolic 

representations – in one domain would impact performance in the other. The results of the 

first experiment showed that linguistic training did not facilitate performance in mathematics. 

By contrast, the results of the second experiment demonstrate that structural priming of 
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mathematical symbols elicited better performance in corresponding linguistic problems, 

compared to mathematical reasoning and no-training. 

 These results lend insight into the nature of the cross-modal relationship between 

language and mathematics. The first question asked in this study was whether this cross-

modal relationship was pathway-dependent or shared. Pathway models of mathematical 

development, such as the multiple pathways model (LeFevre et al., 2010) and the triple-code 

model (Dehaene, 1992; Dehaene & Cohen, 1995) propose that language facilitates access to 

numerical representations, and that linguistic competencies are recruited during mathematical 

performance. These pathways models are supported by existing evidence from cross-

linguistic studies, which suggest that that domain-specific featural cues of language, such as 

morphology, word-meaning, and syntax, are recruited during number development and 

mathematical problem-solving. If language serves as a pathway to mathematics, then 

presumably, linguistic training in this study would have enhanced mathematical performance 

compared to no-training, but presumably, mathematical training would not have any impact 

on linguistic performance. Given that there was no significant effect of linguistic training on 

mathematical performance, it seems that linguistic representations may not be a pathway or 

means to mathematical representations. 

 Contrary to the results of the first experiment, the second experiment showed that 

mathematical training did facilitate linguistic performance, such that participants who were 

structurally primed to answer number sequences performed better on linguistic sequences 

than those in the no-training control condition. However, participants who trained in 

mathematical reasoning did perform differently than the control group. There is little research 

examining whether mathematical development and experience impacts linguistic 

performance. The current literature does not provide evidence for a mathematical pathway to 

linguistic representations. In this absence of this research, it is hard to determine the ways in 



Language and Mathematics                                                                                                      26 

 

 

 

mathematical representations or processing impacts linguistic performance. Presumably, 

results showing that the mathematical reasoning condition did not facilitate linguistic 

problem solving, indicate that there may not be a mathematical pathway to language. 

However, a positive effect of mathematical structural priming on linguistic performance is in 

line with evidence from structural priming studies (e.g., Scheepers & Sturt, 2014) that 

suggest that language and mathematics draw on shared representations. These results suggest 

that language and mathematics might draw on shared representations or deep structures that 

facilitate a cross-modal relationship between the two domains. 

 One challenge posed by the results of Experiments 1 and 2 around a model of shared 

representations or deep structure is that the data do not show a bi-directional transfer: while 

mathematical training facilitated cross-modal transfer, linguistic training did not. This may be 

because domain-specific symbolic cues in mathematics may make corresponding symbolic 

representations easier to access during linguistic problem-solving. In comparison, participants 

may not have drawn on linguistic featural cues during mathematical problem-solving, 

because mathematical symbolic representations may be easily accessible through other 

domain-general mechanisms, such as working memory which is involved in arithmetic fact 

retrieval (DeSmedt et al., 2010). Moreover, it is possible that the domain-specific featural 

cues in language and/or mathematics may work to elicit domain-general mechanisms, such 

that they are easier to access during linguistic and mathematical problem-solving. For 

instance, symbolic mapping – a shared deep structure outlined by Collins and Laski (2019), 

which refers ability to identify and map different symbols and make phonological letter-

sound and number-sound connections – may be recruited while engaging in domain-general 

processes, such as analogical reasoning, pattern extrapolation, and part-whole thinking, 

involved in problem-solving across both domains. Overall, the salience of these specific 
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featural cues in one domain may make domain-general processes easier to access when acting 

in the other domain. 

Limitations 

 There are a few open questions to consider in interpreting these results. The first of 

these is around participant recruitment and task performance. Data were collected on Amazon 

Mechanical Turk (M-Turk). Research participants on M-Turk are unsupervised and 

motivated by financial incentives. Given this, there are some concerns around participants’ 

attentiveness to instructions and tasks, and its possible impact on data quality (e.g., Chandler 

et al., 2014). To mitigate possible issues around data quality, response time on individual 

questions and time-to-completion were monitored in this study. This was done to ensure that 

participants spent time working through the problems presented to them, and did not skip 

through the study only for the financial incentive associated with their participation. While 

response time did not seem to confound performance in either domain, these M-Turk data 

should be understood relative to data collected using more traditional recruitment methods in 

order to truly assess data quality, and discuss possible opportunities and challenges related to 

using crowdsourcing platforms for participant recruitment. 

 Another consideration is around the level of participant engagement in these tasks. 

Given that these experiments are not conducted in a controlled environment, it is hard to 

determine impact of possible environmental confounds, as well as the salience of different 

featural cues on participants’ performance. Participants may be drawing on other task-

specific or external cues to solve problems. Differences in engagement might impact the 

explicitness of specific featural cues or deep structures during training, which in turn, might 

impact participants’ performance on test. Synchronous participation might create more 

controlled conditions and increase task engagement for participants. These limitations are 

addressed in the next experiment. 
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Conclusion 

Understanding whether domain-specific featural cues, such as symbolic 

representations, plays a central role in linguistic and numerical systems requires an 

understanding the extent to which participants draw on symbolic processes while performing 

a task. While it seems that symbolic mapping may be important for both linguistic and 

mathematical cognition, it is not entirely possible to dissociate this shared deep structure from 

a specific task effect. This is especially true given that structurally priming participants to 

mathematics elicited better linguistic performance, but priming participants to language did 

not lead to better performance in mathematics. It is possible that the degree of explicitness of 

symbolic featural cues in the given task might also impact performance. These mechanisms 

may need to be understood better to conclusively understand the role of shared deep 

structures in the cross-modal relationship between language and mathematics. 

While the impact of explicitness of different featural cues in facilitating the cross-

modal interactions remains an open question, the results of this study demonstrate that 

individuals broadly draw on some shared representations or deep structures when performing 

linguistic and mathematical tasks. Although they may not always support each other in direct 

ways, the cross-modal relationship between language and mathematics may be supported 

through domain-specific features, as well as domain-general mechanisms.  
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Chapter 3: Introduction 

 Language and mathematics may rely on some shared representation or deep structures 

during problem-solving across the two domains. One such deep structure is symbolic 

mapping (Collins & Laski, 2019). This refers to the ability to make sound-symbol 

connections to identify and recognize letters in language (e.g., Aa, Bb, Cc, etc.), numbers in 

mathematics (e.g., 2, 3, 4, etc.), as well as other relational symbols that might represent some 

linguistic-semantic meaning (e.g., &, $, etc.) or mathematical operation (e.g., +, -, =). 

Symbolic representations are considered instrumental to language and mathematics. One 

example of the role of symbolic representations in language is in prior research on reading 

and literacy. Letter identification is a strong predictor of reading performance (Foulin, 2005; 

Snow et al., 1998). Moderate to high correlations have been found between letter 

identification prior to formal schooling and later reading abilities (Snow et al., 1998; Stuart, 

1995). Similarly, numerical identification is correlated to numerical magnitude estimation 

(Berteletti et al., 2010; Kolkman et al., 2013), showing that symbolic representations may be 

important for understanding number representations and mathematical processing. 

Given that symbolic mapping facilitates domain-specific performance, it is possible 

that symbolic mapping may also facilitate cross-domain interaction, i.e., the process of 

identifying and mapping symbols in one domain might facilitate performance in the other. 

This is supported by the results of previous study (see Chapter 2) which shows that 

structurally priming participants to solve symbolic numerical problems facilitated their 

performance on corresponding symbolic problems in language, compared to no priming. 

These results suggest that the domain-specific features of mathematics may be accessed 

during linguistic problem-solving, such that structural priming participants to symbols in 

mathematics might have made the deep structures shared between the two domains more 

accessible during linguistic problem-solving. An open question remains about whether 
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increased access to these deep structures – in this case symbolic mapping – might facilitate 

performance across language and mathematics. There are two lines of evidence that suggest 

that greater access to domain-specific features and domain-general mechanisms might 

support cross-modal training and transfer. Some research suggests that the explicitness of 

domain-specific features of language, such as vocabulary, syntax, and structure, might 

facilitate numerical development and mathematical performance. Moreover, research on 

mathematical instruction (e.g., Chow & Jacobs, 2016; Fuchs et al., 2020) suggests that 

highlighting different linguistic features during mathematics might facilitate the development 

of mathematical concepts, and positively impact mathematics performance. 

The Role of Domain-Specific Featural Cues 

Prior research suggests that explicitly directing individuals’ attention to similarities 

between different tasks leads to improvement on more abstract reasoning-based tasks, such as 

equivalence problems and search tasks (e.g., Cook et al., 2013; DeLoache et al., 1999). 

Increased awareness of, and reduced errors in syntactic and semantic reasoning, could 

enhance learning outcomes in mathematics (Easdown, 2009). This may be true for studies 

examining the relationship between language and mathematics. 

Prior research shows that domain-specific featural cues in language facilitate 

performance in mathematics. The explicitness of specific semantic cues, such as vocabulary 

or word-meaning might play into this cross-modal relationship. For example, Purpura and 

colleagues (2011) investigated the unique relationship between early literacy (vocabulary, 

phonological awareness, and print knowledge) in preschool-aged children’s numeracy 

development one year later. The researchers found that vocabulary and print knowledge 

accounted for variance in numerical development. Vocabulary was a significant predictor of 

young children’s early numeracy skills. Prior research suggests that mathematics-specific 

vocabulary or mathematics language – which consists of specific-vocabulary used to refer to 
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quantitative relations, such as ‘more than’, ‘less than’, ‘fewer’, etc., and spatial relations, such 

as ‘below’, ‘above’, ‘near, ‘far,’ etc. – facilitates performance in both language and 

mathematics (see Purpura et al., 2019 for review). These studies support the idea that 

linguistic aptitude/knowledge can facilitate mathematics performance. 

Extensive examples of the role of different domain-specific features in facilitating 

cross-modal performance across language and mathematics come from the literature on word 

problems. Variations in semantic structures affect the ease with which word problems are 

solved by young children. According to Kintsch (1986), two factors influence the level of 

difficulty of word problems for children. First, the closer the linguistic structure to the 

underlying calculation structure, the easier the problem is to solve. Second, the more indirect 

or imprecise the language signalling the calculation structure, the harder the problem is to 

solve. Familiarity with diction and syntax also influence the relative difficulty of a problem 

(Kintsch, 1986). For instance, addictive structures can be easier to solve than multiplicative 

structures, relational statements, and quantitative comparisons (Kintsch & Greeno, 1985). 

Abedi and Lord (2001) examined the differences in performance on mathematical 

word problems between English language learners (ELL) and native English speakers. 

Students were presented items from a standardized mathematics assessment, as well as 

revised items which used simplified language. Revisions included changes of verb voice from 

passive to active voice and shortened nominals. Conditional clauses were replaced with 

separate sentences, and relative clauses were removed or recast. Finally, unfamiliar and 

infrequent words were changed. The authors reported that although ELL speakers scored 

significantly lower than proficient English speakers on mathematical word problems, 

modifying language structures to make them linguistically simpler led to improvements in 

performance. The modifications benefitted ELL speakers and students from low SES families 

more in comparison to proficient English speakers, and students from higher SES families. 
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The results of these studies suggest that highlighting different features of language 

and number might impact performance across the two domains. If these studies are 

considered in conjunction with the findings on symbolic representations, it may be possible 

that further highlighting the symbolic cues elicited during structural priming in the previous 

study might further improve performance in the two domains. 

The Role of Instruction 

Some evidence for the role of explicit instruction in facilitating performance across 

the two domains comes from literature on mathematics instruction. Stocco and Prat (2014) 

examined differences between monolingual and bilingual speakers on mathematical 

operations, such as “subtract one from y” and “multiply x by two”. No significant differences 

in performance were found on trials where mathematical operations were repeated from the 

previous problem. However, bilingual participants had faster response times on problems 

with novel operations, compared to their monolingual counterparts. Planas (2014) observed 

interactions between Catalan language learners and native language speakers, while solving 

algebraic problems in small groups. Catalan language learners attempted to solve the 

problems using different strategies, such as using geometric approaches to understand 

algebraic functions, since they lacked the mathematics-specific terminology required to 

describe the problems. Additionally, the language learners focused more on the meaning of 

mathematical terms than native speakers. 

Chow and Wehby (2019) found a significant interaction between language and 

symbolic instructional representations in an equal-sign instructional classroom intervention. 

The authors suggest that the linguistic abilities of young children might involve individuals’ 

understanding of systems of symbolic representations that are instrumental to the 

development of mathematics concepts. 
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Prior research suggests that instruction and intervention in mathematics-specific 

language benefits children’s literacy and numeracy skills, that are important components of 

early linguistic and mathematical development. Purpura, Logan et al. (2017) investigated how 

and why early mathematics is a significant predictor of early literacy development in 3-to-5-

year-old children. The results suggest that the relations between early mathematics and early 

literacy were mediated by mathematics language skills. In the same year, Purpura, Napoli et 

al. (2017) examined the relationship between mathematics language and mathematics skills 

and knowledge using an eight-week-long dialogic reading intervention. Children were either 

assigned to a mathematical language intervention, in which dialogic reading focused on 

quantitative and spatial mathematical language, or a control group. Students in the 

intervention group performed significantly better than those in the control group on both 

mathematics language and mathematics knowledge assessments.  These studies suggest that 

mathematics-specific language instruction may be crucial for young children’s mathematical 

reasoning skills. 

Fuchs et al. (2020) tested the efficacy of embedded language-instruction intervention 

on word-problem solving in first-grade children who demonstrated low mathematics 

accuracy. Participants were assigned to one of four intervention conditions: first, schema-

based word-problem intervention with embedded language comprehension, second, the same 

intervention without embedded language comprehension instruction, third, a number 

knowledge intervention with a word-problem component, and fourth, a control group. 

Children in the schema-based intervention with embedded language instruction performed 

significantly better than children who did not receive embedded language comprehension 

instruction. No significant difference was found between the number knowledge and control 

groups. Children in all three intervention conditions performed better than those in the control 
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group. These results suggest that language instruction facilitates young children’s 

mathematical problem-solving skills. 

From this research on mathematics instruction, it seems that explicit instruction about 

specific features of language and number, such as symbolic representations, vocabulary, and 

syntax, might facilitate performance in the two modalities. Instruction may be an important 

tool for eliciting common deep structures in both language and mathematics, in turn 

facilitating pattern recognition, reasoning, and problem solving across two the domains. 

Emerging Questions 

 The previous study described in Chapter 2 showed that symbolic mapping was 

recruited for both language and mathematics. However, the extent to which participants rely 

on symbolic mapping to solve linguistic and mathematical problems remains unclear. The 

existing literature demonstrates that explicit instruction on the different features (e.g., 

symbolic representations, word meanings, etc.) and rules (e.g., grammar, sentence structure, 

order of operations, etc.) governing language and mathematics may facilitate performance 

across the two domains. Therefore, the current study examines whether increasing the 

salience of symbolic featural cues or representations impacts the cross-modal relationship 

between language and mathematics by asking the following questions:  

1. Does explicit instruction about symbolic mathematical patterns facilitate better 

performance on corresponding linguistic problems compared to implicit structural 

priming? 

2. Does explicit instruction about symbolic mathematical patterns facilitate better 

performance on corresponding linguistic problems compared to no exposure or 

training to mathematical symbols? 
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Method  

Participants 

Participants were 75 undergraduate students at Huron University College, a small 

liberal arts college in southwestern Ontario. All participants, aged 18 to 23 years, were fluent 

in the English language. Participants were randomly assigned to one of three language 

training conditions: explicit instruction, structural priming, and a no-training control 

condition. A total of 25 participants were assigned to each training group. 

Materials  

 The materials used in this study were the same as the previous one. Number 

sequences were used as training stimuli in both training conditions: explicit instruction and 

structural priming. Alphabetical sequences were used as test items in all three conditions. 

Procedure 

Participants were randomly assigned to one of three training conditions: explicit 

instruction, structural priming, or a no-training control condition.  

The mathematical structural priming and no-training conditions were the same as the 

first study. In the structural priming condition, participants were presented a series of 12 

number sequences that were progressive in difficulty. Participants were given no feedback on 

their responses. In the no-training control condition, participants received no mathematical 

training and were directed to the test phase. By contrast, in the new explicit instruction 

condition, participants were presented the same series of 12 number sequences and given 

feedback after each question. Once a question was answered, the experimenter highlighted 

the pattern of numbers in each sequence and also revealed the correct answer. This meant that 

participants had an explanation and solution to each question before moving on to the next. 

For both training conditions, training criterion was set at eight correct responses, i.e., 

participants who received a score of eight or more on either of the mathematical training 
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paradigms – explicit instruction or structural priming – were considered trained. In contrast to 

the first study, participants were trained through live-synchronous interaction. 

In the test phase, all participants answered 12 alphabetical sequencing questions that 

were progressive in difficulty. Participants had one minute to answer each question, and 

received no feedback on their responses. 

Results 

A One-Way Analysis of Variance (ANOVA) was conducted to analyse the 

effectiveness of different levels of explicitness in mathematical training – explicit instruction, 

structural priming, and no-training – on linguistic performance. Results indicated a 

significant difference between training conditions F(2, 72) = 5.40, p = .006, η2 = .13. on 

participants’ linguistic performance (Figure 2). 

Figure 2.   Line Graph Depicting Three Different Types of Mathematical Training (i.e., 

Explicit Training, Structural Priming, and No Training) on the x-axis, and Participants’ 

Subsequent Linguistic Performance on a scale of 0 to 12 on the y-axis. 

 

A Tukey post-hoc test showed a significant difference between the explicit instruction 

(M = 9.00, SD = 2.61) and no-training conditions (M =7.32, SD=2.88). In addition, a 

significant difference was found between structural priming (M = 9.40, SD = 1.32) and no 
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training (M =7.32, SD=2.88).  However, no significant difference was found between two 

training conditions: explicit instruction (M = 9.00, SD = 2.61) and structural priming 

condition (M = 9.40, SD = 1.32). 

Discussion  

 This study investigated whether increasing the salience of symbolic featural cues in 

mathematics problems facilitates performance on corresponding linguistic problems. Explicit 

instructional training in mathematics was compared to implicit structural priming and no-

training. Results indicate that training participants in mathematics – either through explicit 

instruction or structural priming – facilitated performance on corresponding linguistic 

problems compared to no mathematical training. There was no difference in linguistic 

performance between the two training conditions. Overall, these results suggest that 

mathematical training facilitated performance in linguistic problem solving, but the type of 

mathematical training participants received did not differently impact linguistic performance. 

In line with the results of the Experiments 1 and 2 (Chapter 2), structurally priming 

participants to numerical symbols facilitated their performance in linguistic problems 

involving alphabetical symbols. Similarly, explicit instruction to highlight symbolic 

representations in mathematics facilitated performance in linguistic problems, compared to 

no mathematical training. These results align with Collins and Laski’s (2019) proposal that 

language and mathematics shared common deep structures. Moreover, it supports the idea 

that domain-specific featural cues in mathematics (i.e., symbolic numerical representations) 

make corresponding linguistic representations more accessible for solving linguistic 

problems. 

 This study also examined whether explicit instruction about symbolic mathematical 

patterns facilitated better performance on corresponding linguistic problems compared to 

implicit structural priming or no exposure. Presumably, explicit instruction would draw 
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attention to symbols in mathematics in a manner that implicit structural prime could not, as 

suggested in the literature on mathematics instruction and intervention. Explicit instruction 

would increase the salience of symbolic featural cues in the mathematical problems, thereby 

facilitating better performance in language compared to an implicit structural prime. 

However, the lack of difference in linguistic performance between the two training conditions 

– explicit instruction and implicit structural priming –suggests that explicit instruction may 

not increase the salience of symbols. It is possible that structural priming in mathematics 

sufficiently elicits the deep structure required to solve similar linguistic problems. Explicit 

instruction may not add value by further directing attention to the underlying deep structure 

(i.e., symbolic mapping) as anticipated. The facilitation effect seen in the implicit structural 

priming condition may suggest that simple exposure to mathematical problems may be 

enough to facilitate better linguistic performance. Despite this, mathematical training does 

yield better linguistic performance than no training. 

Addressing Limitations  

 The training and transfer experiments discussed in Chapter 2 left open questions 

related to the efficacy of mathematical training in supporting linguistic transfer. A specific 

concern was around the use of Amazon M-Turk participants as the sample of the study, given 

previously expressed concerns about participants’ attentiveness and motivations for 

participation, and its possible impact on task performance. However, the results of this study 

might alleviate that concern: the results of the structural priming condition in this study were 

the same as the one used previously. Average performance on linguistic problems after being 

structurally primed to mathematical problems remained consistent across the two studies. 

Undergraduate students performed at par with M-Turk workers, confirming the efficacy of 

the mathematical training. 
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Another open question in previous study was around task engagement. One concern 

was that asynchronous, self-directed training might negatively impact performance, posing 

possible challenges to participants’ attentiveness to the task at hand. To address this, training 

for this study took place synchronously in the presence of an experimenter. Once again, 

consistent performance and no difference between the common training conditions in the two 

studies suggests that the lack of synchronous engagement may not have been a barrier to task 

performance. Moreover, possible differences in attention as a result of differential modes of 

engagement did not confound the results of either study. 

Conclusion 

 These results lend valuable insight into the deep structures underlying the cross-modal 

relationship between language and mathematics, and address important questions left 

unanswered in the previous study. However, these data also generate new questions about the 

strengths and limits of explicit instruction in supporting cross-modal training and transfer. 

In this study, instruction was conceptualized as a way to make symbolic cues more 

explicit for participants, thereby facilitating greater cross-modal transfer than an implicit 

structural prime. Although there was no significant difference explicit and implicit training, 

explicit instruction did not negatively impact performance either. It is possible that explicit 

instruction facilitates performance, but does so by relying on other deep structures or 

cognitive processes other than symbolic mapping. For instance, instruction might facilitate 

arithmetic fact retrieval without relying on symbolic featural cues. 

Moreover, the ability to identify numerical patterns to solve linguistic problems might 

draw on other domain-specific and domain-general skills and processes. For instance, 

phonological skills, random automatized naming, and working memory might impact the 

ways in which instruction is received, comprehended, and applied to problem-solving. 

Alternatively, explicit instruction might only serve as a means to communicate and clarify 
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task requirements and directions. Perhaps the competencies employed for instruction may not 

be competing with symbolic mapping, but drawing on other features or skills to support the 

cross-domain interactions between language and mathematics. 

Ultimately, it seems that mathematical training facilitates linguistic processing and 

problem-solving overall compared to no mathematical training, but explicit instruction about 

the patterns connecting mathematical symbols may not serve an additional, or even the same 

purpose as simple exposure or priming to symbolic featural cues, both within and between 

language and mathematics. 
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Chapter 4: General Discussion 

 The present set of studies described in this thesis investigated the relationship between 

language and mathematics. Chapter 2 explored whether training participants in one domain 

would facilitate performance in the other domain through two different training and transfer 

experiments. The first experiment examined whether different types of training in language – 

i.e., linguistic reasoning, structural priming, and no-training – would facilitate performance 

on corresponding mathematical problems. Results suggested that training participants in 

language did not impact their mathematical performance compared to no-training controls. 

Neither linguistic reasoning, nor linguistic structural priming supported mathematical 

performance. The second experiment investigated whether training participants in 

mathematics – i.e., mathematical reasoning, structural priming or no-training – would 

facilitate performance on corresponding linguistic problems. Results suggested that training 

participants in mathematical problem-solving yielded better results on participants’ linguistic 

performance than those who received no mathematical training. Although mathematical 

reasoning did not impact linguistic performance, participants who received mathematical 

structural priming performed better on corresponding linguistic problems compared to the 

other groups.  

 Chapter 3 expanded on the results of this experiment (Experiment 2, Chapter 2), by 

examining whether the nature of mathematical training – i.e., explicit instruction and 

feedback compared to the implicit structural prime used in the previous experiment – would 

impact linguistic performance in comparison to no mathematical training. Results indicated 

that participants who received mathematical training – either explicit instruction or structural 

priming – performed better on linguistic problems than those who received no training. No 

difference in participants’ linguistic performance was found between the two training 

conditions, but overall, mathematical training elicited better linguistic performance than no 
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training. In addition, participants’ scores on linguistic problems were replicated: participants’ 

scores after receiving mathematical structural priming were consistent across the two studies. 

There are a few possible explanations for these results and a few different ways to take this 

research forward. 

Implications 

 Experimental evidence for the cross-domain interaction between language and 

mathematics is limited. A majority of the evidence linking the two domains comes from 

from research conducted with different linguistic populations, which show that variations in 

linguistic skills impact mathematical development and performance. Studies comparing 

children with linguistic difficulties to typically-developing counterparts show differences in 

mathematical performance between the two linguistic groups (e.g., Archibald et al., 2013; 

Cross et al., 2019). Similarly, cross-linguistic studies comparing individuals who speak 

different or multiple languages show cognitive costs in mathematical performance (e.g., 

Grabner et al., 2012; Spelke & Tsivkin, 2001). This evidence predominantly connects the 

process of language acquisition to numerical development. However, the prevalence of a 

cross-modal relationship between language and mathematics is debated (see Peng et al., 

2020). The results of this thesis demonstrate that the two domains do interact with each other 

and share some kind of cross-modal connection. 

Moreover, the nature of the relationship between linguistic and mathematics is 

unclear. Evidence from cross-linguistic developmental research suggests that the relationship 

between language and mathematics is pathway-dependent (i.e., language is a means to 

mathematics). This line of research is explained in pathway models of cognitive development 

(e.g., Dehaene, 1992; Dehaene & Cohen, 1995; LeFevre et al., 2010), which propose that 

individuals draw on their linguistic knowledge to perform mathematical tasks. By contrast, 

research conducted with clinical populations suggests that language and mathematics may 
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rely on some domain-general mechanisms, such as attention, working memory, and 

intelligence. A third line of experimental research has hinted at the relationship between 

language and mathematics as relying on shared representations, i.e., both draw on some 

common cognitive resource (e.g., Collins & Laski, 2019). In comparison to the pathway-

model, proponents of the shared representation model argue that rather than language 

facilitating mathematics, the two domains draw on some common or shared deep structure. 

As discussed in Chapter 2, the results of Experiment 1 show that linguistic training did not 

facilitate mathematical performance, which suggests that language is not a pathway to 

mathematics. However, mathematical structural priming did support linguistic performance, 

which supports the idea that language and mathematics may be connected competencies. 

An open question remains about whether language and mathematics rely on shared 

deep structures or representations, and if mathematics serves as a pathway to language. One 

explanation is that the domain-specific featural (i.e., symbolic) cues in linguistic training 

might not be as salient as those in the mathematical training, given that participants may have 

relied on other domain-specific linguistic skills, such phonological and grammar cues, rather 

than relying on symbolic cues to solve linguistic problems during training. As a result, 

participants completing the mathematical problems during test might rely on other domain-

specific cues (including number word-learning. numerical syntax, etc.) or other domain-

general mechanisms (such as working memory for arithmetic fact retrieval and counting) to 

engage in mathematical problem-solving. By contrast, participants completing the 

mathematical training might have found the salient symbolic cues easily accessible to 

complete mathematical problems, and may have used the same strategy of symbolic mapping 

to complete linguistic problems at test. It may then be possible that language and 

mathematics do rely on common or shared representations, such that easier access to shared 

featural cues or deep structures in one domain might facilitate performance in the other. 
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However, to better understand the domain-specific and domain-general cognitive 

processes underlying the cross-modal transfer between language and mathematics, it is 

important to understand whether the salience of this featural cue (i.e., symbolic mapping) 

matters during cross-modal training and transfer from mathematics to language. As such, 

Chapter 3 explored whether the explicitness of the deep structure in mathematics would 

facilitate corresponding linguistic performance. The results demonstrate that training 

participants in mathematics facilitates performance in linguistic problems overall, compared 

to no mathematical training, but explicitly pointing towards certain featural cues might not 

add any additional value to the training, that isn’t already provided by the structural prime. 

Understanding the meaning and connection between different numerical symbols may be 

sufficient to support participants’ ability to identify and make connections between different 

alphabetical symbols. From these results, it seems that language and mathematics might rely 

on some common or shared cognitive resources (such as shared symbolic representations, 

part-whole thinking skills, etc) that facilitate domain-specific and domain-general 

competence. 

 The current research is successful in providing evidence for the existence of a cross-

modal relationship between language and mathematics, and discuss the ways in which the 

two processes or abilities might interact. It seems that the two domains draw on each other 

for reasoning and problem solving, and are not entirely separate cognitive processes. 

Contrary to existing evidence suggesting a pathway-dependent relationship from language to 

mathematics, the results of the current research show that the relationship between these two 

abilities is not unidirectional, such that mathematical competencies also support linguistic 

skills. 
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Limitations and Future Directions 

 The current research provides experimental evidence of a cross-modal relationship 

between language and mathematics, but many questions remain unanswered in this research. 

One of these questions is about the role of linguistic experience in facilitating cross-modal 

transfer. Both studies recruited participants from western, predominantly English-speaking 

populations. In the first two experiments (Chapter 2), all participants were recruited from the 

United States and Canada via M-Turk. Similarly, participants in the third experiment 

(Chapter 3) were Canadian university students. All participants reported English as their first 

language across the three experiments. Therefore, it is possible that differences in linguistic 

experience (e.g., monolingual versus multilingual speakers) and even geographical diversity 

(e.g., recruiting from countries with different emphases on language) might lead to 

differences in performance across the two domains, which could lead to different 

conclusions. 

 Another issue related to linguistic experience is one of unequal exposure to both 

modalities throughout the lifetime. People not only have earlier exposure to language than 

mathematics, it is also a regular and irreplaceable part of communication and cognitive 

performance. Future research should consider this disproportionate advantage in language 

over mathematics and examine the strength of these cross-modal relationships at different 

stages of language acquisition and development. 

 Moreover, a central question only partially addressed in this study is related to the 

potential influence of domain-general factors on the cross-modal relationship between 

language and mathematics. Participants’ age was not related to their performance in either 

domain, and attention checks in the form of easy questions were interspersed throughout 

training and test. However, no measures of domain-general skills, such as general 

intelligence, attention, and working memory were included in the current research. This is 
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because pilot data showed no relationship between participants’ general intelligence and 

working memory and their language and mathematics skills. Despite these measures, 

deliberate measurement of these skills is required to better understand the ways in which 

domain-general mechanisms underpin the cross-modal relationship between language and 

mathematics. 

 These studies bring several different areas of research together – including literature 

on language acquisition, numerical development, cross-linguistic variations, and cognitive 

delays and disorders – to provide strong evidence for the prevalence cross-modal transfer 

between language and mathematics. However, the potential impacts of socio-cultural factors, 

such as economic status, educational attainment, and mathematics-anxiety on linguistic and 

mathematical processes are not addressed. Parental vocabulary, caregiver-child interactions, 

and formal instruction in both language and mathematics could all impact the ways in which 

language interacts with other cognitive capacities. 

 The literature exploring cross-modal language and mathematics interaction is 

disparate and disconnected. This research is a way to bridge some of those gaps and 

understand the ways in which language and mathematics not only interact with, but also draw 

from each other. 

The current research was an attempt to bring together different literature offering 

descriptions of the cross-modal relationship between language and mathematics through 

studies with different linguistic populations, i.e., monolingual vs bilingual people, clinical vs. 

typically-developing populations, and children at different stages of their linguistic and 

mathematical development. The results of this thesis successfully establish the existence of a 

cross-modal transfer relationship, however the results of a short one-time training and 

transfer study should be treated cautiously. It remains for future research to explore the ways 
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in which different domain-specific features, domain-general mechanisms, and external 

factors impact the cross-modal relationship between language and mathematics. 
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