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Abstract

Policy-based Autonomic Management monitors a system and its applications and 

tweaks performance parameters in real-time based on a set of governing policies. 

A policy specifies a set of conditions under which one or more of a set of actions 

are to be performed. It is very common that multiple policies’ conditions are met 

simultaneously, each advocating many actions. Deciding which action to perform is a 

non-trivial task. We propose a method of diagnosing the system to try to determine 

the best action or actions to perform in a given situation using Abductive Inference. 

We develop an original method of building a causality graph to facilitate diagnosis 

directly from a set of policies. Performance of the diagnosis method is measured 

by implementing diagnosis into an existing autonomic management application and 

monitoring the performance of a LAMP (Linux, Apache, MySQL, PHP) server being 

governed by the manager. The results are favourable when compared to previous 

methods of action selection and to the server running without the autonomic manager.

Keywords: autonomic computing, autonomic management, policy, abduction, 

diagnosis
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Chapter 1 

Introduction

Autonomic Computing represents an effort to make distributed, highly interconnected 

and interdependent systems into self-reliant systems, capable of configuring, optimiz­

ing, healing and protecting themselves [20]. Taking a naming cue from the human 

autonomic nervous system, the motivation behind autonomic computing is to relieve 

the massive strain on human IT workers from managing and configuring large sys­

tems. As systems continue to increase in size, the feasibility of effectively managing 

them manually continues to drop [18]. The task of installing, configuring, and micro- 

managing these systems needs to be passed on to the system itself, leaving only high 

level goals and objectives to be specified by human operators.

Policy-based Autonomic Management aims to fill one piece of the Autonomic 

Computing vision, by automating the configuration and optimization of several ap­

plications running together, in real-time. Performance metrics are monitored for run­

ning applications, and configuration parameters are tweaked in real-time to match 

the current environment and workload [21]. The knowledge used to decide what to 

change and when to change it is stored within a set of policies. A Policy instructs the 

autonomic manager on what to do in different circumstances [20].

The BEAT (Best Effort Autonomic Tool) Autonomic Manager uses policies to 

manage several applications on a server machine, such as an Apache HTTP server 

and MySQL database [14]. The policies specify a set of conditions with regards 

to measured performance metrics, and a set of potential actions to take when the
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conditions are met. When the conditions are met, the policy is said to be violated, 

and require corrective action to eliminate the violation. For example, a Response 

Time Violation policy could specify that when the measured response time of a web 

server is above two seconds, then either the maximum number of clients should be 

increased, or the number of connections to keep alive should be decreased, or the 

maximum bandwidth should be adjusted. It is the responsibility of the autonomic 

manager to decide which of the possible actions to perform.

Determining which action is best to perform given a set of potential actions is not 

trivial. This issue is compounded when multiple policies are violated simultaneously, 

each advocating the execution of several actions. This is the problem we attempt 

to tackle in this thesis. Current work on selecting an action in such a situation 

has attempted to assign weights to actions based on a number of factors, and then 

execute the action with the highest weight. We propose to use abductive diagnosis 

to try and determine the best action to perform at the moment, based on the set 

of policies and the present policy violations. Abductive diagnosis uses knowledge of 

causal relationships between problems and causes to hypothesize about the specific 

cause or causes of a given set of problems [23]. This knowledge can be contained in a 

bipartite graph. We introduce a method of building such a graph using the policies 

themselves, with no modifications or other input required. The policies alone are used 

as input to automatically infer causal relationships and store these within a graph 

structure. Diagnosis can then be performed using the current policy violations to 

help determine which action or actions should be performed. The performance of the 

diagnosis method of action selection can be measured by implementing the method 

in the BEAT autonomic manager, and testing it against previous methods. How well 

the autonomic manager achieves the objectives of it’s policies should be an indicator 

of how well the diagnosis method of action selection performs.
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1.1 Main Contributions

This thesis presents a new method of selecting actions using abductive diagnosis. 

Specifically, a method of translating a set of policies into a causal network graph 

for use in a diagnosis algorithm developed by Peng and Reggia [23]. This method 

constructs a complete graph from pre-existing policy information by inferring causal 

relationships from condition and action pairings within the policies. It requires abso­

lutely no modification to the existing policy definition or specific set of policies. After 

diagnosis has been performed, the resulting hypotheses can be directly translated 

back into corrective actions to be performed.

1.2 Outline

The remainder of this thesis is organized as follows: Chapter 2 covers Background, 

including an overview of policies, policy-based management, and the BEAT auto­

nomic manager. Chapter 3, Abduction and Diagnosis, dives into diagnosis using 

abduction and an algorithm for achieving it. Chapter 4, Implementation, describes 

how the abductive diagnosis algorithm was implemented in the BEAT autonomic 

manager. This includes our proposed method of building a graph of casual relation­

ships from a set of policies. Chapter 5, Experiments, details the testing and evalu­

ation of the BEAT autonomic manager using abductive diagnosis. Finally, Chapter 

6, Conclusions and Future Work, provides some final conclusions and presents 

ideas and thoughts for future research in the area.
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Chapter 2 

Background

2.1 Autonomic Computing

Autonomic Computing is quickly becoming an area of extreme interest in the realm 

of Computer Science. Its broad reaching goal is to create distributed computer sys­

tems that are completely self-reliant. The term Autonomic Computing intentionally 

borrows from the human autonomous nervous system, which controls many aspects 

of the body automatically and subconsciously, including heart rate, breathing and 

digestion. As the size and complexity of systems increases and these systems become 

more and more intermingled with other systems throughout the world, they are be­

coming ever more difficult to manage and maintain [18]. At some point these systems 

will grow beyond what can be effectively handled by even the most skilled IT profes­

sionals, if that point has not already been reached [18, 20]. The only real solution is 

to build systems that operate on their own, with minimal human intervention. Such 

systems must be capable of installing and configuring themselves, dynamically opti­

mizing their own performance, and operating in a constantly changing environment 

with other stfch systems [20]. Human IT staff will specify high level goals and objec­

tives, and let the system figure out to achieve them. This is the vision of Autonomic 

Computing, which IBM refers to as a grand challenge [18].

Autonomic Computing can be broken down into several separate, non-trivial be­

haviours. These include self-configuration, self-optimization, self-healing, and self­
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protection, and together they comprise the ultimate goal of self-management [20]. 

Self-configuration is the first step in the lifecycle of an autonomic system. It involves 

the initial installation and configuration of a system, but does not stop there. The 

system must also be able to install and configure new components dynamically, re­

configure itself to meet new goals, or integrate with other existing components and 

systems [20]. Manual installation and configuration of large systems is a cumber­

some, tedious, and error-prone process, thus making self-configuration an essential 

goal of Autonomic Computing. Self-optimization handles the next logical step in 

self-management. An Autonomic System will consist of many applications, each with 

its own set of parameters to be tweaked and tuned for optimal performance in any 

given situation. The system must therefore be able to adjust these parameters au­

tomatically and dynamically in an attempt to achieve optimal performance though 

changing workloads and environments [20]. Large systems are bound to encounter 

failures of various types and severity, and an Autonomic System must be able to han­

dle these failures. This ability falls under the heading of self-healing [20]. Problems 

must be detected, diagnosed, and appropriate actions need to be taken to repair or 

reconfigure the system to overcome them [20]. Finally, an Autonomic System must 

be self-protecting, in that it must be able to defend itself against malicious attacks 

as well as cascading failures [20].

Autonomic Computing research can be broken down in another way, as it is in 

Kephart et al. [19], outlining three high level research areas. These areas are auto­

nomic elements, autonomic systems, and human-computer interactions [19]. Auto­

nomic elements are the primary components of an Autonomic System. They are the 

individual self-managing parts of the overall system, each responsible for managing 

one or more related computing resources and each exhibiting the previously outlined 

behaviors of self-management [19]. These are the pieces of the puzzle, with the com­

plete puzzle being the autonomic system. The autonomic system is the collection of all 

autonomic elements, each interacting in some structured way to meet human defined
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high-level goals and objectives [19]. The manner in which these goals and objectives 

are expressed to the system by humans falls under the heading of human-computer 

interactions [19]. All three of these areas present unique challenges to achieving the 

ultimate goal of Autonomic Computing. Autonomic elements must be fully capable 

of configuring, optimizing, healing, and protecting themselves, while at the same time 

must be able to interact with other autonomic elements within the larger autonomic 

system to achieve the goals of the individual element as well as the system in general. 

There are countless problems to be tackled before Autonomic Computing is realized. 

That being said, even small advancements towards the ultimate vision can help ease 

the increasing difficulty of systems management [19].

2.2 Policies

The concept of a policy is vital to Autonomic Computing as a whole. There are a 

wide range of definitions of a policy, many of which will be at work simultaneously in 

a full autonomic system. In the most basic sense, a policy is how a human informs the 

autonomic system how to behave [19]. They are written by humans in some defined 

language and interpreted by the autonomic system. The variation in definitions then 

comes from what types of things are specified in the policy. Are high-level goals and 

objectives expressed or low-level instructions? The answer of course is that both are 

required at different places within an autonomic system, as well as other levels in 

between the two extremes. At the highest level of an autonomic system, business 

goals will be expressed as written policies which the system will attempt to achieve. 

At lower levels, policies specify actions to be taken given a certain situation. This 

is where the majority of the work with policies has been focused thus far [19]. The 

main-advantage provided by the use of policies is that they allow for the decoupling 

of specific behaviours and strategies from the underlying management software [17]. 

Instead of hard coded behaviours requiring modifications and recompiling to enact
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a change, policies are read and interpreted in real-time and can therefore change 

dynamically while the system is running. This provides the flexibility needed by the 

autonomic management system to to quickly and easily adapt to changing situations

[17]-
In order for a human to specify a policy, there must exist a language to write the 

policy in. One such language is Ponder [17], an object-oriented, declarative policy 

language. Ponder allows the specification of policies for both management and secu­

rity [17]. It is designed as a generic language that can be used in a number of different 

implementations [17]. AGILE [10] is another policy language, designed for flexibility 

and to provide run-time adaptation of policies. It has been developed as part of a 

larger policy-based autonomic management system.

The primary type of policy in use in current autonomic management systems 

is the action policy (also called obligation or expectation policies) [14]. An action 

policy specifies actions for a manager to perform given a specific set of events or 

conditions to be present [21]. Action policies are condition-action rules designed to 

ensure that specific conditions or requirements are met by taking action when they are 

not, evaluating as an “if condition then action” statement [14]. When the conditions 

of a policy are true and action should be taken, the policy is said to be violated. Other 

types of policies, such as policies specifying the behaviour of the management system 

itself, or the configuration of the management system, can also be specified.

2.3 Policy-Based Autonomic Management

Policy-Based Autonomic Management is exactly as it sounds. An autonomic manager 

manages a system using a set of policies as instructions on how to behave under given 

conditions [11]. Most work of this nature involves the use of low level action, or 

obligation, policies as input for the management of one or more applications running 

on a server machine. The goal is generally to achieve some performance or other
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quality of service (QoS) objectives through the constant monitoring and tweaking 

of application metrics and parameters, respectively [21]. For example, the response 

time of an Apache web server and the CPU load of the system could be monitored 

and compared to some threshold value. If the values exceed the given thresholds, 

an action could be taken to optimize the performance of the Apache web server by 

reducing the value of the KeepAlive parameter in Apache, which controls the number 

of requests allowed to maintain persistent connections with the server at a single time.

Policies are an excellent choice for user input to the autonomic manager as they 

separate the specific rules from the underlying code responsible for executing them. 

Policies can be swapped or even modified at run time without the need for modifi­

cations to the code or even the restarting of the autonomic manager [10]. In [21], 

policy adaptation takes a central role. The authors construct a framework for network 

services management, making use of policies written in the Ponder policy language. 

These policies can be dynamically adapted to meet a changing workload and envi­

ronment [21]. Policy adaptation can be achieved either through the modification of 

parameters in a policy (such as threshold values), dynamically enabling or disabling 

policies, or by using machine learning to select or modify policies based on previ­

ous experience [21]. The policy abstraction also makes policies easier to write and 

maintain than, for example, embedding the logic directly into the source code[10].

Policy-based Autonomic Management systems generally follow a basic high level 

architecture. Monitor components (also called sensors) exist that are responsible for 

gathering metrics from running applications or from the machine, such as response 

time or CPU load [15]. This data is possibly transformed or expanded on to provide 

some additional information, such as averages over a certain time period or trend 

analysis [10]. A policy component uses the metrics provided by the monitor(s), typi­

cally received as events, to trigger policies, which in turn contain actions to perform 

on either the running applications being managed or the autonomic manager itself. 

Such changes are executed by one or more effector components [15, 11].
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In a system containing multiple policies governing the behaviour of the autonomic 

manager, multiple policy violations advocating many different actions are not only 

inevitable but are in fact commonplace. The violation of multiple policies may be the 

result of several discrete problems, or a single problem manifesting itself in several 

locations. Determining which action to perform out of the set of all actions available 

is a non-trivial decision [13]. There are a few ways in which an action can be selected. 

One possibility is to simply select the first action that arises, which is essentially an 

arbitrary selection. This method takes nothing into account in its decision making, 

and therefore seems to be a poor choice. Another option is to weight policies and 

actions based on some criteria. Possible criteria include [13]:

• The severity of the violation, which refers to how far a threshold value on a 

metric has been exceeded.

• Manually assigned weights on policy conditions.

• The advocacy of the action, which refers to the number of violated policies 

advocating the same action.

• The specificity of the policy, which refers to the number of conditions used to 

trigger the policy, assuming that policies containing more conditions should be 

dealt with first.

These criteria and others can be used separately or in combination to provide some 

guidance in the action selection process. These criteria are based on intuition, and 

it is unclear how well they choose the best action to execute. Another possibility is 

to employ machine learning techniques to learn the “best” action to select in a given 

circumstance, based on previous experience [15, 12]. Again, this could be used in 

conjunction with other techniques to improve the action selection mechanism. If an 

incorrect action is selected and taken, not only is time wasted before the correct action 

can be selected, but the modification of application tuning parameters that should
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not have been modified may cause further problems. This makes action selection a 

key problem in the performance of an autonomic manager.

2.4 Related Work

2.4.1 BEAT Architecture

The BEAT (Best Effort Autonomic Tool) Autonomic Management system is a policy- 

based autonomic management framework, described in [11, 12, 13, 14]. Policies are 

used to specify how the management is performed as well as how the manager itself 

operates. These policies are manipulated via a graphical user interface and stored in 

persistent storage known as the Knowledge Base. The management system consists of 

several interacting components, each with a specific task. The system and applications 

being managed are monitored, decisions are made by the autonomic manager using 

knowledge stored in the Knowledge Base as policies, and changes to system and 

application tuning parameters are made as deemed necessary. The ultimate goal of 

the system is to achieve some non-functional performance or other quality of service 

requirements.

Policies

The BEAT Autonomic Management system uses user-specified policies to store knowl­

edge about how to manage the system. The management system knows how to moni­

tor and manipulate the system, and the policies provide the necessary rules to dictate 

the how such manipulation should be carried out. These are low-level policies speci­

fying specific actions to be taken under specific circumstances. Individual monitored 

system and application metrics are used to determine the situation and actions con­

sist of the modification of specific tuning parameters. They are specified via a Policy 

Tool, in this case a graphical user interface providing the necessary functionality to
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create and manipulate policies. Changes can be made in real time while the system 

is running, without the need to restart the management system, thus exploiting one 

of the main benefits of the use of policies. Policies in the BEAT system come in three 

varieties:

Configuration Policies can be used to specify initial configuration settings of ap­

plications or to start or install applications or services.

Expectation Policies specify condition-action instructions with the goal of main­

taining some performance or other Quality of Service (QoS) objectives. Events are 

triggered when the conditions of an expectation policy are violated, and actions spec­

ified within the policy are then executed to attempt to return the policy to a non- 

violated state.

Management Policies deal with the administration of the autonomic manager 

itself. Actions can be specified to modify parameters, enable or disable policies, 

modify policies in some other way, or for diagnosis or other required analysis.

expectation policy RESPONSETIMEViolation(PDP,PEP)

if (APACHE:responseTime > 2000.0) & (APACHE:responseTimeTREND > 0.0)

then

AdjustMaxClients(+25) test MaxClients +  25 < 501 | 

AdjustMaxKeepAliveRequests(-30) test MaxKeepAliveRequests - 30 < 1 | 

AdjustMaxBandwidth(-128) test MaxBandwidth - 128 > 128 

end if

Figure 2.1: Pseudo-code Policy

At the highest organizational level, policies are contained within policy groups. 

These groups are used to divide policies into logical groups, such as the set of policies 

pertaining to each application under management. A single policy may belong to more 

than one group. A single policy, or policy rule, consists of two main components: A set 

of conditions, and a set of actions. Figure 2.1 shows a pseudo-code version of a typical
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policy in BEAT. This policy describes what should occur when the response time of 

a web server exceeds a certain threshold. Note that this is only a representation 

of a policy. Actual policies in BEAT are not written in this way, and are instead 

built in a GUI and stored within a relational database. The policy essentially states 

that given that these conditions hold true, one of these actions should be performed 

(if CONDITIONS then ACTIONS). The policy also has other properties, such as a 

name, a target, a subject, and a flag indicating whether or not the policy is enabled. 

The target specifies what the policy applies to, such as a specific host in a network, 

and the subject refers to the management component responsible for handling the 

policy violation.

As stated above, a policy contains a set of one or more Conditions. A condi­

tion is an expression based on some monitored system metric which evaluates to a 

boolean value. In the case of the BEAT system, each condition compares a metric 

to some value using a specified operator. For example, a condition could look for 

the ResponseTime metric of the Apache web server to be greater than two seconds, 

as does the first condition in Figure 2.1. Multiple conditions can be present within 

a policy, joined by standard logical operators. In our example, a second condition 

that the trend of the response time value must be greater than 0 is connected to the 

first condition with a logical AND. When the conditions section evaluates to true, 

then the policy is said to be violated, and some action should be performed. A single 

condition may be and likely will be reused in several different policies.

Policies contain zero or more Actions. An action specifies some system or appli­

cation parameter to be modified in response to the violation of the policy. In a more 

general sense, the action specifies a function to be executed, along with any required 

parameters. Again, a single action may be advocated by multiple policies. Boolean 

tests can be associated with an action to ensure that the action makes sense in the 

current environment. For example, let us say that the parameter controlling the max­

imum number of clients that the Apache web server can serve at a time should not be
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increased to any higher than 500. The third action in Figure 2.1 attempts to increase 

the maximum number of clients by 25. Given our ceiling of 500, a test should first 

be performed to ensure that the new value will be less than 501. Multiple tests can 

be associated with an action, all of which must evaluate to true for the action to 

be allowed to execute. Which action or actions are executed is the decision of the 

autonomic manager.

Components

The BEAT Autonomic Management system consists of several components which 

interact with each other to provide the full management functionality. Figure 2.2 

[14] shows the general architecture of the system. Monitor components monitor 

the state of the system and running applications being managed, and forward this 

information to the Monitor Manager. The Monitor Manager aggregates and processes 

this information, and generates events which are sent to the Event Handler. This 

component then determines if the events are of interest (if they represent a violation 

of a policy), and forwards events to the Policy Decision Point (PDP). The PDP 

uses the policy violation information to determine what, if any, action should be 

taken. Actions to be executed are then sent to the Policy Enforcement Point (PEPf 

which is responsible for executing the action. The PEP determines if the action 

can be performed, and if so, forwards it to an appropriate Effector component, which 

performs the actual modification to system and application parameters. The following 

is a more detailed explanation of each component of the management system.

Knowledge Base: The Knowledge Base contains all policy and rule information 

for the management system, as well as other data describing, or collected from, the 

system. Such data could include statistics or trend analysis, machine learning data, 

etc. Policy information stored within the Knowledge Base is generally loaded and 

cached by other components, with notifications being sent out to inform them of any 

run-time changes.



Figure 2.2: BEAT Autonomie Manager Architecture [14]
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Monitor: A Monitor component collects metric information from the system or 

running applications for use by the management system. It generates events to be 

consumed by other components. There may be many monitors in use in an autonomic 

management system, each responsible for monitoring a specific set of metrics.

Monitor Manager: The Monitor Manager handles the configuration and processing 

of data from individual monitors. Monitor configuration parameters include scheduled 

times for monitoring to occur and monitoring frequency, among others. The Monitor 

Manager gathers metric information from the individual monitors and forwards it to 

the Event Handler.

Event Handler: The Event Handler handles monitoring events received from the 

Monitor Manager. The Event Handler determines whether or not the events received 

represent a violation of an expectation policy condition, and forwards the event to 

the PDP if it does. Events are also sent to the Event Log for persistent storage.

Event Log: The Event Log is responsible for recording all events that occur within 

the management system. This includes monitoring events generated by the Monitor 

Manager, expectation policy violations, decisions made by the PDP, and actions 

executed by the PEP. Events are written to a short term in-memory log as well as to 

a log file in persistent storage.

Policy Decision Point (PDP): The Policy Decision Point receives events from the 

Event Log and decides how to enforce any present policy violations. It must determine 

which policies have in fact been violated, and given the actions advocated by the set 

of violated policies, decide which action should be taken. This is the component in 

which the diagnosis algorithm will be implemented, since this is where all decisions 

are made regarding the execution of actions based on policy violations.

Policy Enforcement Point (PEP): The Policy Enforcement Point is responsible 

for executing policy actions. Once the PDP has made a decision on what should be 

done, an ordered list of policy actions are sent to the PEP for enforcement. The PEP 

must perform any tests associated with an action to ensure that the action is valid
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in the current environment, and subsequently call upon the appropriate Effector for 

executing the action.

Effector: Effector components perform the actual changes to the system. Many 

Effectors may exist, responsible for making modifications to specific parameters or 

sets of parameters. For example, one Effector could be responsible for modifying all 

parameters in the Apache web server. The PEP evokes the effector needed to execute 

the required action.

Event Analyzer: The Event Analyzer is responsible for analyzing the history of the 

system, including any policy violations and decisions made by the PDP, for further 

use. The goal is to be able to exploit previous experience to make better decisions on 

policy enforcement, or to predict future policy violations. The PDP could be modified 

to make use of data from the Event Analyzer to assist in its decision making process.



17

Chapter 3

Abduction and Diagnosis

Abductive reasoning is an alternative to deductive and inductive reasoning. This 

form of reasoning most closely resembles how a human diagnoses problems. It refers 

to the process of building hypotheses to explain given observations [9]. Let us say 

that a problem consists of a set of rules, a specific case, and a result that occurs 

given the two. In abductive reasoning, we have the set of rules and the result, and 

we hypothesize about the specific case that is causing the result [23]. For example, 

if a doctor is diagnosing a patient, the set of symptoms experienced by the patient 

would be analogous to the result and the doctor’s medical knowledge would be the set 

of rules. The doctor’s diagnosis as to what the potential ailments the patient could 

have would be the set of specific case hypotheses. Note that unlike deduction and 

induction, we do not arrive at a definitive decision or conclusion; we can only build 

hypotheses representing what the specific case might be [23].

3.1 Diagnosis using Abductive Inference

According to the Merriam-Webster dictionary, diagnosis is the “investigation or anal­

ysis of the cause or nature of a condition, situation, or problem” [3]. In diagnosis, we 

are given a problem and need to determine what the cause of the problem may be. 

This can be achieved using abductive inference, or reasoning. Given a set of disor­

ders representing underlying problems, a set of manifestations representing observ­
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able symptoms, and knowledge of the causal relationship between the two, adbuctive 

methods can be used to build a diagnosis. This can be represented by a graph, which 

we will call a Causal Network, containing both the disorder and manifestation sets. 

An edge from a disorder to a manifestation indicates that the disorder may cause 

the manifestation, although it is important to note that it may not. A disorder can 

cause multiple manifestations, and a manifestation may be caused by many different 

disorders. Given a set of currently present manifestations and the causal network, 

diagnosis can be performed to build a set of hypothesis disorder sets that could ex­

plain the manifestations. Since a manifestation could be caused by many different 

disorders, and a disorder can cause many manifestations but is not guaranteed to 

always cause the same ones or even the same number, it is impossible to guarantee 

that a definitive diagnosis can be obtained. The best that can be achieved is the 

construction of a set of hypotheses. Each hypothesis contains a set of disorders that 

fully explain the present manifestations, but determining which hypothesis is correct 

or even which hypotheses are more likely to be correct is a non-trivial task.

A simple example is given in Peng and Reggia [23] describing a causal network 

for the diagnosis of automotive problems. It uses a small set of disorders and man­

ifestations and presents the causal associations between them that form the causal 

network graph. The disorders include battery dead, left headlight burned out, right 

headlight burned out, and fuel line blocked. The manifestations are engine does not 

start, left headlight does not come on, and right headlight does not come on. Figure

3.1 shows the causal network for these disorders and manifestations, including the 

causal associations between them.

3.1.1 Parsimonious Covering Theory

Parsimonious Covering Theory is presented as a formal method of performing diag­

nosis using abductive inference, and providing some measure of determining a set of 

hypotheses that is more plausible than others [22]. A formal model is defined to en-
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Disorders (D)

Manifestations (M)

Figure 3.1: Causal Network Example (based on example from Peng and Reggia [23])

capsulate the causal knowledge about the disorders and manifestations. This model 

explains only the simplest form of causal network, with only disorders, manifestations, 

and edges between the two. More complicated models can include other features such 

as intermediate states or probabilities.

A diagnostic problem P is defined in Peng and Reggia [22] as (D, M, C, M +), 

where

D =  { d i , . . . ,  dn} is a finite non-empty set of disorders;

M =  { m i , . . .  , mn} is a finite non-empty set of manifestations;

C  C D x M  is a relation with domain(C) = D and range(C) = M;

M + C M  is a subset of M;

The causal relationship between sets D and M is contained in C, with (dit rrij) € C  

iff di may potentially cause rrij. The set M + represents the set of manifestations 

currently present. This will be different in each specific diagnosis case, while D, M, 

and C will remain constant. To specifically relate this model back to our original 

definition of abduction, M represents all possible observations, C represents the set 

of rules or knowledge, D represents all possible specific cases, and M + represents the 

specific set of observations in the current problem.



20

We can now define a cover of a set M +. Informally, a cover of M + is a set Dj C D  

such that each manifestation in M + can be caused by at least one disorder in Di. 

We can define the set of causes of a manifestation, that is, the set of disorders that 

may cause a manifestation, as causes(rrij) =  rrij) E C }. On the flip side,

the set of effects of a disorder, that is, the set of manifestations that may be caused 

by a disorder, is defined as effects(di) =  {rrij\{di,mj} E C }. These definitions can 

be extended to the sets of manifestations M j C M  and disorders D\ C £), where 

effects(Dj) =  \Jd.̂ Dl effects(di) and causes(Mj) =  U cau$es(rrij). Finally, Di 

is a cover of M j if M j C effects(Dj), that is, a set of disorders covers a set of 

manifestations if the set of manifestations is a subset of the set of effects of the 

disorders.

The question then becomes, how can we determine which covers are more plausible 

than others? Parsimonious covering theory suggests that simpler covers are more 

likely to be true than complex ones. This follows Occam's Razor, which states that 

the simplest solution is most likely to be the correct one [4]. It is then these simple, or 

parsimonious, covers, that we wish to find when diagnosing a problem. The definition 

of what exactly constitutes a simple cover, however, is not so cut and dry. There are 

several different suggested criteria for judging the simplicity of a cover.

A single-disorder cover is a cover D j of Mj  that consists of only one disorder. A 

minimal cover is a cover D j of Mj  that contains the minimal number of disorders 

required to cover Mj.  This may, of course, turn out to be a single-disorder cover, 

but it is not necessarily one. An irredundant cover is a cover Dj of Mj  where each 

disorder causes at least one manifestation that no other disorder in the cover causes. 

There are no disorders in Dj that are not needed to cover Mj.  In more formal terms, 

there is no DK c  D i \Dk  is a cover of Mj.  A relevant cover is a cover Dj of Mj  

that contains no disorders that are not a cause of at least one manifestation in Mj.  

These criteria create increasingly broad sets of covers as we move from single-disorder 

to relevant covers. The set of single-disorder covers for a set of manifestations is a
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subset of the set of minimal covers, which is a subset of the set of irredundant covers, 

which is finally a subset of the set of relevant covers.

Of these criteria, irredundancy seems intuitively to be the best choice. Single­

disorder covers are unnecessarily restrictive, and clearly insufficient in situations where 

more than one problem (disorder) can occur simultaneously. Minimal covers are also 

too restrictive, as it is easy to imagine a case where a minimal cover is clearly not 

the most likely explanation of the manifestations. For example, in medical diagnosis, 

a minimal cover may consist of a single rare disease, where another cover may exist 

containing two common diseases. Clearly the minimal cover is less likely in this case. 

Relevant covers, on the other hand, represent the other extreme in which far too 

many covers are accepted as plausible. Irredundant covers will therefore be used for 

diagnosis.

Let us return to the automotive example from [23] that we used in Section 3.1 to 

illustrate the various parsimony criteria. Say that the set of present manifestations, 

M +, contains left headlight does not come on and right headlight does not come on. We 

can see logically that any cover that contains battery dead or both left headlight burned 

out and right headlight burned out will cover our manifestations, giving us a total of 10 

covers of M +. This set of covers includes a cover containing all 4 disorders, including 

the fuel line blocked disorder that has no causal association to either manifestation 

in M +. Clearly this cover should be excluded from our set of likely explanations, 

and as such we will move to the set of Relevant covers. Any disorder in a relevant 

cover must explain at least one manifestation in M +, thus eliminating fuel line blocked 

from consideration, and leaving us with a reduced set of 5 covers. This set of covers 

includes a cover containing all three of the remaining disorders, that is, battery dead) 

left headlight burned out and right headlight burned out It logically seems unlikely 

that all three of these disorders are present at the same time, or at least far less 

likely than covers containing one or two of them instead. To further reduce the set of 

covers, we will now accept only irredundant covers. This means that each disorder in
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the cover needs to explain a manifestation that is not explained by any other disorder 

in the cover, and brings the set of covers down to two. The two remaining covers 

are {battery is dead} and {left headlight burned out and right headlight burned out}. 

This seems like a reasonable set of hypothesis covers, but we will go further for the 

purposes of illustrating the final two parsimony conditions. The set of Minimal covers 

contains only covers that explain M + with the fewest number of disorders possible. 

This reduces our set of covers to only battery is dead, since all other covers contain 

more disorders than this one. The single-disorder parsimony condition requires that 

each cover contain only one disorder, and in our example, leaves us again with only 

battery is dead.

3 . 1.2 Diagnosis Algorithm

Diagnosis can be performed on a problem as defined in section 3.1.1 to build a set of 

hypotheses to explain observed manifestations. An algorithm has been developed by 

Peng and Reggia in [23] to diagnose the problem by constructing the set of all irredun- 

dant covers of the present manifestations. Each cover represents a single hypothesis 

solution, giving one potential explanation for the manifestations. The algorithm con­

structs the hypothesis set by including each manifestation one at at time. It begins 

with the first manifestation, where the hypotheses are simply the causes of the man­

ifestation, and then proceeds to update the hypothesis set to cover each subsequent 

manifestation until all are included.

Generators

Within the algorithm, sets of hypotheses (covering disorder sets) are represented by a 

structure called a Generator. Many disorder sets can be represented by a single gener­

ator. A generator is simply a set of disjoint disorder sets. The generator represents all 

disorder sets that can be built by taking one disorder from each disorder set in the gen­
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erator. Formally, if gug2, - - • ,9n are non-empty disjoint sets and gi C D  VI <  i <  n, 

then Gj =  {gi, ■ - - , <7n} is a generator. The set of disorder sets, or the class gen­

erated by generator G/, is defined as [G/] =  {{d i, ¿2? * • •, dn}\di G #¿,1 <  i <  n} 

[23]. A single generator cannot represent all possible disorder sets alone, and as 

such, a generator set is used to represent all disorder sets in a diagnosis. A genera­

tor set is defined as G =  { G i ,G2, . . . , G jv}, with the sets of disorder sets generated 

by each generator G / being disjoint from each other. That is, for each generator 

Gi G G, [Gi] fl [Gj] — 0,V/  7̂  J . The class generated by G is [G] =  U ^ X[G/] 

[23]. For ease of reading, we denote a generator as Gj =  (gi,g2 , ■ • • , £n) instead of 

Gi =  {gi,92, - ■ ■ ,9n}-

Say we have a generator set G =  { G!, G2 }, where G\ =  ({<¿1, d2}, {d3}) and 

G ‘2 =  ( {¿ 4}, {fis, dfi, d3}). Generator Gi would produce the disorder sets {di, d3} and 

{d2, d3}, while G2 would produce { ¿ 4, d5}, {d4, d^} and {d4, d3}. Note that a generator 

G3 =  ({di, d2}, {d3, d4, d5}, {d6, dr}) actually represents 12 different disorder sets.

A generator set containing all of the irredundant covers from our example in 

Section 3.1.1 would be G =  {({battery dead}), ({left headlight burned out}, {right 

headlight burned out})}. This generator set contains two very simple generators. The 

first contains only a single disorder set, containing a single disorder, generating the 

single hypothesis battery dead. The second contains two disorder sets that again con­

tain only a single disorder each, thus generating a single hypothesis containing both 

left headlight burned out and right headlight burned out. To demonstrate a slightly 

more complicated generator, let us build a generator that represents all relevant cov­

ers of the manifestation set M +, simply for illustration purposes. Note that this 

would not be done normally, as the diagnosis algorithm presented shortly is designed 

to produce irredundant covers. This generator set would be G =  {({battery dead}), 

({left headlight burned out}, {right headlight burned out}), ({battery dead}, {left 

headlight burned out, right headlight burned out}), ({battery dead}, {left headlight 

burned out}, {right headlight burned out})}. The first two generators in the set are
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the same as in our irredundant cover generator set. The third generates two covers, 

one containing battery dead and left headlight burned out and the other containing 

battery dead and right headlight burned out. Finally, the fourth generator builds a 

single cover contain battery dead, left headlight burned out and right headlight burned 

out.

Generator Operations

Now that we have generators and generator sets to represent our hypothesis disorder 

sets, we can define a set of operations over generators that will be useful in the 

diagnosis algorithm. These operations will allow us to update a hypothesis generator 

set to cover additional manifestations. Let us say that G =  { G i ,G2} is a generator 

set derived from the diagnosis of manifestations M+, which contains one or more 

manifestations. That is, G represents all irredundant covers of M+ . We want to 

add a new manifestation into M+ and update our diagnosis, G. To do this, we will 

make use of the following operations over G, along with the set of causes of the new 

manifestation. We designate the set of causes as the disorder set Hi.

The division of generator set G by disorder set dzu(G,i/i), results in a new 

generator set that contains all of the covers within G that are also irredundant covers 

of the new manifestation. The division operation can also be extended to calculate 

the division of G by another generator or generator set rather than simply by a single 

disorder set.

The residual of the division of G by Hi, res(G , Hi), then results in a new generator 

set that contains all of the covers within G that are not irredundant covers of the 

new manifestation. As with division, the residual operation can also be extended to 

calculate the residual of G divided by another generator set rather than simply by a 

single disorder set.

The augmented residual of G divided by Hi, augres(G, Hi), results in a new 

generator set that contains the results of the residual of G divided by Hi modified to
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also be irredundant covers of the new manifestation. This is done by simply adding 

Hi to each generator set in res{G )Hi).

Finally, the revise operation, rev(G ,H i), results in a new generator set that con­

tains all irredundant covers of M+ with the new manifestation, and it does so by mak­

ing use of all three of the other operations. Formally, revise(G, Hi) =  F U res(Q ) F ), 

where F  =  div(G,Hi) and Q =  augres(G, Hi). Essentially, the revise operation 

needs to keep all disorder sets in G that are also irredundant covers of the new man­

ifestation, and modify the rest so that they are. This is done by calculating the 

division of G by Hi and the augmented residual of that division, as is done with 

F  =  div(G) Hi) and Q =  augres(G , Hi). The use of the residual of Q and F  is done 

to remove duplicates and redundant covers from Q [23].

The formal definitions of these operations can be found in [23].

Algorithm

The actual diagnosis algorithm is quite simple. It makes use of the causal network, 

generators, and the functions and operations defined to use and manipulate them. 

The algorithm starts with an empty generator set to store the hypothesis, and is given 

the set of current manifestations. It then iterates through each manifestation, revising 

the hypothesis generator set each time to represent all irredundant covers of the new 

manifestation as well as previously added manifestations. Once all manifestations 

have been accounted for, the algorithm is complete.

Let us make a final return to our basic example of automotive diagnosis from 

[23], illustrated in Figure 3.1, and take a high level look at the diagnosis algorithm 

in action. Let the set of current manifestations, M +, contain engine does not start, 

left headlight does not come on, and right headlight does not come on. We start 

with an empty hypothesis generator set G =  {0 }, and proceed to loop through each 

manifestation in M +, one at a time. The first manifestation is engine does not 

start We revise our current hypothesis, which is empty, by including the causes of
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1: generatorSet hypothesis =  {0 }

2: while moreManifestations do 

3: mnew =  nextManifestation;

4: hypothesis =  revise(hypothesis, causes(mneu>))

5: end while 

6: return hypothesis

Figure 3.2: Diagnosis Algorithm

engine does not start, which are battery dead and fuel line blocked. This results in 

a new generator set G =  {({battery dead, fuel line blocked})}, indicating that our 

possibilities are that either the battery is dead, or the fuel line is blocked. Next we 

add the left headlight does not come on manifestation, and revise the hypothesis set 

with it’s causes ( battery dead and left headlight burned out). This brings us to a new 

generator set G =  {({battery dead}), ({fuel line blocked}, {left headlight burned 

out})}. In this set, the first generator indicates that the battery is dead and explains 

both manifestations. The second generator builds a cover that uses two disorders to 

explain the manifestations, fuel line blocked and left headlight burned out, to explain 

engine does not start and left headlight does not come on, respectively. Finally, we 

add the last manifestation, right headlight does not come on, using its causes (battery 

dead and right headlight burned out). Revising the hypothesis set using these causes 

brings us to our final hypothesis generator set, G =  {({battery dead}), ({fuel line 

blocked}, {left headlight burned out}, {right headlight burned out})}. This generator 

set constructs two hypotheses. The first contains only battery dead, and the second 

contains fuel line blocked, left headlight burned out and right headlight burned out. 

Both of these are irredundant covers of M +. Logically, it makes sense that given 

the manifestations, either the battery is dead or the fuel line is blocked and both 

headlights are burned out.
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Chapter 4 

Implementation

A version of the Abductive Diagnosis algorithm described in Section 3.1.2 was imple­

mented in the BEAT autonomic manager, described in Section 2.4.1. The diagnosis 

algorithm replaces the existing method of action selection in BEAT. The BEAT au­

tonomic manager and all of the modifications described in Section 4.2 are written in 

the C + +  programming language.

4.1 Abductive Diagnosis Implementation

The Abductive Diagnosis data and algorithm were modeled and built first, separate 

from the BEAT system. This was done in an effort to ensure that the code was not 

coupled to the specifics of the BEAT implementation, but would rather be general 

enough to port to future work.

4.1.1 Causal Network

A set of classes were created to model the causal relationship knowledge and perform 

the diagnosis described in Section 3.1.2. Figure 4.1 shows this set of classes with a 

simplified set of properties and methods. The CausalNetwork class represents the 

entire causal network, which consists of a set of manifestations and and a set of 

disorders, represented by the Manifestation and Disorder classes, respectively. The 

Manifestation class is associated with one or more Disorder classes, indicating that
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Figure 4.1: Causal Network Class Diagram

in the causal network, the manifestation is known to be caused by the associated 

disorders. The CausalNetwork class has methods to build the network out of a set 

of policies, which will be discussed in Section 4.2, to perform a diagnosis given a set 

of present manifestations (a list of Manifestation objects), and build a set of actions 

from a list of hypotheses, which will also be discussed in Section 4.2.

4.1.2 Diagnosis Algorithm

The diagnosis algorithm is coded as described in Section 3.1.2. The main algorithm 

is run within the diagnose() method of the CausalNetwork class. Generators and 

generator sets are represented by the Generator and GeneratorSet classes, respec­

tively, as seen in Figure 4.1. The Generator set contains a set of disorder sets, and 

the GeneratorSet class contains a set of Generator objects, exactly as indicated in 

the description of the algorithm in Section 3.1.2. These classes contain methods to 

perform the generator operations required by the diagnosis algorithm, that is, the 

division, residual, and augmented residual operations. The diagnoseQ method of
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CausalNetwork returns a list of Hypothesis objects representing the final diagnosis. 

The Hypothesis class simply contains a set of Disorder objects. This represents a 

single hypothesis as to the cause of the present manifestations. The set of Hypothesis 

objects returned by diagnose() represent all of the possible explanations of the present 

manifestations.

4.2 Integrating Diagnosis into BEAT

The next step was to implement the diagnosis code within BEAT. This was done by 

both modifying BEAT and adding methods to diagnosis classes to aide in converting 

between BEAT policy classes and diagnosis classes.

The BEAT autonomic manager required modification in two main locations to 

add diagnosis, namely, the Policy Decision Point (PDP) and the Policy Enforcement 

Point (PEP).

4.2.1 Policy Decision Point

The Policy Decision Point, as described in Section 2.4.1, detects policy violations 

(based on received events) and decides which action should be taken. An ordered list 

of potential actions is sent to the Policy Enforcement Point, where the first action to 

pass its associated tests (see Section 2.4.1) is executed.

Causal Network Construction

The first step in integrating diagnosis in the BEAT system is to construct the Causal 

Network that will contain the causal relationship knowledge used to perform the 

diagnosis. The Causal Network can be constructed at run-time using the policy 

information already provided to the system. Each policy contains a set of conditions 

and a set of actions. These conditions and actions are not unique, and the same 

conditions and actions will be used by many different policies. The manifestations
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can be derived from the conditions, in that each condition is directly mapped to a 

single Manifestation object. If the condition is true, then the equivalent manifestation 

is considered present. Disorders are derived from the policy actions, with each action 

being used to build a single disorder. Since an action is intended to correct some 

parameter that is thought not to be set correctly for the current environment and 

workload, then that parameter being incorrectly set can be considered the underlying 

disorder causing the manifestations. For example, if an action specifies that the Max 

Clients of the Apache server should be increased by 25, then the disorder derived 

from such an action would be Apache Max Clients too low.

Associations between the generated Manifestation and Disorder classes can be 

easily derived from the policies as well. If a policy containing the condition used 

to derive a certain Manifestation also advocates the action used to derive a certain 

Disorder, then that Manifestation could potentially be caused by the Disorder and 

should be associated with it. This derivation of the causal network from policies 

is done by the buildNetwork() method of the CausalNetwork class, which accepts a 

list of all of the policies in the system as input. Diagnosis performed on a causal 

network built in this manner then essentially finds actions or sets of actions that 

can potentially cause all present conditions to no longer be true, thus eliminating all 

policy violations.

Performing the Diagnosis

Diagnosis is performed by calling the diagnose() method of the CausalNetwork class. 

This method accepts a list of policies, representing all policies that are currently 

in violation. Within the method, the conditions of each policy are extracted and 

used to look up the Manifestation classes built from them. A second version of the 

diagnose() method that accepts a list of Manifestation classes representing present 

manifestations is then called, which returns a set of hypotheses (a list of Hypothesis 

objects).
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Ordering Hypotheses

Since the Policy Decision Point needs to send an ordered list of actions to the Policy 

Enforcement Point for execution, hypotheses need to be ordered in some manner. 

This ordering is essentially a ranking, as the PEP will execute the first one it receives 

that passes it’s associated tests. The only ranking method currently implemented 

is to sort the hypotheses based on the number of disorders they contain. This can 

either be done in ascending or descending order, causing the system to favour either 

hypotheses containing fewer disorders or more disorders, respectively. This translates 

to the system either preferring to execute fewer actions when using ascending or 

preferring to execute many actions with descending.

Converting Hypotheses to Actions

Hypotheses containing disorders must then be translated back into something useful 

to the autonomic manager, that is, a list of actions or sets of actions to perform. 

For each hypothesis, each Disorder contained within it is used to look up the original 

action used to build the Disorder, which is stored in the actionMap property of the 

CausalNetwork class, as seen in Figure 4.1. The actions for a single hypotheses are 

grouped together, and if executed, the entire group must be executed together, since 

all disorders contained in the hypothesis are required to cover the present manifesta­

tions.

Executing Actions

Modifications were made to the format of the messages passed to the Policy En­

forcement Point to allow for multiple actions to be executed simultaneously. Since 

a hypothesis may contain more than one diagnosis, it may be necessary to perform 

more than one action at a time, which was not possible in the original BEAT imple­

mentation. Actions should be sent in groups of one or more to the PEP for execution.
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Section 4.2.2 below describes modifications made to the PEP to make this possible.

4.2.2 Policy Enforcement Point

The Policy Enforcement Point is responsible for executing policy actions, as described 

in Section 2.4.1. It receives an ordered list of actions from the PDP and executes 

the first action that passes its associated tests. In the original implementation, the 

PEP was capable of performing only a single action at a time. Since the diagnosis 

algorithm may indicate that several simultaneous actions are required to cover all of 

the present policy violations, the PEP was modified to include the ability to execute 

multiple actions. Instead of a list of single actions, the PEP now accepts a list of 

action groups, with each group containing one or more actions. The associated tests 

are performed on each individual action, and the entire group executes only if every 

action within it passes. Again, the first group that passes its tests is executed in its 

entirety.
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Chapter 5 

Experiments

In order to make some judgment on the performance of the implemented diagnosis 

algorithm, we need to compare it to other methods of selecting policy actions. We 

do this by configuring the BEAT autonomic manager [14] to manage a web server, 

and measuring its performance under a stressful workload. Performance is measured 

with the autonomic manager using the action selection method previously used in 

BEAT, with the newly developed diagnosis algorithm, as well as with the server run­

ning without intervention by the manager. Policies are specified with the goal of 

maintaining specific response time, CPU utilization, and memory utilization ranges, 

and the methods of action selection can be compared on how well they achieve these 

objectives. Service differentiation will be used and controlled by the autonomic man­

ager. Incoming requests to the server are divided into three service classes, namely, 

gold, silver and bronze, with gold being given highest priority and bronze lowest.

5.1 Test Environment

The test environment consists of a web server running the BEAT autonomic manager 

and several client machines generating load for the server by requesting web pages 

over HTTP. All machines reside on the same LAN, connected via wired Ethernet 

using a D-Link DIR-655 Gigabit Router.
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5.1.1 Test Systems

Differentiated Services

Differentiated Services (DiffServ) refers to applying different quality of service rules to 

traffic from different sources [16]. Monitors and Effectors included with BEAT provide 

the ability to distinguish three service classes: gold, silver and bronze. Incoming 

requests are assigned to one of these classes based on the source of the request. In a 

real-life application, this may be the result of users paying more money for a higher 

level of guaranteed service. As resources are consumed, DiffServ is a tool that can be 

used by policies within BEAT to compromise the service of lower classes in order to 

maintain quality of service for higher classes. The gold class has the highest ranking 

and receives top priority, with silver being second and bronze third.

Server

The server machine hosts a web server running a PHP bulletin board application [6]. 

The application makes use of a database, also running on the server machine. The 

server is a LAMP stack (Linux, Apache, MySQL, and PHP), and consists of:

• Fedora 11 Operating System [2]

• Apache 2.0 HTTP Server [8]

• MySQL 5.1 Database [5]

• PHP 5.2.9 [7]

The BEAT autonomic manager is installed on the server machine to provide policy- 

based autonomic management. See Section 2.4.1 for more details on BEAT.

Clients

There are three client machines responsible for generating the workload for the server. 

Each machine represents one service class, namely, gold, silver and bronze. Requests



35

sent by the gold machine are given highest priority, and requests sent by the bronze 

machine are given the lowest. In a real world implementation, requests could be 

divided into classes based on a pricing plan, importance as a part of a larger system, 

or some other arbitrary prioritization scheme. The client machines consist of:

• Fedora 11 Operating System [2]

• Apache JMeter 2.3.4 Load Generator [1]

5.1.2 Load Generation

Creation of the workload for the server is done on each client machine through the use 

of Apache JMeter [1]. JMeter is an open-source, Java based load generator, capable 

of generating loads for HTTP server, database, web services, and more. It provides a 

flexible means of designing tests and extensive logging capabilities to record results. It 

has multithreading support, allowing each thread to represent a ‘user’ sending requests 

to the server [1]. A single instance of the JMeter GUI can be used to control several 

instances of JMeter on separate machines, combining the results into a single log [1]. 

Apache JMeter has been used exclusively for load generation in these experiments.

5.2 Systems Under Test

Four configurations will be contrasted with each other to determine the performance 

of the diagnosis algorithm. These include the system without the aide of BEAT, 

with BEAT enabled and using the previously developed action selection method, and 

finally with two different versions of the diagnosis algorithm.

Policies Disabled

A base configuration with the BEAT autonomic manager disabled, and with differen­

tiated services disabled (all requests are treated equally). This will provide a frame of
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reference for judging the performance improvement offered by the autonomic manager 

with each form of action selection.

Weighted Actions

Section 2.3 outlines a set of criteria that can be used to guide action selection. These 

criteria, (severity, specificity, weight and advocacy), are implemented in BEAT [12] 

and combined together to determine a total weight for each action, with higher 

weighted actions being given priority. Details of this can be found in Bahati et 

al. [12]. For the purposes of this experiment, we will refer to this as the Weighted 

Actions method.

Diagnosis with Fewer Disorder Priority (Diagnosis - Fewer)

The first of the two forms of the diagnosis algorithm is Diagnosis with Fewer Disorder 

Priority. The algorithm itself for both forms is identical. The variance is in the 

ordering of hypotheses. In this form, hypotheses containing fewer disorders are ranked 

higher than hypotheses with more disorders. Essentially, this makes the assumption 

that the simplest hypothesis is most likely the correct one. In many cases this will 

result in a single action being taken, but it is not necessarily always the case.

Diagnosis with Many Disorder Priority (Diagnosis - Many)

This second form of the diagnosis algorithm reverses the ordering of the first. It makes 

the assumption that taking multiple actions will be more likely to be successful than 

taking a single action. As such, hypotheses containing more disorders will be given 

priority over those containing fewer. The diagnosis algorithm is otherwise unchanged 

from Diagnosis with Fewer Disorder Priority.



37

5.3 Measures of Performance

Four metrics will be measured to determine the relative performance of each version 

of the autonomic manager.

Apache Response Time (Server)

This is the response time of the Apache web server as measured from the server itself. 

This value is extremely important, as it is the measure by which the autonomic 

manager itself determines how well the server is performing. It measures response 

time by continuously requesting a single page from the web server and measuring the 

time it takes to receive it. It does not use the Keep Alive option, meaning that a new 

connection must be opened for each request. It is also independent of the service 

differentiation mechanism used for requests received from external machines.

CPU Utilization

This is the percentage of the CPU currently in use on the server machine. This does 

not refer to the amount of CPU being used by the web server only, but rather the 

total CPU usage.

Memory Utilization

This is the percentage of the total memory that is in use on the server. Like the CPU 

Utilization metric, this represents total memory usage for the entire server machine.

Client-side Response Time

The is the response time as measured by the client machines. The time taken to 

complete each request (from the time the request is sent until the entire page has 

been received) is recorded. These requests make use of the KeepAlive option, meaning 

that requests sent by a single ‘user’ attempt to re-use the same existing connection.
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The set of all client-side request response times can be divided into the three services 

classes to analyze the effects of service differentiation.

Throughput

The throughput of the server is calculated as the number of requests it can complete 

per second. This will be based on data collected from the client machines.

5.4 Policy Goals

The set of policies in use define what the autonomic manager should do in specific 

cases. These are designed in such a way as to maintain certain performance objectives, 

or goals. These typically consist of a threshold value on a measured metric within the 

system. The duty of the autonomic manager is to achieve these goals as best it can. 

These goals roughly translate to the conditions of the policies, which are designed to 

measure metrics against goal threshold values. When the conditions are violated, the 

policy actions are intended to attempt to push the metric back under the threshold. 

Without going into detail as to the specific policies and policy actions, the following 

are the general goals of the set of policies used in this experimentation:

• Apache HTTP server response time, as measured from the server should be 

below 2 seconds.

• The CPU Utilization should be below 90%. If utilization falls below 85%, then 

more CPU resources should be used, if needed. Essentially, the system should 

make use of as much CPU as it can up to the 90% threshold.

• Memory Utilization should be below 50%.

• Priority should be given to the gold, and then the silver and finally the bronze 

service classes in that order.
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For more details on the metrics being measured, see Section 5.3.

5.5 Results

The experiment was performed identically with each of the four systems under test 

(Policies Disabled, Weighted Actions, Diagnosis - Fewer, and Diagnosis - Many). Each 

test was run for exactly one hour. The experiment was repeated a total of 5 times 

to reasonably ensure that the results are reproducible and not due to any unrelated 

anomaly.

5.5.1 Workload

All three client machines ran identical workloads, and were started and stopped si­

multaneously. The workload was designed to overload the system to a point where 

without the aid of the autonomic manager, the CPU is running at 100% and server- 

measured response times are over the 2 second threshold. The workload started with 

a single thread (or user), and ramped up linearly to a total of 25 threads (or users) 

over a period of 8 minutes. Each thread continuously performed a small loop consist­

ing of a “think-time” delay of 750-1250ms, and a request to a page randomly chosen 

from 24 dynamic (PHP generated) pages offered by the PHP Bulletin Board appli­

cation running on the server. A request included retrieving the HTML page as well 

as all other resources (images, etc.) contained on the page. This continued for one 

hour, at which point the test was halted. Each thread used the KeepAlive option, 

thus attempting to reuse its existing connection to the server as much as possible to 

avoid reconnecting.
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Disabled Weighted Diagnosis Fewer Diagnosis Many

Apache Resp.

CPU Util. 

Memory Util.

3336ms [1183] 

98.3% [10.7] 

22.3% [1.2]

1195ms [898] 

74.4% [18.4] 

24.6% [2.2]

1031ms [843] 

82.5% [18.3] 

24.0% [1.9]

1163ms [913] 

82.4% [19.0] 

24.1% [2.1]

Table 5.1: Average Server Results 

5.5.2 Measurements

Averages, standard deviations, and throughput values were calculated for each run 

and averaged over the 5 repeats of the experiment. We break the results down into 

two sections, results measured from the server and results measured from the client 

machines, to make them more easily digestible.

Server Metrics

Table 5.1 shows the metrics measured by the server machine. These include the 

response time of the Apache web server (as measured by the mechanism described in 

Section 5.3), CPU Utilization and Memory Utilization. These are the most relevant 

measures to the evaluation of the diagnosis algorithm as compared to weighted action 

selection, since this is the same information available to the autonomic manager at 

runtime to trigger policy decisions. The values shown are the average values for an 

entire run, with the standard deviation shown in square brackets. The metric averages 

and standard deviations are then averaged across all 5 replications of the experiment. 

Figure 5.1 shows the Apache Response Time data from table 5.1 as a box plot, and 

figure 5.2 shows the CPU Utilization data as a box plot.

Figure 5.2 shows the same metrics as figure 5.1, except only for the overload period 

of the experiment. That is, the ramp up time to the maximum load of 25 clients per 

machine (for a total of 75 clients) is excluded, leaving only the time period when the 

server was operating under maximum load (75 clients total). The results are slightly
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Disabled Weighted Diagnosis Fewer Diagnosis Many

Apache Resp. 

CPU Util.

3722ms [587] 

99.9% [2.3]

1300ms [883] 

78.0% [10.4]

1095ms [822] 

86.8% [7.8]

1247ms [875] 

87.2% [8.9]

Table 5.2: Average Server Results - Max Load Only
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Figure 5.1: Apache Response Time Box Plot
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Figure 5.2: CPU Utilization Box Plot

different in value to those of the entire run, but values in comparison with each other 

remain consistent.

Judging by the measured response times of the Apache web server, we can easily 

see that the three tests performed with the autonomic manager outperform the sys­

tem with the manager disabled. CPU utilization also comes down under the threshold 

value, while memory utilization increases by a trivial amount and stays well below 

threshold levels. The response times for the three action selection methods are simi­

lar, with Diagnosis favouring hypotheses with fewer disorders (fewer actions to take) 

beating out the other two, which match up fairly evenly. Figure 5.3 compares the 

Apache response times for weighted action selection and diagnosis favouring fewer 

actions. The graphed curves are Bezier curve approximations of the actual data, 

in order to more clearly show the difference between the performance of the two 

methods. A Bezier curve is a parametric curve approximation of the data used to
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Figure 5.3: Apache Response Time

smooth the data. The data shown is from a single experiment, not averaged over all 

5 repetitions, and represents results consistent with all experiments.

Both forms of the diagnosis algorithm make better use of the CPU, as outlined in 

the goals of our set of policies in Section 5.4, without going over the 90% threshold. 

Diagnosis favouring hypotheses with many disorders (more actions to perform), how­

ever, doesn’t see any improvement over the response time of weighted action selection. 

Figure 5.4 compares the CPU utilization of the system with the manager disabled, 

with weighted action selection, and with diagnosis favouring fewer actions. Again, 

the data shown is from a single experiment, not averaged over all 5 repetitions, and 

represents results consistent with all experiments.

Another way to look at the data is to examine not the averages but the amount of 

time the value is over the specified threshold, and by how much. This can be done by 

calculating the area of the curve over the threshold. Figure 5.5 shows the measured
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Figure 5.4: CPU Utilization

response time of the Apache web server with the manager disabled and with weighted 

action selection, compared to the threshold value of 2000ms. The area between the 

threshold value and the response time curve above it provides a useful measure of 

how well the goals of the policies are being achieved. Table 5.3 contains these values. 

The values shown are averaged over the 5 experiment repetitions, with standard 

deviations for the repetitions shown in square brackets. Note that this differs from 

figure 5.1, where the standard deviations are for the individual metric values, and are 

themselves averaged across the experiment repetitions. The system with the manager 

disabled exceeds the thresholds of both Apache response time and CPU utilization far 

more than with the manager enabled. CPU utilization values over the threshold are 

negligible for all three methods of action selection. Diagnosis favouring fewer actions 

comes out on top yet again, with weighted actions and diagnosis features multiple 

actions coming in second and third, respectively.
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Figure 5.5: Apache Response Time Over Threshold

Disabled Weighted Diagnosis Fewer Diagnosis Many

Apache Resp. 

CPU Util.

290.30 [17.61] 

3.65 [0.03]

14.94 [2.82] 

0.04 [0.01]

11.19 [2.55] 

0.13 [0.02]

16.19 [6.34] 

0.15 [0.02]

Table 5.3: Server Metrics Area Over Threshold
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Client-side Metrics

The actual response times experienced by the three service classes, as well as overall 

throughput values for the server, are measured from the client machines, and are listed 

in Table 5.4. Table 5.5 shows the same metrics for only the period in which the server 

was under maximum load (75 clients total), as was shown with the server-side metrics 

in figure 5.2. Response times experienced by the client machines show a different side 

to the performance of the web server than those measured by the server-side response 

time monitor. As mentioned in Section 5.3, the server-side response time metric does 

not use KeepAlive, while the client machines do. This means that the server monitor 

needs to open a new connection for each request, and as such potentially wait in a 

queue again. Another difference comes from the effect of service differentiation on the 

client requests. As such, the client measured response times can be quite different 

from the server measured response time.

Throughput as measured from the client is actually higher when the autonomic 

manager is disabled. This is a logical and expected result, though, as CPU usage is 

significantly higher due to the restrictions placed on CPU usage by the policies when 

the manager is enabled (must be below 90%). A trade-off is made between response 

time and CPU usage, as the autonomic manager policies attempt to achieve not only 

the response time goal, but the CPU and Memory goals as well. Throughput for 

the two diagnosis methods is slightly better than weighted action selection, which 

matches up with the CPU usage seen in Table 5.1.

The most important of the response time measures is that of the gold service class. 

The test is designed to put the server under stress, and as such we should see response 

times of the silver and bronze classes sacrificed to maintain the performance of the 

gold class. Figure 5.6 is a box plot of the Gold Class Response Time data used in table 

5.4. Both diagnosis algorithms perform better than weighted action selection on gold 

response time, as well as silver response time, with diagnosis favouring fewer actions 

having the edge. Figure 5.7 shows the gold, silver, and bronze response times for the
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Disabled Weighted Diagnosis Fewer Diagnosis Many

Gold Resp. Avg. 2182ms [923] 1798ms [1824] 1389ms [675] 1465ms [741]

Silver Resp. Avg. 2228ms [931] 4021ms [5165] 3920ms [4284] 3827ms [3966]

Bronze Resp. Avg. 2192ms [912] 4742ms [8072] 5543ms [8572] 5239ms [7477]

Throughput 21.8/s 17.0/s 18.1/s 18.1/s

Table 5.4: Client Results

Disabled Weighted Diagnosis Fewer Diagnosis Many

Gold Resp. Avg. 2333ms [833] 1872ms [1892] 1398ms [644] 1463ms [689]

Silver Resp. Avg. 2365ms [834] 4442ms [5535] 4387ms [4532] 4257ms [4199]

Bronze Resp. Avg. 2336ms [824] 5404ms [8863] 6657ms [9461] 6233ms [8217]

Throughput 18.6/s 14.3/s 15.2/s 15.3/s

Table 5.5: Client Results - Max Load Only

system using the diagnosis algorithm favouring fewer actions. Service differentiation 

is clearly visible in this graph, as the system keeps the gold class consistent at the 

expense of silver and bronze.

5.6 Example Run with Diagnosis

To help illustrate how the autonomic manager behaves, particularly when using the 

diagnosis algorithm for action selection, we will take a look at an example experiment 

run and go into some detail at a few points of interest. The information examined 

is from a single experiment repetition, and is typical of all of the experiments. We 

will look at the diagnosis algorithm favouring hypotheses with fewer disorders (fewer 

actions to take). It is difficult to tell the direct consequences of each decision made 

and action executed, since a very large number of actions are executed throughout



48

12800

18808

8088

6888

4888

2880

Disabled Meighted Diagnosis Feuer Diagnosis hany

Experiment System

Figure 5.6: Gold Response Time Box Plot

the experiment and the workload is dynamic. Nevertheless, some thoughts as to why 

the diagnosis algorithm performs slightly better than weighted action selection can 

be derived from such an analysis.

Figures 5.8 and 5.9 show the response time and CPU utilization metrics for an 

example run of the system using diagnosis favouring fewer actions. Four points of 

interest are marked on each graph and explained in some detail, in order from left to 

right (sequential order in time).

Point 1

The first violations occur at around the three minute mark (180 seconds).

1. Apache Response Time Violation

2. Apache CPU without Response Time Violation
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Figure 5.7: Client Response Times for Diagnosis Fewer

3. PHP Response Time Violation

4. MySQL Response Time Violation

To begin with, this is an interesting combination of violation events. The first, third 

and fourth violations are all triggered by the same conditions, namely, the response 

time of the web server exceeding 2000ms and having an increasing trend. The dif­

ference lies in the set of advocated actions by each violation. Each policy advocates 

actions related to a different component of the system, namely, the Apache web server, 

the PHP cache, and the MySQL database. What makes this particular set of viola­

tions interesting is the second violation, namely, the Apache CPU without Response 

Time Violation. The conditions for this violation are CPU utilization above 90% and 

rising, and the response time of the web server being below 200ms, a contradiction 

with the conditions of the other policy violations. Clearly the response time cannot 

be both above 2000ms and below 200ms. What probably has occurred is that both
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Figure 5.8: Example Run with Diagnosis - Response Time

states were present at some point in the interval between the last time the policies 

were checked for violations and this time. This interval during these experiments was 

10 seconds.

The diagnosis algorithm then attempts to build hypotheses that can explain the 

situation we are seeing, even though we know that these particular violations do not 

represent a single snapshot of the state of the system, but rather what has occurred 

over the last 10 seconds. This is not necessarily a bad thing, as such seemingly con­

tradictory information may in fact lead the diagnosis algorithm to finding a better 

solution by eliminating some extraneous actions or even including actions that may 

not have been considered otherwise. Whereas the weighted action selection will select 

an action based on applying some importance to each policy and each action inde­

pendent of each other, the diagnosis algorithm takes into account the entire situation 

in its decision making. This may account for some of why the diagnosis algorithm
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Figure 5.9: Example Run with Diagnosis - CPU Utilization

performs better than weighted action selection.

The diagnosis algorithm builds the set of all possible actions or sets of actions that 

can cover the given policy violations. In this case, the first three are single actions 

that cover every condition in each policy. Since in this example the algorithm is 

favouring hypotheses with fewer disorders (fewer actions to take), these single actions 

are ranked first.

1. Decrease the maximum number of clients in Apache

2. Decrease the maximum number of KeepAlive requests in Apache

3. Decrease the maximum bandwidth, which compromises the performance of 

lesser service classes to maintain the performance higher classes, with gold being 

the highest and bronze the lowest.
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Hypotheses indicating that more than one action should be performed are ranked 

lower. An example of such a hypothesis is one that advocates both decreasing the 

MySQL Key Buffer size and increasing the cache memory available for PHP at the 

same time. The ordering of hypotheses containing the same number of actions is 

arbitrary, and is based on the order in which the violations are given to the algorithm 

and how the algorithm operates. It can be considered essentially random. Neverthe­

less, actions are attempted in the order they are sent to the PEP. In this particular 

case, the first action (decrease the maximum number of clients) was not performed 

because its associated test failed (the parameter was already at its lowest possible 

value). Tests for actions are described in Section 2.4.1. The second action, decreasing 

the maximum number of KeepAlive requests, was performed.

Point 2

After the first set of violations, a large number of the policy violation situations 

consist simply of the three Response Time Violations.

1. Apache Response Time Violation

2. PHP Response Time Violation

3. MySQL Response Time Violation

Since all three of these violations share the same conditions, the resulting diagnosis is 

simply a list of all actions advocated by the three policies, because any of these actions 

will cover all of the conditions of all three. Since the diagnosis algorithm performs no 

ordering of the actions within itself, it will build the same set of potential actions as 

the weighted action selection method, except it will make no attempt to determine 

which is more likely. As such, it will probably make a similar, if not slightly worse 

decision. The tests attached to the actions also make a difference in which action is 

selected, as all tests for an action must pass before the action can be executed. This
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means that several higher ranked actions may be skipped before reaching an action 

that can be performed, potentially neutralizing some of the effect of ordering.

Point 3

Another common policy violation situation occurs at the 417 second mark. At this 

point, we see a combination of both response time related violations and CPU uti­

lization violations.

1. Apache Response Time Violation

2 p u p  Response Time Violation

3. MySQL Response Time Violation

4. Apache CPU Utilization Violation

5. PHP CPU Utilization Violation

6. MySQL CPU Utilization Violation

7. Apache CPU and Response Time Violation

We have already seen the response time violations. All three contain the same condi­

tions but advocate actions related to different components of the system. The three 

CPU Utilization violations (4, 5 and 6) are similarly related. All three have CPU 

utilization above 90% and an upward CPU utilization trend as their conditions, but 

they each advocate different actions. The Apache CPU and Response Time policy 

violation is triggered by a combination of both web server response time conditions 

and CPU utilization conditions, and advocates actions to be taken in the case that 

both the response time is above 2 seconds and CPU utilization is above 90%. This 

policy attempts to dictate what should occur when more than one type of violation 

exists, and the set of actions advocated by it is actually a subset of the actions already
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advocated by the other policies. Such a policy is essentially trying to simulate some 

sort of diagnosis, and is likely rendered obsolete by the diagnosis algorithm. Never­

theless, it is in use at the moment and taken into consideration in diagnosis. The 

following is the list of actions or sets of actions returned by the diagnosis algorithm.

1. Decrease the maximum number of KeepAlive requests in Apache

2. Increase the cache size used for PHP pages

3. Decrease the maximum bandwidth

4. Increase the MySQL thread cache size and increase the number of Apache clients

5. Decrease the maximum number of clients in Apache and increase the MySQL 

key buffer size

6. Increase the MySQL thread cache size and key buffer size

7. Decrease the maximum number of clients in Apache and increase the MySQL 

query cache size

8. Increase the MySQL query cache size and thread cache size

As before, hypotheses containing fewer actions to perform are preferred. Only one 

of these will be executed, and they will be attempted in the order listed. Again, 

the ordering within hypotheses containing the same number of actions is essentially 

random.

Point 4

At around the 59 minute mark another interesting policy violation situation occurs.

1. Apache CPU Utilization Violation

2. PHP CPU Utilization Violation
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3. MySQL CPU Utilization Violation

4. Apache without both CPU and Response Time Violation

We have already seen the three CPU Utilization policy violations. The fourth, Apache 

without both CPU and Response Time, indicates that response time is within normal 

constraints (below 2 seconds), and that CPU utilization is also below the violation 

threshold of 90%. Clearly, as we saw earlier with response times, this contradicts 

the other three policy violations, again most likely due to the 10 second window in 

which violations can occur before they are processed. The question then becomes, 

how should this be interpreted? This is by no means a trivial question. Should 

the violations indicating that the CPU utilization is over 90% be trusted or the one 

indicating that it is below be trusted? In weighted action selection, one of these two 

options will be chosen. With diagnosis, however, both options will be combined to 

find some solution that satisfies both, thus taking into account all of the information 

received. Such a difference in approach may be at least partially responsible for the 

improved performance of the diagnosis algorithm. In this case, a set of four hypotheses 

is generated, each containing two actions to perform.

1. Decrease the maximum number of clients in Apache and increase the maximum 

bandwidth

2. Decrease the maximum number of KeepAlive requests in Apache and increase 

the maximum bandwidth

3. Increase the cache size used for PHP pages and increase the maximum band­

width

4. Increase the MySQL thread cache size and increase the maximum bandwidth

As before, the actions were attempted by the PEP in the order shown, and in this 

case, the very first set of actions passed its tests and was performed.
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5.7 Discussion

We have examined the performance of a web server without the aid of the BEAT 

autonomic manager, with the manager using weighted action selection, using diagno­

sis favouring fewer actions, and with diagnosis favouring multiple actions. From the 

results presented here, we can conclude that the diagnosis algorithm performs at least 

as well as the previous method of action selection (weighted action selection). CPU 

utilization for all three action selection methods stays below the threshold, but the 

two diagnosis methods make use of more CPU resources than weighted action selec­

tion, keeping closer to the threshold. Diagnosis favouring multiple actions performs 

similarly to weighted action selection, except on the actual measured client response 

times, where it has an edge on gold and silver service class response times. Diagnosis 

favouring fewer actions beats out the other methods across the board. This indicates 

that the use of the diagnosis algorithm to select an action in the case of multiple 

policy violations makes better decisions than the previously developed weighted ac­

tion selection methods. The advantage that diagnosis favouring fewer actions has 

over diagnosis favouring multiple actions seems to indicate that simpler explanations 

of the given set of policy violations (hypotheses containing fewer disorders) are more 

likely to be correct, an example of Occam’s Razor [4]. The decision making advantage 

enjoyed by diagnosis over weighted action selection may be due to the fact that diag­

nosis essentially attempts to use all available information together to make a decision, 

while weighted action selection pits each option against each other. This is a subtle 

yet potentially interesting distinction.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Policy-based Autonomic Management attempts to dynamically manage, configure 

and optimize a set of running applications in real-time. A set of policies form the 

knowledge of the system, with a policy violation requiring some action to be taken 

to correct it. In the common case of multiple policy violations, there are often many 

potential actions that can be taken to correct them. Deciding which action will be the 

most effective is a difficult decision, with a high impact on how well the autonomic 

manager will achieve the goals of the policies.

A diagnosis approach using adbuction has been proposed to help the autonomic 

manager decide which action to take in the case of multiple policy violations. The 

approach uses the policies themselves to build a causal network, which is then used 

to perform diagnosis using specific sets of violations. The diagnosis algorithm was 

implemented in the BEAT Autonomic Manager [14].

The performance of the diagnosis method of action selection was compared to 

that of another, previously developed method. This previous method, which we call 

weighted action selection, uses a number of factors to assign weights to actions, and 

executes the action with the highest weight. Two versions of the diagnosis method, 

one favouring the execution of the least number of actions possible and the other 

favouring the most, were implemented. The BEAT autonomic manager was config­
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ured to manage a basic server machine running both a web server and a database. The 

performance of the server under load was measured without the autonomic manager, 

with the autonomic manager using weighted action selection, and with the autonomic 

manager using the two different versions of diagnosis.

The results look promising, with diagnosis favouring fewer actions outperforming 

the other methods. It seems to make better decisions on which action or actions 

to perform, more closely achieving the overall goals of the policies, that is, keeping 

metrics such as CPU and Response Time within specified thresholds.

In closing, a new method for selecting actions to perform based on multiple policy 

violations was developed. An abductive diagnosis algorithm was implemented, includ­

ing the development of a method of building a causal network from a set of policies. 

Overall, the diagnosis algorithm performed well in our experiments, with diagnosis 

favouring fewer actions slightly outperforming the previously implemented method of 

action selection (weighted action selection) in the BEAT Autonomic Manager.

6.2 Future Work

There is a good deal of room for improvement in both action selection as a whole 

and the diagnosis approach itself. The diagnosis method is not a strict alternative 

to weighted action selection, and in fact these methods could be easily combined. 

The criteria for policy and action weighting could be used to build probabilities into 

the causal network, which could be used to help order hypotheses returned from the 

diagnosis algorithm. This may lead to even further performance improvements.

The policies themselves could also be examined. Some policies are designed to 

combine the conditions of more than one policy violation in order to take into account 

as much of the information as it can. Clearly this can lead to an unmanageable number 

of policies to design as the manager handles both more applications and more aspects 

of each application. Diagnosis inherently makes use of all of the existing policy
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violation information in its decision making, thus rendering such additional policies 

potentially obsolete. This could allow for the development of simpler sets of policies.

Finally, in order to fully evaluate and drive development of these techniques for­

ward, some larger scale implementation and testing is likely necessary. This would 

provide a better idea as to how the the diagnosis and other methods would hold up 

where there are needed most, in a more realistic, large scale deployment.
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