
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2009

Decentralized Resource Availability Prediction in Peer-to-Peer Decentralized Resource Availability Prediction in Peer-to-Peer

Desktop Grids Desktop Grids

Karthick Ramachandran

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Ramachandran, Karthick, "Decentralized Resource Availability Prediction in Peer-to-Peer Desktop Grids"
(2009). Digitized Theses. 3893.
https://ir.lib.uwo.ca/digitizedtheses/3893

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3893&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/3893?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F3893&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

D e c e n t r a l i z e d R e s o u r c e Av a i l a b i l i t y

P r e d i c t i o n in P e e r - t o -P e e r D e s k t o p G r i d s

(Spine Title: Resource Availability Prediction in P2P Desktop Grids)
(Thesis Format: Monograph)

by

Karthick Ramachandran

Graduate Program in Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Karthick Ramachandran 2009

Abstract

Grid computing is a form of distributed computing which is used by an organiza
tion to handle its long-running computational tasks. Volunteer computing (desktop
grid) is a type of grid computing that uses idle CPU cycles donated voluntarily by
users, to run its tasks. In a desktop grid model, the resources are not dedicated. The
job (computational task) is submitted for execution in the resource only when the
resource is idle. There is no guarantee that the job which has started to execute in a
resource will complete its execution without any disruption from user activity (such
as keyboard click or mouse move). This problem becomes more challenging in a
Peer-to-Peer (P2P) model of desktop grids where there is no central server which
takes the decision on whether to allocate a job to a resource.

In this thesis we propose and implement a P2P desktop grid framework which
does resource availability prediction. We try to improve the predictability of the
system, by submitting the jobs on machines which have a higher probability of being
available at a given time. We benchmark our framework and provide an analysis of
our results.

Keywords: Desktop Grid, Volunteer Computing, Cloud Computing, P2P Com
puting

m

For my parents

Acknowledgements

I am deeply indebted to my supervisors, Dr. Hanan Lutfiyya and Dr. Mark Perry

for giving me a chance to pursue this work. This work would not have been possible

without their continued support, patient guidance and encouragement.

I would like to thank the computer science department systems group, Art Mul

der, Scott Feeney, David Wiseman and David Martin for letting me install and test

the framework in the computer science labs. Special thanks to Art Mulder for his

patience and support during the data collection phase of the research.

I would also like to thank my colleagues at DiGS (Distributed and Grid Systems)

research group for fruitful discussions and their help and support throughout the year.

Special thanks to Abhishek Singh of IIT Delhi, India who developed the initial ver

sion of the monitoring module.

To my sister, all my friends here and back home in India for their constant moti

vation, strength and entertainment.

Finally, this thesis is for my parents, who have always put my happiness before

theirs.

v

Contents

Certificate of Examination ... ii
A b strac t.. iii
Acknowledgements... v

1 Introduction 1
1.1 Problem S ta tem en t................................. 2
1.2 Outline of Proposed Solution.. 2
1.3 Contribution.. 3
1.4 Thesis Outline... 3

2 Background 4
2.1 Terminology.. 4
2.2 Volunteer Com puting... 5
2.3 Cloud Com puting... 6
2.4 Resource Selection in Desktop G rid s .. 6

2.4.1 First come first s e rv e ... 7
2.4.2 Reliability R a tin g s ... 11
2.4.3 Availability P red ic tion ... 16

2.5 Current W o rk ... 18

3 System Requirements 20
3.1 Resource Requirements.. 20
3.2 Functional Requirem ents... 21

3.2.1 Desktop User Perspective ... 21
3.2.2 Desktop Grid Service Client Perspective............................... 21
3.2.3 Desktop Grid Service Provider Perspective......................... 22

3.3 Challenges... 22
3.4 F o c u s .. 23

vi

4 System Architecture 24
4.1 O v erv iew .. 24
4.2 Servers .. 25

4.2.1 Management Server .. 26
4.2.2 Job Server... 26
4.2.3 Monitoring S e r v e r ... 27
4.2.4 Result S e rv e r... 27

4.3 P2P C loud ... 28
4.3.1 VCC Client Software.. 28
4.3.2 Job (Work Unit) .. 31
4.3.3 Prediction Engine - Dedicated and Non-dedicated Desktops 32

5 Implementation 36
5.1 Background.. 36

5.1.1 JX T A ... 36
5.1.2 A glets... 40

5.2 Servers ... 43
5.2.1 Management Server .. 43
5.2.2 Job Server... 44
5.2.3 Monitoring S e r v e r ... 46
5.2.4 Result S e rv e r... 47

5.3 VCC Client Softw are... 48
5.3.1 Initialization ... 48
5.3.2 Monitoring E n g in e ... 51
5.3.3 Resource Discovery .. 54
5.3.4 Mobile Agent Subsystem.. 55
5.3.5 Inter-Peer Communication... 57
5.3.6 Broadcast Message Listener and B roadcaster...................... 58
5.3.7 Prediction Parameters ... 62

5.4 Anatomy of a J o b ... 63
5.4.1 Aglet S uperclass... 63
5.4.2 IAgentcommunicator.. 64
5.4.3 State of the J o b .. 66

5.5 The Lifetime of a J o b ... 66

vii

6 Verification and Validation 69
6.1 Scalability... 69

6.1.1 Deployment of test infrastructure ... 70
6.1.2 Execution of Scenarios... 71

6.2 Resource Availability P red iction .. 74
6.2.1 Data co llection .. 75
6.2.2 Sim ulator... 76
6.2.3 Data Collection Results .. 82
6.2.4 Scenarios... 84

7 Conclusion 88
7.1 Contributions... 88
7.2 Future W ork.. 89

7.2.1 Resource Discovery .. 89
7.2.2 Resource Availability Prediction.. 89
7.2.3 Job Programming M o d el.. 90
7.2.4 Trust ... 90
7.2.5 Fault Tolerance.. 91
7.2.6 Socio-economic M o d e ls .. 91
7.2.7 Resource M anagement... 91
7.2.8 Leveraging Free Disk S p a c e .. 92

7.3 S u m m ary ... 92

Bibliography 93

Curriculum Vitae 97

viii

List of Figures

2.1 The Workstation in Xtremweb [2 0].. 8
2.2 Resource selection in Entropia [14]... 9
2.3 Resource selection in Condor [3 3] ... 10
2.4 Task Completion Vs Time [2 3] ... 12
2.5 RIDGE scheduling framework [12]... 15
2.6 Topology of node trust model [3 4] ... 18

3.1 Desktop U s e r ... 22
3.2 Grid Client .. 23

4.1 Overall view of the VCC System .. 25
4.2 Management Server - Job Server Relationship.................................. 26
4.3 Peer A rchitecture... 29
4.4 Dedicated vs Non-dedicated D esk tops... 32

5.1 JXTA Architecture [2 7] .. 37
5.2 Fundamental operations of Aglet [2 4] ... 42
5.3 Peer A rchitecture... 51
5.4 Mobile A g e n t... 58
5.5 Job Life C ycle... 68

6.1 Test Infrastructure... 71
6.2 Simulation Software S e tu p ... 76
6.3 Lab 342 User Availability Pattern.. 84
6.4 Lab 230 User Availability Pattern.. 85
6.5 Lab 235 User Availability Pattern.. 86

IX

27
33
35

43
45
46

76
77
77
78
87

List of Tables

4.1 Job E n titie s ...
4.2 Resource Availability.....................................
4.3 Group Availability ..

5.1 Management Server E n t i t ie s
5.2 Job E n titie s ...
5.3 Job Instance Entities

6.1 Machine D a ta ..
6.2 Machine S ta tu s ...
6.3 Machine Usage Sim ulation............................
6.4 Group Usage S im ulation
6.5 Simulation Results (R-Random, P-Predictive)

x

Chapter 1

Introduction

It is an irony in life that the most wasted resources are the ones which are most
important to us. Computing power is not an exception.

A grid system can be defined as a large-scale distributed hardware and software
infrastructure composed of heterogeneous networked resources which are coordi
nated to provide transparent, dependable, pervasive and consistent computing sup
port to a wide range of applications [9]. Grid systems came into existence as an
answer to the scientific community which is in need of huge processing power for
research. Large scale grids like Garuda [4], D-Grid [3], National Grid Service [5] are
built to provide the required CPU cycles. However the installation and maintenance
of a dedicated grid architecture is expensive.

Large amounts of processing power end up idle in desktop machines around the
globe. This saw the emergence of volunteer computing (desktop grid), where users
voluntarily donate idle CPU cycles for finding extra terrestrial life or to find a cure to
a disease [8]. Users, who are interested in joining a volunteer computing project [10]
download and install a client component in their computer from the project’s server.
Whenever the desktop becomes idle, the installed client gets a work-unit (job) from
a centralized server, executes it and returns the result back to the server. Volunteer
computing projects have been combined to create more than 1000 TeraFlops of CPU
cycles to form the most powerful supercomputer in the world [10]. Well-known sys
tems include BOINC [8], XtremWeb [20], Entropia [14] and Condor [25]. Chapter 2
briefly describes these systems with a focus on resource selection.

1

1.1 Problem Statement

A traditional grid system comprises of dedicated resources. A job submitted to a
resource for execution is guaranteed to complete its execution in that resource, unless
there are any hardware or software failures. However, in a desktop grid model, the
resources are not dedicated. The job is submitted for execution in the resource only
when the resource is idle. There is no guarantee that the job which has started to
execute in a resource will complete its execution without any disruption from user
activity. This problem becomes more challenging in a Peer-to-Peer (P2P) model of
desktop grids where there is no central server which takes the decision on whether to
allocate a job to a resource (resource selection).

P2P system removes the responsibility of resource discovery from a single dedi
cated server and shares it with multiple server network. Therefore unlike the client-
server model, where there is a need to upgrade the server proportionally to number of
clients in the network, a P2P model needs no change in the network topology when
the number of clients in the system increases.

The focus of the thesis is on resource availability prediction in a P2P network.
When there is no central server for resource selection, each peer needs to predict
its availability. In a university lab like scenario, when the resources are not used
by one particular person (non-dedicated desktops), the usage pattern of a group of
resources has to be taken into account. This issue of resource availability prediction
has not been directly addressed by other work, particularly in a P2P network. We
examine this problem in an effort to reduce the turnaround time for a job, thereby
more effectively using the resources available.

1.2 Outline of Proposed Solution

This thesis proposes to build a stable peer to peer cloud infrastructure in which
the desktop users can rent their CPU cycles for research or other industrial number
crunching jobs. Two issues to be addressed include scalability and predictability.

The number of participating nodes, can grow exponentially over time and make
the system unstable. A P2P network with a decentralized resource matching mech
anism is built to make the system less vulnerable to an increase in size. This is
implemented using JXTA’s resource matching mechanism [26].

A desktop grid consists of resources which are not available all the time. A
system’s predictability suffers when the infrastructure is built over non-dedicated

2

resources. The goal of the work is to improve the predictability of the grid system by
scheduling jobs on those machines which have a higher probability of being available
for the amount of time the job is expected to execute. This is achieved by learning
the machine’s availability patterns over a duration and using that to predict its future
availability. Each peer learns its own behavior and predicts its future availability
based on it past behavior. In the case of non-dedicated desktop resources such as
machines in a university lab, each machine in the group will study the usage pattern
of the every other machine within that group. This data will be used to calculate the
total group availability, which will be taken into account along with the individual
machine’s availability while predicting.

1.3 Contribution

This thesis presents a framework for resource availability prediction for a machine
or a group of machines in desktop grids on a P2P network. We provide a working
prototype of a desktop grid framework, that uses a decentralized resource matching
mechanism. Our system extends work already done in this area, by building an in
frastructure to do user availability prediction in a P2P environment. It provides a
method of sharing between the desktop grid providers and the users willing to donate
CPU cycles. It will further serve as a solid framework for researchers to continue
work in this area.

1.4 Thesis Outline

In Chapter 2 we present an introduction to volunteer computing and cloud comput
ing. We also describe resource selection in desktop grids and look briefly at some
existing frameworks for resource selection. In Chapter 3 we present the functional
and the resource requirements of our system. We also describe some of the chal
lenges faced in meeting the requirements stated in this chapter. Chapter 4 presents
the overall architecture of our system with the description of individual components.
Chapter 5 presents an overview of our system implementation. The implementation
leads to Chapter 6 in which we present our verification and validation methods and
experimental results. In Chapter 7 we present our conclusions and discuss future
work to be done in this area.

3

Chapter 2

Background

This chapter provides an introduction to relevant terms and concepts associated with
volunteer computing and cloud computing. Terminology is presented in Section 2.1.
Section 2.2 and Section 2.3 introduces Volunteer and Cloud Computing. Section 2.4
gives a detailed overview of resource selection in desktop grids.

2.1 Terminology

This section briefly describes the terminology used in the thesis.

1. Distributed System: A distributed system is a collection of independent com
puters that appears to its users as a single coherent system [37].

2. Server: A server process provides services to other programs in the same or
other computers.

3. Client: A client process accesses services from a server through a network. The
terms resources, machines, computer, peers and clients are used interchange
ably.

4. Client-Server System: Client-Server describes the relationship between two
processes in which one process, the client, makes a service request from an
other process, the server.

5. Peer to Peer (P2P) Networks: Peer-to-peer is a communications model in
which each party has the same capabilities and either party can initiate a com
munication session [30].

6. Idle CPU cycles: The duration at which the CPU is not used by a process.

4

2.2 Volunteer Computing

Volunteer computing (Desktop grids) is a type of distributed computing in which
computer owners donate their resources (CPU cycles and storage) for one or more
projects. The Great Internet Mersenne Prime Search (GIMPS) [42], started in 1996,
is one of the first volunteer computing projects. It was aimed at searching for Mersenne
prime numbers. Other well known volunteer computing architectures are BOINC,
Xtremweb, Entropia and Condor.

In BOINC [8] there is a central server which is responsible for the control of the
job execution. The desktop user who wants to take part in the voluntary computing,
downloads and installs a client from the central server. It updates its availability fre
quently with the server. The server when scheduling the job, checks the availability
of the client based on the client updates received by it and schedules the job only on
the clients which are available at a given point of time.

Xtremweb [20] monitors the availability of a set of desktop computers in an effort
to effectively select a resource. It uses a combination of pull model and cycle-sharing
scheme for resource selection. In the pull model, unlike the push model, workstations
request work from the central agent (dispatcher). The cycle-sharing scheme is char
acterized by sporadic user interruptions, that prevent computations from completing,
even without any network or computer failure.

Entropia [14] is an enterprise desktop grid system with a layered architecture.
It has a single server connected with a number of desktop clients. The Entropia
server is responsible for physical node management, resource scheduling and job
management.

Condor [25] is a system that has evolved over the years from 1988. The major
components of Condor are agent, resource and matchmaker. The agent is responsible
for submission of a job and the resource executes the job. The matchmaker receives
advertising messages from the agent and resources, which is used for matching the
agent to a resource.

The issues with these architectures are two fold: These systems are built on a
client-server model. When the number of clients increases, the load on the server
increases and the server eventually becomes the bottleneck in the system. As the
clients are not dedicated, during a particular work unit execution, they can become
unavailable randomly, due to user interruption or various other factors. These systems
do not take into account this sporadic resource availability during resource selection.

5

2.3 Cloud Computing

While all this work has been going on in the academic world, industry has come up
with its very own version of grid computing to provide processor cycles and data
storage capability. It is called Cloud computing [39]. Cloud computing is a style
of computing where IT-related capabilities are provided as a service, allowing users
to access technology-enabled services from the Internet without knowledge of, ex
pertise with, or control over the technology infrastructure that supports them. Weiss
[39] describes how cloud computing takes several shapes: Data Center, Distributed
Computing, Utility Grid and Software as a Service. Cloud Computing was mainly
targeted at companies which cannot afford to own data centers. Amazon EC2 [1] is
the first of its kind.

To accommodate the volunteer grid computing model into the cloud computing
paradigm, the voluntary grid computing platform has to become mature and stable.

2.4 Resource Selection in Desktop Grids

Selection of the appropriate resources among the available resources, is a significant
task of grid architecture as it determines whether a job is going to be executed in a
client machine without interruption or not.

Resource selection can defined as the problem o f selecting a particular resource
“x”, as the candidate for job execution, among “n” matching resources.

The selection of the resources in various architectures can be classified broadly
as follows:

1. First come first serve: The resource which matches the resource selection query
first is selected for execution. This is one of the most primitive approaches to
resource selection. This model can lead to starvation of clients. The reliability
of the clients is not taken into account in the resource selection process. Section
2.4.1 describes some of the systems that use first come first serve model for
resource selection.

2. Reliability ratings: This approach quantifies the reliability of a client based
on the client’s past performance [12, 23]. The ratio of the number of jobs
assigned to a client to the number of jobs successfully executed is calculated
and is associated with each client. This determines the reliability of the client.
Clients are ranked based on the reliability calculated. Reliability Ratings model
is explained with examples in Section 2.4.2.

6

3. Availability prediction: Another approach to resource selection is to predict a
resource’s availability using mathematical models [11]. Using the availability
of the client on a similar time during past, the future availability can be pre
dicted with certain confidence [34]. Section 2.4.3 presents two systems that
use availability prediction as the resource selection strategy.

2.4.1 First come first serve

This section describes the first come first serve model of resource selection used
by Xtremweb [20], Entropia [14] and Condor [33]. These architectures have very
unique job delivery and resource matching mechanisms. However, during resource
selection, these systems assign jobs based on a first come first serve model, without
taking into account the client’s reliability and future availability.

Remote Sensor based Resource Selection - Xtremweb

Xtremweb [20] has a goal of monitoring the availability of a set of desktop PCs in
an effort to effectively select a resource. It uses a combination of the pull model
and cycle-sharing scheme for resource selection. In the pull model, unlike the push
model, workstations request work from the central agent (dispatcher). The cycle
sharing scheme is characterized by sporadic user interruptions, that prevent the com
putations from completing, even without any network or computer failure.

When a participating workstation is not interactively used, as detected by the
screen saver utility, the workstation downloads the work-unit (job) from the dis
patcher and start executing it. As soon as the user comes back to the workstation,
the screen saver vanishes and the ongoing job is terminated. The job is started again
from the beginning on a new workstation.

Figure 2.1 presents the client architecture of the Xtremweb application. When
a user is working (when the system is not idle) a low-priority background process
monitors the computer activity. When the computer becomes available, a new process
is launched. This process communicates with the dispatcher and gets the work unit
from the dispatcher. Concurrently a monitor thread is spawned which watches the
activity of the work unit. After sending the work unit, the dispatcher continuously
monitors the workstation. When the workstation has not communicated the status of
work unit execution for a sufficiently long time the computation is considered lost
and rescheduled with another worker. The workstation ceases to communicate about
the status of the work unit execution if it is interrupted by user activity or when there

7

Figure 2.1 : The Workstation in Xtremweb [20]

is a failure (hardware or software).
To summarize, Xtremweb web uses a pull model for its resource selection mech

anism. Whenever a resource becomes idle, it contacts the dispatcher for work and
any available computation that has to be performed at that point of time is dispatched
to the client.

The resource selection is primitive and it does not guarantee that job execution is
completed on the client machine. In this model, the client which communicates with
the dispatcher first, will get the job, not necessarily the one which is most reliable.

Resource Selection in Entropia

The Entropia system [14] is made up of three major layers: Physical node manage
ment, resource scheduling and job management. The Physical node management
layer is responsible for managing diverse desktop PCs and other low-level reliability
issues. It provides resource management, application control and security capabilities
to the architecture. Resource scheduling does the work of a matchmaker, where, it
accepts the units of computation from the job management system and then matches
these units to appropriate client resources and schedules the units for execution. The
Job management layer of Entropia takes the responsibility of splitting a job into mul
tiple tasks (subjob). It also manages the status of execution of each generated subjob

8

and then aggregates the results from the subjobs into a single output.

Job
Management

Resource
Scheduling

Physical Node
Management

Figure 2.2: Resource selection in Entropia [14]

Figure 2.2 depicts the application execution on Entropia system. These are the
steps involved in job execution in Entropia.

1. An end-user submits the job to the job manger (1 in Figure 2.2).

2. The job is broken down into subjobs before scheduling. The Job manager
submits the job to the subjob scheduler by breaking up the job into subjobs (2
in Figure 2.2).

3. The subjob scheduler is updated periodically about the status of each client
through the node manager, which get the client availability data from the clients
(a and b in Figure 2.2). This is used by the job scheduler to match the sub jobs
with the resources (3 in Figure 2.2).

4. The subjob scheduler then executes the subjob in the resources (4, 5 and 6 in
Figure 2.2) and aggregates the results back (7 in Figure 2.2) and hands it back
to end-user (8 in 2.2).

9

In the Entropia system, the subjob scheduler is responsible for resource selection.
It is updated in frequent intervals about the status of idle machines along with its
resource capabilities. When a job arrives, the subjob scheduler finds a match among
the current active machines with the required resource capabilities and executes the
job in the matching machine.

The client machine’s reliability is not taken into account, when scheduling. There
fore, like Xtremweb, this system does not necessarily schedule the job in the most
reliable client.

Preemptive Resume Scheduling in Condor

Preemption is the need to remove jobs before completing execution in order to meet
the needs of client users, administrators and unplanned outages. The Condor schedul
ing system is designed to account the volatility of desktops to make preemption less
expensive. This is achieved by checkpointing, which saves the state of the job in
frequent intervals. Condor[33] calls this scheduling Preemptive resume scheduling.

+ Matchmaker ^

Advertise Jobs Advertise Machines

. Provide Match .
User Agent A *

Claim Compiler

Owner
Agent

Figure 2.3: Resource selection in Condor [33]

Condor’s scheduling mechanism consists of three major participants: User Agent,
Matchmaker and Owner Agent.

The User Agent submits the job to the resource pool. The user agent maintains
a persistent queue of jobs and history of past jobs. If the jobs fail, the user agent is
responsible for retrying the job.

The Owner Agent is installed on each client of the pool. Policies determine how
and when the computer has to be classified as idle. It is responsible for executing the
jobs submitted to the client.

The Match Maker finds the match between user agent and owner agent.

10

Matchmaking When a user submits a job, it is stored in a user agent’s persistent
queue. The user agent then sends advertisements to the matchmaker every 5 minutes,
about the job that need resources. At the same time, whenever a client becomes
idle, its owner agent sends advertisements, which contain information on the client’s
availability, to the matchmaker at the same rate as that of user agent (5 minutes). The
matchmaker makes a match between the user agent and owner agent based on the
most recent advertisements. The old advertisements which are not updated for more
than 5 minutes are discarded in the matchmaker.

Once the match is made, the user agent contacts the owner agent directly and
sends the job for execution. The job execution is checkpointed at important intervals
to resume execution just in case the execution gets interrupted. The job agent is
responsible for orchestrating the execution of the job in the owner agent.

The resource selection in Condor is based on the most recent advertisements from
the owner agent. Reliability of the client is not taken into account during resource
selection in this architecture.

2.4.2 Reliability Ratings

This section describes two architectures that assign reliability ratings to the clients.
Kondo et.al [23] study resource selection by resource prioritization, resource exclu
sion and task duplication. RIDGE system [12] proposes a generic architecture for
assigning and employing reliability ratings while resource selection process.

Resource Selection for Short Lived Applications

Kondo et.al [23] focuses on the effective desktop grid execution for short lived exe
cutions, i.e., the execution which takes less than 15 minutes to complete in the client
machine. The authors propose three general techniques for resource selection: Re
source prioritization, resource exclusion and task duplication. Based on these tech
niques the performance of resource selection is studied.

In this work, the authors consider the problem of scheduling an application that
consists of T independent and identical tasks in a desktop grid. The tasks are al
located to each host in the grid by a central server. The server has a queue (ready
queue), which maintains the list of all the current active desktops in the grid.

The authors found (Figure 2.4) that when the number of tasks (T) is larger than
the number of hosts (N), a first-come first-server (FCFS) strategy is close to being
optimal. As the focus is on short-lived applications, where T is of the same order of

11

magnitude as N, the FCFS approach is suboptimal. In figure 2.4 results are obtained
for T=100, 200,400 and N=190, where each task executes within 15 minutes. When
T=100,90% of the tasks are executed within 39 minutes, but the remaining 10% takes
another 40 minutes to execute. This takes a total of 79 minutes to execute, which is
almost identical to the time needed when T=400. This plateau towards the end in case
of T=100, is attributed to dependency of some tasks on certain other tasks which are
executed in slower machines and failure of tasks towards the end. However, as T
becomes larger when compared to N, the plateau becomes less significant, thereby
justifying the use of FCFS strategy.

Figure 2.4: Task Completion Vs Time [23]

Therefore for short-lived applications, Kondo et.al [23] discusses three general
resource selection approaches to increase the overall efficiency of the system.

Resource Prioritization This method sorts hosts in the ready queue based on some
criteria (e.g., by clock rate or by the number of cycles delivered in the past) to assign
tasks to the most appropriate hosts first. Three methods were used and their results
were studied:

FCFS: The resources are served with jobs in a first come first serve basis.

12

PRI-CR: The resources are sorted based on the clock rates of CPU and assigned
jobs accordingly.

PRI-CR Wait: The system waits for 10 minutes before sorting the hosts and as
signing the tasks. The waiting is done for the resource information to be aggregated
in the ready queue. 10 minutes gives time for more number of resource information
to be aggregated in the ready queue.

PRI-History: The history of the system’s past performance is used to predict its
future performance. This is calculated using the previous week’s usage statistics on
how much operations can be performed in between host failures.

It was seen that PRI-CR outperformed FCFS consistently. PRI-CR-WAIT per
formed poorly with small duration tasks (5 minute). It improved with longer tasks,
however, PRI-CR-WAIT never surpassed PRI-CR in its performance. PRI-History
worked better for scenarios when the task duration is long. FCFS gave the least
performance.

Resource Exclusion Three resource exclusion algorithms were evaluated:
Resource Exclusion using Fixed Threshold: In this method, some hosts are ex

cluded and never used to run application tasks. These hosts are excluded based on a
simple criterion, such as hosts with clock rates below some threshold or CPU avail
ability.

Resource Exclusion using “makespan” prediction: This is a more sophisticated
resource exclusion strategy as compared to the previous one. It consists of remov
ing hosts that would not complete a task, if assigned to them, before the expected
application completion time (makespan time). In other words, it may be possible to
obtain an estimate of when the application could reasonably complete, and not use
any host that would push the application execution beyond this estimate. The sched
uler makes predictions and excludes the resource which cannot complete the task
within the required makespan time. The total power of the grid relatively remains
constant.

EXCL-Pred: This method makes the makespan prediction and adaptively changes
the prediciton as application execution progresses.

Task Replication Task failures near the end of the application, and unpredictably
slow hosts can cause major delays in application execution. This problem is remedied
by means of replicating tasks on multiple hosts, either to reduce the probability of
task failure or to schedule the application on a faster host.

13

Some methods include the following:
EXCL-PRED-DUP: Extend EXCL-Pred to use task replication when the number

of hosts is greater than number of tasks.
EXCL-PRED-TO: Uses a time out for each task to measure whether replication

should occur.
The results of the experiments show that EXCL-PRED-TO fares better when

compared with its peers.
Kondo et.al [23] investigated methods for excluding hosts by using a fixed thresh

old, or an adaptive threshold based on the prediction of application makespan. The
work also noted that although using a fixed threshold to exclude certain hosts is ben
eficial for desktop grids with a left-heavy distribution of clock rates, the adaptive
makespan heuristic performs as well or better for other configurations, such as multi
cluster or homogeneous desktop grids.

Reliability Aware Scheduling in RIDGE

Krishnaveni et.al [12] introduces a concept called “Reliability Aware Scheduling”
in their system RIDGE. The RIDGE system is build on the top of the BOINC[8]
architecture to convert the static replication policy of BOINC into a more dynamic
policy based on the reliability of the grid.

The node reliability is based on the number of timely and correct task executions
performed in the past relative to the total number of tasks allocated to it.

The parameters used in scheduling are the following:

1. Target Success-Rate: A number between zero and one representing the re
quired success rate.

2. Exec-Threshold: The maximum time that a task execution is allowed to take.

3. Scheduling-Threshold: The number of workers for the scheduler.

4. MinClients: The minimum number of workers a workunit is assigned to.

5. MaxClients: The maximum number of workers a workunit can be assigned to.

Architecture The RIDGE architecture (Figure 2.5) includes these components:

1. Scheduler: The scheduler is responsible for forming a group of worker nodes
based on the node’s reliability ratings. It also assigns a work unit to each group.

14

RIDGE Reputation-based
/* Scheduling Server — x

>-------------- --------- ----- ---- ---- ---- ------------------ * *

Figure 2.5: RIDGE scheduling framework [12]

Before scheduling the work unit, the scheduler waits for a specified number of
workers to arrive. The specified number of workers, SchedThrld, is a system
parameter, that can be tuned to get an optimal grouping. Once the scheduler
has enough number of workers, it runs a reputation based algorithm to form
the redundancy groups (groups with members of same reputation) and assigns
tasks to worker nodes.

2. Reputation Manager: The reputation manager maintains the reliability ratings
of the worker nodes. The scheduler uses these reliability ratings while mak
ing its decisions on resource selection. The reputation manger is frequently
updated with the worker node’s reliability after each work unit executed by
the worker node is validated against the same work unit execution of the other
nodes. The validation is done to check whether the worker node has correctly
executed the task.

3. Validator: This component takes care of the validation of results which arrives
from different work units for the same job. The outcome is passed to the rep
utation manager, which updates each work unit’s reliability based on whether
the worker node has correctly executed the task.

4. Re-Scheduler: When the validation fails, the re-scheduler decides the number
of instances to be created for the failed work unit, which can be based on factors

15

such as the number of matching results obtained in the validation process, the
reliability ratings of participating nodes, etc.

Reliability-based Scheduling The reliability ratings of a client are learned over
time based on the results returned to the server. A workers reliability rfit), at time t,
is defined as follows:

Ti(t) =
(rii(t) + 1)
(Ni(t) + 2)

(2 .1)

Where n f t) is the number of valid responses generated, and Nfit) is the total number
of tasks attempted by a worker i at time t.

Results were obtained in highly reliable, highly unreliable and moderately reli
able environments. It showed that given a desired success rate, there is an optimal
fixed replication factor, which further depends on the underlying reliability distribu
tion.

2.4.3 Availability Prediction

This section presents two different approaches to user availability prediction: using
mathematical models and probability models. John et.al [11] describes mathematical
models to predict the machine availability in desktop. Ling Shang et.al [34] uses
Trust Model [35] to predict the behavior of a user based on the learning done in the
past.

Mathematical Prediction of Desktop Availability

John et.al [11] try to quantify and measure the volatility factors. The authors de
scribe the parmeters to be taken into consideration for predicting machine availability
in desktop grids and the ability to estimate a specified quantile for the distribution of
availability, and a confidence level associated with each estimate. The work describes
one parametric model fitting technique [29] and two non-parametric prediction tech
niques [32].

This work tries to answer the question: “From a set o f availability measurements
taken from a resource, and given a desired percentile p and confidence level c, what
is the largest availability duration t for which we can say with confidence c that p
percent o f availability time measurements are greater than or equal to?”.

The individual machine availability traces are split into training sets, (which is
used to estimate the quantile lower bound) and an experimental set which is used to

16

verify the accuracy of the estimate. As the training set precedes the experimental set
in each machine trace, the results shown in the paper detail how well each estimation
method predicts machine availability for that machine during the time period covered
by the experimental set.

The authors describe a mathematical model using a Weibull distribution, resam
ple method and binomial method to predict the availability of a machine [29] [32].
They find that the availability duration can be predicted with quantifiable confidence
bounds and that these bounds can be used as conservative bounds on lifetime predic
tions. They conclude by stating that a non-parametric method based on a binomial
approach generates the most accurate estimates and can be used to estimate the lower
bound quantile estimates with better efficiency.

A Trust Model based on User’s Behavior

Ling Shang et.al [34] uses Dempster-Shafer’s (DS) theory to predict which node is
the most reliable at a given time period. Dempster-Shafer theory [18] is a method of
reasoning with uncertain information. In this model, a degree of trust worthiness for
a node is quantified based on two metrics.

1. How efficient that node has been? This is measured as the ratio between suc
cessful completions and total submissions of a given task

2. What is the probability that a node will be available at a give time t ? This is
calculated by studying the node’s availability patterns over a period of time.

The Transferable Belief Model (TBM), an interpretation of Dempster-Shafer the
ory, is used to deal with the uncertainty on whether a node is active or not.

The general flow of the calculations, classification and quantification is as follows
(Figure 2.6):

1. Two different types of data are collected. One on whether the task is completed
correctly. The other data is a virtual timetable on the active and idle timings of
the computer (Part A in Figure 2.6).

2. Based on these two values, two evidences are calculated: Evidence based on
allocated task quantifies the reliability of the node in completing execution of
the allocated task. Evidence based on test quantifies the availability of a client
at a given time of a day in a week (Part B in Figure 2.6).

17

Figure 2.6: Topology of node trust model [34]

3. Using Dempsters rule of combination both these evidences are combined to
form a node trustworthy value m(t) (Part C and Part D in Figure 2.6)

4. Based on the calculated evidences, a four-tuple is formed: < / , Wt H, m(t) >
where I represents the identifier of the client node, W represents the day of the
week, H represents the time-interval of the day and m(t) represents the degree
of node trustworthy. For dedicated nodes in the grid m(t) is set to be 1.

The results show that in this system that tasks have minimum or no migrations.
The work emphasizes the behavioral pattern of the user which is an important but
difficult to quantize aspect and has presented a method for analyzing the same. Even
though, the results of this system has been very positive, it has to be noted that the
experiments are conducted in an environment where users had a relatively consistent
behavioral pattern.

2.5 Current Work

Resource selection has been addressed in different ways in these frameworks. Some
of the frameworks use no resource selection policy, while other frameworks focus
on the reliability of the clients and others select based on a prediction of availability
using statistical distribution models. None of the work surveyed addresses resource
availability prediction in a P2P environment. In a P2P environment, where there is no
centralized server for making the decision on whether to allocate a job to a resource,

18

the problem of resource selection becomes more challenging. The responsibility of
resource selection transfers from the server to the individual peers. Each peer is
expected to store its own data that will be used for resource selection.

Moreover, all of these models make an assumption that the resource, which is
participating in the desktop grid, is owned by a single user (dedicated desktop). In
the case of non-dedicated desktop resources such as machines in a university lab, a
single desktop’s usage data becomes less relevant (as it is used by multiple people)
and the entire group’s (university lab) desktop usage data becomes interesting.

In this work, we look at the problem of resource availability prediction in a P2P
environment for both dedicated and non-dedicated desktops.

19

Chapter 3

System Requirements

This chapter presents the requirements of the system. Section 3.1 and Section 3.2
describes the resource requirements and functional requirements, respectively. The
challenges faced in meeting these requirements are discussed in Section 3.3. Section
3.4 presents the focus of this thesis.

3.1 Resource Requirements

This section describes the resource requirements of the software components. There
are two software components involved in this system. These are the following: server
and client software. The server software requirements include:

1. As in a P2P network, no resource specific data should be stored in the reposi
tory. The resource matching should be decentralized.

2. All the individual modules of this software: Job repository, Scheduling engine,
Monitoring engine and the Result repository should be independent modules
that can be installed in different machines if required, for scalability or security
reasons.

The client software, which will be in installed in each desktop machine, should
adhere to the following resource requirements.

1. As the resource discovery in a P2P network is decentralized, there will be a
need for broadcasting messages in the network. The underlying P2P frame
work should take care of not flooding the network with broadcast messages.
Broadcast messages should be restricted to the minimum.

20

2. The client software should not be heavyweight. When monitoring the user
activity, It should run in a low priority mode without disrupting the current
user experience. The software should consume a minimum amount of available
memory. The CPU cycles used by the monitoring module should be negligible.

3. The client software should not monitor any other part of the system activity
other than the resource monitoring such as processor usage and memory usage.

4. New jobs should be scheduled in the machines only when the resource is cur
rently not used by the user.

3.2 Functional Requirements

This section presents the functional requirements of the system from three different
perspectives. The End User Scenario of the system is explained in Section 3.2.1.
Section 3.2.2 and Section 3.2.3 gives the perspective of Desktop Grid Service Client
and Desktop Grid Service provider respectively.

3.2.1 Desktop User Perspective

Joe is a desktop user (Figure 3.1). He wants to take part in the desktop grid computing
infrastructure. He signups with the desktop grid service provider and downloads a
client to his desktop to contribute to the grid. The client learns the behavior of Joe
and based on his behavior at a given time, predicts the availability of Joe’s desktop.
The CPU cycles contributed by Joe’s desktop is recorded. These cycles can later be
used for paying Joe based on the business model used.

3.2.2 Desktop Grid Service Client Perspective

ABC, an organization, is in need of a set of machines (Figure 3.2), that can take care
of their CPU cycles and storage needs. ABC signs up with the desktop grid service
provider and a Service Level Agreement (SLA) is formed between ABC and the
desktop grid service provider on the availability of the grid and the way ABC is going
to be billed for the infrastructure provided. ABC is not aware of the participating
clients in the setup.

21

1: Joe Signs up with Portal

2: Joe Downloads the client

P2P Desktop Grid

------- 1------- 1III

1

3: Client Learns about the availability and participates in the Grid

4: The Job is pushed to the client, if predicted available

Figure 3.1: Desktop User

3.2.3 Desktop Grid Service Provider Perspective

The desktop grid service provider interacts with organizations like ABC and users
like Joe to provide a business model for both the interested parties to work together.
A desktop grid service provider hosts a web portal from which users can signup and
download the client software needed for a peer to join in the peer to peer cloud. At the
same time, organizations can signup and form a SLA with the provider. On forming
the SLA the organization is provided with a security key. This security key will be
used while submitting the jobs to the peer-to-peer cloud.

3.3 Challenges

Even though the technology is almost there for achieving the vision, the following
are the major hurdles on its path to reality.

As the system is composed of desktop nodes which are volatile, predictability
remains a major concern. Selecting the most reliable node out of all the available
nodes makes resource selection challenging. The number of participating nodes, can
grow exponentially over the time, making scalability another issue. Maintenance of
a system of this scale remains an interesting problem. Security of the system cannot

22

Organization ABC

P2P Desktop Grid

1: ABC signs up with desktop grid provider

2: Desktop grid provider gives ABC a secure key to submit jobs

3: SLA is formed between ABC and desktop grid provider

4: Job is submitted using the Secure key in the grid

T
IIII

-& à

5: Results of the job are then returned back to ABC

Figure 3.2: Grid Client

be ignored either. Security in this system has two dimensions to it. Security of the
desktop machines which are contributing to the grid should not be compromised. The
work-item running in the desktop system should not affect the state of the system.
On the other hand, as the work item is running in a remote untrusted environment,
making sure that the task is not corrupted by the environment, will also remain an
issue to look into.

3.4 Focus

This work will concentrate on building a scalable architecture, where resource match
ing is decentralized, with a special focus on resource selection. Resource selection
techniques such as first come first serve (random) and resource availability prediction
models will be studied in the current system and an effort will be made to come up
with an effective resource selection algorithm in a P2P environment.

23

Chapter 4

System Architecture

This chapter presents the overall VCC system architecture which is followed by a
description of the individual components of the system in a top-down approach. Sec
tion 4.1 presents an overview of the complete architecture. Section 4.2 lists and
briefly describes the different types of servers participating in the network. Section
4.3 describes the characteristics of individual components of P2P cloud with its char
acteristics.

4.1 Overview

The Voluntary Cloud Computing (VCC) system (Figure 4.1) has these logical com
ponents:

• Servers

- Management Server

- Job Server

- Monitoring Server

- Result Server

• P2P cloud

- Voluntary Cloud Computing (VCC) Client Software

• Job (Work-Unit)

Section 4.2 describes the functionality of the servers in detail. The characteristics
of P2P cloud and its components are described in Section 4.3.

24

Servers Cloud

<=>

Figure 4.1 : Overall view of the VCC System

The job (work unit) is in the form of a mobile agent [40]. When a resource is
interrupted in the middle of job execution, the inherent migrational capabilities of
the mobile agent can be used to migrate the job instance (scheduling unit of the job)
to another free resource. Section 4.3.2 describes the functionality of the mobile agent
in detail.

4.2 Servers

The servers are responsible for storing the definition of work unit (job server), moni
toring the progress of execution (monitoring server) and storing the results of execu
tion (result server). There can be an arbitrary number of job, monitoring and result
servers. There is a centralized management server which stores the information about
the job servers in the system.

4.2.1 Management Server

The management server is hosted by the desktop grid service provider. The man
agement server (Figure 4.2) stores the information of all the participating job servers
in the system. It stores the fqdn (fully qualified domain name) of job, organization
name and password corresponding to each job server. The details of management

Job S e r v e r

M o n ito r in g
S e r v e r

R e su lt S e r v e r

M a n a g e m e n t
S e rv e r

25

Figure 4.2: Management Server - Job Server Relationship

server are described in Section 5.2.1 (management server section in implementation
chapter). Whenever an organization wants to participate in the grid, it first signs
up through the management server and registers its list of participating job servers
with the management server. There is one management server in the system and the
relationship between management server and job servers is one-to-many and the re
lationship between the organization that uses the desktop resources and job servers is
one-to-many. Future work will study how to allow for multiple management servers.
The management server decides which job server can host jobs. Multiple manage
ment servers pose challenges with respect to trust.

4.2.2 Job Server

The job server maintains a repository of the jobs to be executed. When an organiza
tion wants to use the grid, it signs up with the management server and registers its
job server(s) with the management server. An organization can have one or more job
servers. A job server runs the resource selection steps (Section 5.2.2) to find a peer
node and submits the job to that peer node. The information of each job stored in the
job server is listed in Table 4.1.

4.2.3 Monitoring Server

An organization can have many monitoring servers. These are used to monitor the
jobs submitted by the job servers owned by the organization. The relationship be
tween job server and monitoring server is many to many. A job, when dispatched

26

Entity Description
jobJd Unique identifier of the job
job_name Name representing the particular job
constraints Hardware and software constraints required for exe

cution
expected-duration Expected time of running this job
codebase Location of the code base for the job
class_name Code representing the job in ‘codebase’ location
date_created Date when the job is created
date_modified Date when it was last modified

Table 4.1: Job Entities

from the job server, is embedded with the monitoring server and the result server ad
dresses. During the job’s execution, the mobile agent associated with that job sends
the status of execution (percentage that is completed) to the monitoring server at a
frequency that is predefined in the job implementation.

The monitoring server exposes a web service to which the VCC client software
sends regular updates.

void UpdateStatus(job_instance_id, percentage_completed)

j ob_ins t ance_id is the unique identifier assigned to the instance of the sched
uled job. percentage-completed denotes the percentage of the job that is com
pleted. A monitoring server expects the job instance to update its percentage of
completion at regular intervals.

4.2.4 Result Server

When a job is dispatched from the job server, it is provided with the address of one
monitoring server and one result server. After the execution of a job, the results are
sent back to the result server. The result server exposes a web service to store the
result of job execution.

void SendResult(job_instance_id, result)

j ob_ins t ance_id is the unique identifier assigned to the instance of the sched
uled job. result indicates the application specific result data that will be stored in
the database. The result of the job could be the number of prime numbers between
two natural numbers or data in XML form representing the result of the test case
execution. The result sending process is detailed in Section 5.4.3.

27

4.3 P2P Cloud

The P2P cloud is comprised of resources which act as the host for job execution. The
VCC client software is installed on each of these resources. The cloud as a whole
is responsible for resource discovery, machine availability prediction and work unit
execution. Section 4.3.1 describes the components of VCC client software, which
provides the functionality for the cloud.

4.3.1 VCC Client Software

This component is at the heart of the infrastructure. It is installed in every peer that is
taking part in the cloud. The instances of VCC client software form a self-organizing
network in which the resource discovery is fully distributed across the network.

Code Executor in Sandbox (Java Virtual Machine)

Monitoring and Prediction Engine

Resource Discovery
Module

Resource and Group
Availability data

Peer Communication Module

Underlying P2P Framework

Figure 4.3: Peer Architecture

The VCC client software (Figure 4.3) consists of the following modules:

28

1. Communication Layer

2. Resource Discovery

3. Monitoring Engine

4. Prediction Engine

5. Code Executor

Communication Layer: The communication layer provides the API for the top
layers (Resource Discovery, Code Executor, Monitoring Engine) in the VCC client
software to send/receive messages with other instances of the client software (peers)
and the servers. It is also responsible for the bootstrapping of a client. Bootstrapping
is the mechanism through which a peer joins the P2P network [16]. This involves
finding a member in a network, before joining the network. This layer’s implemen
tation uses JXTA framework which is described in detail in Chapter 5.

Resource Discovery: Resource discovery is done by querying the P2P network
for a resource (machine) with a particular <attribute_name, attribute-value> pairs
associated with it.1 The query is broadcasted within the P2P network. Software
on the matching resources respond to the peer from which the query originated.
From the replies received, a specified number of resources are selected. This num
ber is indicated by system parameter: resourceLimit. Each resource is sent a
AreYouIdleFor 'n' minutes message. The list of selected peers is input to
the resource selection algorithm which is executed to select the appropriate peer for
job execution. The implementation of resource discovery and resource selection al
gorithm is described in Section 5.3.3. We will interchangeably refer to resource and
the software on the resource involved in the communication.

Monitoring Engine: The monitoring engine module records the system parame
ters such as memory usage, CPU usage percentage and user activity to a datastore
(lightweight flat-file database) within the peer, at a predefined frequency. The pa
rameters to monitor for and the monitoring frequency is specified in an XML file.
(Listing 4.1)

’By design we support multiple attribute pairs, however, we have implemented the design for only
one pair (OS Name, Value).

29

<monitors frequency="20000"> <!— in milliseconds — >
<monitor name="cpu"/>
cmonitor name="memory"/>

</monitors>

________________________ Listing 4.1 : Monitor Xml_________

Along with the parameters specified in the XML file (Listing 4.1), the i d l e
t im e of the system is also recorded. The i d l e t im e represents the number of
seconds since the last keyboard or mouse activity is sensed in the desktop. These
parameters, i d l e tim e , CPU usage percentage and memory usage are stored in a
local lightweight database and are used by the prediction engine to predict its avail
ability.

The Monitoring Engine is also used when the node is executing a job. When the
machine is interrupted by user activity, based on the migration policy of the job, it
triggers an event in the Code Executor, which starts the migration process.

Prediction Engine: The data from the local datastore, populated by the monitoring
engine, is used as the dataset for learning about the system’s behavior. As prediction
is a major focus of this thesis, the prediction engine is covered in detail in Section
4.3.3

Code Executor: The code executor module is responsible for the execution of the
job in the local machine. The code executor’s responsibilities as pointed out in Sec
tion 3.3 include:

1. It should provide a sandbox for the code to execute and should protect the
system from malicious code.

2. The host system should not corrupt the results of the executing job either in
tentionally or unintentionally.

This is achieved by executing the job in a virtual machine [36]. The virtual ma
chine can either be system virtual machine or process virtual machine [36]. We use
a process virtual machine instead of a system virtual machines, as installation and
running system virtual machines require a lot of memory and processing power.

4.3.2 Job (Work Unit)

A mobile agent [40] is a software module which moves from node to node au
tonomously and is executed at each node it moves to. Components of the work unit

30

are encapsulated in a mobile agent to form a job. The mobile agent is responsible for
the following:

• Migration

• Communication with Monitoring server

• Reporting of results to Result server

Migration: When a node is interrupted by a user activity during job execution, the
monitoring engine signals to the Code Executor that the system has been interrupted.
This causes the mobile agent to start the migration process. The steps involved in the
migration process are the following:

1. The mobile agent’s execution is paused.

2. The mobile agent uses the resource discovery layer’s API to find a free node
for job execution.

3. Once a free node is identified, the mobile agent migrates itself to that node and
resumes its execution from there.

Communication with Monitoring server: The mobile agent when dispatched from
the job server is embedded with monitoring server and result server address. At a
predefined interval, the mobile agent sends its status of execution to the monitoring
server, during job execution. It consumes the web service explained in Section 4.2.3
to signal the monitoring server of its execution status.

Reporting of Results to Result server: Once the job has completed its execution,
the mobile agent reports the result of the job to the result server. This is sent by using
the web service described in Section 4.2.4.

Job Cleanup: The code executor subsystem takes care of collecting the job from
the node’s main memory. However if the job created files in the host machine during
its execution, it is the job’s responsibility (through its mobile agent) to delete these
files on termination.

31

4.3.3 Prediction Engine - Dedicated and Non-dedicated Desktops

One of the goals of the volunteer computing architecture is to optimize the usage of
desktop resources. These resources can be either individually owned (desktop ma
chines at office) or used by a group of people (university lab machines). In the case
of machines that are individually owned, each machine’s usage pattern serves as the
dataset to predict its availability in the future. However, in a setup like a university
lab, where the machines are not assigned to a single person, the total lab’s usage
pattern becomes an important criteria for prediction along with the individual ma
chine’s usage pattern. Therefore during the prediction of such machine’s availability,
quantification of the group (lab) usage, becomes significant.

Figure 4.4: Dedicated vs Non-dedicated Desktops

The prediction engine is designed to consider the lab’s behavior into account for
prediction. In the rest of the thesis, a university lab is referred to as group. An
organization can consist of multiple groups (The university can have multiple labs).
Each group can have a pattern of resource availability, as can each resource in a
group.

The peer-to-peer (p2p) system is used to classify the network into groups (pi, g<2

... gn) where each group represents group of resources with a common usage pat
tern (Figure 4.4). The resource request query is sent to the network from a resource,
R m aster-2 All the matching resources will respond to this query. The matching re
sources can be from different groups. The identity of the matched resources as well

2 When there is a job to be executed, the resource request query is sent to the network from the job
server. The resource request query is also also sent when a machine executing a job is interrupted and
is searching for a free resource to migrate the job.

32

as the following parameter values are sent to R master■

• Resource Availability Factor (r a f)

• Group Availability Factor (ga)

• Total Number of Resources in a group (totgroup)

The rest of the section describes these parameters in more detail.

Resource Availability Factor: The resource availability factor (raf) denotes the
probability of an individual machine’s availability at a given time of the day in a
week. It is calculated from the historical data on the resource’s availability at that
time of the day in a week. The historical data is collected by updating the resource’s
availability every 15 minutes in a local database table (Table 4.2). The table has a
total of 672 rows (4 quarter hours * 24 hours * 7 days) and has the data about the
resource’s availability at a given time of the day in a week. The resource availability
factor is calculated every week based on the previous week’s data.

Entity Description
weekday A number representing the current week of the

day
monitor.time Time for which the data is collected
num_of_samples Number of samples collected till date for this

time of the day in the week
num_of_available Number of samples for which the resource was

available (not busy due to user activity)
last_updated_duration Last modified time for this row of the table

Table 4.2: Resource Availability

Resource Availability Factor (raf) at a given time of the day in a week (t) is
given by the following:

N ava ilab le if)raf(t) = (4.1)
N total i f)

where N avaiiaue is number of samples at which the resource was available (not busy
due to user activity) in the particular time of the day in a week and Ntotai is the total
number of samples considered for that time of the day in a week (num_of .s a m p le s
from Table 4.2).

33

Group Availability: The group availability quantifies the total group availability
at a given time of the day in a week (t). This is represented by the following:

ga(t) = currentga(t) - avgb(t) (4.2)

where current ga{t) (Equation 4.3) denotes the number of resources that are currently
idle (not busy due to user activity) and avgb(t) (Equation 4.4) represents the average
number of resources that are busy at the given time of the day in a week, t. Like
resource availability factor (r a f), the avgb(t) is calculated weekly. The avgb(t) of
a group is collected by updating the group’s availability data every 15 minutes and
storing this information in a local datastore (Table 4.3). The table has a total of
672 rows (4 quarter hours * 24 hours * 7 days) and has the data about the group’s
availability on a specific time of the day in a week.

A resource can be busy when the user is working on the machine (user activity).
The resource can also be busy because it is currently executing a job. When the
state of a resource changes (from idle to busy or busy to idle) the state change is
broadcasted within the group. Thus each resource in the group at a given point of
time will have the data on the number of machines which are currently busy and
the ones which are currently idle. This data is used to calculate the current group
availability (currentga), by every resource, during resource selection.

currentga = tot - (Nua + Nje) (4.3)

where tot denotes the total number of resources in the group, N ua represents the num
ber of resources that are busy because of user activity and Nje denotes the number of
resources that are busy due to job execution.

As discussed above, each state change and the reason for the state change of a
resource within a group is recorded for every group member. A weekly user behavior
table of the group is recorded in the format specified by Table 4.3.

Every 15 minutes, the current Nua (number of resources that are busy due to
user activity) is determined and is used to calculate avgb. Thus avgb is based on the
average calculated in the previous time period and is the component that gives the
value for previous week’s availability.

Nua + (old.avgb * n u m s f sam ples)
aV9> = --------- num'-o f sam ples + 1---------- <4'4)

where o ld svg b represents the average value of number of busy node until the
previous week.

34

Entity Description
weekday A number representing the current week of the

day
monitor_time Time for which the data is collected
num_of_samples Number of samples collected till date for this

time of the day in the week
last_updated_duration Last modified time for this row
average_ua Average number of resources that are busy be

cause of user activity (avgua)
total-machines Total number of machines which have broad

casted its status

Table 4.3: Group Availability

Probability of Resource Availability: The three values explained above (r a f , ga
and tot .machines) are sent to Rmaster- Rmaster applies the following formula to
calculate the probability of the resource availability.

P resource-availability (fGjf(t) * gait)') (4.5)

where r a f (t) represents resource availability factor (Equation 4.1) and ga(t) gives
the group availability value (Equation 4.2).

In the case of dedicated desktops, ga(t) is considered to be 1. There the formula
in case of dedicated desktops become,

resource-availability = r a f {t) (4.6)

35

Chapter 5

Implementation

This chapter presents the implementation details of the Voluntary Cloud Computing
(VCC) system. Section 5.1 provides a brief introduction to JXTA and Aglets. Section
5.2 presents the implementation of management, job, monitoring and result server
and Section 5.3 describes the implementation of the client. The lifetime of a job is
discussed in Section 5.5.

5.1 Background

The VCC system is built over the peer-to-peer (P2P) framework of JXTA. It uses
the decentralized resource discovery mechanisms of JXTA to find the peers. JXTA
along with its components is described in Section 5.1.1. Mobile agents contribute to
the migratory behavior of the jobs in the VCC system. The Aglets framework [24]
is used in the VCC system to provide the mobile agent functionality. The Aglets
framework is described in Section 5.1.2.

5.1.1 JXTA

JXTA was developed by Sun Microsystems to support P2P application development
[21]. It is a set of open, generalized, P2P protocols that allow any networked device
to communicate and collaborate [21]. These protocols are language independent and
multiple implementations exist for different languages or environments such as Java,
C and the .Net framework. The name JXTA is derived from the word juxtapose,
meaning to place two entities side by side in proximity. Sun recognized that P2P
solutions would always exist alongside the client/server solutions and hence the name
[41].

36

JXTA Architecture and Components

Third Party
Applications

Sun JX T A
Applications JX T A Shell

3rd Party

Security

PeerGroup

Sun Services
Presence, etc. f O g v j g s

Figure 5.1: JXTA Architecture [27]

A JXTA architecture [27] is composed of three major layers:

1. JXTA Core: The JXTA core consists of building blocks to enable key commu
nication for P2P applications. This includes components that enable discovery,
communication, creation of peer and peer groups.

2. Services Layer: Network services in JXTA are the common and desirable
components in a P2P network. These services provide additional functional
ity that may not be absolutely necessary for a P2P environment to operate.
Examples of network services include searching of resources and indexing of
advertisements, protocol translation, authentication and Public Key Infrastruc
ture services.

3. Applications Layer: The user programs reside in the application layer. Ex
amples of applications include P2P instant messaging, document and resource
sharing, distributed auction systems and many others.

37

JXTA Concepts

The JXTA network is composed of set of a interconnected peers. A peer can be any
device, from a sensor to a supercomputer. The peers are connected by a suitable
networking protocol such as TCP/IP, Bluetooth, GSM, etc.

Every peer provides a set of services and resources1 which is made available to
other peers. JXTA peers advertise their services and resources through advertise
ments. Advertisements are XML documents that enable other peers on the network
to discover resource and services.

Peers self-organize into peer groups. A peer group is a set of peers that leverage
common services within that group for a common purpose. JXTA uses sockets and
pipes to send message to one another.

The rest of this section briefly discusses the basic JXTA concepts in more detail.

Peers: A peer is a networked entity which implements one or more JXTA protocols.
Each peer operates independently and is identified by a peer identifier.

Inter-peer communication does not always happen in a direct point-to-point way.
Intermediate peers may be used to route the messages to peers that are separated
due to physical network boundaries (e.g., intermediary peers can be used to route
messages across the barriers such as firewall, NAT [19] and proxies).

JXTA peers are categorized as follows:

• Minimal-edge Peer. These peers implement only the required core JXTA ser
vices and can rely on proxy peers (described below) for additional services.
Typical minimal-edge peers include sensors, home automation devices, etc.

• Full-edge Peer. These peers implement both the core and standard JXTA ser
vices and can participate in all of the JXTA protocols. These peers form the
majority of peers on JXTA network and includes desktop machines, servers,
etc.

• Super-Peer. These peers implement and provision resources to support the
deployment and operation of a JXTA network. There are three key JXTA super
peer functions.

'Services as described earlier provide additional functionality to P2P environment. Resources are
the entities (file, CPU cycles, memory) that a peer shares in the P2P network. A JXTA peer can
provide both services and resources.

38

- Relay: This function is used to route message across a private domain
crossing the barrier of firewall or NAT [19]. Only peers which are unable
to directly make/receive connections will require a relay.

- Rendezvous: A peer when configured as a Rendezvous maintains global
advertisement indexes (an indexed list of the advertisements in the net
work) and assists edge peers (minimal and full-edge) with advertisement
searches. It also handles message broadcasting.

- Proxy: A proxy peer is used by minimal-edge peer to get access to all net
work functionalities. The proxy peer translates and summarizes requests,
responds to queries and provides support functionality to minimal-edge
peers.

Peer Group: A peer group is a collection of peers that have agreed upon a common
set of goals. Peers of similar interests form this self-organizing group. Each group is
identified by a peer group identifier. A group can either allow any peer to join or it can
be restricted to a peer which possesses the required credential to gain membership.
A peer can belong to more than one peer group simultaneously. Peer groups are
generally established to create a confined set within the global collection of peers.
This confined set is formed to restrict the messages broadcasted only within that
particular set. NetPeerGroup is the default peer group of JXTA to which every
peer joins.

Network Services: Peers cooperate to publish, discover and invoke network ser
vices. There are two major network services. Peer Services, which operate at the
peer level and Peer Group Services, where multiple peers collaborate and form a
service. JXTA defines a set of core peer group services. These are the following:

• Endpoint Service - The endpoint service is used to send/receive messages in a
group between peers.

• Resolver Service - The resolver service is responsible for sending query re
quests to other peers. The query request can be to find advertisements, deter
mine the status of a service or the availability of a particular peer.

These core peer group services are implemented by every peer that joins the peer
group. The standard peer group services are the following: Discovery Service, Mem
bership Service, Access Service, Pipe Service and Monitoring Service.

39

Pipes: A pipe is an abstracted message transfer mechanism used for asynchronous,
unidirectional communication. JXTA peers use pipes to send messages to one an
other. Pipes offer two modes of communication: point-to-point for one to one com
munication and propagate for one to many (broadcast) communication. Secure Uni
cast Pipes provide a secure and reliable communication channel over the pipes. The
pipes are low level programming abstractions for JXTA communication. However,
for reliable message exchange between the peers, JxtaSockets and JxtaBiDiPipe ab
stractions are used.

Advertisements: All JXTA resources such as peers, peer groups, pipes and ser
vices are represented as advertisements. Advertisements are XML documents, which
the JXTA protocols use to describe and publish the existence of a peer’s resource.
A peer discovers resources by searching for a corresponding advertisement by first
searching its local cache and then remotely. An advertisement is associated with
an expiry time after which it becomes invalid. The advertisement has be to repub
lished to extend its lifetime. The different advertisements in a JXTA system are Peer
Advertisement, Peer Group Advertisement, Pipe Advertisement, Rendezvous Adver
tisement, Peer Info Advertisement etc. Listing 5.1 shows a pipe advertisement.

Listing 5.1: Pipe Advertisement
<?xml version="1.0"?>
<!DOCTYPE jxta:PipeAdvertisement>
<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">

<Id> urn:jxta:uuid-59616261646162614E5040... </Id>
<Type> JxtaUnicast </Type>
<Name> TestPipe </Name>

</jxta:PipeAdvertisement>

ID: Peer, peer groups, pipes and other JXTA resources are uniquely identified using
ID. Uniform Resource Names (URN) [28] are used to identify a resource. URNs are a
form of Uniform Resource Identifier that are intended to serve as persistent, location-
independent, resource identifiers. Identifiers are used in JXTA to give its resources a
common naming scheme independent of the underlying protocol.

5.1.2 Aglets

A mobile agent [40] is a software module which moves from node to node au
tonomously and gets executed at each node it moves to. Aglets [24] is a mobile agent

40

http://jxta.org

framework which enables users to create and execute mobile agents. The origin of
the name is from agents and applets. IBM developed Aglets in an effort to bring in
the clean design of applet programming model to the mobile agent world. Over time,
Aglets has been moved to the open source community. The basic elements of Aglets
and its life cycle is described in the rest of this section.

Basic Elements

The aglet model defines a set of abstractions and behavior to leverage the mobile-
agent technology in a wide-area network like Internet. These abstractions [24] are
the following:

Aglet: An aglet is a mobile Java object that visits aglet-enabled hosts (hosts with
the aglet software installed) in a computer network. It is autonomous, since it runs in
its own thread of execution after arriving at a host system and reactive because of its
ability to respond to incoming messages.

Proxy: A proxy is a representative of an aglet. It is an interface which serves
as a shield for the main aglet object. The purpose of this interface is to provide a
mechanism to control and limit direct access to aglets.

Context: A context is an aglet’s workplace. It is a container for the aglet, that pro
vides a means for maintaining and managing running aglets in a uniform execution
environment where the host system is secured against malicious aglets.

Message: A message is an object exchanged between aglets. It allows for syn
chronous as well as asynchronous message passing between aglets.

Identifier: An identifier is bound to each aglet. This identifier is globally unique
and immutable throughout the lifetime of the aglet.

Operations of an Aglet

An aglet can be created in two ways: either it can be newly instantiated or it can be
cloned from an already existing aglet. An Aglet can dispatch itself from one host to
another and a host can deactivate a currently running aglet. The fundamental aglet
operations (Figure 5.2) are as follows:

41

Context A Context B

Figure 1 Aglet Life-Cycle Model

Figure 5.2: Fundamental operations of Aglet [24]

Creation: A new aglet is created in this operation. It is assigned an identifier,
inserted into a context object and initialized. As soon as it is initialized the aglet
starts executing.

Cloning: The cloning of an aglet results in the creation of an identical copy of
the original aglet with a different identifier. Once an aglet is cloned its execution is
started from the beginning.

Dispatching: Dispatching refers to the migration of an aglet from a source con
text to a destination context. It is referred as “pushing” an aglet to a new context.
Dispatching is initiated by the context that is currently running the aglet.

Retraction: Retraction migrates an aglet from its current context to the context
from which the retraction was requested. During retraction the executing aglet is
“pulled” from its current context by the new context.

Activation and Deactivation: The deactivation of an aglet temporarily halts its
execution and store the aglet in a secondary storage. Activation of an aglet will
restore it in a context.

42

Disposal: The disposal of an aglet halts the current execution and removes it from
its current context.

Messaging: Messaging between aglets involves sending, receiving and handling
messages.

5.2 Servers

The functionality of servers in the Voluntary Cloud Computing (VCC) system are
exposed as web services. Apache Tomcat web server [7] is used to host these web
services and Apache Axis2 [2] has been used to develop and deploy these services.
Since web services are built upon widely accepted Internet technologies and sup
ported by most vendors, it is the natural choice for expressing the APIs of the server.

Section 5.2.1 presents the implementation details of the management server. The
services hosted in the job server and its functions are discussed in Section 5.2.1.
Section 5.2.3 and Section 5.2.4 describes the implementation of the monitoring server
and the result server respectively.

5.2.1 Management Server

The management server as described in Section 4.2.1, stores the information of all
the participating job servers in the system. Table 5.1 lists the entities stored in the
management server for each job server.

Entity Description
id
jobservername
organizationname
password

Unique identifier of the jobserver
The fully qualified domain name (fqdn) of jobserver
The organization to which the job server belongs to
The password which will be used for job scheduling

Table 5.1: Management Server Entities

The services hosted in the management server include the following:

InsertJobServer

Signature:
boolean insertJobServer(

43

String server,
String organization,
String password)

This service takes as input the server name, organization and password, inserts the
data into the management server table (Table 5.1) and returns true/false based
on whether the operation was successful. It is consumed by the web portal which
administers the management server. (The web portal was discussed in Section 3.2.3)

Authenticate

Signature:
boolean authenticate(

String jobServer,
String password)

This service is consumed by peers when determining if to accept a job from other
peers. Every time a job is scheduled in a peer, the job server name and the password
is passed on to the peer as the credentials along with the work unit. The peer before
executing the job, calls the authenticate service to validate the credentials. This
validation is done to make sure that anonymous peers cannot schedule jobs in the
system.

5.2.2 Job Server

The job server maintains information on the jobs to be executed. It is the repository
of the jobs that is scheduled in the VCC system. Table 5.2 lists the data stored in the
job server.

Insertjob

Signature:
int insertJob(

String url,
String job_name,
String constraints,
String className)

44

Entity Description
jobJd Unique identifier of the job
job-name Name representing the particular job
constraints Hardware and software constraints required for exe

cuting
expected-duration Expected time of running this job
codebase Location of the code base for the job
class_name Code representing the job in ‘codebase’ location
date_created Date when the job is created
date-modified Date when it was last modified

Table 5.2: Job Entities

This service is used to submit the job information to the job server. The url parame
ter denotes the codebase where code can be accessed using http. The contraints
parameter represents the hardware and software configuration under which the job is
expected to run. The className parameter is the class containing the job in that
location specified by the url parameter. This service returns the job identifier of the
newly submitted job. The insert job service is used to store the definition and the
implementation details of the job.

Schedulejob

Signature:
int schedulejob(int jobld)

This service creates the instance of a job (defined as the schedule unit of the job)
that is submitted by the insert job service and schedules that job instance. This
service is consumed to create an instance of the job that can be scheduled in a peer.
When the schedulejob service is called with the jobld, an entry representing
the job is inserted in a table where each row’s fields are described in Table 5.3 with
the isScheduled’s value as false. The scheduling engine (described in the next
section) schedules entries in this table.

Scheduling Engine

The Scheduling Engine runs as a separate process in the server. It polls the
joblnstance table (Step 2 in Algorithm 1) to check for entries that have the
joblnstanceld attribute with value not equal to -1.

45

Entity Description
id Unique identifier of job instance
jobJd Job denoted by this job instance
job_name Name representing the particular job
isScheduled Boolean value representing whether the job instance

is scheduled yet
machineinfo Field containing the status of the scheduled job
resultlnfo Field containing the result of the job

Table 5.3: Job Instance Entities

If any entry is found with a positive value then the job is scheduled in the avail
able peer selected by the resource discovery module in Section 5.3.3. The logic of
scheduling engine is listed in Algorithm 1.

Algorithm 1 Scheduling Engine
l: while true do
2: joblnstanceld = searchJobInstancesTable()
3: if joblnstanceld = = -1 then
4: sleep for 1 second
5: goto step 1
6: end if
7: status = scheduleJobInstance(jobInstanceId)
8: end while

Step 7 in Algorithm 1 is described in detail in Section 5.3.3.

5.2.3 Monitoring Server

The monitoring server exposes the web services to which peers can send regular
updates on the job executions status. The status of all the running jobs in the system
can be retrieved by querying the monitoring server at any specific time.

UpdateStatus

Signature:
boolean updateStatus(

int joblnstanceld,
String peerName,
int percentage_completed)

46

This service is used by peers to update the status of the job instance which is currently
executing. The job decides when to send the updates to the monitoring server. The
service returns true/false based on whether the update was successful.

GetJoblnstanceStatus

Signature:
String getJoblnstanceStatus(int joblnstanceld)

This service is consumed by monitoring processes to monitor the job instance execu
tion status. The service returns the status information of the job instance execution
which is represented by joblnstanceld. The return value comprises of the peer
in which the job is executing and the percentage of completion of the job.

5.2.4 Result Server

The result server uses the same table as that of monitoring server to store its data.
(Table 5.3)

UpdateResult

Signature:
int updateResult(

int joblnstanceld,
String peerName,
String result)

This service is used by peers to update the result of the job instance which is execut
ing in it. The job decides when and what to send to the result server as its result. The
service returns t rue/f alse based on whether the update was successful.

GetJoblnstanceResult

Signature:
String getJoblnstanceResult(int joblnstanceld)

This service is consumed by applications that monitor the job results. The service re
turns the string which represents the result obtained by the server on the job instance,

47

represented by the joblnstanceld. If there are no results yet, the service returns
a blank value which indicates that the job is yet to receive any results.

5.3 VCC Client Software

The VCC client software is installed in every peer that is taking part in the grid. This
section describes the implementation of the VCC client software.

Section 5.3.1 presents the initialization steps of the software. The components of
monitoring engine is discussed in Section 5.3.2. Section 5.3.3 describes the resource
discovery module of the software. Mobile agent subsystem is presented in Section
5.3.4. Section 5.3.5 introduces the communication module of the system and Section
5.3.6 describes broadcast message listener and broadcaster modules.

Two versions of the VCC client are implemented, one for Windows and one for
GNU\Linux. The VCC client has been developed using Java, therefore, there is
no code change in most of the modules, except for the monitoring engine. This is
described in Section 5.3.2.

5.3.1 Initialization

During initialization, the VCC client software bootstraps the JXTA client and starts
all the client modules (monitoring, discovery and agent subsystem) in separate threads.
Algorithm 2 lists all the steps in the initialization process.

Algorithm 2 Initialization o f a peer using VCC Client
1: Bootstrap the JXTA client and join the network
2: Join the JXTA peergroup ‘dgpeer’
3: Form a custom advertisement containing the attributes of the newly joined peer

and publish it in the peergroup, ‘dgpeer’
4: if peer is non-dedicated then
5: Join its corresponding subgroup
6: end if
7: Start the monitoring engine in a separate thread
8: Initialize the discovery module
9: Start the JXTA message listener in peergroup, ‘dgpeer’, in a separate thread

10: Initialize Mobile Agent subsystem
li: if peer is non-dedicated then
12: Start the status broadcaster thread on the subgroup
13: Start the status broadcast message receiver thread
14: end if

48

Bootstrapping is the technique used when a client joins the network. This in
volves finding a current member in the network. The network bootstrapping of the
client is done using JXTA bootstrapping techniques (Step 1 in Algorithm 2). On
initialization the peer joins the default NetPeerGroup of JXTA. dgpeer is the
custom group created, in which all the peers are expected to join, so that it can par
ticipate in the cloud.

The peer is seeded (given as the input) with the IP of a rendezvous peer which
caches the advertisement of the group, dgpeer. This helps the peer to join dgpeer
(Step 2 in Algorithm 2). The IP of the rendezvous peer is given as the input when the
JXTA client initializes in the client2. The rendezvous peer also caches advertisements
of other peers in the network.

After joining the network, the peer broadcasts its information to the JXTA peer
group. This is done by constructing a Custom JXTA Advertisement (Listing 5.2)
with its attributes (name, OSName, IP) and then publishing it to the dgpeer group
(Step 3 in Algorithm 2).

2This is currently a fixed BP address of a peer that runs the JXTA client as a rendezvous peer. In the
future the peer can be configured to get the rendezvous peer IP address from a web page that stores the
list of rendezvous peers of the system or through other bootstrapping approaches discussed in Knoll
et.al.[22]

49

________________ Listing 5.2: Listing of CustomAdvertisement________________
<jxta:DGGridAdvertisement xml:space="default"
xmlns:jxta="http://jxta.org">
<ID>

urn:jxta:jxta-Null
</ ID>
<name>

CustomAdvertisement
</name>
<OSName>

Mac OS X
</OSName>
<OSVer>

10.4.11
</OSVer>
<osarch>

i386
</osarch>
<ip>

129.100.179.233
</ip>
<hwarch>

i386
</hwarch>
<hwvendor>

"Apple\ Computer,\ Inc."
</hwvendor>
<sw/>
</jxta:DGGridAdvertisement>

After the c u s to m a d v e r t is m e n t is published, if the client is a non-dedicated
desktop, it joins the JXTA peergroup (custom group) formed for the group of ma
chines to which the resource belongs to. The name of the custom group is given
during the installation of the client in the peer (Step 4-6 in Algorithm 2).

The monitoring engine is started in a separate thread. The implementation de
tails of monitoring engine is discussed in Section 5.3.2 (Step 7 in Algorithm 2). The
discovery interface is also initialized and it is described in Section 5.3.3 (Step 8 in Al
gorithm 2). For inter-peer communication, JXTA message listener is initialized and
is presented in Section 5.3.5 (Step 9 in Algorithm 2). The mobile agent subsystem is
also initialized and is discussed in Section 5.3.4 (Step 10 of in Algorithm 2).

Finally, if the resource is a non-dedicated desktop, the custom group broadcast
listener and message broadcaster objects are initialized for the use of prediction en-

50

http://jxta.org

gine. This is described in detail in Section 5.3.6 (Step 11-14 in Algorithm 2).

5.3.2 Monitoring Engine

The monitoring engine is responsible for storing the system parameters (idle, CPU
usage, memory usage) in a local database, which is later used by prediction engine to
determine the availability of the system at a particular time. The monitoring Engine
is developed in C++ and Java. Communication is through JNI (Java Native Interface).
The monitorhelper module of the monitoring engine that query the system parameters
is developed in C++ as a shared library. This module is platform specific and two
versions of the monitorhelper module are developed, one for windows and one for
GNU\Linux.

Figure 5.3: Peer Architecture

The modules of the monitoring engine (Figure 5.3) are the following:

1. XmlParser

2. SqlHelper

3. MonitorHelper

51

XmlParser: The monitoring engine assumes that the input is in the form of an
Xml file, which contains all the parameters that is to be monitored and recorded in
the local database. (Listing 5.3)

________________________ Listing 5.3: Monitor Xml________________________
cmonitors frequency="20000"> <!— in milliseconds — >

<monitor name="cpu"/>
cmonitor name="memory"/>

</monitors>

XmlParser processes the input xml file and then it provides the parameters to
MonitorHelper class for monitoring. The Xml parsing is achieved by using XPath
[15] functions in Java.

SqlHelper: The monitoring engine of VCC stores the the monitored data in a local
database. SQLite [6] database is shipped as a part of the DGPeer component. SQLite
is a software library that implements a self-contained, serverless, zero-configuration
(with no initial configuration), transactional SQL database engine. This database is
used for storing the monitored system parameters. The SqlHelper module provides
the API (Application Programming Interface) for the rest of software to transact with
the database. The schema of the database is presented in the Listing 5.4.

__________________________ Listing 5.4: Table.sql__________________________
CREATE TABLE task(

timestamp DATE,
cpu BIGINT,
mem BIGINT,
idle INT

) ;

CREATE TABLE task_avg(
weekday INT,
monitor_time DATE,
num_of_samples BIGINT,
lastupdated DATE,
cpu_average BIGINT,
mem_average BIGINT,
idle_average BIGINT

) ;

CREATE TRIGGER insert_task_timestamp AFTER INSERT ON task

52

BEGIN
UPDATE task SET timeStamp = DATETIME('NOW', 'localtime')
WHERE rowid = new.rowid;

/* * Increment the number of samples for the given time
of the day in a week */

Update task_avg
set num_of_samples = num_of_samples + 1
where weekday = strftime("%w", 'now')
and monitor_time =
strftime("%H:%M:00", 'now', 'localtime');

/* Calculate the average parameters and update the
task_avg table for the given time
of the day in a week */

Update task_avg
set lastupdated = DATETIME('NOW', 'localtime'),
cpu_average =

{(cpu_average * (num_of_samples-l)) + new.cpu)
/ num_of_samples,

mem_average =
((mem_average * (num_of_samples-l)) + new.mem)
/ num_of_samples,

idle_average =
((idle_average * (num_of_samples-l)) + new.idle)
/ num_of_samples

where weekday = strftime("%w", 'now')
and monitor_time
= strftime("%H:%M:00", 'now', 'localtime');

END;

The t a s k table and t a sk .a v g table are the tables that are involved in recording
the monitoring information. The system parameters are inserted into the t a s k ta
ble in regular intervals (m o n ito r_ f re q u e n c y from XmlParser). The t a s k .a v g
table has a fixed number of rows (m o n i to r .f re q u e n c y in minutes * 24 hours
* 7 days) that stores the average system usage parameters and the average system
availability data for a given time in a day of the week.

Every time an insertion is made into the t a s k table, the trigger
i n s e r t _ t a s k _ t i m e s t a m p is executed which calculates the average system us
age and the average number of samples in which the system was idle for the given
time of the day of the week. The calculated values are then updated in t a s k .a v g

53

table3 by the trigger for the given time of the date in a week. In the Listing 5.4
the queries “Update task_avg” calculates the average system usage and the
number of samples and updates the task_avg table. The weekday field and
monitor_time field of task_avg table is used to determine which row is up
dated in task_avg table, when the rows are inserted in task table. The task table
records the system parameters at a particular point of time, where as the task.avg
table stores the average system usage (cpu.average and mem_average) and av
erage system availability (idle_average) at a given point of time in the week.

MonitorHelper: The MonitorHelper component is responsible for monitoring the
system parameters. As Java byte code runs in its own virtual machine (JVM), which
imposes security constraints on the executing code, it is not possible to query the
system parameters, such as CPU and memory usage from Java directly. Therefore, a
native code module is developed for Windows and another module is developed for
GNU\Linux to query the system parameters. In Windows, the Win32 API is used
along with VC++ to implement this module and is compiled into a dynamic-link
library (dll) file. In GNU\Linux, glibtop library is used with GCC for imple
mentation and the code is compiled into a shared object (so) file. This native code
is interfaced with Java using JNI (Java Native Interface). Based on the operating
system in which the client is running the module, MonitorHelper will load the
corresponding native library to gather the system parameters.

The native code interface is also made available for the other modules. This
interface is queried during job execution, by the agent subsystem (Section 5.3.4), to
check whether there is any user activity.

5.3.3 Resource Discovery

Resource discovery in VCC is achieved by using JXTA’s advertisement dis
covery functions. The algorithm for resource discovery is listed in Algorithm
3. Whenever there is a new job that has to be scheduled in the grid, the job
server, reads the constraints corresponding to the job and then queries the group
dgpeer for the custom advertisements (Listing 5.2). This is achieved using
JXTA’s advertisement search functions getRemoteAdvertisements and
getLocalAdvertisements (Step 1 and Step 3 in Algorithm 3). From a JXTA
peer, a remote advertisement query is sent to discover the advertisements. After

3The task.avg table is initialized by filling it with zero values for all the time slots in the whole
week, to make the update query possible.

54

sending the advertisement query the peer waits (Step 2 in Algorithm 3) for the
local cache to be filled with the advertisements sent in reply to this query. Then the
local cache is queried (Step 3 in Algorithm 3) to get the latest advertisements in the
local-advertisement_collection object. The advertisements returned can
be of different types (SocketAdvertisement, PipeAdvertisement,
ServiceAdvertisement, GroupAdvertisement,
CustomAdvertisement etc). Out of these advertisements, advertisements
of type CustomAdvertisement are filtered out (Step 5 in Algorithm 3) and
checked whether they have the same <attribute_name, attribute_value> pair as that
of the constraints (Step 6 in Algorithm 3). If the constraints are satisfied the peer
corresponding to the CustomAdvertisement is considered for job execution
(Step 7 in Algorithm 3).

After the custom advertisements are filtered based on the required constraints
(Step 7 in Algorithm 3), each peer is queried on whether it is available for job exe
cution. This is done by getting the prediction parameters (Section 5.3.7) from each
peer which has been identified by the custom advertisement (Step 15 in Algorithm
3). The probability of availability of each peer is calculated using the Equation 4.5 in
Section 4.3.3(Prediction) and is stored in a peer array (Step 16 in Algorithm 3).

Once the peer array is formed, a reservation request is sent to each peer in the
decreasing order of the peer’s probability value (Step 23 in Algorithm 3). If the
reservation is successful then the current peer is chosen as the discovered peer and is
selected for job execution (Step 24 in Algorithm 3).

5.3.4 Mobile Agent Subsystem

The aglet mobile agent subsystem provides the necessary functionality for a job to
execute and migrate. It also exposes an Application Programming Interface (API)
for other modules in the system to control the behavior of the agent system.

The mobile agent is initialized by setting DGPeerCont ext Listener as
the context listener for the subsystem. The context listener in aglets, con
tains the event listeners agletActivated, agletArrived, aglet Cloned,
agletCreated and agletDeactivated as methods, which are called during
various stages in the lifecycle of Aglets (For example: agletArrived is called
before the aglet is executed in the subsystem).

Listing 5.5 presents the data structure in Mobile Agent system that is used to store
the details corresponding to the currently executing aglet. The peer dispatching the
aglet is also expected to send the values for the data structure (Listing 5.5).

55

Algorithm 3 Resource Discovery in VCC Client - getPeer function
1: searchRemoteAdvertisementsFromDGPeerGroupO;
2: Sleep for 5 seconds {Give time for jxta to query the advertisements and fill its

local cache}
3: local_advertisement_collection = discoveredAdvertisements();
4: for every local-advertisement in locaLadvertisement_collection do
5: if typeof(local_advertisement) == CustomAdvertisement then
6: if satisfyConstraints(constraints, local-advertisement) then
7: Insert it in the found-advertisements object
8: end if
9: end if

10: end for
11: peer_array = array ();
12: for every advertisement in found-advertisements do
13: connection = connectTo(advertisement.peerld)
14: if connection was successful then
15: Get the prediction parameters from the peer
16: Calculate the probability value of the peer availability
17: Insert the peer in peer_array in decreasing order of the probability value
18: if peer_array.size > 20 then
19: exit the for loop
20: end if
21: end if
22: end for
23: for every peer in peer_array do
24: reservation = reserve(peer);
25: if reservation is successful then
26: return the peer
27: end if
28: end for

_________________________ Listing 5.5: Aglet Data_________________________
public String jobServer = null;
public String resultServer = null;
public String monitoringServer = null;
public String privateKey = null;

Once the aglet has arrived, it is authenticated to check whether the job server
sending the aglet has the permission to schedule in the cloud. This is achieved
by calling the management server web service, Authenticate (Section 5.2.1)
with jobServer and privateKey as the parameters to authenticate the peer
sending the job. The job’s execution is started only when the authentication is
successful. When the job execution is initiated, IdleMonitor is started, in a
separate thread to the job execution. IdleMonitor polls the system to check
whether there is any recent keyboard or mouse activity. This is done by calling
MonitorHelper. get SystemParameter function which calls a native library
through Java Native Interface (Section 5.3.2). When the system’s state changes from
idle to busy due to some user activity, the mobile agent is signaled to dispatch the
job. The dispatch function tries to discover another resource for job execution
by calling getPeer (Algorithm 3). When a candidate peer is identified, the job is
dispatched to that peer by calling dispatch API of aglet. (Figure 5.4)

5.3.5 Inter-Peer Communication

During initialization, the peer starts to listen for any incoming JXTA socket connec
tion requests. The messages are sent between the peers using the JXTASockets.
Once a connection request is received, the task for that request is given to a worker
thread, which services that message. The ThreadPool object in Java maintains a
set of worker threads to support multiple connection requests.

There are two classes which are responsible for the inter-peer communication,
DGPeerListener and DGPeerSocketClient.

DGPeerListener listens for any incoming messages on the main group,
dgpeer. It is initialized during the startup stages of VCC software. This class
implements JXTAServerSocket and uses a threadpool of fixed worker
threads for handling the messages. The incoming messages are passed on to
class MessageHandler which is executed by one of the worker threads of
threadpool.

DGPeerSocketClient implements an interface for the other modules to
send data to the peers participating in the grid. It defines

57

Figure 5.4: Mobile Agent

sendMessage(message, peerlD, peerGroup, waitForReply) to
send data to the peer identified by the peer ID.

5.3.6 Broadcast Message Listener and Broadcaster

The broadcaster and broadcast message listener are enabled for non-dedicated desk
top systems to share the availability status of a peer within the sub-peer group. Sub
peer group is the grouping made to exchange usage information within peers of
similar usage pattern (Section 4.3.3). This grouping is specified by the user while
installing the VCC client software. If the peer is a dedicated desktop, both the broad
cast listener and broadcaster are disabled.

The broadcast message listener and broadcaster modules enable the calculation

58

of Group Availability presented in Equation 4.2 as described in Section 4.3.3. The
broadcaster sends the status messages having the availability data from a peer to ev
ery other peer in the same sub-group at regular intervals (broadcast.interval
minutes). The broadcast receiver aggregates these status messages and populates
group.task.avg table. The group.task.avg table is queried to get the group
availability at a given point of time in a day of the week. The implementation details
are discussed in this section.

Broadcaster

Broadcaster is initialized during the initialization process of VCC client software.
Broadcaster uses JXTA’s JxtaMulticastSocket class to send messages to all
the clients within that group.

Once in a predefined interval (broadcast_interval minutes) the following
data is sent from each client to all the other clients within that subgroup. The format
is of comma separated values (CSV), presented in Listing 5.6.

Listing 5.6: Broadcast Message
STATUS, <date_time>, <peer_name>, <peer_availability>

In Listing 5.6, date_time represents the time stamp associated with the
message, peer_name represents the peer which is sending the message and
peer_availability is the boolean value indicating whether the system is busy
or not (true if idle, false if not idle). MonitorHelper class (Section 5.3.2) is
queried to get the peer_availability value.

Algorithm 4 gives the steps involved in Broadcaster. The current system
date and time is stored in date.time variable (Step 2 in Algorithm 4). The
peer.availability is set to be false if the peer had some user activity since the
last time it was checked (Step 3 in Algorithm 4). Using the variable date.time
and peer.availability the status message is formed and is broadcasted to
all the clients in the group (Step 5 in Algorithm 4). The broadcaster creates the
status message (Listing 5.6) and sends it to all the peers in the group once in
broadcast .interval seconds. Each peer receives this information using the
broadcast message receiver class described in the next section.

Along with the status of the peer, the state change in peer due to job execution
is also broadcasted using this module. Every time the system changes its state from
busy to idle (or vice versa) because of job execution, the state change information is
also broadcasted in the sub-group.

59

Algorithm 4 Algorithm of Broadcaster_____________________________________
l: while true do
2: date-time = getcurrentdatetime();
3: peer_availability = false, if peer had some user activity in the last ‘broad

cast -interval’ minutes
4: status-message = (status, <date_time>, <peer_name>, < peer-availability>)
5: broadcast status-message to all the peers in peer group (all machines in a lab)
6: Sleep for broadcast interval minutes
7: end while

Broadcast Message Receiver

The message broadcasted from the Broadcaster is handled by the
BroadcastReceiver class. It is initialized during the bootstrap
ping process. BroadcastReceiver listens for new messages using
JxtaMulticastSocket. BroadcastReceiver uses the ThreadPool
object in Java to handle the incoming messages in separate threads. Ever
new message received is serviced by BroadcastMessageHandler.
BroadcastMessageHandler pushes the data into GroupAggregator
class which is responsible for processing the incoming group status messages and
saving it into a local database.

Algorithm 5 Algorithm of GroupAggregator
1: Input parameters: date_time, peer_name, peer_availability
2: if peerlnfo == null then
3: peerlnfo = new Hashtable();
4: Schedule Algorithm 6 to execute after ‘n’ minutes {Wait for the ‘n’ minutes

for the messages from all the peers to arrive before processing peerlnfo}
5: end if
6: peerInfo[peer_name] = peer_availability

Algorithm 5 presents the logic of GroupAggregator. The
GroupAggregator aggregates all the incoming status messages (which is
of the format presented in Listing 5.6) into peerlnfo, a hashtable data structure
with peer_name as the key and peer_availability as the value (Step 3 in
Algorithm 5).

60

Algorithm 6 Algorithm of ProcessGroupData
1: Input parameters: peerlnfo, date_time
2: new .count = 0, new_nua = 0
3: for every peer in peerlnfo do
4: peer_availability = peerlnfo [peer .name]
5: if peer .availability is false then
6: new _nua = new _nua + 1
7: end if
8: new .count = new .count + 1
9: end for

10: Compute the new average of averagejiua, total-machines with newjiua and
new .count and update the record

11: peerlnfo = null

61

The function ProcessGroupData (Algorithm 6) is scheduled to be executed
in ‘n’ minutes4 from the time at which the first message has arrived (Step 4 in Algo
rithm 5). This delay is introduced to wait for the messages from all the peers to arrive
before processing peer Inf o. After ‘n’ minutes the data aggregated in peer Inf o
data structure is processed to get the count of number of machines that are busy due to
user activity (Step 10 in Algorithm 6) and then the Table grouptaskavg (Listing
5.7) is updated accordingly. In the Listing 5.7, weekday denotes the day of week for
which the average_nua is stored, monitor-time represents the time of the day
for which the data is recorded, num_of .samples gives the total number of samples
considered for the calculation of average_nua, lastupdated denotes the last
updated time for the row, average_nua gives the average number of machines that
are busy due to user activity and finally total-machines gives the total number
of machines that are considered for the average_nua calculation. Algorithm 6 lists
the steps involved in ProcessGroupData and Listing 5.7 gives the schema of the
table in which the group data is stored.

Listing 5.7: Schema of grouptaskavg table
CREATE TABLE group_task_avg(

weekday INT,
monitor_time DATE,
num_of_samples BIGINT,
lastupdated DATE,
average_nua DOUBLE,
total_machines INT

) ;

Along with this data, the state change messages broadcasted due to job execution
is also handled by broadcast receiver, which is used to calculate the value of number
of machines in the group that are currently busy due to job execution (which is de
noted by n_ je). When the state of the machine changes more than once, the latest
status message is considered as the current state of the machine.

5.3.7 Prediction Parameters

The prediction parameters are requested by the job server or the resource which is
trying to migrate the job to a peer during resource discovery (Section 5.3.3). This
section describes how a peer calculates the prediction parameters.

4An aggregation delay, n minutes is introduced to account for unforeseen delays in receiving the
broadcast messages, n minutes is always lesser than the broadcast-interval of Algorithm 4.

62

Resource Availability

The resource availability value r a f(t), given by the Equation 4.1 is calculated di
rectly by querying the t a s k .a v g table (Listing 5.4) for id le - a v e r a g e value for
the given time in the current day of the week.

Group Availability

As presented in Equation 4.2, ga{t) is given by,

ga(t) = current ga{t) — avgbit)

current ga = tot — (iV^ + Nje)

The currentga is calculated based on the information received from the current
status message of broadcast message receiver module. The total number of status
messages received gives the value of tot. The number of machines busy because
of user activity, is calculated as new_nua variable in Algorithm 6 and the Nje
is calculated from the state change broadcast messages stored in the variable n_je
(Broadcast Message Receiver in Section 5.3.6).

The value of avgbit) is assigned by querying the table group_task_avg (List
ing 5.7) for averagejiua value at the current time of the day in the week.
The weekday and monitor-time fields of group_task_average provide the
fields for querying the table against the current time of the day in the week.

5.4 Anatomy of a Job

This section investigates the components of a job. Listing 5.8 gives the source code
of an example job (a prime number generator). This job returns the number of prime
numbers between 0 and 1000000. Section 5.4.1 presents the details of Aglet super
class which has to be extended in a job. LAgentCommunicator interface is described
in Section 5.4.2. Section 5.4.3 discusses how the state of the job is maintained during
migration.

5.4.1 Aglet Superclass

Every job is expected to extend the abstract class Aglet. On extending the
class Aglet, the job can override, onCreation, onDisposing and run.

63

onCreat ion is called every time the job is created. onDisposing is called when
the object is disposed and run is the entry point for the aglet’s own thread of execu
tion. run is invoked upon a successful creation, dispatch of the aglet. The job can
also implement policies of migration using addMobilityListener functional
ity provided by Aglet subsystem.

5.4.2 IAgentcommunicator

IAgentCommunicator is the interface of VCC client, which is used by the job to
contact the monitoring and result server. The job, during its execution, sends status
updates on progress towards job completion as measured by the percentage that is
completed, to the monitoring server. After execution, the job sends the results to
the result server. IAgentcommunicator provides these functionality through the
following functions:

• sendStatus(int percentageCompleted)

• sendResult(String result)

AgentCommunicator implements the interface and it stores the monitoring
and result server of the current executing job. It consumes the web services exposed
by the monitoring and result servers.

__________________Listing 5.8: Prime number Generator Job_________________
package job.primenumber;

import org.dgpeer.agent.client.AgentCommunicator;
import org.dgpeer.agent.client.IAgentcommunicator;

public class PrimeNumber extends Aglet implements Serializable {
long x, y, c = 0;
long last_x = 2, last_c = 0;
long ultimate_x = 1000000;

transient IAgentcommunicator ac = null;

public void onCreation(Object init) {
System.out.println("Job Created");

}

public void run() {

64

System.out.printIn("Staring job.. . ;
if(ac == null) {

ac = AgentCommunicator.getlnstance();
}
System.out.println("ac all set to go!");
for (x = last_x; x < ultimate_x; x++) {

double percentageCompleted =
((double) x /
(double) ultimate_x) * 100;

if(percentageCompleted % 10 == 0) {
try {

System.out.println(
"Percentage: "

+ percentageCompleted) ;
ac.sendStatus(

(int)
percentageCompleted) ;

} catch (Exception e) {
e.printStackTrace() ;

}
}

/ /
// Logic for primenumber generation
/ /

last_x = x;
last_c = c;

}
System.out.println("\nTotal: " + c);
try {

ac.sendResult(
"Total number of primenumbers: "
+ c);

} catch (Exception e) {
e.printStackTrace() ;

}
}

public void onDisposing() {
System.out.println("Agent disposing...");

}

65

5.4.3 State of the Job

The job’s state should be maintained on migration, so that it can resume execution
on the new host from the same state it has paused in the previous host. For this all
the variables whose state has to be saved during migration is initialized at the class
scope level. The variables initialized at the functional level lose their state. In Listing
5.8, all the important variables which define the state of the function is declared at
the class level.

5.5 The Lifetime of a Job

This section describes the lifetime of a job from its creation to sending the results
back to result server. Figure 5.5 gives the activity diagram of different stages in job
execution.

1. The work unit (Figure 5.5) is implemented as an Aglet (mobile agent) and the
class file is saved in a common codebase location.

2. The job server web service, Insert Job is called to insert the job details in
the job repository. Along with the job_name and class_name, the constraints of
the job are also inserted into the repository.

3. The web service, Schedule Job, of the job server is called to schedule the
job. When called, the instance of the job is created and the search for a candi
date resource is started using resource discovery component. When a suitable
candidate peer is found for job execution, the job schedule details, containing
the job name, class name, codebase location, private key, ip addressees of job
server, monitoring server, result server is sent to this peer.

4. The peer before starting the execution, calls the web service, Authenticate,
to authenticate the job server, sending the job.

5. The mobile agent then starts executing in the host machine and the machine is
monitored for any user activity.

6. Based on the monitoring policy defined inside the job, the mobile agent sends
its updates to the monitoring server.

7. When a user activity is detected, the mobile agent subsystem finds another peer
for job execution and then dispatches the mobile agent to the new peer.

66

8. When the monitoring server does not get frequent updates from the agent, it
assumes the agent is destroyed and informs the job server that it should restart
the execution of the job.

9. Once the job is executed in the peer, the result is sent back to the result server.

67

Figure 5.5: Job Life Cycle

68

Chapter 6

Verification and Validation

This chapter presents the methods used to verify and validate the Voluntary Cloud
Computing (VCC) system. The focus of the VCC system is to build a scalable P2P
framework which can predict the resource availability. This is tested by a combina
tion of real-time experiments and simulations.

The scalability experiments are performed to study the VCC system’s perfor
mance with a large number of resources are described in Section 6.1. Section 6.2
discusses the simulation methods that are used to analyze the efficiency of resource
availability prediction models which were discussed in Chapter 4.

6.1 Scalability

The goal of scalability testing is to study the system’s behavior with a large number
of connected resources. A test environment is setup in one of the computer science
department labs at the university (Lab 230) to deploy and test the system. A single
peer group is formed with the clients available in the lab and the jobs are scheduled
in the clients. Scalability testing involves the following steps:

1. Deployment of test infrastructure

2. Execution of Scenarios

Even though our system supports the formation of multiple groups, the scalability
testing is performed using a single group. In the Voluntary Cloud Computing (VCC)
system, the broadcasted resource status messages in a group are confined to that
group (Section 5.3.6). It is only during the broadcast of status messages the group
functionality is used by the system. Therefore, the presence of multiple groups does

69

not directly affect the goal of this testing. However, we have studied the system’s
behavior with 23 clients (1 group). The primary reason for this number is that this is
currently the number of machines available to us for experimentation. Future work
will attempt to look at more clients.

6.1.1 Deployment of test infrastructure

The following servers are set up during deployment (Figure 6.1):

• One instance of a management server

• Two instances of a job server

• Two instances of a monitoring server

• Two instances of a result server

Each instance of the job server, monitoring server and result server combination
represent an organization in the real world. Two instances of these servers are cho
sen to test the functionality of the Voluntary Cloud Computing (VCC) system under
multiple organizational domains.

GNU\Linux machines are selected from the cluster environment for installing
the job server, monitoring server and result server. The instances of the job server,
monitoring server and result server are hosted on two different machines and the
management server is installed on a separate machine. Job server 1 and job Server 2
are registered with the management server.

A distributed cluster of machines running GNU\Linux (Fedora Linux 9.0) and
university lab machines running Windows XP are chosen as clients for this exper
iment. A total of 23 machines (18 Windows XP, 5 GNU\Linux) are used for the
scalability experiments. The VCC client software is installed on each of these work
stations.

The management server runs on a machine using Cent OS flavor of GNU\Linux
and the two machines running Fedora Linux 9.0 distribution are selected for hosting
each instance of job server, monitoring server and the result server. Therefore a total
of three GUN\Linux machines are used for running the servers.

The prime number generator job presented in Section 5.4 is used as the test job
for executing in the machines. As the VCC system’s functionality is independent
of a job’s implementation, the same job (prime number generator) is used in all the
testing.

70

Management Job Server Monitoring Result
Server 2 Server 2 Server 2

Job Server
1

Monitoring
Server 1

Result
Server 1

Resource 1 Resource 4 Resource n-2

Resource 2 Resource 5 Resource n-1

Resource 3 Resource 6 Resource n

HFT Cluster Machines

Desktop Machine (Windows)
+

HFT Cluster Workstations

n >= 20

Figure 6.1: Test Infrastructure

6.1.2 Execution of Scenarios

Scenarios are run in this setup to verify the functionality of the system. The following
scenarios are run in the test environment:

• Generic scalability test

• Generic Scalability test - Test Constraints

• Testing the migration

Generic Scalability Test

In this testing, a total of 40 job instances are scheduled from Job Server 1 and Job
Server 2 simultaneously. The number of job instances (40) is selected to be close to
two times the number of clients (23). This is done to test whether the job server waits
for the execution of the job in the client before scheduling the next job. The goal of
this testing is to test whether the job is scheduled in the infrastructure and it returns
results. The approach take is summarized in the following steps.

71

Steps:

1. Schedule 20 jobs from the job server 1 and 20 jobs from job server 2 for exe
cution.

2. During execution, query the monitoring server 1 and monitoring server 2 for
finding the status of the execution of job.

3. After execution, check the result server 1 and result server 2.

Expected Result: On querying the monitoring server the list of all the job instances
that are currently executed should be displayed. The results of all the executed job
instances should have been populated in the result table after execution.

Results: The job instances are executed in the host machines. During the execu
tion, the status of the execution was sent to the corresponding monitoring server (for
every 10% completion of the job). After execution, the results are sent to the result
server. (Listing 6.1)

Listing 6.1: Joblnstance (id m o n i to r in f o and l a s tu p d a te d t im e)

129 | XPC-015:10,XPC
128 | XPC-013:10,XPC
127 I XPC-007:10,XPC
126 | XPC-022:10,XPC
125 | XPC-017:10,XPC
124 I XPC-010:10,XPC

-015:20, ...,XPC-015: 90
-013:20,...,XPC-013: 90
-007:20, . ..,XPC-007: 90
-022:20, ...,XPC-022: 90
-017:20, ...,XPC-017: 90
-010:20, ...,XPC-010: 90

2009-02-19 12:30:00
2009-02-19 12:04:59
2009-02-19 11:51:04
2009-02-19 11:50:59
2009-02-19 11:50:05
2009-02-19 11:48:34

Listing 6.1 gives the progress of several job instances from the moni
toring server table. The m o n i to r in f o represents the status of the job
in the h o s tn am e :p e rc e n ta g e _ c o m p le te d format. The third column,
l a s t u p d a t e d t i m e gives the time at which the row was most recently updated.

It was noticed that, if the job execution time1 in the resource is less than the
scheduling time2 of the job, the jobs get scheduled in the same resource again and
again leading to unfair scheduling policy, where the same resource is always selected
for job execution. We plan to address the unfair scheduling in the future work by

'The total time taken for the execution of the job in the resource.
Schedule time is the time taken for the job server to find the candidate resource for job instance

execution. This involves the time taken for resource discovery time and resource reservation.

72

introducing heuristics at the scheduling level to enable the sharing of the jobs among
the resources available.

Generic Scalability Test - Test Constraints

In this testing, a total of 20 jobs are scheduled from Job Server 1 and Job Server
2 simultaneously. Among the 20 jobs, 15 jobs have the constraint that the oper
ating system on the host machine should be windows XP. This is represented by
OS=Windows XP. The remaining 5 jobs have that constraint that OS=Linux. The
goal of this testing is to test whether the job is scheduled in the respective operating
systems represented by constraints.

Steps:

1. Schedule 10 jobs from the job server 1 and schedule 10 jobs from job server 2
for execution.

2. During execution, query the monitoring server 1 and monitoring server 2 for
finding the status of the execution of job.

3. After execution, check the result server 1 and result server 2 to check whether
the job has been executed.

Expected Result: On querying the monitoring server the list of all the jobs that
are currently executed should be displayed. The jobs with OS constraints should be
executed in the respective operating systems.

Results: All the 20 jobs are executed and the results were returned. One instance
of the job execution reveals that it took 38:03 minutes for the end to end execution of
the job. Out of the 20 jobs, 5 jobs which were associated with constraints OS=Linux
were executed in the cluster machines, that were running the linux version of VCC
client.

Testing Migration

This scenario tests the migrational capabilities of the job instance.

73

Steps:

1. Run a job from the job server 1 on resource r 1.

2. When rl is executing the job instance, disrupt the machine’s state by moving
the mouse or by pressing some key.

Expected Result: Upon disruption the job instance should pause its execution and
migrate to a new resource r2. The job should resume its execution from the new
machine r2 The monitoring server should note this migration and the result will be
reflected in the monitoring server.

Results: When the host machine is disrupted by user activity, the job is migrated
to a new machine, which is currently idle. The migration of the job can be seen in
Listing 6.2. It shows the entries of the j o b i n s t a n c e that describes the migration
of two jobs (from Section 5.2.3).

Listing 6.2: Row showing migration
| 52 | XPC-010:10,XPC-010:20,XPC-010:30,XPC-024:40, XPC-024:50.. |
| 24 | XPC-013 :10, XPB-071:20,XPC-013:30.............XPC-014:90 |

The job instance with identifier 52 is interrupted when it had completed 30% of
the job in XPC-010. It is migrated to XPC-024 where its execution is continued.
The job instance with identifier 24 went through three migrations before its comple
tion (XPC-013 to XPB-071 to XPB-013 to XC-014).

The job that was scheduled calculates the count of prime numbers from 0 to
100,000. One instance of execution reveal that, it took 38:03 minutes to execute
without migration and the same job took 39:13 minutes to execute with a single mi
gration, with the difference of 1:10 minutes corresponding to the resource discovery
and the job migration time from a client.

6.2 Resource Availability Prediction

The effectiveness of the resource availability prediction model is tested using sim
ulation. The data set for simulation is created from the monitoring of the system
usage from three different labs over a period of time. The behavior of two scheduling
models, random scheduling model and the predictive scheduling model is studied by
simulating these models over the collected data set.

74

In random scheduling model the resources are selected at random for job ex
ecution. The resource availability data is not considered for selection in random
scheduling. In predictive scheduling, the resource’s availability along with the group
availability is considered for selecting a resource for job execution.

Section 6.2.1 describes the data collection part of the simulation. The simulator
algorithm is presented in Section 6.2.2. The data collection for simulation is de
scribed in Section 6.2.3. The scenarios and results are discussed finally in Section
6.2.4.

6.2.1 Data collection

The resource (desktop computer) availability data is collected over a period of six
weeks from three different labs of the computer science department at the university
(Lab 230, Lab 235 and Lab 342). This data is used to find out at what time a particular
resource was idle in a day. Each of these labs have a total of 25 machines each with
each machine running the Microsoft Windows XP operating system.

A Win32 application was developed using the dot net framework for monitoring
the user behavior in a resource. This application uses system hooks to listen to the
events of mouse_move or k e y b o a rd -p re s s . Once every 5 minutes it sends the
data to a centralized server on whether the system was busy or not. (Figure 6.2)

The steps involved in data collection are as follows:

1. The data collector application is installed in each machine as administrator.
The application runs at startup when a user logs in.

2. When a user logs in, the machine records the last known time since the key
board or mouse activity and updates it every time a keystroke or mouse activity
is sensed.

3. Once every five minutes the client contacts the centralized server and sends
it the last idle time. If the machine is logged off or shutdown, then the data
doesnt go to the server from the particular machine and machine is assumed to
be idle at that time.

The machine information is stored based on the schema represented by Table 6.1
and the status is stored in Table 6.2.

75

: Labi

I I Lab 2

I I Lab 3

DB
(MYSQL)

WEB Server
(Apache - PHP)

R e source 1 R esource
7

.............................. ! R esource 2 j R esource 3 R esource 4 R esource 5 Resource

Figure 6.2: Simulation Software Setup

Entity Description
id Identifier for the machine
hostjiame Host name of the machine
ipaddress The ipaddress of the machine
date .added Date when the machine was added
macaddress The MAC address of the network interface card for

security

Table 6.1: Machine Data

6.2.2 Simulator

The simulator executes the schedulers based on the data collected in the previous
section.

Dataset Preparation

Table 6.2 represents information about when a particular machine was idle. For the
ease of simulation, the recorded data (Table 6.1 and Table 6.2) are processed to form
machine usage simulation table (Table 6.3) and group usage simulation table (Table
6.4).

76

Entity Description
timestamp
machineJd

The time corresponding to the data
The machine from which the data has originated at
this time

idlefor
process_usage
memory .usage

The last time since user activity in this machine
The average processor usage of the machine
The amount of memory free in the machine currently

Table 6.2: Machine Status

Table 6.3 the schema for the machine usage data to be used in the simulation.

Entity Description
date
time
day

The date for which the data is recored
The time at which the data is recorded
The day of the week (1-7) in which the data is
recorded

tot_samples
idle_average

Total number of samples collected
Number of times the system is found idle divided by
tot_samples

is_currentlyJdle Boolean value specifying whether the resource is cur
rently idle or not

machineJd The machine, for which the data is recorded

Table 6.3: Machine Usage Simulation

The m ach in e_ id is not in the data structure of the VCC client; however it is
added at the simulation phase, as the simulation requires that data for all machines
is recorded in a single table. Similarly the d a te and day fields are added in the
simulation table for as each row in this table will represent the values of the ta
ble at that particular date. The i s _ c u r r e n t l y _ i d l e field is determined by pro
cessing the i d l e . f o r field of machine status (Table 6.2) and the previous week’s
id le _ a v e r a g e field along with the i s _ c u r r e n t l y _ i d l e and to t_ sa m p l.e s
field is used to calculate the id le _ a v e r a g e field of machine usage simulation (Ta
ble 6.3).

Along with the individual machine’s behavior the group’s behavior is also taken
into consideration while prediction. Table 6.4 gives the table, group usage simulation,
which represents the g ro u p _ ta sk _ av g table of Section 5.3.6.

The machine usage simulation table represents the usage pattern at the machine
level granularity and group usage simulation gives the usage pattern at a group level.

77

Entity Description
date The date for which the data is recorded
time The time at which the data is recorded
day The day of the week (1-7) in which the data is

recorded
avg_nua Average number of machines that are busy due to

user activity
tot_samples Total number of samples collected
groupdd the group (lab) for which the data is recorded

Table 6.4: Group Usage Simulation

Simulation of Prediction Models

After the tables, machine usage pattern (Table 6.3) and group usage pattern (Table
6.4) are populated, the simulations are run. The following scheduling models are
run over the collected data to analyze the behavior of prediction in this environment:
random scheduling and predictive scheduling.

Random Scheduling: In random scheduling, whenever a job is selected for
scheduling, any resource that is currently available is selected for execution at ran
dom. This model is implemented as a simulation script using PHP. The simula
tion script takes num_of_jobs, duration and start-time as the command
line arguments. The parameter num_of_jobs denotes the total number of jobs that
has to be run during the simulation, duration gives the time to run a single job,
st art-time specifies the time of the day the execution of the jobs should start.
Algorithm 7 gives the steps involved in random scheduling.

This algorithm takes as input an array of machine identifiers (machine-id in
Table 6.3) that are considered for the simulation (Step 1 in Algorithm 7). The
machine_id_array is randomized before selection (Step 3 in Algorithm 7) to
make sure that the input sequence of machines doesn’t influence which machine is
selected for job scheduling. The job-pointer variable denotes the number of the
jobs that are currently executed. The machine_job_progress is a hash table
with the key denoting the machine-id and the value as the time elapsed in exe
cuting a job. Each entry of machine.job-progress is initialized with all the
machine.id as the key and value as -1. The variable current-time gives the
current simulated time initialized with the input parameter start-time (Step 4 in
Algorithm 7).

After the initialization, once every five minutes in simulated time, each machine

78

in machine.id.array is checked to determine if a job can be scheduled on it. The
availability status of the machine, for the current simulated time is queried from the
machine usage simulation table (Table 6.3) (Step 7 in Algorithm 7). The machine
can be either idle or busy. If the machine is idle and is not currently assigned any
job (as indicated by machine_job_progress [machine.id] set to -1), then
machine, job.progress is assigned to 0 (Step 10 in Algorithm 7) denoting that
the machine has started executing a job. If the machine is idle and is assigned a job
in machine.job-progress then machine.job.progress [machine.id]
is incremented by 5 to denote that the machine has completed execution of another
5 minutes of the job it is currently executing (Step 12 and 13 in Algorithm 7). If the
value of machine, job.progress [machine.id] is greater than input param
eter duration, then it denotes that the job has finished executing in the machine
and machine.job.progress [machine.id] is set the value as -1 (Step 20 in
Algorithm 7). If the machine is not idle and is currently executing the job, the job is
migrated to another machine which is currently free and not executing any job (Step
17 in 7).

Once every five minutes, job.pointer is checked to see whether all the jobs
are scheduled (Step 23 in Algorithm 7). If all the jobs are scheduled and done exe
cuting (Step 24 in Algorithm 7), the simulation is terminated.

Using the Algorithm 7 various scenarios are run to study the behavior of the
system. The scenarios are discussed in Section 6.2.4.

Predictive Scheduling In this scheduling, the equation (Equation 4.5) derived in
Section 4.3.3 is used to predict whether the system is going to be available for a
given point of time for execution. The simulation script assumes the same input
parameters as that of random scheduling. The script also takes an array of machine
identifiers, machine_id_array, that are to be considered for simulation as the
input. Before assigning jobs to a machine, the machine_id_array is sorted by
its probability of availability in descending order and then jobs are assigned to the
machines. Algorithm 9 details the steps of this scheduling method.

Like random scheduling, in predictive scheduling, machine_id_array,
job.pointer, machine.job.progress and current-time are initial
ized (Step 1, 2 and 3 in Algorithm 9). Along with these parameters,
group_machine_map is initialized with each machine.id as the key and the
corresponding group.id as the value.

Once every five minutes in simulated time, the functions

79

1: machine _id_array = All the machine that are considered for simulation
2: randomize(machineJd_array)
3: Initialize job-pointer, machine_job_progress
4: current-time = start-time
5: while true do
6: for every machine Jd in machine Jd_array do
7: machine .usage = query .machine .usage _table(machine id , current-time)
8: if machine_usage.is_currently_idle == true

AND machine.job_progress[machine_id] == -1 then
9: job-pointer = job-pointer + 1

10: machine_job_progress[machineJd] = 0
11: else
12: if machine-usage.is-currentidle == true then
13: machine.job _progress[machine_id] += 5;
14: end if
15: end if
16: if NOT machine_usage.is_currentJdle

AND machine.job_progress[machineid] != -1 then
17: migrate_job_to_free_machine();
18: end if
19: if machine_job_progress[machine_id] > = duration then
20: machine_job_progress[machine_id] = -1
21: end if
22: end for
23: if job_pointer > num.of.jobs then
24: if all elements in machine-job .progress is -1 then
25: break from while loop
26: end if
27: end if
28: current-time += 5
29: end while

Algorithm 7 Random Scheduling

80

load_group_avg_nua and load_group_current_nua are called (Step 6
and 7 in Algorithm 9). The function load_group_avg_nua fills the hash table
group_avg_nua with group_id as the key and avgjiua (average number
of machines that are busy due to user activity) as the value. The avg_nua is
assigned by querying the group usage simulation table (Table 6.4). The function
load_group_current_nua loads the hash table group_current_nua with
key group.id and value current _nua. The current number of machines that are
busy due to user activity (current_nua) in a group and is assigned by querying
the machine usage simulation table (Table 6.3) for the count of all the machines in a
particular group (determined by group_machine_map) that are busy.

After the loading of the hash tables, each machine is queried in the ma
chine usage table (Table 6.3) to check its availability at the given time (Step
11 in Algorithm 9). If the machine is available and is not currently as
signed any job, then its prediction_value is calculated by calling the
function get_prediction_value (Step 9 in Algorithm 9). The function
get_prediction_value calculates the availability factor of the resource based
on Equation 4.5 and returns it as the predict ion_value. This function is de
scribed at the end of this section in detail.

The calculated predicton_value is stored in the sort-machines hash ta
ble with machine.id as the key (Step 12 in Algorithm 9). If the machine is idle and
is executing a job then its job execution elapsed time is incremented by 5 denoting 5
more minutes of completion of execution (Step 15 in Algorithm 9). If the machine
is not idle and if it is currently executing a job, then it is migrated to a free resource
by calling the function migrate-job_to_free_machine (Step 19 in Algorithm
9). If the value of machine_job_progress [machine_id] is greater than in
put parameter duration, then it denotes that the job has finished executing in the
machine and the hash table machine_job_progress [machine_id] is set the
value as -1 (Step 21 in Algorithm 9).

After every machine is checked in the machine_id_array the
sort-machines is sorted based on its prediction-value in the de
scending order (Step 22 in Algorithm 9). The job is assigned to each machine
and job-pointer is incremented denoting the scheduling of a job (Step 24 in
Algorithm 9).

Once in every five minutes simulated time gap, job-pointer is checked to
see whether all the jobs are scheduled (Step 31 in Algorithm 9). If all the jobs are
scheduled and done executing (Step 31 in Algorithm 7), the simulation is terminated.

81

get_prediction_value: The function get_prediction_value calculates
the availability factor of a peer using the Equation 4.5 of Chapter 4. It is presented in
the Algorithm 8.

In the function get_prediction_value (Algorithm 8), r a f (t) is denoted
by idle-average, N ua is denoted by current_nua, Nje is denoted by
current.je, tot is denoted by num_of jnachines and P resource.avaiiaWity is
given by prediction-value.
Algorithm 8 get_prediction_value

1: Input machine Jd , idle_average, current-time
2: groupJd = group_machine_map[machineJd]
3: avg_nua = group_avg_nua[groupJd]
4: current_nua = group_current_nua[groupJd]
5: current_je = get_current_je()
6: current_ga = num_of_machines - (current_nua + current_je)
7: prediction-value = (current_ga - avg_nua) * idle_average
8: return prediction_value;

The group_id, avg_nua and current_nua are assigned by the hash ta
bles which are already loaded with key and values. The current-je denotes the
number of machines that are currently busy due to job execution. This is deter
mined by the function get_current_ je (Step 5 of Algorithm 8) which queries the
machine_job_progress to determine this value. Finally the prediction-value is
calculated and then returned from this function.

The scenarios run using this algorithm are described in the next section. (Section
6.2.4)

6.2.3 Data Collection Results

The resource usability data collected in lab 342, lab 230 and lab 235 reveal the pattern
graphed in Figure 6.3, Figure 6.4 and Figure 6.5 respectively. Each of these labs have
25 machines. Each graph shows the number of machines that are used at a given time.

It can be seen that out o f the three labs, lab 230 is the busiest and lab 342 is the
least busy. All the three labs are relatively not used after 12:00am in the night and
they are busiest around the afternoon. The weekends, Saturday and Sunday, least busy
periods and Monday is the most busy period.

The following can be inferred:

1. A job when scheduled in all these labs, has a better probability of running
without interruption during nights than in days.

82

l: machine_id_array = All the machine that are considered for simulation;
2: Initialize job .pointer, machine_job_progress, group_machine_map
3: current-time = start-time
4: while true do
5: Initialize sort-machines hash table
6: load_group_avg_nua()
7: load_group_current_nua()
8: for every machine_id in machine_id_array do
9: machine-usage =

query_machine_usage-table(machineJd, current-time);
10: if machine_usage.is_currently_available AND

chine_job_progress[machine id] == -1 then
11: prediction-value =

get_prediction_value(machine_id, machine_usage.idle_average)
12: sort_machines[machine_id] = prediction-value
13: else
14: if machine.is_currently_available then
15: machine_job_progress[machine_id] += 5
16: end if
17: end if
18: if NOT machine.is_currently_available

AND machine-job_progress[machine_id] != -1 then
19: migrate_job-to_free_machine()
20: end if
21: if machine_job_progress[machine_id] > = duration then
22: machine_job_progress[machine_id] = -1
23: end if
24: end for
25: array_sort(sort_machines)
26: for every machine_id in sort-machines do
27: job_pointer++
28: machine_job_progress[machine_id] = 0
29: end for
30: if job .pointer > num_of_jobs then
31: if all elements in machine_job.progress is -1 then
32: break from while loop
33: end if
34: end ifcurrent-time += 5
35: end while

Algorithm 9 Predictive Scheduling________________________________

ma-

83

Machine Availability
(First Week)

0 ó ó i ó 0 ó 6 i ó 0 à ó i ó 0 ó ò i ó ' r à > i ^ T - (3 Ì t ^ T - c ó i ó

Time (Monday to Sunday) Time (Monday to Sunday)

-Busy Machines -Busy Machines

6

Average Machine Availability
(Final Week)

888888888888888888888
0 à 5 (0 0 à ó (ó 0 c ó (ó 0 c ò (ó 0 c ó i ó 0 c ó (ó 0 c ó i ó

Figure 6.3: Lab 342 User Availability Pattern

2. Weekends are the ideal days to schedule jobs in the system than the weekdays.

3. At any point of time of scheduling, if lab 342 is given more preference than
the other two labs, the jobs are least likely to be interrupted. At its peak usage
only 7 machines are busy in lab 342 when compared to lab 230 (20 machines)
and lab 235 (15 machines).

6.2.4 Scenarios

To validate these inferences, both the random and predictive scheduling
simulation scripts are run with different values for their input parameters
(num_of_jobs, duration, machine_id_array and start-time). For a
different set of num_of_jobs, duration and start-time with a constant
machine_id_array (all the machines from lab 342, lab 230 and lab 235) both
the simulations are run and the results are tabulated in Table 6.5.

num_of_jobs: The number of jobs that are scheduled at a time in the system
influences the number of migrations that the job goes through, thereby affecting the
total time for job execution. It is found that, when num_of _ jobs is less than the total
number of available machines in the system then the predictive scheduling makes a
huge difference in the number of migrations. When num_of_jobs is more than

84

25

Machine Availability
(First Week)

Average Machine Availability
(Fourth Week)

5
o
Ï
E3

20

15

10

5

0

t e f f

f i l i l i kg J - j
^àjN0 » N 0 «)N0 «(N0 N»-ÓÌK'i-Ó)N

Time (Monday to Sunday)

2
’S

E
z

8 $ 8 !$ S S 8 8 8 £ 2 g 8 8 8 !$ § S 8
o o o r ^ f j ' i - o i i S ^ p o o o K C ' i ’- d i ^ r c ' S c j i ^ ®T- » - C M » - C M » - » - » - » - C M »-

Time (Monday to Sunday)

- Busy Machines - Busy Machines

Figure 6.4: Lab 230 User Availability Pattern

the number of machines, all the free resources in the system are selected for job
execution and therefore predictive resource selection makes little difference. It can
be found that in Table 6.5, as the number of jobs executed in the system increases, the
difference between the migration of random and predictive scheduling, decreases.

durat ion: As the job duration increases the higher the probability that the job
is interrupted by user activity. Therefore predictive scheduling makes a difference
when long-duration jobs are run in the system. It can be seen from Table 6.5 that,
when long duration jobs are run (duration=200 and duration=300) the difference in
the number of migrations using random and predictive scheduling is more promi
nent. The predictive scheduling results in far lesser migrations when compared with
the random scheduling (16 migrations for random when compared to 4 migrations
for predictive (duration = 200) and 19 migrations for random when compared to 10
migrations for predictive (duration = 300)).

st art .time: The time at which the job is scheduled plays a crucial factor on
the amount of time, the job is going to take to finish its execution. Two time
slots, one peak hour (2008-12-01 12:00:00) and one relatively less busy (2008-12-11
10:00:00) are chosen to run the same number of jobs with the same duration (num-
ber_of_jobs=100 and duration =100 minutes). It is found that, in the peak hour the

85

16

Machine Availability
(First Week)

Average Machine Availability
(Fourth Week)

o wc o v- o j c o c Ni o o i o oc NO i n co v - t o^ c o r ^ u r)
r - v— ^ r* v— C N t - (NJ y— CN r-

Time (Monday to Sunday)

Busy Machines

Time (Monday to Sunday)

• Busy Machines

ôàôâv-ôiôô&ôâtt&oinôv-co^rcôr^ir)

Figure 6.5: Lab 235 User Availability Pattern

number of migrations is in the order of 100. Predictive scheduling results in fewer
migrations compared to the random. (Table 6.5). However, in an off-peak time, the
predictive scheduling does not decrease the migration by lot.

The following characteristics are hence observed from the scenarios run in the
simulation.

1. The predictive scheduling decreases the amount of migrations significantly if
the num_of_jobs is lesser than the total number of machines in the system.

2. During peak hours, predictive scheduling is useful in selecting resources which
are less prone to be interrupted by user activity and hence reduce the number
of migrations.

3. Predictive scheduling also makes a difference with long-duration jobs (greater
than 45 minutes).

4. During off-peak hours and when num_of_jobs is higher than the number of
machines, the predictive scheduling does not decrease the migration by huge
factor.

86

Input
(num_of_jobs, duration, time)

Sched.
type

Migrations Elapsedtime

10, 30, 2008-12-01 12:00:00 R 4 35 minutes
P 0 30 minutes

10, 100, 2008-12-01 12:00:00
R 10 l:50hrs
P 2 1:45 hours
R 16 3:30hrs10, 200,2008-12-11 10:00:00 P 4 3:25 hrs

10, 300, 2008-12-11 10:00:00 R 19 5:10hrs
P 10 5:10hrs

100, 30,2008-12-01 12:00:00
R 55 2:00hrs
P 48 l:50hrs
R 427 8:25 hrs

100, 100,2008-12-01 12:00:00 P 304 7:10hrs

100, 100,2008-12-11 10:00:00
R 2 3:25hrs
P 3 3:30hrs

1000, 100,2008-12-11 10:00:00 R 42 1 day 3:55hrs
P 33 1 day 3:55hrs

Table 6.5: Simulation Results (R-Random, P-Predictive)

87

Chapter 7

Conclusion

The stated goal of this work is to develop a framework for resource availability pre
diction in desktop grids on a P2P network. We have designed and implemented
a working prototype that has demonstrated decentralized resource availability pre
diction in a peer-to-peer (P2P) environment. Our experimental results shows that
resource availability prediction decreases the interruption in job execution.

Section 7.1 presents the contribution of this work and Section 7.2 describes the
areas of future research.

7.1 Contributions

The major contributions of this thesis are the following:

• Development of a robust desktop grid which takes into account multiple job
servers, mobility of the job and desktop volatility.

• An approach to decentralized resource availability prediction of both dedicated
and non-dedicated desktops.

We have proposed and implemented a unique desktop grid framework focused on
resource selection in a P2P environment. Our system provides insight into problems
and open issues surrounding such an environment. Our experimental results show the
feasibility of such a framework and highlighted the practical importance of resource
availability prediction. The results also show the possibility of migration of jobs and
orchestration of multiple servers and peers in a P2P framework.

Resource availability prediction was studied in a client-server environment in
other work (Section 2). Our study focused on the effectiveness of such a prediction

88

in a P2P environment which to the best of our knowledge has not been done. We
studied the process of predicting the availability in both dedicated and non-dedicated
desktops with detailed experiments run on non-dedicated desktop environment. None
of the work we surveyed took the non-dedicated desktop machines into account when
using prediction. Our experiments show that in a setup where the number of jobs is
fewer than the total number of resources, the resource availability prediction reduces
the amount of migrations (job interruption) the job experiences during its execution.
This change is more prominent when the user activity is high.

7.2 Future Work

This section describes the areas of future research for this work. We acknowledge
that the framework we have built will benefit from its use in a real-time environment.
Work in the areas explained in this section will definitely help for the adaptation of
our infrastructure in a production environment.

7.2.1 Resource Discovery

Resource discovery is currently achieved in the framework using JXTA’s decentral
ized resource discovery methods. JXTA’s basic discovery model does not provide
the functionality to filter the resources based on multiple constraints. Therefore, the
filtering will have to take place at the application level. Moreover, our system was
tested with only 20 clients. The eventual goal is to scale it across thousands of clients.

Distributed Hash Tables [31] (DHT) can be used to tag resources with constraints
as keys so that they become easily searchable in a P2P network. However implemen
tation of DHTs with multiple keys, would be challenging.

Future research could focus on a robust resource discovery mechanism which
searches for resources based on multiple constraints at the underlying P2P network
layer. This will greatly increase the performance of the system by reducing the time
taken for resource discovery.

7.2.2 Resource Availability Prediction

The VCC system uses probability techniques to predict the availability of the system
at a given point of time, based on its past availability data. Our results show that in
comparison with random scheduling, the prediction techniques we adopted, reduces
the amount of migrations the job experiences during its execution, when the number

89

of jobs are lesser than the total number of machines. However, when the number of
jobs are more than the number of machines, prediction doesn’t make any significant
difference. Future work should study the comparison of our model against a model
which considers each machine as a dedicated resource than a non-dedicated entity.

The prediction used in the system (Section 4.3.3) can be improved to use more
advanced prediction and learning models. John et.al [11] describes mathematical
models to predict the machine availability. Ling Shang et.al [34] uses a Trust Model
[35] to predict the behavior of a user based on the user activity learning done in the
past. Implementation of mathematical models presented by John et.al [11] and the
trust model [34] in the system and studying their effectiveness against our method
will be interesting.

7.2.3 Job Programming Model

The VCC system uses the Aglet framework for its job execution and migration func
tionality. In the Aglet programming model, the job designers are expected to main
tain the state of the execution of job at the class level. This is necessary for the
job to resume its job execution into the migrated machine (Section 5.4.3). The job
developer might have to go through a learning curve in understanding this program
ming model. Moreover, this model introduces design limitations when implementing
complex jobs.

Future work could focus on the integration of a powerful programming model for
the mobile agents which resembles a traditional programming methodology, without
compromising on its migration functionality. MapReduce [17] is a programming
model for processing and generating large data sets, adopted by many companies
like Google, Yahoo and Amazon. Integration of such a model in the VCC system
with the migrational functionality could be interesting.

7.2.4 Trust

In a desktop grid framework, trust has two dimensions to it. The desktop users should
trust the software which has been installed in their machines for job execution. The
work-item running in the desktop system should not compromise the security of the
system. On the other hand, as the job is executed in a remote untrusted environment,
the job should not be corrupted by the desktop machine where it is hosted.

Implementing trust was beyond the scope of this thesis. Any deployment of the
system in the production environment should give trust issues significant importance,

90

as that greatly affects whether the users are going to adopt the system.

7.2.5 Fault Tolerance

Our system has multiple failure points. The job servers can fail while scheduling,
the monitoring servers can crash, the result servers can be flooded with result data so
that it is no more in a state to receive results and the peers can go offline while job
execution. In an ideal system these scenarios should be an expected than an exception
scenario.

Fault tolerance is not built into our system as it is not the focus of our research.
However, our system provides the necessary framework to implement fault tolerance
methodologies over it.

7.2.6 Socio-economic Models

We did not address the social aspects with our work. Our work assumed that the job
servers will not take a free ride (exploit the usage by scheduling a large number of
jobs) of the framework. No limits were placed on the number of jobs that a job server
can schedule. There was no billing system implemented directly in the framework to
detect the resources shared by a peer and number of jobs scheduled by the job server.
This would not only provide incentive for users to donate more resource, but also
would prevent the abuse of the system.

Buyya et.al [13] proposed various social economic models for regulating supply
and demand in a computing grid environment. Future work should investigate the
use of these models in our framework.

7.2.7 Resource Management

Management of a framework of this scale can be challenging. Our framework is
built on the P2P backbone, therefore management in terms of topology changes and
individual client management is going to be minimal in the system. However, the
management server, the job server, the monitoring server and the result server should
still be maintained. The client software installed in the individual peers of the system
should be auto-updated frequently for bug fixes and other enhancements.

91

7.2.8 Leveraging Free Disk Space

In a non-dedicated environment (like university labs) the machines are not exclu
sively assigned to a single person. Therefore, the hard disk is not mostly used for
storing private data. This leave a sizable amount of hard disk space free in the sys
tem. This space can be used for sharing in the framework. Currently, only the CPU
cycles are used by the system for resource sharing. Along with the CPU cycles a
massive data store can be formed by using all the free space available in the hard
disks.

Vazhkudai et.al [38] proposed FreeLoader, a system that aggregates unused desk
top storage space and I/O bandwidth into a shared cache space, for hosting large data
sets. Future research could investigate on the feasibility of integration of a such a
system in our framework.

7.3 Summary

This thesis presented a scalable framework for resource availability prediction for
both dedicated and non-dedicated desktops over a peer-to-peer network. P2P system
removes the responsibility of resource discovery from a single dedicated server and
shares it with all the peers in the network. The prediction of resources reduces the
amount of interruptions, a job experiences during its execution. It will be interesting
to let the system evolve to be adaptable in a real-time environment. We look forward
to furthering this research to that end.

92

Bibliography

[1] Amazon ec2 (http://www.amazon.com/gp/browse.html?node=201590011).

[2] Apache axis2 (http://ws.apache.org/axis2/).

[3] http://www.d-grid.de/.

[4] http://www.garudaindia.in/.

[5] http://www.grid-support.ac.uk/.

[6] Sqlite (http://www.sqlite.org/).

[7] Apache tomcat Webserver (http://tomcat.apache.org/).

[8] D.P. Anderson. Boinc: A system for public-resource computing and storage.
5th IEEE/ACM International Workshop on Grid Computing, pages 365-372,
2004.

[9] F. Berman, G. Fox, and A.J.G. Hey. Grid Computing: Making the Global
Infrastructure a Reality. Wiley, 2003.

[10] BOINC. http://boinc.berkeley.edu/.

[11] J. Brevik, D. Nurmi, and R. Wolski. Automatic methods for predicting machine
availability in desktop grid and peer-to-peer systems. Cluster Computing and
the Grid, 2004. CCGrid 2004. IEEE International Symposium on, pages 190-
199, 2004.

[12] K. Budati, J. Sonnek, A. Chandra, and J. Weissman. Ridge: combining relia
bility and performance in open grid platforms. Proceedings o f the 16th inter
national symposium on High performance distributed computing, pages 55-64,
2007.

93

http://www.amazon.com/gp/browse.html?node=201590011
http://ws.apache.org/axis2/
http://www.d-grid.de/
http://www.garudaindia.in/
http://www.grid-support.ac.uk/
http://www.sqlite.org/
http://tomcat.apache.org/
http://boinc.berkeley.edu/

[13] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic models for re
source management and scheduling in grid computing. Concurrency and com
putation: practice and experience, 14(13-15):1507-1542, 2002.

[14] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: Architecture and perfor
mance of an enterprise desktop grid system. Journal o f Parallel and Distributed
Computing, 63(5):597-610, 2003.

[15] J. Clark and S. DeRose. Xml path language (xpath) version 1.0. w3c recom
mendation. World Wide Web Consortium, 1999.

[16] C. Cramer and T. Fuhrmann. Bootstrapping Chord in Ad Hoc Networks: Not
Going Anywhere for a While. In Fourth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops (PERCOMW’06),
pages 168-172.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. COMMUNICATIONS OF THE ACM, 51(1):107, 2008.

[18] Dempster. Annals o f Mathematical Statistics. Morgan Kaufmann Publishers
Inc. San Francisco, CA, USA, 1967.

[19] K. Egevang and P. Francis. RFC 1631: The IP Network Address Translator
(NAT). RFC Editor United States, 1994.

[20] G. Fedak, C. Germain, V. Neri, and F. Cappello. Xtremweb: A generic global
computing system. Cluster Computing and the Grid, 2001. Proceedings, pages
582-587, 2001.

[21] L. Gong. Jxta: A network programming environment. Internet Computing,
IEEE, 5(3):88-95, May/Jun 2001.

[22] M. Knoll, A. Wacker, G. Schiele, and T. Weis. Decentralized Bootstrapping in
Pervasive Applications. In Proceedings o f the Fifth IEEE International Con
ference on Pervasive Computing and Communications Workshops, pages 589-
592. IEEE Computer Society Washington, DC, USA, 2007.

[23] Derrick Kondo, Andrew A. Chien, and Henri Casanova. Resource manage
ment for rapid application turnaround on enterprise desktop grids. In SC ’04:
Proceedings o f the 2004 ACM/IEEE conference on Supercomputing, page 17,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2153-3.
doi: http://dx.doi.org/10.! 109/SC.2004.50.

94

http://dx.doi.org/10

[24] D.B. Lange and M. Oshima. Mobile agents with Java: The Aglet API. World
Wide Web, 1(3):111-121, 1998.

[25] MJ Litzkow, M. Livny, and MW Mutka. Condor-a hunter of idle workstations.
Distributed Computing Systems, 1988., 8th International Conference on, pages
104-111, 1988.

[26] Sun Microsystems. Jxta: A network programming environment.

[27] Sun Microsystems. Jxta v2. 5. x: Java programmer’s guide. White Paper, 2007.

[28] R. Moats. URN Syntax. Technical report, RFC 2141, May 1997, 1997.

[29] D. Nurmi, J. Brevik, and R. Wolski. Modeling machine availability in enter
prise and wide-area distributed computing environments. Technical report, U.C.
Santa Barbara Computer Science Department, October 2003.

[30] A. Oram and A. Oram. Peer-to-peer: harnessing the benefits o f a disruptive
technology. O’Reilly, 2001.

[31] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proceedings o f the 2001 SIGCOMM confer
ence, volume 31, pages 161-172. ACM New York, NY, USA, 2001.

[32] Sheldon M. Ross. Introduction to Probability Models. Academic Press, 2006.

[33] A. Roy and M. Livny. Condor and Preemptive Resume Scheduling. INTER
NATIONAL SERIES IN OPERATIONS RESEARCH AND MANAGEMENT SCI
ENCE, pages 135-144,2003.

[34] L. Shang, Z. Wang, X. Zhou, X. Huang, and Y. Cheng. Tm-dg: a trust model
based on computer users’ daily behavior for desktop grid platform. Proceed
ings o f the 2007 symposium on Component and framework technology in high-
performance and scientific computing, pages 59-66, 2007.

[35] P. Smets and R. Kennes. The transferable belief model. Artificial Intelligence,
66(2): 191-234,1991.

[36] J.E. Smith and R. Nair. The Architecture of Virtual Machines. COMPUTER,
pages 32-38, 2005.

[37] Tanenbaum and Steen. Distributed systems: principles and paradigms. Prentice
Hall Pearson Education International, 2002.

95

[38] S.S. Vazhkudai, X. Ma, V.W. Freeh, J.W. Strickland, N. Tammineedi, and S.L.
Scott. Freeloader: scavenging desktop storage resources for scientific data.
In Proceedings o f the 2005 ACM/IEEE conference on Supercomputing. IEEE
Computer Society Washington, DC, USA, 2005.

[39] A. Weiss. Computing in the clouds. netWorker, 11(4): 16—25, 2007.

[40] J.E. White. Mobile agents. Software agents, pages 437-472, 1997.

[41] B.J. Wilson. JXTA. New Riders.

[42] G. Woltman and S. Kurowski. The Great Internet Mersenne Prime Search,
2000.

96

	Decentralized Resource Availability Prediction in Peer-to-Peer Desktop Grids
	Recommended Citation

	tmp.1681318998.pdf.G5dna

