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Abstract

My dissertation consists of four essays focusing on the estimation and forecast

ing of the discrete and continuous-time stochastic volatility (SV) models with 

volatility observable.

The first essay examines the estimation of discrete-time SV models via a 

Monte Carlo study with both lagged inter-temporal and contemporaneous de

pendencies when volatility is observed. The statistical properties of both mod

els are studied. Treating volatility as an observable variable, we apply tra

ditional estimation methods including both full information maximum likeli

hood (FIML) and three-stage least squares (3SLS) methods. The estimation 

is straightforward and easy to implement. The Monte Carlo results suggest 

that both methods do a reasonable job at recovering the true parameters when 

the underlying volatility is observed. When the underlying volatility is unob

served, we should be careful in choosing an appropriate proxy such that the 

proxy error does not spread too much, and in this case, both FIML and 3SLS 

are able to provide good estimates.

The second essay, which is closely related to the first essay, focuses on esti

mating and forecasting the discrete-time SV models with lagged inter-temporal 

and contemporaneous dependencies using realized volatility. This essay con

tributes to the literature in three aspects. First, we examine the estimation of 

the discrete-time SV models with lagged inter-temporal and contemporaneous

X ll



dependencies using realized volatility. Second, we investigate forecasting per

formance of discrete-time SV model with contemporaneous dependence. Third, 

we use realized volatility not only to evaluate the out-of-sample forecasting 

performance, but also in the in-sample estimation. The empirical results show 

that both FIML and 3SLS estimators produce good finite sample properties.

The forecasting performances of four competing models, including SV models 

with lagged inter-temporal and contemporaneous dependencies, the simple re

gression model, and the heterogeneous autoregressive (HAR) model, are com

pared.

In the third essay, we extend our study to examine the estimation via a 

Monte Carlo study of the affine continuous-time SV model when volatility is 

observed. Specifically, we apply the consistent approximate maximum like

lihood method (C-AMLE). We simulate asset returns and volatilities at both 

daily and monthly frequencies. The Monte Carlo results suggest that the C- 

AMLE approach does a good job at recovering the true parameters.

The fourth essay focuses on investigating the estimation of the affine continuous

time SV model using volatility proxies. Both realized volatility and model-free 

implied volatility are employed. We apply the C-AMLE approach as well as the 

quasi-maximum likelihood (QML) method. Our empirical analysis is based on 

both daily and monthly data of S & P 500 index and Dow Jones Industrial Av

erage indexes. In general, the C-AMLE approach ourperforms the QML when 

the model-free implied volatility is used.

Keywords: Discrete-Time Stochastic Volatility Model, Full Information Maxi

mum Likelihood, Three-Stage Least Squares, Affine Continuous-Time Stochas

tic Volatility Model, Consistent Approximate Maximum Likelihood, Quasi-Maximum 

Likelihood, Realized Volatility, Model-Free Implied Volatility.
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Chapter 1 

Introduction

My doctoral thesis consists of four essays focusing on estimation and forecast
ing of stochastic volatility (SV) models when volatility is observed. The first 
essay investigates the estimation of discrete-time SV models with both lagged 
inter-temporal and contemporaneous dependencies when volatility is observed 
via a Monte Carlo study. The second essay concentrates on the estimation and 
forecasting of those models using realized volatility. The third essay examines 
the estimation performance of the consistent approximate maximum likelihood 
(C-AMLE) method for the affine continuous-time SV model when volatility is 
observed via a Monte Carlo study. The fourth essay investigates the estima
tion of the affine continuous-time SV model using both realized and model-free 
implied volatilities.

Financial time series exhibit certain stylized facts, such as insignificant au
tocorrelation of asset return while profound serial correlation of squared and 
absolute returns, heavy tails of asset returns, leverage effect, volatility cluster
ing, etc. Various models have been developed to capture these stylized facts. 
Among them, the SV model has been well recognized to be able to pick up the 
observed asymmetric behavior of time series and capture the heavy tails of

1



2

asset returns hence placed at the center of volatility research of realistic pric
ing of options, efficient asset allocation and accurate risk assessment. How
ever, in SV framework, the underlying volatility is latent, explicit maximum 
likelihood estimation and inference are not feasible. Researchers proposed 
numerous estimation methods. In general, these methods suffer from some 
drawbacks, such as failure of convergence, inefficiency, or the implementation 
is rather complicated and demands time consuming computation. The draw
backs of these methods treating volatility as latent motivate our interest in 
investigating estimation of SV models treating volatility as observed in the 
first essay. We investigate estimation of two alternative discrete-time SV mod
els, SV model with lagged inter-temporal dependence, and SV model with con
temporaneous dependence, with volatility observable via a Monte Carlo study. 
Jiang, Knight and Wang (2005) examined the theoretical differences between 
these two discrete-time SV models and showed the moments and cross mo
ments of returns were different. We extend their study by deriving both condi
tional and unconditional correlations between volatility and past/future asset 
returns and show that the explicit expressions are different for two models. 
Treating volatility as an observable variable, we apply both full information 
maximum likelihood (FIML) and three-stage least squares (3SLS) procedures 
and undertake Monte Carlo experiments to examine their performance. We 
first undertake a Monte Carlo assuming that the true volatility is observed, 
the evidence shows that both methods do a reasonable job at recovering the 
true parameters. In realistic situations, volatility is not observable but often 
suitable proxies are available. Naturally there exists a measurement error as
sociated with the volatility proxy. So we undertake a Monte Carlo experiment 
taking into account the volatility proxy error, and examine the estimation per
formance of both FIML and 3SSL. The evidence suggests that both methods do
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a reasonable job if an efficient volatility proxy is selected.

The second essay examines the estimation and forecasting performance of 
discrete-time SV models using realized volatility. Our study contributes to the 
literature in three aspects. First we examine the estimation of discrete-time SV 
models with both lagged inter-temporal and contemporaneous dependencies 
using realized volatility. Second, we first examine forecasting performance of 
discrete-time SV model with contemporaneous dependence. And third, we use 
daily realized volatility not only to evaluate the out-of-sample forecasting per
formance, but also in the in-sample estimation. Our empirical analysis is based 
on both low frequency daily and high frequency intra-day observations for S & 
P 500 index and three exchange rates, including CAD/USD, DEM/USD, and 
USD/GBP. When we construct daily realized volatility, we employ the “volatil
ity signature plot” to select the optimal sampling frequency, we also consider 
different approaches to deal with the “closed effect” and the first order auto
correlation of high frequency asset returns. Using realized volatility, both the 
FIML and 3SLS estimators produce good finite sample properties, suggesting 
that both methods are appropriate when volatility is treated as an observable 
variable, and the statistical inference is reliable by using daily realized volatil
ity as a proxy. We then examine the forecasting performance of four different 
models, including the above two models, a simple regression model, and hetero
geneous autoregressive (HAR) model, using realized volatility. We first apply 
the famous Diebold and Mariano (1995) tests, the results indicate that the com
peting models provide unequally accurate forecasts. We then use four criteria, 
namely the root mean squared error (RMSE), the mean absolute error (MAE), 
the Theil’s-U, and QLIKE, to evaluate the point forecasts of each candidate 
model. The result shows that the HAR model provides the most accurate point 

forecasts.
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The third essay extends our study of the SV model by examining the es
timation of the affine continuous-time SV model. As the continuous-time SV 
model can explain some empirical features of the joint time-series behavior of 
stock and option prices, such as time varying volatility, fat tails of asset re
turn distribution, etc., it has dominated the option pricing literature since the 
mid-1980s. However, traditional inference for the continuous-time SV model 
has been viewed as difficult for some time. The continuous sample of obser
vations is unavailable and thus often requiring the model to be discretized 
and introducing a significant discretization error. The estimation is even more 
difficult as the volatility process can not be directly observed. In addition, ex
cept for a few cases, the transition density does not have a closed form ex
pression hence maximum likelihood method is not directly available. In prac
tice, the estimation is computationally demanding or involves discretization 
error or is based on simulation methods. It is noticed that for the affine dif
fusion and affine jump diffusion processes, although the transition density 
functions are unknown, the corresponding conditional characteristic functions 
(CCF) can be derived explicitly, hence the empirical characteristic function 
(ECF) method can be applied. Jiang and Knight (2010) advanced the ECF 
approach by proposing an analytical approximation of the optimal weight func
tion via an Edgeworth/Gram-Charlier expansion of the logarithmic transition 
density function. Their approach is similar to the approximate maximum like
lihood (AMLE) method, but ensures the consistency of the estimation hence 
is named the consistent AMLE (C-AMLE). For the affine continuous-time SV 
model, when both return and volatility processes are observed, the volatility 
state variable does not have to be integrated out of the joint CCF hence the 
implementation of the C-AMLE is straightforward and computationally easy. 
In the third essay we examine the estimation performance of the C-AMLE
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method via a Monte Carlo study. We simulate the volatility process from its 
unconditional density function and generate return process using the almost 
exact simulation method, at both daily and monthly frequencies. The moments 
calculated from our simulations are very close to the true moments, suggest
ing that our simulations are accurate. We then apply the C-AMLE procedure 
for the affine continuous-time SV model, the result suggests that the C-AMLE 
method does a good job at recovering the true parameters.

The last essay investigates the estimation of the affine continuous-time SV 
model via an empirical study. Volatility measures have been widely employed 
in modern academic and financial market practitioner literatures over the last 
two decades. One popular measure is realized volatility constructed from high 
frequency data, and the other is model-free implied volatility inferred from 
option prices. Motivated by the accuracy of these volatility proxies and com
putational convenience by using them in the estimation, in the fourth essay, 
we employ both realized volatility and model-free implied volatility, and apply 
the C-AMLE as well as the quasi-maximum likelihood (QML) procedures for 
the affine continuous-time SV model. Our empirical analysis is based on re
turns and volatilities of both the S & P 500 and Dow Jones Industrial Average 
indexes. The evidence shows that using daily realized volatilities, neither the 
C-AMLE or the QML procedure fit the data. However, when using monthly 
data, the estimation improves. Especially when we employ the model-free im
plied volatilities, the estimates are stable, and the moments of returns and 
model-free implied volatilities calculated from the estimates are close to the 
moments of real time series. In general, we find that the C-AMLE outperforms 
the QML approach.
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Chapter 2

Estimation of Stochastic 
Volatility Models with Volatility 
Observable

2.1 Introduction

Volatility plays an important role in both financial theory and financial mar
kets. The widely recognized positive trade-off relationship between risk and 
return demands for accurate estimates and forecasts of return volatility as 
volatility is a common definition of risk. The large volatility in the equity and 
foreign exchange markets has a significant impact on the whole economy hence 
can raise a policy issue. In financial markets, the pricing of derivatives often 
requires the volatility of the underlying asset to be estimated. In some deriva
tives, the underlying asset is volatility itself. Further, for hedging against risk 
and portfolio management, accurate volatility estimates and forecasts are cru

cial.

As discussed in McNeil, Frey, and Embrechts (2005), financial time series 
exhibit certain stylized facts:

7
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(1) The autocorrelation in returns is often small and insignificant, however, 
the series of absolute or squared returns show profound serial correlation.

(2) Asset return series are leptokurtic or heavy-tailed. As Mandelbrot (1963), 
and further Fama (1963) observed, the distribution of asset returns exhibits ex

cess kurtosis or fatter tails than those of a normal distribution.

(3) Volatility appears to vary over time.

(4) Volatility clustering. Financial time series observations always reveal 
high volatility followed by high volatility and similarly for low volatility, indi
cating notable clustering but also persistency of volatility.

(5) Leverage effects. As Black (1976) first suggested, the past stock returns 
are negatively associated with future volatility. Nelson (1991), Gallant, Rossi 
and Tauchen (1992), Campbell and Kyle (1993) reported empirical evidence on 
leverage effects.

These observations about asset return and volatility series led researchers 
to focus on the study of these stylized facts. Various approaches have been pro
posed to capture these stylized facts. A benchmark model is the so called Au
toregressive Conditional Heteroscedasticity (ARCH) model, proposed by Engle 
(1982). In the ARCH framework, the conditional variance is a time-varying, 
positive, linear function of past squared errors, and thereby able to capture 
volatility clustering in financial data. Bollerslev (1986) extended the ARCH 
model by allowing the conditional variance to be a linear function of both past 
squared errors and lagged conditional variances, and developed the new pop
ular Generalized ARCH (GARCH) model. On the other hand, Taylor (1986) 
formulated a discrete-time stochastic volatility (SV) model as an alternative 
to the ARCH/GARCH model. In the SV framework, unlike ARCH/GARCH, 
volatility is allowed to follow a stochastic process with its own error source.
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The ARCH/GARCH model has become very popular in the modeling finan
cial time series due to its ability to capture many of the stylized facts but per
haps, more importantly, due to its ease of estimation via maximum likelihood. 
However, it is important to notice that for a standard ARCH/GARCH model, 
positive and negative past values have a symmetric effect on the conditional 
variance, while it is very likely financial series are strongly asymmetric and 
subject to the “leverage effect” between asset return and volatility. In the SV 
framework, correlation between error terms in the asset return process and 
the conditional volatility process enables the SV model to pick up the often ob
served asymmetric behavior. In particular, a negative correlation between the 
two error terms induces a leverage effect. Moreover, in the SV model, the as
set return is a mixture of distributions, thus the excess kurtosis or fat tails, a 
significant stylized fact, is able to be captured. In fact, as Kim, Shephard and 
Chib (1998) showed, the standard SV models perform better in-sample than 
the GARCH models.

In the discrete-time SV model framework, there are different specifications 
of the dependence between the conditional volatility and the asset return. There 
are models with lagged inter-temporal dependence and models with contempo
raneous dependence. The former assumes that the disturbance term in the 
conditional volatility process is correlated to that in the lagged asset return 
process, while the latter assumes those two error terms are correlated con
temporaneously. While most studies focus on the SV model with lagged inter
temporal dependence due to its tractability, the SV model with contemporane
ous dependence has received little attention in the literature. In their recent 
study, Jiang, Knight and Wang (2005) investigated the properties of SV mod
els with both lagged inter-temporal and contemporaneous dependence. They 
theoretically showed that an SV model with contemporaneous dependence was
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more flexible in its ability to fit into the high kurtosis of asset returns than an 
SV model with lagged inter-temporal dependence.

Although SV models have been recognized as able to overcome some of the 
drawbacks of the ARCH/GARCH models and placed at the center of volatil
ity research for the realistic pricing of options, efficient asset allocation and 
accurate risk assessment, the estimation is always viewed as difficult since 
volatility itself is a random process and not observable. Explicit maximum 
likelihood estimation and inference are not feasible, and thus most researchers 
focus on estimating the SV models using moment conditions. An incomplete 
list of alternative estimation methods includes the method of moments (MM) 
proposed by Taylor (1986), the efficient method of moments (EMM) introduced 
by Bansal, Gallant, Hussey and Tauchen (1993), Engle (1994), Gallant and 
Tauchen (1996), and Jiang and van der Sluis (2000), the simulated method 
of moments (SMM) by Duffle and Singleton (1993), the generalized method of 
moments (GMM) introduced by Melino and Turnbull (1990), Andersen (1994) 
and Andersen and Sorensen (1996), the Quasi-Maximum likelihood (QML) by 
Harvey, Ruiz and Shephard (1994), the simulated maximum likelihood (SML) 

estimation by Danielsson and Richard (1993), the Bayesian Markov Chain 
Monte Carlo (MCMC) method proposed by Shephard (1993), Jacquier, Poison 
and Rossi (1994, 2004), and Chib, Elerian and Shephard (2001), and the em
pirical characteristic function (ECF) by Singleton (2001), Knight and Yu (2002) 
and Jiang and Knight (2002, 2010), etc.1

Overall, these estimation methods have advantages in some respects, on 
the other hand, they suffer from some drawbacks, such as failure of conver
gence, inefficiency, or the implementation is rather complicated and demands

^roto and Ruiz (2004) provide an excellent survey of estimation methods for SV models.
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time consuming computation. The main difficulty is that in the SV framework, 
volatility is latent, the estimation is solely based on the observations of asset 
returns. The drawbacks of these methods in the estimation of the discrete
time SV models when volatility is latent motivate our interest in investigating 
estimation of SV models treating volatility as observed. In this chapter, we 
investigate estimation of two alternative discrete-time SV models, SV model 
with lagged inter-temporal dependence, and SV model with contemporaneous 
dependence when volatility is observed. In Jiang, Knight, and Wang (2005), the 
theoretical differences between these two discrete-time SV models were exam
ined via an analysis of various moments and cross moments of asset returns. 
In a small empirical study, they showed that the SV model with contempora
neous dependence fitted the asset return data the best. We extend their study 
by deriving both conditional and unconditional correlations between volatility 
and past/future asset returns, and show that the explicit expressions are sig
nificantly different for two models. In Jiang, Knight and Wang (2005), they 
treated volatility as unobserved and considered GMM in estimating both mod
els. The estimated correlation coefficient parameter p in general is not very 
desirable. In our study, we treat volatility as an observable variable, conse
quently we can easily apply some traditional estimation methods, specifically, 
we are able to apply full information maximum likelihood (FIML), or its asymp
totic equivalent, three stage least squares (3SLS) method. The estimation is 
simple and easy to implement. In order to examine the estimation performance 
of these traditional methods, we undertake a Monte Carlo experiment. We first 
undertake a Monte Carlo assuming that the true volatility is observable. This 
assumption is not realistic, but it sets a benchmark for comparison. In realis
tic situations, volatility is not observable but often suitable proxies are avail
able. Naturally there exists a measurement error associated with the volatility
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proxy. So we undertake a Monte Carlo experiment taking into account the 
volatility proxy error, and examine the estimation performance of both FIML 
and 3SLS. We compare the means, medians, and standard errors of the esti
mators and note that the evidence supports our approaches.

The outline of the rest of this chapter is follows. In Section 2.2, we briefly 
review the literature on discrete-time stochastic volatility models as well the 
estimation methods existing in the literature. In Section 2.3, the statistical 
properties of alternative SV model specification are discussed. We report the 
exact moment results from Jiang, Knight and Wang (2005) and derive lag-lead 
correlations between asset returns and volatility. Section 2.4 concentrates on 
the estimation procedures of FIML and 3SLS for the two models. Section 2.5 
reports the result of Monte Carlo experiments. A brief conclusion is contained 

in Section 2.6.

2.2 Literature Review

2.2.1 Discrete-time SV Model

Volatility is widely believed to be time varying, persistent, and clustered. An 
explanation for changing volatility, as Shephard (1996) mentioned, would be to 
assume that price changes occur due to a random number of intra-daily price 
movements responding to information arrivals following the work of Clark 
(1973) and Tauchen and Pitts (1983). Over the last two decades, numerous 
models have been developed to study changing volatility. Following Cox (1981), 
these models could be divided into two types, namely, observation-driven and 
parameter-driven models, respectively. The simplest examples of the former
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are ARCH and GARCH models introduced by Engle (1982) and Bollerslev (1986), 
respectively. Alternatively, the parameter-driven SV models allow the variance 
to depend not on past observations, but on its own error term in a autoregres
sive specification.

Typically, if we let St denote the asset price at time t, then xt = ln(St/St- i ) -p  
refers to the excess asset return. The GARCH (1,1) model may be written as:

xt = atet (2.1a)

of = a0 + aiXj2, !  + /3iof_! (2.1b)

where et ~  i.i.d.N(0,1). The parameters must satisfy a0 > 0,ai > 0,/?i > 0, 
and ai + Pi < 1 to ensure that the conditional variance is positive and that 
the excess asset return series { i t} is covariance stationary. Obviously in the 
GARCH (1,1) process, the variance is a deterministic function of past variance 
and squared returns.

The SV model is similar to the GARCH (1,1) process except it introduces 
another error source into the conditional variance equation:

xt = at£t (2.2a)

of = exp(ht) (2.2b)

ht = a + Pht_i + ar/t (2.2c)

where et r\j 1 .Z. d.N (0,l),Vt ~  i.i.d.N{0,1). The two error terms may be correlated 
with each other.

Shephard (1996) provides an excellent comparison of ARCH/GARCH and 
SV models’ statistical properties. In the ARCH/GARCH models, the method of 
maximum likelihood makes the estimation statistically efficient and computa
tionally easy. While the mixture of distributions in the SV model specification
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creates difficulties in estimation, it enables the model to capture both excess 
kurtosis as well as the asymmetric behavior of asset returns. (See Ghysel, 
Harvey and Renault (1996)).

There are two leading explanations for the asymmetry in the relationship 
between asset returns and volatility, namely the feedback effect and the lever
age effect. The feedback effect is associated with the positive relationship be
tween asset returns and volatility. As French, Schwert and Stambaugh (1987) 
and Campbell and Hentschel (1992) discussed, the higher volatility demands 
a higher asset return. The leverage effect, on the other hand, as Black (1976) 
and Christie (1982) first discussed, indicates that volatility increases when the 
stock price falls. Little agreement has been achieved about the magnitude of 

the two effects.

In the studies of the relationship between the asset return and volatility, 
most researchers focus on the lagged inter-temporal dependence due to its 
tractability. Yet, within the SV model framework, dependence between asset 
returns and conditional volatility, namely contemporaneous dependence has 
also been specified in the literature. However, as the statistical properties for 
this model are unknown, it has held little attention of academics and practi
tioners. Jiang, Knight and Wang (2005) investigated and compared the prop
erties of the SV models under the two alternative specifications. They derived 
closed form expressions for the moments and cross moments of asset returns 
and showed that the statistical properties of asset returns under these two 
specifications were clearly different. The model with contemporaneous depen

dence allows for negative skewness of the asset return distribution.



15

2.2.2 Estimation of SV Models

As Broto and Ruiz (2004) discussed, since volatility is latent, estimation ap
proaches of the SV models are mainly based on the statistical properties of the 
return process. The most popular approaches are based on the method of mo
ments (MM), first introduced to estimate SV models by Taylor (1986). Melino 
and Turnbull (1990), and later Andersen (1994), Andersen and Sorensen (1996), 
Jiang, Knight and Wang (2005), Bollerslev and Zhou (2006) also proposed the 
generalized method of moments (GMM) to estimate SV models, and showed 
that the estimator was consistent. GMM is easy to implement, however, the 
finite sample properties are very poor, and the estimator is not as efficient as 
maximum likelihood.

Some studies focus on the maximum likelihood via the Monte Carlo Markov 
Chain (MCMC) procedures. Shephard (1993), and Jacquier, Poison, and Rossi 
(1994) were the first to propose the MCMC procedure for the estimation of SV 
models. Later, Chib, Elerian and Shephard (2001) also employed the MCMC to 
estimate SV models. The advantage of MCMC procedures is that as the simu
lation size becomes very large, they have asymptotically the same distribution 
as the maximum likelihood estimator. Moreover, as the inference is based on 
finite sample distributions, the asymptotic approximation is not needed. How
ever, the empirical implementation of MCMC is complicated and computation
ally demanding.

Gourieroux, Monfort, and Renault (1993) proposed the indirect inference 
method. Specifically, they proposed the quasi-likelihood function as an aux
iliary model to estimate the continuous-time SV model. On the other hand, 
Bansal, Gallant, Hussey and Tauchen (1993), Gallant and Tauchen (1996),
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proposed the efficient method of moments (EMM). The EMM procedure is com
putationally easier than the indirect inference procedure, and has been exten
sively used in the estimation of both continuous and discrete-time SV models, 
such as Engle (1994), Gallant, Hsieh, and Tauchen (1997), Jiang and van der 
Sluis (2000), etc. As Gourieroux, Monfort, and Renault (1993) showed, the in
direct inference and EMM methods are asymptotically equivalent. The former 
approach performs better in finite samples, the latter approach is computation
ally easier. However, both approaches are computationally demanding.

Nelson (1988), and later Harvey, Ruiz, and Shephard (1994), linearized the 
SV models by taking logarithms of the nonlinear equations in SV models hence 
applied the Kalman filter to obtain the quasi-maximum likelihood function of 
logarithm of squared asset returns. The QML procedure is flexible, easy to im
plement, and the estimator is consistent and asymptotically normal. However, 
this procedure is inefficient since the estimation is based on an approximated 
likelihood function. As Ruiz (1994) showed, the finite sample bias could be 

significant.

In SV framework, volatility follows a random process with its own distur
bance, hence the asset return series has a mixture distribution. Theoretically 
this property makes SV models attractive as it is more realistic, however, the 
empirical application is difficult as explicit likelihood function is unavailable. 
It has been noticed that although a closed form of the transition density func
tion is unknown, the associated conditional characteristic function (CCF) of 
the state variables can be derived explicitly. Building on this observation, Sin
gleton (2001), Jiang and Knight (2002, 2010), proposed the empirical charac
teristic function (ECF) method to estimate both discrete and continuous-time 
SV models. The basic idea is to minimize the integrated distance between the
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empirical characteristic function (ECF) and their theoretical counterpart, the 
CCF. As Jiang and Knight (2002, 2010) pointed out, due to the one to one corre
spondence between the transition density function and the CCF, the estimator 
is asymptotically consistent, and efficient. However, as volatility, one of the 
state variables, is unobserved, it has to be integrated out of the joint CCF, the 
estimation is complicated in practice.

In the past two decades, some volatility proxies have been developed in the 
literature. The most popularly used proxies include realized volatility (RV) 
constructed from high frequency intra day transaction prices, and model-free 
implied volatility (MFIVj which is ex-ante risk neutral expectations of future 
market volatilities computed from option prices. These volatility proxies have 
been proved to be consistent, accurate estimators for the unknown true volatil
ity, and widely used in modeling and forecasting volatility ever since. The de
velopment of volatility proxies motivates our interest in examining estimation 
of SV models when volatility is an observable variable. In our study, we treat 
volatility as observed, consequently, we are able to apply some traditional esti
mation methods, including FIML as well 3SLS, given the joint distribution of 
asset return and volatility processes. Clearly the estimation will be straight

forward, and easy to implement.
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2.3 Statistical Properties of Alternative SV Model 

Specifications

Jiang, Knight and Wang (2005) showed that the statistical properties were 
different between the two specifications. In some sense, SV model with con
temporaneous dependence fitted better to the asset returns. In this section, we 

further analyze some of the statistical properties of these models stating the 
results from Jiang, Knight and Wang (2005) and extending them to derive con
ditional and unconditional lag-lead correlations between returns and volatility.

2.3.1 SV Model with Lagged Inter-temporal Dependence 

(Model 1)

Let {xt}, t = 1 , . . . , T  denote the asset return at time t, {eht}  represent the 
volatility (variance) of the asset return, and {ht} is the natural logarithm of 
the volatility, the SV model with lagged inter-temporal dependence specifies 

the correlation between past asset returns and current volatility:

xt = Xeht + eht/2et (2.3a)

ht =  a + /3/it-i + av t (2.3b)

(2.3c)

In this type of model, only lagged e and current v, that is, lagged asset 
return and current volatility are correlated with each other.

An alternative way to write this model is to replace the second equation and
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distribution with the following:

ht+1 — Oi + fiht + crvt

There are five unknown parameters A,a,/3,cr, and p in this model. In the 
asset return equation, the parameter A refers to the risk-return trade-off, intu
itively it should take a positive value. In the second equation, the logarithmic 
volatility follows an Alt (1) process with a constant a. The parameter ¡3 repre
sents the persistence in volatility and is usually assumed to be positive. The 
larger (3, the more persistent the volatility. The parameter a is the volatility of 
volatility which is positive. And p refers to the correlation coefficient which lies 
within a natural band [-1,1].

It is noted that in the standard SV model which we discussed in Section 
2, the asset return xt is equal to e^htet, hence the conditional first moment of 
the asset return does not involve ht, whereas in Model 1, an extra term Xeht 
is introduced in the asset return equation to take into account the risk-return 
trade-off (or feedback effect). The conditional first moment of the asset return 

is:

Et^ (x t) = Et_x(\eht + ehl/2et) = £ t_i( Ae»+^-x+~<) = Aea+^«-i+ ^ 2

With A being positive, the larger ht-\, the larger expected asset return is.
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2.3.2 SV Model with Contemporaneous Dependence(Model

2 )

The SV model with contemporaneous dependence specifies the correlation be
tween current asset return and volatility:

(2.5a) 

(2.5b)

(2.5c)

From the model above, obviously current period asset return and volatility 
are correlated with each other. The mixture of distributions leads to excess 
kurtosis for asset returns.

Same as in Model 1, \eht is included in the asset return equation in Model 2. 
However, as Jiang, Knight and Wang (2005) proved, the conditional expected 
asset return for Model 2 is different from that for Model 1.

For Model 2, the conditional expected return is2

Et-i{xt) = e“+^ ‘-»+5a2A + ie la+lph*-1+laa pa

Both models have a common term in their conditional expectation which is 
positive if A > 0. However, Model 2 contains an extra term which may be either 
positive or negative depending on the sign of correlation coefficient p. As Jiang, 
Knight and Wang (2005) demonstrated, the extra term in Model 2 is induced 
by the asymmetry between the return and volatility. If p is negative, a higher 
risk premium of volatility would be required in Model 2 in order to have the 
same level of expected return as in Model 1.

Xt = \eht -I- eht̂ et 

ht = a + 0ht-1 + avt

2see Jiang, Knight and Wang (2005) and Appendix 1 for proof.
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2.3.3 Cross Moments for Model 1 and Model 2

Jiang, Knight and Wang (2005) derived the closed form expressions for the mo
ments for each of the models above. We reproduce their results in Proposition
1.1 and Proposition 1.2.3

Proposition 1: (Conditional Return Moments) The conditional cross mo

ments of xtand xt+i for Model 1 and Model 2 are:

E M ù = S sQC)^'*
Icxp(a^l + P ~ (fc + s) /2) ~ P(l ~ k/ 2 + (p~

*exp((3(l -  k/2 + (p -  s/2)/3')ht_i)
. -  W  ~ k/2 + (p -  5/2)/302 +  (P -  */2)2(l -  /?2i)

----------------------------- 2(1=05)----------------------------- "  >
*C(l,k,p, 5)

where

(7(/, fc.p.s) -  W fc((p - 5/2)pa/3i-1)W,(0)

for Model 1 and

C(l, k, p, s) =  Wk(pa((p -  5/2)^ + ( i -  k/2)))W.((p -  s/2)pa) 

for Model 2.

Proposition 2: (Unconditional Return Moments) The unconditional cross
3See Jiang, Knight and Wang (2005) page 9-10 and Appendix 2 for details and proof.
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moments of xtand xt+i for Model 1 and Model 2 are:

E{x\xpt+l) = P J yl+p-k

*exp( (/ -  k/2)2 + (p -  s/2)2 + 2j3i{l -  k/2)(p -  s/2)
2(1 — P2) *2)

*exp(

where

C(l, k,p, s) = Wk((p -  s/2)pcr/3i~1)Ws(0)

for Model 1 and

C{1, k,p, s) = Wk(pa({p -  s/2)/?4 + (/ -  /c/2)))VKs((p -  s/2)pa)

for Model 2.

2.3.4 Conditional and Unconditional Correlations between 

Volatility and Past and Future Returns

The asymmetric relationship between asset return and volatility processes has 
been studied over the past two decades. There are two leading explanations 
for this volatility asymmetry, namely, the leverage effect and volatility feed
back effect, respectively. The so called leverage effect, referring to a negative 
correlation between asset return and volatility, was first discussed by Black 
(1976), and later Christie (1982). Intuitively, the lower past return causes an 
increase in the debt-to-equity ratio, hence results in a higher future volatility. 
In contrast, French, Schwert and Stambaugh (1987) find a positive correlation
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between asset return and volatility. The volatility feedback effect implies that 
an increase in volatility would demand a higher future return.

Based on different volatility models, theoretical analysis of correlations be
tween volatility and returns has been implemented. For example, building on 
Heston (1993) one-factor continuous SV model, Bollerslev and Zhou (2006) pro
vide theoretical analysis of relationship between return and realized volatility 
and implied volatility. Shi (2005) derives the closed-form expression for both 
conditional and unconditional correlations between volatility and past and fu
ture returns (lag-lead correlation) for a discrete-time SV in mean model.

In our study, we derive both conditional and unconditional lag-lead corre
lations between asset return and volatility processes for SV models with both 
lagged inter-temporal and contemporaneous dependence. The explicit expres

sions are reported below.

Proposition 3: The conditional lag-lead correlations between return and 
volatility for Model 1 and Model 2 are as follows; the proofs are given in Ap

pendix 3:

1. The conditional lag correlations for Model 1 and Model 2 are:

for i > 0
for Model 1 and

{ e ^ 2 -  1) +

for i > 0 
for Model 2.
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2. The conditional lead correlations for Model 1 and Model 2 are:

n >. — Pai3'~'
Pxt,eht+' | /(-i ~  0

\je

for i > 1
for Model 1 and

Jx t,el>‘ +i\It- 1

1

1
W , (Aea+^t_i + i CT2(e^ ff2 _  1) +

V2(e 

pcre2a+5
i-e2 

's'-ia+i/îhi-i+ifT2̂  ̂_|_ 2/3i)e^ ia2 1))

for i > 1 
for Model 2.

Proposition 4: The unconditional lag-lead correlations between return and 
volatility for Model 1 and Model 2 are as follows:

1. The unconditional lag correlations for Model 1 and Model 2 are as follows:

for i > 0
for Model 1 and

(Ae 2(i-52) (eï-^
P x t,eh‘

?/3̂ 2 1) Apcre0 2(1~/3)8(i—0 )̂ ĝ2(i-02)̂  a

for i > 0 
for Model 2.

2. The unconditional lead correlations for Model 1 and Model 2 are:
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Pxt,eh‘+i ni-02)a (e 1-3- r̂ CT2— 1 )+pcr/3l 1e2(1_fl) +

for i > 1

for Model 1 and

3x( ,eh*+‘
VvV4(e l - 3 2 -1 )  

p <j e 2 ( l -3 2) Q + 8 ( l -3 2)

(Ae“ î ^ +5(T^)ff2(eT̂ ^ 2 -  1) + 

a2((l + 2/?i)e5<^F)/3,‘T2 _  l))

for i > 1 

for Model 2.

Vi, V2 are conditional variance of asset return process in Proposition 3,V3,P4 

represent unconditional variance of return process in Proposition 4. The ex
plicit expression for these different Vs is provided in Appendix 3.

First we compare the conditional lag correlations for Model 1 and Model 2. 
Clearly they are different. For Model 1, the conditional correlation between 
return and current/past volatility is zero. This is obvious given the assump
tion that the error term in return process is only correlated with the future 
error term in the volatility process. Alternatively the conditional lag correla
tion for Model 2 is nonzero. Moreover, the persistence parameter ¡3 is naturally 
assumed to be positive to capture “volatility clustering” feature, and the local 
volatility parameter a can not be negative, the sign of conditional lag corre
lations for Model 2 is controlled by signs of risk trade-off parameter A and 
correlation coefficient parameter p. If signs of both parameters are negative, 
then the conditional lag correlations for Model 2 is negative. If the signs of the 
two parameters are opposite, then it is ambiguous. By setting i =  1, we get the 
conditional leverage effect, while when letting i =  0 , the conditional feedback 
effect is obtained.
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The closed-form expressions for the conditional lead correlations for the two 
models are both nonzero but different. For Model 1, the sign is determined 
by the sign of correlation coefficient parameter p and independent of trade off 
parameter A indicating that letting p ^ 0 induces the conditional asymmetric 
response of volatility to the positive or negative lagged return. If p < 0, then 
the current return is negatively associated with future volatility, i.e. leverage 
effect. However, for Model 2 the sign of conditional lead correlation is controlled 
by p along with A. In particular, setting both p and A negative, the conditional 

leverage effect is captured.

Proposition 4 provides the closed-form expressions for the unconditional 
lag-lead correlations for both models. Unlike the conditional lag correlation 
for Model 1, the unconditional lag correlation for this model is independent of 
correlation coefficient parameter p. This result is consistent with the assump

tion of Model 1 that error term in return process is only correlated with future 
error term in volatility process. While the sign of the unconditional lag corre
lation for Model 1 is solely determined by parameter A, it is controlled by both 
A and p for Model 2.

The sign of the unconditional lead correlations depends on A and p while 
the magnitude is determined by parameters A,a,/3,p and a for both models. 
In particular, if A and p are both negative, the current return is negatively 
associated with future volatility process for both models.

Overall, the expressions of both cross moments of the asset returns and 
lag-lead correlations between returns and volatilities are significantly different 
between SV model with inter-temporal dependence and SV model with contem
poraneous dependence.
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2.4 Estimation of Alternative SV Models Treat

ing Volatility as Observable

Jiang, Knight and Wang (2005) studied the SV model with both lagged inter
temporal and contemporaneous dependences. They showed that the SV model 
with contemporaneous dependence fitted the asset returns better than the SV 
model with lagged inter-temporal dependence. As a consequence, they claimed 
that the contemporaneous dependent SV model deserved attention. From the 
various moment results they derived, they suggested GMM as a suitable esti
mation method. Unfortunately, results from both the Monte Carlo experiment 
and an empirical study were not very desirable. These results, further high
light the estimation difficulties in SV models when volatility is latent.

In this study, we treat volatility as observed in both models. Therefore we 
employ traditional estimation methods such as full information maximum like
lihood (FIML)(or equivalently feasible generalized least square (FGLS)) and 
three-stage least squares (3SLS) approaches in the estimation.

2.4.1 Full Information Maximum Likelihood (FIML) or Fea

sible Generalized Least Squares (FGLS) Estimation 

for Model 1

When volatility (or variance) eht is an observable variable, given a time series 
of observations {x t, eht}, t = 1 , . . . ,  T, traditional estimation methods can result 
in consistent and efficient estimators.

For Model 1, since the disturbance terms et~i and vt are correlated with
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each other, given the observations {x t,eht} ,t  = 2 the full information 
maximum likelihood (FIML) or equivalently feasible generalized least squares 
(FGLS) approach can be applied.

We transform the asset return equation in Model 1 by multiplying e~^ht to 
both sides, resulting in:

yt = xte *ht =  \e^ht + e t

Let the transformed asset return equation be equation 1 , the volatility equa
tion be equation 2. The system of equations can be written as:

where

Fi
F2

+

Ft
F2

y n  \ (

2 / l T - l
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X u 0  N
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since

where E =
1 pa

pa a

7T
a

13

£t- i

V2

\ Vt J

W(0 , E ® / )

iV(0, E)

Vt =

Model 1 is a seemingly unrelated regression (SUR) system. The asset re
turn equation and the volatility equation seem unrelated, however they are 
related through the correlation in the error terms. For a SUR system, the 
generalized least squares (GLS) procedure is commonly applied and results in 
efficient estimators.

The GLS estimators are:

A
7T

f  X[ o W  I p a l Y ' f x  1 0 \ /  0 W  1 p a A - Y v A

\ 0 X' J {  pal a2I )  [  0 X2 J {  0 X' J {  pal a2I J {  V2 J
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Simplifying above expression, the vector of parameters can be estimated by:

Â =  (X[(I -  p2Px2)X i)~XX [{I -  P2Px2)Yi -  £ ( * ! ( /  -  p2Px2)X 1)- 1X [(I  -  Px2)Y2

and

it -  ( X ^ y ' X f r  -  pa{X^X2) - lX^Yx -  XjÂ)4

where fc =

The estimators A, ñ are functions of coefficient parameter p and variance 
parameter a which are unknown, so we need to estimate these two parameters 
by running OLS to each equation independently. The procedure is the so called 
feasible generalized least squares (FGLS).

The procedure is as follows:

Step 1: get initial residuals.

We run OLS to equation 1 and equation 2 independently, hence get initial 
estimates Ao, 7?o. Consequently, initial residuals e0 and p0 can be obtained.

Step 2: construct estimated variance-covariance matrix

Given initial residuals, the estimated variance-covariance matrix of two er
ror terms can be computed. In particular, the estimated variance parameter u 
is calculated as:

d0 = \Jvar(rj0)

The estimated correlation coefficient parameter p is:

- =  cov(eo,r}0)
(TO

4Detail is provided in Appendix 4.
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Step 3: substitute cf0, p0 into the formula for A and n.

Step 4: compute the new residuals, hence obtain new estimates of variance 
parameter and correlation coefficient parameter.

We then go back to step 3 and step 4, repeat until the vector of parameters 
converge.

2.4.2 Full Information Maximum Likelihood (FIML) and 

Three Stage Least Square (3SLS) for Model 2

The system of equations for Model 2 is:

where

0

X 2

M
 ̂ (x2)e *h2 ^

Vit (xT)e~ihT

¥J 2/22

 ̂ Vit ) \ hr )
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St

V2
~ iV(0 , E <8> I)

\ V T  J

since

N( 0 ,E)

where E is as defined earlier. r?t = avt.

FIML for Model 2

In Model 2, because dependent and independent variables both take current 
values in equation 1 , the variable Y2 is an independent variable in equation 1 , 
while it appears as a dependent variable in equation 2. Under the assumption 
that cov(et,r]t) = per, the explanatory variable is correlated to the error term in 
equation 1. As a result, if we apply OLS to both equations at the first step, 
the OLS estimator for the first equation is not only biased but also inconsis
tent. Therefore, we need to introduce an instrumental variable to remove this 
correlation. A valid instrumental variable needs to be uncorrelated with the 
error term while highly related to the explanatory variable. The difficulty is, 
given the fact that Model 2 is a non-linear simultaneous equation model, we 
are not very clear what instrument would be the optimal choice. We employ
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three different instruments: the first instrument we use is the lagged volatil
ity, exp(ht- 1/ 2 ), we call it IV 1; we then use polynomials of ht, which we call 
IV2; the third instrument we use is the special case of polynomials of ht, that 
is a constant and ht- 1, we denote it as IV 3. In Monte Carlo experiments, we 
use these three different instruments in the estimation, and compare the per
formance. We find the estimation results are quite similar from these three 
instruments.

The procedure of FIML for Model 2 is very similar to that for Model 1, except 
that before we run OLS, we pre-multiply the instrumental variable to both 
sides of equation 1. Then we just follow the same procedure as we did for 
Model 1 until the vector of parameters converge.

3SLS for Model 2

Sargan (1964), Court (1974) and Amemiya (1977) discussed the three stage 
least squares (3SLS) approach to estimate simultaneous econometric models. 
As Sargan (1964) showed, 3SLS approach in the case of a nonsingular distur
bance covariance matrix is asymptotically equivalent to FIML. The 3SLS esti
mator can be derived by first multiplying the set of predetermined variables to 
the system of equations then applying generalized least squares formula to the 
resulting transformed system. The set of parameters thus can be estimated by:

and

*  =  (X'2X 2)- lX'2Y2 -  p a i X ^ - 'X ^ Y r  -  X Â ) 5

5Appendix 4 provides detail.
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The 3SLS does not involve iterating. If iterating, we will, in essence, get the 
FIML estimators.

The procedure of estimation is as follows:

Step 1: 2SLS on the first equation and get residual s

We use the set of predetermined variable, X2, as instrument variable. The 
2SLS gives A =  (X '^ Í X ^ X ^ X ^ X ^ X '^ X ^ X ^ X ^ Y l The residual then 

can be computed.

Step 2: OLS i  on X2 to get estimate of ip.

é = X2ip + uj 

$ = (X'2X2) - lX'2e

Step 3: OLS to the second equation and get residual f¡.

Step 4: form the covariance of two residuals.

Once we get residual from two equations, the covariance is formed as cóv(é, f¡) 

f£V-

Step 5: obtain the 3SLS estimate of n.

The three-stage least square estimate of 7r has the formula

7T3SLS = *ÓLS -  COv(é,fj)íp

2.5 Monte Carlo Evidence

In previous sections, we showed that treating volatility as an observable vari
able in the SV framework, FIML as well 3SLS can be applied. The estimation
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is straightforward and easy to implement. In this section, the objective is to ex
amine estimation performance of the SV models via Monte Carlo experiments 

when volatility is observed.

We set the values of five parameters as A =  0.1, a = -1 ,/3 =  0.8, p = -0.5, a =  

0.56 for both models. The sample size is set as 3000, and the simulation is 

repeated 1000, 5000, and 10000 times, respectively.

We implement Monte Carlo experiments considering two different assump

tions.

In the first Monte Carlo experiment, we concentrate on examining estima
tion performance of FIML and 3SLS methods when volatility is observed, hence 
we assume that the true volatility is observed. Given the assumption that the 
vector of error terms follow a bivariate normal distribution, we are able to sim
ulate daily asset return series as well as the volatility series from model 1 and 
model 2, respectively. We then use these simulated series in the estimation 
of Model 1 and Model 2, respectively. The simulation and estimation are re
peated, and the means, medians and standard deviations of the estimates are 
computed to compare with the true parameters.

In reality volatility is not observed, however, studies have shown that some 
suitable proxies are available. Unfortunately, all proxies have errors and none 
are perfect. Consequently, in our second Monte Carlo experiment, we examine 
the estimation when the measurement error is of various levels of seriousness.

6These parameter values are consistent with those usually obtained in empirical studies. 
For example, Jiang, Knight and Wang (2005), Shi (2005), Xiao (2007),etc. We also set the 
parameters as different values, the means of estimates always converge to the true values 
when the simulation is repeated 10000 times.
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2.5.1 Monte Carlo Experiment under the Assumption of 

No Measurement Error

Our first Monte Carlo experiment is conducted under the assumption that un
derlying volatility itself is observed, hence there is no measurement error. The 
purpose of this experiment is to examine the performance of FIML and 3SLS 
estimation methods.

We simulate daily volatilities and daily asset returns, then use them both in 
the estimation. For Model 1, FIML (or equivalently iterative FGLS) is applied. 
For Model 2, we employ both FIML and 3SLS in the estimation.

Table 2.1 reports the results for Model 1. The top panel displays estimation 
results when the simulation is repeated 1 0 0 0  times, the middle panel shows 
results with 5000 simulations, and the bottom panel reports results with 10000 
times replication. The third column is the true values of parameters, the fourth 
to sixth column report the mean, median, and standard deviation of estimates, 

respectively.

Overall the means, and medians of estimated parameters are very close to 
true values, the standard deviations for most estimates are relatively small, 
suggesting that FIML method does a reasonable job for Model 1.

Comparing estimates in all three panels, we find both means and medians of 
estimates are very close to the true values from all three panels indicating that 
the estimates converge to the true parameter very quickly. The standard de
viations of these estimates are relatively small, stable as replication increases 
from 1000 to 5000, 10000. The only exception is the estimated risk-return 
tradeoff parameter A, we notice the standard deviation is always large, even 
when the replication increases to 1 0 0 0 0  times, suggesting that this estimate
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is not very stable. In fact, when the simulation is repeated 1000 times, the 
mean of estimated A is approximately thirteen percent higher than the true 
value, and the median is almost fourteen percent higher comparing to the true 
parameter. As the replication increases, say to 5000 times, the mean along 
with the median of estimated A get closer to the true value, being five percent 
higher than the true value. When the simulation is repeated 10000 times, the 
difference between mean/median and the true values decreases to four/three 
percent. This finding suggests that the estimate of A is not stable, and con
verges to the true value much slower than the others.

The procedure of estimating Model 2 is not as straightforward as that of 
estimating Model 1. As we discussed before, the explanatory variable in the 
asset return equation is correlated with the error term, hence unlike Model 1 
which is a non-linear system of equations (SUR), Model 2 in fact is a non-linear 
simultaneous equation model (SEM). Thus if we apply OLS to the asset return 
equation as we did for Model 1, the estimator will be not only inconsistent, 
but also biased. In order to remove the correlation between the explanatory 
variable and error term, we need to introduce an instrumental variable.

We consider three different choices for the instrument. The natural choice is 
to use the lagged value of the explanatory variable, i.e. exp{ht-\/2). We denote 
it as IV 1. Obviously this is a valid instrument, it is closely correlated to the 
explanatory variable given the fact that volatility is highly persistent and clus
tering, while it is not related to the error term. However, as the asset return 
equation is nonlinear, we are not clear whether this is the optimal instrument. 
We then consider other instruments. The second choice is to apply the polyno
mials of ht-\. We call it IV 2. As Kelejian (1974) showed, when the dependent
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variable is a nonlinear function of endogenous explanatory variables in a re
gression model, the instruments could be obtained by regressing the endoge
nous variable on the elements of a polynomial in the predetermined variable, 
the approximation would improve as the degree increases. In our study, we 
regress the endogenous explanatory variable, exp(ht/2), on a constant, lagged 
values of ht and powers of them. The regression model is:

D D D

Vt ~  7 + ^  02^-2 + ^  + f-t
d= 1 d= 1 d= 1

where yt = exp{ht/2).

The predicted yu yt =  7  + J2d= 1 + EdLi ~®2dK_2 + £d=i is then
computed and used as an instrument.

In our experiment, we first set D as 2 then 3,4,5,..., then compare the 
results. We find there is no significant improvement on the approximation 
when we increase the power from 5 to 6 , 7, etc. We then choose the degree of 

power up to D =  5.

The third choice is a special case of IV2. The regression model is:

yt =  7  + Qht- 1 + et

with yt = exp(ht/2).

Again yt is obtained and used as an instrument. We call it IV3. The proce
dure to obtain IV3 is much simpler than that to obtain IV 2, later we compare 
their performance to find whether the simpler procedure is worthy of imple

menting.

We apply two estimation methods for Model 2. That is, we not only apply 
FIML but also employ 3SLS method. These two approaches are asymptotically



39

equivalent to each other, while the finite sample properties may not be the 
same, hence we can compare estimation performance by applying these two 

different procedures.

Table 2.2-2.4 report the estimation results when the replication M is 1000, 

5000, 10000 times, respectively. In all these three tables, the upper panels 
report FIML results using three different instruments, and the bottom panel 
reports 3SLS results. The third column displays the true values of the param
eters, and the fourth to sixth column report the mean, median, and standard 

deviation of these estimates.

We find the estimates by applying FIML is very similar to those using 3SLS. 
Given the fact that FIML and 3SLS are asymptotically equal, we fix the sample 
size as 3000, and repeat the simulation and estimation at least 1000 times, this 
finding is not surprising. In FIML estimation, when the simulation parame
ter M is fixed, the values of means, medians and standard deviations are very 
similar by using three different kinds of instruments, moreover, they are simi
lar to results using 3SLS approach. This finding suggests that all three kinds 
of instruments are valid, they work well in removing the relation between en
dogenous explanatory variable and error term, both estimation methods are 
reasonable for our models. In general, the standard deviations of estimated 
parameters are quite small except that of A indicating that the estimated pa

rameters are quite stable.

We also find as the replication increases, the means, medians of estimates 
get closer to the true values. For example, the mean of estimated A is eight 
percent higher than the true value when M =  1000, it is approximately two 
percent higher when replications increases as 5000 times, and it is only 0.3 
percent higher when M = 10000. We also find when M  = 1000, the mean and



40

median of estimated A are significantly different in FIML, more specifically, 
the mean value is five percent higher than the median suggesting that there 
exist some extreme values of estimates by applying FIML. As we increase the 
replication, the difference starts to decrease. When M = 10000, the mean value 
is only one percent higher than the median. The estimates of other parameters, 
especially, those for a, 0, are close to the true value when M — 1000, and do 
not improve dramatically as M increases because they converge to the true 

parameters very quickly.

Overall, Monte Carlo experiments suggest that our estimation methods 
work well for both models when true volatility is observed.

2.5.2 Monte Carlo Experiment Taking into Account Mea

surement Error

The first Monte Carlo experiment was implemented under perhaps a too strong 
assumption that volatility is observed and with no error. The main character
istic of the SV models is that volatility is a latent variable. While we can not 
observe volatility we can assume that we have an available proxy. We now ex
amine the use of a proxy which is subject to varying degrees of measurement 

error.

In fact, some volatility proxies have been developed in literature. The most 
popular volatility proxy is realized volatility. Realized volatility is constructed 
from high frequency intra day squared returns, it is not only model-free, but 
also a unbiased, consistent estimator of unknown true volatility, and widely
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used in modeling and forecasting of volatility. In the second Monte Carlo ex
periment, we make a more realistic assumption, that is, we treat true volatil
ity as an unobservable variable, and use a volatility proxy in estimating of two 
discrete-time SV models.

Using a volatility proxy, we have to take into account the measurement 
error. We define measurement error as the difference between the log of the 
volatility proxy and log of integrated volatility, and assume it follows a normal 
distribution with zero mean.

log(Vt) = log(Vt) + ut

where Vt represents volatility proxy, Vt = exp(ht) refers to the true volatility,

ut ~  N{0,a*2y .

The normal distribution assumption on the error term is consistent with 
empirical evidence of most studies. For example, Xiao (2007) constructed daily 
realized volatility for the S & P 500 index and three exchange rates, including 
CAD/USD, USD/GBP, and DEM/USD. Both JB-test and qq-plot showed that 
the log of realized volatility is approximately normally distributed.

Given the assumption that the vector of error terms in SV models follows 
a bivariate normal distribution, we first simulate the daily asset return series 
and true volatility series. Then we take logarithm of true volatility. Next we 
simulate the measurement error series, then add this series to the logged val
ues of true volatility series to obtain logged values of volatility proxies. Note 
the measurement error is normally distributed with mean zero, and variance 
or*2, which is unknown. We consider setting different values for this parameter, 7

7We use o' to distinguish the variance of measurement error to the parameter o which is a 
variance of error term r\ in SV models
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in particular, we set a*2 =  1 ,0 .1 ,0 .0 1 , respectively, and simulate daily volatility 
proxy series based on these different values.

We use both daily asset return and daily volatility proxy observations gener
ated from Model 1 (or Model 2) in the estimation of Model 1 (or Model 2). Both 
FIML and 3SLS procedures are applied. The estimation results from these two 
procedures are quite similar. We report the results by using FIML.

Table 2.5 reports the estimation results for Model 1. The simulation and es
timation are repeated 10000 times. The top panel shows the estimation results 
under the assumption that a*2 = 1. The middle panel reports the estimates 
with the assumption that the variance of measurement error is 0 .1, and the 
bottom panel displays the results assuming measurement error is normally 
distributed with mean zero and variance 0.01. The second column displays all 
five parameter with the third column providing their true values. The fourth 
to sixth column report mean, median, and standard deviation of the estimated 
parameters.

We find if the variance of the measurement error is large, say 1 , the means, 
medians of estimated parameters are far different from the true values. For 
example, the mean of estimated a is -3.3710, more than three times of the 
true parameter which is - 1  in absolute value. The means of other estimates 
are more than two times of true parameters in absolute values. The values of 
medians show similar patterns. This finding suggests that in this case using 
volatility proxy in the estimation of Model 1 is not a reasonable choice. When 
the size of the measurement error is smaller, that is, a*2 =  0 .1, as the middle 
panel shows, the estimates improve dramatically, but still significantly differ
ent from the true values. For example, the values of mean/median of estimated
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a decrease in absolute value and are about fifteen percent higher than the ab
solute true value. When the variance of measurement error is 0.01, the means 
together with the medians of the estimates are quite close to the true values. 
In general, the values of mean/median of estimates are about three percent 
higher (or lower) than the true parameters in absolute value.

Table 2.6 reports the estimation results for Model 2. We use all three dif
ferent instruments we introduced before in the estimation, the results are very 
similar. We report the results using exp(ht-i/2) as an instrument. Also we 
apply both FIML and 3SSL methods, the results are similar. We report those 
using FIML. The structure of Table 2.6 is the same as Table 2.5. The simu
lation and estimation are repeated 1 0 0 0 0  times, then the mean, median, and 
standard deviation are reported.

The results in Table 2.6 show similar patterns as those in Table 2.5. Under 
the assumption that measurement error is large, i.e. a*2 = 1, using a volatility 
proxy and applying a traditional method result in very poor estimates even 
when we set the sample size as a very large number, and repeat the simulation 
and estimation 10000 times. However, as the variance of the measurement 
error decreases, the estimates improve dramatically and when the variance is 
small enough, say 0 .0 1 , the estimates are quite close to the true values.

Clearly the assumption about size or severity of the measurement error, is 
crucial in determining whether it is appropriate to use a volatility proxy in the 
estimation of the discrete-time SV models. If the measurement error induced 
by a volatility proxy is small, then applying traditional estimation methods 
along with a volatility proxy are able to provide good estimates. The Monte 
Carlo experiment results suggest that if the variance of measurement error 
lies approximately between (0,0.07), FIML and 3SLS work well for both SV
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models using a volatility proxy.

2.6 Conclusion

In this chapter, we investigated the estimation of discrete-time SV models 
when volatility is observed. We studied the statistical properties of alternative 
discrete-time SV model specifications, SV model with lagged inter-temporal 
dependence and SV model with contemporaneous dependence. We derived 
the conditional and unconditional lag-lead correlations between returns and 
volatilities, and showed that the explicit expressions were different between 
two models. We then considered treating volatility as an observable variable, 
hence applied traditional estimation methods for both models. We showed that 
our estimation was straightforward, computationally easy. In order to exam
ine the estimation performance of the traditional methods, including FIML and 
3SLS approaches, we implemented two Monte Carlo experiments. The results 
suggested that if underlying volatility was observed, both FIML and 3SLS were 
reasonable methods in estimating Model 1 and Model 2. The two models did 
a good job in recovering data. On the other hand, if the underlying volatility 
was unobserved, consequently a volatility proxy was used in the estimation, we 
should be very careful in choosing an appropriate volatility proxy such that the 
measurement error did not spread too much. Specifically, when the variance of 
measurement error lies approximately between (0,0.07), using volatility proxy 
then applying FIML or 3SLS in SV models were able to provide good estimation 

performance.

In next chapter, we examine both estimation and forecasting performance of
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the discrete-time SV models. We employ a popularly used volatility proxy, real
ized volatility, in both in-sample estimation and out-of-sample forecasting. Our 
empirical analysis is based on observations of the S & P 500 index and three 
exchange rates, namely CAD/USD, USD/GBP, and DEM/USD. Both daily and 
high frequency intra-day data are used. Specifically, we use high frequency 
intra-day transaction prices to construct daily realized volatility series and use 
them in the estimation and forecasting. The estimates of Model 1 and Model 
2 are reported. The volatility forecasting performance is examined. In par
ticular, four candidate models, including the simple regression model, the SV 
model with lagged inter-temporal dependence, the SV model with contempora
neous dependence, and a heterogeneous autoregressive (HAR) model are con
sidered. The well known Diebold and Mariano (1995)’s tests are applied for the 
null hypothesis that two competing models provide equally accurate forecasts. 
Further the forecasting performance is evaluated using differen criteria.
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2.7 Appendix

Appendix 1:

For Model 2, under the assumption that cov(et,Vt) =  p, with joint moment 
generating function of et and vt, we have

E(exp(w£t + uvt)) =  M(w, u)

whereM(w, u) =  exp(\(w2 + u2 4- 2puiu)). Hence

2

E(exp(uvt)et) = ^M (w ,u )\w=0 = pueV

Let u = \o, we get

2

E(exp(\avt)£t) = \poeV

Therefore, given the result above

£ t_i(xt -  p) = E t-i(Xeht + e*h,£t)

= Et-i{\ea+f}ht-1+,TVt + e%{a+0ht-1+avt)£t)

=  Ae«+^(-,+i<r2 + e ^a+0ht-^Et. 1{e^avt£t)

=  \ea+Pht-i+la* + \pae\a+\0ht-'+\°2
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Appendix 2:

Proof of Proposition 1 and Proposition 2

For l > 0, p > 0, i > 0, we have

x[xpt+i = (\eht + e2ht£t)l(\eht+i + e^ht+iet+i)p

=  Q {\eht)l- k{ e ^ e t)k ( , )  (Ae ^ y - ' i e ^ e t + i Y
k=0 
l p

s=0

EE )l+p-k-s eht(l-\k) eht+i{p-\s) £k£ŝ
k=0 s=0

Consider:

Let a =  l — \k, b — p — \s

Et- 1{eht{-l->k)eht+i{p-*a)£ktest+i)

= Et~i [eaht ebht+i ek e*+i)
_  E ('e“(«+̂ ,lt-i+<TUt)ei>(£iir̂ 3—1+P,+lht-i+°T.'j=oPjvt+i-j)£k£s \i 1 \ t )

Following Jiang, Knight and Wang (2005), the iterative functions are as:

Wo(u) = 1

W\(u) = u 

W2(u) =  u2 + 1

W3(u) = u3 + 3u
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Wk(u) =

For Model 1, given the assumption cov{et,vt+\) = p, we have the joint mo
ment generating function of et and ut+1

M(w,u) = E(exp(wet + uvt+i))

where

M (w, u) = exp(\(w2 + u2 4- 2pwu))

and

E(exp{uvt+i)et) = ^ M(w,u) |„,=0= pueX

£(exp(uut+i)e2) = ^ M(w,u) |„,=0= (p2u2 + l)e5“2

j F ( e x p ( w u t + 1 )£:tfc)  =  - § ^ M { w , u )  1 ^ = 0 =  W k( p u ) e ? u2

Hence

¿ ; t_ 1^e o (Q f+ /3 /it-i+ 'n ji)e b( aL̂ r r g — ^+P ,+ lh t - i+ < r £ }=0 ^ivt+i~^£^£^+ .)

_  e a ( a + p /t t - i )+ b (a(1~ ^ — l+ 0 '+1ht- i ) ^  ^(a+bff^avt+ba p’ v t+ i-j  ̂

xEt_l{ebaf}i~\t+l£kt )Et_1(Est+i)
_  e a(a+ /3/i(_ i ) + 6 ( 2 i l ^ t i l + p '+ i / lt_ 1) e i a 2(a + 6 ^ )2+ i h 20-2^ ^ r^

x W ^ & p a / ^ j e ^ W ^ V ^ O )

_  e a (a + /9 /ii-i)+ i> (2 i l f r 3 ^ i + ^ i+1' ‘ t - i ) e ^ 2(« + W i )2 +  5i>2^2 7 ^

xW k(bpoF-x)Ws{<d)
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Plug a =  l — b =  p -  | in, we get the result for Model 1.

For Model 2, given the assumptions that cov(et, vt) = p, cov(et+i,vt+i) = p,

 ̂̂ ea(a+0ht-\+ovt)eb(2̂ 4%—̂ +0,+1/ii-i+<r£j=o P*vt+i-j)£k£s j

ea(a+ff/i,-i)+fc(°(lr^+‘j+<9,+1fc.-l) 

e o(Q+y/i,  - , )+6( + f l i+1 h , - 1 )

Et- x { e ^ ^ 0ivt̂ )E t-x {e (a+b0')aVte\)Et. x{ e ^ ' £ l ^

e* 1
2(i-D
*r ~Wk(pa(a + b0i))e*{a+b(,') a Ws{bp<j)e*

Plug a =  Z -  | ,6  =  p -  § into the equations and add to the previous parts, we 
get the conditional cross moments for Model 1 and Model 2 in Proposition 1.

For the unconditional cross moments, ht-\ would not be treated as observed 

variable, hence we plug ht_ i = + a Yl'jLo /3;ut_i_jinto the formula.

E(eah‘+bht̂ e i +i)

= g^e<1(°‘+0flt-i+°vt)+b(a!-£r£-+0'+lht-i+<TYl'j=a0lv‘+‘-i)£k£S )

=  e°(“+b'-^^)E(eW+b0i+')bt-i)E(e(<>+b0')°v,jE êbvZ‘-JoFvt+i-] jE(eb<,0'-'v,+ l£kjE(£s ^
a 4-6 q2+2a6ff* + b2 2 .

= e“ i^ e  ao-««) 17 Wk(bpa? 0 )

Plug a =  l — \,b = p — | into the formula, we get the result for Model 1. For 
Model 2, given cov(£f+i, ut+i) =  p, we use similar procedure and get the result.
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Appendix 3:

Proof of Proposition 3

1. For Model 1:

cov(xt,eh,- i | =  0

Since /i(_i is observed in this case.

And for Model 2:

cov(xt,eh,~' | It-i-i)

-\ E t-i-.^(eal^ ~ +0'+'ht-i- l+a '̂>=oP3vt-:')Et-i-l(ea+0h‘- ,- '+(rVt- ,)

var(xt |



X2 Et-i-i(e2h‘) + Et-i-i(eh,e2) + 2XEt-i-i(e^h' £t)

- A 2EM {eh,f  -  Et-i-i[e$ht£t)2 -  2\Et- i- 1(eh')Et_i_1(e*h'et) 
A2e2ai ^ i +2̂ > hi. i. , +^ i ^ H (ei= g £ l , '  _  1}

+ 1} _  1 ̂ 2)

+ Apae“ ^ +^ '+,h'- ‘- ' - 2̂ ( 3 e i^ W ^  -  1)

Vi

var(eh,~i | If_i_i)

= Et. i_1(e2“+2̂ i- i- ,+2<7i) -  (ea+ ĥ‘-<-> )2
_  e2a+20h,-i-,+tr2 ̂ e<r3 _

Therefore

Pxt,eh‘ -i I It-i-1 —
VVdea'2 ~ 1)

(Ae

+-pae -ithW " (e5 ,̂<r -  1))

1

2. For Model 1:

cov(xt,eh,+' | 7t_ i )

£t-i((*t -  Et. xxt){eĥ  -  Ek-i ( e ^ ) )

=  Ft_i(e2/"+'*,+i£-t -  e5h‘£fFt_i(e,lt+i))

= Ft_1(e5/l,+h,+i£t)

= p(T/3»-1eaT^r+(1/2+̂ ’),,,+5‘T;2i^ -
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var(xt | I t-i)

E t-^ x t-E t-tix t))3)

=  Et̂ {eh'e2)

var(eht+i | I t-\)

Et~i(e2h,+i) — Et-i(ehi+i)2 

— e2ah ^ +20'ht+°2T ^  (ea*T̂ W _  1)

Therefore

Pxt,eht+' I
1

- 1 )

And for Model 2:
cov(xt, eh,+i I 7t_ i )

XEt-i{eht+h,+i) +  Et-i(e*ht+ht+iet) -  A £ (. 1( e ' ' ) £ t - 1(e '1|+i) 

- E i _ 1(e5 /l' £ t) E (_ 1(e ,‘'+‘ )

i ̂gah+ "i~rg~ )+W+ff')fri-i+<T(l+ft‘)t,t+17 H}=o ^

+ £( i (e°^ + ' l - 'd" )+ft(2+fl')hi-i+g( ■¡+fl'H,t+g52}=o03vt+i-] 

—\Et-i(ea+Ph,- l+av,)Et-\{eai^ :z~+0,+lht~i+a'̂ ',1=o03v,+,~3) 

—Et-i(e°'P2+Ph,~'/2+av,P2£t)Et^\(eai~:̂ ~ +P'+'ht~'+a -̂''3=o03v‘+'~3) 

\ea(‘1+1~3-s )+ (̂1+̂ ,)h‘- 1+a” j(r-flJ, )a*(eP'°3 -  1)

+ I p(Te“<i+1T?Ti >+«l+0*>**-i+5"^(TLft,+-l> ((i + 2p)e0'°2/2 -  1)
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=  A 2Et. 1{e2hl) + Et-i{eh'e2t) +  2A Et^ (e 3ht'2st)

—A2£'t_1(eh')2 -  Et- l(eh,'2zt?  ~ 2\Et_l(eh')Et. 1(ef" '2et) 

x2e2a+2 _  i ) +  e“ +^ 1- 1+ff2/4((p2(72 + l)e"2/4 _  p V /4 )

+A/9ae3“/2+3̂ h,- l/2+5,T:!/8(3e<T2/2 -  1)

=  v2

var(xt | It- i )

var(eh,+' | / f_i)

= Et-i(e2h,+i) — Et-\(ehlJf')2

= e

Hence

Pxtleh‘+' \ h-\
Xea+0ht -1 +<r2/2 ̂ g/3‘cr2 1) + ¿pcrea/2+̂ ' - ,/2+<72/8(( 1 + 2^)e^ 'a2 -  1)

1-0» - 1 )
Proof of Proposition 4

1. For Model 1: 

for i > 0

cov(xt, eht~i)

\E(eh,+h' - )  + £ (e*'*‘+','- ‘et) -  A£(e',')£(e'*'-) -  E(e^h,et)E{ehl-') 

= \E[ea(^ )+(l+p')ht-'Jrâ =o01Vl~1) -  AE(eht)E(eht~')

= ^e"(iiS')+(1+̂ ,)i ^ +T̂ f»‘T2 _  /\eo('A )+Trfl7a2
2a , g2 fl‘a2

=  Aerr*+T̂ 7(e‘ i:07 -  1)
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var(xt)

E(x2) -  E(xt)2

X2E(e2h‘ ) + E{eh,£2) -  X2E{eht)2

=  Vs

var(eh,~')

= E{e2ht~') -  E(ehi-')2

Therefore

ii.e"1

a i a2 (jla2
AeTrs+2(1_fl'i) (e'-®7 - 1 )

And for Model 2:

for i ^ 0

cov(xt,

A£(e'“ +'“ -<) + E{e$ht+ht-'£t) -  XE{eht)E{eh‘ -i) -  E(e*h,£t)E{eh'-i)
_  ^Jg’̂eQ(T̂ 'l + (1+/3')hi->+CTEj=o^Jt;i-j J g + (1 + 0'/2)h(- i +<rvt/2+ ±it u,_j^j

-A E(eht)E(eh,~i) -  £ (e°/2+/wi«-i/2+«™./2£f)£ (e'*.-<)
,  2a  ,  , <r2 ( l  +  0 ' )  1 3q  , 5 + 4 0 ‘ _2 2c  , 1 _2 1 3a , 5 . 2

= Ae ^  + >-'s5 + -pae575̂ 7 -  Ae7̂  ^  -  -pae1̂ ^  + H ^r)a2 2 
2 a  . a 2 fi'o2 1  3 a  , 5 - 2  P ' o \

= X e ^  i-s3 (e i-s2 — 1) _p<jg3o-3T »(i-s2) (e2(i-V2) — 1)
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var(xt)

= E (x 2) -  E (x t)2

= A 2E {e2ht) + E {eh‘e2t ) + 2A E {e3h,/2et)

-A 2E{eht)2 -  E{eh,/2et)2 -  2AE{ehl)E{eh,/2et) 

X̂ +^ + e ^ +^ ( p 2a2 + \)e°2!2
3a  . 9 ff2 g 2 , Ug2 2 g  , g 2

+3Apae3(1~S) 8 — A2e*~̂  ‘ -®7
i> I 1 I n 3 0  i g 2 I I _2  /a

_ err3+4 ^ ) ( i p2(T2)eiiT -  Api7er^ +^ -^ j+5a^ )+<7 /8

=  V4

var(eh,~i)

= E (e2h‘-') -  E (eh,~')2
2 a  . <r^= gTr̂ +YrgT(eTTfl7 _  i)

Hence

P*u*~* =

a  . g 2 f l 'g 2 a  ■ g 2 f f 'g 2
AeTr̂ +2<1-fl:i) (e*-®2 — 1) + 4/)<7e2(1~s> 8<1-'*2) (e2(*-02> — 1)

VV4( e ^ - l )

2. For Model 1:

cou(xf,e,“ 'H)
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= AE (eh,+ht+i) + E(e*h,+ht+‘et) -  AE(eh,)E{eh,+') -  E(e?htEt)E{eh'+i)

_  ^£^ea(.T̂ -)+(.l+0,)flt+<7E)Z:oP:’vi+'-j'j _|_ E[ea(T̂ w')+ /̂2+0')h,+aE.']Jo0jvt+'-j

-A  E(eh,)E(eht+')
I n  . 1+ fl*  _2 . . 3 o  , 5 +  4 fi' _ 2  2 o  , 1 _2AeT^+Tifi'7 + paP'-'e7̂  -  Aerr3+^

1 9 fl* g 2 . , 3a  , 5 +  4fl* _2
i-̂ 2 (e1-02 — 1) -f pa(3l~x w- 02)

var(xt) = V3

var(eht+‘) = var(eh,~') = e*^
i <T2
(e*^ - 1 )

Hence

Pxt,eh‘+‘

a  . <t2 a ' » 2 .
Ae*̂ 5+2(*-s5) (e*-^1 — 1) + p(j0'~lem=3v ?h i± * ip .8(1 —S'-2)

For Model 2:

cov(xt, ek,+')

=  AE(eh,+h,+') + E(e2,,'+,,'+i£t) -  AE{ehi)E(eh,+’) -  E(e*h,et)E{eht+')

_j_ \~llj ) + (l/2+g')(a+ff/i|_î -ffV()-t-g £ ‘Ji f)jvt+t-j ̂

-A E{eht)E(eht+') -  E(e^a+^ >lt- l+^ v,£t)E(eh,+i)
2 a  , l + f l ‘  - 2  1  . 3l» . 5 + 4 g *  2

= AeT=»+i=fr' +^pa(l + 2 0 ')e ^ ^ +^ r'
2 o  , 1 _ 2  1 3 a  i 5 „

— Ac  ̂1 -02 — — pae1̂ ®  8(1-0 )̂
T

3a  i 5
-  1) + -pae1? ^ ^ e 7) ■ B ' ° \ .((1 + 2/9’ )e2( ^ 7) -  1)
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var(xt) = Vi

2l>: I „2 . _2±
var((eh(+‘ ) = var(ehl~') = e^ 3 ì~t,ia (e1-^ — 1)

Hence

Pxt,eh‘+> ~
X e ^ +nf^r) (e -  1) + ip(re7̂ r3i+^ ^ Ti ((1 + 2/3i)e5<^7> -  1)

i V i i e t t  -  1)



Full Information Maximum Likelihood as Iterated SUR:

Appendix 4:

wuX [X l w12X[X2 V  j / wuX[Yl +  wl2X[Y2 
w21X^Xl w22X'2X2 )  \ w ^ X fr + w ^ X fr 2

Let A = (
wnX [X l wnX[X2 
w2iX'2X\ w22X'2X 2

An A12 \ /  wnX [X 2

A2\ A22 I \ w21X 2X i w22X'2X2

Equivalently,we have four equations

AuwnX [X l + Al2w2ïX^X1 = I
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Anwl2X[X2 +  Aï2w22X'2X2 = 0

A2lwnX[X1 + A22w2lX'2X i =  0

A21wl2X[X2 +  A22w22X'2X2 =  I

From the second equation,we derive

A i2 =  - A nwnX[X2{w22X'2X2)-\

Substitute into equation one,

An = K 1*;* ! -  v ^ j £ x [ X 2{X'2X 2)-'X'2X x)- '  

And then

a 12 =  —(wnx{X i -  ' ^ x [x 2(x x̂ 2) - 1x :2x 1) - 1’£ x [x 2(x ì x 2)-'

Similarly,

A 2i =  (w12X[X2 -  ^ ^ X i X ^ X ^ X ' X , ) - 1

a 22 =  ~(W12X[X2 -  nffîx'Mxyci)-1xyc3)-1$x'1xl{xix1) - 1

Obviously,
...11 _  1 ...12 _ . ...21 P ...22 _  1 ____ I w 12» 21 P*
W ~ T ^ ' W ~ W W ~  A ( l - f A )  d  ~

As a result:
A

=  Au (wnX[Yi +  wl2X[Y2) + An {w2lX'2Yx +  w22X'2Y2)
W l̂l) 21

-  (wn X [XI - - ^ X [ X 2{X'2X2)~lX'2X x) - 1
ill12

*(wllX[Yl +  wl2X[Y2 -  — X[X2{X'2X2) - x{w2XX'2Yx +  w22X^Y2))
,,,12...21

=  {wnX [X x---- X[PX2X x) - xw
Ŵ U) 21

*{wn X[Y\ - —^ -X '.P x .Y , + w12(X[Y2 -  X[PX2Y2))

=  (X[(I -  p2Px2)X1) - lX[(I -  p2Px2)Y\ -  £(X[(I - p2Px2)Xl) - lX[(I -  p2PXï)Y2
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and

7T

=  (w22X2X2)~1w22X'2Y2 +  {w22X'2X2) - lw2lX'2Yx -  (w22X2X2)~1w21 X2XiX

= {x '2x 2) - 1x '2y2 +  — ( x ^ r ' x ' i Y !  -  Xx\)

= (.X'2X2) - xX'2Y2 -  pa{X^X2) - lX^Yi -  X xX)

Three-Stage Least Squares as Iterated SUR:

Multiply the set of predetermined variables to both equations:

(  X' Y \ f  X^X,  0 W  A \ I  X!>e \

\  * 2 ^ 2  )  V 0 X!>X2 )  \ n )  \ X f r )

The joint distribution of error terms is:

/  *2 0 
V o  x '2

,L (g)(X 'X 2))

GLS gives:

7T
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o X'2X 2 

0

=  (

X { X 2 0  ̂  ̂wu (X!2X2) -1 wx2(X2X2)~x

w21(X2X2)~x w22{X'2X2y l

wu (X'2X2)-* wu {X'2X 2) - x 
0 X'2X2 )  \ w2\X'2X2) - 1 w22{X'2X2)~x

wnX[X2{X'2X2) - lX'2X x w12X[X2 
w21X!2X 1 w22X'2X2

(  wxxX[X2{X'2X2y xX'2Yx + wnX[X2{X'2X2) - iX'2Y2 

y w2xX'2Yx +  w22X2Y2

r 1

X 'X , 0 
0 X'2X2

X'2Yx

x 2y2

Simplify the inverse matrix,

2̂ SLS

,12,,,21
— (u;11 —

w22 ■)-\X'xPx2X x)-\w nX[Px2Yx + w12X[Px2Y2)

-(to11 -  

= (to11 -

wx2w2xy x(X[Px2X x) - x̂ X [ X 2(X'2X 2r x(w2XX'2Yx + w22X2Y2)
12

22w

,12,,,21

W

W22 -y \ x [P x 2x x)-i

* (wuX'xPx2Yx+ wX2X[PX2Y2 -
wx2w21

w22 X[PX2Yx -  wX2X[PX2Y2)

= (x[x2(x2x2y 1x2xly xx[x2(x̂ x2y 1x̂ Yl

and
¿ 2sls =  (x'2x2y xx'2Y2 -  p(j{x2x2y xx'2{Yx -  xx\)
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Computation of GLS standard errors:

Computation of standard errors of A,à and 0 are straightforward.

We apply Delta method to calculate standard errors of p and <j.

,  cov(è,fj) E(è'fi)-E(è)'E(f,) _  (Yl - X 1X)'(Y2- X 2n)/T 
P var(r)) sjEtfri) -  E{rj)'E{fj) ^(Y2 -  X 2n)'{Y2 -  X2ir ) / T

Let p =  / ( À,7r) =  f(S).

Using Delta method

p =  m  = f(So) + ^ ( S - 6 0) = p0 + F x ( S - 6 0) 
do'

Appendix 5:

p -  p0 -  F x {5 -  60) (2.6)

E(p -  p0)2 =  FE(S -  S0) (6 -  So)'F' =  Fvar(S)F'

Similar procedure can be applied for the calculation of standard error of
<7.
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Appendix 6:

Table 2.1: Monte Carlo Simulation: Estimation of Model 1

FIML Estimation of Model 1

DGP Parameter True Value Mean Median St. Dev.

M=1000 A 0.10 0.1133 0.1138 0.1855

a -1.00 -1.0023 -1.0003 0.0488

ß 0.80 0.7997 0.8003 0.0094

P -0.50 -0.4998 -0.5002 0.0174

a 0.50 0.4999 0.4999 0.0066

M=5000 \ 0.10 0.1054 0.1047 0.1808

a -1.00 -1.0040 -1.0030 0.0498

ß 0.80 0.7992 0.7995 0.0096

P -0.50 -0.4998 -0.4997 0.0172

a 0.50 0.5000 0.5000 0.0065

M=10000 \ 0.10 0.1037 0.1025 0.1798

a -1.00 -1.0039 -1.0030 0.0497

ß 0.80 0.7992 0.7994 0.0096

P -0.50 -0.4997 -0.4998 0.0171

a 0.50 0.4999 0.4998 0.0065
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Table 2.2: Monte Carlo Simulation: Estimation of Model 2(M=1000)

DGP Parameter True Value Mean Median St. Dev.
FIML Estimation of Model 2

IVI A 0.10 0.1080 0.1028 0.1939
a -1.00 -1.0053 -1.0053 0.0487
ß 0.80 0.7990 0.7990 0.0094
P -0.50 -0.5005 -0.5008 0.0174
cr 0.50 0.4996 0.4995 0.0065

IV2 A 0.10 0.1080 0.1028 0.1939
a -1.00 -1.0053 -1.0053 0.0487
ß 0.80 0.7990 0.7990 0.0094
P -0.50 -0.5005 -0.5008 0.0174
a 0.50 0.4996 0.4995 0.0067

IV3 A 0.10 0.1080 0.1028 0.1939
a -1.00 -1.0053 -1.0053 0.0487
ß 0.80 0.7990 0.7990 0.0094
P -0.50 -0.5005 -0.5008 0.0174
a 0.50 0.4996 0.4995 0.0067

3S _,S Estimation of Mode 2

3SLS A 0.10 0.1080 0.1056 0.1958
a -1.00 -1.0053 -1.0051 0.0488
ß 0.80 0.7990 0.7991 0.0094
P -0.50 -0.5005 -0.5008 0.0174
o 0.50 0.4996 0.4995 0.0067
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Table 2.3: Monte Carlo Simulation: Estimation of Model 2(M=5000)

DGP Parameter True Value Mean Median St. Dev.
FIML Estimation of Model 2

IVI A 0.10 0.1024 0.1019 0.1900
a -1.00 -1.0054 -1.0043 0.0493
0 0.80 0.7989 0.7990 0.0095
P -0.50 -0.5005 -0.5007 0.0176
a 0.50 0.4999 0.5000 0.0064

IV2 A 0.10 0.1024 0.1019 0.1900
a -1.00 -1.0054 -1.0043 0.0493
0 0.80 0.7989 0.7990 0.0095
P -0.50 -0.5005 -0.5007 0.0176
a 0.50 0.4999 0.5000 0.0064

IV3 A 0.10 0.1024 0.1019 0.1900
a -1.00 -1.0054 -1.0043 0.0493
0 0.80 0.7989 0.7990 0.0095
P -0.50 -0.5005 -0.5007 0.0176
a 0.50 0.4999 0.5000 0.0064

3S _.S Estimation of Mode 2

3SLS A 0.10 0.1020 0.1014 0.1925
a -1.00 -1.0054 -1.0046 0.0494
0 0.80 0.7989 0.7990 0.0095
P -0.50 -0.5005 -0.5007 0.0176
a 0.50 0.4999 0.5000 0.0064
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Table 2.4: Monte Carlo Simulation: Estimation of Model 2(M=10000)

DGP Parameter True Value Mean Median St. Dev.
FIML Estimation of Model 2

IVI A 0.10 0.1003 0.0993 0.1879
a -1.00 -1.0049 -1.0041 0.0490
ß 0.80 0.7990 0.7992 0.0095
P -0.50 -0.5000 -0.5002 0.0177
a 0.50 0.4998 0.4999 0.0064

IV2 A 0.10 0.1003 0.0993 0.1879
a -1.00 -1.0049 -1.0041 0.0490
ß 0.80 0.7990 0.7992 0.0095
P -0.50 -0.5000 -0.5002 0.0177
a 0.50 0.4998 0.4999 0.0064

IV3 A 0.10 0.1003 0.0993 0.1879
a -1.00 -1.0049 -1.0041 0.0490
ß 0.80 0.7990 0.7992 0.0095
P -0.50 -0.5000 -0.5002 0.0177
a 0.50 0.4998 0.4999 0.0064

3S jS Estimation of Mode 12

3SLS A 0.10 0.1002 0.1001 0.1911
a -1.00 -1.0049 -1.0041 0.0491
ß 0.80 0.7990 0.7992 0.0095
P -0.50 -0.5000 -0.5003 0.0177
a 0.50 0.4998 0.4999 0.0064
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Table 2.5: Monte Carlo Simulation: Estimation of Model 1 with measurement 
error (M=10000)

FIML Estimation of Model 1

DGP Parameter True Value Mean Median St. Dev.
£t  ~  V(0,1) A 0.10 0.0625 0.0614 0.1132

a -1.00 -3.3710 -3.3702 0.1158
0 0.80 0.3256 0.3255 0.0220

P -0.50 -0.2276 -0.2272 0.0242
a 0.50 1.2290 1.2291 0.0167

e t ~  7V(0,0.1) A 0.10 0.0984 0.0969 0.1772
a -1.00 -1.5109 -1.5088 0.0732

0 0.80 0.6978 0.6981 0.0142

P -0.50 -0.3963 -0.3964 0.0182
a 0.50 0.6369 0.6368 0.0084

e t ~ W(0,0.01) A 0.10 0.1031 0.1010 0.1854
a -1.00 -1.0618 -1.0603 0.0533
0 0.80 0.7877 0.7879 0.0103

P -0.50 -0.4849 -0.4853 0.0172
a 0.50 0.5159 0.5159 0.0067
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Table 2.6: Monte Carlo Simulation: Estimation of Model 2 with measurement 
error (M=10000)

FIML Estimation of Model 2

DGP Parameter True Value Mean Median St. Dev.

et ~  N(0,1) A 0.10 0.3658 0.3625 0.2398
a -1.00 -3.3830 -3.3829 0.1123
0 0.80 0.3251 0.3251 0.0214

P -0.50 -0.2527 -0.2523 0.0422
a 0.50 1.2290 1.2291 0.0161

et ~  jV(0,0.1) A 0.10 0.1381 0.1358 0.1945
Q -1.00 -1.5121 -1.5097 0.0721

0 0.80 0.6978 0.6981 0.0140

P -0.50 -0.3997 -0.3997 0.0199
a 0.50 0.6369 0.6368 0.0084

et ~  N(0,0.01) A 0.10 0.1070 0.1053 0.1915
a -1.00 -1.0619 -1.0602 0.0527

0 0.80 0.7877 0.7880 0.0102

P -0.50 -0.4853 -0.4855 0.0179
a 0.50 0.5159 0.5159 0.0067
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Chapter 3

Estimating and Forecasting 
Stochastic Volatility Models 
Using Realized Volatility

3.1 Introduction

Volatility has long been a persistent interest for academics, policy makers, and 
practitioners. Policy makers use volatility of financial markets as a measure
ment of risk with large volatility producing a significant impact on the economy 
and hence policy responses. For practitioners, asset volatility is a key input to 
many investment decisions. It drives the creation of financial assets, and in 
some derivatives, volatility itself is viewed as the underlying asset. Academics 
interest is not only on modeling but also forecasting volatility, as they are cru
cial in determining model adequacy.

However, there is an issue in volatility modeling and forecasting. That 
is, volatility itself, in fact, is not directly observable. In financial markets, 
volatility typically displays certain stylized facts, such as high kurtosis or fat 
tails, volatility clustering, persistency, leverage effect between asset return and
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volatility, etc. An estimator which is able to capture these stylized facts is de
manded in both theoretical studies and practical applications.

Over the last two decades, with the availability of high frequency intra-day 
data, realized volatility has been developed as a proxy for the latent volatility. 
The idea of realized volatility was initiated by Merton (1980), who gave rise to 
the notion that an estimate of asset return variance for a given period can be 
obtained by summing the intra-period squared returns from a Gaussian diffu
sion process. As discussed by Andersen, Bollerslev, Diebold and Labys (2001), 
as well as Barndorff-Nielsen and Shephard (2002), under suitable conditions, 
realized volatility can be a consistent, unbiased, and highly efficient estima
tor of true return volatility. By sampling intra-day asset returns with suffi
cient frequency, realized volatility can be not only model-free but also arbitrar
ily close to the underlying integrated volatility, hence one can treat volatility, 
when modeling and forecasting, as essentially observed.

Realized volatility has been widely used in estimation of both discrete-time 

and continuous-time stochastic volatility (SV) models, to replace the true la
tent volatility hence simplifying estimation procedures. For example, Bandorff
Nielsen and Shephard (2002) used the quasi-maximum likelihood (QML) esti
mation method based on the time series of realized volatility to estimate the 
parameters of continuous-time SV models. Bollerslev, Gibson and Zhou (2004) 
constructed monthly realized volatility from 5-minute transaction prices, and 
employed the generalized method of moments (GMM) to estimate the volatility 
risk premium or risk aversion. Bollerslev and Zhou (2006) proposed GMM esti
mation for stochastic volatility diffusions using realized volatility constructed 
from both equity market and exchange rates. Shi (2005) used realized volatil
ity of S & P 100 index in estimating the modified SV in mean (SV-M) model.



77

The iterated generalized least square(IGLS) and maximum likelihood (MLE) 

methods were applied in her study. In general, the empirical evidence in 
these studies shows, with volatility being “observed”, not only the estimation is 
straightforward, computationally easy, but also the statistical inference is reli
able. Realized volatility has also been widely used to evaluate volatility fore
casting performance. For example, Andersen and Bollerslev (1998), Hansen 
and Lunde (2005), and Patton (2006) used realized volatility to evaluate the 
out-of-sample forecasting performance of GARCH models. Andersen, Boller
slev, Diebold, and Labys (2003) applied a simple long-memory Gaussian vector 
autoregression for the logarithmic daily realized volatilities forecasting. Liu 
and Maheu (2008) proposed a Bayesian model average approach for realized 
volatility forecasting.

Motivated by the accuracy of realized volatility, the main purpose of this 
chapter is to examine the estimation and forecasting performance of discrete
time SV models using realized volatility. As we discussed in Chapter 2, both 
FIML and 3SLS estimation performance for SV models using a volatility proxy 
was affected by the severity of measurement error. When the volatility proxy 
error follows a normal distribution with a very small variance, the estimates 
are fairly close to the true values of the parameters. As theoretical studies have 
shown realized volatility is a highly efficient estimator for the latent volatility 
under suitable conditions, in this chapter we focus on examining both estima

tion and forecasting of discrete-time SV models using realized volatility.

Our study contributes to the literature in three aspects. First, we exam
ine the estimation of discrete-time SV models with both lagged inter-temporal 
dependence and contemporaneous dependence using realized volatility. Jiang, 
Knight and Wang (2005), and Shi (2005) studied the estimation of discrete-time
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SV models. In Jiang, Knight and Wang (2005), they provided an excellent the
oretical analysis of discrete-time SV models with lagged inter-temporal depen
dence and contemporaneous dependence, and demonstrated that both models 
should receive further attention. However, in their study, the volatility process 
was treated as latent, GMM was applied. Shi (2005) constructed daily realized 
volatility of S & P 100 index from high frequency intra-day transaction prices, 
and employed IGLS and MLE methods, but her study only focused on estima
tion of discrete-time SV model with lagged inter-temporal dependence, while 
leaving SV model with contemporaneous dependence unexamined. This chap
ter extends the study of discrete-time SV model estimation by using daily real
ized volatility along with both FIML and 3SLS to estimate SV models with both 
lagged inter-temporal dependence and contemporaneous dependence. Second, 
we first examine forecasting performance of discrete-time SV model with con
temporaneous dependence. Some studies have included the discrete-time SV 
model as a candidate model in volatility forecasting. For example, Lopez (2001) 
compared performance of GARCH, EWMA, and SV model in forecasting volatil
ity of exchange rates. Yu (2002) included SV model as a candidate in forecasting 
volatility in New Zealand stock market. Hoi and Koopman (2002) examined the 
forecasting performance of SV model for stock index volatility. However, these 
studies concentrated on examining the forecasting performance of SV model 
with two error terms independently distributed. Comparison of volatility fore
casting performance of SV model with two error terms correlated, especially 
contemporaneously correlated, has not yet been made in the literature. Third, 
unlike other studies only using realized volatility to evaluate the out-of-sample 
forecasting performance of SV models, in this chapter we use daily realized 
volatility not only to evaluate the out-of-sample forecasting performance, but 
also in the in-sample estimation.
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Our empirical analysis is based on both low frequency daily and high fre
quency intra-day observations for S & P 500 index and three foreign exchange 
rates, including CAD/USD, DEM/USD, and USD/GBP. The high frequency intra
day transaction prices are used to construct daily realized volatility. As An
dersen, Bollerslev, Diebold and Labys (hence ABDL) (1999) demonstrated, al
though from the theory of quadratic asset return variation, realized volatility 
constructed on the finest time interval can be an extremely accurate estimator 
of latent volatility, in reality, the true price process is often contaminated by 
market microstructure effects, such as the bid-ask spread and asynchronous 
trading. Consequently, realized volatility constructed over extremely small 
time intervals fails to converge to the underlying quadratic variation of the 
log price process. As a result, the optimal sampling frequency to construct re
alized volatility should be some intermediate value that is high enough to pro
duce a volatility estimate with negligible sampling variation, yet low enough 
to avoid microstructure bias. To select the optimal sampling frequency, we em
ploy the “volatility signature plot”, which was first proposed by ABDL (1999). 
In addition, we consider different approaches to deal with either distortions 
introduced by the market closing, or the autocorrelation of intra-day returns.

The rest of this chapter is organized as follows. Section 3.2 briefly reviews 
realized volatility estimation, then describes empirical data and different ap
proaches to construct daily realized volatility. The statistical analysis of daily 
asset return and realized volatility series is also reported in this section. In 
Section 3.3, we concentrate on estimation of SV models with lagged inter
temporal and contemporaneous dependence using different realized volatili
ties, and results are reported. We focus on the forecasting of realized volatility 
in Section 3.4. We list four competing models and different measures employed 
to evaluate the forecasting performance. Forecasting performance is reported.
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A brief conclusion is contained in the last section.

3.2 Realized Volatility Estimator, Data and Con

struction

3.2.1 Realized Volatility Estimator and Its Distribution

The main idea behind realized volatility is to sum high-frequency intra-day 
squared returns in a trading day to approximate the daily quadratic variation 
of the log price process (or to sum daily squared returns to approximate the 
monthly variation of the log price process).

Consider a discrete-time model in which the daily asset return is expressed 
as:

n = crtvt

where vt ~  iidN(0,1).

In a typical trading day t, the prices, Pt4,d =  l , . . . ,D ,  are observed tick-by
tick. D refers to the total number of observations at day t. The dth intra-period 
return at day t can be calculated by taking the difference between logarithmic 
price at d and that at d — 1:

=  log(Pt,d) -  log(Pt4 -x)

Assume rt<d =  at,dVt<d where vt4 ~  iidN(0, 

Then, the daily return is:
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rt = log(Pt,D) - log(Ptfi) = £dLorM

and

_ _  1 sr̂ D at ~ d ¿—td=\ at,d

The squared daily asset return is:

,D 
■d=0r2d + crossproduct

The daily realized volatility (or variance) is computed as:

RVt = Ed=0rld

If the intra-day returns are uncorrelated, then

Var(rt) =  E{r2t ) =  £ (£ ,\D 
'd=0r'fd) + E(crossproduct) — E(RVt) =  of

Realized volatility as well as squared asset return are unbiased estimators 
for the variance of daily asset returns.

As McAleer and Medeiros (2008) showed,

Realized volatility is a more efficient or more accurate estimator compared 
to the squared asset return.

Andersen, Bollerslev, Diebold, and Labys (2003) showed that when there is 
no microstructure noise and squared returns are summed over very small time 
intervals, i.e. as the sampling frequency of returns D -> oo, the constructed 
realized volatility converges uniformly in probability to the underlying inte
grated variance:
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RVt ->P V,

Realized volatility is a consistent estimator of the variance of daily asset 
returns.

The asymptotic distribution of realized volatility has been derived by Bandorff
Nielsen and Shephard (2002). As the computation of the asymptotic distribu
tion is infeasible given that the integrated quarticity is unknown, the asymp
totic distribution of realized volatility can be approximated by:

i
y/lHS-or4t,d

(RVt -  Vt) ->d N(0 ,1 )

However, in BandorfF-Nielsen and Shephard (2002), the Monte Carlo results 
suggested very large sampling frequency D, the finite sample performance was 
poor. On the other hand, the logarithmic transformation of realized volatility 
is well recognized to be able to provide better finite sample properties. The 
approximate asymptotic distribution of logged realized volatility is:

l
y b  4------2 ¿',¡=0 I,,I5 7yT) _2 ,2 (i-rf=0 rt,d>

(log(RVt) -  log(Vt)) - > d A ( 0 , 1)

3.2.2 Data

Our empirical analysis is based on daily returns and realized volatilities of 
both S & P 500 index and three currency exchange rates, namely Canadian 
dollar (CAD/USD), British Pound (USD/GBP) and German Mark (DEM/USD). 
The daily return series are obtained from WRDS, the high-frequency intra-day 
data is provided by Disktrading. The high-frequency transaction prices for S & 
P 500 stock index are available from 9:30 to 16:00 for the period from November 
12, 1997 through July 28th, 2006, and those for the three exchange rates are
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available twenty four hours from April 13th, 1998 through July 28th, 2006. 
To avoid complicating the inference by the decidedly slower trading activity 
during certain holiday periods, we exclude a number of inactive days (July 4th, 
December 24, 25, 26, and January 1, 2) from the sample. For the S & P 500 
index, the sample period covers 2187 days, and for exchange rates, the sample 
size is 2126.

3.2.3 Constructing Daily Realized Volatility

We consider different approaches to construct daily realized volatility series. 
First, equity markets are open between 9:30 and 16:00 every trading day, 
whereas exchange rate markets are open twenty four hours each day. It is 
typically found that the changes of prices during the closed parts (overnight) 
are much larger than those during open parts, so we need to take into account 
the “closed effect” when constructing daily realized volatility of S & P 500 in
dex. For exchange rate markets, as they open twenty four hours each day, there 
is no closed part distortion. However, it is well known that there is significant 
autocorrelation in intra-day returns, although the autocorrelation in daily as
set returns is not obvious. We consider an approach to deal with the first order 
autocorrelation in each market.

Construction of Realized Volatility for S & P 500 Index

Let Ptyd represent the d-th intra day transaction price on trading day t with 
d =  1 Let /  be the sampling frequency of returns. For example, /  =
5 indicates five-minute returns, f  — 25 means 25-minute returns. In each 
trading day, there are Df — D/f intra day returns.
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For the open part, the high-frequency intra day return is computed as:

x f,t,d =  100(ln Pt<fd -  In Pt,f(d-i)), t = l , . . . , T

For the closed part (overnight), the return is calculated as:

x °N =  100(ln Pt,\ — In Pt-i,D)

where Pt l is the first price of trading day t and P(_1D represents the last price 
on day t — 1.

The common definition of daily realized volatility for equity markets is to 
simply sum up the open part squared returns and the overnight squared re
turns. We denote it as RV1:

However, it is observed that the changes in the stock index prices during 

the closed part are relatively much larger than those during open parts. The 
above computation may produce a significant amount of noise because a large 
value of (x fN )2 will have a distorting effect. The simplest solution for this issue 
is to exclude the overnight squared returns. Only summing open part squared 
returns, on the other hand, may underestimate the true volatility. To solve 
this problem, Martens (2002) proposed scaling the sum of open part squared 
returns. We denote it as RV2.

RV2 =  uYfdUx2
/ , t , d

where

nor (In P i .p - l n  Pt,i)+var(\n P1.1 - I n  Pt- i ,p )  , 
uar(ln P (,d —In Pt,i)
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Even though there is little autocorrelation in the daily returns, there is 
strong autocorrelation in the intra day returns, caused by market structure 
effects. Standard measures of realized volatility may suffer from a bias due 
to autocorrelation in the intra day returns. As sampling frequency increases, 
the autocorrelation in intra day returns becomes more of an issue. In order 
to deal with the autocorrelation problem when constructing realized volatil
ity, Zhou (1996) introduced a modified kernel-based estimator which includes 
the cross products of adjacent returns. Hansen and Lunde (2005a), and Cor
nish (2007) used this estimator in their studies. As Hansen and Lunde (2006) 
showed, the kernel-based estimator that utilizes higher order auto-covariances 
can eliminate the bias of realized volatility. Specifically, Hansen and Lunde 
(2005) defined the daily realized volatility as:

RVacf = E?A *t u  + 2 EUl 57 E£r‘ ,w

where q refers to the order of the auto-covariances. The fraction is 

included to compensate the “missing” cross product which requires intra day 
returns outside of the interval.

A drawback of this kernel-based estimator is that it may produce a nega
tive estimate of volatility, as Hansen and Lunde (2005) pointed out, especially 
when intra day high-frequency returns have significant negative autocorrela
tion. This is typically observed in foreign exchange rates intra day returns. 
To overcome this drawback, Hansen and Lunde (2005b) demonstrated that the 
Bartlett kernel should be used and defined the daily realized volatility as:

RVnw =  E d i i  4 m  + 2 £ L i ( i  -  Wi) E f i f *  * / ,m * / ,m m

Using this approach, non-negative realized volatility is guaranteed.
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In our study, we consider constructing daily realized volatility with the first
order autocorrelation of intra-day asset returns taken into account, that is, 
we set q =  1 in RVNW. Following Hansen and Lunde (2005b), we employ the 
Bartlett kernel estimator to ensure a positive estimate, is included in the 
second term to compensate the“missing” cross product.

RV 3 = xU4 + Dj  x ^ D j  — 1
D f - l  2~,d=  1 x f ,t ,dx f ,t ,d+ 1

Construction of Realized Volatility for Foreign Exchange Rates

Since foreign exchange markets open twenty four hours each day, there is no 
“closed part” distorting. Hence summing up intra day squared returns in each 
day, we get daily realized volatility. We denote it as RV 1.

RVi =

In the second approach, we take first-order autocorrelation into account, 
and denote it as RV2:

Ry 2 =  i x/,t,d + Ed= l 1 xU4xU.d+1

3.2.4 Optimal Sampling Frequency

Theoretically the sum of squared returns from finest time intervals can be not 
only a model-free but also an error free estimator of integrated volatility. How
ever, in reality, when the time intervals are very small, microstructure effects, 
such as discreteness of prices, bid/ask bounce, and trading volume, etc., may 
distort the realized volatility. Hence, there is a trade-off between bias and
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variance when choosing the sampling frequency to construct realized volatil
ity. As ABDL (1999) and others demonstrated, the optimal sampling frequency 
to construct daily realized volatility should be moderate such that it is fine 
enough to produce a volatility estimate with negligible sampling variation, 
yet low enough to avoid microstructure bias. ABDL (1999) proposed a sim
ple graphical diagnostic called “volatility signature plot”, a plot of average of 
realized volatilities constructed from different sampling frequencies against 
these time intervals, to provide some guide for selecting the optimal sampling 
frequency.

The basic procedure of constructing “volatility signature plot” is, consider
ing a financial market which opens twenty-four hours at day t, setting sampling 
frequency /  as /  = 5,10,15,..., we obtain 288,144,96,... intra day asset returns, 
respectively. For each sampling frequency, the t-th daily realized volatility, RVt, 
can be constructed. Compute the average of RVt for ( = 1 , . . .  ,T  for each value 
of sampling frequency /  and plot them against / .

As sampling frequency increases, microstructure effects may manifest them
selves in these “volatility signature plots” by distorting the average of realized 

volatility. By plotting the averages of realized volatility constructed from dif
ferent sampling frequencies against these time intervals, allows one to choose 
the optimal sampling frequency for the realized volatility construction.

Figure 3.1-3.4 shows volatility signature plots for S & P 500 index and three 
foreign exchange rates, respectively. The daily realized volatilities are con
structed from 5-minute to 90-minute frequencies.1 Then for each set of realized 
volatilities, the average is computed. Overall we find the change of means of 
realized volatilities is more pronounced in equity market than those in foreign

'We report RV2 for S & P 500 index, and RV1 for exchange rates.
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exchange rates. In S & P 500 index, volatility signature plot starts to display 
’’saw tooth” pattern from 15-minute frequency suggesting that microstructure 
effects are significant during these time intervals. From 5-minute to 15-minute 
time frequency, the means of realized volatilities display relatively smooth pat
tern. This finding suggests that from 5-minute to 15-minute time interval, mi
crostructure effects are small. Combining these findings with the theory that 
realized volatility constructed from fine enough time interval can be a very 
accurate estimator, we select 5-minute sample frequency to construct daily re
alized volatility for S & P 500 index. This choice is consistent with other equity 
market realized volatility studies, including Andersen and Bollerslev (1998), 
Shi (2005) etc.

On the other hand, foreign exchange rates volatility signature plots dis
play a different pattern. We notice that at 5-minute time interval, the average 
of realized volatility is very high. As sampling frequency decreases from 5- 
minute to 25-minute, the average of realized volatility decreases and becomes 
relatively smooth at 25-minute. However, there is a significant change from 30- 
minute frequency for both CAD/USD and USD/GBP, and from 35-minute fre
quency for DEM/USD, suggesting that the optimal frequency to construct for
eign exchange rate realized volatility may be approximately 25 minutes. This 
finding is similar to that in Andersen, Bollerslev, Diebold and Labys (2002). 
They suggested that 30-minute transaction prices was the best choice for con
struction of daily exchange rate realized volatility to achieve the accuracy as 
well as minimize market microstructure effect. We also notice that the average 
of realized volatility is relatively smooth around 45-minute time interval indi
cating that at that time interval, microstructure effects are not large, however, 
it is not an optimal sampling frequency because daily realized volatility con
structed from low sampling frequency will suffer from a high sampling error.
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Based on our findings from the volatility signature plots, we select a 5- 
minute time interval to construct daily realized volatility for the equity index 
and a 25-minute interval for the foreign exchange rates.

3.2.5 Statistical Analysis of Daily Return and Realized Volatil

ity

The sample for the S & P 500 index consists of 2187 daily observations for 
return and RV series. Table 3.1 reports the summary statistics for daily re
turn (xt), square daily return (x2), daily RV1, RV2, RV3, and their natural 
logs. The top panel displays moments. The middle panel reports quantiles, 
extreme values. In addition, we apply a Jarque-Bera (JB) test for the null hy
pothesis that the data are from a normal distribution. The test statistic JB is

-t )4
m 2 - 3 .defined as: JB =  f (S2 + \K2), with S = -{j and K =

Since samples from a normal distribution have an expected skewness of zero 
and expected excess kurtosis of zero, any deviation from this increases the JB 
statistic. We report the JB results along with p-values at the bottom of the 
middle panel. The bottom panel shows autocorrelation of these series.

The mean daily return is 0.0132, indicating that overall the daily return 
of S & P 500 index is positive, but very close to zero. The standard deviation 
is 1.1250, suggesting that the equity market is volatile. The negative value 
of skewness, -0.1, suggests that the return series is left-skewed. The daily 
return and squared return series both display high kurtosis with the values 
being 5.5988, and 85.3414, respectively, indicating fatter tail features which is 
a typical finding in financial markets.

The minimum daily return is -6.7953 while the maximum is 5.7522 making
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the range of this series around 12. A JB test is conducted to determine whether 
the series follows a normal distribution. The results strongly reject the null 
hypothesis.

The mean values for all three RV, are above 1, and all the mean values for 
their natural logs are negative. The positive skewness along with large positive 
values of kurtosis indicate that RV is asymmetrically distributed with fatter 

tails. However, we notice that the skewness for natural log of RVS are close 
to 0 and the fourth moment is around 3, indicating that the logged realized 
volatility is approximately Gaussian.

The sample for the three foreign exchange rates consists of 2126 daily ob
servations. Table 3.2, 3.3, 3.4 reports the summary statistics for daily return, 
square return, RV1, RV2 and their natural logs for CAD/USD, USD/GBP, and 
DEM/USD, respectively.

The mean of returns for exchange rates are all very close to zero. The stan
dard deviations for exchange rates are much smaller than those for the equity 
market, suggesting that exchange rate markets are not as volatile as the eq
uity market. This result can also be confirmed by the values of RV. RV values 

for the equity market are above 1 , while those for exchange rate markets are 
less than 0.5. The values of third and fourth moments again suggest that both 
return and volatility series are asymmetrically distributed with fatter tails, 
while the natural logs of RV, are approximately Gaussian.

The range of returns for exchange rates are much smaller than that for the 
S & P 500 index. The JB results strongly reject the null that these series follow 
a normal distribution.

The bottom panel in each table reports sample autocorrelations of these se
ries. The lagged value is up to 15. The daily asset return exhibits little serial
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correlation, whereas the autocorrelation increases significantly and is not neg
ligible for the squared return series which is consistent with the GARCH the
ory. On the other hand, both RV series and logged RV series exhibit pronounced 
serial correlation and decay very slowly. This evidence is consistent with the 
fact that the volatility is clustering and persistent, suggesting that even though 
return is hardly predictable, the volatility process has a long memory hence is 
predictable.

Figures 3.5-3.12 display the plot of daily return, squared return, RVS, and 
logged RVS from the equity market. As all three exchange rates display similar 
patterns, we only report those plots for CAD/USD in figures 3.13-3.18. We ob
serve some volatile periods from these plots. For example, the daily return se
ries for S & P 500 is volatile at the end of 1997, the third quarter of 1998, the be
ginning of 2000, period after September 11th of 2001 and the Summer of 2002, 
while it is relatively smooth during the period from middle of 2003 through 
July 2006. The volatile periods are corresponding to the Asian finance cri

sis, 911 attack, and internet bubble, respectively. The plot of squared returns, 
RVS and ln(RV„) confirm this observation. The plots for exchange rates dis
play different patterns. For example, the daily return series for CAD/USD, and 
USD/GBP, is volatile at around May 1998, and the period from 2003 through 
2006. For DEM/USD, we can identify the volatile period occurring from 1998 
through 2000, which coincides with the Deutsche Mark (or German Mark) be
ing gradually replaced by the euro. After a relatively smooth period, a volatile 
period occurs in 2004 again.

The autocorrelation (unction plot of these time series are reported from Fig
ure 3.19 to Figure 3.252. The lag value is up to 15. The straight lines parallel

2 Again we only report ACF for CAD/USD since the ACF plots of USD/GBP and DEM/USD 
display similar patterns.
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above and below zero indicate the approximate upper and lower 95 pencent 
confidence bounds. Note values of ACF that are effectively zero lie within these 
bounds. From these plots, clearly the ACF values of daily asset return series, 
no matter whether they are from the equity market or exchange rates, all lie 
within these bounds suggesting that this series is hardly serially correlated. 
However, when we square the asset return series, the ACF values increase sig
nificantly and are not negligible. On the other hand, from the graphs of RVS 
and ln(RV3), we find all the ACF values lie above the upper bound, providing 
strong evidence of autocorrelation.

3.3 Estimation of Discrete-Time Stochastic Volatil

ity Models Using Realized Volatility

In Chapter 2, we investigated the estimation of discrete-time SV models via a 
Monte Carlo study with both lagged inter-temporal dependence (Ml) and SV 
model with contemporaneous dependence (M2) when volatility is an observ
able variable. In this section, we focus on an empirical investigation. Specifi
cally, we use daily realized volatility constructed from high-frequency intra-day 
transaction prices as a proxy in both the M l and M2 models and consequently 
examine the estimation performance of both FIML and 3SLS approaches. In 
the following parts, we first list our models, then report the empirical results.
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3.3.1 Model Specification

The discrete-time SV model with lagged inter-temporal dependence (Ml) is:

xt = Xeh‘ + eh'/2et (3.1a)

ht = a + fiht-1  + avt

0 1 P
)£t_1 I ~ N( I

vt ) \ 0 ]  \ p 1

The discrete-time SV model with contemporaneous dependence (M2) is:

(3.1b)

(3.1c)

xt = Xehl + eh,/2et

ht = a + pht-1  -I- crvt

£t

vt
N ( \

0 1 P 

P  1

(3.2a)

(3.2b)

(3.2c)

3.3.2 Estimation Results

Table 3.5 reports the estimation results for two models using S & P 500 index. 

Table 3.6, 3.7, 3.8 report the results using exchange rates. In each table, the top 
panel shows the results of Model 1 applying FIML, the middle panel displays 
the estimates of Model 2 using FIML, and estimates of Model 2 employing 
3SLS are reported in the bottom panel. In each panel, we report the results 
using different RVs. The standard errors are reported in brackets3.

For the equity index, the signs of all estimates are consistent using three 
different RVs. The estimates of A and a are similar by using RV1 and RV2, 
whereas the estimates of ¡3 and a are similar by using RV2 and RV3.

3** means the estimate is significant at 1 percent level, » means it is significant at 5 percent 
level.
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For Model 1, the FIML approach is applied. The estimates of risk premium 
parameter, A, are round 0.01, but not significant using different RVs. This is 
a common finding in estimating SV model with lagged inter-temporal depen
dence. For example, when Shi (2005) examined the estimation of discrete-time 
SV-M model using daily realized volatility the estimated A was not significant. 
The estimated values of A and a are very similar when using RV1 and RV2, 
whereas RV2 and RV3 lead to similar estimates for 0 and a. Overall, the es
timated 0 and er are significant at one percent level using different RVs. The 
estimated values of p are not significant when using RV1/RV2, whereas the 
estimated a is not significant using RV3.

For Model 2, both FIML and 3SLS procedures are employed. We find these 
two approaches provide very similar results. This is not surprising, as two 
methods are asymptotically equivalent. In general, the estimates are signifi
cant at one percent level except for those of a using RV3. The estimated values 
of the persistency parameter 0 are always above 0.71, consistent with the styl

ized fact of volatility persistency. The estimates of volatility, a, are between 
0.55 to 0.6, the standard errors are extremely small. However, the value when 
using RV1 is relatively larger than those from using RV2/RV3 (we also observe 
this fact in Model 1 estimation), indicating that the “closed part effect” does ex
ist. Similarly as we observed for Model 1, the estimated values of A and a are 
very similar when using RV1 and RV2, whereas RV2 and RV3 lead to similar 
estimates for 0 and a. Moreover, the estimated p is much higher in absolute 
value using RV1 than those using RV2/RV3.

Comparing the results for Model 1 and Model 2, we find that the estimate 
of the correlation coefficient parameter, p, is only significant at the one percent 
level by using RV3 for Model 1, whereas they are always significant at the one
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percent level in Model 2, suggesting that Model 2 outperforms by capturing 
correlations between return and volatility processes. Both models yield similar 
estimates for all the other four parameters. The interesting finding is that both 
models provide higher /? values along with lower ct values when using RV3. The 
estimate of A is much higher for Model 2 regardless of which estimation process 
is used, implying that Model 2 has a better fit to this data set.

For the three foreign exchange rates, two approaches of realized volatility 
lead to similar estimates. The only obvious difference is that no matter which 
estimation method is applied, for both models, the estimates of a are approx
imately ten percent higher by using RV2 which is constructed with the first 
order autocorrelation of return series taken into account. This finding indi
cates that first order autocorrelation of intra-day returns is significant. The 
estimates of Model 2 using FIML are similar as those applying 3SLS again 
confirming the asymptotic equivalence of the two estimation methods. The es
timates of a, ¡3, p, and a are mostly significant at one percent level, whereas the 
estimates of A are very small in absolute values and unstable.

Comparing the results for Model 1 and Model 2, we find in general the 
estimates are similar except for those of estimated p. The sign of p changes 
between Model 1 and Model 2 for CAD/USD, DEM/USD, whereas it stays neg
ative for USD/GBR

Comparing the results using different exchange rates, we find the esti
mate of f3 has a higher value, above 0.6, for CAD/USD, and lower values for 
DEM/USD and USD/GBP which are around 0.4. This observation is consistent 
with what we observed from summary statistics tables. The ACF values of 
CAD/USD are much higher than those of USD/GBP and DEM/USD suggesting 
that our models do a good job in capturing the persistency of volatility series.
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The estimated a ranges from 0.6156 to 0.9660 in absolute value for different 
exchange rates and are all significant.

Comparing the estimates for the S & P 500 index and the three exchange 
rates, we have several findings. First, the estimated risk premium parame
ter A is significant at the one percent level for Model 2 for the equity index, 
whereas they are not for either model for the three exchange rates. Second, the 
estimated persistency parameter /? is much higher for the equity index (above 
0.71) than those for exchange rates (below 0.65), suggesting that volatility of eq
uity return is more persistent. Moreover, these estimates are consistent with 
the ACF values of daily realized volatility series indicating that both models 
do a good job in capturing this stylized fact. Third, the estimates of a and p 
are improved in exchange rates, as they are all significant at one percent level. 
Fourth, the estimates of volatility of volatility, are similar and quite stable for 
both S & P 500 and exchange rates.

Overall, the standard errors are small suggesting that estimates are quite 
stable. The estimates of correlation coefficient parameter, p, are always within 
the natural band [—1, 1] and mostly significant suggesting that both models do a 

reasonable job in capturing correlation between return and volatility processes. 
In general, both models fit data well, Model 2  does a better job than Model 1 in 
capturing some stylized facts. With respect to estimation methods, both FIML 
and 3SLS are appropriate when volatility is treated as an observable variable. 
And the statistical inference is reliable by using daily realized volatility as a 
proxy for the true latent volatility in estimating both models.
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3.4 Forecasting of Discrete-Time Stochastic Volatil

ity Models Using Realized Volatility

Given the important role that volatility has in financial markets, volatility fore
casting has been of long-time interest for financial econometricians. However, 
the evaluation and comparison of volatility forecasts are complicated by the 
primary variable of interest, the conditional volatility, which is not directly ob
servable. Consequently, ex-post measurement for the latent variable is needed 
for forecasting evaluation. Early studies such as Taylor (1987), Akgiray (1989), 
etc, used squared asset returns as a proxy for the latent volatility process as 
it had been proved to be a conditionally unbiased estimator. However, it has 
been recognized that squared return is not only a noisy, but also an inefficient 
estimator of the actual variance dynamics and will lead to incorrect inferences.

In recent studies realized volatility constructed from high frequency data 
has been widely used in volatility forecasting evaluation. As discussed in 
ABDL (2003), volatility forecasting performance has improved significantly as 
high-frequency volatility turns out to be highly predictable. Among these stud
ies, some include the discrete-time SV model as a competing model in volatility 
forecast evaluation. For example, Lopez (2001) compared one-step-ahead ex
change rate forecasting performance of discrete-time SV models, GARCH mod
els, and simple models. For SV models, as volatility process is not directly 
observable, the estimation was conducted by using the Kalman filter on both 
asset return and volatility equations and applying quasi-maximum likelihood 
methods. The results indicated that forecast evaluation varied correspondingly 
to the choice of loss functions. Yu (2002) forecasted one-month-ahead volatility 
of New Zealand stock market, and reported the forecasting performance of nine
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models including discrete-time SV model, GARCH, random walk, etc. Treat
ing volatility as latent in SV model, Yu (2002) applied the same procedure as 
Lopez (2001) then plugged the estimates into out-of-sample forecasting equa
tion to generate volatility forecasts. Hoi and Koopman (2002) concentrated on 
the S & P 100 volatility forecasting, using a daily discrete-time SV model as one 
of the candidates. As daily volatility series were unobserved, Hoi and Koopman 
(2 0 0 2 ) constructed the likelihood function using simulation methods then ap
plied exact maximum likelihood methods. The results showed that the daily 
SV model outperformed the GARCH model. Two common features of these 
studies are: 1). when estimating discrete-time SV models, volatility is treated 
as latent, therefore the estimation is either inefficient or computationally com
plicated in practice; 2). the two disturbances in the discrete-time SV models 
are assumed to be mutually uncorrelated, both contemporaneously and at all 
lags.

In the following section, we investigate the forecasting performance of both 
Model 1 and Model 2 in which the two error terms are allowed to be correlated, 
either inter-temporally or contemporaneously. We use daily realized volatility 
not only to evaluate forecasting performance but also in the in-sample estima
tion. Specifically, we apply the FIML procedure to both Model 1 and Model 2  to 
obtain in-sample estimates then plug these estimates into the volatility equa
tion of both models to generate one-day-ahead logarithmic volatility forecasts.

3.4.1 Methodology for Forecasting Volatility

We investigate the forecasting performance of four different models including a 
simple regression model in which the logarithmic of volatility follows an AR(1) 
process, the logarithmic version of the heterogeneous autoregressive (HAR)



99

model, M l, and M2. We treat the simple regression model as the benchmark, 

hence we are able to examine: 1). whether capturing asymmetrical behavior 
between asset return and volatility processes would help volatility forecasting 
by comparing the forecasting performance of the benchmark with those of Ml, 
M2; 2). whether permitting a long-memory would improve forecasting accu
racy by comparing the forecasting performance of the benchmark with that of 
the HAR model. We have listed M l and M2 in previous section, below we list 
the other two candidate models.

Simple Regression Model (SRM)

Both M l and M2 consist of two equations, namely an asset return equation, 
and a volatility equation. The correlation between error terms in two equations 
enables SV models to capture the asymmetric behavior such as leverage effect 
(or feedback effect), as well as leptokurtosis of financial asset return series. 
Whether the models permitting these features would help volatility forecasting 
is of interest in the literature. Corsi, Mittnik, Pigorsch, and Pigorsch (2008) 
constructed a HAR-GARCH(1,1) with the error terms following a standardized 

normal inverse Gaussian (NIG) distribution to capture the fat tails of the asset 
returns, they found that permitting leptokurtosis in the innovation distribution 
did not help in point forecasting. In our study, to investigate whether discrete
time SV models would improve forecasting performance regression model, we 
compare the forecasting performance of Model 1, Model 2 with a simple Alt (1) 
process with a constant, which is in fact the logarithmic volatility equation of 
the SV models.

hi = a Phi-1  <7Uj (3.3)

where vt ~  N(0,1).
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The estimation is quite easy to implement, a simple OLS procedure can 
be applied. After the estimated parameters are obtained, the one-day-ahead 
forecast of hT+i can be generated as:

hr+1 = a -j- 0hp

Heterogeneous Autoregressive Model (HAR)

One of the most important features of the volatility processes is that volatil
ity is persistent. To capture this long-memory pattern, ABDL (2003) specified 
the autoregressive fractionally integrated moving average (ARFIMA (p,d,q)) 
model. However, as Corsi (2009) discussed, fractionally integrated models are 
nontrivial to estimate and not easily extendible to multivariate processes. Con
sequently, Corsi (2009) proposed a simple component model, a so called “het
erogeneous autoregressive model (HAR)”. As Corsi (2009), Corsi, Mittnik, Pig- 
orsch, and Pigorsch (2008) demonstrated, the long-memory pattern could be 
reproduced by a sum of volatility components constructed over different time 
horizons. In Corsi (2009), the empirical results showed that both the HAR 
model’s in-sample and out-of-sample performance were strong. Later, Ander
sen, Bollerslev, and Diebold (2007) included jump measures in the HAR model 
and showed that it provided a good predictive performance. They also consid
ered the HAR model for the logarithm of volatility, and the results were similar. 
Following these studies, we consider the logarithmic version of the HAR model 
as a candidate in our study. The logarithmic version of the HAR model is in 
fact an extension of the simple regression model by including two extra terms, 
namely, the weekly logarithmic volatility and the monthly logarithmic volatil
ity. The model is defined as:

h t —  a  +  P \ h t - l  - I -  5 : i  — 1 +  0 3 h t  — 2 2 : i — 1 +  & V t (3.4)
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where vt is Gaussian white noise.

The multi-period logarithmic volatility components are defined by

h t+ i-k -.t =  x  S i = l  h t - i

More specifically, a weekly volatility is given by the average:

= 5 ( ^ - 1  + 2 + ht- 3 + ht- 4 + /lt_5)

Similarly, a monthly volatility is given by:

ht—22:t — l = ^(ht- 1 + ht- 2 + • . • + ht- 22)

As discussed in Corsi (2009), when using realized volatility the estimation 
of the HAR model is easy to implement and a standard OLS procedure pro
vides consistent estimators. Then the one-day-ahead forecast of hr+ 1 can be 
generated as:

h r + i  —  ôt - f  0 ih x  +  f l ih r - i - . T  +  ^ h x - i u T

We notice that using these four models the forecasted logarithmic volatili
ties, hT+\, are generated. While our interest is the one-day-ahead forecast re
alized volatility. We need to transform these predicted logarithmic volatilities 
to obtain forecasted volatilities. As first discussed in Granger and Newbold 
(1976), and then widely accepted in the literature, directly taking the expo
nential of hr+ 1 would induce bias, hence would result in poor forecasts. Some 
transformation is necessary.

The one-day-ahead forecast error of hT+l is calculated by:

ei+i =  h r+ i — h r+ i =  hr+i ~  £ (^ t+i|t ) =  &v t + 1
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With the bias being taken into account, the one-day-ahead forecasted real
ized volatility, RVt +\, is transformed by:

RVt+i =  E(RVt+i\T) =  E(ehT+l lT) =  E(e*r+i+™r+.) = E(ehT+')E(eaVT+')

where E(e<7VT+l) is the moment generating function of disturbance v.

Under the assumption that v follows a standard normal distribution, the
. . . <r2moment generating function is given by e~*.

Therefore, the one-day-ahead forecasted realized volatility can be computed
as:

RVT+l = exp(hT+\ + y )

where a2 is the variance parameter. As it is unknown, we use the sample 
estimate to replace a2.

3.4.2 Forecasting Evaluation

Testing the null: competing models provide equally accurate forecasts

Obviously the accuracy of volatility forecasting is of great importance in fi
nance. This importance has sparked a lot of interest in both evaluating and 
improving volatility forecasting performance. The crucial object in evaluating 
forecasting accuracy is the loss function, L(yt+fc, yt+k\t), in which yt+k denotes 
the realized value at t + k and yt+k\t refers to the forecasted value oft + k based 
on the information set at t . The loss function measures the “loss” or “cost” 
associated with various pairs of forecasts and realizations. The smaller the 
loss, the better the forecast. Usually the loss function is defined as a function
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of the /c-step-ahead forecast error which is the difference between the real

ized and the forecasted value , i.e. et+k,t = Vt+k — ilt+k\t, or percent error, i.e. 

Pt+k =  (Vt+k -  Vt+k\t)/yt+k- For example, the mean error, ME =  £ £t=i et+k,t, 
or mean percent error, MPE  = L 1 Pt+k,t> provide measures of bias. How
ever, as Diebold and Lopez (1996) pointed out, the shape of the loss function 
is crucial in measuring forecast accuracy. Different loss functions would re

sult in different rankings of forecast performance. In addition, most commonly 
used accuracy measures involve strong assumptions such as the loss function is 
quadratic, symmetric, or the forecast errors are zero mean, Gaussian, serially 
uncorrelated or contemporaneously uncorrelated, so forth. These assumptions 
may not be realistic.

Alternatively, Diebold and Mariano (1995) proposed some widely applica
ble tests. In their tests, the null hypothesis states that there is no difference 
in the accuracy of two competing forecasts. These tests are based directly on 
predictive performance, the loss functions can be neither quadratic nor sym
metric, the forecast errors can be non-gaussian, non-zero mean, or serially cor
related. The basic procedure of these tests is, let the time t. loss be an arbitrary 

function of the realization and the forecast, g{et+k,t) =  g(yt+k, tit+k\t), for two 
competing models, the null hypothesis is that forecasts from these two models 

are equally accurate, i.e. H0 : £[s(e<t+M)] = E\g(ejt+k,t)\, or E[dt+k} =  0 , where 
dt+k = g(eit+k,t) ~ g(ejt+k,t) refers to the loss differential. In fact, the null hy
pothesis is equivalent to that when the population mean of the loss-differential 
series is 0. If the null is rejected, the forecasting method that yields the small
est loss is preferred. As the Diebold and Mariano (1995) tests relax strong as
sumptions, they are robust and widely applicable. In this subsection, we apply 
their tests to decide whether the competing models provide equally accurate 
forecasts.
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1. Asymptotic Test

Assume the loss-differential series {dt}, t =  1,. . .,  T, is covariance stationary 
and has short memory. According to central limit theory, when the sample 
size is large, the sample mean of the loss differential, d, approximately follows 
a normal distribution. Let the asymptotic distribution of sample mean loss 
differential d be :

V T ( d - n )  — ►d 7V(0,27r/d(0))

where d and /i denote the sample and population means of dt, respectively. 

fd(0 ) =  ^  YlTL-oo 7d{r) is the spectral density of the loss differential at fre
quency 0, with 7 d(r) =  E[(dt -  n){dt-T -  n)] being the auto-covariance of dt at
r.

The null hypothesis of two forecasts being equally accurate can be tested 
using a standard normal statistic:

5, = ~  N(0A)

in which 2nfd(0) is a consistent estimate of 2nfd(0) and can be calculated as:

2nfd(0) =  E L 'V i )  l ( ^ ) f  £ f =M+,(dt -  d){dt_,Tl -  d)

where s(T) = h - 1 is the truncation lag and l ( ^ )  is the lag window, taking the 
value 1 if |^y| < 1, and 0  otherwise. As our study focuses on one-step-ahead 
forecasting, i.e. h = 1, hence s(T) = 0 , as a result for any r ^ 0, l(^fy) = 0 
since ItîyjI > 1. In this situation, S\ is calculated only when r = 0.

2. The Sign Test
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Sometimes it is the case that only a few forecast-error observations are 
available. When the number of the forecast error is small, a finite-sample test 
such as the sign test can be conducted.

The null of the sign test is that the median loss differential is zero, i.e. 

H0 : med(g(eit) -  g{ejt)) = 0 . Clearly the sign test and the asymptotic test will 
coincide with each other when the loss differential is distributed symmetrically.

The test statistic is the following:

Sa = EUf f i T/2 W 1)

\(dt) =  1 for dt > 0, and 0 otherwise. This test is based on the assumption 
that {«¿t} is i.i.d. distributed. Being a fair game, the probability of a positive 
loss differential is equal to 0.5. With the sample size being T, the number of 
positive loss differentials i follows a binomial distribution with mean Tp = T/2 

and variance T p (l-p ) = T/4. As the sample size becomes larger, S2 approaches 
to a standard normal distribution.

3. Wilcoxon’s Signed-Rank Test

Another finite-sample test introduced by Diebold and Mariano (1995) is the 
Wilcoxon’s signed-rank test. This test is a related distribution-free procedure, 
and assumes that the loss differential is i.i.d. and symmetric. The test statistic 
is the sum of the ranks of the absolute values of the positive observations,

W = Y%=1 l(dt)rank(\dt\)

The idea of this test is that if the distribution of the loss differential is 
symmetric around zero, a very large (or small) sum of the ranks of the absolute 
values of the positive observations would be unlikely. When the sample size is 
large, the standardized W  follows a standard normal distribution:
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g  =  E L iU d ,)rank(\d ,\ )-‘! ^ l l

y / T ( T + l ) ( 2 T + l ) / 2 4
N( 0 , 1)

Forecasting Evaluation

Diebold and Mariano (1995)’s tests are valid for a very wide class of loss func
tions. However, the null of these tests is equally accurate forecasts, therefore 
the results do not tell which model provides more accurate forecast. Therefore 
we need to evaluate the point forecasts of each candidate model.

There are numerous criteria available for forecasting performance evalua
tion. However, as Diebold and Lopez (1996), Lopez (2001) etc. demonstrated, 
it is not obvious which measure is more appropriate. Rankings of forecast ac
curacy may be different across different measures. Therefore, instead of only 
focusing on one single measure, we employ several different measures in this 
study. In the volatility forecasting literature, the most commonly used mea
sure is mean squared error, MSE =  ^  et+kk> which depends on the second 
moment structure of the joint distribution of the realized and forecasted series.

E(MSE) =  E[(yt+k -  yt+k,t)2} =  var(yt+k -  yt+kit) + (E[yt+k\ -  E[yt+k<t})2

Often the square root of MSE  is used to preserve units yielding the root 
mean squared error, RMSE.

Another commonly used measure is mean absolute error, MAE — £  |y«+*—

ilt+k,t\> which depends on the first moment of the joint distribution of the real
ized and forecasted series.

E(MAE) = E[\yt+k -  J/f+M|]

Both MSE and MAE are mathematically simple, however, as Brailsford
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and Faff (1996) pointed out, these two measures are symmetrical which may 
not be realistic in practice.

Same as MSE and MAE,  the Theil’s-U statistic is constructed under the 
assumption of symmetry. But unlike the previous two measures, the random 
walk model is treated as a benchmark model in the Theil’s-U statistic. Hence 
the Theil’s-U provides a relative accuracy measure by comparing the forecasts 
with that using the random walk model. Intuitively, the Theil’s-U is 1 when the 
random walk model is applied; the Theil’s-U being less than 1 indicates that 
the model of interest provides better forecasts than the random walk model. 
The Theil’s-U is invariant to scalar transformation.

As Bollerslev et al. (1994) discussed, the loss functions constructed under 
the assumption of symmetry do not penalize the method for zero and negative 
variance estimates which are clearly counterfactual. Therefore, a more natural 
loss function for volatility models may be the mean percentage squared errors, 

i.e. MPSE =  i  Ef=i (Vt+k -  yt+k,t)7/yt+k> or QLIKE =  ± £ f =1(M y<+o  + 
the loss function implicit in the Gaussian likelihood. Patton (2006) proved, 
while many loss functions existed, QLIKE was one of commonly used loss func
tions that belong to a family of loss functions robust to noise in the volatility 
proxy. Further, Patton and Sheppard (2007) showed that QLIKE,  comparing 
with RMSE, had more power in differentiating between forecasts. In Hansen 
and Lunde (2005), they employed QLIKE to evaluate the forecasting perfor
mance of various models.

Following most studies, we use four criteria to evaluate forecast accuracy of 
the competing models. Specifically, let of (or RVt) be the true realized volatility 
(or variance) at time t, a? (or RVt) be the forecasted realized volatility. The four 
measures are defined as:
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(3.5)

(3.6)

(3.7)

(3.8)

Empirical Results

In this subsection, we perform one-day-ahead realized volatility forecasts. The 
data sets are the same as we used in the estimation section: daily return 
and realized volatility series of S & P 500 index, CAD/USD, USD/GBP, and 

DEM/USD. For each set of data, we have to choose a period for in-sample esti
mation and a period for out-of-sample realized volatility forecasting. We con

sider two methods to obtain parameter estimates. One method is the so called 
“rolling sample” method. That is, we keep the sample size constant at T hence 
when the new data arrives, we discard the least recent data. Alternatively, 
to examine whether including richer information would significantly improve 
volatility forecasting performance, we keep increasing sample size, i.e. we use 
all the observations available in the estimation. We compare the estimation 
results as well as the forecasted volatility series and find these two methods 
provide very similar results. This finding suggests that recent information 
weighs much more in estimating and forecasting therefore we only report the 
results using “rolling sample”.
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The sample of S & P 500 index covers the period from November 12th, 1997 
through July 28th, 2006, consisting of 2187 daily observations. We start in
sample estimation using data from November 12th, 1997 to July 28th, 2005, 
consequently the first out-of-sample daily forecasted volatility is obtained in 
July 29, 2005. We then re-estimate the models using data from November 
13th, 1997 to July 29th, 2005 to obtain sequential forecasted volatility. The 
procedure is repeated 252 times. As a result, the forecasted volatility series 
from July 29th, 2005 through July 28th, 2006 are obtained.

The samples of the three exchange rates, CAD/USD, USD/GBP, and DEM/USD, 
cover the period from April 13th, 1998 through July 28th, 2006, consisting of 
2126 observations. We again aim to obtain one year of one-day-ahead fore

casted volatilities. Hence the in-sample estimation starts from April 13th, 
1998 to July 28, 2005, we then plug the estimates into the models to obtain 
the forecasted volatility in July 29, 2005. We roll over the sample, and repeat 
the procedure for 258 times. The forecasted volatility series from July 29th, 
2005 to July 28th, 2006 are obtained.

Figures 3.26-3.34 provide a graphical summary of the performances of the 

competing models over the entire out-of-sample period in forecasting realized 
volatilities. These figures illustrate the actual realized volatilities (solid line) 
and forecasted values from competing models (in the top figure, dotted lines are 
forecasts from M l, dashed lines are forecasts from M2; in the bottom figure, 
dots are forecasts from HAR, dashed lines are forecasts from SRM). Visual 
inspection suggests that, in general, all the competing models do a good job 
of capturing both the low-frequency and the high-frequency movements in the 
realized volatilities. We next proceed to a more thorough statistical evaluation 
of the forecasts.
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3.4.3 Results for null: two models provide equally accu

rate forecasts

As pointed out by Diebold and Mariano (1995), even optimal forecast errors are 
serially correlated. To examine the level of serial correlation of forecast errors, 
we compute the ACF values and report these values in Table 3.9-3.12. We find 
no matter which data set we use, the autocorrelation of forecast error series 
is significant at lag one and starts to diminish from lag two. This finding is 
consistent with Diebold and Mariano (1995)’s results. We then apply the well 
known Diebold and Mariano (1995) forecast comparison tests, including the 
asymptotic test, the sign test and the Wilcoxon’s signed-rank test. As discussed 
in Diebold and Mariano (1995), the loss function p(et+fc,t) can be an arbitrary 
function of the forecast error et+kit, without loss of generality, we set g(et+k,t) = 

et+k,t, consequently, the loss differential dt+k =  eu+k,t — e2t+k,t-

Table 3.13 report the test statistics of equal forecast accuracy. We report 
the values of 51 (the asymptotic test), 52 (the sign test), 53 (the Wilcoxon’s 
signed-rank test) for each pair of models for S & P 500 index and exchange 
rates. For example, in column 3, we report all three testing results for the null 
hypothesis: HAR model and Ml provide equally accurate forecasting, column 
4 reports results for the null: HAR model and M2 provide equally accurate 
forecasting, so forth.

We find all the values of 51 from the asymptotic test are very large, suggest
ing that null hypothesis is rejected at .01 percent confidence level. The results 
from the sign test along with those from the Wilcoxon’s signed-rank test con
firm that the null hypothesis should be rejected. Based on these findings, we
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draw the conclusion that all the four competing models provide unequally ac
curate forecasts.

3.4.4 Forecasting Evaluation

Diebold and Mariano (1995) tests provide us information that the competing 
models provide unequally accurate forecasts. We then extend our study by em
ploying four different loss functions to evaluate the forecasting performance. 
Table 3.14-3.17 report the value along with ranking of all four competing mod
els under RMSE, MAE, Theil -  U, and QLIKE.

From the examination of these tables, we find, in general, the rankings are 
consistent when different RVa are forecasted. On the other hand, the values 
and rankings vary across different criteria and different data sets. For exam
ple, when S & P 500 data are used, RMSE statistic indicates that Model 1 
ranks the second, while Theil — U statistic suggests that this model provides 
the poorest forecasts among four competing models. Under RMSE, when S & 
P 500 data are used, HAR ranks the first, Model 1 second, simple regression 
model third, and Model 2 ranks fourth, whereas when currency exchange rate 
data are used, HAR ranks first, and all the other three models rank second. 
For S & P 500 index, the marginal differences between Model 1 and simple re
gression model are generally small, while the differences between Model 1 and 
Model 2 are relatively much larger. For foreign exchange rates, the marginal 
differences among Model 1, Model 2, and simple regression model are very 
small, and sometimes there is no difference.

It is noted that no matter whether we use S & P 500 index data or currency 
exchange rate data, the HAR model always provides the best point forecasts
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among the four competing models, hence ranks the first according to all cri
teria. This finding is consistent with other studies, such as Corsi (2009), An
dersen, Bollerslev, and Diebold (2007), implying that time series model captur
ing long-memory feature of volatility process is able to provide accurate fore
casts. Moreover, we find sometimes the marginal differences between HAR 
and the second position are very large. For example, for RV1 of S & P 500 
index, the marginal difference in the Theil -  U between HAR and second posi
tion is approximately 100 percent. The large marginal difference between HAR 
and other models indicates that the time series model capturing long-memory 
feature could significantly improve the out-of-sample volatility forecasting per
formance.

As we mentioned, we are interested in investigating whether capturing 
leverage (or feedback) effect as well high-kurtosis would improve the out-of
sample volatility forecasting performance. Comparing the forecasting perfor
mances of Model 1, Model 2, and the simple regression model, we find that the 
results vary with different data sets. Specifically, when S & P 500 index data 
are used, we find according to most criteria (except that for Theil — U), Model 
1 in which leverage effect is captured provides better forecasting performance 
than the simple regression model. However, capturing feedback effect does not 
seem to help in point forecasting as Model 2 provides poorer forecasts than the 
simple regression model. When currency exchange rates are used, generally 
neither Model 1 nor Model 2 can provide better performance than the simple 
regression model. This finding suggests that the forecasts performance of both 
Model 1 and Model 2 are sensitive to different data set. Overall, it seems that 
capturing feedback effect and high kurtosis does not improve the accuracy of 
volatility point forecasts. This finding is consistent with Corsi, Mittnik, Pig- 
orsch, and Pigorsch (2008).
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We are also interested in comparing the forecasting performance of Model 
1 and Model 2, as our primary interest is to investigate the estimation and 
forecasting performance of these two models. We find the results are differ
ent across different data sets and different criteria. For S & P 500 index data, 
Model 1 outperforms Model 2 under RMSE, MAE, and QLIKE,  however, ac
cording to Theil — U, Model 2 always provide better forecast. In general, the 
marginal difference between these two models are not negligible under all cri
teria. For the exchange rates, we notice that in general these two models rank 

the same. According to some criteria, Model 1 performs better, however, the 
marginal differences are extremely small, hence not significant.

In summary, the forecasting evaluations show that modeling the long-memory 
behavior of volatility results in an improvement in forecast accuracy, in con
trast, permitting leptokurtosis and an asymmetric relationship between return 
and volatility processes in the model does not seem to help significantly in point 
forecasting.

3.5 Conclusion and Future Research

In Chapter 2, we focused on investigating the estimation of discrete-time SV 
models using traditional methods including FIML and 3SLS when volatility is 
observed. In this chapter, we extended our study to empirically investigate the 
estimation and forecasting performance of SV models using realized volatility. 
We used high frequency data to construct daily realized volatilities of both eq
uity market index and exchange rates, and applied them in the estimation of 
Model 1 and Model 2. The evidence showed that, in general, the estimates 
were stable. We then focused on the one-day-ahead volatility point forecasts.
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We considered four different models to examine whether allowing asymmetric 
relationships between return and volatility and leptokurtosis, or modeling the 
long-memory behavior of volatility, would result in an improvement in forecast 
accuracy. The results of Diebold and Mariano (1995)’s tests rejected the null 
that two models provided equally accurate forecasts. The results of forecasting 
measures generally confirmed these tests. However, allowing asymmetric be
havior and leptokurtosis did not seem to improve point forecasts, whereas mod
eling long-memory behavior seemed do. Moreover, the forecasts performance 
of Model 1 and Model 2 are sensitive to different data set.

For continuous time SV models, the lagged inter-temporal and contempo
raneous dependencies will coincide. However, estimation of continuous-time 
SV model is another challenge. Although various methods have been devel
oped, in general, the estimation is computationally demanding. In Chapter 4, 
we will use realized volatility as well as model-free implied volatility, which 
is computed from option prices, as two different proxies for the latent volatil
ity, and apply a consistent-approximate maximum likelihood approach in the 
estimation the continuous-time SV model.
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3.6 Appendix

Figure 3.1: SPX Volatility Signature Plot

Figure 3.2: CAD Volatility Signature Plot

Figure 3.3: GBP Volatility Signature Plot

Figure 3.4: DEM Volatility Signature Plot
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Figure 3.5: SPX Daily Return Plot

Oct 20051y 2006

Figure 3.6: SPX Daily Squared Return Plot
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Date

Figure 3.7: SPX Daily RV1 Plot

Figure 3.8: SPX Daily ln(RVl) Plot
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Date

Figure 3.9: SPX Daily RV2 Plot

Date

Figure 3.10: SPX Daily ln(RV2) Plot
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Date

Figure 3.11: SPX Daily RV3 Plot

Date

Figure 3.12: SPX Daily ln(RV3) Plot
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Figure 3.13: CAD Daily Return Plot
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Figure 3.14: CAD Daily Squared Return Plot
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Figure 3.15: CAD Daily RV1 Plot

Figure 3.16: CAD Daily ln(RVl) Plot
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Figure 3.17: CAD Daily RV2 Plot

Figure 3.18: CAD Daily ln(RV2) Plot
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Figure 3.19: SPX ACF plot of Daily Return and Squared Return

Figure 3.20: SPX ACF plot of Daily RV1 and ln(RVl)
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Figure 3.21: SPX ACF plot of Daily RV2 and ln(RV2)

Figure 3.22: SPX ACF plot of Daily RV3 and ln(RV3)
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Figure 3.23: CAD/USD ACF plot of Daily Return and Squared Return

Figure 3.24: CAD/USD AC F plot o f Daily RV1 and ln(RVl)

Figure 3.25: CAD/USD AC F plot of Daily RV2 and ln(RV2)
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Figure 3.26: SPX RV1, Forecasted Volatility by Ml, M2, SRM, HAR plot
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Figure 3.27: SPX RV2, Forecasted Volatility by Ml, M2, SRM, HAR plot
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Figure 3.28: SPX RV3, Forecasted Volatility by Ml, M2, SRM, HAR plot
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Figure 3.29: CAD/USD RV1, Forecasted Volatility by Ml, M2, SRM, HAR plot
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Figure 3.30: CAD/USD RV2, Forecasted Volatility by Ml, M2, SRM, HAR plot
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Figure 3.31: USD/GBP RV1, Forecasted Volatility by Ml, M2, SRM, HAR plot
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Figure 3.32: USD/GBP RV2, Forecasted Volatility by M l, M2, SRM, HAR plot
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Figure 3.33: DEM/USD RV1, Forecasted Volatility by Ml, M2, SRM, HAR plot
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Figure 3.34: DEM/USD RV2, Forecasted Volatility by M l, M2, SRM, HAR plot



135

Table 3.1: Summary statistics of return and volatility time series for S& P 500
during the period of November 12th 1997 through July 28th 2006

Xt xi RV1 ln(RVl) RV2 ln(RV2) RV3 ln(RV3)
Mean 0.0132 1.2652 1.0829 -0.3346 1.0527 -0.3610 1.4599 -0.0397

St.Dev. 1.1250 2.7122 1.3000 0.8779 1.2850 0.8808 1.8096 0.8847
Skewness -0.1000 6.9801 4.2475 0.2618 4.9081 0.2017 4.9798 0.2136
Kurtosis 5.5988 85.3414 30.0465 3.0625 40.4126 3.0699 41.3811 3.1004

Min -7.0641 0 0.0616 -2.7871 0.0325 -3.4265 0.0443 -3.1163
5pct Qntl. -1.8328 0.0033 0.1881 -1.6709 0.1793 -1.7187 0.2511 -1.3819
25pct Qntl. -0.6200 0.0770 0.3865 -0.9506 0.3706 -0.9927 0.5112 -0.6709
50pct Qntl. 0.0513 0.3931 0.6966 -0.3615 0.6893 -0.3721 0.9444 -0.0572
75pct Qntl. 0.6383 1.2957 1.2396 0.2148 1.2229 0.2012 1.6942 0.5272
95pct Qntl. 1.7633 5.3159 3.2695 1.1846 3.1350 1.1426 4.3199 1.4632

Max 5.1720 49.9015 14.5626 2.6785 16.5271 2.8050 23.4172 3.1535
JB Stat. 616.6740 634400 136060 15.2198 147960 18.5032 143000 17.4705
(p-value) (0.0000) (0.0000) (0.0000) (0.0000) (0.0002) (0.0000) (0.0000) (0.0000)

ACF1 0.0151 0.1911 0.6493 0.7372 0.6510 0.7695 0.6644 0.7755
ACF2 -0.0325 0.1869 0.5699 0.7138 0.5635 0.7402 0.5724 0.9434
ACF3 -0.0051 0.1494 0.5248 0.6822 0.5026 0.7017 0.5039 0.7048
ACF4 -0.0048 0.1123 0.5146 0.6748 0.4913 0.6943 0.4965 0.6977
ACF5 -0.0572 0.1946 0.4954 0.6607 0.4707 0.6842 0.4670 0.6859
ACF6 -0.0239 0.1289 0.4624 0.6345 0.4466 0.6565 0.4473 0.6589
ACF7 -0.0353 0.1576 0.4686 0.6229 0.4475 0.6482 0.4529 0.6488
ACF8 0.0269 0.1225 0.4945 0.6218 0.4480 0.6407 0.4550 0.6423
ACF9 -0.0226 0.1373 0.4464 0.6066 0.4210 0.6274 0.4212 0.6286
ACF10 -0.0175 0.1549 0.4235 0.6091 0.3806 0.6303 0.3857 0.6324
ACF11 -0.0023 0.1113 0.3993 0.5894 0.3625 0.6149 0.3638 0.6161
ACF12 0.0651 0.1061 0.3828 0.5908 0.3387 0.6144 0.3415 0.6165
ACF13 0.0144 0.0992 0.3921 0.5890 0.3632 0.6106 0.3622 0.6135
ACF14 0.0091 0.0651 0.3759 0.5790 0.3353 0.6048 0.3389 0.6081
ACF15 0.0007 0.0849 0.3640 0.5750 0.3398 0.5978 0.3399 0.6004
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Table 3.2: Summary statistics of return and volatility time series for CAD/USD
during the period of April 13th 1998 through July 28th 2006

xt *2t RV1 ln(RVl) RV2 ln(RV2)

Mean -0.0106 0.1971 0.2356 -1.6999 0.2266 -1.7686
St.Dev. 0.4440 0.3441 0.2036 0.7104 0.2104 0.7513

Skewness -0.0565 3.8078 4.9406 -0.0030 5.2940 -0.0052
Kurtosis 4.0417 22.6428 55.2296 3.1249 62.6838 3.0969

Min -1.8806 0 0.0107 -4.5375 0.0080 -4.8283
5 pet Qntl. -0.7463 0.0007 0.0599 -2.8157 0.0513 -2.9701

25pct Qntl. -0.2746 0.0149 0.1101 -2.2064 0.1011 -2.2916
50pct Qntl. 0 0.0706 0.1812 -1.7079 0.1714 -1.7638
75pct Qntl. 0.2603 0.2207 0.3017 -1.1983 0.2949 -1.2211
95pct Qntl. 0.6968 0.8349 0.5697 -0.5626 0.5551 -0.5886

Max 1.7097 3.5367 3.2218 1.1699 3.4868 1.2490
JB Stat. 96.5572 39235 279240 1.6872 241280 1.2283
(p-value) (0.0000) (0.0000) (0.0000) (0.5165) (0.0000) (0.6729)

ACF1 -0.0551 0.0682 0.4903 0.6370 0.4651 0.6094
ACF2 0.0068 0.1245 0.4142 0.5844 0.3979 0.5658
ACF3 0.0264 0.0744 0.3740 0.5487 0.3695 0.5247
ACF4 -0.0401 0.0865 0.3394 0.5475 0.3161 0.5255
ACF5 -0.0409 0.1154 0.3267 0.5434 0.3001 0.5213
ACF6 -0.0035 0.1207 0.3413 0.5334 0.3164 0.5080
ACF7 0.0083 0.0636 0.3246 0.5244 0.3014 0.5006
ACF8 0.0268 0.1027 0.2995 0.5063 0.2830 0.4927
ACF9 -0.0096 0.0422 0.2904 0.5044 0.2741 0.4848
ACF10 -0.0186 0.1402 0.3330 0.5073 0.3151 0.4971
ACF11 -0.0122 0.1251 0.2927 0.4847 0.2788 0.4687
ACF12 0.0038 0.0995 0.2774 0.4729 0.2594 0.4557
ACF13 0.0126 0.0886 0.2780 0.4705 0.2655 0.4594
ACF14 0.0017 0.0772 0.3028 0.4683 0.2735 0.4547
ACF15 -0.0117 0.1233 0.2928 0.4906 0.2754 0.4743
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Table 3.3: Summary statistics of return and volatility time series for USD/GBP 
during the period of April 13th 1998 through July 28th 2006

xt A RV1 ln(RVl) RV2 ln(RV2)

Mean 0.0043 0.2613 0.2699 -1.4581 0.2604 -1.5249
St.Dev. 0.5113 0.4155 0.1762 0.5405 0.1864 0.5969

Skewness 0.0127 3.1347 5.4828 -0.0939 5.0204 -0.1158
Kurtosis 3.5256 16.7031 82.2027 4.3860 67.4919 4.1533

Min -1.7300 0 0.0093 -4.6777 0.0064 -5.0515
5pct Qntl. -0.8400 0.0009 0.0983 -2.3193 0.0828 -2.4913

25pct Qntl. -0.3100 0.0196 0.1640 -1.8079 0.1498 -1.8985
50pct Qntl. 0.0100 0.0961 0.2342 -1.4518 0.2173 -1.5267
75pct Qntl. 0.3200 0.3136 0.3301 -1.1084 0.3223 -1.1323
95pct Qntl. 0.8500 1.1449 0.5510 -0.5960 0.5630 -0.5745

Max 2.0500 4.2025 3.7471 1.3210 3.7139 1.3121
JB Stat. 26.4158 20877 445200 102.8899 148630 63.4536
(p-value) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ACF1 -0.0116 0.0302 0.3781 0.4173 0.3477 0.3813
ACF2 -0.0191 0.0457 0.2486 0.3139 0.2401 0.2903
ACF3 0.0015 0.0101 0.2211 0.2798 0.2048 0.2695
ACF4 -0.0028 -0.0034 0.2253 0.2938 0.1998 0.2685
ACF5 0.0275 0.0466 0.2604 0.3195 0.2451 0.3010
ACF6 0.0083 0.0636 0.2291 0.2982 0.2055 0.2719
ACF7 0.0127 0.0426 0.1907 0.2622 0.1641 0.2414
ACF8 0.0270 0.0728 0.2094 0.2680 0.2102 0.2535
ACF9 -0.0010 0.0595 0.2299 0.2670 0.1930 0.2298
ACF10 -0.0067 0.1055 0.2174 0.2764 0.1934 0.2549
ACF11 -0.0372 0.0378 0.1597 0.2324 0.1367 0.2150
ACF12 -0.0101 0.0217 0.1790 0.2266 0.1723 0.2095
ACF13 0.0130 0.0307 0.1535 0.2161 0.1311 0.1944
ACF14 -0.0067 0.0307 0.1324 0.1922 0.0911 0.1694
ACF15 -0.0120 0.0488 0.1573 0.2237 0.1329 0.1992
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Table 3.4: Summary statistics of return and volatility time series for DEM/USD
during the period of April 13th 1998 through July 28th 2006

xt x{ RV1 ln(RVl) RV2 ln(RV2)

Mean -0.0082 0.4115 0.4051 -1.0982 0.3973 -1.1415
St.Dev. 0.6415 0.6537 0.3159 0.6080 0.3228 0.6519

Skewness -0.0691 3.0549 5.1188 0.1330 4.8802 0.0261
Kurtosis 3.5198 15.2073 60.9138 3.7995 55.5388 3.5908

Min -2.4300 0 0.0166 -4.0984 0.0179 -4.0230
5pct Qntl. -1.0800 0.0009 0.1283 -2.0535 0.1106 -2.2023
25pct Qntl. -0.3900 0.0289 0.2205 -1.5119 0.2059 -1.5806
50pct Qntl. -0.0100 0.1521 0.3271 -1.1176 0.3193 -1.1418
75pct Qntl. 0.4000 0.4900 0.4942 -0.7047 0.4876 -0.7183
95pct Qntl. 1.0510 1.7161 0.9067 -0.0980 0.9286 -0.0741

Max 2.2000 5.9049 5.8532 1.7670 5.7451 1.7483
JB Stat. 25.0283 16510 690540 35.9701 330660 19.4825
(p-value) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

ACF1 -0.0574 -0.0163 0.3840 0.4455 0.3222 0.3732
ACF2 -0.0030 0.0139 0.3231 0.4003 0.2951 0.3588
ACF3 -0.0093 0.0515 0.2710 0.3556 0.2445 0.3333
ACF4 0.0099 0.0210 0.2572 0.3366 0.2294 0.3036
ACF5 0.0166 0.0779 0.3032 0.3726 0.2638 0.3368
ACF6 0.0088 0.0329 0.2430 0.3207 0.2106 0.2786
ACF7 -0.0045 0.0558 0.2122 0.2988 0.1769 0.2611
ACF8 0.0086 0.0329 0.2083 0.2964 0.1678 0.2506
ACF9 -0.0281 0.0288 0.2273 0.2982 0.1980 0.2607

ACF10 0.0060 0.0525 0.1946 0.2942 0.1743 0.2682
ACF11 -0.0212 0.0070 0.1635 0.2528 0.1407 0.2219
ACF12 0.0234 0.0411 0.2105 0.2676 0.1989 0.2439
ACF13 0.0205 0.0611 0.1575 0.2627 0.1433 0.2357
ACF14 -0.0145 0.0372 0.1583 0.2614 0.1273 0.2139
ACF15 -0.0036 0.0181 0.1972 0.2925 0.1803 0.2619
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Table 3.5: Estimation Results for S & P 500 Index

Estimation Results for S & P 500 Index

Estimation Results of Model 1 Using FIML

Parameter A a P P a
RV1 0.0123

(0.0206)
-0.0885
(0.0136)**

0.7385
(0.0144)**

0.0089
(0.0052)

0.5929
(0.0000)**

RV2 0.0127
(0.0208)

-0.0839
(0.0130)**

0.7725
(0.0136)**

0.0239
(0.0049)**

0.5622
(0.0001)**

RV3 0.0092
(0.0177)

-0.0103
(0.0119)

0.7775
(0.0135)**

0.0186
(0.0041)**

0.5581
(0.0000)**

Estimation Results of Model 2 Using FIML

Parameter A a P P a
RV1 0.0847

(0.0205)**
-0.0898
(0.0131)**

0.7193
(0.0139)**

-0.2709
(0.0063)**

0.5931
(0.0003)**

RV2 0.0707
(0.0208)**

-0.0845
(0.0127)**

0.7528
(0.0133**

-0.2252
(0.0062)**

0.5623
(0.0003)**

RV3 0.0485
(0.0177)**

-0.0061
(0.0118)

0.7638
(0.0133)**

-0.1813
(0.0060)**

0.5582
(0.0002)**

Estimation Results of Model 2 Using 3SLS

Parameter A a P P a
RV1 0.0799

(0.0205)**
-0.0890
(0.0135)**

0.7197
(0.0140)**

-0.2694
(0.0062)**

0.5931
(0.0003)**

RV2 0.0714
(0.0208)**

-0.0846
(0.0130)**

0.7527
(0.0133)**

-0.2254
(0.0062)**

0.5623
(0.0003)**

RV3 0.0498
(0.0177)**

-0.0062
(0.0119)

0.7637
(0.0133)**

-0.1817
(0.0061)**

0.5582
(0.0002)**

Notel: The standard errors are reported in brackets. 
Note2: ** means 1% significance, * means 5% significance.
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Table 3.6: Estimation Results for CAD/USD

Estimation Results for CAD/USD

Estimation Results of Model 1 Using FIML

Parameter A a 0 P a
RV1 -0.0452

(0.0447)
-0.6164
(0.0308)**

0.6373
(0.0167)**

-0.0310
(0.0004)**

0.5477
(0.0000)**

RV2 -0.0470
(0.0456)

-0.6894
(0.0331)**

0.6103
(0.0172)**

-0.0368
(0.0008)**

0.5958
(0.0000)**

Estimation Results of Model 2 Using FIML

Parameter A a 0 P a
RV1 -0.0691

(0.0447)*
-0.6156
(0.0308)**

0.6378
(0.0167)**

0.0444
(0.0057)**

0.5477
(0.0000)**

RV2 -0.0845
(0.0456)*

-0.6891
(0.0330)**

0.6103
(0.0172)**

0.0635
(0.0061)**

0.5958
(0.0000)**

Estimation Results of Model 2 Using 3SLS

Parameter A a 0 P a
RV1 -0.0757

(0.0447)*
-0.6156
(0.0308)**

0.6378
(0.0167)**

0.0453
(0.0057)**

0.5477
(0.0000)**

RV2 -0.0896
(0.0456)*

-0.6892
(0.0330)**

0.6103
(0.0172)**

0.0642
(0.0061)**

0.5958
(0.0000)**

Notel: The standard errors are reported in brackets.
Note2: ** means 1% significance, * means 5% significance.
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Table 3.7: Estimation Results for GBP/USD

Estimation Results for USD/GBP

Estimation Results of Model 1 Using FIML

Parameter A a ß P a
RV1 0.0186

(0.0415)
-0.8788
(0.0309)**

0.4014
(0.0197)**

-0.0363
(0.0003)**

0.5056
(0.0000)**

RV2 0.0194
(0.0423)

-0.9666
(0.0330)**

0.3704
(0.0220)**

-0.0462
(0.0003)**

0.5642
(0.0002)**

Estimation Results of Model 2 Using FIML

Parameter A a ß P a
RV1 0.0223

(0.0415)
-0.8784
(0.0309)**

0.4017
(0.0197)**

-0.0067
(0.0052)

0.5056
(0.0000)**

RV2 0.0250
(0.0423)

-0.9660
(0.0330)**

0.3708
(0.0200)**

-0.0097
(0.0057)

0.5642
(0.0000)**

Estimation Results of Model 2 LIsing 3SLS

Parameter A a ß P a
RV1 0.0206

(0.0415)
-0.8784
(0.0309)**

0.4017
(0.0197)**

-0.0065
(0.0052)

0.5056
(0.0000)**

RV2 0.0232
(0.0423)

-0.9660
(0.0330)**

0.3708
(0.0200)**

-0.0094
(0.0057)

0.5642
(0.0000)**

Notel: The standard errors are reported in brackets.
Note2: ** means 1% significance, * means 5% significance.
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Table 3.8: Estimation Results for DEM/USD

Estimation Results for DEM/USD

Estimation Results of Model 1 Using FIML

Parameter A a P P a
RV1 -0.0197

(0.0341)
-0.6089
(0.0244)**

0.4452
(0.0194)**

0.0145
(0.0003)**

0.5445
(0.0000)**

RV2 -0.0201
(0.0344)

-0.7150
(0.0264)**

0.3733
(0.0201)**

0.0197
(0.0005)**

0.6049
(0.0000)**

Estimation Results of Model 2 Using FIML

Parameter A a P P a
RV1 -0.0077

(0.0341)
-0.6083
(0.0244)**

0.4457
(0.0194)**

-0.0298
(0.0058)**

0.5445
(0.0000)**

RV2 -0.0047
(0.0344)

-0.7147
(0.0264)**

0.3735
(0.0201)**

-0.0346
(0.0063)**

0.6049
(0.0000)**

Estimation Results of Model 2 Using 3SLS

Parameter A a P P a
RV1 -0.0049

(0.0341)
-0.6084
(0.0244)**

0.4457
(0.0194)**

-0.0303
(0.0058)**

0.5445
(0.0000)**

RV2 -0.0019
(0.0344)

-0.7147
(0.0264)**

0.3735
(0.0201)**

-0.0351
(0.0063)**

0.6049
(0.0000)**

Notel: The standard errors are reported in brackets.
Note2: ** means 1% significance, * means 5% significance.



Table 3.9: ACF of Forecast Error for SPX

M 1 M 2 HAR SRM

RV1 ACF1 -0.4648 -0.4628 -0.4710 -0.4648
ACF2 -0.0214 -0.0200 -0.0296 -0.0214
ACF3 0.0640 0.0651 0.0650 0.0641
ACF4 -0.0596 -0.0583 -0.0661 -0.0595
ACF5 0.0106 0.0113 0.0153 0.0106
ACF6 0.0560 0.0572 0.0451 0.0560
ACF7 -0.0088 -0.0078 -0.0105 -0.0088
ACF8 -0.0901 -0.0886 -0.0932 -0.0900
ACF9 -0.0434 -0.0417 -0.0552 -0.0433
ACF 10 0.1139 0.1148 0.1202 0.1140

RV 2 ACF1 -0.4461 -0.4440 -0.4514 -0.4458
ACF2 -0.0390 -0.0371 -0.0511 -0.0387
ACF3 0.0479 0.0485 0.0544 0.0480
ACF4 -0.0598 -0.0582 -0.0693 -0.0596
ACF5 0.1145 0.1150 0.1175 0.1145
ACF6 -0.0538 -0.0525 -0.0592 -0.0536
ACF7 0.0014 0.0028 -0.0066 0.0016
ACF8 -0.0949 -0.0935 -0.0943 -0.0947
ACF9 -0.0277 -0.0258 -0.0409 -0.0275
ACF10 0.1523 0.1529 0.1619 0.1524

RV 3 ACF1 -0.4590 -0.4577 -0.4652 -0.4588
ACF2 -0.0279 -0.0268 -0.0380 -0.0278
ACF3 0.0609 0.0610 0.0714 0.0609
ACF4 -0.0846 -0.0836 -0.0955 -0.0845
ACF5 0.1346 0.1348 0.1370 0.1346
ACF6 -0.0641 -0.0634 -0.0688 -0.0640
ACF7 -0.0048 -0.0040 -0.0120 -0.0047
ACF8 -0.0764 -0.0758 -0.0723 -0.0762
ACF9 -0.0639 -0.0628 -0.0761 -0.0638

ACF10 0.1905 0.1906 0.2011 0.1905
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Table 3.10: ACF of Forecast Error for CAD/USD

M 1 M 2 HAR SRM

RV1 ACF1 -0.2812 -0.2802 -0.3995 -0.2803
ACF2 -0.0804 -0.0800 -0.1151 -0.0801
ACF3 0.0041 0.0043 -0.0181 0.0043
ACF4 0.0915 0.0917 0.0801 0.0916
ACF5 -0.0164 -0.0161 -0.0482 -0.0161
ACF6 0.0214 0.0216 -0.0168 0.0217
ACF7 0.0913 0.0915 0.0698 0.0915
ACF8 0.0261 0.0264 -0.0020 0.0264
ACF9 -0.0230 -0.0228 -0.0429 -0.0228

ACF 10 0.0811 0.0811 0.0710 0.0811

RV 2 ACF1 -0.3093 -0.3072 -0.4504 -0.3075
ACF2 -0.0070 -0.0063 -0.0377 -0.0065
ACF3 0.0173 0.0177 -0.0065 0.0177
ACF4 0.0441 0.0445 0.0236 0.0444
ACF5 0.0255 0.0261 -0.0025 0.0260
ACF6 -0.0054 -0.0048 -0.0394 -0.0049
ACF7 0.0660 0.0664 0.0380 0.0663
ACF8 0.0532 0.0537 0.0194 0.0537
ACF9 -0.0215 -0.0209 -0.0571 -0.0210
ACF10 0.1339 0.1341 0.1143 0.1341
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Table 3.11: ACF of Forecast Error for USD/GBP

M 1 M 2 HAR SRM

RV1 ACF1 -0.3160 -0.3164 -0.5088 -0.3165
ACF2 0.0047 0.0046 -0.0340 0.0046
ACF3 0.0635 0.0634 0.0310 0.0633
ACF4 0.0736 0.0735 0.0195 0.0734
ACF5 0.0299 0.0298 0.0070 0.0298
ACF6 -0.0028 -0.0029 -0.0524 -0.0029
ACF7 -0.0174 -0.0175 -0.0507 -0.0175
ACF8 0.1147 0.1147 0.0897 0.1147
ACF9 -0.0433 -0.0434 -0.0954 -0.0434
ACF10 0.0966 0.0965 0.0556 0.0965

RV2 ACF1 -0.2892 -0.2898 -0.5048 -0.2899
ACF2 0.0117 0.0116 -0.0133 0.0116
ACF3 0.0307 0.0306 0.0185 0.0306
ACF4 0.0115 0.0114 -0.0334 0.0114
ACF5 0.0841 0.0841 0.0710 0.0840
ACF6 -0.0149 -0.0151 -0.0529 -0.0151
ACF7 -0.0567 -0.0568 -0.0920 -0.0568
ACF8 0.1639 0.1640 0.1521 0.1639
ACF9 -0.1015 -0.1017 -0.1667 -0.1017
ACF 10 0.1469 0.1468 0.1232 0.1468



Table 3.12: ACF of Forecast Error for DEM/USD

M 1 M 2 HAR SRM

RV1 ACF1 -0.3440 -0.3444 -0.4709 -0.3440
ACF2 -0.0184 -0.0186 -0.0434 -0.0184
ACF3 0.0408 0.0408 0.0260 0.0409
ACF4 0.0012 0.0011 -0.0326 0.0012
ACF5 0.0836 0.0836 0.0955 0.0836
ACF6 -0.1203 -0.1204 -0.1583 -0.1203
ACF7 0.0867 0.0866 0.0668 0.0867
ACF8 0.1292 0.1293 0.1199 0.1292
ACF9 -0.1426 -0.1427 -0.1759 -0.1426

ACF10 0.0962 0.0962 0.0844 0.0962

RV 2 ACF1 -0.3043 -0.3047 -0.4857 -0.3041
ACF2 -0.0037 -0.0037 -0.0233 -0.0037
ACF3 0.0546 0.0546 0.0356 0.0546
ACF4 -0.0365 -0.0365 -0.0659 -0.0365
ACF5 0.1216 0.1216 0.1379 0.1215
ACF6 -0.1309 -0.1310 -0.1551 -0.1309
ACF7 0.0820 0.0820 0.0786 0.0820
ACF8 0.0734 0.0734 0.0593 0.0734
ACF9 -0.1068 -0.1069 -0.1391 -0.1067
ACF10 0.1272 0.1272 0.1170 0.1272
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Table 3.13: DM95 Testing Results

H ARjMX HAR/M2 HAR/SRM Ml/M2 Ml/SRM M2/SRM

S & P 500 Inc ex
RV1 51 -12.7118 -13.6952 -12.7758 -29.7868 -22.3646 29.3468

52 -10.2050 -10.9610 -10.2050 -14.3626 -14.7406 14.2367
53 -13.7640 -13.7636 -13.7640 -13.7614 -13.7613 -13.7601

RV 2 51 -11.2425 -12.2712 -11.4040 -27.2796 -30.5505 26.4509
52 -10.2050 -10.8350 -10.2050 -13.8587 -14.6146 13.7327
53 -13.7635 -13.7632 -13.7635 -13.7614 -13.7613 -13.7602

RV3 51 -11.0204 -11.7444 -11.1318 -26.6787 -30.0223 25.8595
52 -9.8271 -10.7090 -9.8271 -13.9847 -14.6146 13.8587
53 -13.7643 -13.7641 -13.7643 -13.7614 -13.7613 -13.7602

CAD/USD Rate
RV 1 51 7.7303 7.7806 7.7816 4.8679 6.8880 2.6699

52 6.5993 6.5993 6.5993 -4.2335 -1.1206 -8.3425
53 -13.9213 -13.9213 -13.9213 -13.9239 -13.9239 -13.9239

RV 2 51 7.9647 8.0597 8.0481 6.7675 7.3519 -2.3053
52 6.3502 6.3502 6.3502 0.8716 1.4942 -9.5876
53 -13.9212 -13.9212 -13.9212 -13.9238 -13.9238 -13.9239

USD/GBP Rate
RV1 51 -3.5391 -3.5419 -3.5427 -2.7468 -2.9877 -2.1239

52 -2.4903 -2.4903 -2.4903 -7.9689 -6.5993 -14.5682
53 -13.9244 -13.9244 -13.9244 -13.9239 -13.9239 -13.9239

RV 2 51 -3.3986 -3.4085 -3.4104 -4.0870 -4.2209 -2.5248
52 -2.1206 -2.1206 -2.1206 -5.3541 -4.3580 -14.4437
53 -13.9244 -13.9244 -13.9244 -13.9239 -13.9239 -13.9239

DEM/USD Rate
RP1 51 -15.0553 -15.0342 -15.0589 3.3469 -5.1509 -4.9627

52 -11.4553 -11.4553 -11.4553 -3.3619 -15.9379 -10.3347
53 -13.9251 -13.9251 -13.9251 -13.9239 -13.9239 -13.9239

RP2 51 -14.8047 -14.7909 -14.8198 2.2563 -9.4026 -5.0296
52 -11.7044 -11.7044 -11.7044 -4.2335 -14.4437 -9.0896
53 -13.9252 -13.9252 -13.9252 -13.9239 -13.9239 -13.9239
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Table 3.14: Forecasting Performance of Four Models for SPX

Ml M2 HAR SRM

RV1 RMSE Value 0.2851 0.2871 0.2130 0.2852
Rank 2 4 1 3

MAE Value 0.2151 0.2180 0.1575 0.2153
Rank 2 4 1 3

Theil — U Value 0.8875 0.8651 0.4392 0.8863
Rank 4 2 1 3

QLIKE Value 0.0428 0.0456 -0.0017 0.0430
Rank 2 4 1 3

RV 2 RMSE Value 0.2842 0.2856 0.2213 0.2844
Rank 2 4 1 3

MAE Value 0.2069 0.2102 0.1557 0.2074
Rank 2 4 1 3

Theil -  U Value 0.9024 0.8795 0.4924 0.8992
Rank 4 2 1 3

QLIKE Value -0.0042 -0.0016 -0.0467 -0.0038
Rank 2 4 1 3

RV 3 RMSE Value 0.4050 0.4061 0.3149 0.4052
Rank 2 4 1 3

MAE Value 0.2898 0.2928 0.2162 0.2903
Rank 2 4 1 3

Theil -  U Value 0.9058 0.8895 0.4695 0.9036
Rank 4 2 1 3

QLIKE Value 0.3113 0.3130 0.2690 0.3116
Rank 2 4 1 3
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Table 3.15: Forecasting Performance of Four Models for CAD/USD

Ml M2 HAR SRM

RV1 RMSE Value 0.1207 0.1207 0.1126 0.1207
Rank 2 2 1 2

MAE Value 0.0898 0.0897 0.0861 0.0897
Rank 3 2 1 2

Theil -  U Value 0.3267 0.3248 0.2064 0.3249
Rank 4 2 1 3

QLIKE Value -0.2674 -0.2674 -0.2875 -0.2674
Rank 3 2 1 3

RV 2 RMSE Value 0.1187 0.1186 0.1108 0.1186
Rank 3 2 1 2

MAE Value 0.0917 0.0916 0.0856 0.0916
Rank 3 2 1 2

Theil -  U Value 0.3034 0.3002 0.2218 0.3006
Rank 4 2 1 3

QLIKE Value -0.3257 -0.3258 -0.3460 -0.3258
Rank 3 2 1 2
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Table 3.16: Forecasting Performance of Four Models for USD/GBP

Ml M2 HAR SRM

RV1 RMSE Value 0.1216 0.1216 0.1149 0.1216
Rank 2 2 1 2

MAE Value 0.0917 0.0917 0.0860 0.0917
Rank 2 2 1 2

Theil -  U Value 0.1952 0.1957 0.1886 0.1958
Rank 2 3 1 4

QLIKE Value -0.3739 -0.3738 -0.3865 -0.3738
Rank 2 3 1 3

RV 2 RMSE Value 0.1416 0.1416 0.1351 0.1416
Rank 2 2 1 2

MAE Value 0.1051 0.1051 0.0992 0.1051
Rank 2 2 1 2

Theil -  U Value 0.1529 0.1534 0.1521 0.1535
Rank 2 3 1 4

QLIKE Value -0.3797 -0.3796 -0.3947 -0.3796
Rank 2 3 1 3
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Table 3.17: Forecasting Performance of Four Models for DEM/USD

Ml M2 HAR SRM

RV1 RMSE Value 0.1589 0.1589 0.1358 0.1589
Rank 2 2 1 2

MAE Value 0.1316 0.1316 0.1066 0.1316
Rank 2 2 1 2

Theil -  U Value 0.2797 0.2803 0.1888 0.2797
Rank 2 3 1 2

QLIKE Value -0.2476 -0.2476 -0.2737 -0.2476
Rank 2 2 1 2

RV 2 RMSE Value 0.1770 0.1770 0.1541 0.1770
Rank 2 2 1 2

MAE Value 0.1481 0.1481 0.1203 0.1482
Rank 2 2 1 3

Theil -  U Value 0.1861 0.1866 0.1573 0.1859
Rank 3 4 1 2

QLIKE Value -0.2676 -0.2676 -0.2977 -0.2676
Rank 2 2 1 2
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Chapter 4

Estimation of Continuous-Time 
Stochastic Volatility Model When 
Volatility is observed: A Monte 
Carlo Study

4.1 Introduction

The continuous-time SV model was first introduced by Hull and White (1987), 
Johnson and Shanno (1987), and Scott (1987), and Wiggins (1987), motivated 
by the desire to accurately model option prices where the underlying asset price 
volatility was believed to be stochastic. Viewed as the limit of the discrete-time 
SV model, the continuous-time SV model deals with a system of stochastic 
differential equations (SDE). In general, the representation can be written as:

dSt/St = Mtdi + (Jt(Vt)dBu

dVt = 7tdt + 6tdB2t 

dBudB2t = ptdt
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where St refers to the financial asset price process while Vt is the volatility state 
variable. As in the discrete-time SV model, Vt is an unobserved latent variable, 
and is stochastic following a diffusion process. Bu, B2t are two standard Brow

nian motion processes which are possibly correlated with cov(dBit, dB2t) = ptdt1 
and pt,vt,lt,bt, and pt are coefficient functions.

The continuous time SV model has been widely used in finance for modeling 
asset prices, including stock prices, interest rates, and exchange rates. For 
example, the square-root diffusion process has been used by Cox, Ingersoll, 
and Ross (1985) to model the nominal interest rates, and by Bailey and Stulz 
(1989) and Heston (1993) to model the conditional volatility of asset returns. 
The affine jump-diffusion process has often been used to model the dynamics 

of asset returns, index returns, exchange rates, etc. As the continuous-time SV 
model can explain some empirical features of the joint time-series behavior of 
stock and option prices, such as time varying volatility, fat tails of asset return 
distribution, etc., it has dominated the option pricing literature since the mid- 
1980s.

However, traditional inference for the continuous-time SV model has been 
viewed as difficult for some time. One challenge is that the continuous sam
ple of observations is unavailable and thus often requiring the model to be 
discretized and introducing a significant discretization error. The estimation 
is even more difficult as one of the state variables, the volatility process, can 
not be directly observed. Thus the estimation of the SV model with only the 
time series of stock prices being observed requires the elimination of the unob
served variables. In addition, except for a few cases, the transition density does 
not have a closed form expression hence maximum likelihood method is not

1A standard Brownian motion Bt : (f >  0) is a stochastic process having (l)continuous paths, 
(2) stationary, independent increments, (3)Bt ~  N(0, £), for all t >  0.
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directly available. Numerous competing estimation strategies have been pro
posed in the literature. Most of these approaches are moment-based and based 
on simulation. For example, Chan, Karolyi, Longstaff, and Sanders (1992), 
Hansen and Scheinkman (1996) proposed the generalized method of moment 
(GMM) approach; Duffie and Singleton (1993) advanced the simulated meth
ods of moments (SMM) estimation; Gallant and Tauchen (1996) and Gallant 
and Long (1997) developed the efficient methods of moments (EMM); Jacquier, 
Poison, and Rossi (1994), Eraker (1998), Kim, Shephard, and Chib (1998) de
veloped the Markov Chain Monte Carlo (MCMC) estimation methods, etc. All 
of these estimation methods yield consistent estimates, however, in practice, 
the estimation is computationally demanding or involves discretizaion error or 
is based on simulation methods.

It has been noticed that for the affine diffusion and affine jump diffusion 
processes, although the transition density functions are unknown, the corre
sponding conditional characteristic functions (CCF) can be derived explicitly. 

Based on this finding, some new strategies have been developed. For exam
ple, Singleton (2001) proposed to use the CCF along with simulation. Chacko 
and Viceira (2003) constructed a GMM estimator based on the unconditional 
mean of the difference between the CCF and its empirical counter part. Jiang 
and Knight (2002) exploited the explicit functional form of the unconditional 
joint characteristic function and developed an estimation procedure based on 
the empirical joint characteristic function. Because of the one-to-one corre
spondence between the distribution function and the characteristic function, 
the empirical characteristic function (ECF) contains the same amount of infor
mation as the empirical distribution function. Hence with a judiciously chosen 
weight function, the ECF approach not only provides consistent estimators, but 
also can achieve high efficiency close to that of maximum likelihood estimation.
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Despite the theoretical appeal of the ECF method, as volatility can not be ob
served directly, it has to be integrated out of the joint characteristic function. 
Moreover, the lack of general solution for the choice of optimal weight function 
increases the computational burden.

In their recent study, Jiang and Knight (2010) advanced the ECF approach 
by proposing an analytical approximation of the optimal weight function via 
an Edgeworth/Gram-Charlier expansion of the logarithmic transition density. 
Their procedure is similar to the approximate maximum likelihood estimation 
(AMLE) method introduced by Ait-Sahalia (2002), however, unlike the AMLE, 
their method ensures the consistency of the estimation hence is named con
sistent AMLE (hereafter C-AMLE). Jiang and Knight (2010) proposed to ap
ply the C-AMLE approach widely to the Markov models where the transition 
density is unknown, including both the discrete-time and the continuous-time 
SV models. They illustrated the application of the C-AMLE method via the 
Monte Carlo simulations. In their Monte Carlo study, they investigated the 

C-AMLE estimation for the univariate diffusion process, however, estimation 
of the bivariate diffusion processes was unexamined. For the bivariate dif
fusion processes, when both the asset return series and the volatility series 
are observed, the implementation of the C-AMLE is fairly straightforward and 
computationally easy since the volatility state variable does not have to be inte
grated out of the model. Motivated by the advantage of the C-AMLE procedure 
and easy implementation by treating volatility as an observable variable, in 
this chapter, we extend Jiang and Knight (2010)’s study by examining the C- 
AMLE estimation performance for the affine continuous-time SV model via a 
Monte Carlo experiment in which both asset return and volatility state vari
ables are observed. In our Monte Carlo study, we simulate the volatility process
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from its unconditional density function and employ the almost exact simula
tion method to generate the asset return process, at both daily and monthly 
frequencies. The moments calculated from our simulations are very close to 
the true moments, indicating that our simulations are accurate. We then apply 
the C-AMLE method for the affine continuous-time SV model using simulated 
observations at both daily and monthly frequencies, the results suggest that 
the C-AMLE method does a good job at recovering the true parameters.

The rest of this paper is organized as follows. In Section 4.2 we discuss 
the affine continuous-time SV model specification and its dynamic statistical 
properties. Section 4.3 discusses the estimation of the affine continuous-time 
SV model when volatility is latent as well as estimation when volatility is ob
served. In Section 4.4 we discuss the procedure of data generation and present 
the Monte Carlo experiment results. A brief conclusion is contained in the last 
section.

4.2 Affine Continuous-Time SV Model and Its Sta

tistical Properties

4.2.1 Model Specification

Let xt be the time-t logarithmic price of the risky asset or portfolio, i.e. xt = 
log(pt), and Vt be the asset return volatility process, the affine continuous-time 
SV model consists of a system of SDEs:

dxt — pdt + \/VtdB\t (4.2a)

dVt — /3(a -  Vt)dt + a\ZvtdB2t (4.2b)
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dBudBzt — pdt (4.2c)

where the first SDE describes the dynamics of the risky financial asset, and 
the second SDE describes dynamics of the asset variance. It is often the case 
that while the volatility process is stationary, the whole affine diffusion pro
cess is non-stationary as the logarithmic asset price process is first difference 
stationary. After transformation, the vector of (st,Vt) is a stationary process, 
where st = Axt =  xt — xt-& refers to the asset return process.

In both SDEs, the drift functions as well as the diffusion functions have an 

“affine” structure2. That is, p(xt) = p,p{Vt) = /3(a — Vt), and a2{xt) =  Vt,a2(Vt) = 
<J2Vt.

In the first SDE, as in Singleton (2001), and Jiang and Knight (2002), we 
specify the drift term of the asset return process as a constant p, which is the 
rate of return of the financial asset or portfolio.

In the second SDE, the volatility process follows a square-root diffusion pro
cess, and is often called a CIR process since it was first used by Cox, Ingersoll, 
and Ross (1985) to model interest rates. The specification of the instantaneous 
volatility process guarantees the volatility being non-negative. Specifically, the 
parameter a > 0 determines the long-run unconditional mean of the volatility 
process. As time t tends to infinity, the expected value of Vt tends to a. The 
parameter (3 refers to the degree of mean reversion for the volatility process, 
i.e. how long it takes to converge to the long-run mean. /? can be interpreted 
as presenting the degree of “volatility clustering”, and is often assumed to be 
positive so the process displays the property of mean reversion and is station
ary. a is the volatility of volatility influencing the kurtosis of the distribution.

intuitively, the drift terms refers to the time trend of the processes, and the diffusion terms 
represent the variance of the processes.
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If a — 0, volatility is deterministic and stock prices are lognormal, o > 0 results 
in fat-tailed distributions which is one of the stylized facts of asset return se
ries. dBu and d,B2t are two different standard Brownian Motion processes with 
the instantaneous corr(dBu, dB2t) — p which measures the level of asymmetry 
of the conditional volatility. If p > 0, then asset return and volatility are posi
tively correlated, this will create a fat right-tailed distribution. If p < 0, then 

there exists a “leverage effect”, i.e. volatility will increase as return decreases, 
resulting in a fat left-tailed distribution.

The affine continuous-time SV model was proposed by Heston (1993) (hence 
is often called the Heston model). It has been widely used in the empirical 
finance literature. The aforementioned features of this model enable it to sup
port various shapes of the density functions, hence can capture many stylized 
facts of financial time series. In addition, a computationally convenient feature 
of this model is that it provides a closed-form solution for the European option 
prices and the CCF of the asset return, making it more tractable and easier 
to implement than other continuous-time models. There are numerous stud
ies examining estimation of the affine continuous-time SV model, in general, 
volatility is treated as latent. In this chapter, we extend the study in the liter
ature by examining estimation of this model treating volatility as an observed 
variable.

4.2.2 Statistical Properties of the Affine Diffusion Processes

The dynamic properties of the diffusion process are determined by its tran
sition density function. The square-root process, known as the CIR model, is 
one of the two well-known diffusion processes (the other is Ornstein-Uhlenbeck 
process) having an explicit transition density function. As Cox, Ingersoll, and
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Ross (1985) discussed, among others, the distribution of Vt conditional on initial 
value Vo is a noncentral chi-squared distribution:

/j2 /i — p (3t\
m  \V0 =  vo) =  ----- ¿X?(A) (4.3)

where x'dW denotes a noncentral chi-squared random variable. The parameter 
d refers to the degrees of freedom and A represents the noncentrality, with

d = (4.4)

' W e -»  y
A »2(1 - e - » y °

The conditional first and second moments are given by:

(4.5)

E[Vt\Vo = t*,] =  voe-* + a( 1 -  e~pt) (4.6)

Var[Vt\V0 =  v0] =  -  e~ ^ ) + ^ ( 1  -  e ^ ) 2 (4.7)

As Jiang and Knight (2002) showed, with the mean reversion parameter 
0 > 0, the process is stationary, its marginal distribution is in fact a gamma 
distribution:

M  = vt) = ( f ^ ) vr le~UVt (4.8)

where u —

The explicit expression of the first four unconditional moments are readily 
derived as:

E[Vt\ = a (4.9a)
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E[{Vt -  a)3] -
a(2a2/32 + 3a/3cr2 + a4)

W 2

E[(Vt -  a)4] a(4 a3/?3 + \2a2j32a2 + llaf3a4 + 3a6)
w

(4.9b)

(4.9c)

(4.9d)

Clearly the third moment of the volatility process is nonzero indicating that 

the volatility distribution is asymmetric. In fact, the long-run mean parame
ter a and mean reversion parameter (3 both being positive leads to the positive 
skewness of volatility process. The fourth moment is also positive, demonstrat
ing that the volatility distribution has fatter tails comparing with the normal 
distribution. These theoretical features are consistent with the typical empiri
cal findings about the asset return volatility process.

It is noted that although the volatility process has an explicit transition 
density function, the explicit form of transition density function for the asset 
return process is unavailable. Alternatively, the unconditional characteristic 
function of the return process can be derived. Consequently the dynamic sta
tistical properties of asset return process can be analyzed. As shown in Jiang 

and Knight (2002), the unconditional characteristic function of the asset re
turns is:

(4.10)

where

C ~ w »  + $ ( b - h - 2 \ n ( i = ^ ) )

D = a "d

b = ¡3 - ipar, h = \/b2 + a2r2, g =
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Based on the unconditional characteristic function, the first four uncondi
tional moments of asset return process can be derived:

E[st\ = n

V ar{st\ = a 

E[(st - p)3} =
3. 3aper(e  ̂4- (3 — 1)

P2

E[(st -  p)4] = 3a2 +2 3acr2(e 0 4- p - 1 4- 4((2 + 0)e 0 + p - 2 ) p 2)
P3

(4.11a)

(4.11b)

(4.11c)

(4.lid )

The sign of the third moment is determined by the sign of the correlation 
coefficient parameter p as e_/J -4-/3 — 1 is always positive3. The asset return dis
tribution is asymmetric when p ^  0. In particular, if p < 0 then the asset return 
distribution is negatively skewed. The fourth moment has positive sign. More
over, E[(st- p ) 4]-3Var{st)2 = E[(st-p )4}-3 a 2 = aa^^e-^+g-i-Mga+pje-g-t-/?-^) > Q

indicates that the return distribution has fatter tails comparing with the dis
tribution of a normally distributed random variable. These features are consis
tent with the empirical findings of the asset returns in the financial markets.

We study the statistical properties of the asset return and volatility pro
cesses via the explicit theoretical expression of their moments. Later, in our 
Monte Carlo simulation, we will apply these expression to examine the accu
racy of our simulation by comparing the moments calculated from our simula
tion with those computed from true parameter values.

3For example, when ¡3 =  0.2, -4-/3 — 1 =  0.018731, when /3 =  0.5, e~0 4- 0  — 1 =  0.106531,
and when (3 =  0.8, e~& 4-/3 — 1 =  0.249329.
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4.3 ECF Estimation of the Affine Continuous-Time 

SV Model

Over the last two decades, a number of econometric methods have been devel
oped to estimate the parameters of the continuous-time SV models including 
the affine diffusion process. Some are based on the moment conditions, others 
on simulations, or Bayesian method, etc. Broto and Ruiz (2004) provided an 
excellent survey about these methods. Since in Chapter one we already had a 
brief discussion about these approaches, in this section, we focus on discussing 
ECF estimation of the affine continuous-time SV model with volatility being 
latent and estimation with volatility being observed.

4.3.1 ECF Estimation of the Affine Continuous-Time SV 

Model When Volatility Is Latent

For the affine diffusion and affine jump diffusion processes, the analytical form 
CCF can be derived. Based on the characteristic functions, Singleton (2001), 
Jiang and Knight (2002), and Chacko and Viceira (2003) proposed the empiri
cal characteristic function (ECF) procedure. The basic idea of the ECF method 
is to match the analytical CCF derived from the model to its empirical coun
terpart, ECF, which is calculated from the data. The advantage of using this 
approach is that it can achieve almost the same asymptotic efficiency as the 
ML method, while it avoids the difficulties inherent in deriving and maximiz
ing the likelihood function.

Among these studies, Singleton (2001), and Chacko and Viceira (2003) used 
the conditional characteristic functions. In Singleton (2001), he proposed an
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SMM procedure based on the CCF. The estimation is efficient, however, the 
stochastic process is simulated hence an approximation error is induced due to 
the discretization of the data generating process. Chacko and Viceira (2003) 
applied a GMM method based on the CCF which did not require discretiza
tion of the stochastic process. However, their method does not condition on 
all of the information available hence is not as efficient as that in Singleton
(2001) or Jiang and Knight (2002). Unlike these two studies, Jiang and Knight
(2002) used the unconditional joint characteristic functions and developed an 
efficient estimation procedure . In their study, Jiang and Knight (2002) em
ployed both GMM and ECF procedures to estimate the affine continuous-time 
SV model. As they demonstrated, with the availability of an analytical expres
sion for the unconditional joint characteristic function, the exact unconditional 
moments and cross moments of the state variable are readily derived, conse
quently applying GMM in this situation does not involve model discretization. 
On the other hand, choosing the optimal weighting function, the ECF method is 
able to provide asymptotically efficient estimates as maximum likelihood does. 
Both approaches do not involve model discretization nor simulation. However, 
in GMM approach, as volatility is latent, only the unconditional moments of 
asset return processes are used in the estimation. Also in ECF approach, as 
volatility is unobserved, it has to be integrated out of the joint characteristic 
function. The problem is that even though the bivariate stochastic process is a 
Markov process, the marginal return process is not, and in this case, there is no 
general solution for the choice of optimal weight function leading to increased 
computational burden in the estimation.
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4.3.2 ECF Estimation of the Affine Continuous-Time SV 

Model When Volatility Is Observed

In their recent study, Jiang and Knight (2010) investigated the ECF estimation 
for the Markov models where the transition density function is unknown. In 
their ECF approach, a close-form approximation of the optimal weight function 
is derived by approximating the logarithmic transition density of the Markov 
process via the multivariate Edgeworth/Gram-Charlier expansion, hence the 
estimation is based on the analytical conditional cumulants. Their approach 
is similar to the approximate maximum likelihood estimation (AMLE) method 
proposed by Ait-Sahalia (2002) in which the Hermite polynomials are used to 
approximate the transition function. The major difference is that the Jiang and 
Knight (2010) approach guarantees the consistency while the AMLE procedure 
does not. As Jiang and Knight (2010) demonstrated, the C-AMLE method can 
be widely applied to Markov models, including the discrete-time SV models, 
the univariate discrete-time non-linear non-Gaussian process, the univariate 
continuous-time Gaussian process, the square-root diffusion process, the bi
variate continuous-time Gaussian process, and the affine continuous-time SV 
model, etc. Jiang and Knight (2010) investigated the performance of the C- 
AMLE for the univariate continuous-time square-root diffusion process and 
the bivariate discrete-time SV models via a Monte Carlo study. The evidence 
showed that overall C-AMLE estimator had desirable finite sample perfor
mance in comparison with the GMM and the QML approaches.

With respect to the affine continuous-time SV model, when the asset re
turn process together with return volatility process are both observable, the 
C-AMLE procedure is fairly straightforward and can be easily implemented. 
We now outline the C-AMLE approach.
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Let f(St+i\St; 0) be the transition density function, in which St is a vector of 
state variables consisting of the asset return state variable xt and the return 
volatility state variable vt in the affine diffusion framework, i.e. St = {xt,vt), 
and 9 = {/¿, a, p, p. a} be a vector of unknown parameters that need to be esti
mated, define the CCF as:

0(r,St+1|St;0) =  E[eir's‘+'\St} = J  eir' f  (St+1\St; 6)dSt+1 

where r =  {ri, r2} is the argument of the CCF.

The ECF is the sample counterpart of the CCF defined as:

=  /  eir'St+1MSt+1\Sf,d)dSt+1

where f t(St+\\St', 9) is an empirical conditional density function.

Following Singleton (2001), and Jiang and Knight (2010), a consistent esti
mator based on the ECF can be derived by solving the following equation:

T

[  ■ ■ [ u(r,t\St]9)(eir's^  -  cP(r,St+1\St-9))dr = 0 (4.12)
t=l

where u(r, t\St; 9) represents the weight function.

As shown in the Lemma 1 in Jiang and Knight (2010), the optimal weight 
function can be derived by

w(r, t\St] 9) =  ± - J . . . J  dlnf{S^ llSt’ 9)e~ir's^dSt+1 (4.13)

where lnf(St+i\St; 9) is the logarithmic transition density function of the affine 
diffusion process. The above weight function is optimal in the sense that it 
leads to the estimators being equivalent to MLE. Clearly the optimal weight 
function depends on the logarithm of the transition density function. The is
sue is for the affine diffusion process, the transition density function does not
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have a closed form. Therefore, Jiang and Knight (2010) proposed an analytical 
approximation to the logarithmic transition density function via the Gram- 
Charlier/Edgeworth expansion:

lnf(St+i\St-,e)= lnf0(St+1\St;8)

+^K i'i’khijk(St+1\Sf,e)

+ ± K i’i’k'lhijki(St+l\St-,6)

=  - j l r -  \ l n \ X ^ \  -  ^ (S j+1 -  Ai ) (5 /+1 -  X>)Xid 

+ ^ K ^ khijk(St+1\Sf,e)

+ L K^ lhijkl(St+1\St-,6)

where / 0 is a multivariate normal density. K l,i’k and K l’hk'1 represent the third 
and fourth order conditional cumulants while hijk and hi]ki are the third and 
fourth order Hermite polynomial tensors4.

The derivative of the ln /{5 (+1|5(; 0) is given by:

d \ n f ( S t+ l \St -,9)
dO 2\X̂ \ d9 + de 1 21‘ t+1 -  X ) (S i+1 -  Xj ) d X j j

de
1 rdKl'i’k,

"*"24

de
1 dK^*’1

ijk + K l'hkdhii,j,k -]
de

de hijid + K ^ k'1
dh,

de

The optimal weight function is then approximated as:

ü{r,t\St-,9) = -^  J ... J d \ n f ( S t+1\St -e) ir,SM 
de dbt+1

4i,j,k,l  take values 1 or 2 since there are two state variables x (+1, ut+1. The expression of 
fo, the closed-form expression of the CGF, along with the expression of Kl ,̂k, and
hijki are showed in Jiang and Knight (2010) and appendix 1 of this paper.
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Employing the approximate optimal weight function, the C-AMLE proce
dure can be written as:

t=l

From the above expression, the approximate ML estimator can be derived 
from:

The estimating equation above is based on the approximate likelihood func
tion, however, unlike the AMLE this approach includes the expectation of the 
approximate score thus ensures the consistency of the proposed estimator hence 
is the consistent AMLE.

Based on the analytical conditional cumulants, the system of estimation 
equations is following:

(4.14)

(4.15)

+ ^ [ — -QQ—  (hijH -  E(hijki\St)) + K'*k',(4(hihJhkhl -  E(h 

-4:Zi(hjhkhi -  E(hjhkhi\St)) -  12(hihj\kj -  E(hihjXk>i\St))

(4.16)

As 6 is a vector consisting of five parameters, there are five equations corre
spondingly. Plugging the observations of St = {xt,vt) into these equations, the
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solution yields the estimates for p, a, /?, p, and a. The detailed discussion about 
these estimation equations is provided in the Appendix one.

4.4 Monte Carlo Experiments

In this section, we investigate via simulation the performance of the C-AMLE 
method for the affine continuous-time SV model. In our simulation, we treat 
the volatility as an observed state variable, hence we simulate both asset re
turn and volatility observations and use these observations in the estimation.

The simulation of the continuous-time SV models has been a difficulty. As 
the transition density function is unknown, the continuous sampling observa
tions are unable to be directly generated. The models usually have to be dis
cretized. The most straightforward way is to discretize both asset return and 
return volatility processes by applying a first-order Euler scheme. However, 
when using direct Euler scheme, one has to investigate how to deal with neg
ative values of the volatility process. Handling negative values in the wrong 
way would lead to extremely biased schemes. It is also noticed that the Euler 
scheme does not use any information of the analytical properties of the volatil
ity process, hence may not capture the stylized facts the time series.

As we discussed in the previous section, in the affine continuous-time SV 
framework, the volatility process follows the square root stochastic process. 
The conditional volatility, i.e. Vt\Vu for some t > u, follows a non-central chi- 
squared distribution with d, degrees of freedom and non-centrality parameter
A.
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where x3(A) denotes the noncentral chi-squared random variable with:

Ol

\ _  4ge-^*-“) T r
A  — <72( l - e - ^ ‘ - “)) Vu

Given Vu, Vt is distributed as a constant term, <r2(1~e4~w w)\ times a noncen
tral chi-squared random variable. As Broadie and Kaya (2006) demonstrated, 
the non-central chi-squared distributed random variable, Xd(A). for d > 1, can 
be generated by first generating a central chi-squared random variable Xd-i 
and an independent standard normal random variable Z, then setting:

X2d(\) =  (z  + V \ ) 2 + x l 1

Thus the stochastic volatility process can be exactly simulated from its dis
tribution. The estimator is unbiased.

Set u =  0, then Vt is noncentral chi-squared distributed conditional on the 
initial value V0. There are two ways to set initial value Vo- The first option is 
that we can simply set V0 = a since a is the unconditional long run mean of 
the volatility process. Alternatively, as Jiang and Knight (2002) demonstrated, 
if the volatility process displayed the property of mean reversion, i.e. /? > 0, 
then this volatility process was stationary and followed a gamma distribution, 
that is, / ( Vt =  vt) = where u> =  |f, s =  with mean a, and
variance Based on their theoretical study, we first generate volatility from 
the gamma distribution then set it as our initial value V0.

Simulating the asset return process is not as straightforward as simulating 
the volatility process, as the transition density function for the asset return 
process is unknown. Broadie and Kaya (2006) proposed an exact simulation
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method. Broadie and Kaya scheme is theoretically appealing, however, the 
practical implementation requires great computational effort. Alternatively, 
Van Haastrecht and Pelsser (2008) introduced an efficient approximation of 
the exact scheme. Van Haastrecht and Pelsser (2008) approach may not be as 
accurate as Broadie and Kaya (2006) method theoretically, however their ap
proach is very easy to implement and as they showed, highly accurate. Hence 
we follow van Haastrecht and Pelsser (2008)’s study to generate the asset re
turn process.

Allowing an instantaneous correlation between the asset return and the 
volatility processes, the SDE for the logarithmic stock prices can be written as:

dxt = pdt + y/Vt(pdBu + y/1 -  p2dB2t) (4.17)

The solution for the system SDEs can be obtained:

(4.18a) 

(4.18b)

where r = t — u for u < t represents the time between observations.

The integrated variance process f* Vsds in the volatility equation can be 
approximated by using a drift interpolation method:

Rearranging the volatility equation, fu s/VsdB2s can be computed as:

f* VVsdB2s «  i(Vt -  V, -  Par +  / 3 r ^ )
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As the process for Vt is independent of the standard Brownian motion Blt, 
the distribution of J* \/VsdBis in the logarithmic asset price equation, given the 
path generated by Vt, is a normal distribution with mean 0 and variance f (u Vsds 
which is approximated as r 1̂+-Vu.

fu \fVsdB\s ~ approx \JT V‘ Zi2

where Z2 follows a standard normal distribution.

Hence, the sample path for logarithmic asset prices can be generated as:

xt = xu + pr -  P— t + (Vt + K ) - 1+- ^ ) ~VU— + J {1 f )TV viT V uZ2 (4.19) a a a V 2

And the asset return process can be obtained by rT =  xt — xt- T.

The true parameter values are set as a — 0.867, ¡3 =  0.269, p =  —.5, a = 0.613, 
and p =  0.059. These values are similar to those obtained in the empiri
cal study of Jiang and Knight (2002). We set two sampling intervals, i.e. 
r =  1/252,1/12 to generate daily and monthly observations respectively. When 
setting r = 1/252, we simulate 30 observations for each day, then the first 29 
out of every 30 observations are discarded, leaving only the 30th observation 
at a daily frequency. The sample length is set as n=252 which corresponds 
to approximately one year of daily data. When setting r =  1/12, we simulate 
22 x 30 = 660 observations for each month, then the first 659 out of every 660 
observations are discarded, leaving only the 660th observation at a monthly 
frequency. The sample length is set as n=360 representing 30 years’ transi
tions at the monthly frequency. Each simulated data series is initialized with 
the stock price at 100 hence the initial logarithmic stock price is x0 = 4.6052. 
We first generate an initial 2,000 observations, then discard the first 1999 ob
servations, only keep the last observations as the starting point to generate the
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data series used for the estimation. By doing so, we can mitigate the start-up 
effect. The number of replications in the Monte Carlo simulation is 10,000.

Figure 4.1 plots the mean of 10,000 sample paths along with the first 100 
individual sample paths for the asset return processes when r =  1/252. Vi
sual inspection shows that all 100 individual sample paths fluctuate around 
the mean path either above or below. The simulated asset return takes either 

a positive or a negative value with the mean being very close to zero. Figure
4.2 plots the mean of 10,000 sample paths and the first 100 individual sam
ple paths for the return volatility processes when r =  1/252. All the volatility 
values are above zero hence the mean of the simulated return volatility val
ues is positive. The individual sample paths fluctuate around the mean path. 
Figure 4.3-4.4 plot the mean of 10,000 sample paths along with the first 100 
individual sample paths for the return and volatility processes when r =  1/12, 
and they display similar patterns. Overall, visual inspection suggests that our 
simulation method for the asset return and volatility processes is appropriate. 
We then proceed to a more thorough examination of our simulation accuracy.

Based on the conditional moment generating function (MGF), taking the 
expectation we can obtain the unconditional MGF, then the first four uncondi
tional moments of both asset returns and volatilities can be derived based on 
the relationship between the moments and cumulants5. As these moments are 
explicit functions of the parameters p, a, 0, a, p, and r, plugging the true values 
into the expressions, we can calculate the true unconditional moments of both 
asset return and volatility. Also we can calculate the first four moments of our 
simulated asset return process as well as volatility process. From the compar
ison of the true moments and the moments from our simulated observations,

5The detailed derivatives are provided in Appendix 2.
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we can examine the accuracy of our simulations.

Table 4.1 reports the true moments and the moments calculated from our 
simulation when r =  1/252. The top panel reports the first four moments of the 
asset return and the volatility processes calculated from the explicit expression 
of moments by plugging true parameters a =  0.867,/? = 0.269, p = — 0.5, a — 
0.613, [i =  0.059, r =  1/252. The bottom panel shows the first four moments of 
the generated return and volatility processes. We find all the four moments 
calculated from our simulations are very close to the true moments, suggesting 
that our simulations recover the properties of the distributions of the asset 
return and volatility processes.

Table 4.2 reports the true moments and the moments calculated from our 
simulation when r =  1/12. Same as in Table 4.1, the top panel reports the first 
four moments of the asset return and the volatility processes calculated from 
true parameters a = 0.867,/? = 0.269, p =  -0.5, a = 0.613,// = 0.059, r = 1/12. 
The bottom panel shows the first four moments of the two simulated processes. 
Comparing the true moments of return process in Table 4.1 and Table 4.2, 
we find both the mean and variance values of the monthly return process are 
much larger than those of daily return process. In addition, the skewness and 
kurtosis values of monthly return process are much larger than those of daily 
return process in absolute value, indicating that the monthly return process is 
more volatile, more negatively skewed and has fatter tails. Overall, all the four 
moments calculated from our simulation are very close to the true moments, 
suggesting that our simulations do a good job at capturing the properties of the 
distributions of the asset return and volatility processes.

We then estimate the model parameters applying the C-AMLE method. For
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each set of asset return and volatility observations, the C-AMLE yields the es
timates of the five parameters. The estimation procedure is repeated 10000 
times, we then calculate the mean, median, standard deviation, and the sev
enty fifth percentile. Table 4.3 reports the result when r =  1/252 and Table
4.4 reports the result when r =  1/12. The second column shows the true val
ues, and third column reports the means of estimated parameters. The fourth 
to sixth columns report the medians, standard deviations, and the 75th per
centiles, respectively.

In Table 4.3, most of the means of the estimates are very close to the true 
values. For example, the mean of the estimated a is 0.86, which is approxi
mately one percent lower than the true value a =  0.867; the mean of the esti
mated mean reversion parameter ¡3 is about three percent lower than the true 
value. The medians of the estimates are also close to the true parameters. The 
only exception is that for p. We notice that the sign of the mean of estimates 
are negative whereas the true parameter takes a positive value. However, we 
observe that the median of the estimates of p is not only positive but also very 
close to the true value, moreover, the 75th percentile of the estimates are close 
to the true parameter, suggesting that there exist some negative extreme val
ues which distort the mean of the estimates. The standard deviation value is 
very large, confirming the above finding. For other estimates, the values of the 
standard deviations are quite small, suggesting that the estimates are stable.

From examination of Table 4.4, we find the estimates of a, p, a are very 
close to the true parameters, while when using simulated monthly observa
tions, the mean-reverting parameter ¡3 is relatively difficult to estimate, this 
finding is consistent with that in Jiang and Knight (2010). Same as using sim
ulated daily observations, the parameter p is the most difficult parameter to
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estimate. Comparing the values of mean, median, standard deviation and sev
enty fifth percentile, we find that in general the estimates are close to the true 
parameters, suggesting that the C-AMLE does a good job at recovering true 
parameters when volatility variable is directly observed.

Overall, the Monte Carlo result suggests that the C-AMLE procedure does 
a good job at estimating the affine continuous-time SV model when volatility is 
observed.

4.5 Conclusion and Extension

In this chapter, we investigated the estimation performance of the C-AMLE via 

a Monte Carlo study to the affine continuous-time SV model when volatility is 
observed. We generated volatility process based on its conditional density func
tion and asset return process applying an efficient approximation of the exact 
scheme at both daily and monthly frequencies. Evidence showed that our simu
lation of return and volatility processes were accurate. We applied the C-AMLE 
approach for the affine continuous-time SV model using simulated observa
tions at both daily and monthly frequencies, the results suggested that the 
C-AMLE did a good job at recovering the true parameters. When the C-AMLE 
procedure is applied to a univariate process, one does not have to worry about 
latent variable, estimation is very simple. In the bivariate system, volatility 
is latent, consequently, the implementation of the C-AMLE procedure is com
plicated. However, when treating volatility as observed, the implementation of 
the C-AMLE procedure is straightforward, and the estimates are reliable.
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In next chapter, we continue our study of estimation of the affine continuous
time SV model via an empirical study. In particular, we will employ two differ
ent volatility proxies, namely, realized volatility and model-free implied volatil
ity in our estimation, hence examine the performance of the C-AMLE method 
for the affine diffusion process when a volatility proxy is used.
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4.6 Appendix

Appendix 1: C-AMLE Estimation of Affine SV Model:

The joint characteristic function of (xt+T, vt+T) conditional on the information 
structure Ft has the closed form as:

ip{ri,r2;xt+T,vt+T\xtlvt)

= E(exp(ir1xt+T + ir2Vt+T)\xt,Vt)

=  exp(C'(r;r1,r2) + £>l(r;ri,r2)'a:t + £>2(r; ru r2)'vt)

where

C(r; ru r2) = {inp + ia0r2)r + ${{b  -  h)r -  2/n(1~ff~hT))

Z?l(r;ri,r2) = irj 

£)2(r; n , r 2) =  ir2 +

with b =  0 — pair\ — <72ir2, h = {b2 + cr2(r2 + 2pcrr1r2 + <72rf + 2i/3r2))1/2, and 
o =  5=4y i»+/i •

Let 0 be the vector of parameters, i.e. 9 = (p, a, ¡3, p, a).

The cumulant generating function (CGF) thus is

(f>{ri,r2) xt+T, vt+T\xt, vt) 9) = lmj){-in, - i r 2\xt+T, vt+T\xu vp9)

Therefore the conditional cumulants can be derived by taking the deriva
tives of the CGF with respect to n  and r2:

For i =  1,2, j  =  1,2, k =  1,2, l = 1,2

¿C =  ¿-V’(ri,r2;xt+r,ut+T|xt,Ut)|ri =  r2 =  0
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K ld =  9̂ - ^ ( r'i,r2;xi+T,i;f+T|a:i,ui)|ri = r2 =  0

Kid'k =  â^s^V '(n ,r2;xt+T,yt+T|zt,ut)|r1 = r2 = 0

KhiXl =  a ^ ^ r l'<P(n,r2 -,xt+T,vt+T\xt,vt)\r1 = r2 =  0

The explicit expressions of the cumulants are calculated as:

K l =  [IT

K 2 = a(l — e~PT) + e-/3rut

T/ X 1 . l - e 0T I eflT- lK 1,1 =  « r  +

K 1'2 =  ^ -(a {e pT -  1 -  fir) + firvt)pa

K 2'2 =  ^ ( 1  -  e-/3r)2 + f  e~0T(l -  e ^ T)vt

K 1’1'1 =  ^ ( « ( 2  + fir -  e?T{2 -  fir)) -  (1 -  e*T + /3r)^)pa

A"1,1,2 =  ê i (2(1 — ê r(l — fir — fi2r2p2))vt — a(l — e2/3r(l + 4p2) + 2ê T(fir + 
2 p2 + 2firp2 + fi2r2 p2)))a2

K 1’2’2 =

2, 2,2

A"1,1’1’1 =

^ ( a ( e ^  -  l)(e* -  1 -  /3r) -  (1 + 2/3r -  e^(l + fir))vt)pa3

f£ ( l  _  e-/?r)3 + 3ÿc-/îr(i _  e-f>Tf Vt202 20-

3a2(a -  2vt) % $ l  + 6a2(a - /33e +
o .̂^2l ^ T(^T-l)-8p2(e^-l)+4p2r (̂l+e )̂ oc*c' (33ePT

K 1'1’1’2 = - l f ^ ( e - P T-l) (2pTe-0T + 3e-PT- 3 ) - ^ ( 3 / 3 2T2p2e- f)T + 3(32T2e-PT + 
9e~PT + 6 p2e~PT — 9 + 9fire~^T + 6 firp2e~̂ T — 6p2 + fi3r3 p2e~̂ T) + ^-e~^T(6e~̂ T — 
6 + 6fire~0T + 3/3 2r2 + /33T3p2)vt

A'1-1’2-2 = ^ ( ( - 3  + 4ê T(l -  /3r -  p2 -  2/3rp2 -  2fi2r2p2) -  e2̂ T(l -  2/3r -  4p2 -  
4/3rp2 -  2fi2r2p2))vt + a(l + e3/3r(l + 6p2) -  e2/3r(l + 12p2 + 2fi2r2p2 +  2/3(r + 4rp2)) + 
e/3r(—1 + 6p2 + 4/32r2p2 4- 2/3(r + 4rp2))))<j4

A'1,2,2’2 = — ̂ r ( ~ a + 3ae — 2a fire 2̂ T + afire 3/3r + a/3re — 3ae 2/3t +
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Denote D , Aitj can be calculated:

ae 3/3t — 3e 3/}T/3TVt — 2e 3/3rut +  4e 2/3rvt +  4e 2PT ¡3rvt — 2e PTvt — /3re &Tvt)

^ 2 ,2 ,2 ,2  =  W [ (1  _  e - 0 r ) 4  +  ^ e - /3 r (1  _

' K 1’1 K 1'2 
K 1’2 K 2’2

A i , i  =  ( i i - 1 ) i , i

^1,2  =  -^2,1 =  ( i i _ 1 ) l ,2  =  ( ^ _ 1 )2,1 

-^2,2 =  ( D _ 1 )2,2

Therefore6,

K =  Aij(Si+T -  Ki)

hhj hihj Â j

K,j,k ~  hihjhk hiXj  ̂ hjXl k hfcXij

— hihjhkhi hihjXk,i /i,h^Xji /¿¿/i/Â fc hjhkXij hjhiXi  ̂ h^hiXij T

+ XukXjj -f" XijXj'k

ih = d- ^ ( S l +T -  Ki)

~ _  V  d Ki
^  l<] ae

For our model, Let St+T = (xi+T,ut+T) denote the vector of state variables. 
Let r =  1.

Let the initial approximating function be the multivariate norma density 
with mean vector K\i =  1,2, and variance-covariance matrix A,J", i — 1,2 , j  =

1, 2.

fo(St+1\St-,9) =  (27r)-^2|A^|-V2exp(-i(5‘+1 -  -  Ki)Xid)

6According to tensor notation, any index repeated once as a subsript and once as a super
script is interpreted as sums over these repeated scripts. For example, hi =  A!ij(5,J -  iP  ) = 
Ai,i(xt+T -  K1) + Xit2(vt+T - K2), hi = ^(Si+T - Ki) = d-^{xt+T -  K1) + vt+T - K2),
=  _  \  9  K> _  \  9  K 1 , -v 9  K 2¿1 ~ Ai,j gg ~ Ai,l gg ~r Ai,2 gg ■
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Following McCullage (1987), Jiang and Knight (2010), using the tensor no

tation, the log multivariate density In f(St+i\St] 9) can be approximated by us
ing the general Gram-Charlier/Edgeworth expansion:

ln/(St+1|St;0) =

+

+

+

+

ln/o(St+1|Sf;0)

\ K ^ khijk

\nf0(St+1\St-9)

^ [ K ^ h m  + 3Kl'l'2hn2 + 3K1,2,2hi22 + K 2'2'2h222\

— [K 1,1’1,1/iiiii + i K 1’1'1'2hUi2 + 6A'1’1’2’2/i1122

+AK1’2'2'2hi222 + K 2'2'2'2h2222]

The approximate score function is derived:
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d \R f ( s t+1\s t -,e)
dd

+

+

+

+

+

+

+

+

+

+

+

0 In/0(gt+11 St ;fl)
dO

1_________________ r)h 
____h 4- K l'3'k J l]k6[ de + d0

1 ,dKl'i'k’1
24 de h'ijki 4" K ij,k,l dhjjkl i

90 J
0 1 n /o(St+1|St ;0 )

dO
1td K W h , r u . i^ m  

9K1’1’2
3— — — /¿H2 +  3-ff190 

0K1’2’2

00 
,1,2 d l̂l2 

00

/1122 + 3/sT1’2’2
dh 122

00 " 1"  ' 00 
^ 2’2’2, . „ 2.2.2 ̂ 222, 
~ W ~ h222 + K ~ W ]
1 r ^ 1’1’1’1, a/i
24[— ¿ r - '11111̂  -0 0

^ ^ 1,1’1’2-/liii2 + 4K1-1’1-2 5/11112

mi

00 
,0 / f 1’1’2’2 

} 00

00

/ l l l2 2  +  6 - ft '1’ 1’2’2
0/i.1122

9K 1,2,2,2
4 /t1222 + 4 ^ X’2’2'2

00
dh\222

89
0 ^ 2,2,2,2

de
h _L Ii'2 ,2 ,2 ,2n2222 i iv

00 
dh2222 1 

00 J

]

As difference between the approximate score func
tion and its expectation is:

0 1 n / ( S t+1|St;0) „ ^ I n / i S t + i l S t ^ ) ,  
» ----------------- £ ( -------------- ----------------- 1



+

+

+

+

+

+

+

+

+

0 1 n /o(S t+1|St;0 )
dd

(hm E(h,n)) + - £ ( % 1 ) )
90 dd6 90

3^ ( h m  -  i ( M )  + 3 -  E ( ^ ) >dd 
dK1'2'2

dd
8K2-2-2

90

(h122- E ( h l22)) + 3Kl’2'2( ^

ae 
_ , dh\22 \ \

dd

dd
J_,dK1'1'1'1 
24

90 - £ (( h ^ - E { h m )) +  K ^ ( dh222 ~‘ dh™dd ))]

{hnn ~ E{hnn)) +  A '1,1'1’^ - - ~ E { ^ ) )dddd

d K W '2{hnn -  E{him)) + 4K ^ 2{ ^  -  E{dd dddd
9/C1’1’2’2 c ,̂1,1,2,2/̂ 1122 ^,dhn22^

6 — —--- {hi!22 -  E{hii22)) + 6 K "  ' ( — =3------ E { - -32- ) )90 
dK1'2’2'2 

dd
dK2,2,2'2

dd

{hl222 — E{hi222)) + 4K l,2,2,2{—̂ ?-2

dd

~ E { ^ ) )dd

dd dd - E {lh Pth \ \  > IS2,2,2,2 ¡ d h 2222 1~ , , d h 2222(,™2222 — &\ll2222)) + & { dd ))]

where

9 1 n /o(Si+ i|S t ;0 )
90

+

___ _ h s i  _ K i)(Sj _
2|A«| 90 2{b ){b ’ dd

AK1 9/T2
-Ai. ^ - ^ H —  \2A S i - W )dd
1 9| Ai,J | 1-  ~{Sl -  K l){SJ -  K] ) 9Aihj + dK1

2|A*4| 90 2 V~ "  /v"  "  '  90 ' dd

We have dropped the subscripts on S for each of notation.

hm —  ̂ 1 — 3/z. 1A1,1

hm — h\h,2 — 2 /11A12 — ^2 Ai,i

hi22 = /ll/l2 — hi\2t2 ~ 2/l2Ai,2
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/¿222 —  h\ —  3/l2̂ 2,2

him — h\ — 6/ijAii + 3Aj^

/ii112 =  ^i^2 — 3/if Ai,2 — 3 /ii/¿2Ai î +  SA^iAi^

hll22 = h\h\ — /lj A2t2 — 4/li/l2Aii2 — /l2-̂ l,l 3” ^1,1^2,2 + 2Aj 2

h\222 =  h\h\ — 3h\h2̂ 2,2 ~ 3/i2-̂i,2 +  3Ai2A2i2

2̂222 — h\ — 6/^A2,2 +  3A^2

As in Chapter 2 of McCullagh (1987)7, the relationship between moments 
and cumulants are:

K li = K l'i + K lIO

K ijk = K i,j,k + (K iK j,k + K j K i,k + A fcA i4) + R lR Œ k = K ^ 'k + R iRh k[3] + 

R {R^Rk

K ijkl = K i,j,k,l + W R i^ l  4] + ^iJX fc,i[3] + /CA^A*^] + KiRjRkR1

where A y’, R l]k, R ljkl are moments, and A lJ, R l'i'k, are cumulants.

Moreover,

E(S1 -  R 1) =  0 

E(S2 -  R 2) = 0

^[(S1 - A 1)2] =  EKS1)2 -  2R1S1 +  (A1)2] 

=  R n -  (A 1)2 

=  (A 1,1 + A 1 A 1) -  (A 1) 2

-  A 1-1

7Details are in Chapter 2: Elementary theory of cumulants, Tensor Methods in Statistics, 
McCullagh R, 1987.
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EKS1 - K 1) ^ 2 - K 2)} = EIS1 S2 -  K 1 S2 -  K 2S1 + K 1 K 2} 

K 12 -  K 1 K 2 -  K 2K 1 + K 1 K 2 

K 12 -  K 1 K 2

(K1’2 + K 1 K 2) -  K 1 K 2 

K 1'2

E[{S2 -  K 2)2] = E[{S2)2 -  2K 2S2 + (K2)2] 

K 22 -  {K2)2 

(.K 2’2 + K 2K 2) -  (K 2)2 

K 2’2

E^S1 -  K 1)3] = EUS1)3 -  3K1(S1)2 + 3(K1)25 1 -  ( i f1)3]

i f 111 -  Z ^ K 11 + Z ^ f K 1 -  (K1)3

(.K 1’1’1 + ZK'K1'1 + (K1)3) -  3K1(K1'1 + {K1)2) + 2{K1)3

K 1’1’1

EUS1 -  A'1)2(52 -  K 2)} = E[(S1)2S2 -  K 2{S1)2 -  2K1S1S2

+ 2K1K 2S1 + (K1)2S2 -  {K 1)2K 2}

= K 112 -  K 2K 11 — 2K1K 12 + 2(K1)2K 2

= {K1'1'2 + 2K1K 1'2 + K 2 K 1,1 + {K1)2 K 2)

K 2(K1,1 + K 1 K 1) -  2 K \ K 1'2 + K 1 K 2) + 2{K1)2K 2 

= K 1'1'2
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E[(SX -  K X)(S2 -  i f 2)2] = ¿ ^ ( S 2)2 -  2K 2SlS2 + {K2f S l 

K X{S2)2 + 2K xK 2S2 -  K X{K2)2 

K 122 -  2K 2K 12 -  K XK 22 + 2K X(K2)2 

( i f1,2,2 + K XK 2’2 + 2 i f 2 i f 1,2 + K X{K2)2)

2i f 2( i f1,2 + K XK 2) -  K X{K2'2 + (if2)2) + 2K X{K2)2 

K 1,2,2

E [ ( S 2 -  i f 2)3] =  E [ ( S 2)3 -  3i f 2(S 2)2 +  3( i f 2)2S 2 -  ( i f 2)3]

=  K 222 -  3K 2K 22 +  3 ( i f 2)2i f 2 -  ( i f 2)3

=  (if2,2,2 + 3K2K 2'2 + (if2)3) -  3if2(if2,2 + (if2)2) + 2 (if2)3

^ 2,2,2

£ [ ( S X -  i f 1)4] =  £ [ ( S X)4 -  4 K X{S X)3 +  6 ( i f 1)2( 5 1)2 -  4 ( i f 1)3S 1 +  ( i f 1)4]

=  i f 1111 - 4 i f 1i f 111 +  6 ( i f 1)2i f 11 - 3 ( i f 1)4

=  ( i f 1’1'1’1 +  4 i f 1i f 1’1’1 +  3 ( i f 1’1)2 +  6 ( i f 1)2i f 1,1 +  ( i f 1)4)

-  4 i f 1( i f 1’1’1 +  3 K XK X’X +  ( i f 1)3) +  6 ( i f  x)2( i f 1,1 +  K XK X) -  3 ( i f x)4

=  i f  U , U  +  3 ( i f  M ) 2
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EUS1 -  K 1)3(52 -  K 2)} =

+

+

+

+

+

£[(Sx)3S2 -  K ^ S ^ S 2 -  K 2(51)3 + K 1̂ ^ 1)2

2K1 (S1)2S2 + 2(K1)2S1S2 + 2K1K 2(S1)2 -  2{K1)2K 2S1

(K1)2S1S2 -  { K ^ S 2 -  (K1)2K 2S1 + ( K ^ K 2

K 1112 -  ■àK'-K112 -  K 2K in

Z ^ K 2̂ 1 + 3{ K ^ K 12 -  ■¿{K1)2K 2

(.K1’1’1'2 + ZK'K1'1* + K 2 K 1'1'1 + 3 K 1'1 K 1’2

3(K1)2K 1'2 +  3 ̂ K 2̂ ' 1 + (K1)2 K 2)

SK\Kl'x* + 2 K 1 K 1* + K 2 K 1'1 + ( K ^ K 2)

K 2{K1X1 + 3 K 1 K 1'1 + (K1)3)

3 K ' t f i K 1'1 + K 'K 1)

3(K1)2(K1'2 + K 1 K 2) -  Z ^ f K 2 

K 1’1’1’2 + ZKl,1K 1'2
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+

+

+

+

+

+

E U S 1 -  K 1)2(S2 -  K 2)2} = ^[(S1)2^ 2)2 -  2K2{S1)2S2 + (1C2)2(51)2 

2K 1S\S2)2 + 4/s:1^ 25 152 -  2K1(K2)2S1 

(K1)2^ 2)2 -  2(K1)2K 2S2 + ( i f1)2^ 2)2]

K 1122 -  2K2K 112 -  2K 1 K 122 + (K2)2K n 

Œ 1̂ ^ 2 + {K1)2K 22 -  3(K1)2̂ 2)2 

(.K i’i’2'2 + 2K1K 1'2'2’ + 2 K 2 K 1'1'2 + K 1'1 K 2’2 + 2 {K1'2)2 

{K1)2 K 2'2 + AK1 K 2 K 1’2 + (If2)2# 1’1 + (AT1)2^ 2)2) 

2K2(K1’1,2 + 2 K 1 K 1'2 + K 2 K 1'1 + {K1)2 K 2)

2 K 1 {K1'2'2 + K 1 K 2’2 + 2 K 2 K 1'2 + K 1 {K2)2)

{K2)2̂ 1'1 + K 1 K 1)

4 ̂ K 2̂ 1'2 + K 1K 2)

(K1)2̂ 2'2 +  K 2K 2)

ZiK1)2̂ 2)2

K l'i’2’2 + K 1'1 K2'2 + 2 (K1'2)2
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+

E ^ S 1 -  K 1) ^ 2 -  K 2)3} = E[S\S2)3 -  2K 2S\S2)2 + (K2)2S1S2 -  K'iS2)3 

2K1K 2(S2)2 -  K \ K 2)2S2 -  K 2S\S2)2 + 2{K2)2SlS2 

(.K2)3SX + K lK 2(S2)2 -  2K\K2)2S2 + K \ K 2)3}

K 1222 -  3K 2K 122 -  K 'K 222

+  3{K2)2K 12 + 3K1K 2K 22 -  3K\K2)3

= (X 1’2’2-2 + K 'K 2’2'2 + 3K2K 1’2’2 + 3Kl'2K 2'2

+ 3KlK 2K 2'2 + 3(K2)2K 1’2 + K \ K 2)3)

3 K 2{K1'2'2 + K lK 2'2 + 2K2K 1’2 + K \ K 2)2) 

K \ K 2’2’2 + 3 K 2K 2'2 + (K2)3)

+ 3 {K2)2{K1'2 + K lK 2)

+ 3 K lK 2(K2'2 + K 2K 2)

-  3Kl{K2)3

=  K 1,2'2'2 + 3 K iaK2'2

E[{S2 -  K 2)4] = E[(S2)4 -  2K 2{S2)3 + (K2)2(S2)2 -  2K 2(S2)3 + A(K2)2(S2)2 

2(K2)3S2 + (K2)2(S2)2 -  2{K2)3S2 + {K2)A]

K 2222 -  AK2K 222 + 6 {K2)2K 22 -  3{K2)4 

(.K 2’2'2’2 + AK2K 2'2’2 + 3{K2'2)2 + 6(K2)2 K 2'2 + (K 2)4) 

4/sT2(/s: 2-2’2 + 3K2K 2’2 + (K2)3) + 6 {K2f { K 2'2 + If2# 2) 

3{K2)4

K 2'2'2'2 + 3(K2'2)2

E(hi) = 0 

E(hi) = 0
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E{zi) =

E(Xij) -- 

E(h\) =

E(hh2) =

E[h\) =

Efahi) =

Zi

Xi,j

EiXl^S1 -  K 1)2 +  2AM A 1}2(Sl -  K l)(S2 -  K 2) +  A22(S2 - K 2)2)

X\xK 1'1 + 2X1AX1<2K 1’2 + X \2K 2'2 
(K2'2)2K 1'1 -  2(Kl,2)2K 2’2 +  (K1’2)2̂ ’2 

(K l'lK 2’2 - (A' 1-2)2)2 

K 2'2{Kl'lK 2'2 -  (K1’2)2)
( K ^ K 2’2 -  (if1-2)2)2 

Ai,i

^[A1,iA1,2(51 - K 1)2 +  (A1,1A2i2 +  A22)(51 - K x)(52 - K 2) +  A1i2A2,2(S2 - K 2)2}

Xi^Xi^K1'1 +  (AiiiA22 +  X22)E 1,2 +  Ai)2A22A r2,2 

—K 2'2K 1)2K 1'1 +  (.K2’2K 1-1 +  (K l'2)2)K 1’2 - K ^ K ^ K 2’2 
(Kl'lK 2'2 -  (K i-2)2)2 

- K ^ i K ^ K 2’2 -  (if1-2)2)
(Kl'xK 2’2 - (K1'2)2)2 

X\,2

E(X2h2(S! - K 1)2 +  2A1,2A2)2(51 - K l){S2 - K 2) +  A2j2(S2 - K2)2)

X\t2K 1'1 +  2A1i2A ̂ K 1’2 +  X\2K 2,2 
(K1’2)2K 1’1 -  2(K1’2)K 1’1K 1'2 +  (A' 1’1)2# 2-2 

{ K ^ K 2’2 -  (K1’2)2)2 
K 1'1 (K 1'1 K 2'2 — (K1'2)2)

( K ^ K 2’2 - (A"1’2)2) 2 

X2<2

E (^ Àu(S' -  K ‘ >2+ A i'2 + ^ A ij)(s ' -  K ">(s2 -  r2)
,dX\ dX\

-  ir2)2)
9 A U   ̂ j y l tl , i<9Au  0A1i2 12 ô A1)2 2 2
-g 0 -X hlK  + ( — Xu +  — X ltl)K  + - 3 r A1,2A
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E(hih2) =

+

£ (M i)  -  

+

E{h2h2) = 

+

E(h\\i

E(hn2)

9Aii2
90

d\h 
>0

A2,2(S2 -  K 2)2)

E ( ^ u ( S ‘ ~ K ' f +  + ^ A , . 2)(S' -  -
d\1
~de

0AU \ r̂ l.l , , 9AU , U<1,2 , dA1)2, ^ 2 2"3 T A i,2̂  + ( - ^ - A 2,2 + ^ r A1,2)^  + _ A 2 , 2ĵ ’

£ ( ^ A U (S' -  i f 1)2 + (^ 1 2 a1i2 + ^| ÎA U )(S' -  K ‘ )(S2 -  K2)dede

A 1-2(S2 - A”2)2)

aA,'2-A ,,^ u  + ( ^ A , , 2 +  ^ A , . , ) * 1'2 + % A , , ^ 290 90 90

E ( ^ f A , i2(S‘ -  K 1)2 + ( S- j f h , 2  + ^ A i>2)(S‘ -  K')(S2 -  tf2) 
9A2,2

9A2
"90

90
9A

A2,2(52 -  tf2)2)

90
1.2 X 1̂,1 , ,<9A1>2x , 9A2,2 x w^li2 , 9A2)2 r̂ 2i2
— a 1i2a  +  (-^- a 2,2 + - ^ - A ii2)K + - ^ - A 2j2A90 90

I =  E(h\ -  3^iA1(i) = E(h\)

E{X\ x(S1 -  K 1)3 + 3A2)1A1,2(S1 -  ̂ ) 2(S2 - K 2)

+ 3A1,iA2 2(51 -  K l)(S2 -  K 2)2 + A\2{S2 -  K 2)3)

= X\xK x'1'1 + 3A2 jAi.a/r1’1’2 + 3XhlX2h2K x’2’2 + X312K 2’2'2

= E{h\h2 — 2h\X\2 — h2XiiX) = E(hlh2)

E{X\,1A1,2(51 - tf1)3 +  2A1,iA22(51 - A:1)2(S2 -  K2)

+ A32(5 1 -  K l){S2 -  K 2) 2 + A21A2,2(S1 -  K l)2{S2 -  K 2)

+ 2A1,1A1,2A2,2(5 1 -  K l)(S2 -  K 2) 2 + A22A2i2(5 2 -  K 2)3)

Ai.iAi^Ä'1,1’1 + A1:i/4' 1,1,2(2A2 2 + Ai^A^)

+ Aij2A'1,2,2(Aj 2 +  2AiíiA2,2) +  A2 2A2,2K 2'2’2
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E(h\22) — E{h\h\ — h\\2,2 ~ 2/i2Aij2) — E(h\h\)

• (̂A îA2 2(S'1 — A ')3 + 2AiiiAjj2A2i2(A1 — K 1)2(S 2 — K 2) 

+ Ai.iA^S1 -  A 1) ^ 2 -  K2)2 + A¡¿{S1 -  A 1)2̂ 2 -  K2) 

+ 2A22A2,2(51 -  A'1)(S2 -  A'2)2 + A1i2A22(52 -  A'2)3)

— ai,iai,2-^1’1’1 A Ai,2A'1’1’2(A2 2 +  2Ai iA2i2)

+  A2,2A'1’2’2(2A2)2 +  AiiiA2)2) +  Ai)2A2 2 A '2,2,2

A(/i222) = E(h\ — 3 /12^2,2) = A(/i2)

=  A(A3 2(S1 - K 1)3 +  3A2i2A2)2(51 - K ' f i S 2 -  K 2)

+ 3A1,2A2i2(51 - A 1) ^ 2 - A 2)2 +  A3 2(S2 - A 2)3)

=  A ^ A 1’1'1 +  3A22A2>2A 1'1’2 +  3A1j2A2 2A 1,2,2 +  A22A 2’2,2

+

^ [ % A 21(51- A 1)3 + Au (2-9Al'1de de ^1,2 + -  K ' n ¡ P  -  K>)

+ 1̂,2( 
?Ai,
de

aX' i \ l3 + 2

0 A M  V2 r^l.1.1 , X , 0 A 1 , 2 x x , A 1 . 2~ AU Ä + Ai>iV" 55 Ai)2 + — A ’ ’50
,9Ai

30
ôAi\ í ^ AW  Í  , 0 ^ 1.2 X \ 7̂ 1,2,2 , U A l , 2  x 2 t s 2,2,2

Al’2(—90~Al’2 + 2~ W Xl'l)K + ~ W X^ K
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E(hihih2)

E(hxh2) =  

+

+

E{h2h\) =

+

+

+

+

+

+

+

+

E [ ^ \ hl\lì2(S ' -  K 1)3

("00iA1’1A2,2 + “ ¿ ^ Ai>2 + _  E 1)2(S2 -  K2)

(“ ¿^nAi,2A2,2 + - ^ p Ai,iA2,2 + -^ ^ A 22)(51 -  AT1)(52 -  K 2)2de de
dx
df  All2A2)2(5 2 -  t f 2)3]

^ U \  X 1̂,1,1
90 Xl’lXl’2K

(dXhl \ \ i 9Au \2 i 9Al’2 ' ' ) r
{~ d F Xl’lX2'2 + ~ W X 2̂ + ~ d f Xx'lX x'2)k
( d X ' X \  V i 9 A 1 .2 v V , 5 A 1 ,2 X2 \ jy  1,2,2(“ 00"A1i2a2>2 + - ^ - au a2,2 + - qö- \ 2)k

1,1,2

90̂
A 1)2A2i2̂ 2'2-2

£,[~5íTAi,2(‘S'1 ~ Ä’1)3 + (2—̂ T"Ai>2A2>2 +*  ge . ^ ï i)(s,- * W - K » )

( - ^ r A2,2 +  2 - ^ p Al,2>'2.2)(5 -  K')(S2 -  +  -7 ^ p A 2 i2{S 2 -  A*2)3]

9A1,1 x2 iv" 1,1,1 , (o9V ,  X , 0Ai,2 2 .„X.J.290 Al’2̂  + (2^ A1,2A2,2 + - ^ - A 1i2)^
/0AU x2 . n9Al,2x X x r-1.2.21 ^ “ A2,2 + ¿ - ^ “ Al,2A2,2j-̂90 + 9A 1,2 X 2 7̂ 2,2,2

d ¥ X2'2K

E[^ w x2'-'{S' -  K ')3 + x'-‘ i2^ W x'-2 + ^ f Au)<sl -  K ‘ >2<s2 -  f f1)
A « ( ^ f  A , l2 + 2 ^ f  AM )(S‘ - A ‘)(,S2 - A "2)2 +  ̂ A 22(S2 - A'2)3]

ÎA21A ''‘ A + A1,1(2 ^ iÎA 1,2 + 9A
90 " 1-1"  ' 90 ” 1'" ' 90

/9Ai.2 . „ 9A2i2 . , , o o dX
~dd

^Al,2\2 12-1,1,1 , \ lo^Al>2 x , lŷ '2,2̂ i ^^1,1,2

\ / v , 'l ,2  \ . 0 ^ a 2 ,2 , X r-1,2,2 , U A 2 , 2 \ 2  t s 2,2,2
Al>2(_ ää_Al,2 + 2 -3Z_Al,1)-  ̂ + _ äZ_Ai,2^90 90
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E{h2hìh2) =  E [ ^ \ 1a\ 2{S1 -  K 1)3

+

+

+

+

+

+

(

de
ÖA1i2 x \ , 9Ai,2x2 , 9A2,2x x wol „U2,n2 r̂ 2\

ai,ia2,2 + - ^ - A 1i2 + - ^ - A i,iA1i2J(ò -  A ) (ò — K )de 1,1 de

(~H7T̂ 1,2A2,2 +de
9̂ 2,2
~ d f
d\\,2

de

de
Ai,2A2,2(52 — K 2)3]

a X ,X '  '  l 2) ( S ' -  K

Ai.iAi ¿ K 1,1,1

de13 ' - ■ UA13' *  1(dXl'2\ A + dX(,-^ -A i,iA2)2 + de A l’2 +  de
r<9Ai,2 9A2,2
\~QQ~ä 1.2A2)2 i--- ^ -A MA2)2 +90

ÖA2.2 x2 
90

1,2,2

9A
90¥-\l,2X2l2K2’2'2

+

+

,d\ dX 9A2= £ [ ^ A 2 .(S1 -  A'1)3 + (2 ^ H a1,2A2,2 + ^ r A ^ X S 1 -  A'1)2(52 -  K2)dede
/^l,2\2 , o^2,2
( 90 A2-2 + 2^ 0 "
0Al,2,2 rfl.1,1 , (r,dXl,2, . , 9A2,2x2 ŵ l.l,2^ " A1,2̂  + (2- ^ - A 1)2A2)2 + - g ^ X ^ K

Ai,2A2,2)(5x -  /^ ( S 2 -  A2)2 + A2i2(52 -  A"2)3]

/ dX\ 2 \ 2 r)9A2)2 \ r f l ,2 ,2  I ^ 2>2 \2 Z f2.2.2
[~ W  2'2 + 21 m~Ai-2A2-2' A + -7ETXw Kde de

d h in
de

29/i! 9/ii 
,3'li_äS' á'90 90 n,i -3 /l ! dAt|i

90
3h\h2 — 3 Z\h2 — 3/i 1A i, 1 4" 3-ZjAxj — 3 hi

dXì}i
de

E(^ W ] = 3EM )  -  ^ E(h\) + 3ziAi,i

dh  in ,9/im.
de  ̂ de ’ 3[hxh\ -  E(Jixh\) -  -Zl(h\ -  E{h2)) -  M m -  Ä x ^ i]
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dh112

de
Oh h d h l  _ 1_  l2 dh2 dhx
2h'h’ - m + h < w ~ 2w x

-  2 h d \ 1,2 dh". X90 90 " w 90
2 /11^1^2 — 2zxhxh2 4- h2h2 — z2h2 — 2,hxXX2

h

1,2

9Ai i
2"

+ 2z1Ai)2 — 2hxd \ 1,2
90 /12A11 + ^Aii — h‘

dXij
: de

,dh
E(—K7T~) ~ 2E(hihih2) — 2zxE(hxh2) 4- E(h2hx) — Z2E(K\) + 22^ 1,2 + z2XxxOt/

dhu2 j-,,dh\i2.
-  =de de

+

2{hxhxh2 — E(hxhxh2)) ~ 2zx(hxh2 — E[hxh2)) 

{h2h\ -  E{h2h\)) -  z2(h\ -  E(h\)) -  2ä1A1,2
<9Aiioi, ÔAi,2 t x2Aii — ---- /i2Ai,ide de

dh\22
de -Q^hl + 2hxh2-^-  -dh2

~W
dhi
~d0‘' 2,2 h dX2,2

90
2 dfl2 a oh dXl’2 2— Xi,2-2h2- w

h\ĥ 2 — zx h% 4- 2h2hxh2 — 2z2h\h2 — hxX2t2 + zxX2i2

hX—QQ---- 2/l2Ait2 + 2Z2Aji2 2h dXx¿
' de

r\ j
E (———) =  EÇhihiij) — zxE(h\) + 2E(Ji2hxh2) — 2z2E(hxh2) 4~ zxX2i2 4* 2z2XX2de

dhX22 r ,̂dhX22s
de de (hxh\ -  E{hxhD) -  zx(h2 -  £?(^))

4- 2(h2hxh2 — E(Ji2hxh2)) — 2z2(hxh2 — E(hxh2))

hxX2,2 — hx
dX2,2

de 2h2X2^1,2 2h dX1,2
90

9/1222
90

„ 2 Ö/I2 „ 
3^2^- -  3

dh2 x 0, 9A2,2 
90 A2,2 -  3/12-^-

3/l2̂ 2 — 3z2h2 — 3 /I2 A2,2 + 3Z2A2,2 — 3 /I2
dX2)2
~ d F



E ( - r ^ )  =  3E(h2h¡) -  3z2E(h¡) + 3z2A2,2

dh-222
dO

- E ( dh,222
dB ) = 3[h2h\ -  E(h2h2) -  z2(h2 -  E(h2)) -  h2A2)2 -  h2̂

E (hnn)=  E{h\ -  6/i?Au  + 3A?a)

= £(/ií) -  6Am £(/i?) + 3A* x

= £(/>?) -  3A?iX

-  E{\\x{Sl -  K 1)4 + 4A?i1A1i2(51 -  K lf ( S 2 -  K 2)

+ 6A?fiA^(S1 -  K 1)2(S2 -  K 2)2

+ 4Au A?i2(S1 -  K 1) ^ 2 -  K 2f  + A4h2(S2 -  K 2)4) -  3A?a

= A}tl[Ä'1*1'1*1 + 3(Ä'1’1)a]

+ 4AfilAi)2[A'1,1’1’2 4- ?>KX'XK X'2]

+ 6Af1Af2[A'1’1’2’2 + K ^ K 2'2 + 2(K1'2)2]

+ 4AU A\¿[K1'2'2'2 + ZK ^K 2'2}

+ \{2[K2’2'2’2 + 3(K2’2)2] -  3A?tl
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E(h\\\2) —  E(h3fi2 — 3/i¡Aj2 — 3/11/12A14 +  SAî jAĵ )

= E(h3Ji2) — 3Aii2-E,(/i]) — 3Ai)i£(/i1/i2) + 3AiijAii2 

=  E{h\ii2) — SAijAi^

E ^ X ^ S 1 -  K 1)4 +  A2a(3A2j2 +  A1)1A2,2)(51 - K ')\ S 2 - K 2)

+  3Aii1Aii2(Aij2 +  A1iiA2,2)(51 — K x)2(S2 — K 2)2

+ A?,2(A2,2 +  3A1,1A2,2)(51 - K 1){S2 -  K 2)3 +  A?i2A2,2(52 - K 2)4) -  3Au Alia

= A^Ai.afA'1-1-1-1 +  3(ifu )2]

+ A2 1 (3A2 2 + Ai^Aa^ ) ^ 1,1’1,2 + 3 K l,lK 1'2]

+  SAi^Aj^iA2̂  +  AijiA2i2)[Ä' 1’1’2’2 +  K 1,1 K2’2 +  2 (/f1,2)2]

+ a2)2(a22 + 3A1i1a2|2)[A'1A2>2 + sä:1’2*:2’2]

+  A?i2A2l2[^ * 2A2 +  3(/ir2'2)3]-3A 1,1Alí
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■£'(̂ -1122) — -̂ '(̂ -1̂ 2 1̂̂ 2,2 4/li/l2Ait2 — 2̂̂ 1,1 4" AitiA2|2 + 2A2 2)

E(hxh2) — E(h1)\2t2 ~ 4£i(/i1/i2)Ai,2 — ■̂'(̂12)Ai,i 4" AjiiA2,2 4- 2A2 2 

=  E{h\h\) — Aii1A2j2 — 2Aj 2

^(^1,1 ̂ 1,2{Sl ~~ E 1)4 + 2A1i1Ai)2(A1i1A2i2 + Aj 2)(51 — K 1)3(S2 — K 2) 

+ ( î,i^2,2 + 4Ai)1Aj2A2,2 + Aji2)(51 — E 1)2(S2 — K 2)2

+  2A1)2A2,2(A1i1A2,2 +  Aj 2)(S’1 — E 1)(S2 — K 2)3

+ "̂ 1,2̂ 2,2(S2 ~ E 2)4) — AiiiA2,2 — 2Aj2
=  A?,1A?>2[^-1,i>i + 3 (̂ i1i)2]

+ 2AiiiAii2(AiiiA2i2 + Aj 2)[A’1,1,1'2 -j- QK1'1 E l'2\

+ (A^A’ a + 4A1,1A22A2,2 + A<2 )[i^1’1’2’2 + K ^ K 2* +  2 (K^2)2}

+ 2Ai)2A2i2(AiiiA2)2 + A^a)^1’2,2’2 + 3 K 1,2K 2'2]

+ A2)2A2i2[K2’2’2'2 +  3(K2,2)2] -  Au A2,2 - 2A22
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A(/ii222) —  E(hih,2 3/ii/i2A2,2 — 3/i2Aii2 "H 3Aij2A2j2)

=  E(hihr¿) 3£’(/ii/i2)A2,2 — 3£7(/i|) Ai;2 +  3Ai|2A2:2 

—  E(hih3) — 3AX)2 A2)2

-E,(Ai,iAj)2(S'1 — A 1)4 + A2|2(3AiiiA2|2 + Aj 2)(S1 — K l)3(S2 — K 2) 

+ 3Aij2A2i2(AiiiA2i2 + Aj 2)(5 1 — K l)2(S2 — K 2) 2 

+ A22(AXiiA2,2 + 3A?i2)(5 1 -  K l){S2 -  K 2) 3 

+ Aií2A22(S'2 — A-2)4) — 3Aii2A2,2

=  A1i1Ai2[A' 1,1’1'1 +3(A'1’i)2]

+  Ai)2(3Au A2,2 +  A2 2)[A' 1,1,1’2 +  3A'1,1A'1,2]

+  3A1)2 A2,2(A1)1 A2)2 +  Ai)2)[A' 1,1’2,2 +  K ^ K 2’2 +  2(A'1,2)2]

+  A2|2(Am A2,2 +  3A22)[A' 1’2’2’2 +  3Kl’2K 2’2}

+  Aii2A2)2[A'2,2,2,2 +  3(A'2,2)2] — 3Aii2A2,2

E{h2 — 6/2.3 A2,2 +  3A22)

E(h4) -  6A(/i2)A2,2 +  3A2 2 

E{h\) -  3A2 2

E(\{2(Sl -  K 1) 4 + 4A3 2A2,2(S1 -  ̂ ) 3(S2 - K 2)

6A2 2A2 2(54 - K l)2(S2 -  K 2)2 

4Ai,2A3 2(51 - K 1) ^ 2 -  K 2)3 +  A42(S2 - A'2)4) - 3A2>2 

X U K ^ + 3 ( K ^ ) 2}

4A?,2A2,2[ ^ u ’1’2 +  3 K 1-1̂ 1'2]

6A?>2a | >2 [a :1’1’2’2 + k ^ k 2’2 +  2(a :1-2)2]

4Ai,2a 3 2[a : 1-2’2-2 +  3a :1'2a '2’2]

A42[ ^ 2’2’2’2 +  3(^2-2)2]-3A2,2

E(fl2 222) —

+

+

+

+

+

+
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dhi m
de

Adhl u3 rndhlu x au2dK l , „X ÔAi,i
A~dëK ~ 12â0 Ml>1 "  6hl~dT  + 6Al-1_â T

O \  A »

4/ii/ij — Az\h\ — \2h\h\\\¿ + 12zi/iiAi}i — 6 /î  ’— h 6^1,1
C/C7 C/C7

=  - 12£(Mi)Au  - 6E {h \ )^  +  6AM ^

dh\w\ „,9 /ijn i
•fc'l' á/x' "J90 90

4[/ix/i? - £(Äi/i?)] - - £(/i?)]

— I2[hxhx — E{Ji\h\ ) ]Ai i 4“ 1 2 2 i/ i iA i |X

6[ÂÎ -  Æ7(Â?)]
9A i,i
90

a/i1112

dd
dh\ dh

r~Mhih2 + W 1h* ~ 6hlW Xl'2 "  -  3W M m
ou dhï X OL , 9 A U  i 0 5 A i,i , ox 5 A i i2
3/1i_öö‘ Ai'1 "  3hih2~ d T + 3^ r Al’2+ 3Al’l^ r
3hxh\h2 — 3zxh\h2 +  /i2/ i x — Z2^ i — 6hxhxXXi2 +  6zxhxXx<2 

d \
3h\—tt~-- 3/ii/i2Ai 1 +  3zi/i2Ai i — 3/ï2/iiAi x + 322/ixAi 1

od
ou u dAi,i „9AU  5Ai,2
O/Ix/2.2 — 7̂7;---1“ o —■ . Al 0 + 0A1 1-

a/11 ,aA1,2 ,a /n .

90 90 90

 ̂9 /2.1112 ̂  
E (^ 9 “ ) =

+

3E{hxh\h2) -  3zxE{h\h2) +  E(h2h\) -  z2E{h\) -  6Æ7(/i 1* 1)A 1,2 

3E {h \)^£  -  3E(hxh2)Xx>x -  3E{h2hx)Xx>1 -  3E{hxh2)dX̂36

^ \ r , 2  + 3Xu d>"-2

de

de A de

dhxxx2 „,dhxxx2
de de 3{hxh\h2 -  E{hxh\h2)\ -  3zx[h\h2 -  E{h\h2)\ +  [h2h\ 

E{h2h\ )] -  z2[h\ -  E(h\)] -  6 [hxhx -  E(hxhx)\\x¿

+

+

+

,9 A
6zxhxXlt2 -  3 [h\ -  E{h\)]-^- -  3[hxh2 -  E(hxh2)}Ai,! 

32 i /i 2A i i  — 3[h2hx — E(h2hx)]XXtX 

3z2hxXXiX — 3{hxh2 — E(hxh2)\—-̂ Q
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dh1122
de

+

9h ! dh
ri ï ï hlKï + 2W h*h2 -  r~MhlX%2 ~ K̂ - 4'W h2Á1’2

dh2 . all &Ai'2 0, Ö/12 . ,2 dA\ 1 dA\ 1
4hl~dôXx'2 *  Ahxh2~ W  ~ 2h2~ æ x^  -  h2~ d f +  ~ d t X2’2
\ ^ 2,2 , AX 9Xi,2
Al’1_ô T  + 4Al’2^ T
2/lx/li/ï2 — <2Z\hiil2 4" 2/l2̂ x̂ 2 — 2z2̂ l^2 — 2h\h\X2t2 4“ 2-Sx/lxÀ2)2

2 d A 2 t2 A L L A  l A ~ L  \ A Ï  L  \ i A ~ L  \ A L L  ^ 1 ,2
90

ôAi^
w

.dhi ,9A 2,2 Ö/li

/ l l — ---------4 / I 1 / 1 2 A 1  2  +  4 Z 1 /1 2 A 1  o  —  4 / I 2 / I 1 A 1  9  4 ~ 4 ^ 2 / 1 1 ^ 1  2  —  4 / I 1 / I 290
— 2 /I2/I2A11 +  2 2̂/12^1̂ *? 8A '.90

1 , ÖAi,i ÔA2,2 , . .
H— r̂̂ -^2 2 +  Ai 1— — — h 4A afe190 1,2"

EV 9 /lii2 2 ^
£ ( ^ r > 2E{h\h\h\) -  Iz^Eihxhl) + 2E{Ji2h21h2) -  2z2E{h\h2) -  2£7(7ii/ii)A2,2

W )
2a 9X2,2

96 AE(h\h2)A\,2 — 4E(/i2/ii)Aii2 — AE (hih2)
9A1,2

2E(h2h2)Xu  -  E[h\) 9Ai,i ôAij
- ô T " 2’2

90
H— ^t-A2,2 + A ÔA2,2 . . ¿/Ait2

1,1 — ----r 4Aii2-90 98

9hn22 rA,dh\\22A
-  55“ ) =99 99

+

+

2[h\h\h\ — E{hihyh\)) — 2zi[hih\ — E{hih\)\

+ 2[/l2/l2/l2 — £l(/l2/l2/l2)] — 2̂ 2 [/l2/l2 — E{h2h2)}

— 2[h\hi — E(hihi)}X2t2 4~ 2,Zih\X2,2 ~ [h2 — E(h2)\
9X2,2
96

A[h\h2 — £?(/ii/i2)]Ai12 4- 4zi/i2 Ai(2 — 4[/i2/ii — £'(/i2/ii)jAii2
, 9 A i :2

4 2̂/11 Ai  ̂— \̂h\h2 — E{hih2)]- 99 2[/i2/i2 — E(h2h2)} A+
2 T7,/t,2M̂ Al,l2z2h2X1A -  [h\ -  E(h\)\ 99

9hi222
99

d h x  h 3 +  l d h 2 h h 2 ï d h l h \ ï d h 2 h \ %h h d X  -Q0h2 + ~̂QQhlh 2 ~ 3"30'^2̂ 2’2 ~ 3~99hïX2,2 -  3/l1 '
2,2

90
r <9/i2G-^-/i2Ai.2 — 3/i2̂ Al,2 

1,2 ° " 2 90 + 3^ M a2,2 + 3Ai,2ÔA2’290 99
/11/12 — Z\h \  "I-  3/12/11/12 — 3 z2 h \ h 2 — 3 h \h 2 X 2,2 "I-  3 ^i/12A2,2

— 3h2hiX2,2 4* 3z2hiX2,2 — 3h\h2
9 A 2,2

3 / 1 2 ^ 2 + 3 ^
99 99 X2,2 + 3Ai,2

99
9 X2,2
~99~

6 /I2/I2 Ai52 + 6 2̂^2 Alj2
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£,,<9/11222̂
E { ~ ä r ) E(h\h )̂ — Z\E(h¡̂ ) 4- 3E(Ji2h\hfy — 3z2E{h\h )̂ — 3Æ7(/ix^2)^2,2

d\
— 3E(h2h1)X2<2 — 3E(h\h2) '—  6E(h2h2)Xit2

. dXi3 £ ( A l ) ^ + 3 ^ A M + 3AIl2.l'" u
de

d\2
de de de

dh\222 / dh\222 \
A(—5ÏÏ- ) = [/11/12 — E{h\h\)] — 2 j[/i2 — E(hl)\ + 3[/i2/ii/i2 — E(h2hihl)]

— 3z2 \h\ĥ  — £7(/ix ̂ 2 )] — 3\h\h2 — E{h\li2)]X2,2 4- ẑih2X2t2

— 3\h2h\ — E(h2hi)]X2,2 4~ 3z2hiX2)2 — 3[hih2 — E(h\h2)\dX2<2
de

6 [/i2^2 — E(h2h2)]Xit2 4~ 622/12-̂ 1,2 — 3[/í2 — £-(/i2)] dX1,2
de

dh 2222
Ö0

, dh2 1,3 dh■hi -  \ 2 ^ h 2X c u2 d-̂ 2,2
0 0  '“2 a e ,t2/'2,2 2 ae 4- 6A: <9A

2,2- 2,2
a e

— 4 /I2/I2 ~ 422̂ 2 — I2 /I2/I2A2,2 4" I222/I2Ao2lí2A2,2 c , 2 ^ 2 , 2  . c , <9A2,2 
6 /I9——---h 6A2a e ■'2,2'

00

_ , dho222 \
£h ¡r )=

0 \  r\ \
4E(h2h¡) -  4z2E{h\) -  12E(h2h2)X2,2 -  6 E { h \ ) - ^  + 6A2,2 :2,2de

dh2222 r-T / 9h2222 \
de de 4[/l2/¿2 -  ^(^2^1)] -  422[/¿2 -  ■E(/i2)] 

12[/í-2̂ -2 — E(h2h2)]X2,2 4" 12 2̂/12A2,2
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E{hih\)

+

+

+

+

+

+

£ [ ^ r Ati(S" -  A' ’ )4 + <3i r  A?, >A«  + ^ w xl M s ' -  (s2 -  * 2>

3(- ^ T ^ iii^i,2 + -^ P ^ i,iAi,2)(51 -  Ar! )2(S2 -  ft"2)2 
.ôAi
( ï s r A«  + 3 % 2au au )(s ‘ -  A ‘ )<s2 -  A2)3 + ^ ^ ( S 2 -  A'2)4]

d \
dd de de

(3% 1am Ai-2 + ^ l ) [ * ‘ 'u '2 + 3tfu A’'1.21

3< ^ r Aw Au  + t ^ ? , . * u ) [ * ,JA2 + i f 1'1 A’2'2 + 2 (^ ‘ -2)2]ae -M 1 a#

(^ h iX l ,  +  3 ^ A UA2 2)[K'‘" 2 + 3Ä‘ '2/ f 2'2]Ô0
ÔAôM A32[K2,2,2,2 + 3(^2)2)2]

+

+

+

+

+

+

+

+

dAi,
-  £ & a2 1a 1>2(51 - a :1)ẑ i\4

de

( 00 ’ (2A i ,i Ai )2 +  A? ^ 2,2) +  - ^ ^ A i 1A1)2) ( 5 1 -  A '1)3(S'2 -  A -2)
fd\i 1 9AI’2

ae( <90 (̂ i’2 ^ A ^ 1-2̂ 2’2) f)à (2Ai,iAi)2 +  A2 1A2i2))(51 — AT1)2(S2 — A'2)̂

( QQ ^1,2^2,2 + ^ ’2 (A3 2 + 2A1i1Aii2A2,2))(A1 -  A'1)(S2 -  K 2)3

9 X l t2 . 2 \ f C 2 r/2\4t
—T ai,:

,1-A?,1A1i2[jK'1-1*1-1 +  3(A'1-1)2]

d6 ̂ ?,2A2,2(A2 - K 2)*] 
d î,i
de

("~qq (2Ai,xAf 2 + Ai,1 2̂ ,2 ) + p̂ ,’2Ai,1 ^1 ,2 ) [A'1,1,1,2 + 3A'1,1A'1,2de

( de (^ ’2 + 2^2,2) + gg2(2AiiiA22 + A2 1A2i2))[A'1’1,2’2

A'1’1 a:2’2 + 2(A'1,2)2]

( ^ A 22 A2i2 +  (A?,2 +  2A1i1A1)2A2|2))[A'1’2’2,2 +  S ^ 1'2̂ 2'2]
^1,1 \2 \ , ^1,2,,3

e (Al

a , Ai,2A2,2[A'2’2’2’2 + 3(A'2,2)2]
ae

^Al,2 \ 2+
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Eihihtâ) =  

+ 

+ 

+ 

+

+

+

+

+

+

-  « ' Y

( ^ r ( A?-2 + 2Am Ai,2A2,2) + ^ A 1i1AÏ,2)(51 -  K X)\S2 -  K 2)

( d6 (2Au A2.2 + Ai.iA2,2) + ■ ^  (Aj g + 2Ai,iA1i2A2)2))(51 -  K 1)2(S1 -  K 1)

(~ßß~^,‘2̂ 2<2 +
rÔAi,i
1 £
9A
90

9A
90

90
1’2(2A?i2A2,2 + A1i1A22))(51 -  K X)(S2 -  K 2)3

f x ^ U s 2 -  k 2Y\

+ 3 (K^)2}

( ^ ( A ? , 2 + 2A1,1A1,2A2i2) + ^ A u A22)[tf + z k ^ K 1’2}

( dd (2Ai,2A2,2 +  AijA^) H ^-(AJ i2 +  2AiiiAii2A2j2))[/('1’1’2’2 

K 1'1 K 2'2 + 2(A'1>2)2]

( QQ Ai,2A2i2 + QQ (2A22A2j2 + AijA2̂ ) ) ^ 1,2,2,2 + 3Kl,2K 2'2} 

^ K ^ h l K 2'2'2’2 + 3(K2>2)2]
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+

+

+

+

£(/h/l^) = S l^ f A ^ t S ' -  K')<

+ /o^Al.l V 2 X , ÔAi,2
(3 de A1,2A2,2 I- öö

+ o/^Ai,i x \2 , <9Ai)2 
3 90 Al’2A2’2+ 90

+ /dAi.i , 3 , 09A1j2 ,
( 90 A2'2 3 90 Al'2

+ A’ 2(S2 -  A"2)-]

' l \ 3 / c 2

'2\3

^ Ì A Ì i2[tf‘ 'W ''+3(tfM )2]
dXl

( 3 ^ a;,2A2iS + ^ A ? , 2)[tf « • «  + 3

3 ( ^ A U A | ,  +  ^ ì ì a ; i2A2,2)[A -'.'.w  +  K U K 2,2 +  m ¡ ,y i
dd de

A,,2Ali2)[A-“ > + •«]de
d X
90

H a32[ ,̂2,2,2 + 3(^2,2)2]

E{h2h\) = 

+ 

+

+

+

+

+

Xitl(Sl -  K 1)4 + ( 3 ^ A 2 ^ ,2  + ^ \*tl)(S' -  K ' f ( S 2 -  K2) 

3 ( - ^ A m A22 + -^ p A 21Ai>2)(S'1 -  K x)2(S2 -  K 2)2
,9A
( ^ A ? , 2 + S ^ A u A ^ ) ^ 1 -  ^ ) ( 5 2 -  K 2f  + ^ A 3,2(52 -  K 2)4}

dX
de

2,2 9A
de de

dX
de— AtJ/i'11-1'1 +3(A-‘A)21

( 3 ^ A ; , ,A i,2 + ^ A Î , . ) ^ 1'1'’  + 3de de
9A2,2 , 23 ( ^ A , j A ', + ^ A > , A  + K »  K *  + 2 (A -«)2]

,dX
de 

dX
(^ ¡T < 2  + 3 ^ A l,lA k )[* -.W  + 3ATWÄ«]

90|^A?,2[^2’2’2’2 + 3(tf2-2)2]
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E{h2h\h2) =

+

+

+

+

+

+

+

+

+

e [ ^ \ \ ak á s 1 -  x y

(^ (2Al’lA' 2 + A"’iA2'2) + ^ f Au Ai.2)(51 -  ^ X)3(S2 -  ^ 2)

2 + 2Ai,iA1i2A2)2) + ^ ( 2 A UA22 + A2 1A2,2))(51 -  K X)2(S2 

( g# Ai,2A2,2 H ^ -( A i 2 + 2AiiiAi>2A2,2))(51 — K 1)(S2 — K 2)3de
dX
der  A2 2A2,2(52 - tf2)4]

~ ^ ^ A 2 1A1)2[ä ’1’1’1’1 +  SiÄ"1’1)2]

(~Qß (2Ai,iA22 + A2 jA2i2) + ■ ^2’2A2 1Aii2)[AT1’1’1’2 + 3K X'XK 1'2]
, d \
(~ á¿’2( A 1 ,2 + 2Ai,iAii2A2>2) + —^(2A 1,1A22 + A21A2)2))[Ä'1’1’2,2

3A 2,2 ,
30 de

K 1’1 K 2’2 + 2(K1'2)2}

(~gg~ A22A2,2 +  ^ ’2 (Af>2 +  2Ai,iAi,2A 2t2))[K1'2,2'2 + 3KX'2K 2'2) 
dX

def \ l 2\2t2[K2’2’2’2 + 3(K2’2)2}
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EÇh^hl) = E[^ w xu xU s ' -  K "l‘

+ ( QQ (Ai2 +  2AXi!Ait2A2)2) +  QQ /

+ ( QQ (2A12A2,2 + AU A22) +  QQ (

+ ( Ai,2A2 2 +  Q Q  (2Aj 2A2,2 +  A

+ u A¡,2(S! -

= ^ Î A u AÎJ [ii‘.‘AJ + 3(Ar.,i)2,

+ ( 00 (Ai,2 +  2Aii1A1i2A2,2) +  QQ )

+ ( 00 (2A1i2A2,2 + A1)iA22) +  QQ (

+ K ^ K 2’2 + 2(K1’2)2}

+ ( 00 A1>2A2 2 +  Q Q  (2A1)2A2)2 +  A]

+ + 3(^)2,

~>2 z>-2\3

1,1,2,2

2̂,2]

-
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E{h2h\) = £ [ ^ H a?,2(5‘ -

+
/0ö Aij2x2 x d\2,2 (3 ge A1i2A2,2 +  de

+
0/<9A1j2 x X2 , ÖA2l2 
3( de x^ + de

+
,dXi<2 x 3 , 09A2,2 x
( ae A2-2 +  3 ae Al’2

+ A22(S2 - A-2)4]

+

+

+

+

-2\2

2̂\3

dX
df ^ U Kl'1X l + S ^ 1’1)2]

( 3 ^ A ? ,2A2,2 + ^|ÎAÏi2)[iiW..,2 + 3K1.1JTU 

0A1j2 x x2 , 0A2l2 .2
3 ( ^ A1i2Â  + ^ Â Â ) ^ 1’1’2’2 + X 1’1^ 2’2 + 2 ( ^ ’2)2] 

( ^ A |i2 +  3^|ÎA,,2Ali2) [ i f ' « J + 3

d- h ^ \ l ¿ K ^ + m 21)2]
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Appendix 2: Unconditional Moments for the Asset Return and Volatil
ity Processes

Let the conditional moment generating function (MGF) be:

M c = E (e ts\c)

And the unconditional MGF is:

Mu = E(etS)

Mu = E(MC) = E[E{ets\c)\ 

The logarithmic MGF is:

ip(S] t) =  ln(M“) = ln(E(Mc))

The unconditional first moment for the asset returns can be derived as:

M M  _  («• )->  ̂  -  w r ) ) - ' B i ? g )

Hence the unconditional mean of returns is:

d <p(S;t)
K  = dti =o  = E ( K l ) = K x = i i t

where K 1 is the conditional mean of asset return, K\ is the unconditional mean.

d2<p(S;t)
dt\

/ »/fu \ —2 / @MU . 2= ~ {M U) ) + (M u) 1dtx dt\
f)Mc F)2Mc

=  - ( E(MC)Y*[E( ^ - ) ] 2 + (E(M'))-XE ( ^ - )

= - {E (M c))-2[E{E{Sxets\c))]2 + {E(MC)) -X E(E{SletS\c))
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Hence the unconditional second cumulant of return process is:

=  « 1 ,0  = - [ ¿ ^ ( W )]2 + E[E(S2\c)}

=  - ( K 1)2 + E[Kn] = - ( K ! )2 + E\K1'1 + (K 1)2] 

= E[K1’1}

= E[ar + a 1 -  e0T ePT -  1
+/3ePT ' ¡3e0T

1 -  epT ePT -  1 = ar +  a—- -----1--- — — ape0T /3ePT
ar

Note K u is the conditional second moment hence K 11 = K l,1 + (K1)2, where K 1,1 
is the conditional second cumulant and K 1 is the conditional first cumulant.
E(vt) = a.

r)Mc BMC r)2Mc
= 2{E(M')y3[ E ( ^ - ) } 3 -  3(£(M c)) -2( £ ( ^ ) ) ( £ ( ^ ) )

, d3Mc +(E(M‘ )) - 'E(— 3- )

Hence the unconditional third cumulant of returns is:

K '1'1 = =  2{K1)3 -  3(Kl)[E(Kn )\ + [E(Kni)\

= 2{K1)3 -  ZiK'jiEiK1’1 + K lK l)\ + [E(K1,1,1 + 3K XK 1'1 + K lK lK l)\

= E[K1'1'1]

=  E [ ^ - ( a (2 +  /3r -  e^ ( 2  -  0 r)) -  (1 -  e *  +  /3r)^)ptr]

= 2 + 0t — e0T(2 -  (3t)) -  (1 -  ê 1- + /3r)a)pa

_ 3pa(Par + ae~0T — a)
= J2
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aV (S ; 0
dt\

-3  (Mu) -2(<92MU
9i2

2̂ A, , /ru,_2,dMuwd3Mu  ̂ /tru. ,d4Mu 
)2 -  4(M ) 2( _ _ ) ( _ _ )  + (M^ - 19ii dt\ dt\

= - 6 ( e {m c))~4[e { ^ - ) } 4 +  i 2(£(m c))-3[ £ ( ^ ) ] 2£ ( ^ ;

-3(E (Mc))-2( ^ ( ^ ) ) 2 -  A{E {M^))-\E {d^ ) ) E^ MC'dt\
, d4Mc 

+ ( E ( M ' ) ) - 'E ( - ^ - )

dt\ dt\

Hence the unconditional fourth cumulant of returns is:

¿>V (S;t)
dtj |t_0

= + 12(Kl)2[E(Kn )\ -  3[E(Kn )]2 -  A(Kl)E{Kni) + [E(Knn)\

=  - ô ^ 1)4 + 12(ür1)2[Æ?(/C1’1 + K 1 K 1)} -  3[E{K1A + K 1 K 1)}2 

-A (K l)E(K1'1'1 + 3K1K 1’1 + K 1 K 1 K 1)

+[E(K1'1'1'1 + AK1 K 1,1’1 + ZK ^K 1'1 + üK 'K ' K 1’1 + K 1 K 1 K 1 K 1)}

= ElK1'1’1’1] + 3E[Kl'1K x'1] -  3 [£(lf1’1)]2 

_ 3cr2(—ae_2/3r + 4ae~^T + 8aPrp2e~^T + 16ap2e~^T)
= w

3ct2(—16ap2 — 3a + 8 a/?rp2 + 2 a/3r)
+ W 3

Given the relationship between moments and cumulants, we are able to 
obtain the unconditional moments for the asset return process:

E(x) = K lu = p r

Var(x) = K]px = ar 

E[(x -  E(x))3} =  K l’1’1
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as:

E [ ( x - E ( x ) ) 4} =  K l/ ’1’1 +  3 (K 1/ ) *

Similarly, the unconditional first moment for the volatilities can be derived

M M  = (M“) M  =  (E(Mc) ) - ldE^ IC) =  (E(Mc))~lE(
Ot  2 Ot  2 (7^2

Hence the unconditional mean of volatility is:

dt2

Kl =  M M | t= o  =  E{K2) = £ (a (l -  e ^ T) + vte~PT) =  a 

where K 2 is the conditional mean of volatilities, is the unconditional mean.

dMS\t)
dt\ -(m u) 2(—— y  + (m u) —

dt2 dtl
f) Mc Pi1 Mc

= -(E{M<))-*[E( V )]2 +9i2 <9*2
(£(Mc))-2[£(£(S2ets|c))]2 +  (£'(Mc))_1£’(£'(5|e<s|c))
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Hence the unconditional second cumulant is:

K '2 =  — g § ;t ) \t=o =  - [£ (£ (S 2|c))]2 +  E[E(S22 \c)}

a2 + E[K22] = - a 2 + E[K2'2 + (K 2)21

= - « 2 + E [ ^ {  1 -  e~0T)2 + -  e~^)\

+E[a2{ 1 - e_/3r)2 +  2aute-^T(l - e"^) +  u2e~2/3T]

Ui<T

= _ a 2 + ^ (1 _ e-^r)2 + -0T(1 - e - ^ )2/3^ '  7 ' /3
+a2(l -  e^T)2 + 2a2e-/3T(l -  e"^T) + e~20TE{v2)

= " a2 + l | - (1 -  e -^ X 1 *  e_/?T + 2e^ T)
+a2(l -  e^T)(l -  e~PT + 2e^T) + e- 2/3r(£(t;t)2 + var(vt)) 

=  - a2 + (1_ e~flr)(1 + e-fir)(^ + a 2)

+a2e~2̂ T + var(vt)e-20 t

= (1 -  e 2/3r) ^ -  + var(vt)e 20T

-  ( I -  e-2/9rN^ , a(j2 -20t
~  1 j 2/3 + 2/3

CUT2

= ~2p

Given the relationship between moments and cumulants, the unconditional 
variance of volatilities is calculated as:

.2
Var(v) =  K l’2

aa

Following the procedure, the unconditional third moment of volatilities is 
obtained as:

a(2a2/32 + 3q/3ct2 + a4)
E[(v -  E(v))3} = 2/32

and the unconditional fourth moment of volatilities is calculated as:

q( 4a3/33 + 12«2/32ct2 + lla(3cr4 + 3<r6)
E[(v -  E(v)y 4/33
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Plugging the values a = 0.867,/? =  0.269, yo =  -0.5, a =  0.613, n = 0.059 and 
r =  1/252 (1/12) into the formula, the unconditional four moments of both asset 
return and volatility processes can be calculated.
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Appendix 3:

R ( t )
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Figure 4.1: Plot of Mean and 100 individual Return processes when r =  1/252
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Figure 4.2: Plot of Mean and 100 individual Volatility processes when r =  1/252
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Figure 4.3: Plot o f Mean and 100 individual Return processes when r =  1 /1 2
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Figure 4.4: Plot of Mean and 100 individual Volatility processes when r =  1 /1 2
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Table 4.1: True Moments and Moments Calculated From Simulation 
Sampling Interval r = 1/252, Sample Size=252, m = 10000

Parameter Mean Variance Skewness Kurtosis

True Moments

Return 0 .0 0 0 2 0.0034 -0.0311 5.4094
Volatility 0.867 0.6056 1.7951 7.8336

Moments from Simulation

Return 0 .0 0 0 2 0.0034 -0.0300 5.4140

Volatility 0.8667 0.6048 1.7193 7.1907

Table 4.2: True Moments and Moments Calculated From Simulation 
Sampling Interval r = 1/12, Sample Size=360, m = 10000

Parameter Mean Variance Skewness Kurtosis

True Moments

Return 0.0049 0.0722 -0.1415 3.0657

Volatility 0.867 0.6056 1.7951 7.8336

Moments from Simulation

Return 0.0043 0.0737 -0.1106 3.6726

Volatility 0.8665 0.6051 1.7321 7.2612
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Table 4.3: Monte Carlo Results with Observed Volatility 
Sampling Interval r = Sample Size=252, m = 10000

Parameter True Value Estimate Median Std. Dev. 75 Percentile

a 0.867 0.8600 0.8570 0.0193 0.8735

¡3 0.269 0.2619 0.2590 0.0167 0.2781

P -0.5 -0.4886 -0.4900 0.0116 -0.4700

G 0.613 0.6148 0.6030 0.0283 0.6323

p 0.059 -0.0588 0.0490 0.6382 0.0756

Table 4.4: Monte Carlo Results with Observed Volatility 
Sampling Interval r =  -fa, Sample Size=360, m =  10000

Parameter True Value Estimate Median Std. Dev. 75 Percentile

a 0.867 0.8872 0.9274 0.5462 1.1828

P 0.269 0.3296 0.3291 0.1996 0.4747

P -0.5 -0.4772 -0.5038 0.0842 -0.4709

a 0.613 0.6015 0.6244 0.1039 0.6568

P 0.059 -0.0154 -0.0219 0.1512 0.0648
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Chapter 5

Estimation of Continuous-Time 
Stochastic Volatility Model Using 
Realized and Implied Volatilities

5.1 Introduction

Continuous-time stochastic volatility (SV) model has figured prominently in 
the econometrics and finance literature. As it is able to reproduce the main 
features of financial time series, it has dominated the option pricing literature 
since the mid-1980s. However, in general, the estimation of such models is com
plicated since volatility is latent hence has to be integrated out from the model. 
The estimation is even more difficult because aside from a few special cases, the 
transition density functions do not have a closed form expression. For the affine 
diffusion and affine jump diffusion processes, although the transition density 
functions are unknown, the corresponding conditional characteristic functions 
(CCF) can be derived explicitly. Consequently, the empirical characteristic 
function (ECF) approach can be applied. Because of the one-to-one correspon
dence between the distribution function (DF) and the characteristic function
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(CF), the ECF contains the same amount of information as the empirical DF, 
hence can achieve the asymptotic efficiency as the maximum likelihood (ML) 
function. As discussed in Jiang and Knight (2010), by choosing the optimal 
weight function appropriately and approximating it via an Edgeworth/Gram- 
Charlier expansion, the ECF method can also ensure the consistency, hence 
they named the procedure as the consistent approximate maximum likelihood 
(hereafter C-AMLE). For the affine continuous-time SV model, when volatility 
is treated as observed, the C-AMLE approach is convenient and the estimation 
process is simplified as it circumvents the need to integrate out the unobserv
able variables. In Chapter 4, we investigated the estimation performance of 
the C-AMLE procedure via a Monte Carlo study for the affine continuous-time 
SV model when the underlying volatility is observed. The implementation was 
straightforward. Using simulated asset returns and volatilities at both daily 
and monthly frequencies, the Monte Carlo evidence showed that the C-AMLE 
method did a good job at recovering the true parameters. In this chapter, we 
extend our study by examining the estimation of the affine continuous-time 
SV model via an empirical study. In reality, the underlying volatility is unob
served, but a volatility proxy can be employed.

Volatility measures have been widely employed in modern academic and 
financial market practitioner literatures over the last two decades. On one 
hand, with the availability of high frequency intra-day transactions, the real
ized volatility, motivated by the theory of quadratic variation of financial asset 
price process, is able to be computed. On the other hand, the forward look
ing market based implied volatility can be inferred from option prices. Both 
volatility measures are model-free because the calculations do not require any 
particular model. Generally realized volatility is constructed by summing the 
squared asset returns over very small time intervals in a particular trading
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period, and is used as an approximation for the quadratic variation of the 
log price process. As Andersen, Bollerslev, and Diebold (2003), and Bandorff
Nielsen and Shephard (2002) showed, this type of volatility measure provides 
very accurate ex-post observations of the actual unobservable volatility. On the 
contrary, the implied volatility is the ex-ante risk-neutral expectation of future 
market volatility. The construction of this measure is different from the tradi
tional method of implied volatility which depends on the Black-Scholes pricing 
formula. As Britten-Jones and Neuberger (2000) demonstrated, calculation of 
implied volatility does not depend on any particular option pricing model since 
the risk-neutral integrated return variance is only determined by current op
tions prices.

The development of volatility proxies has opened a new door in the es
timation of the continuous-time SV models. For example, Bandorff-Nielsen 
and Shephard (2002) used the quasi-maximum likelihood (QML) estimation 
method based on the time series of realized volatility to estimate the param
eters of continuous-time SV models. Bollerslev and Zhou (2002) constructed 
daily realized volatility from the high-frequency five-minute foreign exchange 
rates, and applied a GMM method to estimate the affine diffusion allowing 
no instantaneous correlation between asset return and volatility processes. 
Bollerslev, Gibson and Zhou (2010) employed a GMM with the sample mo
ments of realized volatility and implied volatility to estimate the volatility 
risk premium or risk aversion, the estimation was straightforward and easy 
to implement. Bollerslev and Zhou (2006) studied the relationships between 
return and realized volatility, return and model-free implied volatility based 
on the affine continuous-time SV model. Corradi and Distaso (2006) used the 
realized volatility and employed both GMM and the simulated method of mo
ments (SMM) for the eigenfunction SV models. Ait-Sahalia and Kimmel (2007)
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studied the maximum likelihood estimation of SV models including the affine 

continuous-time SV (the Heston) model. By proposing closed form approxi
mations to the true unknown likelihood function of the joint observations of 
the underlying asset price and model free implied volatility, they found using 
an implied volatility proxy did not have adverse consequences, and resulted 
in a large computational efficiency gain. Phillips and Yu (2009) used realized 
volatility and proposed a two-stage approach to the estimation of diffusion pro
cesses. In their study, they isolated the parameters in the diffusion function 
from those in the drift function. In the first stage, making use of the central 
limit theory for realized volatility, they estimated the diffusion function param
eters by running a nonlinear least squares regression of the standardized re
alized volatility. In the second stage, the maximum approximate log-likelihood 
function was applied to obtain the estimates of parameters in the drift func
tion. Todorov (2009) employed a GMM approach for general continuous-time 
SV models containing price jumps using realized volatility.

Motivated by the accuracy of these volatility proxies and computational con
venience by using them in the estimation, in this study, we use both realized 
volatility and model free implied volatility and employ the C-AMLE as well 
as the QML procedures for the affine continuous-time SV model. Our empir
ical analysis is based on returns and volatilities of both the S & P 500 and 
Dow Jones Industrial Average Indexes. Specifically, when realized volatility 
is used as a proxy in the model, we construct both daily and monthly returns 
and realized volatilities for these two markets and use them in our estimation. 
Moreover, we also estimate the affine continuous-time SV model using monthly 
returns, realized volatilities, and model-free implied volatilities of both equity 
markets. The rest of this paper is organized as follows. In section 5.2 we briefly
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introduce the affine continuous-time model and a necessary model transforma

tion. We also list the estimation methods employed in this study. In the next 
section, we discuss two volatility proxies, namely realized volatility and model 
free implied volatility. Section 5.4 reports the empirical results. A brief conclu
sion follows.

5.2 Affine Continuous-Time SV Model and Model 

Transformation

5.2.1 Model Specification

The affine continuous-time SV model consists of two stochastic differential 
equations (SDE):

dx t — pdt + y/vtdBu (5.1a)

dVt = p ( a - V t)dt + ay/vtdB2t (5.1b)

dBudB2t = pdt (5.1c)

where xt,Vt are state variables, Bu,B2t are two different standard Brownian 
Motions, and a,/3,p, cr, y are five parameters.

The affine continuous-time SV model was proposed by Heston (1993) (hence 
is also known as the Heston model). As we discussed in Chapter 4, the Heston 
model can capture many stylized facts of financial time series, moreover, it pro
vides a closed-form solution for the European option prices and the CCF of the 
asset return, hence has been widely used in both econometrics and empirical 
finance literature. But in general volatility is treated as latent in such model. 
In this chapter, we employ two types of volatility measures, namely realized
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volatility and model-free implied volatility, in our estimation. However, it is 
noted that the model above is constructed under the physical measure P, while 
the model-free implied volatility represents the risk-neutral expectation of fu
ture market volatility, it is only well defined under the equivalent Martingale 
measure Q. Some transformation is necessary.

Define a standard Brownian motion under measure Q, B®t, as

BS = Bu + Si ‘Sfcis

where the probability measure Q is defined by its Radon-Nikodym derivative 
with respect to P,

¿21.- — e~ JoT utdBu -  ± fj uifdt 
d P  I '  T

with u>t =

The term is known as the market price of risk. Differentiating and
rearranging yields:

Therefore

dxt =

dBu — dBu +  iLj^ -d t

fidt + \J~VidB\t 

fidt + VVt{dB?t
W t

dt)

^ -y / V tf L ^ . )dt+y/VtdB?t

H* dt + V vtdB?t

Define a Q-Brownian motion



231

B*2t = Bit +

Specify the price of risk uit = \fVt,

dVt =  /3(a — Vt)dt + o \fVtdBit

= fi(a — Vt)dt + ay/VtdB® — a\/Vtujtdt

= (¡3a -  ¡3Vt -  uVt)dt + o\JvtdB®t

= +  -----Vt)dt + ay/VtdB%tp + cr
= P*(a* - V t)dt + ay/vtdB%

Hence the “adjusted”, or “risk-neutralized” affine continuous-time SV model 
is written as:

dx t = p* dt + \JVtdB®t (5.2a)

dVt =  P*(a* — Vt)dt + a^VtdB% (5.2b)

dB?tdB% = pdt (5.2c)

where //* refers to the risk-neutral interest rate.1 The “adjusted” long-run mean 
parameter a* = -j^ , and mean-reversion parameter /?* = P + a. The parameter 

p again controls the skewness of the distribution, p > 0 induces a right-skewed 
distribution, and p < 0 induces a left-skewed distribution. The functional form 
of the model is invariant with respect to switching from the physical measure 
P to the equivalent Martingale measure Q. p,*,a*,(3*,p,o are time and state 
homogenous coefficients which we need to estimate.

1Usually one uses r for the risk-neutral interest rate, we use /(* to compare it with the 
original asset return parameter p.
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5.2.2 C-AMLE And QML Estimation Methods by Using Volatil

ity Proxies

In Chapter 4, we discussed the C-AMLE procedure and examined the estima
tion of this procedure for the affine continuous-time SV model when the under
lying volatility was observed via a Monte Carlo study, the evidence showed that 
this approach did a good job at recovering the true parameters. In this chapter, 
we extend our investigation via an empirical study in which a volatility proxy 
is employed. The system of the C-AMLE estimation equations is following:

l 'UdK*  1 dXtj
T 86 1 2 86 l(S 't+1 -  -  Kj ) -  K i,j]

1 8Kl'j'k . . , _ _
+ 6 [~ 8 6 ~ {hijk ~ E^ \ St)) + 3Kl'>'k((hihjhk -  EihihMSt))

r\ \
- Zi(hjhk -  E(hjhk\St)) -  hi\jtk -

1 dKi>:>'k'1 -  -
+ 24 [~ 8 6 ~ ( hijkl ~ E^ kl̂  + (hihjhkhi -  E ^ h ^ S t ) )

-4zi(hjhkhi -  E(hjhkhi\St)) -  \2(hihj\kyi -  E(hihj\kti\St))

+12ZihjXu -  6 (hihj -  E ihih^St) )^ ) } }  = 0 (5.3)

The vector 6 consists of five parameters, consequently there are five equa
tions. St+i =  {xt+1,Vt+i} is the vector of state variables. Plugging the ob
servations of asset return together with those of a volatility proxy into these 
equations, the solution yields the estimates for p*, a*,/3*, p, and a 2 *.

2The detailed discussion about these estimation equations is provides in the Appendix one
in Chapter 4.
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As a special case, if the logarithmic transition density function is approxi
mated as a log-normal distribution, then the approach is essentially the quasi
maximum likelihood (QML) method. The system equations are simplified as:

f  -  -  K>) -  * « ] }  = 0 (5.4)

5.3 Volatility Proxies

The underlying volatility entering the affine continuous-time SV model is not 
directly observed, while some volatility proxies have been developed and em
ployed for estimating and forecasting purpose in econometrics and empirical 
finance literature over the last two decades. In this study, we employ both real
ized volatility and model-free implied volatility. As we discussed in Chapter 3, 
realized volatility is a consistent, efficient estimator for the latent underlying 
volatility. We employed this volatility proxy in the estimation and forecasting 
of the discrete-time SV models, empirical evidence showed that the estimates 
were stable, and forecasting performances of different models were easily com
pared. In this chapter, we extend our study of SV model by using realized 
volatility in the estimation of the affine continuous-time SV model. In addi
tion, we employ another popular volatility proxy, model-free implied volatility, 
in our estimation. The estimation performance by using these different volatil

ity proxies hence can be examined.

5.3.1 Realized Volatility Construction

In a trading period t, the transaction prices Ptid,d =  1 are observed,
where D is the number of observations in the period t. The asset return can
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be computed by rt<d — log{Pt,d) -  log(Pt,d-1). A standard formula for realized 
volatility in the trading period t is:

m  =
d=0

We have discussed realized volatility, its distribution in Chapter 3. In the 
same chapter, we considered different approaches to construct daily realized 
volatility. For instance, we considered an approach to deal with the closed- 
part effect when we constructed daily realized volatility of equity markets; we 
also considered an approach to take into account the first-order autocorrelation 
of high-frequency asset returns3. Our evidence showed that realized volatili
ties constructed from these different approaches yielded similar estimation and 

forecasting results. In this chapter, we employ the standard approach above. 
As we mentioned, we construct realized volatilities of S & P 500 index as well 
as those of Dow Jones Industrial Average indexes at both daily and monthly 
frequencies. The daily realized volatilities are constructed by summing five- 
minute squared asset returns within each trading day. Specifically, as equity 
markets open from 9:30am to 4:00pm, in total we have 78 five-minute returns 
in each trading day, the daily realized volatilities are thus constructed by:

78

Rvt =  Y , rl
d= 1

Similarly, there are approximately 22 trading days in each month, the monthly 
realized volatilities are constructed by summing the squared daily returns:

22

m  = J 2 rld
d= 1

3Detailed discussion is provided in Chapter 3.
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5.3.2 Model-Free Implied Volatility

In contrast to realized volatility which affords the ex-post observations of the 
true latent volatility, the implied volatility provides the ex-ante risk neutral ex
pectation of future financial market volatility. The traditional implied volatil
ity is derived based on the Black-Scholes model (hence BSIV). Although the 
BSIV has been commonly used to forecast volatility for a long time, it is well 
recognized that the constant volatility assumption of the BSIV violates the 
reality. Instead, Breeden and Litzerberger (1978) showed that the entire risk
neutral distribution and model-free variance of the underlying asset could be 
extracted from options prices. Further, in Britten-Jones and Neuberger (2000), 
they first derived model-free implied volatility under the diffusion assumption. 
As demonstrated in Britten-Jones and Neuberger (2000), the risk-neutral inte
grated return variance is entirely determined by current option prices. Conse
quently the calculation of implied volatility should not depend on any particu
lar option pricing formula.

Generally, as shown in Britten-Jones and Neuberger (2000), the model-free 
implied volatility is calculated by:

MFIVtit+a = 2 [  
Jo

C{t + A, K) -  C{t, K) 
K 2 dK (5.5)

where C(t, K) refers to the price of a European call option maturing at time t 
with strike price K.

Britten-Jones and Neuberger (2000) showed that the model-free implied 
volatility is equivalent to the risk-neutral expectation of the integrated volatil
ity of future financial market:
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MFIVt,t+A = £*(Vf,t+A|Ft) (5.6)

where E* refers to the expectation under the equivalent Martingale measure

Q.

Britten-Jones and Neuberger (2000) illustrated their method assuming that 
the underlying price path is continuous. Further, Jiang and Tian (2005) ex
tended Britten-Jones and Neuberger (2000)’s study by considering asset price 
processes with jumps and showed that the computation of model-free implied 
volatility in this case was still valid. The concept of model-free implied volatil
ity has been widely accepted and applied in modern empirical finance. For 
example, the Chicago Board Options Exchange (CBOE) started to provide the 
new VTX index for the S & P 500 volatility since September 23, 20034 and VXD 
index for the Dow Jones Industrial Average volatility since March 2, 2007. 
These two implied volatilities are both model-free and calculated on the concept 
of fair value of future variance which is theoretically identical to the approach 
developed in Britten-Jones and Neuberger (2000). In our study, we construct 
the model-free implied volatilities of both the S & P 500 and the Dow Jones 
Industrial Average indexes based on the new VIX and VXD indexes provided 
by the CBOE. We name the measure from these indexes as MFIV1. As the new 
VIX index is square root of the risk neutral expectation of S & P 500 variance 
over the next 30 calender days and quoted on an annualized variance basis, we 
first take square then de-annualize hence obtain the MFIV1 for the S & P 500 
index. The MFIV1 for the Dow Jones Industrial Average index is calculated

4The old VIX index provided by the CBOE until September 21, 2003 was based on index 
options for the S & P 100, and relied on the Black-Scholes formula. It is now labeled VXO to 
be distinguished from the new VIX.
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from the same procedure since the VXD is calculated using the same method

ology as the VIX. We compare the first four moments, the extreme values, the 
percentiles, and the ACF values of our MFIV1 of S & P 500 index with those 
calculated in Bollerslev and Zhou (2006), all values are very similar.

In their recent study, Jiang and Tian (2007) refined the computation of the 
model-free implied volatility. They examined the new VIX provided by the 
CBOE. As they showed, the truncation errors induced by the limited availabil
ity of strike prices, the discretization error induced by numerical integration, 
and expansion error induced by the Taylor series expansion of the log func
tion used in the CBOE procedure resulted in either underestimation or over
estimation of the time volatility. To fix the problem, they proposed a smooth 
method for extracting model-free implied volatility from option prices. In their 
study, the interpolation was first implemented between listed strike prices to 
construct a smooth function that exactly fitted the known implied volatilities, 
then the extrapolation procedure was implemented outside the range of listed 

strike prices to construct an extension of the implied volatility function in the 
two tails of the strike price distribution. As they demonstrated, their method 
ensured that the constructed implied volatility function was smooth over the 
entire range of strike prices, and the constructed implied volatilities were ac
curate and robust. To investigate whether using implied volatility introduced 
by Jiang and Tian (2007) will improve the estimation of continuous-time SV 
model, we also construct the model-free implied volatility of S & P 500 index 
based on Jiang and Tian(2007)’s method and name it as MFIV2.
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5.4 Empirical Application

Our empirical analysis is based on returns and volatilities for the S & P 500 

and Dow Jones Industrial Average indexes at both daily and monthly frequen
cies. The daily returns and realized volatilities for the S & P 500 index span 
the period from March 4, 2003 through September 24, 2008 with 1402 daily 
observations. Those for the Dow Jones Industrial Average indexes cover the 
period from April 1, 2003 through September 19, 2008 with the sample size 
T = 1378. The monthly returns, realized volatilities, and MFIV1 for the S & 
P 500 index span the period from January 1996 through December 2009 with 
T =  168. Those for the Dow Jones Industrial Average indexes cover the pe
riod from October 1997 through December 2009 with sample size T = 147. As 
we mentioned we also construct MFIV2 of S & P 500 index based on Jiang 
and Tian (2007)’s implied volatilities, the data is available from January 1996 
through May 2004 with sample size T = 101. The daily realized volatilities for 
both equity markets are constructed from the five-minute high frequency data 
which are kindly provided by Dinghai Xu. The monthly realized volatilities 
of the S & P 500 index are constructed from the daily closing prices provided 
by the CBOE, and those of the Dow Jones Industrial Average index are con
structed from the daily closing prices provided by Yahoo finance. The monthly 
returns for these markets are obtained from Wharton Research Data Services 
(WRDS). Both VTX and VXD indexes are downloaded from the CBOE web. The 
MFIV2 of the S & P 500 index are constructed from implied volatilities kindly 
provided by George Jiang.
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5.4.1 Descriptive Statistics

The summary statistics of daily return, squared return, realized volatility and 
logarithmic realized volatility series for the S & P 500 index are reported in Ta
ble 5.1. Those for the Dow Jones Industrial Average are reported in Table 5.2. 
In each table, the top panel shows the first four moments of these series. The 
middle panel reports the minimum, the 5th, 25th, 50th, 75th, 95th percentiles, 
and the maximum values. And the bottom panel displays the autocorrelation 
functions up to lag 10. The mean value of S & P 500 returns is 0.0252 with 
standard deviation 0.9189. The value of skewness is -0.2466 and that of kurto- 
sis is 5.9066. The negative skewness value along with the large kurtosis value 
(much greater than 3) suggest that the return series are negatively skewed 
and have fatter tails comparing with a normally distributed random variable. 
The range of the returns is 9.0314. The ACF values of the return series are 
mostly very small in absolute value (less than 0 .1 ) suggesting that there is no 
significant serial correlation, however, the ACF values of the squared daily re

turns are all over 0.1. This finding is consistent with the stylized fact that the 
return series do not exhibit serial correlation while the squared or absolute re
turn series display pronounced serial correlation. The mean value of S & P 500 
daily realized volatilities is 0.7566 with standard deviation 1.3150. The pos
itive value of skewness along with large value of kurtosis indicate that daily 
realized volatility series do not follow a normal distribution, instead, they are 
positively skewed with fat tails. The range is 22.1412. The ACF values are all 
large with slow decay suggesting a strong serial correlation between volatili
ties. This finding is consistent with the stylized fact that volatility series are 
clustering and persistent hence predictable. On the other hand, when we take
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logarithm of the realized volatility series, the value of skewness decreases sig
nificantly towards zero, moreover, the kurtosis value decreases dramatically 
towards 3, suggesting that the distribution of logarithmic realized volatility is 

close to a normal distribution, which is a common finding in the literature. The 
ACF values of the logarithmic realized volatilities are all very large, suggest
ing a pronounced serial correlation. The moments, quantiles, and ACF values 
of the Dow Jones Industrial Average in Table 2 display the similar patterns.

Figure 5.1-5.2 plot the S & P 500 daily return and realized volatility series, 
respectively. Overall, the return series display a stationary property, all the 
values are fluctuating around the long-run mean. We notice that the return 
values are high in absolute value in early 2003 then they are relatively smooth 
from 2004 through 2006, after mid-2007, the returns series again have high 

absolute values, and in September 2008, the absolute values of returns reach 
the peak. The relatively large absolute return values in 2003, 2007-2008 cor
respond the stock market downturn from 2002, the second U.S. bear market of 
the 2 1 st century as a result of subprime mortgage lending crisis, respectively. 
The observation above is confirmed by the plot the daily realized volatility se
ries. The volatilities are relatively small from mid-2003 to mid-2007, then they 
are very high after mid-2007 and experience an unusually high value in 2008 
corresponding the acute crisis during that period. Figure 5.3-5.4 plot the Dow 
Jones Industrial Average daily return and volatility series, respectively. These 
plots display similar patterns as those of S & P 500 index which is not surpris
ing since the two equity indexes are related.

Table 5.3-5.5 report the summary statistics of monthly returns, realized 
volatilities, model-free implied volatilities and logarithmic volatilities for both 
equity markets. Same as Table 5.1 and 5.2, the top panels show the first four
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moments, middle panels report the quantiles and extreme values, and the bot
tom panels display the ACF values. In each table, the second column reports 
results for the return process, the third to fourth columns report those for 
monthly realized volatilities and logarithmic realized volatilities. And the fifth 
to sixth columns report results for monthly MFIVs and logarithmic MFIVs. All 
three tables display similar patterns. From the examination of these tables, we 
find that the monthly return series are not normally distributed. Same as daily 
returns, they are all negatively skewed with fat tails, in addition, the standard 
deviation values are very large. The range values of monthly returns are be
tween 24 to 27. The ACF values of monthly returns are very small and non
significant suggesting that the series are not serial correlated. These obser
vations along with those from daily returns suggest that the return series are 
negatively skewed with fat tails and at low frequency (such as daily, monthly) 
they are not serial correlated. However the range values of monthly returns are 
much larger than those of daily returns. The mean values of monthly realized 
volatilities of both equity markets are all over 30, and the values of skewness 
and kurtosis are much larger than zero and 3, respectively, indicating that 
same as the daily realized volatilities, the monthly realized volatilities are dis
tributed with positive skewness and high kurtosis. Also same as the daily 
realized volatilities, the monthly realized volatilities exhibit a pronounced se
rial correlation. Again, the values of skewness and kurtosis for the logarithmic 
monthly realized volatilities decrease dramatically towards zero and 3 respec
tively, suggesting that they are approximately a Gaussian process. The mean 
values of MFIVs are over 40, much larger than those of realized volatilities. 
Same as realized volatilities, the values of skewness and kurtosis of MFIVs 
are all greater than zero and 3 respectively suggesting that the distributions of 
MFIVs are positively skewed with fat tails. Also ACF values are all very large
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suggesting that there is significant serial correlation between the MFIVs. The 
logarithmic MFIVs display similar patterns as the logarithmic realized volatil
ities. Comparing the monthly realized volatilities and MFIVs, we find MFIVs 

have higher mean values. The common features of both series are those of pos
itive skewness and fat tails. The ACF values of both series are high and decay 
very slowly, suggesting that both proxies are able to capture the stylized facts 
of true volatilities, such as non-normal distribution, volatility persistency.

Figure 5.5, 5.7, 5.9 plot monthly returns for both equity indexes. Figure 
5.6, 5.8, 5.10 report the plots monthly realized volatilities along with monthly 
model-free implied volatilities in which the dash line represents realized volatil
ities and the solid line is the model-free implied volatilities . For both indexes, 
the lowest returns occurred in August 1998, 2002, and mid-2008 indicating 
that the Asian finance crisis, the stock market downturn of 2002, and the sub
prime mortgage lending crisis which significantly affected the equity indexes. 
Overall the monthly return series display a stationarity property, the returns 
take either positive or negative values but all fluctuate around the long run 
mean. The above finding is confirmed by the plots of the volatility series. From 
Figure 5.6, 5.8, 5.10, we notice that for both volatility series, the most volatile 
periods are 1998, 2002, and 2008. In 2008, both volatilities reached the un
usual high value corresponding the greatest equity loss since 1931. Comparing 
the plots of these two volatility series, we find although in general the values 
of MFIVs are higher than those of realized volatilities, they display similar 
patterns. They are both able to capture the volatile periods for both equity 
indexes, indicating that both volatility proxies are accurate estimators for the 
latent underlying volatility.

As discussed in Jiang and Tian (2007), the VTX index provided by the CBOE
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either underestimates or overestimates the true volatility, to fix the problem, 
they proposed a smooth method. In Figure 5.11, we plot both MFIV1 from 
the VIX and MFIV2 from Jiang and Tian (2007)’s volatilities during January 
1996 through May 2004. The dash line is MFIV1, and the solid line represents 
MFIV2. We find the values of both model-free implied volatilities are almost 
identical during the volatile periods, however, the values of MFIV2 are always 
higher than those of MFIV1 when volatilities have low values, suggesting that 
Jiang and Tian (2007)’s approach fixed the problem of underestimation signifi
cantly.

5.4.2 Empirical Results

Table 5.6 reports the parameter estimates and their asymptotic standard er
rors using daily realized volatilities. The top panel reports the results of S & 
P 500 index and the bottom panel shows the results of Dow Jones Industrial 
Average indexes. In each panel results from both the QML and the C-AMLE 
approaches are reported. Overall, the two sets of data provide similar parame
ter estimates except that the signs of the estimated p, p* from the C-AMLE pro
cedure are positive for S & P 500 index while they are negative for Dow Jones 
Industrial Average indexes. Most estimates are statistically significant regard
less of the estimation method except those of parameter p*. We notice that the 
values of estimated a*, /?*, a, and p* from the C-AMLE method are much larger 
than those from the QML approach. Based on these estimates, we are able to 
calculate the first four unconditional moments of returns and realized volatil
ities by plugging the estimates into the analytical moments derived from the 
model 5. Table 5.7 reports the moments for both equity indexes. Comparing

5the formulas are provided in Chapter 4.
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these moments with those calculated from empirical data which are reported 
at the top panel of Table 5.1-5.2 (the second column reports the moments of re
turn series, and the fourth column reports moments of realized volatilities), we 
find both QML and C-AMLE estimates can capture the asymmetric behavior of 
both returns and realized volatilities of Dow Jones Industrial Average indexes, 
however, the value of skewness of S & P 500 index returns is positive based on 
the C-AMLE estimates while it is negative based on the QML estimates. On 
the other hand, the signs of skewness and kurtosis of realized volatilities are 
always positive, and the magnitude of kurtosis is larger than 3, consistent with 
those calculated from realized volatility series. However, we also find some of 
the moments especially the fourth moments of realized volatilities are differ
ent from those calculated from their data counterparts, the possible reason is 
the realized volatilities are unusually high in 2008, the high kurtosis value 
induced by those unusual high values is hard to be captured. Comparing the 
moments from two estimation methods, we find for S & P 500 index, the C- 
AMLE approach outperforms the QML method at capturing the distribution of 
returns since the mean and kurtosis values from the former are much closer 
to their data counterparts. For Dow Jones Industrial Average, the third and 
fourth moments of returns from the C-AMLE estimates are closer to their data 
counterparts, while the mean value is negative while that from real data is 
positive.

Table 5.8 reports the estimates and their asymptotic standard errors from 
S & P 500 monthly returns and realized volatilities, and Table 5.9 reports re
sults using S & P 500 monthly returns and MFIV1 based on the VIX index. 
Most estimates have relatively small standard errors regardless of the esti
mation method and volatility proxy, suggesting that the estimates are stable. 
The signs of all estimates are consistent across different methods and volatility
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proxies. The estimated correlation coefficient parameter p are always negative, 
implying the negative skewed return distribution which is typically observed 
in financial markets. From examination of Table 5.8, we find the estimates 
of ot*, /?*, <j from the C-AMLE approach are higher than those from the QML 
method, whereas the estimates of p, p* are smaller in absolute value. From Ta
ble 5.9, we notice that all the estimates from the C-AMLE method are greater 
than those from the QML in absolute value. Table 5.10 shows the moments 
based on estimates. Overall, the moments based on estimates from monthly 
data are closer to their empirical counterparts comparing with those based on 
estimates from daily data. In particular, when MFIV1 is used as a volatility 
proxy, most moments of MFIV1 based on the C-AMLE estimates are close to 
those computed from real data, and the moments of returns from the C-AMLE 
method are also closer to moments from data comparing with those using re
alized volatilities, suggesting that the C-AMLE method outperforms the QML 
procedure when MFIV1 is employed in the estimation. It is noticed that using 
monthly realized volatilities, the QML method overestimates the mean param
eter of returns and underestimates the mean parameter of volatilities, while 
the C-AMLE procedure overestimates the mean parameter of volatilities, it 
provides an accurate estimate of return mean parameter.

Table 5.11-5.12 report the results using S & P 500 realized volatilities and 
MFIV2, respectively. When realized volatility is employed, the signs of esti
mates are consistent across different estimation methods, however when MFIV2 
is used, the estimated p is positive while the estimated p* is negative when the 
QML is applied. When realized volatility is used, the estimates of a* are dif
ferent across different approaches, while when MFIV2 is used, the estimates 
of this parameter are very similar. We examine the moments reported in Table 
5.13, and find the moments of returns and realized volatilities from the QML
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are much closer to their empirical counterpart than those from the C-AMLE, 

indicating that the QML approach fits data better than the C-AMLE when re
alized volatilities are applied. On the contrary, when MFIV2 is employed as 
a volatility proxy, the C-AMLE procedure provides more stable and accurate 
estimates than the QML. For example, the negative estimated p from the C- 
AMLE suggests that the negatively skewed distribution of returns is captured. 
When we compare the moments from these methods with those from real data, 
we find almost all moments of return series and those of MFIV2 based on the 
C-AMLE estimates are close to their empirical counterparts suggesting the C- 
AMLE approach outperforms the QML method when MFIV2 is employed.

Table 5.14-5.15 report the results using Dow Jones Industrial Average in
dexes realized volatilities and MFIV1, respectively. And Table 5.16 displays the 
moments calculated from both the QML and the C-AMLE approaches. From 
examination of Table 5.14, 5.15, we find most estimates from the QML method 
have relatively large standard errors, whereas the estimates from the C-AMLE 
approach have much smaller standard errors, suggesting the C-AMLE provides 
more stable estimates. Comparing moments in Table 5.16 with those in Table 
5.5, we find when using realized volatilities, the moments of returns and re
alized volatilities from the C-AMLE procedure are closer to those calculated 
from real data. This is also the case when MFIV1 series are used except that 
C-AMLE overestimates the long run mean of MFIV1 while QML underesti
mates it. These findings suggest that the C-AMLE approach fits Dow Jones 
Industrial Average indexes monthly data better than the QML.

In summary, we find when daily realized volatilities are used in the estima
tion, in general neither the QML nor the C-AMLE approach does a reasonable 
job. However, when using monthly data, the estimates especially those from
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the C-AMLE procedure are mostly stable and are able to capture the nega

tive skewness and fat tails of return distribution as well the positive skew
ness and fat tails of volatility distributions. One possible reason is the daily 
data spans the period from about April 2003 through September 2008, during 
which the U.S. equity markets experienced unusual bear market of the 21st 
century as a result of subprime mortgage lending crisis. The dynamic prop
erties of return and volatility processes during these extreme volatile period 
are difficult to capture. On the other hand, the monthly data span from 1990s 
through 2009, during which the U.S. equity markets experienced volatile but 
also relatively longer period of smoothness. We notice that the moments cal
culated from the C-AMLE estimates are not perfectly but relatively close to 
those computed from real data. For the S & P 500 index, we use both MFIV1 
based on the VIX provided by the CBOE and MFIV2 based on volatilities from 
Jiang and Tian (2007)’s method, the results are similar, suggesting that Jiang 
and Tian (2007)’s smooth method does not improve the estimation of the affine 
continuous-time SV model significantly.

5.5 Conclusion and Extension

In this chapter, we investigated the estimation of the affine continuous-time SV 
model using two different volatility proxies via an empirical study. We applied 
both the QML and the C-AMLE approaches and our empirical analysis was 
based on daily and monthly data of S & P 500 and Dow Jones Industrial Aver
age indexes. The evidence showed that using daily realized volatility, neither 
method did a good job. However, when using monthly data, the estimation im
proved. Especially when we employed the model-free implied volatilities, the
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estimates were stable, and the moments calculated from the estimates were 

close to the moments of real time series. In summary, we found the C-AMLE 
method outperformed the QML approach, and using model-free implied volatil
ities yielded more stable estimates than employing realized volatilities.

When the volatility state variable is unobserved, other estimation methods, 
such as the generalized method of moments (GMM) can be applied. In our 
future study, to further investigate the estimation performance of the C-AMLE 
procedure, we will extend our research by comparing the estimates of the C- 
AMLE using volatility proxies with those applying the GMM method when 
volatility is unobserved.
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5.6 Appendix

Figure 5.2: Plot of S & P 500 Daily Realized Volatility Series
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Figure 5.3: Plot of Dow Jones Daily Return Series

Figure 5.4: Plot of Dow Jones Daily Realized Volatility Series
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Figure 5.5: Plot of S & P 500 Monthly Return Series (T=168)

Figure 5.6: Plot of S & P 500 Monthly RV and MFIV1 Series (T=168)
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Figure 5.7: Plot of S & P 500 Monthly Return Series (T=101)

Figure 5.8: Plot of S & P 500 Monthly RV and MFIV2 Series (T=101)
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Figure 5.9: Plot of Dow Jones Monthly Return Series

Figure 5.10: Plot of Dow Jones Monthly RV and MFIV1 Series
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Table 5.1: Summary statistics of S& P 500 daily return, squared return, RV, 
and ln(RV) during the period of March 4th 2003 through September 24th 2008 
(T=1402)

xt A RV ln(RV)

Mean 0.0252 0.8444 0.7566 -0.7540
St.Dev. 0.9189 1.8649 1.3150 0.8778

Skewness -0.2466 5.4794 8.9202 0.5995
Kurtosis 5.9066 44.1199 113.5753 3.7302

Min -4.8354 0.0000 0.0574 -2.8577
5pct Qntl. -1.4668 0.0017 0.1373 -1.9857
25pct Qntl. -0.4394 0.0412 0.2489 -1.3907
50pct Qntl. 0.0875 0.2236 0.4296 -0.8449
75pct Qntl. 0.5139 0.8272 0.8209 -0.1974
95pct Qntl. 1.4308 3.4717 2.1606 0.7704

Max 4.1780 23.3811 22.1986 3.1000

ACF1 -0.1241 0.2051 0.6714 0.7085
ACF2 -0.0327 0.3137 0.5238 0.6869
ACF3 -0.0074 0.2121 0.4865 0.6559
ACF4 -0.0081 0.2148 0.3628 0.6295
ACF5 -0.0309 0.1924 0.3092 0.6024
ACF6 -0.0046 0.1482 0.3149 0.5730
ACF7 -0.0288 0.2159 0.3013 0.5461
ACF8 -0.0373 0.1535 0.2548 0.5249
ACF9 0.0267 0.1768 0.2545 0.5209

ACF10 0.0315 0.1283 0.2166 0.5197
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Table 5.2: Summary statistics of Dow Jones Indexes (DJIA) daily return, 
squared return, RV, and ln(RV) during the period of April 1st 2003 through 
September 19th 2008 (T=1378)

xt xt RV ln(RV)

Mean 0.0257 0.7415 0.7040 -0.7708
St.Dev. 0.8610 1.5398 1.1151 0.8316

Skewness -0.2320 5.0372 8.5459 0.5373
Kurtosis 5.3408 38.7601 109.7932 3.9035

Min -4.2258 0.0000 0.0463 -3.0726
5pct Qntl. -1.4178 0.0009 0.1410 -1.9590
25pct Qntl. -0.4039 0.0388 0.2538 -1.3712
50pct Qntl. 0.0512 0.2022 0.4386 -0.8243
75pct Qntl. 0.4881 0.7475 0.7790 -0.2497
95pct Qntl. 1.3858 3.2713 1.9057 0.6449

Max 3.5893 17.8574 20.3753 3.0143

ACF1 -0.0951 0.1509 0.6050 0.6645
ACF2 -0.0279 0.2406 0.4610 0.6320
ACF3 -0.0007 0.1762 0.4056 0.5955
ACF4 -0.0101 0.1988 0.3109 0.5710
ACF5 -0.0363 0.1365 0.2731 0.5370
ACF6 -0.0224 0.1242 0.2983 0.5130
ACF7 -0.0113 0.2172 0.2880 0.4826
ACF8 -0.0361 0.1639 0.2552 0.4725
ACF9 0.0344 0.1868 0.2512 0.4714
ACF10 0.0269 0.1301 0.2080 0.4644
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Table 5.3: Summary statistics of monthly return, RV, MFIV1 for S & P 500 
index during the period of January 1996 through December 2009 (T=168)

xt RV ln(RV) MFIV1 ln(MFIVl)

Mean 0.4838 34.8632 3.0650 46.8196 3.5755
St.Dev. 4.6566 48.4525 0.9225 44.9078 0.7063

Skewness -0.6924 4.0240 0.4928 3.9884 0.3303
Kurtosis 3.8871 22.4278 3.1691 25.7486 3.2441

Min -16.8454 3.5791 1.2801 8.8580 2.1813
5pct Qntl. -8.1680 5.4221 1.6905 11.8611 2.4731
25pct Qntl. 1.9766 10.8142 2.3807 22.1001 3.0956
50pct Qntl. 0.9956 20.5937 3.0249 37.2064 3.6165
75pct Qntl. 3.5847 34.2758 3.5344 54.9559 4.0065
95pct Qntl. 7.6954 99.6325 4.6002 128.3962 4.8551

Max 9.7434 356.2634 5.8757 391.1350 5.9691

ACF1 0.1234 0.7585 0.7601 0.7472 0.8767
ACF2 -0.0279 0.5587 0.6519 0.5647 0.7786
ACF3 0.0985 0.3936 0.5921 0.4893 0.7083
ACF4 0.0831 0.3101 0.5198 0.4115 0.6742
ACF5 0.0420 0.2507 0.4955 0.3132 0.6331
ACF6 -0.0478 0.2034 0.4556 0.2159 0.5719
ACF7 0.0555 0.0959 0.3779 0.1691 0.5385
ACF8 0.0975 0.0895 0.3944 0.1585 0.5148
ACF9 -0.0119 0.0349 0.3475 0.1586 0.4958
ACF10 -0.0075 0.0477 0.2895 0.1633 0.4833
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Table 5.4: Summary statistics of monthly return, RV, MFIV2 volatilities for S 
& P 500 index during the period of January 1996 through May 2004 (T=101)

xt RV ln(RV) MFIV2 ln(MFIV2)

Mean 0.7364 30.2988 3.1733 49.5819 3.8005
St.Dev. 4.8223 23.8968 0.6771 24.9146 0.4486

Skewness -0.4892 2.0887 0.2610 1.8729 0.1831
Kurtosis 2.9788 8.2242 2.8787 7.7506 3.5631

Min -14.4500 4.6814 1.5436 12.8677 2.5547
5pct Qntl. -9.2027 7.7864 2.0523 23.5181 3.1577
25pct Qntl. -2.2050 15.2509 2.7246 34.5176 3.5414
50pct Qntl. 1.0200 23.3539 3.1508 43.1947 3.7657
75pct Qntl. 5.0125 34.8895 3.5522 57.8429 4.0577
95pct Qntl. 8.1440 97.4140 4.5790 95.9318 4.5599

Max 9.7400 143.9771 4.9697 161.4515 5.0867

ACF1 -0.0061 0.4745 0.5697 0.6936 0.7232
ACF2 -0.0449 0.1987 0.3697 0.3915 0.5219
ACF3 0.0593 0.1560 0.2817 0.2139 0.3701
ACF4 -0.0829 -0.0243 0.1317 0.1654 0.3074
ACF5 0.0926 -0.0033 0.1376 0.1576 0.2862
ACF6 0.0741 0.0528 0.1280 0.1184 0.2246
ACF7 0.0910 -0.0771 0.0157 0.0642 0.1620
ACF8 0.0683 -0.0046 0.0589 0.0705 0.1737
ACF9 0.0578 0.0218 0.0828 0.0919 0.1856
ACF10 0.1029 0.0328 -0.0197 0.1738 0.1999
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Table 5.5: Summary statistics of monthly return and volatilities for Dow Jones 
Indexes (DJIA) during the period of October 1997 through December 2009 
(T=147)

xt RV ln(RV) MFIV1 ln(MFIVl)

Mean 0.1850 35.1168 3.0360 44.4316 3.5142
St. Dev. 4.7276 55.9198 0.9406 40.1199 0.7419

Skewness -0.7627 5.5570 0.5403 3.4240 0.1076
Kurtosis 4.3800 43.0839 3.4074 20.5580 2.7640

Min -16.4073 3.2604 1.1818 7.8732 2.0635
5pct Qntl. -7.9446 5.0522 1.6194 10.2946 2.3316
25pct Qntl. -1.9571 11.3759 2.4315 18.6377 2.9252
50pct Qntl. 0.6963 20.2984 3.0105 37.5240 3.6250
75pct Qntl. 2.9594 36.8427 3.6066 52.3964 3.9588
95pet Qntl. 7.5783 1117.6689 4.7675 115.9765 4.7534

Max 10.0792 519.4188 6.2527 324.4800 5.7822

ACF1 0.0847 0.6587 0.7547 0.7523 0.8906
ACF2 -0.0971 0.3646 0.6321 0.5485 0.8012
ACF3 0.0552 0.2415 0.5568 0.4739 0.7356
ACF4 0.1294 0.2008 0.4953 0.4071 0.7042
ACF5 -0.0101 0.2046 0.4675 0.3149 0.6635
ACF6 -0.0814 0.1044 0.4201 0.2174 0.6073
ACF7 0.0450 0.0499 0.3582 0.1649 0.5760
ACF8 0.0340 0.0285 0.3482 0.1457 0.5411
ACF9 -0.0636 0.0133 0.3159 0.1456 0.5261

ACF10 -0.1261 0.0082 0.2748 0.1535 0.5149



260

Table 5.6: QML and C-AMLE Estimates using Daily RV

a* F P a P*
S & P 500 Daily RV

QML 1.0981
(0.1934)

0.1269
(0.0312)

-0.0820
(0.0383)

0.7266
(0.0245)

0.0064
(0.0258)

C-AMLE 1.9831
(0.2639)

0.2333
(0.0608)

0.0551
(0.0239)

0.9569
(0.0370)

0.0644
(0.0443)

Dow Jones Industrial Average Daily RV
QML 0.9299

(0.3162)
0.1838

(0.0276)
-0.1092
(0.0837)

0.7689
(0.2398)

0.0068
(0.5972)

C-AMLE 1.8735
(0.5361)

0.3486
(0.0876)

-0.1697
(0.0913)

1.1222
(0.0489)

-0.0329
(0.0112)

Table 5.7: Model Moments Calculated From Parameter Estimates Using Daily 
RV

Method Process Mean Std. Dev. Skewness Kurtosis

S & P 500 Daily RV
QML Return

RV
0.0064
1.0981

1.0479
1.5114

-0.1001
5.3159

8.4583
25.812

C-AMLE Return
RV

0.0644
1.9831

1.4083
1.9727

0.0520
6.0212

5.7562
24.0219

Dow Jones Industrial Average Daily RV
QML Return

RV
0.0068
0.9299

0.9643
1.2229

-0.1441
5.3511

7.9024
25.1806

C-AMLE Return
RV

-0.0329
1.8735

1.3688
1.8396

-0.1864
6.0755

5.6018
24.0838
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Table 5.8: QML and C-AMLE Estimates using RV for S& P 500 during the
period of January 1996 through December 2009 (monthly, T=168)

a* F P a P*
QML 20.2404

(7.9640)
0.1148

(0.0544)
-0.4380
(0.0801)

5.2964
(0.4616)

0.8338
(0.0285)

C-AMLE 97.7521
(31.4516)

0.2250
(0.1321)

-0.1901
(0.1263)

6.1978
(0.6632)

0.4236
(0.2351)

Table 5.9: QML and C-AMLE Estimates using MFIV1 (based on VIX) for S& 
P 500 during the period of January 1996 through December 2009 (monthly, 
T=168)

a* F P a P*
QML 24.3402

(15.6586)
0.0405

(0.1741)
-0.2875
(0.1809)

3.0006
(0.5347)

0.5978
(0.8096)

C-AMLE 46.1472
(5.0789)

0.3721
(0.1117)

-0.4573
(0.0586)

4.1397
(0.9088)

0.7436
(0.1169)

Table 5.10: Model Moments Calculated From Different Parameter Estimates 
(S & P 500 monthly(T=168))

Method Process Mean Std. Dev. Skewness Kurtosis

RV QML Return
RV

0.6887
29.5615

5.4370
28.0469

-0.8764
1.8975

5.9669
8.4009

RV C-AMLE Return
RV

0.4574
75.2412

8.6742
73.7350

-0.4668
1.9600

5.9541
8.7622

MFIV1 QML Return
MFIV1

0.5978
24.3402

4.9336
52.1085

-0.6245
4.2817

16.8404
30.4992

MFIV1 C-AMLE Return
MFIV1

0.7436
46.1472

6.7932
32.5984

-0.7003
3.4128

4.4568
30.0340
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Table 5.11: QML and C-AMLE Estimates using RV for S& P 500 during the
period of January 1996 through May 2004 (monthly, T=101)

a* P P a P*
QML 29.5615

(15.3617)
0.3795

(0.1344)
-0.4507
(0.3459)

4.4941
(6.6201)

0.6887
(0.7867)

C-AMLE 75.2412
(24.2639)

0.1011
(0.1608)

-0.4825
(0.2239)

3.8224
(0.6370)

0.4574
(0.3443)

Table 5.12: QML and C-AMLE Estimates using MFIV2 for S& P 500 during 
the period of January 1996 through May 2004 (monthly, T=101)

a* P P a P*
QML 44.6809

(13.1177)
0.2374

(0.0508)
0.0511

(0.0977)
2.5207

(3.2616)
-0.0298
(0.5450)

C-AMLE 46.3175
(5.0789)

0.5833
(0.1117)

-0.0989
(0.0586)

2.3797
(0.9088)

0.8156
(0.1169)

Table 5.13: Model Moments Calculated From Different Parameter Estimates 
(S & P 500 monthly, T=101)

Method Process Mean Std. Dev. Skewness Kurtosis

RV QML Return
RV

0.6887
29.5615

5.4370
28.0469

-0.8764
1.8975

5.9669
8.4009

RV C-AMLE Return
RV

0.4574
75.2412

8.6742
73.7350

-0.4668
1.9600

5.9541
8.7622

MFIV2 QML Return
MFIV2

-0.0298
44.6809

6.6844
24.4527

0.0401
1.0945

3.8327
4.7971

MFIV2 C-AMLE Return
MFIV2

0.8156
46.3175

6.8057
24.9946

-0.4043
1.6475

3.3705
3.6288
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Table 5.14: QML and C-AMLE Estimates using RV of Dow Jones Index during
the period of October 1997 through December 2009 (monthly)

a* ß * P a P*

QML 5.0671
(10.1261)

0.0761
(0.0270)

-0.4306
(3.9530)

5.4121
(0.1393)

0.6773
(5.3986)

C-AMLE 31.8560
(5.7683)

0.3556
(0.1238)

-0.1552
(0.1091)

5.2224
(0.1701)

0.3719
(0.2432)

Table 5.15: QML and C-AMLE Estimates using MFIV1 (based on VXD) of 
Dow Jones Index during the period of October 1997 through December 2009 
(monthly)

a* ß* P a P*

QML 22.3913
(23.0044)

0.0441
(0.0160)

-0.2520
(5.8030)

2.8382
(0.2286)

0.3832
(6.5625)

C-AMLE 69.6347
(4.3312)

0.1010
(0.0892)

-0.1656
(0.0589)

3.1983
(0.8081)

0.2066
(0.1298)

Table 5.16: Model Moments Calculated From Different Parameter Estimates 
(Dow Jones Index monthly)

Method Process Mean Std. Dev. Skewness Kurtosis

RV QML Return
RV

0.6773
5.0671

2.2510
31.2276

-2.4442
12.3256

118.5587
230.8813

RV C-AMLE Return
RV

0.3719
31.8560

5.6441
34.9518

-0.3900
2.1944

6.3302
10.2228

MFIV1 QML Return
MFIV1

0.3832
22.3913

4.7319
45.2219

-0.4669
4.0392

15.2152
27.4731

MFIV1 C-AMLE Return
MFIV1

0.2066
69.6347

8.3447
59.3822

-0.7664
3.8360

5.1177
25.5049
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Chapter 6 

Conclusion

The first essay investigates the estimation of discrete-time SV models when 
volatility is observed. We study the statistical properties of SV models with 
lagged inter-temporal and contemporaneous dependencies. The explicit ex
pressions of moments and cross moments of returns as well as those of lag- 
lead correlations between returns and volatilities are different between two 
models. Both models deserve attention in the literature. Treating volatility as 
an observable variable, we apply both FIML and 3SLS approaches and show 
the estimation is straightforward and computationally easy. We undertake two 
Monte Carlo experiments to examine the estimation performance of these two 
traditional methods. The results suggest that if the underlying volatility is 
observed, both FIML and 3SLS approaches do a reasonable job at recovering 
the true parameters. The two models both fit data well. On the other hand, if 
the underlying volatility is unobserved, consequently a volatility proxy is em
ployed in the estimation, we should be very careful in choosing an appropriate 
volatility proxy such that the measurement error does not spread too much, in 
this case, using volatility proxy then apply traditional methods in SV models 
are able to provide good estimation performance.
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Realized volatility has been shown to be a consistent, unbiased and highly 
efficient estimator of the true return volatility, motivated by the accuracy of re
alized volatility, the second essay focuses on investigating the estimation and 
forecasting of discrete-time SV models using realized volatility. Using daily re
alized volatility constructed from high frequency data and applying both FIML 
and 3SLS approaches, we find the estimators from both methods can produce 
good finite sample properties. We then examine the one-day-ahead volatility 
point forecasts. Four different models are considered to examine whether al
lowing asymmetric relationships between return and volatilities, or modeling 
the long-memory behavior of volatility would result in an improvement in fore
cast accuracy. The results indicate that allowing asymmetric behavior and 
leptokurtosis does not seem to improve point forecasts, while modeling long- 
memory behavior seems do.

The third essay investigates the estimation performance of the C-AMLE 
method via a Monte Carlo experiment to the affine continuous-time SV model 
with volatility observed. We generate volatility process based on its conditional 
density function and return process applying an efficient approximation of the 
exact scheme at both daily and monthly frequencies. Evidences show that our 
simulation of both return and volatility processes are accurate. The results 
suggest that the C-AMLE does a good job at recovering the true parameters.

The fourth essay examines the estimation of the affine continuous-time SV 
model via empirical application. The empirical analysis is based on the data 
of S & P 500 index and Dow Jones Industrial Average indexes. Both realized 
volatility and model-free implied volatility are employed as a volatility proxy, 
and the C-AMLE as well as the QML are applied in the estimation. The ev
idence shows that using daily realized volatility, neither method does a good
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job. However, when the model-free implied volatility is employed, the esti
mates are stable, and the moments calculated from the estimates are close to 
the moments of real time series. In general, the C-AMLE approach outper
forms the QML method. When the volatility is unobserved, other estimation 
methods, such as the generalized method of moments (GMM) can be applied. 
In the future, we will extend our research of investigating the estimation of 
the affine continuous-time SV model with volatility observed by comparing the 
estimates from the C-AMLE and QML using volatility proxies with those from 
the GMM approach when volatility is unobserved.
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