
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-18-2023 2:30 PM

IMPLEMENTATION OF A PRE-ASSESSMENT MODULE TO IMPLEMENTATION OF A PRE-ASSESSMENT MODULE TO

IMPROVE THE INITIAL PLAYER EXPERIENCE USING PREVIOUS IMPROVE THE INITIAL PLAYER EXPERIENCE USING PREVIOUS

GAMING INFORMATION GAMING INFORMATION

Rafael David Segistan Canizales, Western University

Supervisor: Mike Katchabaw, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Rafael David Segistan Canizales 2023

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computational Engineering Commons

Recommended Citation Recommended Citation
Segistan Canizales, Rafael David, "IMPLEMENTATION OF A PRE-ASSESSMENT MODULE TO IMPROVE
THE INITIAL PLAYER EXPERIENCE USING PREVIOUS GAMING INFORMATION" (2023). Electronic Thesis
and Dissertation Repository. 9203.
https://ir.lib.uwo.ca/etd/9203

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=ir.lib.uwo.ca%2Fetd%2F9203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9203?utm_source=ir.lib.uwo.ca%2Fetd%2F9203&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

 i

Abstract
The gaming industry has become one of the largest and most profitable industries today. According

to market research, the industry revenues will pass $200 Billion and are expected to reach another

$20 Billion in 2024. With the industry growing rapidly, players have become more demanding,

expecting better content and quality. This means that game studios need new and innovative ways

to make their games more enjoyable. One technique used to improve the player experience is DDA

(Dynamic Difficulty Adjustment). It leverages the current player state to perform different

adjustments during the game to tune the difficulty delivered to the player to be more in line with

their expectations and capabilities. In this thesis, we will explore and test the ability to obtain the

difficulty level in which a player should be placed initially, by using previous gaming information

from platforms like Steam, combined with different machine learning (ML) algorithms and data

analyses., In doing so, we can create a pre-assessment of the player as a way of improving DDA’s

initial state and the overall gaming experience of players.

Keywords

Video games, Artificial Intelligence, Game Analytics, Gamers Pre-assessment, Machine Learning,

Dynamic Difficulty Adjustment.

 ii

Summary for Lay Audience

With the gaming industry growing rapidly, players expect better content and quality. One

technique that is being used to improve the player experience is Dynamic Difficulty Adjustment

(DDA). DDA systems use the current player data (Health, Score, Damage, etc.) to adjust the

difficulty level of the game, making it more in line with their expectations and capabilities. This

thesis explores how machine learning (ML) algorithms and data analysis can be used to obtain the

initial difficulty level that a player should be placed at, using previous gaming information from

platforms like Steam. This pre-assessment can improve DDA's initial adjustment and the overall

gaming experience of players.

 iii

Dedication

I want to dedicate this thesis to my family, especially my wife, who has been a constant source of

support, encouragement, and inspiration throughout this journey. Her unwavering love and belief

in me have been instrumental in all of my accomplishments and goals. I am grateful for her

presence in my life and I dedicate this work to her with all my heart.

 iv

Acknowledgment

First, I want to thank the SENACYT, Caldo, and Western University for allowing me to live such

an incredible experience. Especially, I want to thank Bibiana, Silvana, and Adrian for all the

amazing support throughout my studies.

I would like to express my heartfelt gratitude to my supervisor, Dr. Michael Katchabaw, for their

invaluable guidance, support, and encouragement throughout my research journey. Their expertise

and patience have been instrumental in helping me complete this thesis.

I also want to thank Hannan Lutfiyya, Anwar Haque and George Gadanidis for serving on my

thesis committee and for their valuable feedback and suggestions. Their insights and critiques have

greatly improved the quality of my work.

I am deeply grateful to all of my colleagues and friends who have supported me throughout this

process. In particular, I want to thank Efrain Perez for their constant encouragement and for being

a sounding board for my ideas.

Finally, I want to thank my family for their love and support, especially my wonderful wife Ambar

Campble. Without their unwavering encouragement and belief in me, I would not have been able

to complete this journey.

This research would not have been possible without the support of all of these individuals, and I

am forever grateful for their contributions to my work.

 v

Table of Content

Abstract .. i
Keywords .. i
Summary for Lay Audience .. ii
Dedication ... iii
Acknowledgment ... iv
Table of Content ... v
List of Tables ... vii
Chapter 1 - Introduction .. 1

1.1 Motivation ... 1
1.2 Contributions ... 2
1.3 Roadmap .. 3

Chapter 2 - Fundamentals ... 4
2.1 Dynamic Difficulty Adjustment (DDA) .. 4
2.2 Game Analytics ... 5
2.3 Machine Learning .. 6

2.3.1 Types of ML .. 6
2.3.1.1 Supervised Learning ... 6
2.3.1.2 Unsupervised Learning: .. 7
2.3.1.3 Reinforcement Learning: .. 7

2.3.2 Machine Learning Model Definition ... 7
2.3.3 Feature Engineering ... 8

2.4 Related Work ... 10
2.4.1 Game Analytics in Player Behavior .. 10

2.4.2 Dynamic Difficulty Systems ... 12
2.5 Research Gap .. 12

Chapter 3 – Research ... 14
3.1 Architecture .. 14

3.1.1 Pre-Assessment Module ... 15
3.1.2 SaaS - REST API Integration ... 15
3.1.3 Dynamic Difficulty System .. 16

3.2 Genre Focus ... 17
3.3 Dataset Generation .. 19

3.3.1 Database Entities ... 20
3.3.1.1 Web Scraping and Data Fetching .. 23

 vi

3.3.3 Data Metrics ... 26
3.3.4 Data Cleaning .. 27

3.4 Feature Engineering .. 27
3.4.1 Feature Selection .. 27
3.4.2 Feature Extraction .. 28

3.4.2.1 Achievement Score .. 28
3.4.2.2 Achievement Pre-processing ... 30
3.4.2.3 Players pre-processing ... 33

Chapter 4 - Experimentation ... 34
4.1 Unsupervised Learning - K-means for Player Classification .. 34

4.1.1 K-means Results ... 37
4.2 Supervised Learning ... 40

Chapter 5 - Validation .. 43
5.1 K-fold Cross-Validation ... 43
5.2 Support Vector Classification (SVC) ... 46
5.3 Summary ... 48

Chapter 6 - Conclusion .. 49
6.1 Summary ... 49
6.2 Contribution .. 49
6.3 Limitation .. 50
6.4 Future Directions ... 51

References ... 56
Curriculum Vitae .. 61

 vii

List of Tables

Table 1. Games List ... 17

Table 2. Player Entity fields .. 20

Table 3. Games Entity Fields .. 20

Table 4. Achievement Entity Fields .. 21

Table 5. PlayerOnGames - Relationship between Player and Games ... 21

Table 6. Player-Achievements - Relationship between Player and Achievements 22

Table 7. Data Metrics .. 26

Table 8. Pre-process achievement final Data Frame ... 31

Table 9. Preprocess player column output ... 33

Table 10. K-Means Hyper-Parameters .. 36

Table 11. Results from LazyPredict .. 41

Table 12. Average Model accuracy after using K-fold Cross-Validation 44

 viii

List of Figures

Figure 1. Pre-Assessment module integration ... 14

Figure 2. Entity Relation Diagram for Web Scraper ... 19

Figure 3.Web Scraper implementation diagram .. 23

Figure 4. Web Scraping and Data fetching processes. .. 25

Figure 5. Achievement score and difficulty calculations .. 30

Figure 6. Achievement difficulty distribution ... 31

Figure 7.Violin Graph of achievements difficulty distribution across all games. 32

Figure 8. Scaling players’ data with SK-Learn ... 35

Figure 9. Training K-means ... 36

Figure 10. K-means Clusters ... 37

Figure 11. Player Features Mean-Standard Deviation Graph .. 38

Figure 12. Adding playerLevel column to the original Data Frame ... 39

Figure 13. Initialize and train the LazyPredict package .. 40

Figure 14. LazyPredict results chart. ... 42

Figure 15. K-fold Cross-Validation class initialization ... 43

Figure 16. 10-Fold Cross-validation with multiple models ... 44

 1

Chapter 1 - Introduction

1.1 Motivation

The gaming industry has become one of the largest and most profitable industries of this era.

According to market research company Newzoo’s Global Games Market Report, video game

industry revenues will pass $200 Billion dollars and are expected to reach another $20 Billion in

2024 (Wijman, 2022). With the industry growing as it is, players have become more demanding

with the passing of the years, expecting better performance and great-quality games.

Game studios always try to find new and innovative ways of making games more enjoyable for

players. However, since every player has different skill levels depending on the type of game,

developers lack information when balancing difficulty curves. For flexibility, developers are

increasingly looking to Dynamic Difficulty Adjustment (DDA), to tune various aspects of a game's

difficulty to the particular needs and skills of individual players as they play. While this can work

well, these approaches invariably have an initial adjustment period in which the play experience

is suboptimal to the player, with the potential for the player churning or leaving out of boredom or

frustration before the game can deliver a better experience. This is obviously a problem that needs

to be addressed.

Researchers have used video games in the past few years to explore multiple machine-learning

algorithms that perform different tasks. However, in comparison with other areas like Non-Player

Characters' behaviors (Zhou et al., 2006) or Procedural Content Generation (Togelius et al., 2016),

no study has explored the possibility of using previous player gaming data to improve the

experience on a more personalized level.

 2

Also, in Game Analytics, there are multiple studies using the player information stored in

platforms like Steam, to predict purchase behavior in future games (Sifa et al., 2014; 2021) and

even classify players based on their games and the time played on each of them (Zagreb, 2018).

Many of these studies seek a similar objective, understanding and improving an aspect of the player

experience.

In today's data-driven world, the potential of leveraging existing data on platforms like Valve-

Steam or Microsoft-Xbox cannot be ignored. The present thesis endeavors to offer a fresh

perspective on player skill classification by employing previous gaming data of players available

on the Steam platform, with a specific focus on their achievements and games. Leveraging this

data and using it within a DDA system presents exciting and potentially valuable opportunities for

developers and players of their games.

1.2 Contributions

Our research aims to add a new layer to the DDAs that provides an accurate pre-assessment of the

players. Doing so greatly increases the probability of DDA correctly assessing the player's ability

from the beginning instead of waiting until enough information is gathered while the game is being

played. This, in turn, results in a more optimal player experience earlier, before the player begins

to contemplate churning. In this work, we want to explore the potential of using previous gaming

information of players to predict which skill level they should be placed at, primarily based on

achievements and games.

The concept of using a pre-assessment to improve the early performance of DDA systems is a

novel one. To fully validate the potential of such a mechanism, one would need to integrate a

DDA system into a previously unseen and unplayed game, add a pre-assessment module, and then

 3

conduct user playtesting. Given the lack of suitable game candidates, the path forward would be

to build a new game and proceed from there, which is an incredibly resource-intensive task. To

justify this, we need more than mere intuition that pre-assessment would be beneficial. To that

end, in this work, we conduct experimentation to verify the ability of past play experiences to

predict future play outcomes in different but related games. Success in this regard would support

the intended use of a pre-assessment module. (And, at the same time, provide the groundwork

needed to build such a module down the road.) This is the primary goal of this work.

1.3 Roadmap

This thesis is organized as follows. Chapter 2 presents an overview of the core fundamentals

utilized throughout this thesis to achieve our goal. In Chapter 3, we discuss the overall architecture

and the work involved in creating our dataset of players. In Chapter 4, we apply the K-means

unsupervised learning algorithm to label our newly generated dataset and conduct experiments

using various supervised learning algorithms. In Chapter 5, we employ K-fold Cross-Validation

to validate our supervised models and select the most optimal one. Finally, Chapter 6 offers a

comprehensive analysis of our overall approach, contributions, limitations, and future directions.

 4

Chapter 2 - Fundamentals

This chapter aims to provide a comprehensive overview of the fundamental concepts and

principles that form the foundation of the research. The content of this chapter provides a

theoretical framework for the subsequent chapters of the thesis and will serve as a reference for

the reader throughout the rest of the document.

This chapter is comprised of three main parts. Firstly, we provide an overview of the fundamental

concepts. Secondly, we discuss the related works and literature that have been published. Finally,

we identify gaps in the current research space and position our own work in relation to these gaps.

2.1 Dynamic Difficulty Adjustment (DDA)

Dynamic Difficulty Adjustment (DDA) is a technique of programmatically modifying a game’s

options, behaviors, and scenarios in real-time, depending on the player’s skill, so that the player,

once the sport is straightforward, does not feel bored or annoyed when it's challenging (Zohaib,

2018).

The concept of DDA has been around for several decades, with early examples of its use in arcade

games such as Pac-Man and Space Invaders. In recent years, with the advancement of technology

and the rise of online gaming, DDA has become increasingly popular and sophisticated.

The purpose of the DDA is to keep the player engaged until the end and to provide them with a

challenging experience. In standard games, game developers apply predetermined curves to

control the level of difficulty as they go through trial and error, but constructing the curves is a

time-consuming and complicated operation because of varying user demands (Moon et al., 2022).

 5

There are several methods of implementing DDA in games. One approach is to adjust the game's

parameters, such as the number of enemies or the speed of their movement, based on the player's

performance. Another approach is to use machine learning algorithms to predict the player's skill

level and adjust the difficulty accordingly.

Features like frequency, beginning levels, or rates can be set solely at the start of the game by

selecting the level of difficulty. This can, however, lead to negative experience for players as they

struggle to map a pre-established learning curve. DDA tries to resolve this drawback by presenting

a customized solution for gamers.

Research has shown that accommodating the difficulty to the right spot can trigger a sensation of

confidence, which increases motivation and the likeliness that the player will keep enjoying for an

extended period (Constant & Levieux, 2019).

2.2 Game Analytics

Game analytics is the process of collecting, analyzing, and using data from video games to improve

the overall gaming experience (Drachen et al., 2013). This data can include information on players'

behavior, such as how they play the game, what they enjoy, and what they dislike. Game analytics

can also include information on player engagement, monetization strategies, and game mechanics.

By analyzing this data, game developers can make data-driven decisions to improve the game. For

example, they can use the data to identify areas of the game that need improvement, design

effective monetization strategies, and keep players engaged. Game analytics has become an

important tool for game developers, as it provides valuable insights into players' behavior and

helps to ensure that games are optimized for player satisfaction. (Drachen et al., 2013)

 6

Many studies have been performed to understand gamers on a higher level, using different

statistical methods to group them and generate important decisions that impact game developers.

From predicting the outcome of a certain game, or genre based purely on the reviews of other

similar games, to classifying gamers by analyzing huge clusters of player data (Sifa et al., 2014,

2021), game analytics play a crucial role in helping game developers adapt to changing player

needs and preferences, and create more engaging and profitable games.

2.3 Machine Learning

IBM defines Machine Learning (ML) as a branch of artificial intelligence (AI) and computer

science that focuses on the use of data and algorithms to imitate the way that humans learn,

gradually improving its accuracy (IBM Cloud Education, 2020).

2.3.1 Types of ML

Machine Learning programs can be categorized based on how much and what kind of supervision

they require during training. The three primary types of learning are (Aurélien Géron, 2019):

2.3.1.1 Supervised Learning

Supervised learning is when we train the machine with well-labeled data. This indicates that some

data has already been labeled with the right answer. Following that, the machine is given a fresh

collection of examples (test data) so that the supervised learning algorithm may analyze the

training data (set of training instances) and create a proper result from labeled data.

 7

2.3.1.2 Unsupervised Learning:

This type of learning searches for patterns in a dataset with no labels. This form of machine

learning, as the name implies, is unsupervised and requires little human supervision and

preparation. Unsupervised learning is less biased than other kinds of AI since it does not rely on

labels to discover patterns.

2.3.1.3 Reinforcement Learning:

Uses a learning system called an agent that interacts with an environment, selects and performs

actions, and gets rewards in return (or penalties in the form of negative rewards). It must then learn

by itself what the best strategy is, called a policy, to get the most reward over time. A policy defines

what action the agent should choose when it is in a given situation.

2.3.2 Machine Learning Model Definition

Creating a machine learning model typically involves the following steps (Aurélien Géron, 2019):

1. Collect and prepare the data

Gather a dataset that is representative of the problem you want to solve, and then clean and

preprocess the data so that it can be used to train a model.

2. Choose a model

Select a model architecture that is appropriate for the problem and the data. Common

choices include decision trees, random forests, and neural networks.

 8

3. Train the model

Use a subset of the data to train the model. This typically involves providing the model

with input data and corresponding correct outputs and adjusting the model's parameters so

that it can accurately predict the output for new input data.

4. Evaluate the model

Use a separate subset of the data to evaluate the model's performance. This typically

involves providing the model with input data and comparing its predictions to the true

output.

5. Fine-tune and improve the model

Based on the evaluation, fine-tune the model by adjusting its parameters and trying

different model architectures until you are satisfied with its performance.

2.3.3 Feature Engineering

As the name implies, Feature Engineering is the process of creating new features or modifying

existing features from raw data to improve machine learning models' performance. It involves

transforming raw data into a set of meaningful and relevant features that can better represent the

underlying patterns and relationships in the data, leading to improved model accuracy and better

prediction results (Heaton, 2017). It is a crucial step in the machine learning pipeline typically

found in step 1 of creating a model above, as the quality and relevance of the features can greatly

impact the performance of the models. It involves using domain knowledge and understanding of

the problem to extract useful information from raw data and convert it into a set of features that

can be fed into a machine learning algorithm. This process can includes:

 9

• Feature selection: Selecting a subset of the available features to use in the model, based

on their importance or relevance.

• Feature extraction: Creating new features from existing features using mathematical

operations or transformations.

• Feature scaling: Normalizing the values of the features so that they are on the same scale,

can improve the performance of certain algorithms.

• Feature encoding: Converting categorical variables into numerical variables so they can

be used by machine learning algorithms.

The goal is to provide the machine learning model with a better representation of the data, allowing

it to make more accurate predictions. It requires a deep understanding of the problem and the data

and often requires trial and error to determine the most effective set of features.

2.3.4 K-fold Cross-Validation
K-fold Cross-Validation is a technique that allows us to estimate the performance of a model on

unseen data by partitioning the available data into K subsets or folds (James et al., 2013). The

model is trained on K-1 folds and evaluated on the remaining fold. This process is repeated K

times, with each fold used once for an evaluation. The performance of the model is then averaged

over the K iterations to obtain a more reliable estimate of its performance.

The process of K-fold Cross-Validation can be summarized as follows:

1. Partition the data into K subsets or folds.

2. For each iteration, select one fold as the test set and use the remaining K-1 folds as the

training set.

3. Train the model on the training set and evaluate it on the test set.

 10

4. Repeat the process K times, with each fold used once as the test set.

5. Calculate the average performance of the model over the K iterations.

This validation provides several benefits over other model evaluation techniques, such as hold-out

validation. One of the main benefits is that it allows using all available data for both training and

evaluation. This is important because it maximizes the use of available data and reduces the risk

of overfitting. K-fold Cross-Validation also provides a more reliable estimate of model

performance by averaging the results over multiple iterations. This reduces the impact of random

variations in the data and provides a more accurate estimate of model performance.

2.4 Related Work

This section will review related work in game analytics and dynamic adjustment systems,

highlighting the significant contributions made in this field.

2.4.1 Game Analytics in Player Behavior

In recent years, there has been a growing interest in using game analytics to better understand

player behavior. Several studies have been conducted to analyze the massive amounts of data

generated by gaming platforms such as Steam. In this section, we will review three key papers that

have contributed to the field of game analytics for player behavior.

Sifa et al. (2014) conducted a large-scale cross-game player behavior analysis on Steam, which

aimed to understand how players engage with different games. The study analyzed a dataset of

over 20 million players and identified different player types based on their behavior. The authors

used unsupervised machine learning algorithms to cluster players and identified several distinct

groups such as "completionists," "explorers," and "socializers." The study also revealed insights

 11

into the playing habits of different player types, including how long they played games, their

purchase behavior, and how they interacted with game communities.

Baumann et al. (2020) conducted a study that used unsupervised learning to analyze the behavior

of hardcore gamers on Steam. The study aimed to identify patterns in the playing behavior of

players who spend a significant amount of time on games. The authors analyzed a dataset of over

15 million users and identified different types of hardcore gamers based on their behavior. The

study revealed several key insights, including that hardcore gamers tend to focus on specific genres

of games and have a preference for playing solo. The study also highlighted the importance of

understanding the behavior of hardcore gamers for game design and development.

Sifa et al. (2021) conducted a study that used the playtime principle to model player interest in

games. The study analyzed a dataset of over 100,000 games on Steam and identified different types

of games based on the amount of playtime. The authors used unsupervised learning algorithms to

cluster games and identified several distinct groups such as "instant gratification" and "long-term

engagement." The study also revealed insights into the playing habits of different player types,

including how long they played games, their purchase behavior, and how they interacted with

game communities.

Overall, these studies demonstrate the power of game analytics for understanding player behavior.

By using large-scale datasets and advanced machine-learning algorithms, researchers can gain

valuable insights into how players engage with games. These insights can inform game design and

development and lead to more engaging and successful games.

 12

2.4.2 Dynamic Difficulty Systems

As AI technology progresses, there is an increasing interest in direct game AI control for DDA

approaches to provide more effective game difficulty adjustment (Demediuk et al., 2017, Ishihara

et al., 2018, Moon and Seo, 2020, Zohaib and Nakanishi, 2018). The majority of these studies

focus on modifying game aspects for game complexity by focusing on the player's expertise.

There are various heuristic methods that have been employed to evaluate a player's performance,

such as analyzing the success rate (as seen in studies by Duque et al. 2020 and Sarkar and Cooper,

2019), game scores (examined by Hagelback and Johansson, 2009, Silva et al., 2017) and health

points (HP) (investigated by Demediuk et al., 2017, Ishihara et al., 2018). For instance, in games

that feature opponent agents such as fighting games, the difficulty level can be adjusted by

modifying the skills of the game agents through techniques like tree search (as seen in studies by

Demediuk et al., 2017, Ishihara et al., 2018) or deep learning (studied by Pfau et al., 2020) based

on heuristic metrics such as HP-difference.

2.5 Research Gap

Most of the current research on DDAs has shown great advances using the power of Machine

Learning and Deep Learning. However, they focus mainly on using the current game state

variables of the player like game score or health points to be able to adjust the difficulty, which

could show relatively static and predictable difficulty alterations. Every player has different

difficult expectations. For instance, some players would like challenging games, whereas others

like relaxed, winnable games. Using heuristic adjustments is too limited to satisfy every player's

expectations.

 13

Furthermore, there is a huge amount of data that could be used beforehand to create a more accurate

prediction of how a specific player will perform based on their experience in similar games. For

instance, Steam, a PC gaming platform for buying games, has one of the biggest databases of

players with over 120 million active players and 62+ million active users (Chang, 2021).

Fortunately, most of this data is available to any 3rd party developer via a REST API. It allows

querying data such as current games owned, total time played on a specific game, and

achievements. Using this data could lead to different datasets that solve all kinds of problems,

including giving information on prior play experience that could be used to start players with a

better current play experience This will be examined further in the next chapter.

 14

Chapter 3 – Research

As mentioned in Chapter 1 of this thesis, our primary goal is to test the potential of our model to

correctly assess the ability of players by using previous gaming information to create a pre-

assessment module that will improve the initial state of DDAs.

In this chapter, we will define the general architecture, navigate the dataset generation and review

the analysis and data processing to create the dataset of players. We have identified these as the

necessary initial steps to train and test our machine-learning algorithms.

3.1 Architecture

Figure 1. Pre-Assessment module integration

Our overall architecture is comprised of three important parts, as shown in Figure 1. First is a pre-

assessment module that contains a machine learning model used to predict the player skill level

based on data related to previous play. Second is a REST API that provides an agnostic bridge

between the pre-assessment module and the DDA system. Finally, the DDA system is in charge

of modifying the difficulty of the game, leveraging feedback from the pre-assessment module to

start the player at a more optimal initial difficulty setting.

 15

3.1.1 Pre-Assessment Module

Our primary goal is to demonstrate the potential of using previous gaming information to create a

pre-assessment module that will communicate with any game or system. To achieve this we

divided this task into four separate sections. First, is the dataset generation, which involves

scraping different Steam users to obtain their previous gaming information and store it in an

SQLite database for further analysis. Second, in data analysis and dataset creation, we analyzed

the players, achievements, and games to be able to create different features that help our model’s

performance and accuracy. Third, we trained an unsupervised learning algorithm (K-means) to

understand better the data with three different clusters that determine which difficulty level a player

should be playing for a specific genre. Finally, we can generate the dataset with the new difficulty

label and train our model on different algorithms to determine which performs better. Once the

model is trained and tested, we save it and deploy a web service that can be used by any game or

any type of application that has a connection to the internet.

3.1.2 SaaS - REST API Integration

The purpose of this SaaS application is to provide Dynamic Difficulty System and game

developers with useful information about players at the start of their game, regardless of the game

engine or programming language used.

Software as a Service is a cloud-based software delivery model in which the cloud provider

develops and maintains cloud application software, provides automatic software updates, and

makes software available to its customers via the internet on a pay-as-you-go basis. The public

cloud provider manages all the hardware and traditional software, including middleware,

 16

application software, and security. So SaaS customers can dramatically lower costs; deploy, scale,

and upgrade business solutions more quickly than if they were maintaining on-premises systems

and software; and predict the total cost of ownership with outstanding accuracy (Learn about SaaS,

2020).

This application can be deployed on any cloud provider as a RESTful API, which enables game

developers to make HTTP requests to the server to obtain data from the machine learning model

in JSON format. The application requires the player identifier (Player ID) and the platform on

which their profile information lives (Steam, Epic, Xbox, Playstation, etc.), and returns a response

with the player skill level.

3.1.3 Dynamic Difficulty System

The DDA system, which is integrated directly with the games and responsible for manipulating

the difficulty, constitutes the final component of the overall architecture. By utilizing our pre-

assessment module to seed its initial state, the DDA system can offer users a more optimal starting

difficulty.

 17

3.2 Genre Focus

For a manageable initial data set, we have focused on a particular genre of games available through

the Steam storefront. Specifically, we manually curated a list of 25 games from the shooter genre,

retrieved from the Steam website filtered by different tags (Action1 FPS2, FPS, Shooter3) related to

shooter games. Afterwards, we extracted basic information such as game name and ID, stored in

a JSON file. This file will serve as a reference point for the research as they gather all the necessary

data to train the machine learning model.

Table 1. Games List

Game Steam Code

1 Battlefield 1 1238840

2 Battlefield 4 1238860

3 Battlefield 5 1238810

4 Battlefield 2042 1517290

5 Call of Duty Advanced Warfare Multiplayer 209650

6 Call of Duty Modern Warfare 3 115300

7 Call of Duty Modern Warfare 2 10190

8 Call of Duty WWII Multiplayer 476600

9 Call of Duty: Black Ops 3 311210

10 Call of Duty: Black Ops II 202970

11 Call of Duty Black Ops II Multiplayer 202990

12 Tom Clancy's Rainbow Six® Siege 359550

13 Call of Duty Ghosts Multiplayer 209160

1 https://store.steampowered.com/category/action_fps/

2 https://store.steampowered.com/tags/en/FPS/

3 https://store.steampowered.com/tags/en/Shooter

 18

14 Call of Duty®: Infinite Warfare 292730

15 PUBG: Battlegrounds 578080

16 Destiny 2 1085660

17 Apex Legends 1172470

18 Halo: The Master Chief Collection 976730

19 Halo Infinite 124044

20 Titanfall 2 1237970

21 Metro Exodus 412020

22 Metro Last Light Redux 287390

23 Metro 2033 Redux 286690

24 Borderlands 3 397540

25 Counter-Strike: Global Offensive 730

 19

3.3 Dataset Generation

We decided to generate our dataset based on the Steam achievement tracking website 4and the

Steam Application interface5.

Figure 2. Entity Relation Diagram for Web Scraper

Initially, we defined an Entity Relation Diagram (see Figure 2.) that relates all primary entities of

our model (Player, Game, and Achievement). We will elaborate on the details in the section that

follows.

4 https://truesteamachievements.com/

5 https://partner.steamgames.com/doc/webapi

 20

3.3.1 Database Entities

Our player entity table contains all the attributes of a player. The most important field is the Player

ID, which allows us to relate the player with our other entities.

Table 2. Player Entity fields

 Player Entity

id Unique Player identifier across the database

name Player nickname

isProfilePublic Flag to know if the player information is publicly available

Our game entity table contains all the attributes from a game. Similar to the Player Entity, we use

the Game ID to relate different games to players and achievements.

Table 3. Games Entity Fields

Game Entity

id Unique Game identifier across the database

name Game name

tsaUrl Url to get extra information about the game

In games, an achievement is a goal or objective that a player can accomplish within the game.

Achievements are often associated with specific actions or milestones that the player must reach,

such as completing a level, defeating a boss, or collecting a certain number of items. Achievements

can serve as a way for players to track their progress and demonstrate their skill or dedication to

the game, as well as provide additional challenges beyond the core gameplay.

 21

The achievement entity table contains all the related attributes for a specific achievement of a game

provided by the Steam API.

Table 4. Achievement Entity Fields

Achievement Entity

id Unique Achievement identifier across the database

gameId Unique Game identifier across the database

name Achievement name

description Short description of the achievement task

globalPercentage Percentage of people in Steam that own the game and unlock the
achievement.

The Player on Games table represents a Many-to-Many relationship between players and games.

Specifically, it enables the identification of games owned by a particular player from Table 2.

Additionally, it has the capability to store various statistics and data provided by the Steam API

that pertain to a player's interaction with a game, such as TotalTimePlayed.

Table 5. PlayerOnGames - Relationship between Player and Games

PlayerOnGames

playerId Unique Player identifier across the database

gameId Unique Game identifier across the database

createdAt Time web this record was created

totalTimePlayed Player total time played on a specific game

 22

The Player Achievements table is generated by the Many to Many relationships between the Player

and Achievements. Mainly it contains if the player has unlocked the achievement on a specific

game.

Table 6. Player-Achievements - Relationship between Player and Achievements

PlayerAchievements

playerId Unique Player identifier across the database

AchievementId Unique Achievement identifier across the database

gameId Unique Game identifier across the database

achieved Number between 0 and 1 to determine if the player unlocked the
achievement.

 23

3.3.1.1 Web Scraping and Data Fetching

Even though the Steam application programming interface provides all the information regarding

Games and Achievements, when dealing with Players' information it becomes more complicated.

Players' information is not public unless the player agrees to make their profile public. At the same

time, we need the player ID to interact with the API, which is not available directly from the Steam

website.

Figure 3.Web Scraper implementation diagram

To bypass these limitations, we created a Web Scraper (see Figure 3) that is in charge of retrieving

mainly the required player information to interact with the Steam API (Player ID). The Scraper is

subdivided into two important elements that work together synchronously to retrieve all the data

from the source website:

 24

• Scraper: Responsible for obtaining player information, including the player's

identification and name, from the source website6. This is achieved by utilizing a web

automation tool called Puppeteer7, which interacts with the Chrome web browser, to gather

all the data.

• Fetcher: Responsible for acquiring player, game, and achievement information from the

Steam API and storing it in an SQLite database. It must wait for the Scraper to complete

its task to ensure that it has all the necessary information to begin.

Having defined the responsibility of each element, we can define the following steps for retrieving

data:

1. Utilize the initial list of 25 games as a starting point.

2. Retrieve information on all the achievements associated with each game.

3. Iterate through each game and scrape the achievements leaderboard to acquire

approximately 100 player identifiers.

4. Using these player IDs, the scraper can then iterate through each game and each player to

collect information on a specific player's achievements in a particular game from the

platform application interface, in this case, the Steam API.

Once it performs all the steps, the Scraper stops, and all the data is stored in a local SQLite

database. Even though the Scraper currently only takes the shooter genre into account, it only

needs a small modification to get information about any game.

6 https://truesteamachievements.com/
7 https://pptr.dev/

 25

Once it performs all the steps, the Scraper stops, and all the data is stored in a local SQLite

database. Even though the Scraper currently only takes the shooter genre into account, it only

needs a small modification to get information about any game.

Figure 4. Web Scraping and Data fetching processes.

 26

3.3.3 Data Metrics

Table 7. Data Metrics

We were able to retrieve a substantial amount of data from the Steam API, including information

on players, achievements, and games. However, we encountered a limitation in the Steam API, as

it did not provide complete data for certain player and game combinations. Specifically, we found

that only a subset of achievements was retrieved, with all the unlocked ones and some locked ones.

This posed a challenge as we expected to retrieve approximately 650 million player achievements.

Despite this limitation, we were able to extract a considerable amount of relevant data for our

analysis. That said, the missing values would not affect the end result of the study since we retrieve

all the unlocked achievements.8

8 https://developer.valvesoftware.com/wiki/Steam_Web_API#GetPlayerAchievements_.28v0001.29

Entity Total

Games 25

Players 11,925

Achievements 2,193

Player-Achievements ~ 6.5M and only ~1.6M achieved

Player-Games 81,516

 27

3.3.4 Data Cleaning

To perform an accurate analysis, it is essential to ensure that the dataset being used is reliable and

relevant. To achieve this, we executed various queries directly on the database, filtering out any

unnecessary data such as players with zero time played, or no achievements on a specific game.

That way, we only retrieve the information required for the analysis and the model, storing each

of the results in a separate CSV file for future manipulation. By doing so, we were able to generate

a clean dataset that is tailored to the specific needs. This approach not only ensures the accuracy

of our dataset but also saves time and computational resources by excluding irrelevant data from

the analysis. The use of a clean dataset is critical in ensuring validity and reliability.

3.4 Feature Engineering

For this thesis, we use different feature engineering techniques to create a new feature that provides

a better insight into the relationship between Players, Achievements, and Games. Once we

analyzed the data, we were able to select five existing features and create six new ones.

3.4.1 Feature Selection

We can get multiple relevant features from information already provided by the Steam API. The

following features provide some insight into how the player like to invest their time in gaming:

1. Total Games Owned: Amount of games owned by the player

2. Total Time Played: Amount of time spent by the player overall on the owned games

3. Total Percent Completed: How invested is the player in unlocking achievements

4. Total Achievements: Amount of achievement in all games

5. Average Achieved: Average unlock achievements in all games.

 28

3.4.2 Feature Extraction

Initially, there is no quantitative value that we can use to classify achievements. That said, we will

use a score function eq. (1) to give our achievements a value that the model can understand.

Using the achievements score as our base for feature extraction, we can create other features that

represent the level of difficulty per achievement and subsequently per game.

1. Total Achievement Score: Total score over all owned games.

2. Total Easy Achievements: Amount of easy achievements unlocked owned games.

3. Total Normal Achievements: Amount of normal achievements unlocked owned games.

4. Total Hard Achievements: Amount of hard achievements unlocked owned games.

5. Total Achieved: Amount of achievements unlocked by the player in all games.

6. Percentage Difficulty: Addition of all achievement percent_difficulty of that specific

player in all games.

The following section of this thesis will provide a detailed account of the process used to produce

the achievement score, as well as all the associated features that were derived from it.

3.4.2.1 Achievement Score

The source of our player’s data describes an interesting way to define the score function for

different achievements.

𝑅𝑎𝑡𝑖𝑜 = '
𝑃𝑙𝑎𝑦𝑒𝑟𝑠	𝑡ℎ𝑎𝑡	𝑂𝑤𝑛	𝑡ℎ𝑒	𝐺𝑎𝑚𝑒

𝑃𝑙𝑎𝑦𝑒𝑟𝑠	𝑡ℎ𝑎𝑡	𝑢𝑛𝑙𝑜𝑐𝑘𝑒𝑑	𝑡ℎ𝑒	𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡					
(1)

 29

The ratio is our base value for the achievement score eq. (1). It relates to the players that have the

game and the player that has unlocked the achievement; that way we can separate the easily

achieved ones from the more complex ones. Since we do not have access to all players in steam,

Is important to know that this ratio will only use information from within our dataset. This means

that the score can change over time when more people can unlock it or more players are added to

the dataset (TrueGaming Network, 2015).

𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡	𝑆𝑐𝑜𝑟𝑒 = 10 ∗ 𝑅𝑎𝑡𝑖𝑜				(2)

Unlike other platforms (Xbox, PlayStation), Steam does not have a base value or score for

achievement (e.g., Trophies types in PlayStation); for that reason, we decided to use 10 as our base

value for all achievements (TrueGaming Network, 2015).

Another new parameter we created was percent_difficulty, which determines the difficulty of

individual achievement. This provides a quantitative value that we can use to classify achievement

by difficulty.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦	(𝑃𝐷) = 10 ×
𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡	𝑆𝑐𝑜𝑟𝑒

max	(𝐺𝑎𝑚𝑒	𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡	𝑆𝑐𝑜𝑟𝑒)				
(3)

eq. (3). Show how we calculate the difficulty for each achievement. To begin with, the base

difficulty is determined by dividing the current score by the maximum score achieved in the same

game. Afterward, we normalize the result to yield a value between 0 and 10. By doing this we set

the achievement score in the context of their game instead of merely a numeric value.

To classify the achievement into one of three categories - easy, normal, or hard - we establish the

following condition:

 30

𝐸𝑎𝑠𝑦 = 0 < 𝑃𝐷 < 5	

𝑁𝑜𝑟𝑚𝑎𝑙 = 5 < 𝑃𝐷 < 7	

𝐻𝑎𝑟𝑑 = 7 < 𝑃𝐷 ≤ 10

After conducting multiple tests in Chapter 4 using different ranges, we concluded that the ranges

presented above provide a better separation of our clusters of players.

3.4.2.2 Achievement Pre-processing

In order to process and structure the data we used Python with several packages like Pandas9,

Numpy10, Matplotlib11, and Scikit-Learn12.

As discussed in Section 3.3.4, the required data for our analysis was prepared in distinct CSV files.

This enabled us to efficiently merge all the achievement queries, facilitating the subsequent

calculation of both the score and difficulty level for each achievement.

Figure 5. Achievement score and difficulty calculations

9 https://pandas.pydata.org/
10 https://numpy.org/
11 https://matplotlib.org/
12 https://scikit-learn.org/

 31

We ended with the following values per achievement:

Table 8. Pre-process achievement final Data Frame

Column Description

Achievement ID Achievement identifier

game ID Game Identifier

Total Achieved Total number of players who unlocked the achievement

Name Game name

Player count The total number of players that owned the game

Total Achievements per game Total number of achievement in the game

Avgerage Global percentage. Average percentage from the global Steam population

By using these values in conjunction with the player information we can generate our dataset of

players.

Figure 6. Achievement difficulty distribution

 32

Based on the analysis of achievement distribution by difficulty level depicted in Figure 6, we can

observe that a significant proportion of the achievements fall under the Easy category, followed

by the Hard category, and lastly the Normal category. Notably, a few outliers are present, which

can be attributed to the presence of a particular game (Halo: The Master Chief Collection) with

700 achievements. This finding sheds light on the distribution of achievements across different

difficulty levels, providing insights into the gaming industry's trends and preferences.

Figure 7.Violin Graph of achievements difficulty distribution across all games.

In Figure 7, we can see that the current data set contains a set of achievements in all the categories.

Furthermore, the analysis shows that the average number of achievements per game tends to fall

within the range of 4 and 8.

 33

3.4.2.3 Players pre-processing

Once we finalize the achievements data from Section 3.4.2, we use the output with the independent

achievements score and merge them with players' information. We performed different queries to

our database to retrieve all the valuable information of the player as mentioned in Section 3.3.4.

Table 9. Preprocess player column output

Column Description

Achievement_count Total Achievements between all games

easy Total Easy Achievements

normal Total Normal Achievements

hard Total Hard Achievements

total achieved Total Amount of unlocked achievements

percent_difficulty Addition of all achievement percent_difficulty of that specific
player in all games.

avg score Average achievements score

Total Achievement
Score

Addition of all the unlocked achievement scores.

total time played Total time across all games

game score Amount of games times the avg_score

percentage_completed total unlocked achievements divided by the total amount of
achievements

Now that we have our dataset complete with all the features mentioned in Table 9, we can proceed

into the next chapter where we train and test different Machine Learning algorithms to predict the

player's skill level.

 34

Chapter 4 - Experimentation

This chapter outlines the methodology and procedures employed in the experimental phase of the

research. Our machine-learning model was defined, trained, and tested using the Python

programming language and several open-source packages. The idea is to use a supervised model

as the core for the pre-assessment module to predict the player skill level.

However, to be able to train a supervised model we need to have a label or target that we want to

predict based on other features. In the absence of a labeled dataset, an unsupervised learning

algorithm was utilized initially to cluster the data and analyze various player types. After

successfully grouping and classifying the players, we proceeded to label the dataset and train

multiple supervised learning algorithms looking to determine which of them performs better.

4.1 Unsupervised Learning - K-means for Player Classification

Once we have all features in place, we proceed to use the unsupervised machine learning method

K-means to group our new dataset of players in different clusters and from them determine which

difficulty is the most appropriate. For this, we will use Python’s Sklearn as our machine-learning

library.

 35

Figure 8. Scaling players’ data with SK-Learn

To use the K-means algorithm, we first had to scale the data to values between 0 and 1, since many

machine learning algorithms use the Euclidean distance between two data points in their

computations, and features with high values like total_time_played or percent_difficulty, can

dominate the distance calculation.

 36

Figure 9. Training K-means

In Figure 9, we use our scaled data as input for the K-means algorithm with the following hyper-

parameters:

Table 10. K-Means Hyper-Parameters

Parameter Value Description

n_clusters 3 Number of clusters

random_state 42 predefined constants to get similar results with each run

n_init auto Number of times the algorithm runs with different centroid seeds

We have defined the number of clusters in the k-means algorithm13 as 3 to enable us to classify

players' skill levels as either easy, normal, or hard. Additionally, we set the random state to 42 to

ensure consistent results in each code execution. Furthermore, the default n_init parameter was

employed, which runs the algorithm ten times using different centroid seeds and selects the best

outcome.

13 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

 37

4.1.1 K-means Results

Figure 10. K-means Clusters

The results shown in Figure 10, show a clear separation of players by different clusters. To better

understand what kind of players are in each cluster, we analyzed the following graphs.

 38

Figure 11. Player Features Mean-Standard Deviation Graph

Figure 11 shows all the player features with their mean values marked with an ‘x’ symbol and an

area that describes the standard deviation. We can see that most of the features show an uptrend

line that always puts the red players on the higher end, followed by the green players, and finally

the blue players.

 39

Upon analyzing Figure 10 and Figure 11, we determine that:

• The players categorized as Blue players had a low number of games and few achievements

and therefore were considered easy players.

• The Green players were found to be more engaged with various games and had a moderate

number of achievements, games played, and time invested in different games.

• The Red players were identified as the hard-core players, as they had the highest number

of achievements per game and were driven to unlock as many achievements as possible.

After applying the unsupervised learning algorithm to analyze the dataset, we were able to identify

patterns and groupings that allowed us to assign labels to the original dataset. This labeling was

achieved by adding a new column to the dataset called playerLevel. This newly labeled dataset is

used to train multiple supervised algorithms and test their performance.

Figure 12. Adding playerLevel column to the original Data Frame

By using a variety of supervised learning techniques, we can compare and contrast their

performance and select the most appropriate one for this particular study. This not only enhances

the accuracy of our findings but also ensures that our analysis is rigorous and reliable.

 40

4.2 Supervised Learning

Figure 13. Initialize and train the LazyPredict package

To evaluate multiple supervised learning algorithms and conduct a comprehensive analysis of their

overall performance, we employed the LazyPredict package. Initially, the target variable was

defined as the newly created column “playerLevel”. Subsequently, we use Sklean’s

“train_test_split” function to separate our dataset into train and test sets, with 80% and 20% of the

data respectively. Following the acquisition of all necessary variables, the LazyClassifier module

was initialized from the LazyPredict package, and both the training and testing data, together with

their respective labels, were fitted.

 41

Table 11. Results from LazyPredict

Model Accuracy Balanced Accuracy F1 Score Time Taken (s)

SGDClassifier 0.99 0.99 0.99 0.02

LogisticRegression 1.00 0.99 1.00 0.05

LGBMClassifier 0.99 0.99 0.99 0.41

XGBClassifier 0.99 0.99 0.99 0.98

RandomForestClassifier 0.99 0.99 0.99 0.63

ExtraTreesClassifier 0.99 0.98 0.99 0.22

BaggingClassifier 0.99 0.98 0.99 0.19

SVC 0.99 0.98 0.99 0.18

DecisionTreeClassifier 0.99 0.98 0.99 0.03

QuadraticDiscriminant Analysis 0.98 0.97 0.98 0.04

LinearSVC 0.99 0.97 0.99 0.13

Perceptron 0.99 0.97 0.99 0.02

LabelSpreading 0.98 0.96 0.98 1.35

LabelPropagation 0.98 0.96 0.98 0.96

GaussianNB 0.95 0.96 0.95 0.01

 42

Figure 14. LazyPredict results chart.

Upon analyzing the results from the different algorithms, the SDGClassifier was the best for its

high accuracy and short execution time. Prior to selecting an algorithm for our model, we seek to

conduct a K-fold Cross-Validation to verify the model's accuracy regardless of which portion of

the data is utilized as the test or training set.

 43

Chapter 5 - Validation

Upon successfully creating a machine learning model based on our dataset, and obtaining positive

results, we sought to conduct cross-validation to assess the model's ability to predict player

difficulty levels regardless of the dataset used. To achieve this, we utilized the K-fold Cross-

Validation technique, which involves dividing the data into K subsets, using each subset as a test

set, and the remainder as a training set. This process is repeated K times to ensure that each subset

is tested at least once, enabling a thorough evaluation of the model's performance.

5.1 K-fold Cross-Validation

Once more we use Python’s Scikit library to perform the Cross Validation between our SGD

Classifier and others already tested by the LazyPredict package (Logistic Regression, Linear SVM,

Radial SVM, Decision Tree, Naive Bayes).

Figure 15. K-fold Cross-Validation class initialization

 44

Figure 16. 10-Fold Cross-validation with multiple models

First, we initialize our KFold Class with the value of n_splits or K, which in our case will be 10.

Second, we loop through all of our models and use the cross_val_score function to perform the

validation of our model. This function takes an initialized model, our features, the target label, and

the cross validator, in our case, the already initialized KFold. Finally, we store the results of each

model in two separate array variables, one with the mean value and another with the complete

array of 10 scores.

Table 12. Average Model accuracy after using K-fold Cross-Validation

Model Mean Accuracy Score of 10 subsets

SGDClassifier 0.97

Logistic Regression 0.98

Linear SVC 0.99

SVC 0.99

Decision Tree 0.99

Naive Bayes 0.94

 45

Our result shows that the SGDClassifier is not, in fact, the best-performing algorithm when it

comes to using different subsets of the data to test the algorithm.

Figure 17. 10-Fold Cross Validation Result Graph

Further analysis of Figure 17 clearly shows that the SVC method has an overall better accuracy

with our dataset.

 46

5.2 Support Vector Classification (SVC)

To verify the Support Vector Classification (SVC) is the best fit for this use case, we did an isolated

test directly with ScikitLearn package14.

Figure 18. Support Vector Classification (SVC) Initialization

In Figure 18, we initialize our model with the random seed constant and then we proceed to train

our SVC model.

Figure 19. SVC Model Accuracy Chart

Upon examining the results in Figure 19, we can confirm that it gets similar results as Section 4.2.

14 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

 47

Figure 20. SVC Confusion Matrix

To further understand why the SVC classifier is having trouble classifying some players, we used

a confusion matrix (see Figure 20). The results indicate that while the algorithm had no difficulty

classifying easy players, it exhibited a tendency for missing predictions in the case of normal and

hard players, usually as easy players. One plausible explanation for this phenomenon could be

attributed to the insufficient representation of players at the normal and hard levels within the

dataset.

 48

5.3 Summary

Certainly, we can notice the potential and remarkable accuracy of using the player's past gaming

data as a predictor of future performance in other related games. This predictive power allows for

more appropriate initialization of game difficulty, tailored to each player's individual skill level.

By using this pre-assessment method, players can be placed at a level of difficulty that both

challenges and engages them, without being too easy or frustratingly difficult. Ultimately, this can

lead to a more enjoyable and satisfying gaming experience for players.

 49

Chapter 6 - Conclusion

6.1 Summary

The thesis aimed to explore a way to classify players' skill levels based on their previous gaming

information. To achieve this, we generated a comprehensive dataset of players by extracting data

from the Steam platform. Subsequently, the unsupervised method K-Means was used to create

clusters of players based on unlocked achievements and games owned. The resulting clusters were

used to label the original dataset and train multiple machine learning algorithms to later use the

best one to accurately classify players into skill levels. Afterward, we choose the SGDClasssifier

as our primary model and train it with our dataset. Finally, we used K-fold Cross-Validation to

confirm that our algorithm can perform very well with any part of the dataset.

The findings of this study support the notion that leveraging previous gaming data can facilitate

the creation of a pre-assessment module that can be integrated with a Dynamic Difficulty

Adjustment (DDA) system or game. Such a module should improve the initial state of the game

and enhance the player's overall experience.

6.2 Contribution

The present study has established a foundation for future research endeavors that aim to investigate

the use of achievement-based metrics as a novel approach for characterizing player behavior and

engagement in video games. By leveraging the extensive data archives maintained by platforms

such as Steam, our method offers valuable insights into the abilities of individual players.

Through the generation of a new dataset of players, we conducted a comprehensive analysis of the

data and were able to develop a classification model that demonstrates high theoretical accuracy

 50

in predicting the appropriate level for each player. Further research efforts in this area are expected

to yield significant practical advancements, thereby enabling DDA systems to achieve a more

comfortable and tailored experience for players and to allow them to do so significantly earlier in

a game's lifecycle.

6.3 Limitation

Although we were able to create our model with high accuracy, there are still some limitations to

take into account for this first iteration of the model:

• In comparison with other studies (Baumann et al., 2018; Sifa et al., 2014, 2021), the dataset

used for this research is relatively small. Since there’s no application programming

interface to get a list of players we had to scrape the players from a third-party website that

didn’t provide a substantial amount of players.

• The dataset only considers players with public profiles from the Steam platform, potentially

introducing a small bias towards PC players.

• Since we use a predefined list of games of the shooter genre, the model would not be able

to perform an accurate prediction if the player did not have one or more of these games.

As we continue our research, it is essential to recognize these limitations to ensure that our findings

are accurate and reliable, and improved in time.

 51

6.4 Future Directions

In this section, we discuss some possible future directions for our research:

A. Validate real players with a full system.

In order to validate the effectiveness of the pre-assessment module, it is crucial to create a

game that integrates this module and provides an initial state to a Dynamic Difficulty Adjustment

(DDA) system. By doing so, it becomes possible to test the module with real players and evaluate

its impact on the gaming experience.

B. REST API for Agnostic integration

 Incorporating Machine Learning models into a game can be tricky. We believe that the

fastest way to integrate with any game or system is through a REST API. Using this architecture,

we can serve our model to any game developer agnostic to the programming language or game

engine.

Figure 21. REST API Implementation Diagram

 52

This endpoint should allow authenticated users to request a player skill level only by providing the

player ID as a parameter. If the player is already stored, we only need to return the result from our

database; otherwise, we need to retrieve the previous player information, generate an object with

the player-specific parameters, and classify the player through our trained model.

C. Cross-Platform Integrategration

As a starting point, we used the Steam API to retrieve all the player's base data and

achievements information but it is not the only platform with this kind of information. Xbox and

Playstation represent almost 50% of the console/PC industry.

Even though Steam provides a great application programming interface to retrieve data from their

database, other platforms such as Xbox and PlayStation have 120 million and 102 million monthly

active users respectively (Sony, 2022; B. Iversen et al., personal communication, January 24,

2023). Integrating and analyzing the data from these platforms can provide better insight when

dealing with console players and possibly an overall better accuracy on our model.

This integration would require either a slight modification of the database structure to determine

the source of information or adapting the data from the other platforms to the current database

structure.

D. Multi-Model Approach

The current implementation seeks to understand the player’s ability exclusively based on

the achievements and their correlation with other features presented in this thesis. A multi-model

approach could be used to understand all the entities in this study separately (games, players, and

 53

achievements). Using the output from an Achievement and Game model as input into a Player

model could lead to a tremendous increase in performance and accuracy. (Brownlee, 2021)

E. Tag-based Correlation for Games

Our research delimited the scope to only work with games from the shooter genre. As a

future implementation, we could use user-defined tags from Steam and other platforms to correlate

games.

Figure 22. User-defined tags for Spider-man remastered from Steam.

For example, Spider-Man remastered15 has 20 different tags defined by the platform users. Using

the tags could provide an easier way to correlate games and even achievements.

15 https://store.steampowered.com/app/1817070/Marvels_SpiderMan_Remastered/

 54

This can be done by collecting data on the tags that users associate with each game and using that

information to find similarities and relationships between the games.

Using clustering techniques, we can group similar items based on their similarities. In the case of

games, the tags can be used as features, and the similarity between two games can be calculated

based on the overlap of the tags they have been associated with.

Another approach is to use collaborative filtering, which finds correlations between the games that

users have liked or played. In this case, the tags can be used as additional information to improve

the accuracy of the recommendations.

F. Natural Language Model for Achievement Classification

Natural Language Model (NLP) is a field of artificial intelligence that focuses on the

interaction between computers and human language and can be used to extract information and

insights from large amounts of text data (Jain et al., 2018).

In the context of video game achievements, NLP can be used to analyze the descriptions and

criteria for the achievements, understand the relationships between different achievements, and

identify patterns and trends in player behavior. This information can be used to improve the design

of the achievements and scoring system, provide recommendations to players based on their

performance, or analyze player engagement and satisfaction.

For example, NLP techniques such as sentiment analysis could be used to determine the perceived

difficulty or enjoyment level of specific achievements, while text classification could be used to

categorize achievements based on their type (e.g. combat, puzzle, exploration).

 55

Overall, NLP has the potential to greatly enhance our understanding of video game achievements

and improve the gaming experience for players.

G. Time to Unlock

A feature that would be interesting to study is the time to unlock each achievement.

Unfortunately, we would probably be working with an estimate instead of an exact value since we

cannot tell when the player started to work on unlocking the achievement. That said, it could add

some value to the overall achievement score and subsequently, improve the performance of the

model.

 56

References

Aurélien Géron. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow.

“O’Reilly Media, Inc.”

Baumann, F., Emmert, D., Baumgartl, H., & Buettner, R. (2018). Hardcore Gamer Profiling:

Results from an unsupervised learning approach to playing behavior on the Steam platform.

Procedia Computer Science, 126, 1289–1297. https://doi.org/10.1016/j.procs.2018.08.078

Brownlee, J. (2021, May 12). A Gentle Introduction to Multiple-Model Machine Learning -

MachineLearningMastery.com. Machine Learning Mastery. Retrieved February 3, 2023,

from https://machinelearningmastery.com/multiple-model-machine-learning/

Chang, J. (2023, January 9). 96 Steam Statistics You Must Know: 2022 Market Share Analysis &

Data - Financesonline.com. FinancesOnline.com. Retrieved January 15, 2023, from

https://financesonline.com/steam-statistics/

Chang, J. (2021, March 30). 96 Steam Statistics You Must Know: 2021 Market Share Analysis &

Data. Financesonline.com. https://financesonline.com/steam-statistics/

Constant, T., & Levieux, G. (2019). Dynamic Difficulty Adjustment Impact on Players’

Confidence. Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems - CHI ’19. https://doi.org/10.1145/3290605.3300693

Demediuk, S., Tamassia, M., Raffe, W. L., Zambetta, F., Li, X., & Mueller, F. (2017). Monte Carlo

tree search based algorithms for dynamic difficulty adjustment. 2017 IEEE Conference on

Computational Intelligence and Games (CIG). https://doi.org/10.1109/cig.2017.8080415

Drachen, A., Seif El-Nasr, M., & Canossa, A. (2013). Game Analytics – The Basics. Game

Analytics, 13–40. https://doi.org/10.1007/978-1-4471-4769-5_2

 57

Gilbert, N. (2020). Number of Gamers Worldwide 2020: Demographics, Statistics, and

Predictions - Financesonline.com. Financesonline.com.

https://financesonline.com/number-of-gamers-worldwide/

González-Duque, M., Palm, R. B., Ha, D., & Risi, S. (2020, August 1). Finding Game Levels with

the Right Difficulty in a Few Trials through Intelligent Trial-and-Error. IEEE Xplore.

https://doi.org/10.1109/CoG47356.2020.9231548

Hagelback, J., & Johansson, S. J. (2009). Measuring player experience on runtime dynamic

difficulty scaling in an RTS game. 2009 IEEE Symposium on Computational Intelligence

and Games. https://doi.org/10.1109/cig.2009.5286494

Heaton, J. (2017, January 26). [1701.07852] An Empirical Analysis of Feature Engineering for

Predictive Modeling. arXiv. Retrieved February 3, 2023, from

https://arxiv.org/abs/1701.07852

IBM Cloud Education. (2020, July 15). What is Machine Learning? IBM.

https://www.ibm.com/cloud/learn/machine-learning

Inal, Y., & Wake, J. (2022). An old game, new experience: exploring the effect of players’ personal

gameplay history on game experience. Universal Access in the Information Society.

https://doi.org/10.1007/s10209-022-00872-0

Ishihara, M., Ito, S., Ishii, R., Harada, T., & Thawonmas, R. (2018, August 1). Monte-Carlo Tree

Search for Implementation of Dynamic Difficulty Adjustment Fighting Game AIs Having

Believable Behaviors. IEEE Xplore. https://doi.org/10.1109/CIG.2018.8490376

Iversen, B., Nadella, S., & Hood, A. (2023, January 24). Microsoft FY23 Q2 Earnings Conference

Call Transcript [Conference Call]

 58

Jain, A., Kulkarni, G., & Shah, V. (2018). Natural Language Processing. International Journal of

Computer Sciences and Engineering, 6(1), 161–167.

https://doi.org/10.26438/ijcse/v6i1.161167

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning :

with applications in R. Springer.

Learn about SaaS. (2020). Oracle.com. https://www.oracle.com/applications/what-is-saas/

Moon, J., Choi, Y., Park, T., Choi, J., Hong, J.-H., & Kim, K.-J. (2022). Diversifying dynamic

difficulty adjustment agent by integrating player state models into Monte-Carlo tree search.

Expert Systems with Applications, 205, 117677.

https://doi.org/10.1016/j.eswa.2022.117677

Pfau, J., Smeddinck, J. D., & Malaka, R. (2020). Enemy Within: Long-term Motivation Effects of

Deep Player Behavior Models for Dynamic Difficulty Adjustment. Proceedings of the

2020 CHI Conference on Human Factors in Computing Systems.

https://doi.org/10.1145/3313831.3376423

Sarkar, A., & Cooper, S. (2019). Transforming Game Difficulty Curves using Function

Composition. Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems. https://doi.org/10.1145/3290605.3300781

Sifa, R., Bauckhage, C., & Drachen, A. (2014, August 1). The Playtime Principle: Large-scale

cross-games interest modeling. IEEE Xplore. https://doi.org/10.1109/CIG.2014.6932906

Sifa, R., Drachen, A., & Bauckhage, C. (2021). Large-Scale Cross-Game Player Behavior Analysis

on Steam. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive

Digital Entertainment, 11(1), 198–204. https://doi.org/10.1609/aiide.v11i1.12804

 59

Silva, M. P., Silva, V. do N., & Chaimowicz, L. (2017). Dynamic difficulty adjustment on MOBA

games. Entertainment Computing, 18, 103–123.

https://doi.org/10.1016/j.entcom.2016.10.002

Sony. (2022). Supplemental Information for the Consolidated Financial Results for the Second

Quarter Ended September 30, 2022 (p. 9). Sony Group Corporation.

Togelius, J., Shaker, N., & Nelson, M. J. (2016). Introduction. Procedural Content Generation in

Games, 1–15. https://doi.org/10.1007/978-3-319-42716-4_1

TrueGaming Network. (2015, December 24). An Introduction To The TrueSteam Scoring System.

TrueSteamAchievements. Retrieved February 3, 2023, from

https://truesteamachievements.com/n227/an-introduction-to-the-truesteam-scoring-

system

Wijman, T. (2022, May 5). Games Market Revenues Will Pass $200 Billion for the First Time in

2022 as the U.S. Overtakes China. Newzoo. https://newzoo.com/insights/articles/games-

market-revenues-will-pass-200-billion-for-the-first-time-in-2022-as-the-u-s-overtakes-

china

Xue, Su, et al. “Dynamic Difficulty Adjustment for Maximized Engagement in Digital Games.”

Proceedings of the 26th International Conference on World Wide Web Companion - WWW

’17 Companion, 2017, 10.1145/3041021.3054170.

Zagreb, F. (2018). Machine Learning Based Models for Prediction of Player Behavior and

Purchase Decisions in Digital Games.

https://muexlab.fer.hr/images/50033451/Filip%20Jurcic%20diplomski%202018.pdf

Zhou, C., Yu, X., Sun, J., & Yan, X. (2006, December 1). Affective Computation Based NPC

Behaviors Modeling. IEEE Xplore. https://doi.org/10.1109/WI-IATW.2006.29

 60

Zohaib, M. (2018). Dynamic Difficulty Adjustment (DDA) in Computer Games: A Review.

Advances in Human-Computer Interaction, 2018, 1–12.

https://doi.org/10.1155/2018/5681652

 61

Curriculum Vitae

Name: Rafael David Segistan Canizales

Post-secondary Technological University of Panama

Education and Panama, Panama

Degrees: 2014-2019 B.A.

The University of Western Ontario

London, Ontario, Canada

2021-2023 M.A.

Honours and U.S. Panama Innovation and Competitiveness

Awards: 2017

UTP International – SMILE

2018-2019

IFARHU-SENACYT – Canada 2020 Scholarship

2021-2023

Related Work Software Engineer

Experience Rootstack S.A

2019-2021

	IMPLEMENTATION OF A PRE-ASSESSMENT MODULE TO IMPROVE THE INITIAL PLAYER EXPERIENCE USING PREVIOUS GAMING INFORMATION
	Recommended Citation

	Microsoft Word - Final_thesis.docx

