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Abstract

In this thesis, we present KLARAPTOR (Kernel LAunch parameters RAtional Program
estimaTOR), a freely available tool to dynamically determine the values of kernel launch pa-
rameters of a CUDA kernel. We describe a technique for building a helper program, at the
compile-time of a CUDA program, that is used at run-time to determine near-optimal ker-
nel launch parameters for the kernels of that CUDA program. This technique leverages the
MWP-CWP performance prediction model, runtime data parameters, and runtime hardware
parameters to dynamically determine the launch parameters for each kernel invocation. This
technique is implemented within the KLARAPTOR tool, utilizing the LLVM Pass Framework
and NVIDIA Nsight Compute CLI profiler. We demonstrate the effectiveness of our approach
through experimentation on the PolyBench benchmark suite of CUDA kernels.

Keywords: Performance estimation, Performance portability, CUDA, Program Parame-
ters, Kernel Launch Parameters, LLVM Pass Framework, GPGPU
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Summary for Lay Audience

KLARAPTOR is a tool designed to optimize the performance of GPU programs by dynami-
cally determining the best kernel launch parameters for each kernel invocation. A kernel is a
small piece of code that runs on a GPU and performs calculations in parallel, enabling faster
processing times. The kernel launch parameters greatly impact the running time of a GPU
program, and their optimal choice depends on various factors such as input data, hardware re-
sources, and program parameters. To address this issue, KLARAPTOR leverages a two-step
approach: (1) at compile-time, it determines formulas describing low-level performance met-
rics for each kernel and inserts them into the host code of a CUDA program; (2) at runtime,
a helper program evaluates these formulas using the actual data and hardware parameters to
determine the thread block configuration that minimizes the kernel’s execution time. The ef-
fectiveness of KLARAPTOR is demonstrated through experimentation on a set of benchmarks
consisting of CUDA kernels, showing that it can accurately predict near-optimal thread block
configurations.
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Chapter 1

Introduction

In a Graphics Processing Unit (GPU) program, also called a kernel, the kernel launch pa-

rameters specify how threads are mapped to, and executed by, the hardware resources of the
GPU. The choice of kernel launch parameters has a profound impact on the running time of
a GPU program. Moreover, as we will show, the optimal choice of kernel launch parameters
is not fixed for a given GPU kernel. Rather, it depends on the values of other data and hard-

ware parameters. In this thesis we present a generic technique, and an implementation of that
technique specialized to CUDA, for automatically and dynamically determining kernel launch
parameters which minimize the running time of each kernel invocation in a CUDA program.

Generally, three types of parameters influence the performance of a parallel program:
(i) data parameters, such as input data and its size; (ii) hardware parameters, such as cache
capacity and number of available registers; and (iii) program parameters, such as granularity of
tasks and the quantities that characterize how tasks are mapped to processors. These parameters
are independent of the parallel program itself. Data and hardware parameters are independent
from program parameters and are determined by the needs of the user and available hardware
resources. Program parameters, however, are intimately related to data and hardware param-
eters. Therefore, it is crucial to determine values of program parameters that yield the best
program performance for a given set of hardware and data parameter values.

The program parameters of interest to us in the CUDA programming model are thread
block configurations. Their impact on performance is obvious considering, for example, that
the memory access pattern of threads in a thread block depend on the thread block’s dimension
sizes. Similarly, a thread block configuration which minimizes the running time of a kernel
invocation may not be optimal if the data sizes or target GPU device changes [39]. This em-
phasizes not only the impact of data and hardware parameters on program parameters, but also
the need for performance portability. Unfortunately, in practice, thread block configurations
are typically determined statically for a kernel through simple heuristics or trial and error, so

1



2 Chapter 1. Introduction

Figure 1.1: Comparing kernel execution time (log-scaled) for the thread block configura-
tion chosen by KLARAPTOR versus the minimum and maximum times as determined by
an exhaustive search over all possible configurations. Kernels are part of the PolyBench/GPU
benchmark suite and executed on a RTX 2070 SUPER with a data size of N = 8192 (except
convolution3d with N = 512)

long as the configurations are constrained to be multiples of 32 [2].

In most cases, the values of the data parameters are only given at runtime, making it difficult
to determine optimal values of the program parameters at an earlier stage. On another hand,
a bad choice of program parameters can have drastic consequences. Hence, it is crucial to be
able to determine the optimal program parameters at runtime without much overhead added to
the program execution. This is precisely the intention of the approach proposed here.

KLARAPTOR (Kernel LAunch parameters RAtional Program estimaTOR) is a tool for au-
tomatically and dynamically determining the values of CUDA kernel launch parameters which
optimize the kernel’s performance, for each kernel invocation independently. That is to say,
based on the actual data and target device of a kernel invocation.

KLARAPTOR consists of two main steps: (i) at compile-time, we determine formulas
describing low-level performance metrics for each kernel and insert those formulas into the host
code of a CUDA program; and (ii) at runtime, a helper program corresponding to a particular
kernel evaluates those formulas using the actual data and hardware parameters to determine the
thread block configuration that minimizes the kernel’s execution time.

To minimize compilation and execution overheads, KLARAPTOR performs compile-time
analysis and extrapolation of kernel performance on small data sizes at compile-time to pre-
dict kernel performance at runtime. Evaluation using the Polybench/GPU benchmark suite
demonstrates that KLARAPTOR accurately predicts near-optimal thread block configuration
see Figure 1.1.

Our key principle is based on an observation that, in most performance prediction mod-
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els, high-level performance metrics (e.g. execution time, hardware occupancy) can be seen
as decision trees or flowcharts based on low-level performance metrics (e.g. memory band-
width, cache miss rate). These low-level metrics are themselves piece-wise rational functions
(PWRFs) of program, data, and hardware parameters. If one could determine these PRFs,
then it would be possible to estimate, for example, the running time of a program based on its
program, data, and hardware parameters.

Unfortunately, exact formulas for low-level metrics are often not known, instead estimated
through empirical measures or assumptions, or collected by profiling. This is a key challenge
our technique addresses.

1.1 Contributions

The goal of this work is to determine values of program parameters which optimize a mul-
tithreaded program’s performance. Towards that goal, the method by which such values are
found must be receptive to changing data and changing hardware parameters. Our contribu-
tions encapsulate this requirement through the dynamic use of a rational program. Our specific
contributions include:

(i) a technique for devising a mathematical expression in the form of a rational program to
evaluate a performance metric from a set of program and data parameters;

(ii) KLARAPTOR, a tool implementing the rational program technique to dynamically op-
timize CUDA kernels by choosing optimal launch parameters; and

(iii) an empirical and comprehensive evaluation of our tool on kernels from the Polybench/GPU
benchmark suite.

As the KLARAPTOR project is a joint research initiative, my contributions to the project
are as follows:

1. Profiler Overhaul: I upgraded the profiler to support the latest GPU architectures, transi-
tioning from compute capability 6.0 to 7.5. This update enables KLARAPTOR to target
a broader range of NVIDIA GPUs and makes the tool more relevant to contemporary
GPU computing environments.

2. Outlier Removal Process: I introduced a preprocessing step that incorporates an outlier
removal algorithm based on quartile fencing. This method helps mitigate the impact of
potential noise in the empirical data collected from ncu, stemming from factors such as
DVFS and other variances in GPU performance.

3. Enhanced Integration of Rational Programs and MWP-CWP Model: I made improve-
ments to the overall integration of the theory of rational programs and the MWP-CWP
model.



4 Chapter 1. Introduction

1.2 Structure of the Thesis

The remainder of this thesis is organized as follows. In the Chapter 2 we provide a comprehen-
sive introduction to the CUDA programming model, covering its core concepts and memory
model. Additionally, we discuss the theorectical performance model, MWP-CWP, which is
fundamental to our research. We introduce the theory and terminology behind rational pro-

grams and describe that technique which applies the idea of rational programs to the goal of
dynamically selecting optimal program parameters in Chapter 3. Chapter 4 gives on overview
of the KLARAPTOR tool which applies our technique to CUDA kernels and the general al-
gorithm underlying our tool, that is, building and using a rational program to predict program
performance. Then, Chapter 5 describes our specialization and implementation of this tech-
nique to CUDA programs, while our implementation is evaluated in Chapter 6. Lastly, we
draw conclusions and explore future work in Chapter 7.

1.3 Related Works

The Parallel Random Access Machine (PRAM) model [36, 17], including models tailored to
GPU code analysis such as TMM [26] and MCM [19] analyze the performance of parallel
programs at an abstract level. More detailed GPU performance models are proposed such as
MWP-CWP [20, 34], which estimates the execution time of GPU kernels based on the profiling
information of the kernels.

In the context of improving CUDA program performance, other research groups have used
techniques such as loop transformation [7], auto-tuning [18, 21, 33, 23], dynamic instrumenta-
tion [22], or a combination of the latter two [35]. Auto-tuning techniques have achieved great
results in projects such as ATLAS [40], FFTW [15], and SPIRAL [32] in which multiple kernel
versions are generated off-line and then applied and refined on-line once the runtime parame-
ters are known. In contrast, our technique does not optimize the parallel code itself, only the
program parameters controlling it.

Although much research has been devoted to compiler optimizations for kernel source code
or PTX code, previous works such as [11] and [39] suggest that kernel launch parameters (i.e.
thread block configurations) have a large impact on performance and must be considered as a
target for optimization. In [25], the authors present an input-adaptive GPU code optimization
framework G-ADAPT, which uses statistical learning to find a relation between the input sizes
and the thread block sizes. At linking time, the framework predicts the best block size for
a given input size using the linear model obtained from compile time. This approach only
considers the total size of the thread blocks and not their configuration. Meanwhile, the authors
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of [33] use a linear regression model to predict optimal thread block configurations (that is,
dimension sizes and not just the total size). However, they assume kernel execution time scales
linearly with data size. The authors in [24] have also developed a method determining the
best thread block configuration, but similarly, they assume execution time scales linearly with
data size. In [16], machine learning techniques are used in combination with auto-tuning to
search for optimal configurations of OpenCL kernels, but their examples are limited to stencil
computations. On the other hand, ISAAC [38], an auto-tuning framework, utilizes predictive
modeling techniques and a regression model on input characteristics to generate optimized
hardware and application-specific CUDA kernels from parameterized PTX code templates.
However, its functionality is still restricted to matrix multiplication and convolution operations.



Chapter 2

Background

In this chapter, we begin by providing a comprehensive overview of the CUDA programming
model and GPU microarchitecture, ensuring that readers have a solid understanding of the key
concepts and components that define the CUDA ecosystem. Next, we introduce the MWP-
CWP analytical model, which sheds light on the parallelism exhibited by Memory Warp Par-
allelism (MWP) and Computation Warp Parallelism (CWP) in GPU architectures. This model
plays a critical role in analyzing and optimizing the performance of CUDA kernels. Through a
clear explanation of these fundamental concepts, this chapter sets the stage for a deeper explo-
ration of KLARAPTOR and its application in enhancing the performance of CUDA programs.

2.1 CUDA

In this section, a concise introduction to Compute Unified Device Architecture (CUDA) is
presented. CUDA, designed by NVIDIA, is a heterogeneous serial-parallel programming
model[27] that capitalizes on the capabilities of GPUs for general-purpose computation. Pri-
marily targeting C/C++ programmers, CUDA has revolutionized the field of high-performance
computing by facilitating substantial performance enhancements across various domains, in-
cluding scientific simulations, artificial intelligence, and more. This background information
aims to provide the foundations for comprehending the fundamental concepts, techniques, and
challenges associated with GPU-accelerated computation.[2]

2.1.1 Graphics Processing Unit (GPU)

A GPU is a specialized computational device designed for quick manipulation and alteration of
memory, primarily to generate images for display on a screen. Initially, GPUs were mainly used
for rendering 3D graphics in video games and other visually intensive applications. However,

6
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their highly parallel structure and ability to process large amounts of data simultaneously have
made them increasingly valuable for general-purpose computation tasks.

Within the realm of CUDA programming, a GPU serves as a powerful computational de-
vice capable of executing thousands of threads in parallel. This allows it to perform complex
calculations and data processing at a much faster rate than traditional Central Processing Units
(CPUs), which focus on executing a smaller number of threads rapidly. By understanding the
architecture and capabilities of GPUs, developers can utilize the CUDA programming model
effectively to harness their computational power for various applications beyond graphics ren-
dering.

The relevance of GPUs to the CUDA programming model lies in their ability to signifi-
cantly enhance the performance of parallel computation. CUDA exploits the inherent advan-
tages of GPUs to facilitate general-purpose computation on these devices, effectively trans-
forming them into potent computational tools beyond their conventional graphics rendering
roles[2].

GPUs offer substantial advantages over CPUs in the context of instruction throughput and
memory bandwidth, while maintaining comparable costs and power consumption. This is
primarily due to the distinct design goals of GPUs and CPUs. Mentioned above, CPUs focus
on executing a few tens of threads rapidly, while GPUs are engineered to excel at executing
thousands of threads in parallel, compensating for slower single-thread performance to achieve
greater overall throughput. Figure 2.1 shows the distribution of chip resources for a CPU versus
a GPU.

Figure 2.1: The GPU Devotes More Transistors to Data Processing

2.1.2 CUDA Programming Model

The CUDA parallel programming model addresses the challenges of scalable parallelism[28]
while retaining accessibility for programmers familiar with languages such as C/C++. At
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the core of this model lie three fundamental abstractions—hierarchy of thread groups, shared
memories, and barrier synchronization—introduced as minimal language extensions. These
abstractions enable a combination of fine-grained and coarse-grained parallelism, directing
programmers to partition problems into independently solvable sub-problems and fostering
cooperative parallel problem-solving within thread blocks. This methodology not only main-
tains language expressivity but also permits automatic scalability, as each thread block can
be scheduled on any accessible GPU multiprocessor, with the runtime system overseeing the
physical multiprocessor count[2]. Figure 2.2 shows an example of a CPU program vs a CUDA
program.

Figure 2.2: Example of a CPU program vs a CUDA program

Kernels

CUDA kernels are the fundamental building blocks of a CUDA program, representing the
functions that execute on the GPU device (also referred to as the device) in parallel. In the
context of CUDA, the CPU is referred to as the host, responsible for managing and orchestrat-
ing the execution of kernels on the device[28]. The device is typically composed of multiple
streaming multiprocessors (SMs) that provide the parallel processing capability. A kernel is
defined in the CUDA programming model using the __global__ declaration specifier, which
indicates that the function is callable from the host and executes on the device. The execution
configuration of a kernel is specified using <<<...>>>, which determines the grid and block
dimensions, thereby dictating the number of parallel threads and their organization during ker-
nel execution[2]. This configuration allows programmers to efficiently utilize the available
resources on the GPU and optimize the performance of their CUDA applications.
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Threads

In the CUDA programming model, threads constitute the basic units of parallel execution and
are organized within a hierarchical structure encompassing threads, thread blocks, and grids.
Each thread is uniquely identified by its threadIdx, which is a multi-dimensional variable
with up to three dimensions (x, y, and z)[2]. Thread limits are dictated by the GPU architecture,
with the maximum number of threads per block typically capped at 1024. Threads are assem-
bled into blocks, which are then organized into a grid. The blockIdx and blockDim variables
identify the position of a specific block within the grid and the dimensions of each block, re-
spectively. Thread and block dimensions can be one-, two-, or three-dimensional, offering
flexibility in addressing the problem space in a manner that best accommodates the underlying
data structure and computation. This hierarchical organization of threads and blocks enables
efficient mapping of intricate, multi-dimensional problems onto the GPU’s parallel processing
resources, promoting optimal performance and resource utilization.

Thread blocks hold a pivotal role in the CUDA programming model[28], functioning as a
means to organize threads that collaboratively work on a specific sub-problem. Within a thread
block, threads can communicate and synchronize their operations via shared memory, facilitat-
ing efficient data exchange and cooperative problem-solving. It is important to note that thread
blocks can be executed in any order, both concurrently and sequentially, across the available
SMs on a GPU. This flexibility permits automatic scalability, allowing the compiled CUDA
program to adapt to varying GPU architectures and multiprocessor counts[2]. Consequently,
thread blocks enable efficient utilization of GPU resources while ensuring that applications can
scale effectively on diverse hardware configurations.

Kernel Launch Parameters

When launching a CUDA kernel, the execution configuration specified plays a crucial role in
determining the organization of threads and blocks for the kernel’s execution on the GPU. The
launch parameters within this syntax define the grid and block dimensions, which impact the
performance and resource utilization of the application.

The launch parameters consist of two main components: the number of blocks per grid
(gridDim) and the number of threads per block (blockDim). Both of these parameters can
be specified as one-, two-, or three-dimensional structures, represented by dim3 variables in
CUDA. The choice of dimensions depends on the problem space and the structure of the un-
derlying data, with the aim of efficiently mapping the computation onto the GPU’s resources.

For example, if a kernel is launched with the configuration <<<gridDim, blockDim>>>,
it will create gridDim.x ∗ gridDim.y ∗ gridDim.z blocks in the grid, with each block containing
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blockDim.x∗blockDim.y∗blockDim.z threads. This results in a total of (gridDim.x∗gridDim.y∗

gridDim.z)∗(blockDim.x∗blockDim.y∗blockDim.z) threads executing the kernel concurrently.

Selecting optimal launch parameters is essential for achieving maximum performance and
resource utilization on the GPU[3]. The choice of grid and block dimensions should consider
factors such as the size of the problem, the hardware limitations of the GPU (e.g., maximum
threads per block), and the level of parallelism required. Additionally, it is important to account
for shared memory constraints, as larger block sizes may lead to increased shared memory
requirements, potentially causing resource allocation issues or reduced parallelism[3].

By carefully choosing the launch parameters for a CUDA kernel, developers can create
efficient, high-performance parallel applications that effectively exploit the capabilities of the
underlying GPU hardware.[3]

2.1.3 CUDA by Example

In the following section, we shall explore a fundamental example of CUDA programming
by implementing a vector addition program. This hands-on approach will enable readers to
gain a deeper understanding of the various components and concepts involved in writing and
executing CUDA code. This example follows a GitHub repository, If you would like to explore
this tutorial further and experiment with the code, it is available at the following [31].
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1 #include <stdio.h>
2
3 // Size of array
4 #define N 1048576
5
6 // Kernel
7 __global__ void add_vectors(double *a, double *b, double *c)
8 {
9 int id = blockDim.x * blockIdx.x + threadIdx.x;

10 if(id < N) c[id] = a[id] + b[id];
11 }
12
13 // Main program
14 int main()
15 {
16 // Number of bytes to allocate for N doubles
17 size_t bytes = N*sizeof(double);
18
19 // Allocate memory for arrays A, B, and C on host
20 double *A = (double*)malloc(bytes);
21 double *B = (double*)malloc(bytes);
22 double *C = (double*)malloc(bytes);
23
24 // Allocate memory for arrays d_A, d_B, and d_C on device
25 double *d_A, *d_B, *d_C;
26 cudaMalloc(&d_A, bytes);
27 cudaMalloc(&d_B, bytes);
28 cudaMalloc(&d_C, bytes);
29
30 // Fill host arrays A and B
31 for(int i=0; i<N; i++)
32 {
33 A[i] = 1.0;
34 B[i] = 2.0;
35 }
36
37 // Copy data from host arrays A and B to device arrays d_A and d_B
38 cudaMemcpy(d_A, A, bytes, cudaMemcpyHostToDevice);
39 cudaMemcpy(d_B, B, bytes, cudaMemcpyHostToDevice);
40
41 // Set execution configuration parameters
42 // thr_per_blk: number of CUDA threads per grid block
43 // blk_in_grid: number of blocks in grid
44 int thr_per_blk = 256;
45 int blk_in_grid = ceil( float(N) / thr_per_blk );
46
47 // Launch kernel
48 add_vectors<<< blk_in_grid, thr_per_blk >>>(d_A, d_B, d_C);
49
50 // Copy data from device array d_C to host array C
51 cudaMemcpy(C, d_C, bytes, cudaMemcpyDeviceToHost);
52
53 // Free CPU memory
54 free(A);
55 free(B);
56 free(C);
57
58 // Free GPU memory
59 cudaFree(d_A);
60 cudaFree(d_B);
61 cudaFree(d_C);
62
63 return 0;
64 }
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We initiate the process at line 17, where the memory requirement for an array comprising
N double-precision elements is determined. Subsequently, memory allocation for vectors A, B,
and C occurs on the host in lines 20-22. Continuing forward, lines 25-28 allocate memory on
the device for the same vectors. It is worth noting the prevalent naming convention for device
variables is “d ” prefix to indicate device allocation.

The host input vectors A and B are copied to their device counterparts, d A and d B with
cudaMemcpy() as seen in lines 38-39. To prepare for kernel launch, we set the kernel launch
parameters in lines 44-45, defining the number of threads per block and the number of blocks
per grid. The kernel is then launched in line 48, where the actual computation is executed.

Focusing on the add_vectors kernel function at line 7, a unique thread ID is identified
in line 9 for each thread within the grid. The if statement on line 10 serves to prevent mem-
ory access beyond the array’s bounds, which may occur when the number of grid threads is
not a multiple of the number of threads per block. For instance, if N has an extra element,
blk_in_grid would equal 4097 due to the ceil function in line 45, resulting in a total of
4097 ∗ 256 = 1048832 threads. Without the if statement, the final thread would attempt to
access memory beyond the array’s boundaries.

In conclusion, the device output vector d C is copied to the host output vector C in line 51.
Host memory is then freed in lines 54-56, followed by the release of device memory in lines
59-61.

2.1.4 CUDA Memory Model

The CUDA memory model is designed to accommodate the unique requirements of parallel
programming on GPUs and consists of several distinct memory spaces. Host memory refers
to the system memory allocated and managed by the CPU. In contrast, the GPU has its own
memory spaces, including global, shared, and local memory[2].

Global memory, accessible by all threads within a kernel as well as the host, serves as
the primary means for data storage and communication between the host and the device. The
lifetime of data in global memory spans from the point of allocation to deallocation, which
is explicitly managed by the programmer. Although global memory offers a large storage
capacity, it has higher access latency compared to other memory spaces on the GPU[2].

Shared memory, as the name suggests, is a fast, on-chip memory space that can be shared
among threads within the same thread block. This memory space enables efficient inter-thread
communication and data exchange, making it particularly useful for problems that require
threads to cooperate and share information while solving sub-problems. However, shared
memory is limited in capacity, and its contents are only available for the duration of a thread
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Figure 2.3: Heterogeneous Programming Model for CUDA

block’s execution[2].

Local memory is private to each individual thread and is used for storing thread-specific
data, such as function call frames and automatic variables. While local memory is accessible
only by the thread that owns it, it allows threads to store temporary data without affecting other
threads. Similar to global memory, local memory resides off-chip, and therefore, its access
latency is higher than that of shared memory.

Refer to Figure 2.4 for a visual representation of the CUDA memory hierarchy.
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Figure 2.4: CUDA Memory Hierarchy

2.1.5 GPU Microarchitecture

We introduce the fundamental concepts of GPU microarchitecture, highlighting their relation
to the CUDA programming model[2]. Understanding these core principles allows for a deeper
comprehension of the efficient execution of parallel workloads on GPUs and informs the de-
velopment of effective CUDA applications.

SIMT and SIMD

SIMT (Single Instruction, Multiple Thread) and SIMD (Single Instruction, Multiple Data)
constitute vital parallel execution models that impact the performance of GPU architectures
and their integration with the CUDA programming model. SIMT operates by executing iden-
tical instructions on distinct threads, while SIMD conducts the same operation on multiple
data elements. NVIDIA GPUs utilize the SIMT paradigm, permitting threads to be organized
into warps that execute instructions concurrently, thus optimizing resource usage and reducing
thread management overhead[2]. The CUDA programming model corresponds directly to the



2.2. MWP-CWP 15

SIMT architecture, empowering developers to harness the inherent parallelism of GPUs while
efficiently handling threads, memory, and synchronization to achieve exceptional parallel com-
puting performance.

Streaming Multiprocessors (SMs)

Streaming Multiprocessors (SMs) are the primary building blocks of NVIDIA GPUs, acting
as the core computational units that enable efficient parallel processing. Each SM houses mul-
tiple execution units, registers, and shared memory, facilitating the concurrent execution of a
large number of threads. In CUDA, developers organize threads into blocks, which are then
scheduled onto SMs[2]. This arrangement allows for effective management of thread paral-
lelism, memory, and synchronization, ensuring optimal GPU resource utilization and high-
performance parallel computing.

Warp and Warp Scheduling

Warps and warp scheduling are essential components of GPU architectures, particularly in the
context of CUDA programming. In CUDA, a warp is a group of threads, typically 32, that
execute simultaneously on a single streaming multiprocessor (SM). Threads within a warp
share a common program counter and follow a simultaneous execution pattern, optimizing
resource utilization and reducing thread management overhead. Warp scheduling, on the other
hand, is instrumental in managing how warps execute on SMs. Different GPU architectures
use various scheduling policies, determining the selection and instruction issuance for ready
warps[2]. Efficient warp scheduling is crucial for maximizing GPU resource utilization and
overall performance.

2.2 MWP-CWP

The MWP-CWP analytical model offers a novel approach to understanding the performance
of GPU architectures by examining the parallelism exhibited by MWP and CWP. As multi-
threaded architectures, GPUs allow multiple warps to be executed concurrently on a streaming
multiprocessor (SM), effectively hiding the execution costs of these warps. The MWP-CWP
model focuses on determining the maximum number of warps that can access memory simul-
taneously and the number of warps that an SM processor can execute during a memory warp
waiting period. By carefully analyzing the relationship between MWP and CWP, this model
provides valuable insights into the factors that govern execution time, revealing whether it is
dominated by computation or memory access costs. Through a series of illustrative cases, we



16 Chapter 2. Background

will demonstrate the importance of sufficient warps and the intricate interplay between MWP
and CWP in optimizing GPU performance.[20, 27]

(a) MWP (b) CWP

Figure 2.5: MWP-CWP model

2.2.1 MWP ≤ CWP

In the case where CWP is greater than MWP, the application’s performance exhibits a distinct
characteristic: computation cycles are effectively hidden by memory waiting periods. This
implies that the computational resources are kept busy while the memory accesses are being
processed, leading to a more efficient use of the available resources. However, the overall
performance of the application is dominated by the memory cycles, as the computational work
is executed in parallel with memory access operations. In other words, the system exhibits
a higher degree of parallelism in computation than in-memory operations. This implies that
while the application effectively utilizes the available computational resources, it may face
limitations in leveraging memory-level parallelism. This imbalance between CWP and MWP
can result in the underutilization of memory bandwidth and potentially lead to performance
bottlenecks.[20, 27]

Figure 2.6: Computation cycles are concealed by memory waiting periods, resulting in the
overall performance being predominantly dictated by memory cycles.
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2.2.2 MWP > CWP

In the scenario where MWP is greater than CWP, the application’s performance demonstrates
a contrasting behavior: memory accesses are predominantly hidden due to the high MWP. This
means that the memory subsystem is capable of handling multiple memory requests concur-
rently while the computation resources are being utilized, effectively masking memory laten-
cies. As a result, the overall performance of the application is dominated by the computation
cycles, since the memory accesses are efficiently processed in parallel with the computational
work. To put it differently, the application’s performance may be hindered due to an imbalance
between memory and computational resources. This disparity indicates that the application has
a higher degree of parallelism in memory access than in computation, which can potentially
result in the underutilization of computational resources.[20, 27]

Figure 2.7: Memory accesses are largely concealed by high MWP, leading to the overall per-
formance being primarily governed by computation cycles.
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Theoretical Foundations

Let P be a multithreaded program to be executed on a specific multiprocessor. Parameters
influencing the performance of P include: (i) data parameters, specifying the size and possi-
bly structural characteristics of the data, (ii) hardware parameters, specifying characteristics
of hardware resources, and (iii) program parameters, specifying how work (e.g. threads) is
mapped to hardware resources. By fixing the target architecture, the hardware parameters,
say, H = (H1, . . . ,Hh) become fixed and we can assume that the performance of P depends
only on data parameters D = (D1, . . . ,Dd) and program parameters P =

(
P1, . . . , Pp

)
. For

example, in programs targeting GPUs the parameters D are typically dimension sizes of data
structures, like arrays, while P typically specifies the format of the grid and the format of the
thread blocks.

Let E be a high-level performance metric (running time, memory consumption) for P that
we want to optimize. More precisely, given the values of the data parameters D, our goal is to
find values of the program parameters P such that the execution ofP optimizes E. Performance
prediction models attempt to estimate E from a combination of P, D, H, and some model- or
platform-specific low-level metrics L = (L1, . . . , L`) (memory bandwidth, cache miss rate,
etc.). It is natural to assume that these low-level performance metrics are themselves functions
of P, D, H. This is an obvious observation from models based on PRAM such as TMM [26]
and MCM [19].

Therefore, we look to obtain values for these low- and high-level metrics given values for
program, and data parameters. To address our optimization goal, we use the following strategy.
At the compile-time of program P, for each metric, we determine a mathematical formula
expressing that metric as a function of the data and program parameters. This mathematical
formula takes the form of what we call a rational program. At the runtime of P, given specific
values of D and a choice of P, we can evaluate the rational program to obtain a value for
each metric and thus for E. Repeating this for all possible choices of P (assumed to be finite

18
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in number) yields values of P optimizing E. This strategy is detailed in Section 4.2, while
Section 3.1 is dedicated to the notion of a rational program.

One could view a rational program as a computer program that, for input values x1, . . . , xn,
computes and returns a value y = f (x1, . . . , xn), where f is a function in the sense of a pro-
gramming language, say C/C++. However, a rational program is more than that, due to the
process we use to determine f .

3.1 Rational Programs

Let X1, . . . , Xn,Y be pairwise different variables1. Let S be a sequence of three-address code
(TAC [4]) instructions such that the variables occurring in S that are never assigned a value by
an instruction of S are exactly X1, . . . , Xn.

Definition 1 We say that the sequence S is a rational program in X1, . . . , Xn evaluating Y if the

following two conditions hold:

1. every arithmetic operation used inS is either an addition, a subtraction, a multiplication,

a division, or a comparison (for equality or the natural order ≤) of two rational numbers,

in either fixed or arbitrary precision.

2. after specializing in S the variables X1, . . . , Xn to rational numbers x1, . . . , xn, the exe-

cution of the specialized sequence always terminates and the last executed instruction

assigns a rational number to Y.

It is worth noting that the above definition can easily be extended to include Euclidean
division, the integer part operations floor and ceiling, and arithmetic over rational numbers.
For Euclidean division one can write a rational program evaluating the quotient q of integer
a by b, leaving the remainder r to be simply calculated as a − qb. Then, floor and ceiling
can be computed via Euclidean division. Rational numbers and their associated arithmetic are
easily implemented using only integer arithmetic. Therefore, by adding these operations to
Definition 1, the class of rational programs does not change. We regard rational programs as
such henceforth.

3.2 Rational Programs as Flowcharts

For any sequence S of computer program instructions, one can associate S with a control flow

graph (CFG). In the CFG of S, the nodes are the basic blocks of S. Recall that a flowchart is

1Variables refer to both its mathematical meaning and programming language concept.
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another graphic representation of a sequence of computer program instructions. In fact, CFGs
can be seen as particular flowcharts.

If, in a given flowchart C, every arithmetic operation occurring in every (process or deci-
sion) node is either an addition, subtraction, multiplication, or comparison of integers in either
fixed or arbitrary precision then C is the flowchart of a rational sequence of computer program
instructions. Therefore, it is meaningful to depict rational programs using flowcharts, and vice
versa, flowcharts as rational programs. For example, one could consider the metric of theoret-
ical hardware occupancy as defined by NVIDIA. The following example details its definition,
its depiction as a flowchart, and its dependency on program, data, and hardware parameters.

Example 1 The hardware occupancy is a measure of a program’s effectiveness in using the
Streaming Multiprocessors (SMs) of a GPU. It is calculated from a number of hardware pa-
rameters, namely:

- the maximum number Rmax of registers per thread block,
- the maximum number Zmax of shared memory words per thread block,
- the maximum number Tmax of threads per thread block,
- the maximum number Bmax of thread blocks per SM and
- the maximum number Wmax of warps per SM,

as well as low-level kernel-dependent performance metrics, namely:

- the number R of registers used per thread and
- the number Z of shared memory words used per thread block,

and a program parameter, namely the number T of threads per thread block. The occupancy
of a CUDA kernel is defined as the ratio between the number of active warps per SM and the
maximum number of warps per SM, namely:

Wactive/Wmax, where Wactive ≤ min (bBactiveT/32c,Wmax) (3.1)

and Bactive is given by the flowchart in Figure 3.1. This flowchart shows how one can derive a
rational program computing Bactive from Rmax, Zmax, Tmax, Bmax, Wmax, R, Z, T . It follows from
Formula (3.1) that Wactive can also be computed by a rational program from Rmax, Zmax, Tmax,
Bmax, Wmax, R, Z, T . Finally, the same is true for the occupancy of a CUDA kernel using Wactive

and Wmax.
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T Bmax ≤ 32 Wmax and
R T Bmax ≤ Rmax and

Z Bmax ≤ Zmax?

32 Wmax ≤ T Bmax, and
32 Wmax R ≤ Rmax and
32 Wmax Z ≤ Zmax T?

Rmax ≤ R T Bmax and
Rmax ≤ R 32 Wmax and

Rmax Z ≤ R T Zmax?

Zmax ≤ Bmax Z and
Zmax T ≤ 32 Wmax Z and

Zmax R T ≤ Z Rmax?

Bactive = Bmax

Bactive = b(32 Wmax)/T c

Bactive = b(Rmax/(R T )c

Bactive = bZmax/Zc

Bactive = 0 (Failure to Launch)

No

No

No

No

Yes

Yes

Yes

Yes

Figure 3.1: Rational program (presented as a flow chart) for the calculation of the number of
active blocks per streaming processor in a CUDA kernel.
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3.3 Piece-Wise Rational Functions in Rational Programs

We begin with an observation describing the fact that a rational program can be viewed as a
piece-wise rational function 2 .

Observation 1 Let S be a rational program in X1, . . . , Xn evaluating Y . Let s be any instruc-
tion of S other than a branch or an integer part instruction. Hence, this instruction can be of
the form C = A + B, C = A − B, C = A × B, where A and B can be any rational number.
Let V1, . . . ,Vv be the variables that are defined at the entry point of the basic block of the in-
struction s. An elementary proof by induction yields the following fact. There exists a rational
function in V1, . . . ,Vv denoted fs(V1, . . . ,Vv) such that C = fs(V1, . . . ,Vv) for all possible val-
ues of V1, . . . ,Vv. From there, one derives the following observation. There exists a partition
T = {T1,T2, . . .} of Qn (where Q denotes the field of rational numbers) and rational func-
tions f1(X1, . . . , Xn), f2(X1, . . . , Xn), . . . such that, if X1, . . . , Xn receive respectively the values
x1, . . . , xn, then the value of Y returned by S is one of fi(x1, . . . , xn) such that (x1, . . . , xn) ∈ Ti

holds. In other words, S computes Y as a piece-wise rational function (PRF). Notice if S
contains only one basic block then S can be trivially given by a single rational function.

Example 1 shows that the hardware occupancy of a CUDA kernel is given as a piece-wise
rational function in the variables Rmax, Zmax, Tmax, Bmax, Wmax, R, Z, T . Hence, in this example,
we have n = 8, and, as shown by Figure 3.1, its partition of Qn contains 5 parts as there are 5
terminating nodes in the flowchart.

Suppose that a flowchart C representing the rational program R is partially known; to be
precise, suppose that the decision nodes are known (that is, the mathematical expressions defin-
ing them are known) while the process nodes are not. Then, from Observation 1, each process
node can be given by a one or more rational functions. Trivially, a single formula can also be
seen as a flowchart with a single process node. Determining each of those rational functions
can be achieved by solving an interpolation or curve fitting problem. More generally, if the
sequence of instructions in a process node involves non-rational functions (e.g. log) we can
apply Stone-Weierstrass Theorem [37] to approximate each of those by a PRF.

It then follows that any performance metric, which can be depicted as a flow chart or a
formula, can also be represented as a piece-wise rational function, and thus a rational program.
For high-level performance metrics, which relies on low-level metrics, one could work recur-
sively, first determining rational programs for the low-level metrics which depend on P, D,
and H, and then constructing a rational program for the high-level metric from those rational
programs. Hence, by this recursive construction, we can fully determine a rational program for

2Here, rational function is in the sense of algebra, see Section 5.5.
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a high-level metric depending only on P, D, and H. Of course, hardware parameters could be
fixed given a target architecture to yield a rational program which depends only on P and D.
Again, notice that even where formulas for low-level metrics are not known, it is still possible
to estimate them as PRFs, and thus rational programs, via a curve fitting.

As an example, consider occupancy (Example 1). One could first determine PRFs for
the number of registers user per thread and the amount of shared memory used per thread
block. Then, a PRF is determined for the number of active blocks (Figure 3.1) from these
two low-level metrics, and a few more hardware and program parameters. Thus, by recursive
construction, we have a PRF depending only on program and hardware parameters.

Lastly, we make one final remark. We assumed that the decision nodes in the flowchart
of the rational program were known, however, we could relax this assumption. Indeed, each
decision node is given by a series of rational functions. Hence, those could also be determined
by solving curve fitting problems. However, we do not discuss this further since it is not needed
in our proposed technique or implementation presented in the remainder of this thesis.
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An Overview of KLARAPTOR

In this chapter, we present an overview of KLARAPTOR, a compile-time tool designed to op-
timize the performance of CUDA kernels by dynamically choosing the most suitable thread
block configuration. We discuss the underlying theory of rational programs and the MWP-
CWP performance model, which form the basis of KLARAPTOR’s functionality. Further-
more, we explain the process of building and utilizing rational programs to determine optimal
kernel launch parameters, detailing both the compile-time and runtime aspects of the tool. This
chapter aims to provide an in-depth understanding of KLARAPTOR’s methodology and how
it contributes to enhancing kernel performance in CUDA applications.

4.1 Dynamic Optimization of CUDA Kernel Launch Param-
eters

The theory of rational programs is put into practice for the CUDA programming model by our
tool KLARAPTOR. KLARAPTOR is a compile-time tool implemented using the LLVM Pass
Framework and the MWP-CWP performance model to dynamically choose a CUDA kernel’s
launch parameters (thread block configuration) which optimize its performance. Most high-
performance computing applications require computations be as fast as possible and so kernel
performance is simply measured as its execution time.

As mentioned in Chapter 1, thread block configurations drastically affect the running time
of a kernel. Determining optimal thread block configurations typically follows some heuristics,
for example, constraining block size to be a multiple of 32 [2]. However, it is known that the
dimension sizes of a thread block, not only its total size, affect performance [39, 11]. Moreover,
since thread block configurations are intimately tied to the size of data being operated on, it
is very unlikely that a static thread block configuration optimizes the performance of all data

24
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sizes. Our tool effectively uses rational programs to dynamically determine the thread block
configuration which minimizes the execution time of a particular kernel invocation, considering
the invocation’s particular data size and target architecture. This is achieved in two main steps.

1. At the compile-time of a CUDA program, its kernels are analyzed in order to build
rational programs estimating some performance metrics for each individual kernel. Each
rational program, written as code in the C language, is inserted into the code of the
CUDA program so that it is called before the execution of the corresponding kernel.

2. At runtime, immediately preceding the launch of a kernel, where data parameters have
specific values, the rational program is evaluated to determine the thread block configu-
ration which optimizes the performance of the kernel. The kernel is then launched using
this thread block configuration.

Not only are we concerned with kernel performance, but also programmer performance. By
that, we mean the efficiency of a programmer to produce optimal code. When a programmer is
attempting to optimize a kernel, choosing optimal launch parameters can either be completely
ignored, performed heuristically, determined by trial and error, or determined by an exhaustive
search. The latter two options quickly become infeasible as data sizes grow large. Regardless,
any choice of optimal thread block configuration is likely to optimize only a single data size.

For KLARAPTOR to be practical, not only does the choice of optimal kernel launch pa-
rameters need to be correct, but it must also be more efficient than trial and error or exhaustive
search. Namely, the compile-time analysis cannot add too much overhead to the the compi-
lation time and the runtime decision of the kernel launch parameters cannot overwhelm the
program execution time. For the former, our analysis is performed quickly by analyzing ker-
nel performance on only small data sizes, and then results are extrapolated. For the later, the
rational program evaluation is quick and simple, being only the evaluation of a few rational
functions. Moreover, we maintain a runtime invocation history to instantly provide results for
future kernel launches. Our implementation is detailed in Chapter 5.

We have made use of the Polybench/GPU benchmark suite as an empirical evaluation of
the correctness of our tool on a range of CUDA programs. In Figure 1.1 we have already seen
that KLARAPTOR accurately predicts the optimal or near-optimal thread block configuration.
Before presenting more detailed results and experimentation in Chapter 6, we describe the
steps followed by our tool to build and use rational programs for determining a thread block
configuration which optimizes performance.
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4.2 An Algorithm to Select Program Parameters

In this section the notations and hypotheses are the same as in Chapter 3. Namely, E is a high-
level performance metric for the multithreaded program P, L is a set of low-level metrics of
size `, and P, D, H are sets of program, data, and hardware parameters, respectively. Recall
P has size p. Let us assume that the values of H are known at the compile-time of P while
the values of D are known at runtime. Further, let us assume that P and D take integer values.
Hence the values of P belong to a finite set F ⊂ Zp. That is to say, the possible values of P
are tuples of the form (π1, . . . , πp) ∈ F, with each πi being an integer. Let us call such a tuple a
configuration of the program parameters. Due to the nature of program parameters, those are
not necessarily all independent variables For example, in CUDA, the product of the dimension
sizes of a thread block is usually a multiple of the warp size (32).

Given a performance-prediction model for E, one could work recursively to determine a
single helper program R, depending on only D and P, evaluating E, from a combination of
rational programs constructed for each low-level metric in L and values of D and P. Following
Section 3.3, each of these helper programs are constructed by computing rational functions.
Without loss of generality, let us assume each low-level metric is given by a single formula
and thus a single rational function. Hence, we look to determine g1(D, P), . . ., g`(D, P) for
the ` low-level metrics. Finally, at runtime, given particular values of D, the helper program
for E can be evaluated for various values of P to determine the optimal configuration. In the
remainder of this section we describe the general process to build and use helper programs to
determine optimal configurations. The entire process is decomposed into five steps: the first
three occur at compile-time and the next three at runtime.

1. Data collection: To perform a curve fitting of the rational functions g1(D, P), . . ., g`(D, P)
we require data points to fit. These are collected by (i) selecting a subset of K points from
the space of possible values of (D, P); and (ii) executing the program P, recording the
values of the low-level performance metrics L as V = (V1, . . . ,V`), at each point in K.
The data used for executing the programs is generated randomly, but could follow some
scheme provided by the user.

2. Rational function approximation: For each low-level metric Li we use the set of points
K and the corresponding value Vi measured at each point in order to approximate the
rational function gi(D, P). In practice, these empirical values are likely to be noisy from
profiling, and/or numerical approximations. Consequently, we actually determine a ra-
tional function ĝi(D, P) which approximates gi(D, P).

3. Code generation: In order to generate the helper program R, we proceed as follows:
(i) we convert the helper program representing E into code,
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(ii) we convert each ĝi(D, P) into a sub-routine estimating Li, and
(iii) we include those sub-routines into the code computing E, which yields the desired

helper program R depending only on D and P.
4. Helper program evaluation: At the runtime of P, the data parameters D are given

particular values. For those specified values of D and for all practically meaningful
values of P from the set F,1 we compute an estimate of E using R. The evaluation of E
over so many different possible program parameters is feasible for three reasons:

(i) the number of program parameters is small, typically p ≤ 3, see Chapter 5;
(ii) the set of meaningful values for P is small (consider that in CUDA the product of

thread block dimension sizes should be a multiple of 32 less than 1024), and
(iii) the program R simply evaluates a few polynomial formulae and thus runs almost

instantaneously.
5. Program execution: Once an optimal configuration is selected, the program P is exe-

cuted using this configuration along with the values of D.

1The values for P are likely to be constrained by the values D. For example, if P1, P2 are the two dimension
sizes of a two-dimensional thread block of a CUDA kernel operating on a square matrix of order D1, then P1P2 ≤

D2
1 is meaningful.



Chapter 5

The implementation of KLARAPTOR

This section is an overview of the implementation of our previously presented technique (Sec-
tion 4.2) specialized to CUDA in the KLARAPTOR tool. Our tool is built in the C language,
making use of the LLVM Pass Framework (see Section 5.2) and the NVIDIA Nsight Compute
CLI (ncu) (see Section 5.3). KLARAPTOR is freely available in source at https://github.com/orcca-
uwo/KLARAPTOR.

In the case of a CUDA kernel, the data parameters specify the input data size. In many
examples this is a single parameter, say N, describing the size of an array (or the order of a
multi-dimensional array), the values of which are usually powers of 2. Program parameters
describe the kernel launch parameters, i.e. grid and thread block dimension sizes, and are also
typically powers of 2. For example, a possible thread block configuration may be 1024 × 1 × 1
(a one-dimensional thread block), or 16×16×2 (a three-dimensional thread block). Lastly, the
hardware parameters are values specific to the target GPU, for example, memory bandwidth,
the number of SMs available, and their clock frequency.

We organize this section as follows. Sections 5.1 and 5.2 are specific to our implementation
and do not correspond to any step of Section 4.2. The compile time steps 1 (data collection) and
2 (rational function estimation) are reflected in Sections 5.3 and 5.5, respectively, while step
3 requires no explanation. The runtime steps 4 (rational program evaluation) and 5 (program
execution) are trivial to perform. Throughout this section, the term rational program refers to
the mathematical concept defined in Section 3.1 whereas the term helper program refers to the
generated code which implements rational programs in order to select kernel configurations.

5.1 Annotating and preprocessing source code

Beginning with a CUDA program written in C/C++, we minimally annotate the host code to
make it compatible with our pre-processor. We take into account the following points:

28

https://github.com/orcca-uwo/KLARAPTOR
https://github.com/orcca-uwo/KLARAPTOR


5.2. Input/Output builder 29

(i) the code targets at least CUDA Compute Capability (CC) 7.5;
(ii) there should be no CUDA runtime API calls as such calls will interfere with later CUDA

driver API calls used by our tool, for example, cudaSetDevice;
(iii) the block dimensions and grid dimensions must be declared as the typical CUDA dim3

structs.

For each kernel in the CUDA code, we add two pragmas, one specifying the dimension of
the kernel (1, 2, or 3), and one defining the index of the kernel input argument corresponding
to the data size N. For instance, consider the code segment below of a CUDA kernel and
added pragmas. This kernel operates of a two-dimensional array of order N, making it a two-
dimensional kernel.

#pragma kernel_info_size_param_idx_Sample = 1;

#pragma kernel_info_dim_sample_kernel = 2;

__global__ void Sample (int *A, int N) {

int tid_x = threadIdx.x + blockIdx.x*blockDim.x;

int tid_y = threadIdx.y + blockIdx.y*blockDim.y;

...

}

Lastly, for each kernel, the user must fill two formatted configuration files which follow
Python syntax. One specifies the constraints on the thread block configuration while the other
specifies the grid dimensions. For example, for the 2D kernel Sample above, one could specify
that its thread block configuration (bx, by, bz) must satisfy bx < by2, bx < N and by < N.
Since the kernel dimension is given as 2, we assume bz = 1. Similarly, the grid dimensions
(gx, gy, gz), could be specified as gx = d N

bxe, gy = d N
bye, gz = 1.

Now, a preprocessor processes the annotated source code, replacing CUDA runtime API
calls with driver API kernel launches. This step includes source code analysis in order to extract
a list of kernels, a list of kernel calls in the host code, and finally, the body of each kernel to be
used for further analysis. A so-called “PTX lookup table” is built to store kernel information
and static parameters. This table will be inserted into the “instrumented binary”, the compiled
CUDA program augmented by the helper programs.

5.2 Input/Output builder

The Input/Output builder Pass, or IO-builder, is a compiler pass written in the LLVM Pass
Framework to build the previously mentioned “instrumented binary”. This pass embeds an
IO mechanism (i.e. a function call) to communicate with the helper program of a kernel for
each of its invocations. Thus, at the runtime of the CUDA program being analyzed (step 5
of Section 4.2), an IO function is called before each kernel invocation to return six integers,
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(gx, gy, gz, bx, by, bz), the optimal kernel launch parameters.

The IO-builder pass goes through the following steps:

(i) obtain the LLVM intermediate representation of the instrumented source code and find
all CUDA driver API kernel calls;

(ii) relying on the annotated information for each kernel, determine which variables in the
IR contain the value of N for a corresponding kernel call; and

(iii) insert a call to an IO function immediately before each kernel call in order to pass the
runtime value of N to the corresponding helper program and retrieve the optimal kernel
launch parameters.

5.3 Building a helper program: data collection

In order to perform the eventual rational function approximation, we must collect data and
statistics regarding certain performance counters and runtime metrics (see [20] and [1]). These
metrics can be partitioned into three categories.

Firstly, architecture-specific performance counters of a kernel, characteristics influenced by
the CC of the device. These can be obtained at compile-time, since the target CC is specified at
this time. These characteristics include the number of registers used per thread, the amount of
static shared memory per thread block, and the number of (arithmetic and memory) instructions
per thread.

Secondly, runtime-specific performance counters that depend on the behavior of the kernel
at runtime. This includes values impacted by memory access patterns, namely, the number of
memory accesses per warp, the number of memory instructions of each thread, and the total
number of warps that are being executed. We have developed a customized profiler using
NVIDIA’s Nsight Compute CLI to collect the required runtime performance counters.

Thirdly, device-specific parameters, which describe an actual GPU card, allow us to com-
pute a more precise performance estimate. A subset of such parameters can be determined by
microbenchmarking the device (see [29] and [41]), this includes the memory bandwidth, and
the departure delay for memory accesses. The remaining parameters can easily be obtained by
consulting the vendor’s guide [3], or by querying the device itself via the CUDA driver API.
Such parameters include the number of SMs on the card, the clock frequency of SM cores, and
the instruction delay.
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5.4 Building a helper program: outlier removal

As mentioned in Section 1.1, we now describe the outlier removal step, which is performed by
quartile fencing algorithm. The rationale behind integrating this algorithm lies in addressing
potential noise in the empirical data gathered from NVIDIA’s Nsight Compute (ncu), which
could stem from factors such as dynamic voltage and frequency scaling (DVFS) and other
variations in GPU performance. By pinpointing and eliminating upper outliers from the dataset,
our objective is to enhance the accuracy of the subsequent parameter estimation process.

The quartile fencing algorithm is a robust statistical method for detecting and removing
outliers from a dataset. It is based on the concept of interquartile range (IQR), which is the
difference between the first quartile (Q1) and the third quartile (Q3) of the data. The algorithm
defines outlier boundaries, called the lower and upper inner fences, by extending the IQR
beyond Q1 and Q3[14]:

(i) IQR = Q3 − Q1.
(ii) UIF = Q3 + 1.5 × IQR.

Data points falling outside the upper inner fence are considered as outliers and are removed
from the dataset. To implement the outlier removal process, we first profile our program P for
small input sizes of N and obtain the MWP-CWP estimation for clock-cycles for various thread
block configurations. Next, we calculate the first and third quartiles (Q1 and Q3) along with the
interquartile range (IQR) for the estimated clock-cycles. Using the quartile fencing algorithm,
we determine the upper inner fence and identify the thread block configurations exceeding this
threshold as outliers.

Once the outliers are identified, we remove them from the dataset before proceeding with
the parameter estimation process. This preprocessing step helps minimize the impact of upper
outliers on the data and enhances the accuracy of the resulting parameter estimation.

5.5 Building a helper program: rational function approxi-
mation

Using the runtime data collected in the previous step, we look to determine the rational func-
tions ĝi(D, P) (see Section 4.2) which estimate the low-level metrics or other intermediate
values in the rational program R. For ease of discussion, we replace the parameters D and P
with the generic variables X1, . . . , Xn.
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A rational function is simply a fraction of two polynomials:

f (X1, . . . , Xn) =
α1 · (X0

1 · · · X
0
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(5.1)

With a degree bound (an upper limit on the exponent) on each variable Xk in the numerator
and the denominator, uk and vk, respectively, these polynomials can be defined up to some
parameters (using the language of parameter estimation), namely the coefficients of the poly-
nomials, α1, . . . , αi and β1, . . . , β j. Through algebraic analysis of performance models like the
MWP-CWP model, and empirical evidence, these degree bounds are relatively small.

We perform a parameter estimation (for each rational function) on the coefficients α1, . . . , αi, β1, . . . , β j

to determine the rational function precisely. This is a simple linear regression which can be
solved by an over-determined system of linear equations, say by the method of linear least
squares. This system of linear equations is often described in matrix format Ax = b, where A
(the sample matrix or design matrix) and b (the right-hand side vector) encode the collected
data, while the solution vector x encodes the model-fitting parameters. A being derived from a
rational function implies that it is essentially the sample matrix for the denominator polynomial
appended to the sample matrix for the numerator polynomial1.

Many different methods exist for solving this so-called linear least squares problem, such
as the normal-equations, or QR-factorization, however, these methods are either numerically
unstable (normal-equations), or will fail if the sample matrix is rank-deficient (both normal-
equations and QR) [13]. We rely then on the singular value decomposition (SVD) of A to solve
this problem. This decomposition is very computationally intensive, much more than that of
normal-equations or QR, but is also much more numerically stable, as well as being capable of
producing solutions with a rank-deficient sample matrix.

We are highly concerned with the robustness of our method due to three problems present
in our particular situation:

(1) the sample matrix is very ill-conditioned;
(2) the sample matrix will often be (numerically) rank-deficient;
(3) we are interested in using our fitted model for extrapolation, meaning any numerical

error in the model fitting will grow very quickly [13].

While (3) is an issue inherent to our model fitting problem, (1) and (2) result from our choice
of model, and how the sample points (X1, . . . , Xn) are chosen, respectively. Using a rational
function (or polynomial) as the model for which we wish to estimate parameters presents nu-
merical problems. The resulting sample matrix is essentially a Vandermonde matrix. These

1Keen observers will notice that, for rational functions, we must actually solve a system of homogeneous
equations. Such details are omitted here, but we refer the reader to [9, Chapter 5].
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matrices, while theoretically of full rank, are extremely ill-conditioned [13, 8].

Refering to (2), we discuss the difficulties in obtaining poised sample points for modeling
functions that involve CUDA thread block dimensions as variables. The geometric constraints,
combined with the requirement that the product of dimensions be a multiple of 32, makes it
challenging to achieve a full-rank sample matrix, which is crucial for accurate and stable model
fitting. As a result, there is a higher likelihood of encountering a rank-deficient sample matrix
[12, 30], which complicates the entire model estimation process.

Despite all of these challenges our parameter estimation techniques are well-implemented
in optimized C code. We use optimized algorithms from LAPACK (Linear Algebra PACKage)
[5] for singular value decomposition and linear least squares solving while rational function
and polynomial implementations are similarly highly optimized thanks to the Basic Polynomial
Algebra Subprograms (BPAS) library [6, 9]. With parameter estimation complete the rational
functions required for the rational program are fully specified and we can finally construct it.

5.6 Helper programs

In practice, the use of helper programs is split into two parts: the generation of the rational
program at the compile-time of the multithreaded programP, and the use of the helper program
during the runtime of P.

5.6.1 Compile-time code generation

We are now at Step 3 of Section 4.2. We look to define a helper program which evaluates the
high-level metric E of the program P using the MWP-CWP model. In implementation, this is
achieved by using a previously defined helper program template which contains the formulas
and case discussion of the MWP-CWP model, independent of the particular program being
investigated. Using simple regular expression matching and text manipulation we combine the
helper program template with the rational functions determined in the previous step to obtain
a helper program specialized to the multithreaded program P. The generation of this helper
program is performed completely during compile-time, before the execution of the program
itself.

5.6.2 Runtime optimization

At runtime, the input data sizes (data parameters) are well known. In combination with the
known hardware parameters, since the program is actually being executed on a specific device,
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we are able to specialize every parameter in the helper program and obtain an estimate for
the high-level metric E. This helper program is then easily and quickly evaluated during (or
immediately prior to) the execution of P. Evaluating the helper program for each possible
thread block configuration, as restricted by our data parameters and the CUDA programming
model itself, we determine a thread block configuration which optimizes E. The program P is
finally executed using this optimal thread block configuration. Therefore, we have completed
Steps 4 and 5 of Section 4.2.
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Experimentation

In this section we examine the performance of KLARAPTOR by applying it to the CUDA
programs of the Polybench/GPU benchmark suite [18]. We note here that many of the kernels
in this suite perform relatively low amounts of work; they are best suited to being executed
many times from a loop in the host code. Data in this section was collected using a RTX 2070
SUPER.

Table 6.1 provides experimental data for the main kernels in the benchmark suite Polybench/GPU.
Namely, this table compares the execution times of the thread block configuration chosen by
KLARAPTOR against the optimal thread block configuration found though exhaustive search.
The table shows a couple of data sizes in order to highlight that the best configuration can
change for different input sizes. While it may appear for some examples that there are large
variations between timings of the KLARAPTOR-chosen configuration and the optimal, these
should be considered within the full range of possible configurations. Recall from Figure 1.1
that compared to the worst possible timings, the KLARAPTOR-chosen configuration and the
optimal result in very similar in timings.

In Table 6.2 we report the time it takes for KLARAPTOR to perform its compile-time
analysis and build the rational programs for each example in the PolyBench/GPU suite. This
table also compares the times taken by KLARAPTOR and the exhaustive search. Exhaustive
search times are given as a sum over all possible configurations and all powers of 2 up to
N=8192, meanwhile the data collection for KLARAPTOR is done for 128 ≤ N ≤ 2048, again
all powers of 2 within this range. Note that KLARAPTOR can determine near-optimal thread
block configurations for any N ≥ 128. As seen in Table 6.2, ∞ represents the upper bound
of KLARAPTOR’s search space. The best and worst execution times for the main kernel in
each example (for N = 8192) is also given to highlight the fact that our optimization step is
sometimes faster than even a single execution of a kernel with a poor choice of thread block
configuration. We note that for some kernels, with very quick running times, exhaustive search

35



36 Chapter 6. Experimentation

Table 6.1: KLARAPTOR vs. exhaustive search for thread block configuration choice for ker-
nels in Polybench/GPU.

Kernel N KLARAPTOR Chosen Optimal Optimal
Time (ms) Config. Time (ms) Config.

atax K1 2048 0.404 8, 4 0.386 16, 2
4096 0.856 16, 2 0.856 16, 2
8192 3.175 16, 2 2.646 32, 1

atax K2 2048 0.586 8, 4 0.583 16, 2
4096 1.198 32, 1 1.196 64, 1
8192 3.096 32, 1 2.499 256, 1

bicg K1 2048 0.598 8, 4 0.598 8, 4
4096 1.217 32, 1 1.212 64, 1
8192 2.886 32, 1 2.568 32, 2

bicg K2 2048 0.388 8, 4 0.376 16, 2
4096 0.838 16, 2 0.838 16, 2
8192 3.855 16, 2 3.042 32, 1

convolution2d 2048 0.183 16, 2 0.139 32, 4
4096 0.517 32, 2 0.517 32, 2
8192 2.265 16, 32 2.033 32, 4

corr 2048 1173.972 2, 16 1173.972 2, 16
4096 10286.199 2, 16 5799.606 16, 2
8192 366938.750 8, 64 28347.246 32, 1

covar 2048 1243.915 8, 4 1179.058 2, 16
4096 12050.661 64, 4 5831.021 16, 2
8192 225534.281 128, 4 27667.753 32, 1

fdtd step1 2048 63.408 32, 2 63.310 256, 1
4096 250.627 32, 2 250.302 128, 1
8192 997.219 32, 2 996.090 16, 8

fdtd step2 2048 91.518 32, 1 63.998 128, 1
4096 251.701 32, 4 250.677 128, 1
8192 1385.221 16, 2 996.072 16, 8

fdtd step3 2048 96.936 32, 1 84.321 32, 2
4096 330.271 32, 2 330.259 128, 1
8192 1526.632 16, 2 1311.767 16, 8

gemm 2048 143.621 16, 2 62.054 16, 64
4096 1455.516 4, 16 491.389 16, 64
8192 12334.238 4, 16 3940.204 16, 64

gesummv 2048 1.321 4, 8 0.773 16, 2
4096 1.818 16, 2 1.789 128, 1
8192 6.778 16, 2 5.765 32, 1

gramschmidt K1 2048 82.855 1024, 1 81.918 4, 16
4096 370.100 1024, 1 366.439 32, 2
8192 1511.951 1024, 1 1494.540 32, 2

gramschmidt K2 2048 8.581 8, 4 8.245 64, 1
4096 17.738 16, 2 17.516 32, 1
8192 38.508 32, 1 38.364 64, 1

gramschmidt K3 2048 2227.957 32, 1 2204.946 4, 8
4096 10020.573 32, 1 10020.573 32, 1
8192 43879.894 32, 1 43879.894 32, 1

mm2 K1 2048 67.812 16, 8 61.852 16, 64
4096 489.912 16, 64 489.912 16, 64
8192 3925.331 16, 64 3925.331 16, 64

mm2 K2 2048 67.827 16, 8 61.847 16, 64
4096 488.863 16, 64 488.863 16, 64
8192 3924.813 16, 64 3924.813 16, 64

mm3 K1 2048 67.833 16, 8 61.840 16, 64
4096 489.801 16, 64 489.801 16, 64
8192 3926.057 16, 64 3926.057 16, 64

mm3 K2 2048 67.905 16, 8 61.802 16, 64
4096 489.185 16, 64 489.185 16, 64
8192 3925.962 16, 64 3925.962 16, 64

mm3 K3 2048 67.611 16, 8 61.555 16, 64
4096 489.250 16, 64 489.250 16, 64
8192 3926.108 16, 64 3926.108 16, 64

mvt K1 2048 0.404 8, 4 0.382 16, 2
4096 0.856 16, 2 0.856 16, 2
8192 3.298 16, 2 2.647 32, 1

mvt K2 2048 0.585 8, 4 0.584 16, 2
4096 1.198 32, 1 1.194 64, 1
8192 2.487 32, 1 2.487 32, 1

syr2k 2048 244.153 8, 64 242.817 8, 4
4096 1942.944 8, 128 1941.899 8, 64
8192 21648.312 8, 4 15545.357 8, 128

syrk 2048 143.478 8, 8 143.442 8, 64
4096 1137.063 8, 128 1136.299 8, 64
8192 9085.384 8, 128 9085.384 8, 128
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is not a bad option. However, some examples such as GRAMSCHMIDT, take an exorbitant amount
of time for exhaustive search. This table also shows that the one-time compile-time cost can
often be amortized by only a few executions of the kernel.

Table 6.2: KLARAPTOR Optimization Times on Polybench/GPU, RTX 2070 SUPER Com-
paring times for (1) compile-time optimization steps of KLARAPTOR, (2) exhaustive search
over all thread block configurations, the execution time for a kernel given (3) the best thread
block configuration, and (4) the worst thread block configuration. Exhaustive search is given
as a sum for values up to N = 8192 (except convolution3d with N = 512).

Kernel KLARAPTOR Time (s) Ex. Search Time (s) Min Time (s) Max Time (s)
128 ≤ N < ∞ 128 ≤ N ≤ 8192 N = 8192 N = 8192

2DCONV 210.29 82.78 0.002 0.023
ATAX 507.59 59.60 0.006 1.940
MVT 508.03 60.03 0.005 1.978
BICG 510.91 60.16 0.006 2.050
GESUMMV 398.54 142.78 0.006 0.129
GEMM 456.50 987.77 3.941 126.052
SYRK 579.84 2772.64 9.069 160.944
SYR2K 1173.68 9553.64 15.534 459.169
2MM 700.49 1889.62 7.851 240.828
3MM 944.54 2798.12 11.779 361.310
CORR 1032.92 10924.12 28.365 861.289
COVAR 1141.45 23251.12 27.670 3900.855
3DCONV 132.88 52.06 0.006 0.053
GRAMSCHM 2113.27 94206.06 45.418 35146.314
FDTD 2D 489.21 495.79 3.304 21.107
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Conclusions and future work

The performance of a single CUDA program can vary wildly depending on the target GPU
device, the input data size, and the kernel launch parameters. Moreover, a thread block config-
uration yielding optimal performance for a particular data size or a particular target device will
not necessarily be optimal for a different data size or different target device. In this thesis we
have presented the KLARAPTOR tool for determining optimal CUDA thread block configu-
rations for a target architecture, in a way which is adaptive to each kernel invocation and input
data, allowing for dynamic data-dependent performance and portable performance. This tool is
based upon our technique of encoding a performance prediction model as a rational program.
The process of constructing such a rational program is a fast and automatic compile-time pro-
cess which occurs simultaneously to compiling the CUDA program by use of the LLVM Pass
framework. Our tool was tested using the kernels of the Polybench/GPU benchmark suite with
great results.

One of the main challenges we face in our research is understanding GPU hardware sat-
uration, as executing a CUDA kernel with an optimal number of threads to efficiently utilize
available hardware resources is a complex task. As a result, this limitation may be imped-
ing our ability to attain precise occupancy values. As newer GPU models, such as NVIDIA’s
Ampere architecture, have become available, it may be necessary to explore improved per-
formance prediction models to better account for factors such as concurrency and arithmetic
intensity. We anticipate that such models may enable us to achieve more accurate results in our
research.

Our use of linear least squares for extrapolation beyond the “training” range has proven to
be less than ideal. In future work, it would be beneficial to test the model within the training
range, but with multiples of 32 instead of powers of 2, in order to more accurately capture the
behavior of CUDA thread block dimensions. The combination of the MWP-CWP model as a
theoretical performance model with linear regression may not be the most effective approach.
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Considering the tree-like structure of rational programs, a random forest regression could po-
tentially provide a better fit for our problem. Future work should investigate the feasibility
and performance of random forest regression as an alternative to linear regression within the
context of KLARAPTOR.

Lastly, beyond the scope of rational programs, the exploration of other machine learning
models, such as neural networks, could prove valuable in determining the optimal thread block
configuration for CUDA kernels. These alternative models may provide more robust and accu-
rate predictions, improving the performance and efficiency of the kernels.

In summary, the future work for this thesis should focus on refining the methods used
for model fitting, exploring alternative regression techniques that better suit the structure of
rational programs, and investigating the potential of machine learning models for determining
the optimal CUDA kernel configurations.



Bibliography

[1] CUDA runtime API: v10.0. NVIDIA Corporation, September 2018. http://docs.
nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf.

[2] CUDA C Best Practices Guide, v12.0, February 2023. https://docs.nvidia.com/
cuda/cuda-c-best-practices-guide/index.html.

[3] CUDA C Programming Guide, v12.0, February 2023. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/contents.html.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman Publishing Co., Inc., 1986.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, 3rd edition, 1999.

[6] M. Asadi, A. Brandt, C. Chen, S. Covanov, F. Mansouri, D. Mohajerani, R. Moir,
M. Moreno Maza, L. Wang, N. Xie, and Y. Xie. Basic Polynomial Algebra Subprograms
(BPAS), 2019. http://www.bpaslib.org.

[7] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sa-
dayappan. A compiler framework for optimization of affine loop nests for GPGPUs. In
ICS 2008, Island of Kos, Greece, June 7-12, 2008, pages 225–234, 2008.

[8] Bernhard Beckermann. The condition number of real vandermonde, krylov and positive
definite hankel matrices. Numerische Mathematik, 85(4):553–577, 2000.

[9] Alexander Brandt. High performance sparse multivariate polynomials: Fundamental data
structures and algorithms. Master’s thesis, University of Western Ontario, London, ON,
Canada, 2018.

40

http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Runtime_API.pdf
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
http://www.bpaslib.org


BIBLIOGRAPHY 41

[10] Alexander Brandt, Davood Mohajerani, Marc Moreno Maza, Jeeva Paudel, and Lin-Xiao
Wang. KLARAPTOR: A tool for dynamically finding optimal kernel launch parameters
targeting CUDA programs. CoRR, abs/1911.02373, 2019.

[11] C. Chen, X. Chen, A.-K. Keita, M. Moreno Maza, and N. Xie. MetaFork: A compilation
framework for concurrency models targeting hardware accelerators and its application to
the generation of parametric CUDA kernels. In CASCON 2015.

[12] Kwok Chiu Chung and Te Hai Yao. On lattices admitting unique lagrange interpolations.
SIAM Journal on Numerical Analysis, 14(4):735–743, 1977.

[13] R. Corless and N. Fillion. A graduate introduction to numerical methods. Springer, 2013.

[14] B.S. Everitt and A. Skrondal. The Cambridge Dictionary of Statistics. Cambridge Uni-
versity Press, 2010.

[15] M. Frigo and S. G. Johnson. FFTW: an adaptive software architecture for the FFT. In
IEEE,ICASSP ’98, pages 1381–1384, 1998.

[16] Joseph D. Garvey and Tarek S. Abdelrahman. Automatic performance tuning of stencil
computations on gpus. In ICPP 2015, pages 300–309, 2015.

[17] P. B. Gibbons. A more practical PRAM model. In Proceedings of the ACM Symposium

on Parallel Algorithms and Architectures, pages 158–168. ACM, 1989.

[18] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. Auto-tuning a
high-level language targeted to GPU codes. In Proc. InPar, pages 1–10, 2012.

[19] S.A. Haque, M. Moreno Maza, and N. Xie. A many-core machine model for designing
algorithms with minimum parallelism overheads. In Parallel Computing: On the Road to

Exascale, Proc. of ParCo, volume 27, pages 35–44. IOS Press, 2015.

[20] S. Hong and H. Kim. An analytical model for a GPU architecture with memory-level and
thread-level parallelism awareness. In ISCA 2009, pages 152–163, 2009.

[21] M. Khan, P. Basu, G. Rudy, M. Hall, C. Chen, and J. Chame. A script-based autotuning
compiler system to generate high-performance CUDA code. ACM Trans. Archit. Code

Optim., 9(4), 2013.

[22] T. Kistler and M/ Franz. Continuous program optimization: A case study. (TOPLAS),
25(4):500–548, 2003.



42 BIBLIOGRAPHY

[23] J. Kurzak, Y. Tsai, M. Gates, A. Abdelfattah, and J. J. Dongarra. Massively parallel
automated software tuning. In ICPP 2019, pages 92:1–92:10.

[24] Robert V. L., Boyana N., and Allen D. M. Autotuning GPU kernels via static and predic-
tive analysis. In ICPP 2017, pages 523–532, 2017.

[25] Yixun Liu, Eddy Z Zhang, and Xipeng Shen. A cross-input adaptive framework for GPU
program optimizations. In 2009 IEEE International Symposium on Parallel & Distributed

Processing, pages 1–10. IEEE, 2009.

[26] L. Ma, K. Agrawal, and R. D. Chamberlain. A memory access model for highly-threaded
many-core architectures. Future Generation Comp. Syst., 30, 2014.

[27] Marc Moreno Maza. Models of computation for graphics processing units, November
2017. https://www.csd.uwo.ca/˜mmorenom/Publications/CASCON-2017.pdf.

[28] Marc Moreno Maza. Many-core computing with cuda, March 2022. https://www.
csd.uwo.ca/˜mmorenom/HPC-Slides/Many_core_computing_with_CUDA.pdf.

[29] X. Mei and X. Chu. Dissecting GPU memory hierarchy through microbenchmarking.
IEEE Trans. Parallel Distrib. Syst., 28(1):72–86, 2017.

[30] Peter J Olver. On multivariate interpolation. Studies in Applied Mathematics, 116(2):201–
240, 2006.

[31] Tom Papatheodore. Vector addition (cuda. https://github.com/olcf-tutorials/
vector_addition_cuda, 2022.
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Appendix A

Examples of Annotated Code

A.1 PolyBench Code

Below is an example of the PolyBench code for the 2DConvolution benchmark. As mentioned
in Section 5.1 the pragmas are the manual annotations required for our pre-processor to work.

1 ///**

2 // * 2DConvolution.cu: This file is part of the PolyBench/GPU 1.0 test

suite.↪→

3 // *

4 // * Web address:

http://www.cse.ohio-state.edu/˜pouchet/software/polybench/GPU↪→

5 // */

6

7 #include "2dconv_utils.h"

8

9

10 #pragma kernel_info_size_param_idx_Convolution2D_kernel = 2;

11 #pragma kernel_info_dim_Convolution2D_kernel = 2;

12

13 void

14 conv2D (DATA_TYPE* A, DATA_TYPE* B)

15 {

16 int i, j;

17 DATA_TYPE c11, c12, c13, c21, c22, c23, c31, c32, c33;

18

44
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19 c11 = +0.2;

20 c21 = +0.5;

21 c31 = -0.8;

22 c12 = -0.3;

23 c22 = +0.6;

24 c32 = -0.9;

25 c13 = +0.4;

26 c23 = +0.7;

27 c33 = +0.10;

28

29 for (i = 1; i < NI - 1; ++i) // 0

30 {

31 for (j = 1; j < NJ - 1; ++j) // 1

32 {

33 B[i * NJ + j] = c11 * A[(i - 1) * NJ + (j - 1)]

34 + c12 * A[(i + 0) * NJ + (j - 1)]

35 + c13 * A[(i + 1) * NJ + (j - 1)]

36 + c21 * A[(i - 1) * NJ + (j + 0)]

37 + c22 * A[(i + 0) * NJ + (j + 0)]

38 + c23 * A[(i + 1) * NJ + (j + 0)]

39 + c31 * A[(i - 1) * NJ + (j + 1)]

40 + c32 * A[(i + 0) * NJ + (j + 1)]

41 + c33 * A[(i + 1) * NJ + (j + 1)];

42 }

43 }

44 }

45

46 void

47 init (DATA_TYPE* A)

48 {

49 int i, j;

50

51 for (i = 0; i < NI; ++i)

52 {

53 for (j = 0; j < NJ; ++j)

54 {
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55 A[i * NJ + j] = (float) rand () / RAND_MAX;

56 }

57 }

58 }

59

60 int

61 compareResults (DATA_TYPE* B, DATA_TYPE* B_outputFromGpu)

62 {

63 int i, j, fail;

64 fail = 0;

65

66 // Compare a and b

67 for (i = 1; i < (NI - 1); i++)

68 {

69 for (j = 1; j < (NJ - 1); j++)

70 {

71 if (percentDiff (

72 B[i * NJ + j],

73 B_outputFromGpu[i * NJ + j]) >

PERCENT_DIFF_ERROR_THRESHOLD)↪→

74 {

75 fail++;

76 return (EXIT_FAILURE);

77 }

78 }

79 }

80

81 // Print results

82 // printf (

83 // "Non-Matching CPU-GPU Outputs Beyond Error Threshold of %4.2f

Percent: %d\n",↪→

84 // PERCENT_DIFF_ERROR_THRESHOLD,

85 // fail);

86 return (EXIT_SUCCESS);

87

88 }
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89

90 void

91 GPU_argv_init ()

92 {

93 cudaDeviceProp deviceProp;

94 cudaGetDeviceProperties (&deviceProp, GPU_DEVICE);

95 // printf ("setting device %d with name %s\n", GPU_DEVICE,

deviceProp.name);↪→

96 printf ("[running on device %d: %s]\n", GPU_DEVICE, deviceProp.name);

97 cudaSetDevice ( GPU_DEVICE);

98 }

99

100 __global__ void

101 Convolution2D_kernel (DATA_TYPE *A, DATA_TYPE *B, int NI, int NJ)

102 {

103 int j = blockIdx.x * blockDim.x + threadIdx.x;

104 int i = blockIdx.y * blockDim.y + threadIdx.y;

105

106 DATA_TYPE c11, c12, c13, c21, c22, c23, c31, c32, c33;

107

108 c11 = +0.2;

109 c21 = +0.5;

110 c31 = -0.8;

111 c12 = -0.3;

112 c22 = +0.6;

113 c32 = -0.9;

114 c13 = +0.4;

115 c23 = +0.7;

116 c33 = +0.10;

117

118 if ((i < NI - 1) && (j < NJ - 1) && (i > 0) && (j > 0))

119 {

120 B[i * NJ + j] = c11 * A[(i - 1) * NJ + (j - 1)]

121 + c21 * A[(i - 1) * NJ + (j + 0)] + c31 * A[(i - 1) * NJ + (j

+ 1)]↪→
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122 + c12 * A[(i + 0) * NJ + (j - 1)] + c22 * A[(i + 0) * NJ + (j

+ 0)]↪→

123 + c32 * A[(i + 0) * NJ + (j + 1)] + c13 * A[(i + 1) * NJ + (j

- 1)]↪→

124 + c23 * A[(i + 1) * NJ + (j + 0)] + c33 * A[(i + 1) * NJ + (j

+ 1)];↪→

125 }

126 }

127

128 void

129 convolution2DCuda (DATA_TYPE* A, DATA_TYPE* B, DATA_TYPE*

B_outputFromGpu)↪→

130 {

131

132 cuda_timer t_conv;

133 cuda_timer_init (t_conv);

134

135 DATA_TYPE *A_gpu;

136 DATA_TYPE *B_gpu;

137

138 cudaMalloc ((void **) &A_gpu, sizeof(DATA_TYPE) * NI * NJ);

139 cudaMalloc ((void **) &B_gpu, sizeof(DATA_TYPE) * NI * NJ);

140 cudaMemcpy (A_gpu, A, sizeof(DATA_TYPE) * NI * NJ,

cudaMemcpyHostToDevice);↪→

141

142 dim3 block (DIM_THREAD_BLOCK_X, DIM_THREAD_BLOCK_Y);

143 dim3 grid ((size_t) ceil (((float) NI) / ((float) block.x)),

144 (size_t) ceil (((float) NJ) / ((float) block.y)));

145

146 cuda_timer_record_start (t_conv);

147 Convolution2D_kernel <<<grid, block>>> (A_gpu, B_gpu, NI, NJ);

148 cudaCheckKernel()

149 ;

150 cuda_timer_record_stop (t_conv);

151 cudaThreadSynchronize ();

152 cudaMemcpy (B_outputFromGpu, B_gpu, sizeof(DATA_TYPE) * NI * NJ,
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153 cudaMemcpyDeviceToHost);

154 cudaFree (A_gpu);

155 cudaFree (B_gpu);

156

157 cuda_timer_record_get_elapsed_time (t_conv);

158

159 printf (

160 "[trace: n=%d, bx=%d, by=%d, elapsed_Convolution2D_kernel=%0.4f

(ms)] ... ",↪→

161 NI, DIM_THREAD_BLOCK_X, DIM_THREAD_BLOCK_Y, t_conv.elapsed_time);

162 }

163

164 int

165 main (int argc, char **argv)

166 {

167

168 int n = 4096, bx = 32, by = 8;

169 if (argc > 1)

170 n = atoi (argv[1]);

171 if (argc > 2)

172 bx = atoi (argv[2]);

173 if (argc > 3)

174 by = atoi (argv[3]);

175

176 NI = NJ = n;

177 DIM_THREAD_BLOCK_X = bx;

178 DIM_THREAD_BLOCK_Y = by;

179

180 double t_start, t_end;

181

182 DATA_TYPE* A;

183 DATA_TYPE* B;

184 DATA_TYPE* B_outputFromGpu;

185

186 A = (DATA_TYPE*) malloc (NI * NJ * sizeof(DATA_TYPE));

187 B = (DATA_TYPE*) malloc (NI * NJ * sizeof(DATA_TYPE));
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188 B_outputFromGpu = (DATA_TYPE*) malloc (NI * NJ * sizeof(DATA_TYPE));

189

190 //initialize the arrays

191 init (A);

192

193 GPU_argv_init ();

194

195 #pragma START_TRACING

196 convolution2DCuda (A, B, B_outputFromGpu);

197 #pragma STOP_TRACING

198 // t_start = rtclock ();

199 // conv2D (A, B);

200 // t_end = rtclock ();

201 // fprintf (stdout, "CPU Runtime: %0.6lfs\n", t_end - t_start); //);

202

203 // int s = compareResults (B, B_outputFromGpu);

204 int s = EXIT_SUCCESS;

205 if (s == EXIT_SUCCESS)

206 printf ("PASS\n");

207 else

208 printf ("FAIL\n");

209

210 free (A);

211 free (B);

212 free (B_outputFromGpu);

213

214 return 0;

215 }

A.2 Annotated PolyBench Code

Below is an example of how KLARAPTOR automatically annotates code for the 2DConvolu-
tion benchmark.

1 #include "2dconv_utils.h"

2
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3 ///////////////////////////////////////

4 /////// AUTOMATICALLY ANNOTATED ///////

5 ///////////////////////////////////////

6 #include "kernel_invoker.h"

7 ///////////////////////////////////////

8 ///////////////////////////////////////

9 const int kernel_info_size_param_idx_Convolution2D_kernel

__attribute__((used)) = 2;↪→

10 const int kernel_info_dim_Convolution2D_kernel __attribute__((used)) =

2;↪→

11 void

12 conv2D (DATA_TYPE* A, DATA_TYPE* B)

13 {

14 int i, j;

15 DATA_TYPE c11, c12, c13, c21, c22, c23, c31, c32, c33;

16 c11 = +0.2;

17 c21 = +0.5;

18 c31 = -0.8;

19 c12 = -0.3;

20 c22 = +0.6;

21 c32 = -0.9;

22 c13 = +0.4;

23 c23 = +0.7;

24 c33 = +0.10;

25 for (i = 1; i < NI - 1; ++i)

26 {

27 for (j = 1; j < NJ - 1; ++j)

28 {

29 B[i * NJ + j] = c11 * A[(i - 1) * NJ + (j - 1)]

30 + c12 * A[(i + 0) * NJ + (j - 1)]

31 + c13 * A[(i + 1) * NJ + (j - 1)]

32 + c21 * A[(i - 1) * NJ + (j + 0)]

33 + c22 * A[(i + 0) * NJ + (j + 0)]

34 + c23 * A[(i + 1) * NJ + (j + 0)]

35 + c31 * A[(i - 1) * NJ + (j + 1)]

36 + c32 * A[(i + 0) * NJ + (j + 1)]
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37 + c33 * A[(i + 1) * NJ + (j + 1)];

38 }

39 }

40 }

41 void

42 init (DATA_TYPE* A)

43 {

44 int i, j;

45 for (i = 0; i < NI; ++i)

46 {

47 for (j = 0; j < NJ; ++j)

48 {

49 A[i * NJ + j] = (float) rand () / RAND_MAX;

50 }

51 }

52 }

53 int

54 compareResults (DATA_TYPE* B, DATA_TYPE* B_outputFromGpu)

55 {

56 int i, j, fail;

57 fail = 0;

58

59 for (i = 1; i < (NI - 1); i++)

60 {

61 for (j = 1; j < (NJ - 1); j++)

62 {

63 if (percentDiff (

64 B[i * NJ + j], B_outputFromGpu[i * NJ + j]) >

PERCENT_DIFF_ERROR_THRESHOLD)↪→

65 {

66 fail++;

67 return (EXIT_FAILURE);

68 }

69 }

70 }

71
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72 return (EXIT_SUCCESS);

73 }

74 void

75 GPU_argv_init ()

76 {

77 cudaDeviceProp deviceProp;

78 cudaGetDeviceProperties (&deviceProp, GPU_DEVICE);

79 printf ("[running on device %d: %s]\n", GPU_DEVICE, deviceProp.name);

80 cudaSetDevice ( GPU_DEVICE);

81 }

82 //__global__ void

83 //Convolution2D_kernel (DATA_TYPE *A, DATA_TYPE *B, int NI, int NJ)

84 //{

85 // int j = blockIdx.x * blockDim.x + threadIdx.x;

86 // int i = blockIdx.y * blockDim.y + threadIdx.y;

87 // DATA_TYPE c11, c12, c13, c21, c22, c23, c31, c32, c33;

88 // c11 = +0.2;

89 // c21 = +0.5;

90 // c31 = -0.8;

91 // c12 = -0.3;

92 // c22 = +0.6;

93 // c32 = -0.9;

94 // c13 = +0.4;

95 // c23 = +0.7;

96 // c33 = +0.10;

97 // if ((i < NI - 1) && (j < NJ - 1) && (i > 0) && (j > 0))

98 // {

99 // B[i * NJ + j] = c11 * A[(i - 1) * NJ + (j - 1)]

100 // + c21 * A[(i - 1) * NJ + (j + 0)] + c31 * A[(i - 1) * NJ + (j +

1)]↪→

101 // + c12 * A[(i + 0) * NJ + (j - 1)] + c22 * A[(i + 0) * NJ + (j +

0)]↪→

102 // + c32 * A[(i + 0) * NJ + (j + 1)] + c13 * A[(i + 1) * NJ + (j -

1)]↪→

103 // + c23 * A[(i + 1) * NJ + (j + 0)] + c33 * A[(i + 1) * NJ + (j +

1)];↪→
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104 // }

105 //}

106 void

107 convolution2DCuda (DATA_TYPE* A, DATA_TYPE* B, DATA_TYPE*

B_outputFromGpu)↪→

108 {

109 cuda_timer t_conv;

110 cuda_timer_init (t_conv);

111 DATA_TYPE *A_gpu;

112 DATA_TYPE *B_gpu;

113 cudaMalloc ((void **) &A_gpu, sizeof(DATA_TYPE) * NI * NJ);

114 cudaMalloc ((void **) &B_gpu, sizeof(DATA_TYPE) * NI * NJ);

115 cudaMemcpy (A_gpu, A, sizeof(DATA_TYPE) * NI * NJ,

cudaMemcpyHostToDevice);↪→

116 dim3 block (DIM_THREAD_BLOCK_X, DIM_THREAD_BLOCK_Y);

117 dim3 grid ((size_t) ceil (((float) NI) / ((float) block.x)),

(size_t) ceil (((float) NJ) / ((float) block.y)));↪→

118 cuda_timer_record_start (t_conv);

119

120

////////////////////////////////////////////////////////////////////////↪→

121 ////////// WARNING: AUTOMATICALLY ANNOTATED REGION BEGINS HERE

/////////↪→

122

////////////////////////////////////////////////////////////////////////↪→

123

124

125

126 char kernel_Convolution2D_kernel_0_name[] =

"kernel_Convolution2D_kernel_sm_75";↪→

127

128 //launch_params: 3 for grid_dim, 3 for block_dim, 1 for

dynamic_shared_mem_bytes;↪→

129 int kernel_Convolution2D_kernel_sm_75_0_launch_params[6];
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130

set_kernel_launch_params(kernel_Convolution2D_kernel_sm_75_0_launch_params,

grid, block);

↪→

↪→

131

132 void * kernel_Convolution2D_kernel_sm_75_0_kernel_params[]={&A_gpu ,

&B_gpu , &NI , &NJ};↪→

133

134 kernel_invoker(kernel_Convolution2D_kernel_0_name,

kernel_Convolution2D_kernel_sm_75_0_launch_params,

kernel_Convolution2D_kernel_sm_75_0_kernel_params);

↪→

↪→

135

136

////////////////////////////////////////////////////////////////////////↪→

137 ////////// WARNING: AUTOMATICALLY ANNOTATED REGION ENDS HERE

///////////↪→

138

////////////////////////////////////////////////////////////////////////↪→

139

140 cudaCheckKernel()

141 ;

142 cuda_timer_record_stop (t_conv);

143 cudaThreadSynchronize ();

144 cudaMemcpy (B_outputFromGpu, B_gpu, sizeof(DATA_TYPE) * NI * NJ,

cudaMemcpyDeviceToHost);↪→

145 cudaFree (A_gpu);

146 cudaFree (B_gpu);

147 cuda_timer_record_get_elapsed_time (t_conv);

148 printf (

149 "[trace: n=%d, bx=%d, by=%d, elapsed_Convolution2D_kernel=%0.4f

(ms)] ... ", NI, DIM_THREAD_BLOCK_X, DIM_THREAD_BLOCK_Y,

t_conv.elapsed_time);

↪→

↪→

150 }

151 int

152 main (int argc, char **argv)

153 {

154 int n = 4096, bx = 32, by = 8;
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155 if (argc > 1)

156 n = atoi (argv[1]);

157 if (argc > 2)

158 bx = atoi (argv[2]);

159 if (argc > 3)

160 by = atoi (argv[3]);

161 NI = NJ = n;

162 DIM_THREAD_BLOCK_X = bx;

163 DIM_THREAD_BLOCK_Y = by;

164 double t_start, t_end;

165 DATA_TYPE* A;

166 DATA_TYPE* B;

167 DATA_TYPE* B_outputFromGpu;

168 A = (DATA_TYPE*) malloc (NI * NJ * sizeof(DATA_TYPE));

169 B = (DATA_TYPE*) malloc (NI * NJ * sizeof(DATA_TYPE));

170 B_outputFromGpu = (DATA_TYPE*) malloc (NI * NJ * sizeof(DATA_TYPE));

171

172 init (A);

173 GPU_argv_init ();

174 #pragma START_TRACING

175 convolution2DCuda (A, B, B_outputFromGpu);

176 #pragma STOP_TRACING

177 int s = EXIT_SUCCESS;

178 if (s == EXIT_SUCCESS)

179 printf ("PASS\n");

180 else

181 printf ("FAIL\n");

182 free (A);

183 free (B);

184 free (B_outputFromGpu);

185 return 0;

186 }
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