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Abstract

Multi-voxel pattern analysis (MVPA) provides a powerful framework for making statistical

inferences on the information present in brain activity patterns as measured by functional mag-

netic resonance imaging (fMRI). Many recent studies suggest that MVPA performance bene-

fits from taking into account the spatial voxel-to-voxel correlations in the measurement noise.

However, estimating these noise correlations is challenging due to the limited data points and

large voxel counts. To address this issue, it is common practice to shrink the empirical corre-

lation estimate towards its identity matrix, which biases the estimate towards the incorrect as-

sumption that voxels are independent. We therefore propose an anatomically-informed model

of measurement noise in fMRI, which takes into account the distances of voxels in the mea-

surement volume, their distance on the cortical sheet, and the depth at which they sample the

cortex. Our model can predict the noise-correlation structure in new participants and datasets.

It improves the noise correlation estimate when used as a shrinkage target, thereby also poten-

tially improving statistical inferences in MVPA.

Keywords: Time series analysis, Representation similarity analysis, noise correlation,

multivariate pattern analysis, effective degrees of freedom, regularization, reliability, distance

estimates
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Summary for Lay Audience

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive imaging technique that al-

lows researchers to measure the activity in the human brain. To compare the fine-grained

pattern of brain activation, researchers employ multivariate analysis methods to make infer-

ences on the activity observed in groups of voxels, the 3D analog of image pixels in a brain

image. In these analyses, they often assume that the measurement error is independent across

voxels. However, that is not the case; fMRI data has a strong and reliable correlation structure

across voxels. Mounting evidence shows that, based on this incorrect assumption, researchers

are likely to arrive at incorrect decisions. Therefore, the goal of this project is to build a model

of the spatial noise correlation structure in fMRI data and use it to improve multivariate infer-

ence. We construct potential noise correlation models using different aspects of the anatomical

information. For example, two voxels that are close to each other are more correlated than two

voxels that are far apart. The spatial distance in the volume hence is one of the anatomical

factors that we consider. We also consider the distance along the cortical surface (i.e., taking

into account the individual brain folding structure) and whether the voxel measured superficial

or deep aspects of the brain. Our results show that the use of our anatomically-informed noise

correlation model can lead to better inference than assuming the independence of voxels.
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Chapter 1

Introduction

1.1 General problem statement

The brain is a complex organ that gives rise to our thoughts, memories, emotions, and move-

ments. As we engage in different tasks, the activity of neurons in the brain changes. Functional

magnetic resonance imaging (fMRI), a non-invasive and painless technique, enables us to mea-

sure this brain activity by detecting the changes associated with blood flow (see below). Our

brain consists of different regions and each of them has a specific functional contribution across

diverse tasks. What the computational role of each region is an important open question in sys-

tem neuroscience. One approach to solving this question is to study exactly how the activity

patterns in different regions change across different tasks or experimental conditions. We can

interpret neural activity patterns in each region as representing some aspect of the world (Shea

[2018]). If we can determine which features of the world are represented in the region, we can

gain insight into the computational function of that region. Researchers therefore built brain-

computational models that could perform complex tasks (Abbott [2008]) and then compared

the representations arising in the models with the brain activity patterns observed in different

regions of the brain. But how they can assess whether a representation found in the model is

a good match (Kriegeskorte and Diedrichsen [2016])? This is a multivariate inferences prob-

1



2 Chapter 1. Introduction

lem, in which we want to compare a set of vectors that describe different states of the world to

the multivariate activity patterns observed in the brain. To do so, the research community has

adopted three different related approaches: Representational similarity analysis (RSA), Pattern

Component Modelling (PCM), and Encoding models (Diedrichsen et al. [2017]). All three

approaches ultimately assess a simple prediction: If two task conditions are similar in terms of

their model features, they should also be associated with similar activity patterns in the region

that represents these features. However, one critical problem in all three approaches is that the

measurement noise in fMRI is correlated across different brain locations (or voxels, see be-

low), so when making multivariate inferences, we cannot assume independent and identically

distributed noise. This thesis aims to address the spatial dependence of the measurement noise

by building a better noise correlations model, ultimately improving the statistical inference in

multivariate analysis.

In the next three parts of the introduction, I provide some basic backgrounds of fMRI

as well as cerebrum structure, review one specific form of multivariate fMRI analysis, and

demonstrate the problem of the spatial noise correlation structure in this analysis.

1.2 Background information: Functional Magnetic Resonance

Imaging and cerebrum structure

The brain comprises three parts: the cerebrum, brainstem, and cerebellum. Here, we focus

on the cerebrum, as it is the area of most interest for representational fMRI studies. The

basic functional unit of the brain is called the neuron. It plays a role in sending and receiving

the electrical impulses that communicate messages about sensation, perception, and cognition

throughout the brain. There are roughly 100 billion neurons in the brain (Harms and Elias

[2013]). The cerebrum comprises two main components: gray matter (the cerebral cortex) and

white matter (Fig. 1.1). Gray matter contains the cell bodies of the neurons - this is where

information processing happens. The cerebral gray matter forms a 2-dimensional sheet cortex
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that is folded in a complex way so that it can be packed into the skull (Harms and Elias [2013]).

The grooves are referred to as sulci and the rounded ridges (or elevations) as gyri (Fig. 1.1).

White matter mainly consists of myelinated axons, which allow nerve signals to be transmitted

between neurons (Mackenzie [2019]). Hence, the main role of white matter is to provide

communication between different gray matter areas. The brain is embedded in cerebrospinal

fluid (CSF) (Fig. 1.1), which fills the cavities between brain tissue and the skull. Blood is

supplied to the cerebrum through vessels that mainly run along the outer surface of the brain,

i.e., between the gray matter and the CSF.

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive brain imaging technique

that detects neural activity in the working human brain by measuring changes in blood flow

over thousands of spatial brain locations. Each element in the fMRI image is a “voxel”, the

3-D analog of a pixel (Poldrack et al. [2011]). Each one represents a tidy cube of brain tissue

(typically 2 × 2 × 2mm). The fMRI signal therefore provides an activity measure aggregated

over hundreds of thousands of neurons. A typical fMRI scan contains (depending on resolution

and field-of-view) 50,000 - 200,000 voxels, covering the entire human brain. FMRI relies on

the fact that, when the neuron in the area of the brain is activated (or the area of the brain

is in use), the amount of blood that flows to the area increases. Interestingly, neuron activity

triggers a much larger change in blood flow than is strictly needed, such that the blood becomes

ultimately more oxygenated after neural activity increases (Medicine [2023]). The oxygenation

level of the blood changes the magnetic properties of hemoglobin, which can be picked by the

MRI scanner. The changes in voxels brightness (i.e., the intensity of the signal received by

the scanner) are therefore referred to as the blood oxygenation level dependent (BOLD) signal

(Poldrack et al. [2011]). Blood flow to a particular region of the brain is significantly sensitive

to underlying changes in neural activity. That is, when neural activity increases in a certain

region of the brain, the signal also increases by a small amount. This signal change makes it

possible to map activity changes related to different experimental tasks.

However, the BOLD signal is relatively weak, and there are many sources of measurement
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noise. The main sources of noise include thermal noise, physiological noise, head movements,

and fluctuations in neural activity (Liu [2016]). Thermal noise arises from the sensors of the

MRI system itself. The receiver of an MRI machine picks up very small fluctuations in the

magnetic field. Because the sensors have to work at room temperature, there are random fluc-

tuations induced by the random movement of electrons. Thermal noise is uncorrelated over

time (i.e., white noise), but is spatially correlated due to the geometrical properties of modern

multi-channel MRI systems. Hemodynamic cardiac and respiratory-cycle fluctuations, such

as changes in the rate of blood flow, blood volume over time, and heartbeat, are sources of

physiological noise. Physiological noise in fMRI data has been demonstrated to depend on the

vascularization of the tissue and vessel size (Liu et al. [2006]), thus it is significantly greater

in cortical gray matter regions than in white matter areas (Bodurka et al. [2007]). Head move-

ment in the scanner can only be partially corrected by motion realignment after acquisition. It

leads to correlations of measurement noise across the entire brain. These three noises are non-

neuronal in nature and are therefore usually considered measurement noise. The response to a

stimulus for a subject often changes over time and tasks, and this change leads to variations in

trial-to-trial BOLD activity within a participant that is usually unexplained by the experimen-

tal design. These neural sources of variability are spatially correlated such that functionally

connected regions of the neocortex are more correlated than two regions that do not communi-

cate with each other (Biswal et al. [1995]). Therefore, neuronal sources of measurement noise

should introduce a spatial correlation structure that is dictated by the 2D sheet of the neocortex.

1.3 Multivariate fMRI analysis

Originally, most fMRI experiments investigated whether the BOLD signal in a specific brain

location increased (or decreased) in response to a stimulus or a task. Statistical inference was

performed using the general linear model (GLM) to reveal activated brain areas by searching

for voxel time series that match the predicted BOLD signal (Poldrack et al. [2011]). This ap-
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proach was performed at each voxel separately and is therefore referred to as “voxel-level”

or “mass-univariate” inference (Friston et al. [1994b]). Statistical inference ultimately iden-

tified the brain regions that systematically increased activity in response to a specific task or

stimulus. In contrast, instead of looking at each voxel individually, or averaging varying sig-

nals across voxels within a region of interest (ROI), many researchers are employing analyses

that consider patterns of responses across multiple voxels. In general, this class of techniques

has become known as multi-voxel pattern analysis (MVPA). MVPA allows researchers to test

whether distributed patterns of BOLD activation across multiple voxels differ between exper-

imental conditions (Norman et al. [2006]; Davis et al. [2014]). Since this analysis makes use

of activity patterns across voxels, it can detect a broader class of task-related effects than the

traditional mass-univariate approach. For example, if individual voxels have different tuning

functions over experimental variables, then the cortical area can contain the information regard-

ing the variable even though the mean activation level of the region may be perfectly matched

across conditions. In this case, multivariate analysis, MVPA, can detect representations that

may not be characterized by the mass-univariate analysis (Diedrichsen et al. [2013]).

There are a number of MVPA approaches, including classification (Cox and Savoy [2003]),

encoding models, PCM, and RSA (Kriegeskorte et al. [2008]). Here, we only focus on RSA.

Instead of looking directly at the neural activation patterns elicited by the different classes of

experimental conditions, RSA examines the relative similarity of the patterns across conditions

in small selected brain regions. RSA achieves this by first calculating the distances between

estimated activity patterns across all voxels of the regions. The distance between each possible

pair of conditions is then arranged into a representational dissimilarity matrix (RDM). In this

way, RSA characterizes for which conditions a region is in a similar, and for which conditions

it is in a very different state. The empirical RDM is then compared to the RDM predicted by

each brain-computational model to test which model best describes the information encoded in

a particular brain region.
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1.4 Motivation

A critical problem for using RSA (or any multivariate fMRI analysis methods) to draw infer-

ences is that the noise is not independent across voxels. Instead, the covariance of the noise

across voxels has a strong and reliable structure. That is, the noise of neighboring voxels is

strongly correlated (Fig. 1.2A). The structure of the covariance matrix is also stable across

different experimental runs for the same subject (Fig. 1.2). There are two options to address

the spatial dependence of the measurement noise. One option is to simply ignore this issue and

assume that the noise is independent across voxels after suppressing the high error variance of

voxels by its standard deviation from the residuals of the regression model. This procedure is

also called “univariate prewhitening”. However, the independence assumption is usually vi-

olated (de Zwart et al. [2008]; Arcaro et al. [2015];Rosenbaum et al. [2017]); the strong and

reliable spatial dependence across nearby voxels leads to sub-optimal or erroneous inferences

in multivariate analysis (Domingos and Pazzani [1997]; Kuncheva [2006]; Wald and Polimeni

[2017]).

An alternative option is to take into account the noise correlation structure between voxels

by prewhitening the data using an estimate of the noise correlation matrix across voxels. This

“multivariate prewhitening” requires the inversion of the estimated correlation matrix, which

can become unstable when the number of voxels in the residuals is close to or even larger than

the number of time points (i.e., T ≤ P), which causes the estimated correlation to be rank-

deficient. To address this issue, Ledoit and Wolf [2004] proposed to regularize the correlation

estimates towards its diagonal (the identity matrix in this case) with the optimal shrinkage pa-

rameter 0 ≤ λ ≤ 1. The optimal parameter explicitly minimizes the mean squared error of the

resultant correlation estimator. Most multivariate analysis methods use such a regularized esti-

mate as the noise correlation estimate to prewhiten the data. However, the shrinkage target, the

identity matrix, assumes that the noise is independent across voxels, which is not the case. This

raises the question of whether we can develop a model of the fMRI spatial correlations struc-

ture, which could act as a more appropriate shrinkage target (or prior) for the regularization of
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the correlation estimator.

1.5 About this thesis

Therefore, the first goal of this present study is to construct better anatomically-informed noise

correlation models. We first considered to what degree the spatial distance in the volume (3d-

distance, Fig. 1.1A), the spatial distance along the cortical surface (2d-distance, Fig. 1.1A), and

whether the voxel samples superficial or deep aspects of the cortical sheet (cortical depth, Fig.

1.1B) determine the correlation between two voxels. We then used these anatomical charac-

teristics of voxel pairs to develop several noise correlation models and compared these models

based on their effective number of voxels. Next, we determined how to estimate the model

parameters by comparing the inference in the best model based on the parameters estimated

using cross-validation within the individual, across individuals, or across datasets. In the sec-

ond part of the thesis, I assessed the impact of the developed model on multivariate inference.

I therefore compared the statistical inference between regularizing the empirical correlation

matrix towards our best model and regularizing towards the identity matrix with the shrinkage

factor.
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Sulci
Gyri GyriSulci

Figure 1.1: A cut through the human brain: a part of the brain’s cerebral cortex with gray
matter, white matter, and cerebrospinal fluid (CSF). A: 3d-distance and 2d-distance between
the voxel pair. B: Voxel pairs in different depth levels: either both are superficial or deep. Both
plots show sulci, the grooves, and gyri, the folds or ridges.
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Figure 1.2: Empirical covariance matrix between each pair of voxels for the same subject but
different experimental runs.



Chapter 2

Materials and methods

2.1 FMRI datasets

We used datasets from six different fMRI experiments for this project. All experiments differed

considerably in task paradigm (length and repetition of each trial type and task ranging from

cognitive to motor domain), amount of data (the number of participants and functional runs),

scanner parameters (repetition time (TR), and voxel size), and functional regions considered.

General information for each dataset is shown in Fig. 2.1.

Dataset 1: MDTB

The full study is described in King et al. [2019]. Twenty-four healthy right-handed par-

ticipants were engaged in a diverse set of motor (such as finger press) and cognitive (such as

working memory and theory of mind) tasks. All fMRI data were acquired on a 3T Siemens

Prisma with a 32-channel head coil. Each participant’s data contained 8 functional runs of 598

volumes using a 2D echo-planar imaging sequence (TR=1s) at a voxel size of 3 mm isotropic.

For this study, we used the data from the first session of this experiment. Each block consisted

of 29 trials (17 trial types, each repeated 1 to 3 times) and each was 30 s long. We analyzed the

data from 8 ROIs located in the left hemisphere: the primary motor cortex (M1), the primary

sensory cortex (S1), the dorsal premotor area (PMd), the ventral premotor area (PMv), the sup-

9



10 Chapter 2. Materials and methods

plementary motor area (SMA), the primary visual cortex (V1), anterior and posterior portion

of the superior parietal lobule (SPLa & SPLp). The average number of voxels across ROIs was

451 (standard deviation 161 voxels).

Dataset 2: Online Planning

In this unpublished experiment, twenty-one participants underwent scanning while per-

forming either single finger presses or chords of three simultaneous finger presses. Imaging

data were acquired on a 7T Siemens Megnetom MRI scanner with a 32-channel head coil. 10

functional runs of 366 volumes, each using a 2D echo-planner imaging sequence (TR = 1.0

s) at 2.3mm isotropic resolution voxel size, were recorded for each participant. Each run con-

sisted of 192 trials (96 with 750 ms and 96 with 1.3 s stimulus time) of 10 trial types; each

repeated 15-20 times. We used the data from 8 ROIs (M1, S1, PMd, PMv, SMA, SPLa, SPLp,

V1) in the left hemisphere (contra-lateral to the performing hand)

Dataset 3: Motor Sequence

The full study is described in Wiestler et al. [2014]. Forty-two healthy and right-handed

participants underwent a scanning session while performing 4 finger sequences with their right

hand and 4 finger sequences with their left hand. Finger presses were executed against an MRI-

compatible keyboard comprised of 10 piano-style keys and measured by a force transducer

mounted underneath each key. Imaging data were acquired using a 3T Siemens Trio MRI

scanner with a 32-channel head coil. Eight functional runs of 156 volumes per run, each using a

2D echo-planar sequence (TR = 2.72 s) at 2.3mm isotropic resolution voxel size were recorded

for each subject. Each run consisted of 3 repetitions of each sequence-hand combination (24

trials), with three executions of each sequence in each trial (13.5 s). We used the data from M1,

S1, PMd, PMv, SMA, SPLa, and SPLp of the left hemisphere.

Datatset 4: Passive Pattern

The full study is described in Arbuckle et al. [2022]. The focus of this study was located at

M1 and S1 of the left hemisphere (contra-lateral to the engaged hand). Ten participants under-

went scanning while all 31 combinations of the 5 fingers of their right hand were stimulated.
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Imaging data were acquired on a Siemens 7T Magnetom with a 32-channel head coil. Partici-

pants completed 11 total functional runs, yielding 682 total trials (31 combinations x 2 repeats

x 11 runs), across two separate scanning days, with six runs on the first day and five runs on

the second day. Each run was 614s. During each run, 410 functional images were obtained

using a multiband 2D echo-planar imaging sequence (TR =1.5s,) with a voxel size of 1.4mm

isotropic.

Datatset 5: Cognition

The full study is described in Nakai and Nishimoto [2020]. Six healthy participants per-

formed 104 cognitive tasks. During the first session, subjects were engaged in 12 training runs

of 281 volumes per run. The number of repetitions for each task was four, except for one task

(FeedbackPos) that repeated 66 times. Each run contained 77-83 trials with a duration of 6-12

s per trial. To ensure all runs had the same length, a 2-s feedback for the preceding task was

presented 9–13 times per run. The duration of a single run was 556 s. Imaging data were ac-

quired using a 3 T Siemens Trio with a 32-channel head coil. 72 interleaved axial slices were

scanned using a T2-weighted gradient echo multiband echoplanar imaging sequence (TR = 2s,

TE = 30ms, 2.0mm thick without a gap) at 2.0 mm isotropic resolution voxel size. Similarly,

we used data from M1, S1, PMd, PMv, SMA, V1, SPLa, and SPLp of the left hemisphere.

Datatset 6: Working memory

The full study is described in Shahshahani et al. [2023]. Sixteen participants underwent a

scanning session while they were performing a working memory task (forward and backward

remembering of numbers in a sequence with different lengths). Each run, therefore, consisted

of 12 conditions and each repeated for five 13-second-long trials (6 seconds for encoding and 7

seconds for retrieval). MRI data were acquired on a 3T Siemens Prisma. Five functional runs

of 409 volumes (412 volumes in total but 3 volumes are discarded because they are dummy

scans), each using an echo-planar imaging sequence (TR = 1 s, TE = 30 ms) at voxel 2.5×2.5×3

mm were recorded for each participant. We used the data from M1, S1, PMd, PMv, SMA, V1,

SPLa, and SPLp of the left hemisphere.
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Data set (W)

1 (24) 2 (21) 3 (42) 4 (10) 5 (6) 6 (16)

Study type motor/cogniton motor motor motor cognition working
/social/affecive memory

Number of subjects 24 21 42 10 6 16
Number of ROIs 8 8 7 2 8 8
Averaged number of voxels 456 628 523 1168 836 451
across ROIs
Number of timepoints per run 598 366 156 408 281 409
Number of runs 16 10 8 11 12 5
Number of conditions 29 11 8 32 104 12

Table 2.1: Summary of six fMRI datasets used in the analysis.

2.2 Problem Statement

Let Y = [y1, ..., yp] ∈ RT×p be the fMRI time series data (i.e., BOLD response measurements)

that comprises the activation patterns over T time courses and p voxels. Each row of the

data matrix Y is the measured activity pattern over voxels, and each column corresponds to

the activity profile of a certain voxel across time. The first step in fMRI analysis is to relate

the measured activity to the experimental paradigm. Generally, such paradigms consist of Q

different experimental conditions, and each condition repeats n times to the participant (i.e., the

number of repetitions or runs = n). Thus, the classical experiment will have N = Q × n trials.

To estimate the activity patterns for each trial, it is standard to conduct a so-called “first-level”

general linear model (GLM):

yi = Xβi + ϵ i (2.1)

where yi is an T × 1 observed time-series vector of fMRI signal intensities for each voxel i

(with 1 ≤ i ≤ p), X ∈ RT×N is the design matrix that represents the temporal evolution of the

predicted BOLD response in to each of the N trials of the experiments. βi ∈ R
N×1 is a vector

of regression coefficients that represent the brain activity for voxel i across N trials, reflecting

the relative contribution of each experimental condition to the fMRI signal. ϵ i is the true error

term of length T for voxel i. The standard assumption of ϵ i is that it follows multivariate
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normal distribution with ϵ i ∼ MVN(0, σ2
iΣT ), where ΣT is a T × T temporal correlation matrix

(Friston et al. [1994a]). This analysis estimates the values of the vector βi that best fit the

observed fMRI signal intensities yi, using least squares or maximum likelihood estimation. The

resulting estimates of βi, β̂i, then can be tested for statistical significance, allowing researchers

to identify brain regions that show significant responses to the experimental conditions. The

estimate of ϵ i, ei, describes the difference between yi and ŷi that are obtained for the study

(Friston et al. [1994a]). ei then can be used to form the residuals R = [e1, ..., ep] ∈ RT×p.

This first-level model is “mass-univariate”, i.e. it is typically conducted independently for each

voxel in the brain. Overall, the estimation of the model results in the N × p matrix of activity

estimates B = [β̂1, ..., β̂p].

Here we are concerned with the second-level GLM (multivariate analysis), which then tries

to understand the relationship between the different activity patterns across the voxels in a

region of interest. Like the first-level model, this model is formulated for each participant

separately. We assume a multivariate random effects model, where the activity patterns B

are modeled using a design matrix Z ∈ RN×Q, which relates each trial to an experimental

condition. Each column of Z consists of indicator variables, either 0 or 1, denoting whether

the Qth experimental conditions occurred on the respective trial. Now, we can consider the

familiar random effect model that assumes the data B are generated as a linear combination of

Q regressors with some noise E.

B = ZU + E (2.2)

where U ∈ RQ×p is a matrix of true activity patterns (we treat U across different subjects as the

random effects). The rows of the matrix [u1, ...,uQ] are the activity patterns associated with the

Q experimental conditions. E ∈ RN×p is the noise matrix.

We assume that across p voxels, the rows of U are distributed with mean 0 and variance-

covariance matrix G ∈ RQ×Q. This covariance matrix determines the overlap, or similar-

ity of different conditions, and is the central quantity of interest for representational models

(Diedrichsen et al. [2017]). Hypothesis are then tested by analyzing these covariance matrices
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across participants.

Typically, multivariate models make the (implicit) assumption that the true activity patterns

do not have a specific spatial structure, and that the spatial structure is the same across all

conditions. Thus, U is assumed to have a matrix normal (MN) distribution with

U ∼ MN(0,G, I) (2.3)

Many commonly used multivariate analysis techniques, such as RSA, aim to test the hypotheses

about the distribution of activity patterns specified by different representational models, each

of which predicts a different variance-covariance matrix G.

A critical problem here is that the noise E is correlated across voxels. Therefore, we have

to assume that the columns of E are distributed normally with mean 0 and variance-covariance

matrix Vp. In contrast, the rows of E can be assumed to be independent and identically dis-

tributed (i.i.d.), as long as the temporal (auto-) correlation of the measurement noise has already

been taken into account in the first-level GLM (Eq. 2.1). Together with a normal assumption,

we therefore have

E ∼ MN(0, I,Vp) (2.4)

In practice, there are two options to deal with the spatial correlation of the measurement

noise. The first option is to ignore this issue and assume that the noise is independent after

normalizing each voxel by its standard deviation from the residual of the time series model

(Eq. 2.6). To this end, we first employ the residuals R, a T (number of time points)× p

(number of voxels) matrix, from the regression model to obtain an empirical covariance matrix

V̂p

V̂p =
1
T

RT R (2.5)
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Then, we use D̂p, the diagonal of matrix V̂p, to transform or prewhiten the data B,

B̃ = BD̂
−1/2
p (2.6)

leading to an approximately equal variance across voxels in B̃.

The second option not only suppresses the variance of voxels but also considers the noise

correlation structure between voxels. In this case, an estimate of noise correlation (known as

the empirical correlation, Σ̂p) can be obtained from the empirical covariance matrix:

Σ̂p = D̂
−1/2
p V̂p D̂

−1/2
p (2.7)

which can be then used to prewhiten the data

B̃ = BD̂
−1/2
p Σ̂

−1/2
p (2.8)

Note that when the number of voxels p exceeds the number of time points T , the empirical

correlation estimate (Eq. 2.7) will become rank deficient and hence non-invertible. Even if

p < T , the matrix may contain many small eigenvalues, which makes the inverse of the matrix

unstable and causes the pre-whitened activity estimates to have a large variance.

One common practice that has been proposed in the field of financial statistics is to shrink

the empirical correlation towards its diagonal (i.e., shrinkage target is identity matrix in this

case) with the shrinkage factor 0 ≤ λ ≤ 1 (Ledoit and Wolf [2004]).

Σ̃p = λI + (1 − λ)Σ̂p (2.9)

This regularization biases the estimate towards the assumption that all voxels are independent,

which ignores the strong noise correlation across neighboring voxels in fMRI data (Friston

et al. [1994a]; Zarahn et al. [1997]) and therefore leads to sub-optimal inference. Hence, we
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aim to seek a more realistic shrinkage target that is informed by the underlying anatomy to

improve the inference in multivariate analysis.

2.3 Anatomically-informed spatial noise correlation

In this paper, we consider several potential spatial noise correlation models based on three

important characteristics of the anatomical location of the voxel pairs in question: the spa-

tial distance in the volume space (3d-distance), the spatial distance along the cortical surface

(2d-distance), and whether the voxel samples superficial or deep aspects of the cortical sheet

(cortical depth). We also define a baseline model for comparison.

Exp3d Model: It is well known that the noise correlations structure between a pair of voxels

are determined by their spatial distance in the volume space. In particular, two neighboring

voxels are higher correlated than voxel pairs that are far apart. We first considered a model in

which the noise correlation falls off exponentially with the 3d-distance between the voxel pairs

(i.e. Euclidean distance):

M(i, j) = γ1 exp(−αdi j) (2.10)

where di j is the pairwise Euclidean distance between voxel i and j, and M(i, j) the predicted

correlation by the model. This equation specifies that the noise correlation between two voxels

diminishes as their 3d-distance increases. The parameters α > 0 and γ1 > 0 together control

the magnitude of such decay. Note that we do not model the correlation of the voxel with itself,

all M(i, i) are assumed to be 1 for all models.

Double Exp3d model: Instead of using a single exponential function, another way to model

such decay is to use a double exponential function

M(i, j) = γ1 exp(−αdi j) + γ2 exp(−βd2
i j) (2.11)
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where d2
i j is the squared Euclidean distance between the i-th and the j-th voxels. The parameters

α > 0 and γ1 > 0 together adjust the scale of the first exponential function, while β > 0

and γ2 > 0 control the magnitude of the decreasing pattern captured by the second (squared)

exponential function. An important characteristic of voxel-wise noise correlation is that it

rapidly declines for a short distance, but much more slowly over a long distance (see below).

The key difference between the Exp3d and the Double Exp3d model is that the Double Exp3d

model can capture the different decay behaviors between a short and a long distance, but the

Exp3d fails to do so.

Double Exp2d model: In addition to 3d-distance, we also explored to what degree the noise

correlations are determined by spatial distance along the cortical surface (2d-distance). Similar

to Double Exp3d, we can model noise correlations between voxel pairs as a double exponential

function of 2d-distance (measured by the geodesic distance along the cortical surface):

M(i, j) = γ1 exp(−αgi j) + γ2 exp(−βg2
i j) (2.12)

where gi j is the geodesic distance between the voxel pair (i, j).

Double Exp2d3d model: To investigate whether a combination of 3d- and 2d-distance would

better model the noise correlations structure, we can try a simple additive combination, i.e.

Double Exp3d + Double Exp2d:

M(i, j) = γ1 exp(−α1d2
i j) + γ2 exp(−α2g2

i j) + γ3 exp(−β1di j) + γ4 exp(−β2gi j) (2.13)

γ3, β1, γ4, β2 are parameters that adjust the shape of the exponential kernel related to 3d-distance,

and γ1, α1, γ2, α2 are scaling parameters for 2d-distance.

Double Scaled Exp2d3d model: Another simplified way for combining 3d- and 2d-distance
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is to share the same parameters for squared 3d-distance (d2
i j) and squared 2d-distance (g2

i j):

M(i, j) = γ1 exp(−αd2
i j) + γ1 exp(−αg2

i j) + γ2 exp(−β1di j) + γ3 exp(−β2gi j) (2.14)

This model implicitly assumes that the slope between noise correlation and short 3d-distance is

same as that of short 2d-distance. This is also the main difference between the Double Exp2d3d

and the Double Scaled Exp2d3d model.

Double Exp3d Depth model: Importantly, we also found that noise correlations structure

depend on the location of the gray matter voxels (cortical depth). This model combines two

important determinants of noise correlations: 3d-distance and cortical depth:

M(i, j) = γ1 exp{−αdi j − θ((hi − µ)2 + (h j − µ)2)} + γ2 exp(−βd2
i j) (2.15)

where hi, h j are the depth of i, j-th voxel, and µ is the estimated center of the circle formed by

the correlation of voxels pairs between hi and h j (see Fig.3.4A). The parameter θ controls how

quickly the correlation falls off as the cortical depth increases.

Null model: As a baseline for model comparison, we defined the identity matrix as our null

model that assume no correlation between voxels pairs.

M(i, j) = 0,∀i , j (2.16)

For all models, we consider both the model prediction alone (based only on the anatomical

information from that subject) and any mixture with the empirical correlation estimate (Σ̂p, Eq.

2.7)

M̃ = λM + (1 − λ)Σ̂p (2.17)
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2.4 Evaluation criterion: Effective number of voxels

After building noise correlation models, the next important issue is to find an appropriate metric

that measures the quality of our estimate. While many distance measures between correlation

matrices exist, such as the Riemannian distance (Shahbazi et al. [2021]), we would like to use a

discrepancy measure that directly evaluates the goal achieved with our estimate. Our goal is to

make the measurement noise, after prewhitening it with our estimate, as close to independent

across voxels as possible (Eq. 2.8). That is, we expect ΣR, the correlation matrix of B̃ across

voxels, is as close to the identity matrix (Ip) as possible, where

ΣR = M−1/2
p Σp M−1/2

p (2.18)

Mp is the predicted anatomically-informed spatial noise correlation matrix, and Σp is the true

correlation matrix. Therefore, rather than measuring the distances between the estimated and

true correlation matrix, we measure the deviation of the resulting correlation matrix (i.e., ΣR),

after prewhitening the true noise correlation matrix with our estimate, from the identity matrix.

Our metric is inspired by the notion of the effective degrees of freedom (dof) proposed

by Worsley and Friston [1995], which can be calculated using Satterthwaite approximation

(Satterthwaite [1946]). The latter is a moment-based approximation for the mean and variance

of a linear combination of squared normal random variables. If the normal random variables

are independent, the sum of squared of those independent normal random variables (the noise

terms across voxels in our case) follows χ2 distribution. Here the Satterthwaite approximation

deals with the situation of correlated random variables and provides an effective dof, which

refers to the number of independent observations that would lead to a χ2 distribution of a

similar shape.

We want our metric to consider the spatial correlation between neighboring voxels after

prewhitening. Therefore, I, analogy, define a metric that we call the effective number of voxels

(ν) to estimate the number of independent voxels in the measurement noise, which would have
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given rise to sums-of-squares with similar mean and variance:

ν =
trace(ΣR)2

trace(ΣRΣR)
=

p2

trace(ΣRΣR)
, where 1 ≤ ν ≤ p (2.19)

The equal sign holds because ΣR is a p × p correlation matrix (Eq. 2.18). When ΣR = Ip,

meaning the predicted matrix exactly equals to the true correlations (i.e., Mp = Σp), ν will

reach to p. In contrast, if ΣR deviates largely from Ip such that the measurement noise is still

highly correlated after pre-whitening, then trace(ΣRΣR) will close to p2 and hence ν will close

to 1.

This metric determines the variance of the second moment matrix across conditions G,

the central quantity that multivariate analysis methods make inferences about. Under the null

hypothesis that there is no difference between true activity pattern (i.e., U = 0) (see Appendix

A.2 for details):

Var(Ĝi j) ∝ 1/ν

To compare this measure across different regions with a different number of voxels, we can

normalize ν by the number of voxels p. This results in the normalized effective number of

voxels (NENoV), denoted by |ν|:

|ν| =
ν

p
,where 0 < |ν| ≤ 1

Since we expect ΣR to be as close to Ip as possible and also expect the variance of our quantity

Ĝ to be small, the model with the highest NENoV was considered to be the best one.

2.5 Model fitting and evaluation

We compared three different ways of estimating the model parameters.
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2.5.1 Individual fit

The first option is to fit the models separately within each individual, ROI and dataset. To

evaluate these models in an unbiased fashion, we then employed a leave-one-run-out cross-

validation procedure. We used the residuals R of a single imaging run as a test set, fitting

the parameters to empirical correlation estimate from the remaining runs (Eq. 2.7) . We then

used those parameters and the individual anatomical information to predict the model M̂p. By

plugging the empirical correlation Σ̂p from residuals and the predicted model M̂p into Eq. 2.19,

we obtained the effective number of voxels. After normalizing ν by the number of voxels p,

we obtained a normalized effective number of voxels |ν|.

2.5.2 Group fit

As an alternative option, we fitted the models on all the participants in each ROI and dataset.

To evaluate the models, we performed cross-validation across participants. We first estimated

the parameters using the data from all but one participant (training set). The parameters, com-

bined with the anatomical information from the left-out subject, were then used to predict the

correlation matrix of each run in the test set. As for the individual model fitting and evaluation,

the normalized effective number of voxels was then averaged across runs.

2.5.3 Across-dataset fit

Finally, we considered obtaining one global set of parameters across all datasets and ROIs. For

evaluation, we applied a cross-validation across datasets to estimate the model performance on

a novel dataset, in an arbitrary cortical ROI. To avoid the challenge of fitting a large number

of correlation matrices, we chose here a computational more efficient variant. For each ROI

within each dataset, we fitted the parameters across participants. We then predicted the noise

correlation model for a new subject within the left-out dataset with each of these models and

then averaged the predictions across models.
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2.6 RDM reliability analysis

RSA is an important tool for studying brain representation. A key step in RSA is to compute

the representational dissimilarity matrix (RDM), which measures the dissimilarity, or distance,

between activity patterns associated with different experimental conditions. One way to evalu-

ate different forms of deriving these distances on real data is to evaluate the reliability of RDMs

across independent halves of the data within each ROI and individual (Walther et al. [2016]).

Here, we evaluated the impact of noise covariance estimates on the reliability of RDMs. To

calculate the reliability, we used split-half reliability estimates. We divided the data into two

independent partitions (odd and even runs), pre-whitening the activity patterns of each parti-

tion using the estimate derived from that half of the data. The dissimilarity measures were then

computed in each split. We chose the cross-nobis distance estimate, an unbiased estimate of

the squared Mahalanobis distance between two activity patterns (Diedrichsen et al. [2020]).

Ultimately, we obtained two 1 × K vectors of dissimilarities, where K = Q(Q − 1)/2 is the

number of the pairwise distance between Q conditions. To assess the reliability between those

two RDMs, we computed their cosine similarity between the two vectors of dissimilarities.

Best regularization parameters λ were found using a simple grid search.

2.7 Statistical Analysis

We compared model performance either within each dataset separately, or across all datasets.

For the latter, we considered participants across all six datasets (n = 119) as a random effect,

therefore conducing paired t-test with one estimate per participant. That is, we treat each

subject in each dataset independently. This is reasonable because the experiments and the

subjects are different in different datasets, and this analysis helps improve the generalizability

of the findings beyond the specific dataset being studied. To evaluate the replicability of these

results across datasets, we also performed a similar analysis within each dataset (reported in

tables), again considering the participant as a random effect. All t-tests were paired two-sided.
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Data distribution was assumed to be normal, but this was not formally tested.



Chapter 3

Result

3.1 Three anatomical factors that determine noise correla-

tions

3.1.1 Spatial distance in the volume (3d-distance)

It is well-known that there is a strong dependence between the noise correlations and the spatial

distance of voxels, with voxels that are close together being much more correlated than voxels

that are far apart (Wiestler et al. [2011]). As can be seen for a selected ROI and dataset, the

correlation is quite high for directly neighboring voxels but then rapidly falls off as 3d-distance

increases (Fig. 3.1, Empirical). To model this fall-off, we first tried a single exponential model

(Exp3d, Eq. 2.10). We estimated the parameters of the model for each participant, leaving

one run out, and evaluated the model by assessing the normalized effective number of voxels

(NENoV) on that left-out run (see Individual fit). We then compared this model fit with the

null model that assumed no correlation between two voxels (iid, Eq. 2.16). The Exp3d model

showed a clear improvement in the NENoV compared to the null model (Fig. 3.2, iid and

Exp3d). This advantage was highly significant when tested across all individuals and datasets

(two-sided paired t-test: t118 = −18.471, p = 1.3 × 10−36) and also significant in each dataset

24
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across all individuals (Table 3.1, iid vs. Exp3). These results clearly show that correlations

between voxels depend strongly on 3d-distance.

While the single exponential model can capture some drop-off of the correlation with 3d-

distance, the model does not fit the empirical data very well (Fig. 3.1, Exp3d). This is because

the correlation decreases rapidly for short distances but much more slowly for long distances.

Therefore, the relationship between 3d-distance and noise correlation may be better captured

by a double exponential model (Double Exp3d, Eq. 2.11). The first term models the correla-

tion when the distance is large, while the second part captures the association when the dis-

tance is small. The Double Exp3d model showed an increase in the NENoV compared to the

Exp3d model (Fig 3.2). This improvement was significant across all individuals and datasets

(t118 = −7.018, p = 1.5 × 10−10) and was also significant for each data, except one, in isolation

(Table 3.1, Exp3d vs. Double Exp3d). Thus, the rapid reduction of noise correlations for short

distances, and the persistent correlations even over long distances can be better captured by a

double exponential model.
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Figure 3.1: Correlation of voxel pairs as a function of the 3d-distance of the pair in the MDTB
dataset. The average empirical correlation (Eq. 2.7) is shown in the solid black line in com-
parison to the single (Exp3d) and double exponential (Double Exp3d) model. The shaded area
indicates the between-participant standard error of the empirical correlation.
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Figure 3.2: The normalized effective number of voxels (NENoV) based on the individual cross-
validated fit for each model. Error bars indicate standard errors between participants across
datasets. Each color corresponds to different noise correlation models.

Data set (W)

Model comparison 1 (24) 2 (21) 3 (42) 4 (10) 5 (6) 6 (16)

Normalized effective number of voxels (metric)

iid vs. Exp3d -14.549 -8.921 -13.266 -10.279 -7.700 -8.257
4.33e-13 2.08e-08 2e-16 2.84e-6 5.91e-4 5.82e-7

Exp3d vs. Double Exp3d -10.312 0.830 -2.062 -5.014 -3.300 -5.238
4.27e-10 0.42 0.046 7.25e-4 0.02 1e-4

Double Exp2d vs. Double Exp3d -12.231 -1.065 -3.746 -7.929 -4.850 -6.894
1.51e-11 0.30 5.53e-4 2.38e-5 0.005 5.11e-6

Double Scaled Exp2d3d vs Double Exp3d -6.687 -2.064 -3.014 0.085 -1.357 -4.525
8.03e-7 0.052 0.004 0.93 0.23 4.02e-4

Double Exp3d vs. Double Exp3d Depth -6.069 -0.069 -0.756 -5.002 0.516 -5.324
3.44e-6 0.95 0.45 7.36e-4 0.63 8.51e-5

Table 3.1: Model comparisons in each dataset across subjects. The table shows t-values (above)
and p-values (below) for comparisons of the NENoV between the two models. Here the degree
of freedom (d f ) = W(the number of subjects) − 1 within each dataset. Each row lists a com-
parison between two noise correlation models. Each column lists one of the six fMRI datasets.
Values were computed using two-sided paired t tests. Dark black: the second model performed
significantly better than the first model for a significance threshold of 0.05.

3.1.2 Spatial distance along the cortical surface (2d-distance)

FMRI signal suffers from multiple sources of noise. While variability may originate from mea-

surement error (non-neural noise), it can also arise from trial-by-trial fluctuations of the neural

activity that we seek to measure. Non-neuronal variability arises from the fMRI measurement

process, head motion, and from physiological processes, such as heartbeat and breathing (Liu
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[2016]). All these processes would lead to noise correlations that are either uniform across

the brain (such as head motion) or fall off with the proximity of two voxels in the volume

(3d-distance). In contrast, neural variability arises from the spontaneous activity of the human

brain. These interactions rely on communication between different neuronal elements. Because

nearby neurons generally exchange more signals with each other than neurons that are far apart,

we can assume that these correlations would fall off with the distance along the cortical surface

(2d-distance) (Rosenbaum et al. [2017]). In places where the neo-cortex is highly folded (Fig.

1.1A), such as in the primary visual cortex (V1), a model that predicts noise correlations from

the 3d-distance or from the 2d-distance would make very different predictions. Here we aim to

understand whether the structure of fMRI variability is determined by the 2d-distance between

voxels on the cortical surface, the 3d-distance in the volume, or both.

We first asked whether the distance along the cortical surface is a determinant of noise

correlations between two voxels after we account for their spatial distance in the volume. We

therefore compared voxel pairs that were equally far apart in 3d-distance, but one pair had a

short 2d-distance while another had a long 2d-distance (Fig. 1.1A). This scenario often happens

in places where the cortex is folded inwards (Sulci). To the degree that noise correlations

depend on neuronal fluctuations, voxels that are located on the same side of the sulcus (and

hence have a small 2d-distance) should be more correlated with each other than voxel pairs

that are located on opposite sides (and hence have a large 2d-distance). To test this hypothesis,

we selected voxel pairs within a small range of 3d-distance and studied the influence of the

2d-distance on the correlation within each bin. Fig 3.3 illustrates an example of the primary

visual cortex of the MDTB dataset. In most bins, we found a slight decrease in the correlation

with increasing 2d distance. To quantify this effect, we first the evenly spaced 3d-distance in

each ROI and dataset into 20 bins. For each level of 3d-distance, subject, and ROI, we fitted a

linear regression between correlations and 2d-distance. We then averaged the slope across bins

and ROIs in each dataset. If 2d-distance does have a significant effect on noise correlations,

the expected value of the slope should be smaller than zero. For each dataset, we therefore
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tested the slope against zero across subjects. Although all datasets showed a negative average

slope, only 2 out of 6 datasets reached significance (Table 3.2). These results suggest that the

2d-distance between voxels has an influence on noise correlations, but its effect is weak.

In highly folded areas of the neo-cortex, distances in the volume and along the cortical

surface can be quite different. Overall, however, the two are generally quite correlated with

each other (mean correlation= 0.644 across datasets, SD = 0.136). This raises the question

of which one is a better predictor for the correlation structure of the fMRI noise. To answer

this question, we built a model that only contained 2d-distance (Double Exp2d, Eq. 2.12) and

compared it with a model with only 3d-distance (Double Exp3d). The model with only 3d

distance showed a significantly higher NENoV than the 2d model across all participants and

datasets (t118 = −9.105, p = 2.61 × 10−15; Fig. 3.2). When tested in an individual dataset,

this comparison also revealed that the 3d-distance model had a larger contribution to noise

correlations (Table 3.1, Double Exp2d vs. Double Exp3d) that the distance along the surface.

These results suggest that the main source of measurement errors in fMRI arises from non-

neuronal sources.

Finally, we tested whether the combination of 3d- and 2d-distance would allow a better

prediction of the noise correlation structure using the 3d-distance alone. To test this, we first

studied different ways of combining the 2d and 3d-distance models. It turned out that a simple

additive combination (with 8 parameters, Eq. 2.13) performed worse than a model in which the

parameters for the squared 3d-distance (d2
i j) and squared 2d-distance (g2

i j) were shared. This

shared parameter model (Eq. 2.14) captures how quickly the correlation falls off over short

distances, regardless of whether measured in 3d or 2d. When we compared Double Scaled

Exp2d3d with Double Exp3d, we found that overall, the 3d-distance model outperformed the

combined 3d/2d model (t118 = −7.121, p = 9.07 × 10−11; Fig. 3.2). This difference was

significant in 3 out of 6 datasets, and the combined 2d/3d-model performed numerically better

only in a single dataset (Table 3.1, Double Scaled Exp2d3d vs. Double Exp3d). Because

we previously showed that the distances along the surface had some influence on the noise
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correlations, this result suggests that the added complexity of the combined 2d and 3d-model

does not translate into enough benefit to improve prediction performance.

Data set t-value degree of freedom (df) p-value

1 -7.123 23 2.96e-7
2 -3.770 20 0.001
3 -1.734 41 0.09
4 -1.476 9 0.17
5 -2.367 5 0.06
6 -1.772 15 0.10

Table 3.2: Summary statistics for the slope between 2d-distance and correlation across subjects
in each dataset. Dark black: 2d-distance shows significance after averaging the slope across
distance bins and ROIs in each dataset for a significance threshold of 0.05.
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Figure 3.3: The relationship between 2d-distance and empirical correlation for specific 3d-
distance across all subjects in V1 of MDTB dataset. Error bars indicate the standard error
between subjects.

3.1.3 Cortical depth

Some voxels sample areas relatively deep in the cortical surface, mixing gray-matter signals

with those from the underlying white matter (Fig. 1.1B, deep), while other voxels sample rela-

tively superficial areas of the cortical surface, mixing gray-matter signals with cerebral-spinal-
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fluid (Fig. 1.1B, superficial). We strongly suspected that noise correlations between voxels

would depend on their depth within this surface. In terms of neural fluctuations, it has been

shown that V1 neurons in the deeper (granular) layers were weakly correlated, while neurons

in the superficial (supragranular) layers were strongly correlated with each other. This layer de-

pendence is due to heterogeneous intracortical inputs to different layers of the cortex (Hansen

et al. [2012]). Here we aim to understand across ROIs if the structure of noise correlations can

be better captured by taking into account the cortical depth.

To investigate how noise correlations vary as cortical depth, we plotted the correlation of

voxel pairs with a 3d-distance (5mm ≤ di j ≤ 7mm) as a function of the depth of both voxels

(Fig. 3.4A). We can clearly see that voxel pairs tend to have a higher correlation if both voxels

are superficial. When at least one of the voxels is located in deeper layers of the cortical

surface, the correlation drops off substantially. We then investigated how the effects of depth

interacted with the spatial distance between two voxels. We performed a median-split based

on the voxel depth, and then assigned all voxel pairs to three distinct levels : (both voxels

superficial), (one superficial, one deep), (both voxels deep). We then plotted the correlation

as a function of the 3d-distance of the voxel pair (Fig. 3.4B). For each spatial distance, the

superficial-superficial voxel pairs clearly showed a much higher noise correlation as compared

to the other pairs. The effect of depth also appeared to interact multiplicatively (rather than

additively) with the effect on 3d-distance. Based on these insights, we created a model that can

capture the dependence of noise correlations on depth and 3d-distances. Fig. 3.4A suggests

a function in which the noise correlation falls off with the depth from a specific center point.

This feature can be captured with the formula corr(i, j) = (hi − µ)2 + (h j − µ)2, where hi, h j

are the depth of voxel i, j, and µ is the center of the circle. In addition, the noise correlation

for each level of pairs falls off as a double exponential of the 3d-distance (Fig. 3.4B). This led

us to Eq. 2.15 (Double Exp3d Depth), which performed better than other alternative ways of

capturing the dependence of noise correlation of depth and distance. We then tested whether

this model would be able to predict noise correlations better than the 3d-distance model without
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depth. In 3 out of 6 datasets, we found that the Double Exp3d Depth yielded significantly better

performance than the 3d-distance model (Table 3.1, Double Exp3d vs. Double Exp3d Depth).

Although the difference between the Double Exp3d Depth model and the Double Exp3d model

across individuals and datasets was not significant (t118 = −1.132, p = 0.26; Fig.3.2), we

still prefer the Double Exp3d model, as it on average performed better than the 3d-model.

Together, these results suggest that noise correlations indeed vary with the depth of the voxel

within the cortical surface. Incorporating cortical depth into the model provided, at least for

some datasets, a clear improvement in the prediction of the noise correlation.
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Figure 3.4: Influence of depth on noise correlation. A: Contour plot of the relationship between
the depth of i-th voxel, j-th voxel and their corresponding empirical correlations for voxel
pairs with 5 − 7mm Euclidean distance. A depth of 0 indicates that the center of the voxels
is on the surface between gray-matter and CSF, and a depth of 1 indicates that the center
of the voxel is located on the surface between gray-matter and white matter. Because the
value of a voxel is determined by the average MRI signal within it, even voxels with centers
located outside the cortical ribbon will reflect some gray-matter signals. B: Correlation for
voxel pairs after a median-split of the voxel-depth values. Pairs can belong to three categories:
(superficial, superficial), (superficial, deep), and (deep, deep). Empirical correlation (solid line)
and predicted correlation by Double Exp3d Depth Model (dashed line). Shaded areas represent
across subjects.
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3.2 Common parameters that can be applied to any dataset

In the previous analysis, we constructed several models based on the dependence of noise

correlation on anatomical information and concluded that the Double Exp3d Depth model pro-

vides the most accurate predictions across runs. If we want to apply this model to improve

inference on multivariate activity patterns, we need to address the important practical issue

of how we estimate the model parameters. In our model comparison in the last sections, we

fitted the models to residuals from the same subject, brain area, and dataset as the left-out test

data. While this is technically possible, the computational expense is considerable, especially

if we want to draw multivariate inferences within many different small regions of the cortex.

Additionally, the individual fit may suffer from high parameter uncertainty, given the relatively

restricted training data for each individual. We therefore considered two alternative ways to

estimate the parameters. First, we fitted the parameters across all subjects in a dataset (group

fit) within each ROI. This would yield more stable estimates, while still retaining the possible

dataset- and ROI-specific variation in the optimal parameters. Secondly, we fitted the models

across all subjects, ROIs and datasets (across-datasets fit). While this approach ignores any

possible variation across dataset or ROI, it provides the most practical solution, as the model

would not have to be re-fit when they are applied to improve multivariate inference.

To compare these three approaches and determine which method to implement, we com-

pared the inference in the best model based on the parameters estimated using cross-validation

within the participant, across participants, or across datasets. For the first method, we took one

run of the data as a test set, fitted parameters to data from the remaining runs, and then evaluated

the NENoV in the left-out run. In group (or across subjects) cross-validation, we estimated the

parameters from all but one participant and then evaluated them from the left-out subject. The

first two methods were performed within each ROI and dataset. The last method was performed

across ROI and dataset: we implemented cross-validation from all but one dataset and evalu-

ated them in the left-out dataset (See Model fitting and evaluation). Relative to the differences

between models, the differences between individual, group, and across-datasets were rather
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small (Fig. 3.5). There was an overall significant difference between individual and group fit

(t118 = 3.837, p = 0.0002), with individual fitting being significantly better than group fitting

in 3 out of 6 datasets (Table 3.3, individual vs. group). In contrast, individual fits did not

significantly differ from across-datasets fits (t118 = 0.603, p = 0.54; Fig.3.5, individual and

across datasets). For 3 out of 6 datasets (Table 3.3, individual vs. across datasets), we found

significant improvement, but for the largest dataset, the individual fit performed slightly worse

than the across-dataset fit. These results indicate that the relationship between the anatomical

location of voxels and their noise correlation shows modest subject-to-subject and ROI-to-

ROI variation. Overall, however, a single set of parameters estimated on completely separate

datasets performed nearly equivalently. This implies that practically, we can use the common

parameters estimated in our study to apply to a completely new dataset.
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Figure 3.5: The normalized effective number of voxels based on individual, group, across
datasets cross-validated fit in Double Exp3d Depth. Error bars indicate standard errors
between-participant across datasets.
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Data set (W)

Model comparison 1 (24) 2 (21) 3 (42) 4 (10) 5 (6) 6 (16)

Parameter Fit

individual vs. group 3.375 2.164 0.338 2.127 2.043 2.329
0.003 0.04 0.737 0.06 0.10 0.03

individual vs. across datasets 6.637 0.05 -1.019 1.434 3.722 3.018
9.01e-7 0.96 0.31 0.19 0.01 0.009

Table 3.3: Comparison of the normalized effective number of voxels in the best model (Double
Exp3d Depth) based on cross-validated individual, group, or across-dataset fit. Dark black: the
former parameter estimation method performs significantly greater than the latter.

3.3 Using model-based shrinkage improves statistical infer-

ence

Mounting evidence suggests that the incorrect assumption of independence between variables

leads to sub-optimal or erroneous multivariate inference. One of our main motivations for

developing a better model of voxel-to-voxel noise correlations in fMRI was to address this

very issue. Indeed, the effective number of voxels in the Double-Exp3d-Depth model was

substantially higher compared with the identity matrix (Fig. 3.2, identity and Double Exp3d

Depth). This suggests that using our model provides a better assumption of noise correlations

than independence and therefore results in a better multivariate inference.

However, most multivariate analysis methods for fMRI do not simply use the identity ma-

trix as a noise correlation estimate. Instead, it is common practice to obtain an empirical

estimate of the covariance matrix from the residuals of the regression model applied to the

fMRI time series data. To stabilize this estimate, it is then shrunken towards the identity matrix

(Ledoit and Wolf [2004]), using the shrinkage factor λ (Eq. 2.9). The regularized estimate (Σ̃p)

then is used as the noise correlation estimate for pre-whitening (Brier et al. [2015]; Walther

et al. [2016]; Rahim et al. [2019]).

Therefore, instead of comparing our model with the independence assumption, we want
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to investigate what happens if we shrink the empirical estimate of the correlation matrix to-

wards our model prediction, rather than towards the identity matrix. To examine this issue, we

regularized the empirical correlation estimate towards the Double Exp3d Depth model with λ

(Eq. 2.17) and compared the result with regularizing towards the identity matrix (Eq. 2.9). We

explored the best setting for λ on the range of [0, 1] in steps of 0.1 across individuals for each

dataset. Using only univariate prewhitening (i.e., using the independence assumption) acts here

as the baseline or Null-model. λ is the tuning parameter that decides how much we regularize

the empirical estimates towards the shrinkage target. When λ = 0 (i.e., no regularization), the

noise correlation estimate is simply the empirical estimate. When λ = 1, we would use only

the shrinkage target (either identity matrix or Double Exp3d Depth model). In this analysis,

the model parameters are taken from the across-dataset fit over all 6 datasets and regions.

As can be seen in Fig. 3.6, when λ = 1 the identity matrix (univariate prewhitenning) had a

lower normalized effective number of voxels than our model (Double Exp3d Depth), which was

consistent with our previous result. Moreover, when we had enough data (i.e., T >> P), the

empirical correlation estimate performed well. In this case, the shrinkage factor that achieves

the highest value is λ = 0.1 for the independent model and 0.2 for our model. However, in

typical fMRI datasets, we are seldom in a situation in which T is larger than P by a factor

of nearly 20. More typically, the ratio is closer to 1. Fig. 3.6B shows an example of this

situation. Here we had to regularize more towards the shrinkage target in order to achieve the

peak performance, with the optimal λ = 0.5 for the independent target and 0.6 when using our

model.

In both cases, however, the use of our model as a shrinkage target led to significantly

better performance than the identity matrix, when using the respective optimal λ. This also

held true for all the other datasets (Table 3.4). Notice that the optimal λ for our model is

usually higher than that for the identity matrix. This makes sense as the closer a shrinkage

target is to the true correlation structure, the more we can reduce the variance in the estimate

without having to pay with an increased bias. Together, these results demonstrate that the use
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of an anatomically informed noise covariance model as the shrinkage target has the potential

to improve multivariate inference.
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Figure 3.6: The normalized effective number of voxels in two fMRI datasets after regularizing
the empirical estimate (Σ̂p) towards the identity model (grey dashed line) or our Double Exp3d
Depth model. A: Comparison results in dataset 1 with T (# of time points = 4784) >> p̄
(averaged # of voxels ≈ 456). B: Comparison results in dataset 6 with T = 409 < p̄ ≈ 451. In
this case, Σ̂p (when λ = 0) will be rank-deficient, so we start from λ = 0.01.

Data set Opt-λ-iid Opt-λ-M df t-value p-value

1 0.1 0.2 23 -15.346 1.42e-13
2 0.3 0.3 20 -16.412 4.53e-13
3 0.3 0.3 41 -10.83 1.35e-13
4 0.5 0.7 9 -9.150 7.46e-6
5 0.4 0.4 5 -13.131 4.57e-5
6 0.4 0.5 15 -7.718 1.34e-6

Table 3.4: Comparison between M̃p and Σ̃p in the normalized effective number of voxels with
optimal λ. The table shows optimal λ in identity model (opt-λ-iid)/3d-distance-depth model
(opt-λ-M), t-values, degree of freedom (df), and p-values across subjects in each dataset.
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3.4 Reliability of distance measures also depends on the spa-

tial structure of the signal

The effective number of voxels, theoretically, determines the variance of distance estimates

(see Evaluation criterion: effective number of voxels). Pre-whitening the data using a model

that results in a higher effective number of voxels should therefore increase the reliability of the

distance estimates across replications of the experiments. Indeed, the split-half reliability of

the matrix of distances is often used as a proxy measure for the quality of the noise-correlation

estimate (Walther et al. [2016]) for the empirical dataset. Intuitively, the reliability with mul-

tivariate noise normalization should perform similarly with the effective number of voxels.

However, that is not always the case.

To directly compare the behaviour of RDM reliability and the effective number of voxels,

we estimated based on half of the empirical data in both cases. The model parameters were

obtained from a group fit on the respective data set (see RDM reliability analysis). Fig. 3.7A

shows an exemplary ROI and dataset, in which the reliability behaves similarly with the effec-

tive number of voxels: Our model outperforms the identity matrix across all values of λ. On the

other hand, Fig. 3.7B illustrates an opposite example. Here, our model led to a higher effective

number of voxels than the identity matrix but showed lower reliability for all λ, except λ = 0

and 1.

The reason behind this inconsistency lies likely in the fact that pre-whitening the pattern

estimates not only changes the spatial correlation of the measurement noise but also the spatial

structure of the signal (see Discussion). Depending on the structure of our final correlation es-

timate, we will de-emphasize specific aspects of the differences between conditions. Whether

this will improve or impair the quality of the inferences will depend on the particular paradigm

and dataset. It, however, brings attention to the fact that better assumptions about the noise co-

variance structure do not translate automatically into more reliable inferences - it also changes

the inference we are making.
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Figure 3.7: The normalized effective number of voxels and reliability in two fMRI datasets.
A: an example graph that two metrics perform similarly. B: an example graph that those two
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Discussion

fMRI can provide unique insights into the human brain - it enables us to observe the chang-

ing patterns of neural activity across the entire neocortex. Multi-variate analysis methods,

which analyze the relationship of these patterns with each other, provide an opportunity to

test hypotheses about the information that is represented and processed in different brain areas

(Kriegeskorte and Diedrichsen [2019]). However, the fMRI signal generally has a low signal-

to-noise ratio, and the measurement noise has a strong and reliable spatial correlation structure.

The fact that we are missing a stable estimate of this structure (due to the limited number of data

points and a large number of voxels) complicates multivariate statistical inferences on such pat-

terns. Here we therefore develop a model of the spatial noise correlations in fMRI. Our model

takes into account anatomical information, such as 3d-, 2d-distance, and voxel depth, and we

show that these variables can be used to better predict the noise correlations.

Sources of fMRI measurement noise: Modelling the different factors that determine the

correlation structure provides some insights into the sources of fMRI measurement noise. Head

motion is one of the dominant sources of noise in fMRI studies that can only be partially cor-

rected by motion realignment during pre-processing. Power et al. [2012] have demonstrated

that movement of the head during scans can cause systematic bias to connectivity estimates

by creating spurious noise correlations throughout the brain. In particular, head movement can

39
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produce changes in the BOLD signal throughout the brain in a regionally specific manner, such

that the signal increases in some parts of the brain and decreases in others. This effect can in-

troduce either correlations or anti-correlations of fMRI signals over long distances, with nearby

voxels often more correlated. Head movements can therefore account for the noise correlations

across the entire brain (large 3d-distances), but also for the increased noise correlation between

nearby voxels (small 3d-distances).

Physiological effects (Pulsation, breathing, changes in heart rate) will have a similar effect

on noise correlations. Some of the effects will induce correlations in measurement noise over

large distances. However, because the fMRI signal is dominated by smaller vessels, many of

these correlation effects will be local, increasing the correlations of nearby voxels. Therefore,

similar to head movements, physiological noise will induce correlations that fall off with the

3d-distance between two voxels. In contrast to head movements, however, physiological noise

will vary systematically with cortical depth, because superficial aspects of the cortex have

substantially more and larger vessels than deeper layers or white matter. The largest blood

vessels lie along the pial surface, and the smallest micro-vessels and capillaries are situated

deeper in the parenchyma (Polimeni et al. [2018]). FMRI voxels in superficial layers of the

cortex are therefore more likely to be susceptible to physiological artifacts. In short, the depth

dependence of physiological noise sources is expected due to the systematic change in vascular

density and vessel size with cortical depth.

In addition to measurement noise arising from MRI data acquisition processes (non-neural

noise), variability can also originate from trial-by-trial variation of neuronal responses that is

usually unexplained by the experimental design. Our result showed that correlations between

voxels fall off as the 2d-distance increases. Such dependency is expected, as neuronal fluctua-

tion should be more correlated across two cortical patches if these are exchanging more signals.

While cortico-cortical connections are complex, it tends to be true that regions that are located

nearby on the cortical surface do communicate more with each than regions that are located

in a separate location on the cortical surface (2d-distance). The fact that 3d-distance predicts
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the structure of noise correlations better than the 2d-distance supports the idea that the major

source of fMRI measurement noise is non-neuronal. Overall, the main contributions of fMRI

measurement errors are head motion and physiological noise. Neuronal noise has some effect

on noise correlations, but this effect is relatively weak.

Use of the model for the multivariate inference: The improvements in multi-variate

prewhitening when using an anatomically informed shrinkage target suggest that it would be

beneficial to apply this approach when conducting multivariate analysis for regions on the

cortical surface (Oosterhof et al. [2011]). To apply our approach to new data, the user would

need to specify which ROIs they are trying to analyze on the individually reconstructed cortical

surface. The function that selects the voxels for such a cortical ROI already calculates the

relevant anatomical variables: the 3d-distance between voxel pairs and the cortical depth of

each voxel from the subject in the specified ROI. These variables would then be entered into the

Double Exp3d Depth model M̂p in Eq. 2.15 to obtain a model prediction for the specific ROI.

Notably, based on our result, it is not necessary to refit model parameters because the common

parameters estimated from our study are stable across different ROIs and datasets. Thus, users

can directly apply the pre-trained model parameters (see Appendix A for parameter values),

increasing the ease of use. Additionally, we require the empirical correlation estimate from the

current data. These are obtained by applying Eq. 2.5 followed by Eq. 2.7 to the residuals from

the first-level GLM. This results in an empirical correlation estimate Σ̂p. Finally, the empirical

estimate needs to be integrated with the predicted correlation matrix using the shrinkage factor

λ (Eq. 2.17). One strategy is to tune the hyper-parameter, shrinkage factor λ, on the range

of [0, 1] in steps of 0.1 using grid-search. Ultimately, users will obtain the p × p regularized

correlation matrix, which can then be used to prewhiten the data and improve multivariate

inferences.

Consequences for Inferences: We found that our model led to more independent activity

estimates across voxels after prewhitening, as can be seen by the increased effective number

of voxels measure. However, we also found that the reliability of distance estimates did not
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always increase with multivariate noise normalization. Therefore, the model comparative infer-

ence may not uniformly improve. Why is this the case? Theoretically, the variance of distance

estimates should directly depend on the effective number of voxels. The explanation for this

effect lies in the fact that prewhitening does not only make the measurement noise more inde-

pendent, but it also changes the aspect signal itself. Eq. 4.1 illustrates the process of using the

estimated noise correlation matrix M̂ to prewhiten the data B.

B̃ = BM̂
−1/2
p

= (ZU + E)VD−1/2VT (By eigendecomposition)

= ZU(VD−1/2VT ) + E(VD−1/2VT )

(4.1)

If the noise E has spatial correlations structure and the model M̂ is exactly true noise correla-

tion, then after prewhitening, the noise correlation structure will become the i.i.d. across voxels

(the second term of Eq. 4.1). However, the prewhitening also impacts on signal (the first term

of Eq. 4.1). This impact can be understood as projecting the signal onto the eigenvectors of

the noise correlation matrix (columns of V), and reweighting them by the inverse square root

of the eigenvalue (D−1/2). These reweighted vectors are then projected back into voxel space.

Thus, prewhitening de-emphasizes spatial modes with strongly correlated noise.

If the signal has no particular spatial structure (i.i.d.) then on average each spatial mode

should carry equal amounts of signal variance - hence signal variance should not be changed

by prewhitening. Thus, for the i.i.d signal, the reliability increases linearly with the effective

number of voxels. However, if the signal is not the i.i.d., prewhitening may attenuate the

data along spatial mode where there is a strong signal. For example, if the estimated noise

correlations are large and constant even for voxels with large spatial distances, the spatial

model corresponding to the mean activity will have a high eigenvalue and will be therefore

suppressed. If differences between conditions are mostly due to overall activity differences

(across all voxels), this type of prewhitening will have potentially lower reliability.

Thus, it is important to keep in mind that spatial prewhitening of the data not only deals
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with correlations in the measurement noise but also changes the spatial modes of the signal that

we are studying. For example, our model will tend to de-emphasize the superficial voxel of the

cortex (as they are more correlated to their neighbours) and emphasize deeper voxels. How this

changes the multivariate inference, i.e., what information is carried in different spatial modes

of the activity patterns, is an important topic for future research. A better model of spatial noise

correlation, as developed here, is an important tool for this investigation.

Limitation: One limitation of our study is that we only focused on neocortical data to

construct our model. It is unclear which factors determine the noise correlation in other brain

areas, such as the cerebellum, hippocampus, and thalamus. It is likely that in those areas both

the importance of the different factors and the parameters associated with these factors will be

different from that in neocortical areas. An important future step is therefore to train our model

also with data from these areas.

Conclusion: This study proposes a new model for spatial noise correlation for fMRI data

from the human neocortex. We trained and tested the model in a wide range of regions and

datasets, using different field strengths and spatial resolutions. We anticipate this work will be

useful for two important applications. First, the model itself provides valuable insight into the

structure of noise correlations. It can help to understand which source of noise dominates the

fMRI measurement error. Second, the novel anatomically-informed noise correlation model

provides the potential to improve multivariate inferences. Our analyses clearly show that the

use of the Double Exp3d Depth model as the shrinkage target provides better inference than

the existing independent prior, the identity matrix. Moreover, given that our acquisition param-

eters covered different voxel sizes, regions of the neocortex, and fMRI experiments, the model

constructed in this study can be applied in any neocortical area and at any spatial resolution.
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Appendix A

A.1 Pre-trained model parameters for the Double Exp3d Depth:

γ1 = −1.780, α = −3.386, γ2 = −0.974, β = −1.628, µ = −0.241, θ = −0.664

A.2 Derivation of variance of G

Under the null hypothesis that there is no difference between true activity pattern (i.e., U = 0),

the variance of Ĝi j can be derived from following:
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Var(Ĝi j) = Var

 b̃ib̃T
j

p


=

1
p2 Var(ẽiẽT

j ) (under the null hypothesis)

=
1
p2 Var(

p∑
m=1

ẽimẽ jm)

=
1
p2

E(
p∑

m=1

ẽimẽ jm)2 −

E(
p∑

m=1

ẽimẽ jm)

2


=
1
p2

E(
p∑

m=1

p∑
n=1

ẽimẽ jmẽinẽ jn) −

 p∑
m=1

E(ẽimẽ jm)

2


=
1
p2

 p∑
m=1

p∑
n=1

E(ẽimẽ jmẽinẽ jn) −

 p∑
m=1

E(ẽimẽ jm)

2


=
1
p2

 p∑
m=1

p∑
n=1

E(ẽimẽin)E(ẽ jmẽ jn)

 (because E(ẽi) = 0∀i and assume ẽi is independent of ẽ j)

=
1
p2

p∑
m=1

p∑
n=1

(VR)mn(VR)mn

=
1
p2

p∑
m=1

 p∑
n=1

(VR)mn(VR)nm


=

1
p2

p∑
m=1

 p∑
n=1

σ2(ΣR)mnσ
2(ΣR)nm


=
σ4

p2

p∑
m=1

 p∑
n=1

(ΣR)mn(ΣR)nm


=
σ4

p2

p∑
m=1

(ΣRΣR)mm

=
σ4

p2 trace(ΣRΣR)

∝


1/ν (if ΣR , Ip)

1/p (if ΣR = Ip)

where b̃i ∈ R
1×p is i-th row of B̃ across voxels in Eq. 2.8, b̃i ∼ MVN(0,VR) where VR = σ

2ΣR

under equal variance assumption. b̃i is independent of b̃ j for 1 ≤ i, j ≤ Q. ẽi ∈ R
1×p is the i-th
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row of Ẽ across voxels.
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