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Abstract

The growth of biological matter, e.g., tumor invasion, depends on various factors, including

the tissue’s mechanical properties, implying elasticity, stiffness, or apparent viscosity. These

properties are impacted by the characteristics of the tissue’s extracellular matrix and constituent

cells, including, but not limited to, cell membrane stiffness, cell cytoskeleton mechanical prop-

erties, and the intensity and distribution of focal adhesions over the cell membrane. To compute

and study the mechanical properties of tissues during growth and confluency, a theoretical and

computational framework, called CellSim3D, was developed in our group based on a three-

dimensional kinetic division model.

In this work, CellSim3D is updated with a new set of cell mechanical parameters and force

fields such as the asymmetric division rule, shape diversity, apoptosis process, and boundary

conditions, e.g., periodic and Lees-Edwards boundary conditions. The package is upgraded

to operate on multiple GPUs to further accelerate computations. This enables the inclusion of

more complexity in the system. For instance, the simulation of macroscopic scale bicellular

tissue growth with precise control over the mechanical properties of cells is now more feasible

than before.

The effects of cell-cell adhesion strength and intermembrane friction on growth kinetics

and interface roughness dynamics of epithelial tissue were studied. It is reported that with fine

alterations of the mechanical parameters such as the cell-cell adhesion strength, one could re-

liably reproduce different interface roughness scaling behaviors such as Kardar–Parisi–Zhang

(KPZ)-like and Molecular Beam Epitaxy (MBE)-like scaling. In addition, it was observed that

substrate heterogeneity and geometry have significant impacts on the morphology and interface

roughness scaling of epithelial tissue. The results suggest that the interface roughness scaling

of epithelial tissues cannot be classified by any well-known scaling universality class. Instead,

it strongly depends on several other factors, such as the cell-cell adhesion strength. This ex-

plains the controversies observed in earlier experimental works over the interface roughness

scaling of expanding epithelial tissue.
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Summary for Lay Audience

The development and progression of human diseases such as asthma and cancer depend on

various factors, including the mechanical properties of the tissue or tumor. These mechanical

properties are dependent on the mechanical properties of the cells that comprise the tissue and

tissue substrate. Due to rapid advances in experimental techniques and computational capacity,

the scientific community has made progress in modeling tissue growth and dynamics over the

past few decades. CellSim3D is a theoretical and computational framework that models cells

in three-dimensions with functional mechanical properties such as cell membrane stiffness and

cell-cell adhesion in order to study tissue growth and dynamics. We upgraded CellSim3D

to simulate tissue growth with new features such as cell shape diversity, the cell apoptosis

process, and bicellular tissue growth. The current version of the software has also been up-

graded to simulate tissue growth and dynamics with millions of cells. We used CellSim3D

to study the impact of cell mechanical properties on tissue interface roughness. We showed

that cell mechanical properties, such as cell-cell adhesion strength, have a substantial effect on

the colonies’ interface roughness, from a jagged to a smooth interface. In addition, we also

demonstrated the extent to which substrate geometry and heterogeneity influence the interface

roughness and morphology of cell tissues. These findings emphasize the important impact of

parameters such as cell mechanical properties and substrate heterogeneity on the roughness of

tissue interfaces, which also explains the differing interface roughness observed in the tissue

growth experiments. Studying the interface roughness of biological substances can aid in dis-

ease diagnosis and prognosis. For example, tumors with a coarser surface are frequently more

aggressive and susceptible to metastasis.
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Chapter 1

Introduction

1.1 Mechanical Cell Models

The study of the relationship between cell biomechanics and human health concerns, such as

the onset and progression of human diseases such as arthritis, asthma, and tumor progression,

has expanded rapidly over the past decade [17]. There is abundant evidence that, in addition

to biochemical interactions, cells engage in mechanical interactions with their environments

and with one another [18]. These mechanical properties of the cells and tissues revealed the

significance of applying the framework of classical mechanics from physics and engineering to

the study of biological problems. Understanding how cells and tissues respond to mechanical

stress can help us to prevent, detect, and treat diseases such as cancer and heart diseases [19,

20, 21]. Previous studies have helped our comprehension of the mechanical foundation of

processes such as tissue development, organ function, tissue mechanical response, and related

subjects [22, 23, 24, 25]. Studying cell tissue mechanics raises a number of unsolved questions,

many of which are of crucial importance to medicine and biomedical engineering. Here, we

mention a few of these crucial questions:

1. As mechanical stress and load start to vary, how do different cells and tissues respond to

it?

1
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2. How do mechanical properties and forces influence the onset and progression of disease?

3. How does the diversity in mechanical properties and responses of various cells in a tissue

affect the mechanical properties of the tissue?

4. How can tissues be engineered to have specified mechanical properties?

Due to the rising interest in understanding the mechanics of cells and tissues, momentum

is gaining in the scientific community for the development of cellular tissue models. Incredi-

bly rapid developments in experimental techniques and computational power over the past few

decades have made it feasible to better comprehend and simulate the mechanics and dynam-

ics of tissue growth [26], cells deformation [27] and cell subcellular components such as the

cytoskeleton [28]. Since the mechanical properties of tissues are controlled by the mechanical

properties of their constituent cells and the extracellular matrices, the mechanical properties

of cells have a crucial role in developing accurate and predictive models of tissue mechan-

ics [29, 30, 31]. Hence, in order to accurately represent the mechanical behavior of tissues, it

is required to take into account a number of essential factors, including cell membrane stiff-

ness, cell cytoskeleton mechanical properties, and cell growth and division processes. Here,

we discuss some of these factors:

• Cell Shape and Geometry: A cell’s response to and generation of mechanical stresses

within tissues are influenced by cell shape and geometry. For example, cells with an

elongated shape may be less likely to change along their long axis than cells with a

spherical or more uniform shape. In addition, cell size and aspect ratio can also play a

role in how a cell deforms and transmits tension into its environment [32, 33].

• Cell Boundary: The mechanical properties of the cell membrane influence both the re-

sponse of cells to mechanical stimuli and their ability to deform in response to such

stimuli. However, the membranes on their own are insufficient to support the structure

of the cell [34]. The cell membrane encases the entire cell and is composed of a phos-

pholipid bilayer interspersed with various types of proteins and oligosaccharides [35].
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The cell membrane is a ”selective barrier” [36] and regulates the passage of various sub-

stances into and out of the cells. The mechanical properties of the cell membrane are

viscoelastic, meaning that they vary not only with force magnitude but also with force

frequency and duration [37, 38].

• Cell Cytoskeleton: The cytoskeleton is a network of protein filaments that provides me-

chanical support to the cell. Cytoskeleton networks, which are found in most eukaryotic

cells and made of long self-assembled supramolecular polymers, are responsible for the

cell’s interior mechanical characteristics, and the generation and transmission of me-

chanical forces [39]. They also assist in the transmission of internal and extracellular

signals throughout the cell. The cell’s internal network of intermediate filaments and mi-

crotubules serve to strengthen and stabilize the cell [40, 41]. In addition to protecting the

cell’s membrane from mechanical shocks, they convey messages from the cell’s interior

to the cell membrane.

In animal cells, the mechanical characteristics of the cells are also dependent on the

actomyosin cortex of the cytoskeleton [2, 42]. The actomyosin cortex is a network of

protein fibers called F-actin that are directed around the cell to form a mesh that covers

the entire cell [43, 2, 44, 45]. Molecular motors like myosin can create an active bind-

ing between the fibers. The network’s average stiffness and viscosity can be altered by

changes in myosin concentration and activity [42]. Cells control the polymerization of F-

actin supramolecular polymer, the activity and concentration of myosin motors to cause

a wide range of intriguing cell movements [46]. Research on the actomyosin cortex in

greater depth has been done using models like those in Refs. [47, 48]. Figure 1.1 shows

the cell’s cytoskeleton.

• Cell Adhesion: The adhesion of cells to their substrate or to adjacent cells can impose

forces on the cells and their environment, thereby contributing to tissue organization and

mechanics [49]. Many proteins, referred to as Cell Adhesion Molecules (CAMs), are
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Figure 1.1: This figure illustrates the cell’s cytoskeleton components: The actin filaments, mi-
crotubules, and intermediate filaments. Mechanical properties of the cell are derived from the
interaction of these three elements. Image taken from Ref. [1] with permission from Elsevier
Press.

found in the cell membrane and are involved in the cell’s interactions with its environ-

ment and with other cells. These molecular interactions within the cell membranes result

in mechanical cell-cell interactions. This family of proteins is divided into a number

of subfamilies, including integrins, selectins, cadherins, and others [47]. The kind and

quantity of these proteins in the membrane are controlled by the cell. For example, fo-

cal points with a higher concentration of CAMs can be formed when the cell is in need

of stronger or more persistent adhesion sites [50]. These cell-cell interactions play an

important role in several biological processes, such as the formation and stability of bi-

ological tissues [51, 52, 53, 54] and selective adhesion in embryonic development [47].

Tissue morphology is also influenced by the strength and density of intercellular junc-

tions along the cell surface. A range of biochemical variables control these junctions’

strength, density, and locations [55, 51, 52].

• Cell Growth and Division: Cell division is a crucial factor in tissue development. The

number of cells in a tissue, their size, and their distribution can all be altered by cell divi-

sion and proliferation. Cell development and growth are driven by the flux of materials

from the outside environment into the cell itself. There are four main phases in the cell
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Figure 1.2: Representation of cellular morphology throughout the eukaryotic cell cycle. The
majority of time is spent in interphase, where growth and function occur, while M-phase is
when cell division happens. Adapted from Figure 40.2 in Ref. [2] with permission from Else-
vier Press.

cycle: two growth phases ( 𝐺1 and 𝐺2), the synthesis phase (𝑆), and the mitosis phase

(𝑀) [56, 2]. Most growth happens in 𝐺1 and 𝐺2. A new cell’s size will have more than

doubled by the time it has completed the 𝐺1 phase. DNA replication frequently takes

place at several spots along the DNA strand throughout the course of the synthesis, 𝑆,

phase. In 𝐺2 phase, a protein complex connects the two copies of DNA for the purpose

of detecting damage or replication errors. Lastly, the cell’s mass grows and drives it into

𝑀 phase [56, 57]. Mitosis is the shortest phase of the cell life cycle, accounting for only

a small fraction of the total lifespan of the cell cycle. A resting state known as 𝐺0, also

known as ”senescence”, happens outside of the usual life cycle of cells and allows them

to stay in this condition for a long time. During this phase, cells are extremely active

and performing their duties, which may involve migration. These steps are illustrated in

Fig. 1.2.

Before the known process of cell division starts, a protein-rich structure called the mi-
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totic spindle is utilized by the cell to transmit two copies of DNA (chromatids) to opposite

ends of the cell [58]. There are several types of cell division, including cytokinesis, meio-

sis, and binary fission [59, 60, 61]. Cytokinesis [59], occurs almost concurrently with 𝑀

phase [2] where an actomyosin band develops perpendicular to the mitotic spindle and

divides the parent cell in two. Over time, the spindle disintegrates and the cell membrane

becomes deformed, leaving behind two daughter cells [59]. Cells are capable of dividing

symmetrically and asymmetrically, resulting in the production of two identical or diverse

daughter cells.

• Cell Shrinkage and Cell Apoptosis: A programmed cell death is a natural process that oc-

curs during biological processes including aging, the growth and function of the immune

system, and embryo development [62, 63, 64]. Apoptosis and necrosis are two cell death

processes that can occur simultaneously, depending on factors such as the stimulus’s in-

tensity and duration, the degree of ATP depletion, and the availability of caspases [62].

Cell death regulation abnormalities can be a crucial factor in diseases such as cancer [65].

If an apoptotic cell is removed from a tissue, the surrounding cells may rearrange them-

selves to fill the void, hence affecting the density and shape of the tissue [66]. As a result,

the mechanical stress pattern within the tissue will change, leading to modifications in

tissue rigidity, elasticity, and other mechanical properties. From initiation to completion,

Figure 1.3: The diagram depicts the progression of the apoptosis process, including nucleus
condensation, cell shrinkage, blebbing, and phagocytosis. Adopted from Ref. [3], CC license

apoptosis can occur in a short time as 2–3 hours [67]. Methodology based classification
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of apoptosis assays into six major groups such as cell shrinkage, nuclear fragmentation,

DNA fragmentation, mRNA decay, etc [62]. During the initial phase of apoptosis, light

microscopy reveals cell shrinkage and pyknosis. As a result, cells shrink in size, cyto-

plasm gets denser, organelles become more tightly packed, and electron-dense nuclear

material accumulates often peripherally under the nuclear membrane [68]. Then, the ex-

tensive plasma membrane blebbing occurs, where the cell’s cytoskeleton disintegrates,

causing the membrane to bulge [69]. It is followed by the ”budding” phase, where the

karyorrhexis and the dissociation of cell fragments into apoptotic bodies occurred. Fi-

nally, these apoptotic bodies are phagocytosed by macrophages, parenchymal cells, or

neoplastic cells and eliminated in phagolysosomes [62]. A simplified description of the

apoptosis process is shown in Fig. 1.3.

Throughout the last few decades, numerous research groups have attempted to model bi-

ological phenomena to generate new testable hypotheses [70]. There are two primary mod-

elling approaches for biological phenomena: the mathematical and the computational [71, 72].

Mathematical models for simulating biological systems are continuous in time and space and

are based on sets of differential equations. Numerous mathematical continuum models have

been developed to examine the mechanisms underlying the control of the cell cycle, cell death,

cellular renewal, and sub-cellular behaviors such as DNA regulation [73, 74, 75].

Computational models represent and execute the models via computer-programmed oper-

ational descriptions based on theoretical foundations such as the stochastic master equations

or the laws of classical mechanics. Among these models, those that identify the cell as the

fundamental unit of model development can be loosely classified into two categories: those

that require a lattice to function [76, 77] and those that do not [78, 79]. In lattice-based models,

the cell is often modelled as a lattice site, which allows for the modelling of enormous cell

population sizes, as in the Cellular Potts Model [80] and cellular automata [76, 77], whereas in

off-lattice models, cells are represented as a spherical ball or polygonal structure with interact-

ing edges and faces, as in vertex models [78].
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The majority of the aforementioned computational models lack the required resolution to

appropriately approximate inter-membrane interactions and forces at the subcellular level. Tak-

ing into account the previously described cell mechanical features, our research group devel-

oped a theoretical and computational off-lattice model , CellSim3D, with the following assump-

tions [10]:

• Cell membrane modelled as a viscoelastic material to reproduce the membrane’s stiffness

and flexibility.

• The mechanical properties of a cell, such as membrane stiffness and adhesion strength,

are uniform in all directions.

• Intercellular communication is restricted to mechanical contact over short distances.

• The environment of a cell is modeled as a viscous fluid.

• Cells divide symmetrically by positioning the division plane through their center of mass

• The force field takes into account the intracellular forces, such as the damped spring

force between nodes connected to three nearest neighbors on the cell surface and internal

pressure, and the intercellular interactions, such as adhesion and repulsion between cells,

friction between cells, and friction between cells and the intercellular medium.

CellSim3D allows us to investigate purely mechanical aspects of cell behavior and cell divi-

sion, such as the manner and strength with which cells interact mechanically with one another

and their environment, the mechanical effects of a cell’s growth and division on its neighbors,

as well as a cell’s mechanical response to external stimuli [10]. In this dissertation, we incor-

porated new cell mechanical parameters and force fields, such as new boundary conditions, the

asymmetric division rule, cell shape diversity, and the apoptosis process, into the CellSim3D

framework and investigated large-scale cell population growth using this model. The old ver-

sion of the CellSim3D was implemented to run on a single GPU, while the current version
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of CellSim3D offers researchers a fast, open-source cell simulator that can operate on multi-

ple GPUs to simulate large-scale tissue growth and colloidal dynamics with precise control

over the mechanical properties of the cells and colloidal particles. The current multi-GPU

version also permits researchers to simulate multicellular tissue composed of two distinct cell

types with different mechanical properties. The simulator’s source code is available on github:

https://github.com/SoftSimu/CellSim3D

1.2 Epithelial Tissue Growth Dynamics

In recent decades, various experimental studies on growth phenomena in biological systems,

such as the cultivation of agar in a petri dish [81, 82], the growth of healthy and cancerous

cell colonies in vivo and in vitro [13, 4], and the cell colony growth in a gel medium [83] have

been performed. Cell colony growth depends on a wide variety of biochemical regulations and

mechanical factors, including, but not limited to, intercellular interactions, nutrient concentra-

tions, the mechanisms of cell division and apoptosis, as well as the extracellular matrix and

cellular migration [84]. Studying the mechanical factors that influence tissue growth and how

they manifest in the kinetics and morphology of cell aggregation necessitates the characteri-

zation of the interfacial growth of cellular colonies. In this work, we investigated the effect

of the cell mechanical properties on the cellular colony expansion and the colony interface

morphology and roughness.

To study the growth of surfaces within the framework of statistical physics, two comple-

mentary approaches exist: the atomistic approach and the continuum approach [6]. In atomistic

approach, the influence of microscopic mechanics such as deposition, desorption, and surface

diffusion on the morphology of surfaces has been investigated. For instance, in the growth of

the crystal surface, vapor atoms fall to the substrate at random positions, and form chemical

bonds with other atoms. After deposition, the deposited atoms can also diffuse throughout the

surface and seek an energetically favorable position. Depending on experimental parameters

https://github.com/SoftSimu/CellSim3D
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such as temperature, the length of this diffusion might sometimes be long. Atoms can escape

the interface if the bonds to surfaces completely break; however, this depends on the strength

of the bond. This phenomenon is known as desorption [6]. Figure 1.4 shows these processes

on a two-dimensional surface. The continuum approach studies the surface on a coarse-grained

scale. In this approach, it is crucial to comprehend the underlying symmetries and conservation

laws governing growth before developing the continuum equations describing the roughening

of the surface.

Figure 1.4: Figure shows some elementary processes on a surface. Green particles approaching
the surface will fall at random locations. Yellow particles have broken their bonds with the
surface and left the surface. Red particles diffuse in random directions on the surface.

There are a number of well-known scaling universality classes of surface roughness scaling

defined by their own critical exponents. Scaling analysis is a commonly used technique to cal-

culate these critical exponents of a surface. Each of these scaling universality classes identifies

the fundamental growth mechanisms involved in surface growth. Three well-known scaling

universality classes are:

• Edwards-Wilkinson (EW) [85]: This universality class is associated with the surface

growth phenomenon, in which randomly deposited atoms relax to the lowest site in their

neighborhood to minimize their gravitational potential energy.
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• Kardar-Parisi-Zhang (KPZ) [5]: In this class of universality, the main surface growth

mechanism is the lateral growth, meaning the surface expands in a direction that is locally

normal to the interface.

• Molecular Beam Epitaxy (MBE) [86]: The surface diffusion mechanism of the deposited

atoms are the physical mechanism that distinguishes molecular beam epitaxy from other

growth universality classes. The deposited atoms move until they locate the most ener-

getically favorable positions where they have more bonds with their neighboring atoms.

The diffusion length can be quite large and is influenced by variables such as temperature.

Experimental studies reveal that the interface growth of radially and linearly expanding cell

colonies has diverse scaling behavior. Brú et al. examined cell proliferation using 15 distinct in

vitro cell lines and 16 distinct patient-derived in vivo tumor cell types [87, 13]. They discovered

that the growth belongs to the MBE universality class. They showed that interface dynamics

are characterized by a linear growth rate, the restriction of growth activity to the cell colony or

tumor’s outer border, and diffusion at the colony surface, which indicates that cells move along

the colony border as opposed to moving freely away from it [13]. A decade later, Huergo et

al. found that both HeLa (cervix carcinoma) and Vero cell colonies show KPZ-like behaviors

at their interfaces, characterised by lateral growth due to cell duplication or size increase or

cell migration on the colony interface along the local normal to the interface [88, 89, 4], see

Fig. 1.5. Huergo et al. also examined the 2D growth dynamics of quasilinear Vero cell colony

fronts in a methylcellulose-containing culture medium and found that the dynamical behavior

of the colony interface is roughly equivalent to that predicted by a quenched KPZ (qKPZ)

model [83]. Galeano et al. also examined the development of two plant cell species, Brassica

oleracea and B. rapa, under varied growing conditions and demonstrated that none of the well-

known universality classes for dynamics can account for the observed results [90].

These experimental results of the cell interface dynamics raise the question of whether

the cell interface dynamics may be characterized by a well-known scaling universality class.

This diversity in the growth behavior of cell colonies is advantageous for efficient evolution
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Figure 1.5: Colony front and bulk images of a radially spreading HeLa cell colony captured
at various times. Image taken from Ref. [4] with permission from American Physical Society
(APS) Journals.

and adaptable growth dynamics. It amplifies the significance of searching for the underlying

mechanisms for the development of cell tissues and tumors invasion. In recent decades, a

range of theoretical and computational methodologies have been developed to simulate the

mechanics and dynamics of cellular tissue growth and to study the effect of cell mechanical

properties on the interface scaling behavior of cell tissues.

For example, Block et al. discovered that the interface growth dynamics suggest a Kadar-

Parisi-Zhang (KPZ)-like behavior across a broad range of parameters and for various cell mi-

gration mechanisms by studying the growth of 2D cellular monolayers using a class of cellular
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automaton (CA) growth models on an irregular lattice [77]. Azimzade et al. developed a tu-

mor growth model based on the non-linear Fisher-Kolmogorov-Petrovsky-Piskunov equation

and demonstrated that KPZ dynamics behavior is unable to characterize tumor invasion fronts

due to the influence of the cellular environment and spatial correlations [91]. Santalla and

Ferreira incorporated nutrient diffusion into a variant of the off-lattice Eden model [92]. They

report a transition consistent with the qKPZ class at the pinning transition, from a transient

KPZ-like behavior dynamics regime under limited nutrients to an unstable growth regime [92].

These results strengthen the hypothesis that the interface roughness behavior of cell colonies

is diverse and cannot be classified by a well-known universality class.

The colony expansion dynamics of the aforementioned methods are based on stochastic

differential equations or a stochastic master equation and do not account for the direct influ-

ence of cell mechanical properties, such as cell-cell friction and adhesion, on the scaling of the

colony interface roughness. In this dissertation, we studied the effect of some of the cell’s me-

chanical properties on the interface scaling behavior of cell colony expansion. We have studied

the impact of mechanical factors, such as cell-cell adhesion, cell-medium friction, and inter-

membrane friction, as well as cell division rules, on the dynamics of cell population growth.

These factors can influence the migration and collective motion of cells on the colonies bor-

ders, and thus surface diffusion. We showed that by changing some of these factors such as

cell-cell adhesion strength, we can reproduce both KPZ-like and MBE-like behavior observed

in the experimental studies. We also showed that they affect the kinetics of colony growth such

as the colony growth rate. We also investigate the effect of environmental heterogeneity on

the dynamics and kinetics of the cell colonies growth, and morphology of cell colonies. We

demonstrated that in a medium with quenched disorder, the tissue interface has a lesser expo-

nent for interface roughness and a larger exponent for growth. We observed that these scaling

exponents of tissue interface also depend on the substrate’s topology and cannot be classified

by well-established universality classes. This effort to examine the effect of mechanical and

biochemical factors on tissue growth and tumor invasion can aid in the identification of cell
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activities whose modification would result in the most potent inhibition of multicellular growth

and invasion, thereby identifying potential molecular drug targets [77].

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2 describes the theoretical background on surface analysis, which includes contin-

uum theory and symmetry principles for the derivation of surface growth equations in Section

2.1, scaling arguments in Section 2.2, the renormalization group approach in Section 2.3, and

a review on discrete growth models in Section 2.4.

Chapter 3 discusses the theoretical and computational aspects of the CellSim3D model,

which includes a discussion on CellSim3D assumption in Section 3.1, force field and cell struc-

ture in Section 3.2, cell division mechanism in Section 3.3, cell apoptosis mechanism in Section

3.4, and CellSim3D structure and implementation in Section 3.5.

Chapter 4 presents In silico study of epithelial tissue growth, which includes an introduction

to the subject in Section 4.1, a description of the model and surface roughness analysis in Sec-

tion 4.2, the linear and radial interface roughness scaling results in Section 4.3, the conclusion

in Section 4.4, and supplementary material in Section 4.5.

Chapter 5 describes In silico study of epithelial tissue growth dynamics in heterogeneous

substrates with different topologies, which includes an introduction to the subject in Section

5.1, a description of the model in Section 5.2, the theory of the surface roughness analysis in

Section 5.3, the linear and radial interface roughness scaling results in Section 5.4, and the

conclusion in Section 5.5.

Finally, Chapter 6 concludes the thesis and discusses future work.



Chapter 2

Surface Growth in Nature

This chapter focuses on theories and methods for quantifying the roughness of a particular

surface. To be more precise, we will see how the meaning of the surface roughness is expressed

through exponents that incorporate scale changes. Surface roughness scaling behaviors are

categorized by various scaling universality classes [6]. Several of these scaling universality

classes, including Kardar-Parisi-Zhang (KPZ) [5] and Molecular Beam Epitaxy (MBE) [86],

have been reported in experimental studies on the growth processes of biological systems. The

cultivation of agar in a petri dish [81, 82], the expansion of healthy and cancerous cell colonies

in vivo and in vitro [13, 4], and the expansion of cell colonies in a gel medium [83] are just

some of the experimental studies on growth processes in biological systems that have been

performed in recent decades.

This chapter discusses in depth the derivation and scaling behavior of these universality

classes in order to better comprehend their significance in the growth of biological matter, such

as bacterial colony growth and tumor invasion. We also discuss the physical mechanisms re-

sponsible for the time-dependent dynamics of a surface, including deposition, diffusion, and the

propagation of a surface across heterogeneous environments. Intercellular interactions, nutri-

ent concentrations, and the substrate’s heterogeneity are just a few of the factors that influence

a cell colony’s expansion and interface roughness dynamics [81, 82, 13, 83].

15
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The development of innovative methodologies with strong prediction ability is one of the

primary objectives of research in any subject of study. In this chapter, we will briefly address

the theoretical and computational approaches to studying surface growth processes and will

not cover the details of the experimental techniques and equipment that have been developed

for this purpose.

When we examine a particular surface growth problem for the first time, we initially at-

tempt to derive a continuum growth equation. Utilizing stochastic differential equations is a

valuable tool for understanding the dynamics of various growth processes. The continuum

growth equation of a surface can be obtained by taking into account the surface’s underly-

ing symmetries. A surface is frequently characterized by an equation at large length scales.

Hence, we can disregard details at shorter length scales and rely on asymptotic coarse-grained

characteristics. In Section 2.1, we discuss the continuum theory in detail.

Roughness of a surface can be analyzed by determining the scaling exponents and scaling

functions. A scaling-relation will lead us to categorize the universality scaling behavior of

the processes. The universality class notion, developed in contemporary statistical mechanics,

formalizes the observation that exponents describing the scaling behavior depend on just a

small number of critical factors. In Section 2.2, we discuss the scaling method.

Another technique to study the scaling behavior of a surface is the renormalization group

(RG) method. Since there are not any exact solutions for many equations, we have to use

approximations to figure out the scaling behavior. RG is an especially useful technique that

has been applied to various problems with great success, and is discussed in Section 2.3.

The study of surface scaling was motivated in part by computational modeling and simu-

lation. Simulation studies allow us to discern between the important morphological variables

and unnecessary aspects. For many processes, a relatively straightforward model is adequate.

Modeling surfaces that arise as a result of basic processes can be accomplished using modern

computer resources. Some of these numerical models are discussed in detail in Section 2.4.
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2.1 Continuum Theory

The growth process can be viewed as occurring along a continuum perspective. Continuum

approaches employ a coarse-grained viewpoint, viewing the entire domain as a single large

area with multiple subunits. Continuum theory aims to describe the basic factors that deter-

mine surface growth while disregarding the atomistic features of a growth process. Continuum

theory is able to overcome the challenge of having conflicting effects, such as deposition time

in a growth process. To derive an appropriate continuum equation describing the roughen-

ing of a surface, one must have a thorough understanding of the underlying symmetries and

conservation principles governing the growth process [6].

2.1.1 Symmetry Principle

The methods and ideas of near-equilibrium dynamics must be applied with caution to a wide

variety of natural systems that display generic scale invariance and are far from equilibrium,

such as a growing biological tissue [82, 93]. It is unknown whether or not a simple Hamiltonian

governs the dynamics of such processes, hence, the conventional method may not be applica-

ble. In the same vein as the development of an efficient coarse-grained field theory, there exists

a generic strategy for studying the dynamics of these open and far from equilibrium systems.

In the setting of non-equilibrium dynamics, we will treat the equation of motion as the

primary focus of attention. In the presence of dissipative dynamics, inertial terms lose their

significance over sufficiently long time scales. To write a continuum equation of motion for

the surface of a particular growth model, we consider that the equation of motion is the sim-

plest equation that reflects the symmetries of the problem [94]. We construct an equation that

characterizes the equilibrium surface, where equilibrium indicates that the surface is not being

driven by an external field.

Assume that the height of a surface, represented by the function ℎ(x, 𝑡), has a single value at

any position x, where x belongs to a 𝑑-dimensional substrate, so that no overhangs exist. This
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section’s objective is to derive a generalized growth equation. Given the symmetry principles,

we anticipate the growth equation to appear as follows [6]:

𝜕𝑡ℎ(x, 𝑡) = 𝐹 (ℎ, x, 𝑡) + b (x, 𝑡), (2.1)

where b (x, 𝑡) expresses the noise term and 𝐹 (ℎ, x, 𝑡) represents a general function that is

time-, position-, and height-dependent. Whether the noise, b (x, 𝑡), is conservative or non-

conservative depends on whether it is caused by internal reorganizations or external inputs and

outputs. The function, 𝐹 (ℎ, x, 𝑡), at x and 𝑡 requires only ℎ(x, 𝑡) and low order spatial deriva-

tives of ℎ(x, 𝑡) due to the short-ranged interactions. In order to find the growth equation, it is

necessary to identify the underlying symmetries of the problem. It is unnecessary to derive the

function, 𝐹 (ℎ, x, 𝑡), from a potential, and there is no need to satisfy the fluctuation–dissipation

condition [6].

The first symmetry to address is the time translation invariance of the surface. To verify

that the growth equation is time-independent, it must be invariant under the transformation

𝑡 → 𝑡 + 𝛿𝑡. Due to this symmetry, there can be no direct temporal dependence on 𝐹.

The second symmetry to take into account is the translational invariance along the growth

direction. Therefore, the growth equation must be invariant under the translation ℎ → ℎ +

𝛿ℎ, and the growth rule must be valid regardless of the point where ℎ = 0. This symmetry

precludes an explicit dependence of 𝐹 on ℎ; hence, the equation must be constructed using the

combinations of the derivative of the height such as ∇ℎ,∇2ℎ, ...,∇𝑛ℎ.

Another symmetry to consider is the translational invariance in the direction perpendicular

to the growth direction. Given that the equation has the symmetry x → x + 𝛿x, it should be

independent of the actual value of x. This eliminates the requirement for 𝐹 to explicitly depend

on x.

The rotational and inversion (x → −x) symmetry about the growth direction are another

symmetries, eliminating derivatives of odd orders in the coordinates, such as ∇ℎ,∇(∇2ℎ), etc.
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Finally, in some surface growth phenomena, the fluctuations in surface height, ℎ, relative

to the mean surface height are similar in both directions. This symmetry is called Up/Down

symmetry and can be checked by looking for the invariance under ℎ → −ℎ. Terms with even

powers of h, such as (∇ℎ)2 and (∇ℎ)4, are therefore disallowed. This symmetry can be broken

in non-equilibrium systems.

As an example, we consider the Edward-Wilkinson (EW) equation [85]. All possible com-

binations of powers of ∇𝑛ℎ are taken into account to determine the final form of this growth

equation, and each one that violates one of the aforementioned symmetries is removed. Hence,

we have

𝜕𝑡ℎ(x, 𝑡) = 𝑣 + ∇2ℎ(x, 𝑡) + ∇4ℎ(x, 𝑡) + ... + ∇2𝑛ℎ(x, 𝑡) + ∇2ℎ(x, 𝑡) (∇ℎ(x, 𝑡))2 + ...

+ ∇2𝑘ℎ(x, 𝑡) (∇ℎ(x, 𝑡))2 𝑗 + b (x, 𝑡),

where each of 𝑛, 𝑘 , and 𝑗 may be any positive integer. The velocity term, 𝑣, is possible if the

surface is moving at a speed greater than zero. The scaling features of the surface are unaf-

fected by this uniform motion created by the velocity term. This term can be transferred away

by defining the process in a coordinate system moving at speed 𝑣, using the transformation

ℎ → ℎ + 𝑣𝑡. We are mainly interested in the long-time, 𝑡 → ∞, and long-distance, 𝑥 → ∞,

behavior of the surface-defining functions. Simple scaling arguments or a more sophisticated

RG calculation will confirm that under this hydrodynamic limit, higher order derivatives are

irrelevant terms and less significant than lower order derivatives.

As an illustration, we demonstrate that ∇4ℎ approaches zero faster than ∇2ℎ term. There-

fore, it is an irrelevant term that has no effect on the scaling exponents. Using the scale trans-

formation x → x′ ≡ 𝑏x, where the coarsening factor 𝑏 > 1. Assuming that the surface has a

roughness exponent 𝛼, we need to rescale the height using the formula ℎ → ℎ
′ ≡ 𝑏𝛼ℎ to ob-

tain a surface with similar geometric properties. Therefore we have ∇2ℎ → ∇′2ℎ′ ≡ 𝑏𝛼−2∇2ℎ

and ∇4ℎ → ∇′4ℎ′ ≡ 𝑏𝛼−4∇4ℎ. Hence, in the hydrodynamic limit, the term ∇4ℎ and similar
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terms with higher order derivatives go faster to zero than ∇2ℎ. With the same arguments, we

can show that all terms like ∇2𝑘ℎ (∇ℎ)2 𝑗 approach zero faster than ∇2ℎ and are irrelevant in

scaling analysis [6].

The randomness of the fluctuation process is introduced with Gaussian white noise given

by ⟨b (x, 𝑡)⟩ = 0 and ⟨b (x, 𝑠)b (x′, 𝑡)⟩=2𝐷𝛿(𝑠 − 𝑡)𝛿𝑑 (x − x′). Hence, in the simplest terms, the

EW equation represents equilibrium surface fluctuations with the form [85].

𝜕𝑡ℎ(x, 𝑡) = a∇2ℎ(x, 𝑡) + b (x, 𝑡), (2.2)

where a is commonly referred to as the surface tension, as the ∇2ℎ term tends to make the

surface smoother.

2.1.2 Kardar-Parisi-Zhang Equation

When looking into how particle deposition can affect the growth of surfaces, the EW equation

is the simplest continuum equation [6]. When non-linear factors are introduced into the growth

equation, the linear approximation no longer holds true. Non-linear terms were proposed as

an addition to the EW equation by Kardar, Parisi, and Zhang [5]. The KPZ equation is a non-

linear and unsolvable equation in closed form. Hence, scaling properties and exponents can

only be derived via approximation approaches, such as RG. We present a description of the

KPZ equation and highlight its key features. We will attempt to generalize the EW equation

using both physical rules, which motivate the addition of non-linear terms to the linear theory,

and symmetry principles. We assume that our system is capable of lateral expansion, which

implies that growth occurs in the direction of the local normal to the surface, which is excluded

in the EW equation due to the Up/Down symmetry. To include lateral growth to the EW

equation, Eq. 2.2, we could add a new particle that is locally normal to the surface [6]. This
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Figure 2.1: Deterministic growth curves that follow a specific pattern, as described by the
KPZ equation. The inset demonstrates how lateral growth occurs locally along the surface
normal. Image taken from Ref. [5] with permission from the American Physical Society (APS)
Journals.

would result in an increase along the ℎ axis, which would be, see Fig. 2.1:

𝛿ℎ = 𝑣𝛿𝑡
[
1 + (∇ℎ)2

] 1
2 , (2.3)

for |∇ℎ | ≪ 1, we can expand the previous equation as

𝛿ℎ

𝛿𝑡
≈ 𝑣 + 𝑣

2
(∇ℎ)2. (2.4)

Using this approximated term to describe the lateral growth, the EW equation, Eq. 2.2, can

be generalized as follows:

𝜕𝑡ℎ(x, 𝑡) = a∇2ℎ(x, 𝑡) + _
2
(∇ℎ(x, 𝑡))2 + b (x, 𝑡), (2.5)

where relaxation of the surface due to surface tension, a, is described by the first term on the
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right side of the equation, and the second term is the non-linear term resulting from lateral

growth. The noise term has the same properties as in the EW equation.

The KPZ equation can also be derived using symmetry principles. We include all the

symmetries used to derive the EW equation, Eq. 2.2, except the Up/Down symmetry. By

violating the Up/Down symmetry of the surface height ℎ(𝑥, 𝑡), we are able to construct the KPZ

equation, Eq. 2.5, which indicates that the surface is not invariant under the transformation,

ℎ → −ℎ. For example, the presence of a driving force perpendicular to the surface, which

dictates a certain growth direction for the surface, is a necessary condition for this symmetry

breakdown. Due to the Up/Down symmetry, terms such as (∇ℎ)2𝑛 are inapplicable to the EW

growth equation. The KPZ equation, Eq. 2.5, is generated by adding to the EW equation,

Eq. 2.5, the lowest order element of this type, represented as (∇ℎ)2 [6].

In the absence of a driving force, the average velocity evaluated using the EW equation,

Eq. 2.2, will be zero because the integral of the Laplacian term under periodic boundary con-

ditions is zero. However, the non-linear term in the KPZ equation, Eq. 2.5, assures that the

average velocity is larger than zero, and only when the surface is perfectly flat does it equal

zero. The surface average velocity is defined as follows:

𝑣 =

∫ 𝐿

0
⟨𝜕𝑡ℎ(x, 𝑡)⟩ 𝑑x =

_

2

∫ 𝐿

0
⟨(∇ℎ(x, 𝑡))2⟩ 𝑑x. (2.6)

With the help of a Cole–Hopf transformation [95, 96], the non-linear KPZ equation, Eq.2.5,

can be linearized [97]. If we define the function𝑊 (x, 𝑡) as follows:

𝑊 (x, 𝑡) = exp
{
− _

2a
ℎ(x, 𝑡)

}
, (2.7)

where a and _ are the surface tension and the nonlinear parameter, respectively. The evolution

of the function𝑊 is governed by the diffusion equation with multiplicative noise,

𝜕𝑡𝑊 (x, 𝑡) = a∇2𝑊 (x, 𝑡) + _

2a
𝑊 (x, 𝑡)b (x, 𝑡). (2.8)
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In the absence of the noise, b (x, 𝑡) = 0, this equation can be solved to determine the growth

profile for a given initial state,𝑊 (x, 𝑡 = 0) = exp {− _
2a ℎ0(x)}. Using the inverse of Eq. 2.7, we

can write the answer as follows: [97]

ℎ(x, 𝑡) = _

2a
ln{

∫
𝑑𝑑x′ exp [− |x − x′|2

2a𝑡
+ _

2a
ℎ(x, 𝑡)] }. (2.9)

Moreover, by using u(x, 𝑡) = −_∇ℎ(x, 𝑡), we can demonstrate that the KPZ equation can

be transformed into the stochastic Burgers’ equation [98, 99], which is a simple description of

the generation of shock waves in a fluid [100],

𝜕𝑡u(x, 𝑡) + u(x, 𝑡) · ∇u(x, 𝑡) = a ∇2u(x, 𝑡) − _∇b (x, 𝑡). (2.10)

2.1.3 Quenched Kardar-Parisi-Zhang Equation

When it comes to characterizing the behavior of a driven surface, the KPZ equation is the most

general form. Assume that in a porous media, a vertical driving force 𝐹 is applied to a surface

that resembles a spatially expanded string that, due to surface tension, tends to stay straight

and not tangle. The disorder in the porous media subsequently applies an inhomogeneous

frictional force to the surface and pins a portion of it. The quenched in noise caused by the

disorder is more prominent than the thermal noise in a disordered medium. As a result, the

expression b (x, 𝑡) for thermal noise has been superseded by the expression [(x, ℎ) for quenched

noise [101, 102]. The quenched KPZ (qKPZ) equation is as follows [103]:

𝜕𝑡ℎ(x, 𝑡) = a∇2ℎ(x, 𝑡) + _
2
(∇ℎ(x, 𝑡))2 + [(x, ℎ). (2.11)

As with thermal noise, we assume that the average quenched noise is also zero, ⟨[(x, ℎ)⟩ =

0. Here, the angle brackets stand for an average over different random realizations. The corre-
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lation has the following form:

⟨[(x, ℎ)[(x′, ℎ′)⟩=𝛿𝑑 (x − x′)𝛥(ℎ − ℎ′), (2.12)

where 𝛥(𝑢) is a monotonically decreasing function of 𝑢 with the condition 𝛥(𝑢) = 𝛥(−𝑢).

The Dirac delta function, 𝛿(𝑢), is a particular instance of this function and is referred to as

random field disorder [6, 104]. The KPZ equation, Eq. 2.5, is a stochastic differential equation.

Therefore, even if the surface is restarted from identical initial conditions, it will end up in a

different state every time. On the other hand, if we run our simulation repeatedly, beginning

with the identical conditions for a quenched disordered system, we always end up with the

same surface [105, 101].

For the quenched KPZ (qKPZ) equation, we will be confronted with a variety of different

circumstances based on the strength of the driving force. In the absence of the driving force

or a weak driving force, the surface will continue to travel until it becomes immobilized and

achieves a configuration with a local minimum energy. At a critical force, 𝐹c, the driving force

is able to overcome the pinning force due to the disorder, and the surface begins to move with

a finite velocity. Slightly above 𝐹c, when the driving and elastic forces are strong enough to

overcome the pinning forces in one region, the surface progresses, only to be stopped again by

another region of strong pinning sites. Hence, the surface motion is not uniform and consists of

a combination of slow and smooth motion and abrupt jumps. Lastly, if the driving force is much

larger than 𝐹c, a rapidly fluctuating noise is experienced at the surface. In this domain, the KPZ

equation, Eq. 2.5, adequately characterizes the motion, and thermal fluctuations eliminate the

influence of quenched randomness [6].

In the zero-temperature limit, where thermal noise is small, Eq. 2.11 describes the system.

In spite of this, thermal noise is usually present in experiments. Thus, we generalize this

equation to include both quenched noise, [(x, ℎ), and thermal noise, b (x, 𝑡), as follows:

𝜕𝑡ℎ(x, 𝑡) = a∇2ℎ(x, 𝑡) + _
2
(∇ℎ(x, 𝑡))2 + [(x, ℎ) + b (x, 𝑡). (2.13)
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Thermal noise can influence the mobility of the surface close to and below the depinning tran-

sition [106, 107]. It is plausible that the quenched disorder has trapped the surface in a local

potential minimum. Since the velocity of the surface at zero temperature is zero, it will remain

at the local minimum forever. However, at temperatures greater than absolute zero, thermal

noise can assist the surface in overcoming the potential barriers [6].

2.1.4 Molecular Beam Epitaxy Equation

Poor contact properties of rough semiconductor or metal surfaces can render them practically

unusable for electronic purposes. Therefore, the great majority of experiments explore surfaces

with high contact characteristics, avoiding roughening wherever possible. However, even with

advanced experimental tools, roughening is frequently unavoidable. A greater understanding

of the roughening process might assist in identifying the experimental and technological limits

of what is achievable, which could lead to the development of strategies for managing sur-

face roughness. Scaling laws and continuum theory in the contexts of molecular beam epitaxy

(MBE) have received an increasing amount of interest from both theorists and experimental-

ists [108, 109].

In this section, we will analyze how the continuum theory describes the MBE equation,

Eq. 2.18, by including the effects of deposition, desorption, and surface diffusion. First, we

focus on linear terms which are sufficient for describing many important phenomena. Finally,

the non-linear contributions will be added to the MBE equation [6].

Surface diffusion of the deposited particles is the underlying physical mechanism that sets

molecular beam epitaxy (MBE) apart from other growth techniques [110, 111, 112]. We begin

by discussing a variety of approaches to including surface diffusion in the growth equations.

In order to formulate a continuous equation that accounts for fluctuations in surface height,

ℎ(x, 𝑡), the following steps must be taken. We consider a continuous equation of the following

form:

𝜕𝑡ℎ(x, 𝑡) = 𝐹 (ℎ, x, 𝑡) + b (x, 𝑡). (2.14)
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We disregard desorption in our original model, hence, atoms deposit on the surface and

then disperse. The total number of particles does not change during the diffusion process.

Upon diffusing over the surface, the diffusing particles generate a macroscopic current that is

perpendicular to the normal direction of the surface. This current, denoted by j(x, 𝑡), follows

the continuity equation [6].

𝜕𝑡ℎ(x, 𝑡) = −∇ · j(x, 𝑡). (2.15)

We can relate the surface current to the variations in the local chemical potential based on

the first Fick’s law as follows:

j(x, 𝑡) ∝ −∇`(x, 𝑡). (2.16)

Figure 2.2: Surface local geometries are depicted schematically. It is energetically unfavorable
for an atom to remain on top of the surface with the local hill, which has a positive chemical
potential and, consequently, a negative local Laplacian. At the local valley, the local Laplacian,
which is the inverse of the radius 𝑟2 of the circle that fits the surface locally, is positive, corre-
sponding to a negative chemical potential. Lastly, on a flat surface, the chemical potential of
an atom is zero, and the radius, 𝑅, of the circle is infinite.

To calculate the local chemical potential, we assume that the mobility of an atom does not

depend on the local height of the surface, but on the number of bonds that must be broken for

diffusion. The local curvature of the surface determines the number of bonds an atom may form



2.1. Continuum Theory 27

at a specific position. If 𝑅, the local radius of curvature, is positive, then the atom is surrounded

by a large number of other atoms. Instead, if 𝑅 is negative, the atom is separated from its

environment and can diffuse easily, see Fig. 2.2. The simplest assumption is that the chemical

potential regulating the probability of diffusion is proportional to − 1
𝑅

, which is proportional to

∇2ℎ(x, 𝑡). This result could also be achieved using a simple symmetry argument [6]. Hence,

we find the equation characterizing surface diffusion relaxation as

𝜕𝑡ℎ(x, 𝑡) = −∇4ℎ(x, 𝑡). (2.17)

The deposition process is random because the intensity of the atomic beam changes. Ran-

dom fluctuation, b (x, 𝑡), at the surface is described by Gaussian noise given by ⟨b (x, 𝑡)⟩ = 0,

and ⟨b (x, 𝑠)b (x′, 𝑡)⟩ = 2𝐷𝛿(𝑠 − 𝑡)𝛿𝑑 (x − x′). For the purpose of adding this randomness into

the MBE growth equation, we think of the deposition flux as being made up of the average

flux of the incoming particles, 𝐹 (x, 𝑡), and the noise, b (x, 𝑡). Wolf and Villain [113], and Das

Sarma and Tamborenea [114] introduced independently the stochastic MBE growth equation

that includes both surface diffusion and deposition as

𝜕𝑡ℎ(x, 𝑡) = −𝐾∇4ℎ(x, 𝑡) + b (x, 𝑡). (2.18)

There are models of growth in which the scaling behavior is determined by non-linear

terms [112, 111]. There is no reason to exclude the possibility of non-linear terms in the MBE

equation, Eq. 2.18, when surface diffusion is the dominating mechanism. In the following

lines, the significance of non-linear components will be studied.

To derive the relevant non-linear term for the MBE equation, symmetry arguments are

applied. Here, we extend the MBE equation to include all relevant non-linear variables and

filter out those that do not satisfy the fundamental symmetry restrictions of the growth process.

Our objective is to find an equation that is rotationally symmetric and has inversion symmetry,

x → −x, thereby eliminating the necessity for odd-order spatial derivatives. Additionally, it
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must maintain translational invariance along the growth axis, ℎ→ ℎ+𝛿ℎ, and its perpendicular,

x→ x + 𝛿x directions.

Any non-linear component in a diffusion-dominated growth process must also meet the

continuity equation, which states that permissible terms must maintain a constant number of

particles at the surface. This condition eliminates, for instance, the KPZ non-linear lateral

growth term, which cannot be described as the gradient of a current. As a result, the generalized

linear MBE equation has the form

𝜕𝑡ℎ(x, 𝑡) = −𝐾∇4ℎ(x, 𝑡) + _1∇2(∇ℎ(x, 𝑡))2 + _2∇ · (∇ℎ(x, 𝑡))3 + b (x, 𝑡), (2.19)

where terms up to the fourth order spatial derivatives are taken into account [111]. The non-

linear term ∇2(∇ℎ)2, also known as the conserved KPZ term, is represented by the current

j ∼ ∇(∇ℎ)2 [115]. The non-linear term ∇ · (∇ℎ)3, which is represented by the current −(∇ℎ)3,

cannot be described as a gradient of a chemical potential. We will not elaborate on the _2 term

because no physical process has been identified for its generation [111]. Nevertheless, the _2

term is more relevant than the _1 term, and it has been argued that it represents a higher-order

surface tension correction [6].

2.2 Scaling Arguments

Surface growth phenomena are influenced by a wide variety of factors. In surface growth

studies, scientists always assume that the morphology and dynamics are regulated by a handful

of basic rules. The evolution of a surface can be described qualitatively. To define a surface,

we can construct a scenario in which particles assemble in columns on top of one another. We

then offer two new functions for qualitatively describing the surface. The first useful function
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is the average surface height, which for a one-dimensional surface is defined as [6]

ℎ̄(𝑡) ≡ 1
𝐿

𝐿∑︁
𝑖=1

ℎ(𝑖, 𝑡), (2.20)

where ℎ(𝑖, 𝑡) represents the height of column 𝑖 at time 𝑡 and 𝐿 is the total number of columns.

Given a constant rate of deposition, the average height of a system will increase linearly over

time,

ℎ̄(𝑡) ∼ 𝑡. (2.21)

The surface width function is another useful function. We measure the roughening process

specifically by measuring the surface width over time. The width of the surface is determined

by the root-mean-square (rms) fluctuation in the surface’s height,

𝑤(𝐿, 𝑡) ≡

√√√
1
𝐿

𝐿∑︁
𝑖=1

[ℎ(𝑖, 𝑡) − ℎ̄(𝑡)]2. (2.22)

The value of 𝑤(𝐿, 𝑡) on a surface shows power law behavior as 𝑡 approaches the roughness

saturation time,

𝑤(𝐿, 𝑡) ∼ 𝑡 𝛽 𝑡 ≪ 𝑡𝑠, (2.23)

where 𝑡s is the roughness saturation time, and the growth exponent, 𝛽, characterizes the time-

dependent dynamics of the roughening process. At saturation time, 𝑡s, at a constant surface

length, 𝐿, the surface roughness saturates. This saturation value changes based on the length 𝐿

of the surface and increases with 𝐿 as [116]

𝑤(𝐿, 𝑡) ∼ 𝐿𝛼 𝑡 ≫ 𝑡𝑠 . (2.24)

There is a third critical exponent, 𝑧, that characterizes the scaling connection between the

critical length and time scale. This critical exponent also depends on the system size and is
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given as

𝑡𝑠 ∼ 𝐿𝑧 . (2.25)

These critical exponents are not independent, and the relationship between them is

𝑧 =
𝛼

𝛽
. (2.26)

The width function possesses the Family-Vicsek scaling relation as follows [117, 118]:

𝑤(𝑙, 𝑡) ∼ 𝑡 𝛽𝐹 (𝑙𝑡− 1
𝑧 ), (2.27)

where 𝑙 is a local length of the surface and 𝐹 (𝑢) is a 𝑢-dependent scaling function represented

as

𝐹 (𝑢) =


const if 𝑢 ≫ 1;

𝑢𝛽 if 𝑢 ≪ 1.
(2.28)

Scaling behavior may be understood through the width function’s scaling relation and ex-

pressed in fractal notation. The single-valued functions known as self-affine functions define

a type of anisotropic fractals that we find particularly useful for measuring disordered sur-

faces [119]. The surface width function is a self-affine function. Scaling relation of a self-affine

function, ℎ(𝑥), can be expressed as:

ℎ(𝑥) ∼ 𝑏−𝛼ℎ(𝑏𝑥), (2.29)

where 𝛼 is known as the Hölder exponent, or self-affine exponent, and provides a numerical

value for the roughness of the function ℎ(𝑥). This indicates that the vertical and horizontal

scaling factors for ℎ(𝑥) are not the same. The transformation is isotropic and the system is

self-similar if and only if 𝛼 = 1. In the following, we will estimate the scaling exponents of

the surfaces for the various continuity equations stated above by making use of the self-affinity

features of the surfaces [6].
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2.2.1 Kardar-Parisi-Zhang Scaling

By applying the scale transformation x → 𝑏x and rescaling the height as ℎ → 𝑏𝛼ℎ and the

time as 𝑡 → 𝑏𝑧𝑡, the KPZ growth equation is modified to [5]:

𝑏𝛼−𝑧𝜕𝑡ℎ(x, 𝑡) = a𝑏𝛼−2∇2ℎ(x, 𝑡) + _
2
𝑏2𝛼−2(∇ℎ(x, 𝑡))2 + 𝑏−𝑑/2−𝛼/2b (x, 𝑡). (2.30)

The non-linear term is larger than the surface tension term in the limit 𝑏 → ∞, as shown

by comparing 𝑏2𝛼−2(∇ℎ)2 and 𝑏𝛼−2∇2ℎ. This demonstrates that the non-linear term is indeed

a relevant term, and hence influences the scaling exponents. Multiplying both sides by 𝑏𝑧−𝛼,

we can simplify the equation as

𝜕𝑡ℎ(x, 𝑡) = a𝑏𝑧−2∇2ℎ(x, 𝑡) + _
2
𝑏𝛼+𝑧−2(∇ℎ(x, 𝑡))2 + 𝑏−𝑑/2+𝑧/2−𝛼b (x, 𝑡), (2.31)

where we used the following property of the delta function

𝛿𝑑 (𝑎x) = 1
𝑎𝑑
𝛿𝑑 (x), (2.32)

where x is a 𝑑-dimensional vector, and as a result, we have

⟨b (𝑏x, 𝑏𝑧𝑡)b (𝑏x′, 𝑏𝑧𝑡′)⟩ = 2𝐷𝛿𝑑 (𝑏x − 𝑏x′)𝛿(𝑏𝑧𝑡 − 𝑏𝑧𝑡′) =

2𝐷𝑏−𝑑−𝑧𝛿𝑑 (x − x′)𝛿(𝑡 − 𝑡′).
(2.33)

To ensure scaling invariance, it can be assumed that the right hand side of the equation must

be unaffected by the factor 𝑏. However, by providing different scaling relations for 𝛼 and 𝑧, this

technique overdetermines them. By assuming the limit in which the non-linear term has a large

impact on the surface tension, and a∇2ℎ term can be disregarded, we can find the following

exponents that leave the right hand side of the equation unaffected by the scaling factor 𝑏 in
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the absence of the surface tension term [5, 6]:

𝛼 =
2 − 𝑑

3
, 𝛽 =

2 − 𝑑
4 + 𝑑 . (2.34)

Simulation and experiment results do not match these theoretical values [120, 121, 122,

123]. The various variables (a, _, and 𝐷) in the growth equation are connected to one another,

therefore they do not renormalize independently upon rescaling. Later in this chapter, when

we talk about the renormalization group method, we explore this issue in further detail.

2.2.2 Molecular Beam Epitaxy Scaling

We can derive an exact solution to the linear MBE growth equation, Eq. 2.18, by employing

the Fourier transform. However, since the scaling characteristics of the system are of the

utmost importance, we can derive the exponents using relatively simple scaling arguments.

Multiplying both sides of the linear MBE growth equation by 𝑏𝑧−𝛼 after doing scaling of x, 𝑡,

and ℎ yields

𝜕𝑡ℎ(x, 𝑡) = −𝐾𝑏𝑧−4∇4ℎ(x, 𝑡) + 𝑏
𝑧−𝑑−2𝛼

2 b (x, 𝑡). (2.35)

We can find the exponents by considering the self-affinity of the surface [6],

𝑧 = 4, 𝛼 =
4 − 𝑑

2
, 𝛽 =

4 − 𝑑
8

. (2.36)

Large roughness exponents, 𝛼 = 3/2, 1 for 𝑑 = 1, 2, respectively, serve as an early warning

of the potential influence of non-linear factors. In Section 2.3, we will examine the impact of

non-linear terms on the scaling exponents.
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2.3 Renormalization Group Method

The objective of the RG method is to preserve the physical aspects of interest while

re-expressing the problem’s defining parameters in terms of another simpler set. In the critical

phenomena, when long-distance physics is desirable, this may be achieved by coarsening the

short-range degrees of freedom [97, 124, 125, 126, 127].

An easy way to construct a perturbation series when using the RG on non-linear Langevin

equations is to first recast the dynamical problem into a form similar to the field-theoretic

description of equilibrium statistical mechanics, and then to use the well-established machinery

of the RG. We begin by constructing a dynamic response functional from a non-linear Langevin

equation, followed by a conceptual discussion of the RG method.

2.3.1 Dynamic Janssen–De Dominicis Response Functional

To employ the well-established framework of quantum field theory, we must first transform

the dynamical problem into a form analogous to the field-theoretic description of equilibrium

statistical mechanics [124]. We begin by looking at dynamical equations of motion of the

Langevin type for coarse-grained stochastic field variables ℎ(x, 𝑡) of the form

𝜕𝑡ℎ(x, 𝑡) = 𝐹 (ℎ(x, 𝑡), x, 𝑡) + b (x, 𝑡), (2.37)

where 𝐹 (ℎ(x, 𝑡), x, 𝑡) represents a general function that is height-, position-, and time-

dependent, and the stochastic noise b (x, 𝑡) represent the influence of fast degrees of freedom;

its mean is zero as before, ⟨b (x, 𝑡)⟩ = 0, and its second moment is assumed to be defined by

diagonal white noise ⟨b (x, 𝑠)b (x′, 𝑡)⟩ = 2𝐿𝛿(𝑠 − 𝑡)𝛿𝑑 (x − x′). We substitute 𝐿 for 𝐷 and use

𝐷 as the functional measure in the functional integrals in this section. If we can demonstrate

that the noise correlation derives from a probability distribution, this dynamical problem can

be transformed into a field-theoretic description of equilibrium statistical mechanics. We

can construct a probability distribution for the noise using the following Gaussian integral
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formulas ∫
𝑒−

b (x,𝑡 )𝐿−1 b (x,𝑡 )
4 𝑑x = 2 (𝜋𝐿)

1
2 and (2.38)∫

b2(x, 𝑡) 𝑒−
b (x,𝑡 )𝐿−1 b (x,𝑡 )

4 𝑑x = 4𝐿 (𝜋𝐿)
1
2 . (2.39)

where we consider that the noise strength, 𝐿, can be an operator, and its inverse is regarded as

a Green’s function. The noise probability distribution can then be written as follows:

𝑊 (b (x, 𝑡)) ∝ exp
(
−1

4

∫
𝑑x

∫
𝑑𝑡 b (x, 𝑡)𝐿−1b (x, 𝑡)

)
. (2.40)

We can also write this function in Fourier space. Hence the exponent is of the form,

−
∫

q,𝜔
|b (q,𝜔) |2

4𝐿q2 . Now, we can obtain a probability distribution 𝑃[ℎ] for the field ℎ(x, 𝑡) by

interpreting the noise as a functional of the field ℎ(x, 𝑡), whose relationship is defined by the

Langevin equation, 𝜕𝑡ℎ(x, 𝑡) − 𝐹 (ℎ(x, 𝑡), x, 𝑡) = b (x, 𝑡).

𝑊 [b]𝐷 [b] = 𝑃[ℎ]𝐷 [ℎ] ∝ 𝑒−𝐺 [ℎ]𝐷 [ℎ] . (2.41)

The derivation of the functional determinant, 𝐷 [b]/𝐷 [ℎ], resulting from this non-linear

variable transformation can be found in Ref. [124]. Here, 𝐺 [ℎ] is the Onsager–Machlup func-

tional [128]

𝐺 [ℎ] = 1
4

∫
𝑑x

∫
𝑑𝑡 (𝜕𝑡ℎ(x, 𝑡) − 𝐹 (ℎ(x, 𝑡), x, 𝑡)) (𝐿)−1 (𝜕𝑡ℎ(x, 𝑡) − 𝐹 (ℎ(x, 𝑡), x, 𝑡)) .

(2.42)

which is identical to the Hamiltonian, 𝐻, in equilibrium statistical mechanics, as it defines

the statistical weight of a particular configuration, ℎ(x, 𝑡). However, assuming that the noise

probability distribution is properly normalized, the partition function is unity and the associ-

ated free energy is zero. This equation yields a basis for perturbational expansion and is the

preferred field-theoretic formulation of non-linear Langevin dynamics from a theoretical stand-

point. However, this formulation is difficult to deal with due to the development of the inverse
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of the operator 𝐿 in the Onsager-Machlup functional, which, for example, results in a singular-

ity as q→ 0 in the case of conserved dynamics, 𝐿 ∼ q2 [124]. To overcome this issue, we can

apply the Hubbard–Stratonovich transformation [129] to transfer the inverse of the operator 𝐿

to the operator 𝐿. We know that the average of the observable 𝐴 over the noise is

⟨𝐴[ℎ]⟩b ∝
∫

𝐷 [b] 𝐴[ℎ(b)]𝑊 [b], (2.43)

where we also need to force that the fields obey the Langevin dynamics by inserting a convo-

luted unity at each spacetime point [124].

1 =

∫
𝐷 [ℎ]

∏
(x,𝑡)

𝛿 (𝜕𝑡ℎ − 𝐹 (ℎ, x, 𝑡) − b)

=

∫
𝐷 [𝑖ℎ̃]

∫
𝐷 [ℎ] exp{−

∫
𝑑x

∫
𝑑𝑡 ℎ̃ (𝜕𝑡ℎ − 𝐹 (ℎ, x, 𝑡) − b)},

(2.44)

where functional integral representation of the delta function was employed. The new field,

ℎ̃(x, 𝑡), is called the Martin–Siggia–Rose auxiliary fields [130], commonly known as a response

field. Using this integral, the average of an operator 𝐴 over the noise can be expressed as

follows:

⟨𝐴[ℎ]⟩b ∝
∫

𝐷 [𝑖ℎ̃]
∫

𝐷 [ℎ] exp
{
−
∫

𝑑x
∫

𝑑𝑡 ℎ̃ (𝜕𝑡ℎ − 𝐹 (ℎ, x, 𝑡) )
}

×𝐴[ℎ]
∫

𝐷 [b] exp
{
−
∫

𝑑x
∫

𝑑𝑡

(
b 𝐿−1 b − ℎ̃ b

)}
,

(2.45)

where the second line can be evaluated as a completed square Gaussian integral. This average

formula reveals the subsequent probability distribution for stochastic field variables, ℎ(x, 𝑡), as

𝑃[ℎ] = 𝐶−1
∫

𝐷 [𝑖ℎ̃] 𝑒−𝐴(ℎ,ℎ̃) , (2.46)
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with the normalization constant

𝐶 =

∫
𝐷 [ℎ]

∫
𝐷 [𝑖ℎ̃] 𝑒−𝐴(ℎ,ℎ̃) , (2.47)

where 𝐴[ℎ, ℎ̃] is the dynamic Janssen–De Dominicis response functional [124]

𝐴[ℎ, ℎ̃] =
∫

𝑑x
∫

𝑑𝑡 {ℎ̃ (𝜕𝑡ℎ − 𝐹 (ℎ, x, 𝑡)) − ℎ̃ 𝐿 ℎ̃}. (2.48)

In a field theoretic framework, the resulting dynamic Janssen-De Dominicis response func-

tional can serve as the action that can be used as a starting point for applying the RG technique.

2.3.2 Momentum Shell Renormalization Group

Kadanoff promoted employing the self-similarity of the fluctuations to remove the correlated

degrees of freedom at small length scales, leaving only the simple, uncorrelated degrees of

freedom at a length scale comparable to the correlation length scale of the system [131]. In

condensed matter physics, RG can be done in both real and momentum space. The RG method

consists of three distinct processes.

Coarsening, which is the process of removing short-scale fluctuations, is the initial stage

in the RG procedure. The shortest scale of the system is determined by the shortest distance

between two points in space where the field can change its value. This is the minimum scale

underlying models such as the Landau-Ginzburg Hamiltonian or the lattice spacing for the spin-

like models [97, 125]. The initial stage of the RG procedure is to reduce the spatial resolution

by altering minimum scale 𝑎 to 𝑏𝑎, where 𝑏 > 1. Following coarsening, the new field, ®ℎ(x) is

®ℎ(x) = 1
𝑏 𝑑

∫
box centered at 𝑥

𝑑𝑑x′ ®ℎ′(x), (2.49)

where the coarse-grained space is grainier than the original one since the shortest spatial scale

has been increased.
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In the second stage, we rescale the space to bring the system back to its original minimum

length scale. This process is referred to as rescaling. Reduce all length scales by a factor of 𝑏,

and the original minimum scale of the system will be recovered as

xnew =
xold

𝑏
. (2.50)

The RG procedure culminates with the renormalization of the field. In general, the rescaled

field profile’s fluctuations differ from those of the original. To fix this, a renormalized field is

defined, resulting in a reduction of the field strength by a factor Z . Following these procedures,

we obtain a renormalized configuration, ®ℎnew(x), from any given configuration, ®ℎold(x), as [97]

®ℎ𝑛𝑒𝑤 (x) =
1
Z 𝑏𝑑

∫
box centered at 𝑏xnew

𝑑𝑑x′ ®ℎ′old(x). (2.51)

This equation can be used to construct the probability distribution, or weight 𝑊 , by imag-

ining it as a mapping between two sets of random variables.

Now, we will describe each of these steps in the momentum-space. The momentum-space

RG can be used for systems whose degrees of freedom are described as Fourier modes of a cer-

tain field. We define ®ℎ(q) as the Fourier transfer of the field ®ℎ(x). Because the shortest length

scales are associated with the largest wavenumbers, filtering out variations on short length

scales in the real space renormalization group is comparable to extracting high momentum

modes in the Fourier space by integration. The elimination of fluctuations at scales 𝑎 < 𝑥 < 𝑏 𝑎

is equivalent to the suppression of Fourier modes with wavenumbers 𝛬
𝑏
< 𝑞 < 𝛬 [97, 125].

Consequently, the wavevector space is split into two subspaces,

{®ℎ(q)} = {®𝜎(q>)}
⊕
{®̃ℎ(q<)}, (2.52)

where q> and q< stand for 𝛬
𝑏
< q < 𝛬 and q < 𝛬

𝑏
, respectively, and

⊕
is the direct sum

between two subspaces [97]. The new fields ®𝜎(q>) and ®ℎ(q<) are the functions of q> and q<,
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respectively. Consequently, we may formulate the partition function, 𝑍 , as follows:

𝑍 =

∫
𝐷 ®̃ℎ(q<)

∫
𝐷 ®𝜎(q>) exp−𝐻 [ ®̃ℎ,®𝜎] . (2.53)

The top cutoff of the integration has been coarsened to 𝛬
𝑏

, thus the partition function with

the modes ®̃ℎ(q<) is nearly identical to the original. In the rescaling phase, the cutoff is reset to

its prior value following the transformation x = x
𝑏

in real space, which is equivalent to q = 𝑏q

in momentum space. We should remember that when the integral is a 𝑑-dimensional integral,

𝑑q′ = 𝑏𝑑𝑑q will hold. RG in real space concludes with field renormalization, ®ℎ′(x′) = ®̃ℎ(x′)
Z

,

and in momentum space using ®ℎ′(q′) = ®̃ℎ(q
′)
𝑧

[97, 125].

All of these RG processes lead to mathematical equations expressing RG flows in a param-

eter space. Scalability and universality are profoundly affected by the investigation of these

flows and what they indicate about the underlying physical problem. In the context of equilib-

rium critical behavior, for instance, this generic aspect of RG is most evident in the method of

real space renormalization as applied to lattice spin systems.

All the couplings in the reduced Hamiltonian form a set, {𝐾}, of couplings. For instance,

𝐾1 may have been the only coupling in the original model, with the others set to 0. However,

applying the renormalization group can produce other couplings. The experimentalist will need

to experiment with a wide range of tunable physical parameters such as temperature, pressure,

and magnetic field to get a decent sense of the coupling constants. Consequently, one can

consider the space of all potential couplings to be transformed by the RG transformation, 𝑅,

as [126, 125]

{𝐾′} = 𝑅 ({𝐾}) . (2.54)

We suppose that the RG transformation has the form above, where 𝑅 depends on the par-

ticular transformation chosen and the length rescaling parameter 𝑏. Then, there exists a fixed

point, 𝐾 = 𝐾∗, in the space of all possible couplings. As in the case of a single variable,

we shall assume that 𝑅 is differentiable at the fixed point; hence, the RG equations can be
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linearized about the fixed point as

𝐾′𝑎 − 𝐾∗𝑎 ∼
∑︁
𝑏

𝑇𝑎𝑏
(
𝐾𝑏 − 𝐾∗𝑏

)
, (2.55)

where 𝑇𝑎𝑏 =
𝜕𝐾 ′𝑎
𝜕𝐾𝑏
|𝐾=𝐾∗ , and the indices 𝑎 and 𝑏 goes through all the couplings in set {𝐾}. We

denote the eigenvalues of matrix 𝑇 as _𝑖 and its left eigenvectors as {𝜙𝑖}. Hence, we have

∑︁
𝑏

𝜙𝑖𝑎𝑇𝑎𝑏 = _
𝑖𝜙𝑖𝑏 . (2.56)

The left eigenvectors of 𝑇 are not necessarily the same as the right eigenvectors of 𝑇 , as we

have no reason to assume that 𝑇 is symmetric. We cannot even assume that all eigenvalues are

always real. Some eigenvalues, for instance, arise in complex conjugate pairs in some random

systems [126]. This topic, however, goes beyond the scope of this thesis. We define scaling

variables as linear combinations of the deviations from the fixed point as

𝑢𝑖 ≡
∑︁
𝑎

𝜙𝑖𝑎
(
𝐾𝑎 − 𝐾∗𝑎

)
. (2.57)

This can be simplified near the fixed point:

𝑢′𝑖 =
∑︁
𝑎

𝜙𝑖𝑎
(
𝐾′𝑎 − 𝐾∗𝑎

)
=
∑︁
𝑎,𝑏

𝜙𝑖𝑎𝑇𝑎𝑏
(
𝐾𝑏 − 𝐾∗𝑏

)
=
∑︁
𝑏

_𝑖𝜙𝑖𝑏
(
𝐾𝑏 − 𝐾∗𝑏

)
= _𝑖𝑢𝑖 .

(2.58)

The eigenvalues of the RG values, 𝑦𝑖, are defined as _𝑖 = 𝑏𝑦𝑖 . They can be seen to be associated

with the critical exponents [126]. We can distinguish three distinct cases:

• If 𝑦𝑖 > 0, 𝑢𝑖 is referred to as a relevant operator, as the RG transformation is repeated,

the value moves away from the fixed-point.

• If 𝑦𝑖 < 0, 𝑢𝑖 is referred to as a irrelevant operator, and it converges to zero as the iteration
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continues if we begin close enough to the fixed point.

• If 𝑦𝑖 = 0, the value of 𝑢𝑖 is referred to as a marginal operator. The linearized equations

do not reveal whether 𝑢𝑖 will move away from or toward the fixed point.

Figure 2.3: RG flow in a 3d space of coupling. The fixed point 𝐾∗ has a basin of attraction
with two irrelevant directions and one relevant direction.

We consider the case of a fixed point with 𝑛 relevant eigenvalues. To make things easier to

visualize, consider the space close to the fixed point to have 𝑚 total dimensions. We consider

the presence of (𝑚 − 𝑛) irrelevant eigenvalues that attract into the fixed point. Hence, there

will be a (𝑚 − 𝑛)-dimensional hypersurface. We assume that this hypersurface continues in a

finite region surrounding the fixed point because of continuity, despite being the linear space

spanned by irrelevant eigenvectors close to the fixed point. Because the fixed point governs

the long-distance features of any system corresponding to a point on this surface, it is named

the critical surface [126]. Figure 2.3 depicts the topology of a fixed point in three-dimensional

space.
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2.3.3 Kardar-Parisi-Zhang Equation

By applying RG to the KPZ equation, Eq. 2.5, we can determine the flow equations for the

KPZ equation parameters. The flow equations for the parameters a, 𝐷, and _ are [5, 6]

𝑑a

𝑑𝑙
= a

[
𝑧 − 2 + 𝐾𝑑𝑔2 2 − 𝑑

4𝑑

]
(2.59)

𝑑`

𝑑𝑙
= 𝐷

[
𝑧 − 2 − 2𝛼 + 𝐾𝑑

𝑔2

4

]
(2.60)

𝑑_

𝑑𝑙
= _ [𝛼 + 𝑧 − 2] , (2.61)

where 𝐾𝑑 ≡ 𝑆𝑑
(2𝜋)𝑑 and 𝑆𝑑 is the surface area of a 𝑑-dimensional unit sphere, and we define the

coupling constant, 𝑔, as [6, 132]

𝑔 ≡ _
2𝐷

a3 . (2.62)

Before discussing the KPZ problem, we look at what the flow equations suggest for the

EW equation, Eq. 2.2. In order to calculate the exponents, we should study all possible fixed

points in the flow equations. If the nonlinear term in the KPZ equation is ignored, _ = 0, then

the coupling constant, 𝑔, is zero, and 𝑧 − 2 = 0 and 𝑧 − 𝑑 − 2𝛼 = 0 are obtained. Therefore,

𝑧 = 2 and 𝛼 = (2 − 𝑑)/2. We can also observe that the parameters of the EW equation can be

rescaled independently of one another.

The exponents are then calculated for the KPZ problem, in which the parameters are not

independent. The result of the third flow equation, 𝑑_
𝑑𝑙

= 0, is the scaling relationship 𝛼 + 𝑧 = 2.

Due to Galilean invariance, we expect that higher loop corrections will vanish, making this

relationship precise for the KPZ systems. We may calculate the flow of the coupling constant,

𝑔, by utilizing the relationship for the coupling constant together with the three flow equations

we know for a, 𝐷, and _,
𝑑𝑔

𝑑𝑙
=

2 − 𝑑
𝑑

𝑔 + 𝐾𝑑
2𝑑 − 3

4𝑑
𝑔3. (2.63)

We study the solution in a variety of cases, as the flow equation changes with the dimension
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of the space. Taking 𝑑𝑔

𝑑𝑙
= 0 yields the fixed point 𝑔∗ of the equation. We begin with the case

of 𝑑 = 1, where there are only two fixed points [132],

𝑔∗1 = 0 and 𝑔∗2 =

(
2
𝐾𝑑

) 1
2

. (2.64)

The 𝑔∗1 fixed point is repulsive, which means that if we start with 𝑔 close to this fixed point,

the system will flow away from it. In contrast, if the flow begins at a non-zero 𝑔 near the fixed

point 𝑔∗2, it will continue to move towards this fixed point since 𝑔∗2 is an attractive fixed point,

see Fig. 2.4. By entering the non-zero fixed point into the a and 𝐷 flow equations, we can

derive the scaling exponents for 𝑑 = 1 [6],

𝑧 =
3
2

and 𝛼 =
1
2
. (2.65)

Figure 2.4: The flow for coupling constant g in (a) one dimension, where a non-zero fixed
point is attractive and determines the scaling exponents, and (b) two dimensions, where a non-
zero fixed point is repulsive, separates the linear regime, _ = 𝑔 = 0 from the strong coupling
regime for which in _ → ∞ for one loop approximation. Adapted from Figure 7.4 in [6] with
permission from Cambridge University Press.

In 𝑑 = 2, according to the coupling constant flow equation, the coupling constant 𝑔 is
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marginally relevant and grows with rescaling. There is no non-zero fixed point for the coupling

constant 𝑔, and this fixed point is repulsive when 𝑑 > 2. Here, there are two different phases.

In the phase of weak coupling, where 𝑔 < 𝑔∗2(𝑑), the coupling constant starts to disappear,

and growth is described by the EW equation. In the region of strong coupling, if 𝑔 > 𝑔∗2(𝑑),

the coupling constant flows to infinity, indicating the existence of new scaling behavior whose

exponents can be determined using numerical simulations, see Fig. 2.4.

2.3.4 Molecular Beam Epitaxy Equation

Changing to the co-moving reference frame, ℎ → ℎ − 𝑣𝑡, eliminates the constant flux

term, which has no impact on the scaling exponents. The physically unmotivated term,

∇ · (∇ℎ(x, 𝑡))3, is neglected as well. Therefore, we have a growth equation, which

is the lowest-order non-linear equation with conserved dynamics and non-conserved

noise [111, 112]:

𝜕𝑡ℎ(x, 𝑡) = −𝐾∇4ℎ(x, 𝑡) + _1∇2(∇ℎ(x, 𝑡))2 + b (x, 𝑡). (2.66)

We use the dynamic RG to find the scaling exponents. The equations describing the flow

equation of the non-linear MBE equation, Eq. 2.19, as [6, 133]

𝑑𝐾

𝑑𝑙
= 𝐾

[
𝑧 − 4 + 𝐾𝑑

_2
1𝐷

𝐾3

6 − 𝑑
4𝑑

]
, and (2.67)

𝑑𝐷

𝑑𝑙
= [𝑧 − 2𝛼 − 𝑑] , (2.68)

𝑑_1

𝑑𝑙
= _1 [𝑧 + 𝛼 − 4] , (2.69)

where 𝐾𝑑 ≡ 𝑆𝑑
(2𝜋)𝑑 and 𝑆𝑑 is the surface area of 𝑑-dimensional unit sphere, and the coupling

constant, 𝑔, is

𝑔2 ≡
_2

1𝐷

𝐾3 . (2.70)
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We determine the flow of the coupling constant, 𝑔, by combining the coupling constant rela-

tionship with the three flow equations for 𝐾 , 𝐷, and _1 as

𝑑𝑔

𝑑𝑙
=

4 − 𝑑
𝑑

𝑔 + 𝐾𝑑
3(𝑑 − 3)

8𝑑
𝑔3. (2.71)

We can exactly determine the exponents due to the availability of the two scaling relations.

The first is the result of setting the flow equation for 𝐷 to zero, 𝑑𝐷
𝑑𝑙

= 0:

𝑧 − 2𝛼 − 𝑑 = 0. (2.72)

By setting the equation of the non-linear coefficient, _1, equal to zero, 𝑑_1
𝑑𝑙

= 0, we obtain

the second scaling relation:

𝑧 + 𝛼 − 4 = 0. (2.73)

These two scaling relations are exact, and we can use them to obtain the scaling exponents

for the MBE growth process [6]

𝑧 =
8 + 𝑑

3
, 𝛼 =

4 − 𝑑
3

and 𝛽 =
4 − 𝑑
8 + 𝑑 . (2.74)

We can compare the exponents for the KPZ and MBE equation in one dimension, 𝑑 = 1.

For the MBE equation in one dimension, we have the following scaling exponents which are

greater than the KPZ scaling exponents

𝑧 = 3 and 𝛼 = 1. (2.75)

The linear theory predicts different values for these quantities. The larger roughness expo-

nent was induced by the absence of non-linear term. These scaling exponents of the non-linear

MBE equation correctly represents the scaling behavior of a variety of discrete models devel-

oped to characterize the MBE growth process [6].
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2.4 Discrete Growth Models

The morphologies and scaling behavior observed in surface growth studies can perhaps be

better understood by analyzing basic discrete models. The gap between experimental results

and continuous theories may be bridged by discrete models. These models can also be used to

analyze the effects of certain mechanisms, such as surface diffusion and desorption.

Scaling exponents for systems with 𝑑 > 1 are frequently computed numerically due to

mathematical complexities, and we need the exponents to determine the scaling universality

class. For example, we cannot compute the KPZ exponents analytically for 𝑑 > 1 [134, 135].

However, we can obtain reasonable approximations for the exponents by employing discrete

models. In this section, we present a few models that have considerably contributed to our

understanding of specific aspects of surface roughening.

Generally, non-equilibrium growth processes involve models with random deposition, local

relaxation, and sticking principles. Typically, when atoms or cells are deposited or produced,

they migrate over the surface for a short distance before becoming firmly attached. Due to

the simplicity of their relaxation criteria, these models are the most numerically efficient since

they can perform large-scale simulations for extended periods of time, which increases the

possibility of obtaining asymptotic scaling behavior.

The majority of growth models, including the Eden model [136] and the ballistic deposition

(BD) [7] model, are founded on attempts to resolve real physical or biological challenges. In

particular, vapor deposition can be modeled using the BD model, while biological growth can

be modeled using the Eden model. There are issues with these models, such as the imprecision

of their scaling exponents. Studying the collective behavior of atoms during growth is another

scenario that could benefit from numerical simulations of discrete models. Paradigmatic cases

are the Wolf-Villain [113], and Das Sarma and Tamborenea [114] model.

Numerous numerical investigations have also been driven by the need to deduce how

quenched disorder affects the morphology of surfaces. Overhangs on the surface are disre-

garded by a group of models [137, 138, 9], whereas overhangs are allowed by another group
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of models [139, 140, 141]. There is a mapping between surface growth in the presence of

quenched disorder and the two types of well known problems: the directed percolation prob-

lem and the site percolation problem, respectively. This section also includes a discussion of

the directed percolation depinning (DPD) model [9, 6].

2.4.1 Ballistic Deposition

The Ballistic Deposition (BD) model was first proposed as a simplified sedimentation

model [7]. Since falling particles adhere to their first nearest neighbor on the aggregate,

the BD model is one of the simplest nearest-neighbor models. To establish the next-nearest

neighbor model, we just need to permit particles to also attach to a neighbor on the diagonal.

The model’s non-linear term, which is the result of the lateral sticking rule, is responsible

for the existence of voids. Vacancies accelerate the surface’s expansion because the mean

height grows at a faster rate for the same number of deposited particles. The non-linear factor

is included in both the nearest neighbor and the next-nearest neighbor models, therefore non-

linear theory may describe the scaling characteristics of both. These two models belong to the

same universality class [6].

To illustrate the model’s functionality, let’s imagine a substrate of length 𝐿, sectioned into

𝐿 equal columns. Each of the particles is a tiny square that is dropped vertically onto the

flat, one-dimensional substrate. Particles are released one by one and accumulate in random

columns above the substrate. By adhering on top of or to the side of their nearest neighbors,

particles take into account both the nearest neighbor and next-nearest neighbor models, see

Fig. 2.5.

The height profile ℎ(𝑥, 𝑡), also known as the surface, completely determines the dynamics

of this expanding process. The height, ℎ, in a certain column, 𝑥, at a particular time, 𝑡, can be

expressed as a discrete integer value by the following function:

ℎ(𝑥′, 𝑡 + 1) = 𝑚𝑎𝑥 [ℎ(𝑥′ − 1, 𝑡) , ℎ(𝑥′, 𝑡) , ℎ(𝑥′ + 1, 𝑡)], (2.76)
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Figure 2.5: By use of ballistic deposition (BD) [7], square particles are deposited one at a time
from random heights above a flat substrate; these particles adhere to the substrate upon initial
contact. The attachment points of squares 𝐴 and 𝐵 to their respective surfaces are shown by
the dashed lines squares 𝐴 and 𝐵.

where ℎ(𝑥, 𝑡) is the height-profile and 𝑥′ is a column number between 1 and 𝐿 selected ran-

domly at time 𝑡. Each ”drop” of particles in this terminology represents one unit of time. It is

more practical to measure time in terms of deposited layers. Therefore, 𝑡 = 𝑁/𝐿 where 𝑁 is

the total number of particles deposited and 𝐿 is the length of the substrate. Boundary effects

can be mitigated and scaling behavior enhanced by employing periodic boundary conditions.

2.4.2 Eden Model

Colonies of organisms, whether they are bacteria or cells in tissue culture, can be understood

from the perspective of a conventional growth model first given by M. Eden in 1961 [136].

Currently, it is believed that the scaling properties are defined by the KPZ equation. In accor-

dance with KPZ predictions, early simulations established 𝛼 = 0.5 for 𝑑 = 1 [142, 143]. The

model is defined as follows: Consider a lattice in which a seed particle is initially situated at

the origin. Each newly formed particle randomly joins an already existing particle anywhere

along the seed’s perimeter, Fig. 2.6. Iterated Eden models produce a cluster with a somewhat
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circular core and a rough surface [144, 145, 146].

a) b)

Figure 2.6: Figure illustrates two distinct Eden models. In both models, the growth started
from the red square. In the subsequent stage, one of the neighboring sites to the surface will be
chosen, where in the (a) all unoccupied sites have the same probability 𝑝, however in the (b)
the probability is dependent on the number of bonds each unoccupied site has with the surface.

In addition, the geometry of growth from a horizontal substrate of length 𝐿 and periodic

boundary condition is investigated. Growing from a line of seeds rather than a single seed

makes it easier to examine its surface features. There are three distinct Eden models, each with

its own microscopic rules for selecting a suitable growing location [147]. Finally, off-lattice

variations of the Eden model have occasionally been discussed in the literature [148, 149, 150].

Methods for reducing noise allow for more precise estimates of the exponents and valida-

tion of the validity of the scaling relation [151]. These methods [152, 153, 154, 155] permit

the intrinsic width to be reduced by keeping track of the number of times a certain growth site

is chosen at random. The site becomes occupied only when the counter reaches a specified

threshold value 𝑠, known as the noise reduction parameter.
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2.4.3 Irreversible Molecular Beam Epitaxy Growth Models

Wolf and Villain [113], and Das Sarma and Tamborenea [114] independently proposed models

of non-equilibrium growth that incorporated deposition and surface diffusion. The function-

ality of the model is defined as follows: a particle is defined to be placed at a random site at

each time step, after which the particle can migrate to the left or right by one site, or remain

stationary. The Wolf-Villain (WV) model implies that the particle will go to the site with the

strongest binding to the surface [113], whereas the Das Sarma-Tamborenea (DT) model says

that the particle will migrate to the closest kink site to increase the number of neighbors [114],

see Fig. 2.7.

Figure 2.7: (a) the DT model and (b) the WV model. The columns of incidence of the particles
are shown by large vertical arrows. Small arrows indicate the path of a particle after it collides
with the surface, and when there are two possible courses of action, one is chosen at random.
Image taken from Ref. [8] with permission from Elsevier Press.

When comparing the relaxation processes of the two models, there are only minor differ-



50 Chapter 2. Surface Growth in Nature

ences. The key feature of surface relaxation in both models is that atoms diffuse to maximize

their number of neighbors. The irreversible sticking after relaxing is similar to how, at low

temperatures, atoms attached to the edge of an island form strong connections with neigh-

boring atoms. There are alternative methods that are more in line with the actual surface

relaxation process occurs during the MBE growth phenomena. For instance, there are mod-

els in which all surface atoms hop around with a probability determined by the Arrhenius

law [156, 157, 158, 159, 160]. Due to the lengthy activation procedure, these models can only

manage short simulation times and small system sizes.

Calculating the scaling exponents determines whether these models obey the linear or non-

linear MBE growth equations. It has been suggested that the Wolf-Villain and related models

do not follow the Family-Viscek scaling relation [161, 86, 162]. Kotrla et al. [163, 164] and

Das Sanna and Ghaisas [165] explored the generalization of the WV model to two dimensions

with local surface diffusion. They found exponents that closely matched those expected by the

non-linear equation.

2.4.4 Directed Percolation Depinning

Using the directed percolation depinning (DPD) model, the depinning problem can be mapped

onto the percolation framework. In the presence of quenched disorder, the link between di-

rected percolation and surface expansion was separately established by two separate stud-

ies [166, 9].

We start with an 𝐿-sided square lattice with periodic boundary conditions (PBCs). Initially,

the surface consists of a horizontal line, which is the first row of the lattice. To include the

quenched disorder in the lattice, we block a portion of the cells on the lattice. The surface

will be halted by the blocked cells, but development can proceed uninterrupted in unblocked

cells. As the first step, we select a cell at random from the surface’s closest neighbors that are

not blocked. The selected cell and its column neighbors then be added to the surface. Next,

a second unblocked cell is selected for addition to the surface, and the previous processes are
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Figure 2.8: The DPD model [9] for surface growth without overhangs. The blue sites represent
a system that expands in a lattice with quenched disorder (red sites).

repeated [6], see Fig. 2.8.

The model’s design forbids overhangs. If the fraction of blocked cells is less than a critical

threshold, 𝑃c, then the surface continues to spread unobstructed; if it is greater than 𝑃c, then the

surface is pinned by the blocked cells. The roughness exponent, 𝛼, for this model is reported

to be 𝛼 = 0.63, which is the same as the roughness exponent of dipping a paper in suspensions

of ink or coffee [9].
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Numerical Methods

In this chapter, we will explore CellSim3D, an off-lattice growth model and open source pack-

age designed to model massive systems on a single [10] and multiple Graphics Processing Units

(GPUs). The CellSim3D is a coarse-grained molecular dynamics model of celluar dynamics.

Molecular dynamics (MD) algorithm is applicable to the study of everything from atoms to col-

loid particles that interact with one another via a potential [167, 168, 169, 170, 171, 172, 173].

A force field is a functional form and set of parameters used to express the potential energy of

a system of particles. There are various types of force fields, including all-atom and coarse-

grained [174, 175]. All-atom force fields contain parameters and interactions at the atomic

level, whereas coarse-grained force fields are derived by integrating out the interactions at

shorter time scales and smaller length scales, and replacing them with a coarse grained de-

scription of the system [176, 177, 178]. For instance, viscoelasticity of the cell membrane on a

small length scale can be attributed to the biochemical interactions between the phospholipids

that make up the cell membrane and the biochemical interactions between the actin filaments

and myosin motors in the actomyosin cortex. At the scale of cell size, a coarse-grained force

field integrates out those biochemical interactions and describes the membrane as a viscoelastic

object.

52
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3.1 CellSim3D Assumptions

We are interested in studying mechanical behavior and dynamics of cell tissues that are affected

by the mechanical properties of their constituent cells, such as how cells grow and interact with

their environment [18, 179, 180]. This implies that the model should include an approximation

of parameters such as the mechanical properties of cells and substrates [181, 182]. To be accu-

rate, the model must have variables that indicate the degree of interactions between cells and

their environments, such as neighboring cells, the extracellular matrix (ECM), and the liquid

medium. It is also necessary to consider cell development and division as well as their effects

on the cell’s environment [179]. Even if the stimulus is not mechanical, an approximation of

the cell’s mechanical responses must be made. When simulating the mechanical cell, one must

take into account a variety of complicated interactions.

We assume that each cell type has a unique set of parameters that characterize it. Cell’s

mechanical properties are not always the same in every direction. There is a wide range in the

density of cell adhesion molecules (CAMs) within a cell membrane [183]. For our model, we

suppose that they are isotropic. In actual cells, mechanical parameters such as stiffness [184]

and adhesion strength [185] can vary. However, here, we assume that they are uniform.

Cells can communicate over long and short distances. Hormones and synapses are two

forms of long-distance communication. They are not included in the interaction forces in Cell-

Sim3D. In our models, intercellular communication is limited to short-range communication

via mechanical contact. Cells also interact with the ECM [186, 187, 188]. Many different

types of proteins form the ECM, which has a significant impact on cell behavior [2]. We do

not model the ECM explicitly; instead, we approximate it as a fluid.

Cell surfaces can first be viewed as elastic substances. The actomyosin cortex and the

lipid bilayer are the two major components. Since the acin filaments can flow past each other,

the membrane can be considered a viscous material [189]. We consider the membrane as

viscoelastic so that it can mimic the membrane’s ability to be both stiff and flexible.

Cell division may not be possible without strong sphericity in the parent cells [190, 191,
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192]. The balance of forces between the cell membrane’s contractility, and the incompressiblity

of the cell’s contents causes a cell to be roughly spherical when submerged in liquid [32, 193].

We assume that cells divide symmetrically through their centers of mass and asymmetrically

by placing the division plane off-center.

Finally, undesirable environmental conditions, lack of nutrients, or a signal from the organ-

ism in which they live can all cause cells to die [62, 194, 195]. In the apoptosis process, the cell

loses its internal pressure and shrinks, the cytoplasm becomes denser, and the organelles be-

come more densely packed [196]. Apoptosis of cells is modelled as a Poisson process. During

apoptosis, the growth rate changes from positive to negative, and cells begin to shrink before

being removed when their volume falls below a predetermined threshold.

3.2 Force Field And Cell Structure

The force field is an approximation of the physical interactions that occur between the particles

on the time and length scales of the system. The evolution and dynamics of cell tissue are

approximated by the classical mechanics framework of mechanical forces, with respect to time

and length scales determined by the average cell size and division cycle times.

In the CellSim3D model, we concentrate on the cellular components responsible for the

cells’ mechanical properties to construct a force field. These characteristics include rigidity,

pressure, cell adhesion, and interaction with its environment. Exterior, interior, and environ-

ment form the bulk of a cell. A cell’s internal structure consists of organelles and cytoplasm.

The cell boundary is roughly defined by the actomyosin cortex, the cell membrane, and the cell

wall. The ECM is a wide range of three-dimensional scaffolding on which cells can be located.

In this section, we will discuss the CellSim3D force field.
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3.2.1 Cell Shape And Boundary

In the CellSim3D model, the cell boundary is considered a single object with underlying me-

chanical properties such as stiffness and viscosity. The integrated structure of the cellular

boundary will hereafter be referred to as the cell membrane.

Due to the diverse sizes and shapes of cells, we approximate their structure by using the

cell’s shape as input. To keep things simple, we utilize a well-known geometry that is simple

to implement into the program. To begin, we suppose that the cells’ surfaces are spherical

while they are in mechanical equilibrium. Cell surface nodes are shown in Fig. 3.1, along with

their connections. To simulate cells with a relatively homogeneous actomyosin cortex, the

distance between the nearest neighbor nodes should be nearly equal. A large number of nodes

is necessary to adequately resolve the spherical shape of the cell, despite the fact that a small

number of nodes is advantageous for accelerating simulation time.

Figure 3.1: In our model, we suppose that the cell is a sphere and that its mechanical properties
are comparable to those of a viscoelastic sheet represented by a network of connected balls.
Models are constructed using the C180 molecule’s shape and topology, as well as the positions
of its carbon atoms at equilibrium. The nodes that are closer to the viewer are shown in a larger
size than those that are farther away.

The fullerene C180 geometry satisfies the above requirements. It has three times as many
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carbon atoms as its more well-known sibling, the C60 fullerene. Its geometry can be found in

various sources [197, 198]. Carbon atoms are the nodes in our cells, and the force field models

the interactions between these nodes. There are 180 nodes in the mesh on the surface of the

cell, which gives sufficient resolution while maintaining reasonable performance. The surface

of the fullerene is uniformly covered by these nodes organized in hexagons and pentagons by

the Euler rule, and all of the bonded nodes have almost the same equilibrium bond length. At

mechanical equilibrium, the fullerene is around 95 percent spherical. To determine how similar

an object’s form is to that of a sphere, the sphericity, 𝜓, is defined as a function of volume 𝑉

and surface area 𝐴 [199]

𝜓 =
𝜋

1
3 (6V) 2

3

A
. (3.1)

3.2.2 Force Field

Each node on the cell is subjected to forces generated by both intercellular and intracellular

interactions. Intracellular forces are represented by simple, damped Hookean springs that stand

in for the cell membrane and an internal pressure that drives the cell growth process. We begin

by giving a description of intracellular forces.

The damped harmonic oscillator force, FB, between a node 𝑖 and its bonded neighbors 𝑗 on

a cell’s membrane is given as

FB
𝑖 =

3∑︁
𝑗=1

[𝑘B
𝑖 𝑗 b̂𝑖 𝑗 (𝑅𝑖 𝑗 − 𝑅0

𝑖 𝑗 ) − 𝛾intv𝑖 𝑗 ], (3.2)

where 𝑅0
𝑖 𝑗

is the equilibrium bond length between nodes 𝑖 and 𝑗 , v𝑖 𝑗 is the relative velocity

between nodes 𝑖 and 𝑗 , and b̂𝑖 𝑗 is a vector from node 𝑖 to 𝑗 . The parameter 𝛾int is the coefficient

of friction that dampens the oscillations of the bonds, and the bonding spring constant, 𝑘B
𝑖 𝑗

, is

constant throughout all bonds. The angle force, F\ , is a harmonic force exerted on three nodes,

𝑖, 𝑗 , and 𝑘 which oppose the deformation of the angle between these three nodes and maintains
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cell curvature. It is defined as

F\𝑖 =
1
2

∑︁
𝑗

∑︁
𝑘≠𝑖

− 𝑘\𝑖 𝑗 𝑘 ∇x𝑖 (\𝑖 𝑗 𝑘 − \0
𝑖 𝑗 𝑘 )

2, (3.3)

where \0
𝑖 𝑗 𝑘

is the equilibrium angle between three nodes 𝑖, 𝑗 , and 𝑘 , and the angle spring

constant, 𝑘\
𝑖 𝑗 𝑘

, considered to be constant over the cell’s surface in our model. The gradient,

∇x𝑖, is taken with respect to the position of the node 𝑖. We consider it constant throughout all

bonds. Figure 3.2 shows the first neighbors 𝑗 (three) and second neighbors 𝑘 (six) for node 𝑖

on the surface of a cell.

Figure 3.2: The intracellular forces acting on node 𝑖 are dependent on the node’s first and
second neighbors. This node’s three initial neighbors, 𝑗 , will give the bond forces, while each
initial neighbor’s two additional neighbors, 𝑘 , will offer the angle forces. For convenience,
only one of the first and second neighbors is labeled.

To simulate cell development and division, we must include a growth force in the force

field. This is done via a pressure force. This pressure results from the incompressibility and

tonicity of the cytoplasm’s physical and chemical properties. This hydrostatic pressure caused
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by differences in osmolyte concentrations between a cell’s cytoplasm and its outside affects the

shape and form of the cell [193, 200, 201, 202, 190]. FP is the growth force resulting from

intracellular osmotic pressure. It is defined as

FP
𝑖 = (𝑃𝑆) n̂𝑖, (3.4)

where 𝑃 is the force due to pressure and 𝑆 is the unit area element on the surface. The nor-

malized vector, n̂, defines a family of planes parallel to the surface tangent of the sphere at the

location of 𝑖, and it defines the direction of the pressure force. Since cells are approximately

spherical, we define the normalized vector, n̂, as the vector pointing from the cell’s center of

mass to the node on the cell surface, r̂CoM. This assumption regarding the direction of the nor-

malized vector will be beneficial when cells deform into irregular shapes and the growth force

can makes their shapes even more irregular.

The initial cell pressure is set at (𝑃𝑆)0 and it increases by the growth rate, 𝛥(𝑃𝑆), to the

maximum value of (𝑃𝑆)∞. The increase in pressure results in an increase in the cell volume up

to the threshold volume 𝑉div at which cells divide.

Intercellular interactions include adhesion, repulsion, friction between cells, and friction

between cells and the extracellular environment. Due to the variety of CAMs, accurate cell-

cell contact is difficult to recreate. We assume, based on this mechanical cell approximation,

that the individual contacts of multiple CAMs may be averaged to provide a uniform interaction

on the cell surface. These mechanical communications between cells are short-ranged. When

two cell membranes come into contact, the adhesive component holds them together, while the

repulsive part keeps them apart by repelling them. We consider FR and FA as the repulsive and

attractive forces between nodes in different cells, respectively. Figure 3.3 shows two nodes 𝑖

and 𝑗 on the surface of the cells 𝑚 and 𝑛 in the range of the attraction and repulsion interaction.

Harmonic potentials with variable spring constants and cutoffs are used to approximate these



3.2. Force Field And Cell Structure 59

Figure 3.3: The position of two cells (𝑚 and 𝑛) that are close enough to activate intercellular
forces. The attracting and repulsive forces will be parallel to 𝑟𝑖 𝑗 and between the two nodes 𝑖
and 𝑗 . In addition, they will suffer a frictional force tangent to the relative velocity v𝑖 𝑗 = v𝑖−v 𝑗 .

terms as follows:

FA
𝑖,𝑚 =

∑︁
𝑛

∑︁
𝑗


kA (r𝑖 𝑗 ,𝑛 − 𝑅A

0 )r̂𝑖 𝑗 ,𝑛 if 𝑟𝑖 𝑗 ,𝑛 < 𝑅A
0 ;

0 if 𝑟𝑖 𝑗 ,𝑛 ≥ 𝑅A
0 ,

(3.5)

and

FR
𝑖,𝑚 =

∑︁
𝑛

∑︁
𝑗


−kR (𝑟𝑖 𝑗 ,𝑛 − 𝑅R

0 )r̂𝑖 𝑗 ,𝑛 if 𝑟𝑖 𝑗 ,𝑛 < 𝑅R
0 ;

0 if 𝑟𝑖 𝑗 ,𝑛 ≥ 𝑅R
0 ,

(3.6)

where kA and kR are the attraction and repulsion spring constants, and 𝑅A
0 and 𝑅R

0 are the

attraction and repulsion equilibrium bond lengths and cutoffs, respectively.

The mechanical characteristics of organs are determined by the combined mechanical

properties of their environment and cells. The ECM is composed of several protein-based

molecules, such as collagen, elastin, fibronectin, and laminins [203], which form a

three-dimensional scaffolding into which cells can adhere.

Biochemical and biomechanical properties of the ECM play crucial roles in cell migration.
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The ECM surrounding the cells has a dynamic structure and can be altered by cells stimulus to

better suit their needs [204, 205, 206]. There is evidence that cells prefer some types of ECM

over others and will migrate to those regions where the ECM is more readily available [203].

Instead of directly modeling the ECM, we approximate it as a fluid.

FF is the friction term separated into viscous drag due to cell-extracellular matrix interac-

tions and intermembrane friction, which is proportional to the relative velocity tangential to the

cell surface. Intermembrane friction force is defined as:

FF,e
𝑖,𝑚

=
∑︁
𝑛

∑︁
𝑗


−𝛾ext v𝜏𝑚

𝑖 𝑗
if 𝑟𝑖 𝑗 ,𝑛 < 𝑅A

0 ;

0 if 𝑟𝑖 𝑗 ,𝑛 ≥ 𝑅A
0 ,

(3.7)

where 𝛾ext is the intermembrane friction coefficient, and v𝜏𝑚
𝑖 𝑗

is the relative velocity tangential

component to the surface, see Fig. 3.3. The second friction force term is the viscous drag due

to medium. It is defined as

FF,m
i = −𝛾m vi, (3.8)

where 𝛾m is the drag coefficient, and v𝑖 is the velocity of the node 𝑖. Finally, [ is a Gaussian

white noise given by ⟨[(𝑥, 𝑡)⟩ = 0 and ⟨[(𝑠, 𝑥)[(𝑡, 𝑦)⟩ = 2𝐷𝛿(𝑠 − 𝑡)𝛿(𝑥 − 𝑦). Taking into

account all the forces given above, we describe the force field operating on node 𝑖 as

F = 𝑚r = FB + F\ + FP + FR + FA + FF + [. (3.9)

3.3 Cell Division

We need to simplify the cell division process since the real process of cell division, cytoki-

nesis [207, 208], cannot be approximated accurately and involves processes occurring at all

scales, from the atomic to the cellular size. We consider the cell cycle loop in its simplest form.

During the first phase of the cell cycle, the growth force causes the cell to expand until it is

ready to divide.
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The cell is prepared for division after it has reached a large enough size, which is usually

defined as having doubled in volume. The parent cell must also be sufficiently spherical to

allow for division. Measurements of the morphologies of animal cells right before dividing

have shown this [190, 191, 192, 207].

The cell division plane’s orientation and position are significant geometric properties [209,

210, 211]. The direction and position of the division plane and the manner in which it is chosen

are the distinguishing characteristics of cells that differentiate into distinct cell types [212, 213,

208]. In symmetric division, the plane of cell division passes through the cell’s center of mass,

resulting in the formation of two identical daughter cells. By placing the division plane off-

center, cells may divide into two distinct types, resulting in asymmetric division. For instance,

a stem cell can divide into another cell, such as a heart cell, and then the heart cell can continue

to produce further heart cells.

There are a variety of alternative rules that may be used to identify the direction of the

division plane. For example, Hertwig’s rule states that the division plane of an ellipsoidal

cell is perpendicular to its longest axis and passes through its center of mass [214], whereas

according to Errera’s rule, the division plane must contain the shortest path through the cell’s

center of mass [215]. Additionally, the division plane can be randomly oriented to develop

spherical tissue.

In CellSim3D, we choose a random orientation for the division plane by randomly selecting

a unit vector to define the normal vector to the division plane, and then divide the cell into two

equal halves [10, 216]. The position of the cell division plane can either pass through the cell’s

center of mass or another randomly chosen point within the cell, which will cause asymmetric

cell division.

For the cell division, we first copy the nodes of the parent cell in the same location to have

two sets of 180 nodes for each daughter cell, and then transfer the nodes of one daughter cell,

half the repulsion range, 0.5𝑅0, to the right of the division plane and the nodes of the other

daughter cell, half the repulsion range, 0.5𝑅0, to the left of the division plane. In addition,
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we define two new planes, PR and PL, which are parallel to the division plane and half the

repulsion range to the right and left of the division plane, respectively. Finally, for the daughter

cell moved to the right of the division plane, we project the nodes on the left of the PR on the

PR, and for the daughter cell moved to the left of the division plane, we project the nodes on

the right of the PL on the PL. The process is shown in in Fig. 3.4.

CellSim3D can simulate two dimensional tissues as well. In an epithelium, a quasi two-

dimensional sheet of cellular tissue, cells are coordinated in a two dimensional plane. These

tissues are essential for the proper functioning of several organs, including the retina, epi-

dermis, and endothelia. We confine the systems between two plates, where the bottom plate

mimics the base of the tissue, and the top plate serves as a barrier to prevent excessive buckling

of epithelial cells. In order to generate epithelium, the normal vector to the division plane, s, is

a random unit vector in the plane specified by the the normal vector to the epithelial plane in

space[10, 216].

Figure 3.4: The nodes of a cell larger than the threshold division volume are copied (black and
red). The cell is divided in half by a randomly oriented division line (green). The nodes of the
two new cells are projected so that the nodes in contact are placed along the division plane.
Image taken from Ref. [10] with permission from Elsevier Press.

3.4 Cell Apoptosis

In CellSim3D, we attempt to represent cell apoptosis, which involves cell shrinkage and phago-

cytosis of apoptotic material. The breakdown of a dying cell into smaller pieces is a crucial

biological process during apoptosis. Three known stages of apoptotic cell disintegration are
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membrane blebbing, formation of membrane protrusions, and cell fragmentation. In membrane

blebbing, small amounts of blebs occur on the cell surface; as the apoptosis process progresses,

the blebs get bigger and help break organelles like the nucleus [217, 218, 219]. Following apop-

totic membrane blebbing, cells experience additional morphological alterations. Microtubule

spikes, apoptopodia, and beaded apoptopodia are among the thin apoptotic membrane protru-

sions produced by cells during membrane protrusion development [35]. For example, it has

been postulated that the development of microtubule spikes facilitates the separation of mem-

brane blebs and the distribution of nuclear contents into membrane blebs [35]. Finally, cells

split into many vesicles known as apoptotic bodies, which undergo phagocytosis, as the last

step in the process of apoptotic cell disintegration. Figure 3.5 depicts each of these processes.

Figure 3.5: Before the apoptotic cell is removed, it undergoes disassembly process, which
includes membrane blebbing, membrane protrusion formation, and cell fragmentation. Image
taken from Ref. [11], CC license.

In CellSim3D, the cells’ apoptosis process is modeled as Poisson process, where the aver-

age interval between the events is constant, but each event occurs at a random time, regard-

less of what occurred previously. After a cell is selected to undergo apoptosis, its growth

rate changes from positive to negative. Consequently, cells lose internal pressure and begin

to shrink. Finally, the cell is removed when its volume falls below a predetermined volume

threshold. User-defined parameters include the Poisson rate parameter, _, the negative growth
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rate, and the volume threshold.

3.5 The CellSim3D Implementation

The source code for CellSim3D is written in standard C/C++ and available at

https://github.com/SoftSimu/CellSim3D under the GPLv2 [220]. It is acceler-

ated with CUDA [221] and parallelized with the Message Passing Interface (MPI) to run on

multiple NVIDIA GPUs. The majority of computations are performed using only CUDA,

with only a small amount of C/C++ host code controlling the execution and handling data

input and output. The present multi-GPUs version allows users to simulate millions of cells

with high efficiency. CellSim3D simulator was tested on a single GPU, including the GTX

760, GTX 780, GTX 980, GTX 1080Ti, GTX Titan Xp, and GTX 960M [10, 216], and also

on multi-GPUs on super computing clusters such as ComputeCanada, Canada’s national

high-performance compute (HPC) system, and the Finnish Grid and Cloud Infrastructure

(FGCI). In order to minimize the latency of communication between the host RAM (Random

Access Memory) and GPU RAM, we performed computations on the GPU as much as

possible.

In this section, we describe the implementation of the algorithms, such as the integrator,

boundary conditions, multi-GPUs algorithm, and neighbor list algorithm. Finally, the Cell-

Sim3D simulation units are discussed.

3.5.1 The Integrator

To update the positions and the velocities of the systems over time, the velocity-Verlet integra-

tor [222] is commonly employed. This does not work in CellSim3D. The friction force depends

on the relative velocities between the cells and the cells velocity in the medium. We use the

Dissipative Particle Dynamics approach [223, 224].

Since this process is computationally expensive, methods that approximate the velocity

https://github.com/SoftSimu/CellSim3D
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Table 3.1: This table represents the DPD-VV integration algorithm implemented in Cell-
Sim3D [10, 14], where FC represents the conservative forces, FD represents the dissipative
forces, and FR represents the random forces. x𝑖 and v𝑖 are the positions and velocities of parti-
cle 𝑖 whereas 𝑚𝑖 is the particle’s mass and 𝛥𝑡 is the time step.

DPD-VV integration algorithm

1. v𝑖 ← v𝑖 + 1
2𝑚𝑖

(
FC
𝑖
𝛥𝑡 + FD

𝑖
𝛥𝑡 + FR

𝑖

√
𝛥𝑡

)
2. x𝑖 ← x𝑖 + v𝑖𝛥𝑡

3. Calculate FC
𝑖
{x}, FD

𝑖
{x, v}, FR

𝑖
{x}

4. v0
𝑖
← v𝑖 + 1

2𝑚𝑖

(
FC
𝑖
𝛥𝑡 + FR

𝑖

√
𝛥𝑡

)
5. v𝑖 ← v0

𝑖
+ 1

2𝑚𝑖
FD
𝑖
𝛥𝑡

6. Calculate FR
𝑖
{x, v}

dependence of dissipative forces have been developed [223, 225, 226, 227, 224, 228, 229, 230].

These methods allow for the integration to be completed with an acceptable level of computing

efficiency. It is well-known that the dissipative particle dynamics velocity verlet (DPD-VV)

integrator [224, 231] works well for systems where the force field depends on the particles

velocity, and when friction coefficients and random noise components are reduced to zero, this

integrator reverts to the standard velocity-Verlet algorithm.

The DPD force field contains the conservative forces, FC, the dissipative forces, FD, and

the random forces, FR. The conservative forces, FC, are non-frictional forces, namely intra-

cellular and intercellular interactions. In CellSim3D, the conservative forces are the bonding

forces, FB, excluding the bond damping term, the angle forces, F\ , the attractive and repulsive

forces FA and FR between nodes on different cells, and the pressure force, FP. The dissipative

forces, FD, are all the fictional forces. These are the bond damping parts of the bonded force,

intermembrane friction, FF,e, and medium friction, FF,m. Lastly, the random force, FR, is con-



66 Chapter 3. NumericalMethods

served Gaussian white noise, [ ≡ [(x, 𝑡), whose origin is the thermal motion of the particles in

the medium.

In DPD, a thermostat is implemented in terms of pairwise random and dissipative forces so

that the system’s overall momentum is conserved. Hence, it gives a better description of hy-

drodynamic modes that are significant in the physical approach to the equilibrium of a system.

In CellSim3D, the random force is not considered a pairwise random force, hence we do not

construct a thermostat to secure that the system’s total momentum conserved. The momentum

of biological systems is continuously changing as energy is transferred to the substrate and new

cells are added to the system. The algorithm is listed in Table 3.1.

3.5.2 Boundary Conditions

There are three different simulation boundary conditions in CellSim3D. They are simulation

box with a rigid wall, periodic boundary conditions (PBCs), and Less-Edward boundary con-

ditions (LEbc). In a simulation box with rigid walls, the repulsive harmonic force between the

wall and a particle close to the wall is determined in each direction as

FW
𝑖 = kW ( |𝛿x𝑖 | − 𝜖) 𝛿x𝑖, (3.10)

where 𝜖 is the threshold distance for particles to feel the wall effect, and 𝛿x𝑖 is the particle

distance to the wall in the 𝑥-direction. We have the same formula for the 𝑦- and 𝑧-directions

with the same 𝜖 . Since the behavior of a finite-size system can be different from an infinite-

size system, sometimes it is difficult to produce results that correctly mimic the behavior of

an infinite system. Using PBCs, it is possible to create a system that is bounded but free of

physical walls. In simulations with PBCs, two important factors must be considered. First,

atoms that leave the simulation region by one of the enclosing faces immediately return via

the other face. Second, close-to-boundary interactions are possible between atoms in a nearby

copy of the system and atoms in the original system [177]. If, for instance, the 𝑥 coordinate is
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set to be between 0 and 𝐿𝑥 , where 𝐿𝑥 is the domain size in the 𝑥 direction, we have:

• if 𝑟𝑥 > 𝐿𝑥 or 𝑟𝑥 < 0, replace it by 𝑟𝑥 − ⌊ 𝑟𝑥𝐿𝑥 ⌋𝐿𝑥 ,

where ⌊𝑎⌋ is the greatest integer less than or equal to 𝑎. In determining the components of the

distance between pairs of atoms, the effect of periodicity on the interaction computation is:

• if 𝑟𝑖 𝑗 ,𝑥 ≥ 𝐿𝑥/2 or 𝑟𝑖 𝑗 ,𝑥 < −𝐿𝑥/2, replace it by 𝑟𝑖 𝑗 ,𝑥 − ⌊
𝑟𝑖 𝑗 ,𝑥
𝐿𝑥
⌉𝐿𝑥 ,

Figure 3.6: The Lees-Edwards boundary conditions are shown in the figure. The simulation
box is located in the center of the cell at the center. At the same time, the upper and lower
replicas are travelling in the opposite directions with speed ¤𝛾𝐿.

where ⌊𝑎⌉ is the nearest integer to 𝑎. The periodic boundary conditions for molecular dynam-

ics were extended by Lees and Edwards in order to simulate a bulk system in a simple shear

flow [232]. They implement this boundary condition for a system of particles with positions

(𝑟𝑥 , 𝑟𝑦, 𝑟𝑧) and velocities (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) within a three-dimensional box (𝐿𝑥 , 𝐿𝑦, 𝐿𝑧) with a uni-

form shear velocity profile U = ¤𝛾𝑦e𝑥 , where e𝑥 is the unity vector in the 𝑥-direction. In LEbc,

particles leaving the simulation box in directions orthogonal to the velocity gradient, e𝑦, are
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reinserted with their 𝑥-velocity enhanced by the shear velocity 𝛥u = ¤𝛾𝐿𝑦e𝑥 and their positions

altered by adding the time-dependent offset 𝑑𝑥 = 𝑡𝛥𝑢𝑥 to their periodic image 𝑥-coordinate,

where 𝑡 is the duration of time that has passed from the beginning of time, Fig. 3.6. If the par-

ticles exit the box in the opposite direction, − e𝑦, their periodic images are displaced by − 𝑑𝑥 ,

and their 𝑥-velocities are reduced by the shear velocity, 𝛥u. In LEbc, the updated positions 𝑟′

and velocities 𝑣′ of the particles are described as [233]

𝑟′𝑥 =


(𝑟𝑥 mod 𝐿𝑥) + 𝑑𝑥 if 𝑟𝑦 ≥ 𝐿𝑦;

(𝑟𝑥 mod 𝐿𝑥) if 0 ≤ 𝑟𝑦 < 𝐿𝑦;

(𝑟𝑥 mod 𝐿𝑥) − 𝑑𝑥 if 𝑟𝑦 < 0.

(3.11)

𝑟′𝑦 = (𝑟𝑦 mod 𝐿𝑦). (3.12)

𝑟′𝑧 = (𝑟𝑧 mod 𝐿𝑧). (3.13)

v′𝑥 =


𝑣𝑥 + ¤𝛾𝐿𝑦 if 𝑟𝑦 ≥ 𝐿𝑦;

𝑣𝑥 if 0 ≤ 𝑟𝑦 < 𝐿𝑦;

𝑣𝑥 − ¤𝛾𝐿𝑦 if 𝑟𝑦 < 0.

(3.14)

v′y = vy. (3.15)

v′z = vz. (3.16)

3.5.3 Multi-GPUs Implementation

In CellSim3D, spatial domain decomposition and processor communication follow the same

method as in Ref. [12]. Spatial decomposition (SD) of the workload refers to partitioning

the simulation box into small three-dimensional domains. We consider these domains to be

a three-dimensional rectangular parallelepipeds. To reduce communication, it is preferable to

set the number of processors in each dimension so that each processor’s domain is as cubic as

possible. In the limit of a large number of cells and particles, the communication cost of the
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SD algorithm will be proportional to the surface area of the domains [12, 234, 235].

At each time step, each GPU calculates the forces and updates the positions and velocities

of all cells within its domain. To compute the short-ranged pair forces between the cells, bound-

ary cells, called ghost cells, are communicated between the neighboring processors. In every

step, the positions, velocities, etc. of ghost particles are updated and communicated. There

are three steps in the communication process: particle migration, ghost particle exchange, and

ghost particle update [235].

As the cells pass across the domain boundaries, they are reassigned to new a processor,

called particle migration. All attributes of migrated cells, including positions, velocities, coef-

ficients of friction, stiffnesses, etc., will be sent to the new processor. By moving data in the

array, the cells that have already left the domain are eliminated, and new cells are added to the

end of the array. This rearranging of the GPU arrays for positions, velocities, etc., as well as

for data communication between the processors are costly procedures. However, the particle

migration subroutine is not executed at each time step, but rather when the neighbor list needs

to be updated.

Following particle migration, the ghost cells are exchanged. A ghost cell can concurrently

be a neighbor in up to three domains: a ’face’ neighbor, an ’edge’ neighbor, and a ’corner’

neighbor. The ghost particle lists are generated to restore ghost particle indices that are trans-

ferred in each direction of communication. These lists stay valid until the next neighbor list

update, which occurs when a dangerous cell is detected and the neighbor list is no longer valid.

Therefore, instead of scanning the full cell’s position at every time step, we only need to up-

date the ghost particle’s position and velocity arrays and communicate them to the neighboring

processors according to the ghost particle lists [12, 234, 235].

There are six communication calls between the neighboring domains, see Ref. [12]. These

are the minimum necessary communications in the three spatial dimensions for the exchange

of information. To maximize communication bandwidth utilization, the method combines sev-

eral smaller messages into fewer larger messages [12]. Figure 3.7 depicts the communication
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scheme we deploy to gather required data from the neighboring GPU domains.

Figure 3.7: In the spatial decomposition algorithm, the mechanism by which a processor ob-
tains adjacent atom positions. All atom positions in adjacent boxes in the (a) east/west (b)
north/south (c) up/down directions can be communicated in six data exchanges. Adapted from
Figure 10 in Ref. [12] with permission from Elsevier Press.

1. Each processor in the east/west dimension communicates with its neighbors. First, pro-

cessors send a message to the processors in the westward direction and receive a message

from the eastward direction. For example, The cells positions that processor two owns

and are within a distance cutoff of processor one are put into a message buffer and send

to processor one. The process is then reversed, with each processor sending to the east

and receiving from the west. It continues until each processor knows the exact position

of every atom within the cutoff length of its domain.

2. Now, the same process is done in the north/south dimension. Messages sent to a neigh-

boring processor now contain not just the cells the processor owns, but also any cell

positions received from the adjacent processor in the east/west communication.

3. The technique is repeated in the up/down direction in the final stage. Now, cells located
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in the domain, as well as those received in the east/west and north/south communications,

are communicated between processors.

This technique has a number of features that minimize the overall cost of communication

in our algorithm. First, the required cells positions are collected from all the 26 surrounding

domains in just 6 data exchanges. Another benefit is the reduction of data transfers. Each

processor only gathers cells positions within a certain distance of its own domain. Data can

be stored directly into the processor’s data structure without rearranging data except for the

buffered messages that must be communicated [12].

CellSim3D can take advantage of the CUDA-aware MPI libraries such as the OpenMPI

library. The CUDA-aware MPI libraries provide direct GPU-to-GPU communication by utiliz-

ing NVIDIA GPUDirec technology, which includes both intra-node Peer-to-Peer transfers and

inter-node Remote Data Memory Access (RDMA) [236].

3.5.4 Neighbor List Method

Setting a cutoff radius and implementing a neighbor list is the way to manage the exponential

growth in pairwise force calculations. To calculate the overall force on a particle, each particle

that falls outside the cutoff radius is ignored. The selection of a cutoff radius is not an easy task.

The cutoff radius must neither be so large that particles interact with all other particles, nor so

small that particles close enough to the particle are ignored. After selecting an appropriate

cutoff radius, the neighbor list is populated by iteratively scanning all particle positions and

identifying acceptable neighbors [234].

The updating of the neighbor list is an O(𝑛2) problem, although it is not necessary to update

the list at each step. Numerous approaches exist for figuring out when to perform a neighbor

list update. One technique is to create a ’skin depth’ outside of the cutoff radius. Every time a

particle traverses the skin depth, the neighbor list is updated.

We modified the neighbor list algorithm as follows in order to extend the time between

neighbor list updates. When the neighbor list is updated, the positions of the particles are
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stored in arrays in addition to position arrays. When a particle moves more than a buffer

distance from its last recorded position, we refer to it as a ’dangerous particle’. The neighbor

list must be updated whenever a dangerous particle invalidates the last neighbor list created.

We therefore provide a subroutine that checks for the presence of the dangerous particles and

monitors whether or not any of them invalidate the neighbor list. If the subroutine detects a

dangerous particle that invalidates the neighbor list, we update the neighbor list during that

simulation step [234].

Making the neighbor list is a time-consuming operation. However, having a small number

of dangerous particles drastically reduces the computational effort required to construct the

neighbor list. This strategy can significantly lengthen the time expected to update the neighbor

list and improve simulator performance by reducing the number of neighbor list updates.

3.5.5 Simulation Units

The length scale is based on the canonical biological model of human cells, the HeLa cell [237].

HeLa cell volume is 𝑉 ≈ 103`m3 [238, 239]. By considering the volume of the Hela as the

unit of the volume in the simulation, the unit of length is [𝐿] ≈ 10`m.

According to Stewart et al. [193], cells’ interior pressures and Young’s moduli of whole

mitotic cells have been tested experimentally, and determined to be roughly 𝑃 = 10−8𝑁 [𝐿]−2

and 𝐸 = 1 × 10−9 nN`m−2, respectively. Using these results as a proxy for volumetric growth,

the pressure force increase rate is chosen to be 𝛥(𝑃𝑆) ≈ 1 − 10 × 10−4 [𝐹] [𝐿]−2. The area

of each cell in CellSim3D is approximately 5[𝐿]2. Hence, the total force on the membrane

due to the pressure is about 5 × 10−8N . There are more forces on the cells, and the pressure

can also increase, thus, the unit of force is set to [𝐹] = 1 nN. The mass is determined by

comparing it to the mass of a HeLa cell, which is roughly 10−12kg [240]. Each cell is made of

180 nodes. Hence setting [𝑀] ≈ 10−12kg, the average mass of each node is ≈ 0.01[𝑀]. The

spring constant of the bonding springs can be found through 𝑘B = 𝐸
𝐴0
𝑅0
≈ 103 [𝐹] [𝐿]−1, where

according to a mechanical cell’s membrane, 𝐴0 is its cross-sectional area and 𝑅0 ≈ 0.1[𝐿] is
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its equilibrium bond length.

In order to determine the possible values of adhesion and repulsion spring constants, we

assume that the two spring constants may be stated as 𝑘A = 𝐴 𝑘B and 𝑘R = 𝑅 𝑘B, where 𝑅

and 𝐴 are proportionality constants. Internal pressure exerts an outward force on the cell’s

surface, and as argued in Ref. [15], the forces of repulsion should be stronger than the forces

of internal pressure. Hence, we set the repulsive constant proportional to internal pressure

which is 𝑘R = 100 𝑘B. The adhesion spring constant is determined by assuming that cell

membranes have a certain energy density𝑈adh = 2.5× 10−17 𝐽`𝑚−2 ≈ 𝑘A(𝑅A
0 − 𝑅

R
0 )

2, where

𝑅A
0 ≈ 2 𝑅R

0 ≈ 0.2. This results in a scaling value A = 0.5.

The critical damping of the bond is defined as 𝛾c
int ≈ 2

√
𝑚𝑘B ≈ 10. We define the damping

coefficient of the bonded intracellular force well beyond the critical damping, 𝛾int = 100.

The time unit can be adjusted so that a Drosophila wing disc-like epithelial system is pro-

duced in 10 hours, and the time step is set to be 𝛥𝑡 = 10−4 [𝑇]. But, from a few minutes in

fruit flies [241] to seven hours in hamsters [242] and up to 20 hours in humans [242], cells can

have different cell cycle time. Hence, it would be insufficient if all cell types shared a single

time unit. Scaling the simulation time by the average cell division time can solve this issue.

Ref. [216] shows the analysis on measuring the cell division time distribution and its mean.

The cell cytoplasm’s viscosity, which produces membrane drag, is 103 Pa s [243, 240]. We are

able to modify its value as an input to the package.
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Table 3.2: These parameters determine the mechanical properties of each cell. They are usually
adjusted to represent a variety of different cell types. CellSim3D uses the symbol 𝑑𝑎𝑔𝑔𝑒𝑟 to
represent units of 𝛥𝑡 and ∗ units of mean cell division time, which depends on the cell types
and is set to 1.0 in CellSim3D. For the derivation and details, please see Refs. [10, 15]

Parameter Notation Sim. Units SI Units
Nodes per cell 𝑁c 180 -
Node mass m 0.04 40 fg
Bond stiffness 𝑘B 1000 100 nN

`m
Bond damping coefficient 𝛾int 100 0.01 g

s
Minimum pressure (𝑃𝑆)0 50 0.5 nN

`m2

Maximum pressure (𝑃𝑆)∞ 65 0.65 nN
`m2

Pressure growth rate 𝛥(𝑃𝑆) 0.002 2.0 × 10−5 nN
`m2

Attraction stiffness 𝐾A 10-2000 1-200 nN
`m

Attraction range 𝑅A
0 0.3 3 `m

Repulsion stiffness 𝐾R 10 × 105 10 × 104 nN
m

Repulsion range 𝑅A
0 0.2 2 `m

Growth count interval - 1000 †
Inter-membrane friction 𝛾ext 1 10 `g

s
Medium friction 𝛾m 0.4 4 `g

s
Time step 𝛥𝑡 1.0 × 10−4 ∗
Threshold division volume 𝑉div 2.9 2900 `m3



Chapter 4

In silico testing of the universality of

epithelial tissue growth

The contents of this chapter have been published with the following citation: M. Mazarei, J.

Åström, J. Westerholm, and M. Karttunen, In silico testing of the universality of epithelial

tissue growth, Physical Review E, 106, L062402 (2022).

4.1 Introduction

Growth of biological matter, e.g., tumor invasion, depends on complex processes such as the

mechanism(s) of proliferation, the physical properties of the microenvironment, and cellular

migration that can be dominated either by single cell or collective motion [84]. Numerous

experimental and computational studies have investigated the effects of biochemical regulation

and mechanical factors such as cell-to-cell adhesion and friction, and cell division [244, 245,

246, 247, 76, 13, 87, 248, 88, 89]. To understand how these factors manifest in terms of both

kinetics and morphology, the interfacial growth of a tissue can be characterized by a scaling

analysis. This, in turn, identifies governing equations and hence leading order behavior(s).

75
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Often, the interface width, 𝑤(𝑙, 𝑡), obeys the Family-Vicsek scaling relation [117, 118]

𝑤(𝑙, 𝑡) ∼ 𝑡𝛽𝐹 (𝑙𝑡− 1
𝑧 ), (4.1)

where the exponent 𝑧 describes the scaling relation between the critical time and length scales,

and can be obtained from the scaling relation 𝑧 = 𝛼
𝛽

, where the exponent 𝛼 characterizes the

roughness of the interface. The exponent 𝛽 is obtained through the scaling function 𝐹 (𝑢) =

𝐹 (𝑙𝑡− 1
𝑧 ) which has the following properties: There is a crossover at 𝑢 = 𝑙∗. For 𝑢 ≪ 𝑙∗ the

scaling function increases as a power law, 𝐹 (𝑢) = 𝑢𝛼, where 𝛼 is the roughness exponent.

For 𝑢 ≫ 𝑙∗ the width saturates, and 𝐹 (𝑢) becomes a constant [6]. With these three critical

exponents, 𝛼, 𝛽 and 𝑧, interfacial growth is often classified into different dynamic universality

classes.

The KPZ equation is a stochastic non-linear differential equation for surface growth [249],

𝜕𝑡ℎ(𝑥, 𝑡) = −_ [𝜕𝑥ℎ(𝑥, 𝑡)]2 + a𝜕2
𝑥 ℎ(𝑥, 𝑡) + b (𝑥, 𝑡), (4.2)

where the height (ℎ(𝑥, 𝑡)) depends on position and time, and _, a and 𝐷 are physical constants.

The first term on the RHS reflects growth that occurs locally normal to the interface and renders

the KPZ equation non-linear. The second term smooths the interface by surface tension a, and

the last term, b (𝑥, 𝑡), is Gaussian noise given by ⟨b (𝑥, 𝑡)⟩ = 0 and ⟨b (𝑠, 𝑥)b (𝑡, 𝑦)⟩ = 2𝐷𝛿(𝑠 −

𝑡)𝛿(𝑥 − 𝑦). The KPZ universality class is characterized by the exponents 𝛼KPZ = 1
2 , 𝛽KPZ = 1

3 ,

and 𝑧KPZ= 3
2 [249].

Mathematically, surface tension and lateral growth determine the asymptotic scaling of

the KPZ equation. In some growth processes, however, surface diffusion controls the scaling

behavior, and the growth process is described by the MBE model [250, 251]

𝜕𝑡ℎ(𝑥, 𝑡) = −𝐾𝜕4
𝑥 ℎ(𝑥, 𝑡) + 𝐹 + b (𝑥, 𝑡), (4.3)
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where 𝐾 is the surface diffusion coefficient, 𝐹 is the growth rate, and b (𝑥, 𝑡) is Gaussian white

noise. The exponents for the MBE universality class for a one dimensional interface are 𝛼MBE=

3
2 , 𝛽MBE= 3

8 , and 𝑧MBE=4.0.

Apparent controversy.— Brú et al. studied cellular growth using cells from 15 different

in vitro cell lines and 16 in vivo types of tumor cells obtained from patients [13, 87]. They

determined the growth to belong to the MBE universality class in all cases with exponents

𝛼 = 1.5±0.15, 𝛽 = 0.38±0.07, and 𝑧 = 4.0±0.5 thus suggesting universal growth dynamics

for cells. This conclusion was strongly criticized by Buceta and Galeano [90] who dismissed

universality of tumor growth dynamics stating serious flaws in Brú et al.’s scaling analysis. In

their rebuttal Brú et al. [248] restated their conclusions and wrote ”the characteristics of MBE

dynamics discussed in Brú et al. (2003,1998) have not only been rigorously demonstrated but

have served as the basis for a successful antitumor therapy currently under development.” A

recent study of growth of different brain tumors in vivo using fractal and scaling analysis shows

similarities with some of the results of Brú et al. [252].

In contrast to MBE-like dynamics, Huergo et al. [88, 89, 4] reported KPZ scaling for

both linearly and radially spreading interfaces of HeLa (cervix cancer) and Vero cell colonies.

Galeano et al. studied the development of plant cell species Brassica oleracea and B. rapa

under various growing conditions and obtained 𝛼 = 0.86 ± 0.4, and 𝑧 = 5.0 [253]. Santalla et

al. [254] grew colonies of B. subtilis and E. coli using a high agar concentration regime with

various nutrients and discovered branching interfaces with exponents 𝛽=0.5 and 𝛼=0.75 that

are inconsistent with both MBE and KPZ.

Substrate disorder can also influence growth dynamics. Vicsek et al. [255] studied the

growth of E. coli and B. subtilis colonies and found the roughness exponent 𝛼 = 0.78 ± 0.07

which is inconsistent with both the KPZ and MBE models as well as with the quenched KPZ

(qKPZ) model [6] that includes disorder. It has also been demonstrated that the behavior of bac-

terial colonies in the medium-to-high nutrient concentration regime can be very rich due to the

appearance of quenched disorder in growth patterns [256]. In that context, Huergo et al. also
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examined the 2D growth dynamics of quasilinear Vero cell colony fronts in a methylcellulose-

containing culture medium. Their scaling analysis yielded 𝛼=0.63± 0.04, 𝛽=0.75± 0.05, and

𝑧=0.84 ± 0.05, suggesting qKPZ dynamics [83].

On the computational and theoretical side, Santalla and Ferreira [92] used an off-lattice

Eden model modified to account for nutrient diffusion. Under scarce nutrient supply, they

observed initially a KPZ regime that transitioned via a qKPZ transient to unstable growth.

Block et al. studied the growth of 2D cellular monolayers for a class of cellular automaton

models. Their results suggest KPZ dynamics over a wide range of parameters and different

cell migration dynamics [77] contradicting the MBE dynamics reported by Brú et al. [13].

Another contradiction was reported by Azimzade et al. who developed a tumor growth model

based on the non-linear Fisher-Kolmogorov-Petrovsky-Piskunov equation, a reaction-diffusion

equation, to investigate the impact of the cellular environment and spatial correlations on tumor

invasion [91]. They concluded that kinetic growth models, such as KPZ, cannot characterise

tumor invasion fronts, and that the structure of the tumor interface depends intimately on the

initial conditions [91].

4.2 METHODS

4.2.1 CellSim3D Simulator and Model

A large number of different models has been used to describe cellular growth [257]. Here, we

use the CellSim3D off-lattice growth model and simulator to study epithelial tissue growth [10,

258]. In this model, cells can migrate, deform, divide, and interact with each other and their

environment mechanically via adhesion and friction. Its 2D version has been shown to produce,

e.g., cell-cell force distributions, force dipoles, spontaneous orientation of cells in the direction

of highest stiffness and cellular migration in agreement with experiments [259]. The analysis

below uses averages over 10 independent simulations. In brief, in CellSim3D, epithelial tissues

can be modeled as quasi-2D systems of 3D cells confined into a plane, corresponding to the
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experimental confinement of cells between two plates; the bottom plate models basal tissue

and the top plate prevents excessive buckling. Details of the code, model and parameters are

provided in SI. The code is open source at https://github.com/SoftSimu/CellSim3D.
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Figure 4.1: Interface evolutions of cell colonies starting from a horizontal line and a radially
expanding interface. (a) Line configuration at weak (10) and (b) strong cell-cell adhesion
(2000). (c) Radially expanding interface with at weak (10) and (d) strong adhesion (2000). All
interfaces have overhangs. Scaling analysis was done using overhang-corrected interfaces [6].
For the units, see Table 4.1.
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4.2.2 Interface Scaling

The interface width is defined as the standard deviation of height over a length scale 𝑙 at time 𝑡

as [6]

𝑤(𝑙, 𝑡) =
{

1
𝑁

𝑁∑︁
𝑖=1

[ℎ𝑖 (𝑡) − ⟨ℎ𝑖⟩𝑙]2
} 1

2

𝐿

, (4.4)

where 𝑁 is the number of sites in a contour length of size 𝑙, and 𝐿 is the entire contour length,

which increases with time as 𝐿 = 2𝜋⟨ℎ(𝑡)⟩ for radially expanding fronts and is constant and

equal to the size of the box perpendicular to the growth direction for linear fronts. For radially

expanding fronts, ℎi(𝑡) is the distance from the center of mass to the point 𝑖 of the interface at

time 𝑡, ⟨ℎi⟩𝑙 is the local average of the subsets of arc length 𝑙, and {·}𝐿 is the overall average.

We complement the universality class analysis by an examination of the structure factor,

𝑆(𝑘, 𝑡) = ⟨ℎ̂(𝑘, 𝑡) ℎ̂(−𝑘, 𝑡)⟩, (4.5)

where 𝑘 is the wavenumber, and ℎ̂(𝑘, 𝑡) is the Fourier transform of the interface profile ℎ(𝑥, 𝑡)

[6]. The advantage of this method over the real space is that only long-wavelength modes

contribute to its scaling. Hence, it is less affected by finite-size effects [260, 261]. This method

provides the global roughness exponent 𝛼 and the dynamic exponent 𝑧 via the Family-Vicsek

scaling form for 𝑆(𝑘, 𝑡),

𝑆(𝑘, 𝑡) = 𝑘−(2𝛼+1)𝑠(𝑘𝑡 1
𝑧 ), where (4.6)

𝑠(𝑢 = 𝑘𝑡
1
𝑧 ) =


const for 𝑢 ≫ 1;

𝑢2𝛼+1 for 𝑢 ≪ 1.
(4.7)

At 𝑢 = 1 there is a crossover, for 𝑢≫ 1 the curves measured at different times collapse and for

𝑢≪1 they split.
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4.3 Results

4.3.1 Linear Interfaces

We first consider the growth of linear fronts at two different adhesion strengths, 10 (weak) and

2000 (strong), see Table 4.1 for parameters. The initial configurations had a line of 240 cells,

and the final populations consisted of ≈200,000 cells. Snapshots are shown in Fig. 4.1. As this

figure shows, increasing the cell-cell adhesion changes the morphology of the colony and the

interface. Figure 4.2a shows that the interfaces grow at constant velocities with the growth rate

decreasing with increasing adhesion.

Next, the box counting method was utilized to determine the fractal dimensions (𝑑f) of

the interfaces for both line configurations (triangles) and radially growing (circles) systems.

Figure 4.2b shows that 𝑑f is in the same range for all simulations. In both geometries, however,

𝑑f is slightly higher for the case of strong adhesion. This is consistent with the experiments of

Torres Hoyos et al. [252] who reported smaller 𝑑f for malignant and invasive cancer cells as

compared to the benign and more solid (higher adhesion) tumors.

We investigate the scaling behavior by plotting the width scaling function 𝐹 (𝑢) in Eq. 4.1

and the structure scaling function 𝑠(𝑢) in Eq. 4.6 at three different time points in order to see

if they collapse for given values of 𝛼, 𝛽 and 𝑧. Instead of relying only on a visual inspection,

we calculated the Chi-squared statistics (Eq. 4.19) similar to the concept of the maximum

likelihood estimator for equality of two distributions. Figures 4.3a-d show the scaling results

for line growth both via the width function (Eq. 4.1) and the structure factor (Eq. 4.6). Both

scaling functions suggest KPZ dynamics; using the Family-Vicsek relation for the structure

factor, (Eq. 4.6) Figs. 4.3a,b, and width, Eq. 4.1, the data collapses to a single function using

the KPZ exponents (Fig. 4.3d). The Chi-squared statistics (Eq. 4.19) and goodness-of-fit p-

values indicate better collapse for the KPZ than for the MBE exponents, see Tables 4.2 to 4.5.

Figure 4.5 shows that interface roughness, 𝑤(𝑡), follows a power-law 𝑡𝛽 with 𝛽weak=0.28±0.01

and 𝛽strong=0.25 ± 0.02 for weak and strong adhesion, respectively. Figures 4.6 and 4.7 show
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Figure 4.2: (a) Velocity (⟨𝑣⟩) of the interface determined from the mean colony radius ⟨𝑅⟩ and
the mean interface height ⟨ℎ⟩ vs. time for different cell-cell adhesion strengths. Radially ex-
panding interface: (red circles) at weak (10) and (blue circles) strong adhesion (2, 000). Line
configuration: (green triangles) at weak and (orange triangles) at strong adhesion. (b) The
fractal dimension (𝑑f) determined by plotting box counts vs. box size. For radially expand-
ing interface: (red circles) at weak (10) and (blue circles) strong adhesion (2, 000). For line
configuration: (green triangles) at weak and (orange triangles) strong adhesion. For units, see
Table 4.1.

the local and global roughness exponents. As the figures show, determining the roughness

exponent is questionable especially in the case of weak adhesion. The value 𝛼strong
loc = 0.62 ±

0.02, was calculated using width, and 𝛼weak
glob = 0.75 ± 0.04 and 𝛼strong

glob = 0.52 ± 0.02, using the

structure factor. As the results show, 𝛼glob decreases with increasing adhesion.

4.3.2 Radial Interfaces

Next, we focus on radially expanding isotropic fronts. The initial configuration was one cell at

the center of the simulation box and the final populations were ≈200,000 cells. We define 𝑅i(𝑡)

to be the distance from the center of mass of the colony to the 𝑖th site at the interface. Snapshots

at different times and adhesion strengths are shown in Fig. 4.1; increasing the adhesion between

the cells changes the colony morphology and increases overhangs. The radii grow at constant

velocities, ⟨𝑣⟩ =4.24 ± 0.01 for weak and ⟨𝑣⟩ =2.15 ± 0.01 for strong adhesion, Fig. 4.2a. As

in the linear case, increasing the adhesion causes the front velocities to decrease. Again, the
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Figure 4.3: Data collapse for line growth at high adhesion at three different times. (a) Using
the structure factor (Eq. 4.6) and MBE exponents, 𝛼MBE = 3

2 and 𝑧MBE = 4. (b) With KPZ
exponents, 𝛼KPZ= 1

2 and 𝑧KPZ= 3
2 . The 𝑦-axis is scaled with the factor (kt

1
z ) 3

2 to have the same
range as MBE scaling. (c) Using the Family-Vicsek relation for width (Eq. 4.1) with MBE
exponents, 𝛽MBE = 3

8 and 𝑧MBE = 4, and (d) with KPZ exponents, 𝛽KPZ = 1
3 and 𝑧KPZ = 3

2 . For
units, see Table 4.1.
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Figure 4.4: Data collapse for the radially growing interface at low adhesion at three different
times. (a) Using the structure factor (Eq. 4.6) with MBE, 𝛼MBE = 3

2 and 𝑧MBE =4 and (b) KPZ
exponents, 𝛼KPZ= 1
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exponents, 𝛽MBE = 3

8 and 𝑧MBE = 4, and (d) with KPZ exponents, 𝛽KPZ = 1
3 and 𝑧KPZ = 3

2 . For
units, see Table 4.1.



4.4. Conclusions 85

fractal dimension (Fig. 4.2b) shows slight increase with increasing adhesion, 𝑑weak
f =1.13±0.01

and 𝑑strong
f =1.21 ± 0.01.

Figures 4.4a-d show the scaling results for radial growth both through the width function

(Eq. 4.1) and structure factor (Eq. 4.6). Using the Family-Vicsek relation for width (Fig. 4.4c)

with MBE exponents displays good collapse. In addition, the structure factors at different times

show good collapse with MBE exponents, see Tables 4.6 to 4.9.

Figure 4.8 shows that fitting the width vs time gives the growth exponents 𝛽weak = 0.40 ±

0.04 and 𝛽strong = 0.42 ± 0.06, For varying adhesion strengths, the local roughness exponent,

𝛼loc, are all within the same range: 𝛼weak
loc = 0.66 ± 0.01 and 𝛼strong

loc = 0.7 ± 0.01, Fig. 4.9. The

scaling exponent 𝛼glob, measured from the structure factor, shows a decrease with increasing

adhesion strength, 𝛼weak
glob =0.95 ± 0.04 and 𝛼strong

glob =0.71 ± 0.02, Fig. 4.10.

Finally, to test the generality of the above observations, cell-medium friction, intermem-

brane friction, cell division rules, and the number of cell types with different stiffness were

tested using the radially growing system. Figure 4.11 shows that 𝛼glob, is insensitive to changes

in factors such as cell-medium friction, intermembrane friction, cell division rules, and the

number of cell types with different stiffness. These results suggest that dynamics of the radi-

ally growing colonies are well described by MBE-like scaling when at weak cell-cell adhesion.

4.4 Conclusions

Our simulations indicate that weak cell-cell adhesion and an isotropically growing colony dis-

play MBE-like scaling for the boundary roughness. This is consistent with the experiments of

Brú et al. [13]; we digitized their data and show its scaling in Fig. 4.12. In contrast, a colony

growing from a single line of cells, and with strong cell-cell adhesion displays KPZ-like scal-

ing. This is in agreement with the experiments of Huergo et al. [88]. In all the studied cases

the fractal dimensions of the interface are within the range 1.13–1.26, which is also consistent

with prior experiments [13, 88, 89, 4, 253], regardless of the growth scaling behavior.
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All the studied cases show linear growth with constant velocity. This is consistent with

experiments: Brú et al. reported radially spreading cell colonies to exhibit exponential growth

in the early stages followed by linear growth [13]. Huergo et al. showed that once the number

of cells exceeds 700–1,000, radially spreading colonies grow with a constant velocity [89, 4].

Constant velocity also applies for line growth [88]. Physically, these data suggest that cells

are partially contact-inhibited and that most activity occurs within a limited band along the

interface challenging the notion of Gomperzian growth of cancer [262]. Experiments by Costa

et al. indicate that in vitro cultivated cells may exhibit sigmoidal growth [245].

Finally, it can be assumed that the first multi-cellular life-forms were rather simple cell

colonies. It is interesting to speculate that if cell-colony growth dynamics would be rigidly

confined to a single universality class, adaptive evolution would likely be significantly harder

in contrast to more versatile growth dynamics. This is consistent with earlier results in the

sense that very rich growth behavior and diverse tissues appear with modest changes, and, e.g.,

non-trivial dependencies in initial conditions, nutrients, apoptosis, disorder and mechanical

forces from various sources cause changes in both quantitative and qualitative behaviors, see,

e.g., Refs. [244, 52, 91, 258, 259].

CellSim3D assumes that adhesion molecules are distributed uniformly over the cell

surface. This is, however, not necessarily the case in real cells since cell polarity may

affect their distribution and activity [263, 264, 265]. Polarized cells may exhibit directional

differences in their mechanical properties and cell-cell interactions, which may influence the

dynamics of tissue roughness. Work is in progress to address such issues.
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4.5 Supplemental Material

4.5.1 The CellSim3D model

The CellSim3D model [10, 258] is a 3D generalization of the 2D model of cell division orig-

inally introduced by Mkrtchyan, Åström, and Karttunen [15]. In CellSim3D cells are defined

as a set of interconnected nodes on the surface of a spherical C180 fullerene. The force field

consists of bonded and non-bonded forces defined as

F = 𝑚r = FB + F\ + FP + FR + FA + FF + [, (4.8)

where FB is a damped harmonic oscillator force between neighboring nodes, F\ is the an-

gle force which preserves cell curvature. These two forces are bonded, and the rest are non-

bonded. FR and FA are the repulsive and attractive force between C180 nodes in different

cells, respectively. They are approximated by harmonic potentials with different spring con-

stants and cutoffs. The model has been shown to produce versatile behavior in agreement with

experiments [15, 10, 258, 259]. We discuss some of the main features below.

Damped harmonic oscillator and angle force in CellSim3D

Harmonic potentials are used to approximate bonded interactions between nearest neighbors

in the same cell. Each node on a cell has a bonding force applied by its three neighbors. The

force between a node 𝑖 and its bonded neighbors 𝑗 is defined as

FB
𝑖 =

3∑︁
𝑗=1

[𝑘B
𝑖 𝑗 b̂𝑖 𝑗 (𝑅𝑖 𝑗 − 𝑅0

𝑖 𝑗 ) − 𝛾intv𝑖 𝑗 ] (4.9)
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where 𝑅0
ij represents the equilibrium bond length and vij represents the relative velocity between

adjacent nodes 𝑖 and 𝑗 . The oscillations of bonds are dampened by the coefficient of friction

𝛾int, and the spring constant 𝑘B
ij is constant for all bonds. Cell curvature is maintained via the

angle force, F\ , a harmonic force exerted on three nodes 𝑖, 𝑗 , and 𝑘 that acts against angle

deformation. It is defined as

F\i =
1
2

∑︁
𝑗

∑︁
𝑘≠𝑖

− 𝑘\𝑖 𝑗 𝑘 ∇x𝑖 (\𝑖 𝑗 𝑘 − \0
𝑖 𝑗 𝑘 )

2 (4.10)

where \0
ijk is the equilibrium angle between nodes i and j and k is the angle spring constant,

𝑘\ijk, considered constant over the cell surface for simplicity.

Adhesion, repulsion and intermembrane friction in CellSim3D

Adhesion forces in living cells are generated by adhesive bonds between Cell Adhesion

Molecules (CAMs) on the surfaces of neighboring cells [266, 267, 268]. There are

numerous types of adhesion molecules, including integrins, selectins, cadherins, and the

IgSuperfamily [268, 269]. In focused regions of a cell when CAMs concentrations are

elevated, there may be an increase in interaction between adjacent cells and the substrate [50].

Ligands allow CAMs to bind together.

Adhesion can be modeled mechanically. In CellSim3D, each surface node of a cell func-

tions as an adhesive site, replicating the behavior of CAMs. Several biological factors affect

the stability, density, and position of these junctions on the surface of a cell, but we will treat

them as if they are constant and uniform [10]. Within the framework of the mechanical cell

approximation, we will assume that the interactions of the various CAMs may be averaged

into a uniform short range interaction throughout the cell surface. This uniform interaction

is segmented into adhesion, repulsion, and intermembrane friction. All sites are considered

to possess identical adhesion and repulsion strengths. Attractive and repulsive intermembrane
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interactions on node 𝑖 of cell 𝑚 are defined as

FA
𝑖,𝑚 =

∑︁
𝑛

∑︁
𝑗


𝑘A (𝑟𝑖 𝑗 ,𝑛 − 𝑅A

0 )r̂𝑖 𝑗 ,𝑛 if 𝑟ij,n < 𝑅
A
0 ;

0 if 𝑟𝑖 𝑗 ,𝑛 ≥ 𝑅A
0 .

(4.11)

and

FR
𝑖,𝑚 =

∑︁
𝑛

∑︁
𝑗


−𝑘R (𝑟𝑖 𝑗 ,𝑛 − 𝑅R

0 )r̂𝑖 𝑗 ,𝑛 if 𝑟𝑖 𝑗 ,𝑛 < 𝑅R
0 ;

0 if 𝑟𝑖 𝑗 ,𝑛 ≥ 𝑅R
0 .

(4.12)

where 𝑘A and 𝑘R are the attractive and repulsive spring constants, respectively, 𝑅A
0 and 𝑅R

0

are the corresponding attraction and repulsion equilibrium bond lengths and cutoffs, and 𝑟𝑖 𝑗 ,𝑛

is the vector pointing from the node 𝑖 on cell 𝑚 to node 𝑗 on cell 𝑛. FF is the friction term

decomposed into viscous drag due to the medium approximating the interactions between the

cell and the extracellular matrix, and intermembrane friction. In CellSim3D, the medium is a

simple fluid and the viscous drag from the media is the only interaction between cells and the

medium. The viscous drag from the media on the node 𝑖 of cell 𝑚 is defined as

FF,m
𝑖

= −𝛾𝑚 v𝑖 (4.13)

where 𝛾m represents the drag coefficient. The intermembrane friction is proportional to the

component of the relative velocity tangential to the surface of the cells and defined [10] as

FF,e
i,m =

∑︁
𝑛

∑︁
𝑗


−𝛾ext v𝜏m

𝑖 𝑗
if 𝑟𝑖 𝑗 ,𝑛 < 𝑅A

0 ;

0 if 𝑟𝑖 𝑗 ,𝑛 ≥ 𝑅A
0 .

(4.14)

where 𝛾ext is the intermembrane friction coefficient, assumed to be constant across cells, and

v𝜏m
𝑖 𝑗

is the tangential component of the relative velocity to the surface of cell 𝑚 at x𝑖. Together

attractive, repulsive, and friction terms approximate inter-membrane interactions mediated by

cell adhesion molecules [47, 185, 269, 270, 271]. FP = 𝑃𝑆n̂ is the growth force coming from

the osmotic pressure within cells and the cell’s internal pressure [47], where 𝑃𝑆 represents the
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force resulting from the cell’s internal pressure and n̂ is the cell surface normal. Finally, [ ≡

[(x, 𝑡), is Gaussian white noise given by ⟨[(𝑥, 𝑡)⟩ = 0 and ⟨[(𝑠, 𝑥)[(𝑡, 𝑦)⟩=2𝐷𝛿(𝑠− 𝑡)𝛿(𝑥−𝑦).

Cell growth and division

In CellSim3D, growth is induced by increasing the internal pressure, as determined by experi-

mental measurements [193]. At each time step, the internal pressure is incremented, resulting

in a increase in the pressure force [272, 10]. As a result, the cell volume gradually increases,

𝑉 = 𝑉0 + 𝛥𝑉 , and once it exceeds the threshold value, 𝑉div, the cell can divide into two new

symmetric or asymmetric daughter cells depending on the chosen division rule [211]. In this

work, we consider that the daughter cells are symmetric [273, 274].

The cell division plane’s position can be either through the cell’s center of mass or through

another randomly chosen point inside the cell. The random point might be different for each

cell, resulting in asymmetric division. The division plane’s orientation can also be set using a

variety of rules. According to Hertwig’s rule, the division plane is perpendicular to the longest

axis of an ellipsoidal cell and passes through the center of mass [214]. Errera’s rule asserts

that the division plane must contain the shortest path travelling through the center of mass of a

cell [215]. The division plane can also be randomly oriented. In CellSim3D, in the case of full

3D tissue, the division plane vector is chosen randomly from a unit sphere.

Modeling epithelial tissue

Since epithelium may be considered as a 2- or quasi-2-dimensional material, we have to con-

fine the cells to a plane; quasi-2-dimensional means that the cells themselves are fully three

dimensional but the growth is planar only. Epithelial tissue is then generated by using two

(virtual) plates that prevent buckling; the distance between the confining top and bottom plates

was set to 1.8. We follow the same approach as in Madhikar et al. [258].

No friction forces exist between the plates and the cells. The only force from the plates

is the repulsive force in the direction normal to the plates, that is, the positive 𝑧-direction for
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the bottom plate and the negative 𝑧-direction for the top plate. In addition, the CellSim3D cell

division algorithm also adjusted for the formation of epithelium [258]. The software receives

an optional vector defining the normal to the epithelial plane in space. The plane of the division

furrow is then sampled from a sphere in the plane indicated by the normal vector. The volume

threshold for a cell to divide is set to 2.90 in this study. For the units, please see Table 4.1.

Parameterization

The parameters used in the simulations are listed in Table 4.1. These parameters are based on

the properties of HeLa cells for parameter mapping. For further details and their derivation

about the CellSim3D force field, methodology, and parameter mapping, please see Refs. [15,

10].

4.5.2 The CellSim3D software

CellSim3D allows for simulations of fully 3-dimensional as well as 2-dimensional cellular

systems using single consumer-grade Nvidia GPUs; the code is currently limited to

Nvidia GPUs since it is written in CUDA. The code is open source and available at

https://github.com/SoftSimu/CellSim3D, it is compatible with CUDA 5.0 and later.

As for its performance, even an older generation GPU such as a GTX 970 or GTX 980 can

easily simulate systems up to 100,000 cells. A modern Nvidia RTX 3080 increases the number

to about 1,000,000 and a multi-GPU version is currently being developed. The simulation

setup is done using a standard JSON file The simulator stores the outputs as both ASCII and

binary files. For efficient and consistent Input/Output, the next edition of the software will

include the HDF5 format [275].

The integrator is based on the work of Besold et al. [224] who developed a modified

velocity-Verlet integrator for Dissipative Particle Dynamics simulations [224, 276]. The al-

gorithm is described in Ref. [10]. For cell geometry, currently, the simulator is compatible

only with the C180 fullerene geometry. Future updates will provide more options for selecting
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the geometry.

4.5.3 Analysis methods

The interface local width function, 𝑤(𝑙, 𝑡), is defined as the standard deviation of the front

height, ℎ(𝑥, 𝑡), over a length scale 𝑙 at time 𝑡 as [6]

𝑤(𝑙, 𝑡) =
{

1
𝑁

𝑁∑︁
𝑖=1

[ℎ𝑖 (𝑡) − ⟨ℎ𝑖⟩𝑙]2
} 1

2

L
, (4.15)

For small length scales the width function behaves as follows

𝑤(𝑙, 𝑡) ∼ 𝑙𝛼loc (4.16)

where 𝛼loc is the local roughness exponent. By replacing 𝑙 with the system size 𝐿, the value of

𝑤(𝐿, 𝑡) for 𝑡 ≪ 𝑡𝑠 , where 𝑡𝑠 is the roughness saturation time, is expected to increase as

𝑤(𝐿, 𝑡) ∼ 𝑡𝛽 (4.17)

where 𝛽 is the growth exponent [6]. We supplement the universality class analysis by an

examination of the structure factor, 𝑆(𝑘, 𝑡), of the interface,

𝑆(𝑘, 𝑡) = ⟨ℎ̂(𝑘, 𝑡) ℎ̂(−𝑘, 𝑡)⟩, (4.18)

The linear interface roughness, 𝑤(𝑡), follows the power-law 𝑡𝛽 with 𝛽weak = 0.28 ± 0.01, for

weak adhesion and 𝛽strong = 0.25 ± 0.02, for strong adhesion, Fig. 4.5. The local roughness

exponents, 𝛼loc, are within the same range for different adhesion strengths in the case of linear

interface: 𝛼weak
loc =0.59 ± 0.01 for weak adhesion and 𝛼strong

loc =0.62 ±0.02 for strong adhesion,

Fig. 4.6, The global roughness exponent, 𝛼glob, of the linear growing interface was calculated

via structure factor analysis, 𝛼weak
glob =0.75 ± 0.04 and 𝛼strong

glob =0.52 ± 0.02, Fig. 4.7. The width
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functions of the circular interface versus time 𝑡𝛽 are displayed in Fig. 4.8: 𝛽weak =0.40 ± 0.04

for weak adhesion and 𝛽strong=0.42±0.06 for strong adhesion. The local roughness exponents,

𝛼loc, for circular interface are 𝛼weak
loc = 0.66 ± 0.01 for weak adhesion and 𝛼strong

loc = 0.7 ± 0.01

for strong adhesion, Fig. 4.9. Finally, For circular interfaces, we find 𝛼weak
glob = 0.95 ± 0.04 and

𝛼
strong
glob =0.71 ± 0.02, Fig. 4.10.

4.5.4 Chi-squared test

For graphs in Figs. 4.3 and 4.4 of the manuscript, each point has a vertical error bar as each

point was measured ten times for fixed values of 𝑙, 𝑡 and 𝑘 . Each time point is regarded as the

reference set of values, 𝑥ref , and the Chi-squared, �̃�2, is calculated as

�̃�2 =
∑︁
𝑖

(𝑥test,𝑖 − 𝑥ref,𝑖)2

𝜎2
ref,𝑖

(4.19)

in order to see how well the other point in time 𝑥test is explained by the reference set, the

null hypothesis being that 𝑥test is the same as 𝑥ref . Numerically, the abscissa values for 𝑥ref

are binned and 𝑥test is assigned to the corresponding bin if the bin exists (abscissa values of

𝑥test outside the abscissa range of 𝑥ref are discarded). Tables 4.2 to 4.9 show the results of

the �̃�2 tests on the graphs in Figs. 4.3 and 4.4 of the manuscript. The tables also include the

p-values, which show the probability of getting test results close to extremes of the results of

the reference set of values under the null hypothesis. The null hypothesis is rejected and the

test set and reference set are not the same if the p-values are close to zero.

4.5.5 Analyses on Brú’s data set

Data from Fig. 3 of Brú et al. [13] was digitized with the WebPlotDigitizer program [277].

Figure 4.12 shows the result from using the Family-Vicsek relation to scale the width function

by MBE (Fig. 4.12a) and KPZ (Fig. 4.12b) exponents. MBE exponents show a better collapse

than KPZ exponents, as Brú et al. stated in their study. However, we cannot obtain a full
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collapse for the width functions at different times with MBE exponents, implying that the

development dynamics of cell-colony interfaces do not perfectly fit into the MBE universality

class. The similar conclusion can be made about Huergo et al. results [88, 89, 4]. Although

they concluded that their data reveal a KPZ growth dynamics for cell-colony growth, their

works do not exhibit a full width function or structure factor collapse [88, 89, 4].
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Table 4.1: Each cell’s mechanical properties are determined by the values indicated here. They
are usually subtly altered to represent different types of cells. The mechanical properties of
cells addressed in this work are listed in the table. The symbol † indicates units of 𝛥𝑡 and
∗ units of mean time to cell division, which varies between cell types and is set to 1.0 in
CellSim3D. For more details and their derivation, please see Refs. [10, 15]

Parameter Notation Sim. Units SI Units
Nodes per cell 𝑁c 180 -
Node mass m 0.04 40 fg
Bond stiffness 𝑘B 1000 100 nN

`m
Bond damping coefficient 𝛾int 100 0.01 g

s
Minimum pressure (𝑃𝑆)0 50 0.5 nN

`m2

Maximum pressure (𝑃𝑆)∞ 65 0.65 nN
`m2

Pressure growth rate 𝛥(𝑃𝑆) 0.002 2.0 × 10−5 nN
`m2

Attraction stiffness 𝐾A 10-2000 1-200 nN
`m

Attraction range 𝑅A
0 0.3 3 `m

Repulsion stiffness 𝐾R 10 × 105 10 × 104 nN
m

Repulsion range 𝑅A
0 0.2 2 `m

Growth count interval - 1000 †
Inter-membrane friction 𝛾ext 1 10 `𝑔

𝑠
Medium friction 𝛾m 0.4 4 `g

𝑠

Time step 𝛥𝑡 1.0 × 10−4 ∗
Threshold division volume 𝑉div 2.9 2900 `m3
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Table 4.2: Table shows the Chi-squared values, Eq. 4.19, (degrees of freedom) and p-values
(goodness of fit) for the graphs in Fig. 3a, which provides data collapse of the structure factor
with MBE scaling exponents for line growth at strong cell-cell adhesion at three different times.
The large off diagonal chi-squared values and near-zero off diagonal p-values show that the
curves in Fig. 3a at different times do not overlap with each other.

reference series
measurement t = 30 t = 70 t = 200
t = 30 0.0000 (23) 177.93 (24) 487.96 (23)

p = 1.000 p = 0.000 p = 0.000
t = 70 49.780 (22) 0.000 (23) 79.686 (24)

p = 0.000238 p = 1.000 p = 0.000
t = 200 91.66 (22) 33.599 (22) 0.000 (23)

p = 0.0000 p = 0.0290 p = 1.0000

Table 4.3: Table shows the Chi-squared values, Eq. 4.19, (degrees of freedom) and p-value
(goodness of fit) for the graphs in Fig. 3b, which provides data collapse of the structure factor
with KPZ scaling exponents for line growth at strong cell-cell adhesion at three different times.
The low off diagonal chi-squared values and mid-range off diagonal p-values indicate that the
curves in Fig. 3b at different times roughly overlap with each other.

reference series
measurement t = 30 t = 70 t = 200
t = 30 0.000 (24) 18.6467 (21) 23.6806 (21)

p = 1.000 p = 0.4797 p = 0.208692
t = 70 18.535 (22) 0.000 (23) 15.658 (23)

p = 0.5522 p = 1.000 p = 0.7885
t = 200 19.066 (19) 19.066 (22) 0.0000 (24)

p = 0.3247 p = 0.51755 P = 1.0000
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Table 4.4: Table shows the Chi-squared values, Eq. 4.19, (degrees of freedom) and p-value
(goodness of fit) for the graphs in Fig. 3c, which provides data collapse of the width function
with MBE scaling exponents for line growth at strong cell-cell adhesion at three different times.
The large off diagonal chi-squared values and zero off diagonal p-values show that the curves
in Fig. 3c at different times do not overlap with each other.

reference series
measurement t = 30 t = 70 t = 200
t = 30 0.0000 (34) 108.66 (34) 317.38 (33)

p = 1.000 p = 0.000 p = 0.000
t = 70 385.57 (34) 0.000 (34) 193.75 (34)

p = 0.000 p = 1.000 p = 0.000
t = 200 632.77 (32) 139.29 (34) 0.000 (34)

p = 0.000 p = 0.000 p = 1.000

Table 4.5: Table shows the Chi-squared values, Eq. 4.19, (degrees of freedom) and p-value
(goodness of fit) for the graphs in Fig. 3d, which provides data collapse of the width function
with KPZ scaling exponents for line growth at strong cell-cell adhesion at three different times.
The low off diagonal chi-squared values and near-one off diagonal p-values indicate that the
curves in Fig. 3d at different times certainly overlap with each other.

reference series
measurement t = 30 t = 70 t = 200
t = 30 0.0000 (34) 26.748 (29) 6.575 (26)

p = 1.000 p = 0.477 p = 0.9998
t = 70 18.98 (33) 0.000 (34) 4.858 (30)

p = 0.955 p = 1.000 p = 1.000
t = 200 16.54 (29) 23.45 (32) 0.000 (34)

p = 0.942 p = 0.796 p = 1.000
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Table 4.6: Table shows the Chi-squared values, Eq. 4.19, (degrees of freedom) and p-value
(goodness of fit) for the graphs in Fig. 4a, which provides data collapse of the structure factor
with MBE scaling exponents for the radially growing interface at weak cell-cell adhesion at
three different times. The low off diagonal chi-squared values and mid-range off diagonal p-
values indicate that the curves in Fig. 4a at different times roughly overlap with each other.

reference series
measurement t = 40 t = 70 t = 100
t = 40 0.0000 (47) 36.495 (21) 25.934 (22)

p = 1.000 p = 0.00917 p = 0.16801
t = 70 32.8570 (22) 0.000 (47) 35.994 (22)

p = 0.0350 p = 1.000 p = 0.015407
t = 100 20.799 (20) 23.2245 (20) 0.000 (47)

p = 0.28969 p = 0.1821 p = 1.000

Table 4.7: Table shows the Chi-squared values, Eq. 4.19, (degrees of freedom) and p-value
(goodness of fit) for the graphs in Fig. 4b, which provides data collapse of the structure factor
with KPZ scaling exponents for the radially growing interface at weak cell-cell adhesion at
three different times. The large off diagonal chi-squared values and zero off diagonal p-values
show that the curves in Fig. 4b at different times do not overlap with each other.

reference series
measurement t = 40 t = 70 t = 100
t = 40 0.0000 (47) 198.89 (25) 291.566 (25)

p = 1.000 p = 0.0000 p = 0.0000
t = 70 644.88 (24) 0.000 (47) 134.148(26)

p = 0.0000 p = 1.000 p = 0.0000
t = 100 1663.32 (23) 573.74 (24) 0.000 (47)

p = 0.0000 p = 0.0000 p = 1.000
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Table 4.8: Table shows the Chi-squared values, Eq. 4.19, (degrees of freedom) and p-value
(goodness of fit) for the graphs in Fig. 4c, which provides data collapse of the width function
with MBE scaling exponents for the radially growing interface at weak cell-cell adhesion at
three different times. The low off diagonal chi-squared values and near-one off diagonal p-
values indicate that the curves in Fig. 4c at different times certainly overlap with each other.

reference series
measurement t = 40 t = 70 t = 100
t = 40 0.0000 (47) 17.25 (39) 31.53 (37)

p = 1.000 p = 0.9977 p = 0.6364
t = 70 15.46 (40) 0.000 (47) 31.073 (41)

p = 0.9996 p = 1.000 p = 0.8132
t = 100 27.988 (37) 37.84 (43) 0.000 (47)

p = 0.7940 p = 0.6118 p = 1.000

Table 4.9: Table shows the Chi-squared values, Eq. 4.19, (degrees of freedom) and p-value
(goodness of fit) for the graphs in Fig. 4d, which provides data collapse of the width function
with KPZ scaling exponents for the radially growing interface at weak cell-cell adhesion at
three different times. The large off diagonal chi-squared values and zero off diagonal p-values
show that the curves in Fig. 4d at different times do not overlap with each other.

reference series
measurement t = 40 t = 70 t = 100
t = 40 0.0000(47) 1203(45) 2044(44)

p = 1.000 p = 0.000 p = 0.000
t = 70 1141(47) 0.000(47) 664(46)

p = 0.0000 p = 1.000 p = 0.000
t = 100 3201(46) 652(47) 0.000(47)

p = 0.000 p = 0.000 p = 1.000
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Figure 4.5: Log-log plot of the colony interface width vs growth time of the linear interface
for different adhesion strength, 10 (blue) and 2, 000 (orange). Growth exponents are 𝛽weak =

0.28 ± 0.01 and 𝛽strong = 0.25 ± 0.02, respectively. For units, see Table 4.1.

100 101 102 103

100

101

W
(,

t)

(a)

t = 30
t = 70
t = 200
slope = 0.59

100 101 102 103

100

101

W
(,

t)

(b)

t = 30
t = 70
t = 200
slope = 0.62

Figure 4.6: Log-log plot of the colony interface width of the linear interface vs length 𝑙 at three
different times. (a) Weak adhesion strength (10) with 𝛼weak

loc = 0.59 ± 0.01 (b) strong adhesion
strength (2, 000) with 𝛼strong

loc = 0.62 ± 0.02. For units, see Table 4.1.
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Figure 4.7: Log-Log plot of the structure factor at three different times for linear expanding
interface. (a) weak adhesion strength (10) with 𝛼weak

glob = 0.75 ± 0.04. (b) strong adhesion

strength (2, 000) with 𝛼strong
glob = 0.52 ± 0.02. For units, see Table 4.1.
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Figure 4.8: Log-log plot of the colony interface width vs growth time of the radially expanding
interface for different adhesion strength, 10 (blue) and 2, 000 (orange). Growth exponents are
𝛽weak = 0.40 ± 0.04 and 𝛽strong = 0.42 ± 0.06, respectively.
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Figure 4.9: Log-log plot of the colony interface width of the radially expanding interface vs
length 𝑙 at different times. (a) Weak adhesion strength (10) with slope 𝛼weak

loc = 0.66±0.01, and
(b) strong adhesion strength (2, 000) with slope 𝛼strong

loc = 0.70 ± 0.01. For units, see Table 4.1.

100 101 102 103
k

10 2

10 1

100

101

102

103

104

105

S(
k,

t)

(a)

t = 40
t = 70
t = 100
slope = -3.00

100 101 102 103
k

10 1

100

101

102

103

104

105

S(
k,

t)

(b)

t = 70
t = 120
t = 180
slope = -2.40

Figure 4.10: Log-log plot of the structure factor at three different times for the radially ex-
panding interface. (a) Weak adhesion strength (10) with 𝛼weak

glob = 0.95 ± 0.04, and (b) strong

adhesion strength (2000) with 𝛼strong
glob = 0.71 ± 0.02.



4.5. SupplementalMaterial 103

101 102 103
k

10 1

100

101

102

103

S(
k,

t)

(a)

Sym 
Asym 

101 102 103
k

10 1

100

101

102

103

S(
k,

t)

(b)

1 type of cell 
2 types of cell 

101 102 103
k

10 1

100

101

102

103

104

S(
k,

t)

(c)

ext = 1 
ext = 0.1 
ext = 0.01 

101 102 103
k

10 1

100

101

102

103

S(
k,

t)

(d)

m = 0.4 

m = 0.04

Figure 4.11: Log-Log plot of the structure factor of radially expanding interfaces for (a) The
division plane is sampled from a unit circle in the epithelial plane, and can yield two symmetric
or asymmetric daughter cells in size. (b) The cell population can contain only one type of cell
or two types of cells with different stiffness interacting with each others. (c) different friction
coefficients for cell-cell interaction, and (d) different medium friction forces. For units, see
Table 4.1.
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Figure 4.12: (a) Data collapse using Family-Vicsek relation for width functions digitized from
Fig. 3 from Brú et al. [13], at different times with (a) MBE exponents, 𝛽 = 3
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Chapter 5

Effect of substrate heterogeneity and

topology on epithelial tissue growth

dynamics

The contents of this chapter have been submitted with the following citation: M. Mazarei, J.

Åström, J. Westerholm, and M. Karttunen, Effect of substrate heterogeneity and topology on

epithelial tissue growth dynamics, Physical Review E, EC12566, 2023, Submitted.

5.1 Introduction

Understanding the role of mechanobiological phenomena in complex biological processes such

as wound healing, tumor growth, and morphogenesis necessitates the study of the physical in-

teractions between cells and their environments. In vivo, heterogeneities of different types

are always present. One of the prime examples is the extracellular matrix (ECM) that typ-

ically provides support for cells and is a key factor for cell adhesion and the differentiation

of cells [278, 181]. Heterogeneities can also be produced by the addition of pharmacological

agents or (gelly) materials, such as methylcellulose, or by changing the nutrient concentra-

105
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tion, as well as by other means [83, 279, 253]. The presence of heterogeneities, or disorder

in physical terms, often influences biochemical and biomechanical parameters, such as cell-

cell interactions, the rate of cell division, and the average cell size and shape, and thus alters

cell mobility, colony spreading, and the roughness of the colony interface [83, 279]. In ad-

dition, the situation can be even more complex such as in the epithelial-to-mesenchymal and

mesenchymal-to-epithelial transitions during which the whole cellular environment undergoes

fundamental and complex changes [280].

Tumor growth, and therapy to prevent it, may be characterized as cellular processes involv-

ing molecular inter- and intracellular control [84]. Cell migration continually responds to the

mechanical stresses from neighboring cells and the ECM [281]. Mathematical and computer

models are increasingly being used to examine and measure the influence of different biophys-

ical parameters on biological processes such as nonequilibrium pattern generation in biological

growth [257, 282, 283, 246, 279].

The spreading of a cellular colony, e.g., tumor, healthy or bacterial, can be seen as the

propagation of an elastic interface in the presence of a pinning potential that arises from the

surrounding environment. Analogous phenomena occur in diverse systems including vortex

motion in type-II superconductors [284], charge-density waves [285, 286], and fracture propa-

gation [287]. For such systems, one typically distinguishes between strong and weak pinning.

In the former case, the pinning energy (per impurity) is much larger than the elastic energy

leading to local energy minimization while in the weak pinning regime the opposite is true and

the interface adjusts collectively.

When the interface has adjusted to the disorder and is not moving, it is in the pinned phase.

When a driving force is applied and it exceeds a threshold force, 𝐹𝑐, the interface undergoes

a depinning transition and enters the moving phase. The size of the advancing regions is then

characterised by a correlation length (b) which diverges upon approaching the critical force

from above, b = (𝐹 − 𝐹𝑐)−a, where a denotes the correlation length exponent [288]. It is

also common to differentiate between annealed and quenched disorder. In the latter, disorder
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is considered as stationary, that is, the motions of the pinning sites are much slower than any

other relevant time scale in the system; in the annealed case this assumption no longer holds.

In this study, only quenched disorder is considered. In addition, since here the driving force

enters through cell division, we are not interested in the depinning transition itself.

Several dynamic universality classes have been proposed for interface growth. The Kardar-

Parisi-Zhang (KPZ) dynamic universality class [249] describes the evolution of a surface using

a continuous nonlinear stochastic differential equation

𝜕𝑡ℎ(𝑥, 𝑡) = −_ [𝜕𝑥ℎ(𝑥, 𝑡)]2 + a𝜕2
𝑥 ℎ(𝑥, 𝑡) + [(𝑥, 𝑡), (5.1)

where ℎ(𝑥, 𝑡), or the height, is the distance from the 𝑖th point at the colony front to the baseline

of the colony. Lateral growth normal to the interface, reflected in the quadratic term −_(𝜕𝑥ℎ)2,

is a characteristic of the KPZ universality class. Surface tension is accounted for by the Lapla-

cian term, a𝜕2
𝑥 ℎ, which tends to flatten the surface, and [(𝑥, 𝑡) is an uncorrelated Gaussian

noise given by ⟨[(𝑥, 𝑡)⟩ = 0 and ⟨[(𝑥, 𝑡)[(𝑥′, 𝑡′)⟩ = 2𝐷𝛿(𝑥 − 𝑥′)𝛿(𝑡 − 𝑡′).

In the quenched KPZ (qKPZ) equation the thermal noise in Eq. 5.1 is replaced by a position

dependent noise, that is, [(𝑥, 𝑡) becomes [(𝑥, ℎ) with ⟨[(𝑥, ℎ)⟩ = 0 and ⟨[(𝑥, ℎ)[(𝑥′, ℎ′)⟩ =

2𝐷𝛿(𝑥−𝑥′)𝛿(ℎ−ℎ′). Since thermal noise is usually present in experiments, the qKPZ equation

can be extended to contain both quenched and thermal noise.

Dynamic scaling analysis provides powerful tools to classify growth. Dynamic critical

exponents, namely the roughness (𝛼), growth (𝛽), and the dynamic exponent (𝑧) can be de-

termined from the time evolution of the front’s roughness; the cell colony’s front in this

case [245, 246, 247, 76, 13, 87, 248, 88, 89]. In addition to the above, the dynamic expo-

nent is related to the two other exponents via 𝑧 = 𝛼
𝛽

.

Distinct critical exponents and universality classes are described by different growth equa-

tions. For KPZ, the critical exponents are 𝛼KPZ= 1
2 , 𝛽KPZ= 1

3 , and 𝑧KPZ= 3
2 for one dimensional

interfaces [5]. For the quenched KPZ equation, dynamic critical exponents haven been de-
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termined to be 𝛼qKPZ = 3
4 , 𝛽qKPZ = 3

5 , and 𝑧qKPZ = 5
4 [289]. The critical exponents of the

linear molecular beam epitaxy (MBE) equation for a one-dimensional interface are 𝛼MBE = 3
2 ,

𝛽MBE= 3
8 , and 𝑧MBE=4.0.

In one-dimensional quasilinear and quasicircular expanding interfaces, previous experi-

mental research on cells grown on culture without quenched disorder have presented various

scaling behaviors [87, 13, 88, 89, 4]. Brú et al. [13, 87] suggested that the development dy-

namics of both malignant and normal cell colonies are characterized exponents 𝛼 = 1.5±0.15,

𝛽 = 0.38 ± 0.07, and 𝑧 = 4 ± 0.5 that belong to the MBE universality class. They reported

this for both in vitro and in vivo experiments. In contrast, however, Huergo et al. reported the

exponents of 𝛼 = 0.50±0.05, 𝛽 = 0.32±0.04 and 𝑧 = 1.56±0.1 for interfacial growth of HeLa

(cervix cancer) cell colonies in vitro [88, 89, 4]. Plant calli, Brassica oleracea and Brassica

rapa, were studied by Galeano et al. who reported exponents inconsistent with both MBE and

KPZ, 𝛼 = 0.86 ± 0.04, and 𝑧 = 5.0 [253].

Biological systems with substrate disorder appear in situations such as growing bacterial

colonies on agar-containing media and in the development of bacterial biofilms. For Es-

cherichia coli and Bacillus subtilis colonies, Vicsek et al. [82] found the roughness exponent

𝛼=0.78±0.07, which exceeds the KPZ value. Huergo et al. reported qKPZ-compatible expo-

nents 𝛼= 0.63 ± 0.04, 𝛽= 0.75 ± 0.05, and 𝑧 = 0.84 ± 0.05 for the development of quasilinear

Vero cell colony fronts in culture media containing methylcellulose (MC) [83]. Santalla et

al. conducted experiments at a high agar concentration regime and found branching interfaces

whose scaling exponents were in complete disagreement with both the KPZ and qKPZ scaling

exponents [254]. Rapin et al. studied the effects of pharmacological agents on the geome-

try and roughness dynamics of in vitro propagating Rat1 fibroblast cell interfaces and reported

two separate scaling regimes, the first at the sub-cell level and the second at intermediate length

scales of 2-10 cells [279].

Various theoretical and computational models have been developed to examine surface

growth with quenched disorder. The directed percolation depinning model predicts 𝛼 to be
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between 0.66 and 0.73, and 𝛽 = 0.68 ± 0.04 [290]. Models of self-organized growth have

predicted 𝛽 = 0.9 ± 0.1 and 𝛼 = 0.63 ± 0.02 [291], and a numerical study of an automaton

model yielded 𝛼 = 0.63 ± 0.01 and 𝛽 = 0.64 ± 0.02 [292]. Santalla and Ferreira incorporated

nutrient diffusion to an off-lattice Eden model and reported a transition from a transient KPZ-

like regime with 𝛽 = 0.34 ± 0.01 to an unstable growth regime with 𝛽 = 0.43 ± 0.02, with an

intermediate transient regime belonging to the qKPZ universality class with 𝛽=0.633 and the

local roughness exponents ranging within 0.39 < 𝛼loc < 0.67 [92].

Further computational and theoretical studies have demonstrated the effects of cell-cell

mechanical tensions, and nutrient concentration and distribution on the spatial structures with

morphologies ranging from smooth to heavily fingered interfaces [293, 294]. Simulations of

two-dimensional cellular colonies by Block et al., showed KPZ-like dynamics for a class of

cellular automata models over a broad range of parameters [77]. Azimzade et al. used the

Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation to study the effect of the cellular

environment’s stiffness and spatial correlations on the morphology of the interface of grow-

ing tumors, and concluded that the KPZ equation cannot describe their tumor development

model [91]. Bonachela et al. developed an off-lattice cell model with quenched disorder de-

scribing competition among bacterial cells for space and resources. They reported the expo-

nents 𝛼 = 0.68 ± 0.05, 𝛽 = 0.61 ± 0.05, and 𝑧 = 1.11 ± 17 for the moving regime [256].

Pinto et al. modified the self-propelled Voronoi model of Bi et al. [295] to study the effect of

spatial disorder of the cell-substrate interaction, defined as having stiff cells in the tissue, on

cell motility in a confluent tissue, reporting 𝛽 = 0.194. ± 007 [296]. In our previous work, we

showed that a cell colony can show both KPZ- and MBE-like scaling dynamics depending on

the strength of the cell-cell adhesion between the cells and the cell colony’s geometry [14].
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5.2 Methods

5.2.1 CellSim3D simulator and model

CellSim3D is a coarse-grained molecular dynamicsbased model of cellular dynamics with an

emphasis on mechanobiological features of tissue growth [10]. The code is open source [297].

CellSim3D allows cellular growth to be modelled in two (epithelial growth) or three dimen-

sions, and cells are modelled as three-dimensional objects consisting of a set of interconnected

nodes. Here, the geometry and the nodes are those of a spherical C180 fullerene.

The CellSim3D force field consists of intra- and intercellular forces and a noise term ([),

𝑚r = FB + F\ + FR + FA + FF,e + FF,m + FP + [. (5.2)

The two intracellular forces on the surfaces of the cells are FB, a damped harmonic oscillator

force between the nearest neighboring nodes with a spring constant (𝑘B) and a friction coeffi-

cient (𝛾int), and F\ , the angle force which is a harmonic potential depending on the equilibrium

angles between the nodes with a spring constant 𝑘\). The angle term preserves the cell’s sur-

face curvature. For simplicity, the spring constants for both the angle force and the damped

spring force between the nodes are assumed to be constant over the cell surface.

Intercellular forces in CellSim3D consist of both cell-cell and cell-environment

interactions. In cells, the cell-cell interactions are mainly caused by cell adhesion molecules

(CAMs) [47, 269, 193]. Here, the intercellular forces are described by a repulsive force,

FR and an attractive force, FA, between two neighboring cells. In addition, the model also

includes a friction force, FF, between two cells that pass by each other. The repulsive and

attractive forces between the cells are represented, respectively, by short-range harmonic

potentials with distinct cutoffs 𝑅R
0 , 𝑅A

0 , and spring constants 𝑘A, 𝑘R. In this study, we assume

that the adhesion molecules are distributed uniformly across the cell surface, and that the

adhesion and repulsion spring constants (𝑘A, 𝑘R) are identical for all nodes on the surface. The
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intermembrane friction force, FF,e = −𝛾ext v𝜏m
𝑖 𝑗

, is defined up to a cutoff range, 𝑅A
0 , between the

nodes 𝑖 and 𝑗 on two separate cells as a function of the tangential relative velocity to the cell

surfaces, v𝜏m
𝑖 𝑗

. The intermembrane friction coefficient, 𝛾ext, is assumed to be constant across

the cells.

The friction force, FF,m = −𝛾m v, approximates the interactions between the cell and its

environment, and it is defined as a viscous drag force from a fluid medium. The growth force,

FP = 𝑃𝑆n̂, is determined by the cell’s internal pressure resulting from the osmotic pressure

within the cell [47], where n̂ is an outward pointing normal to the surface of the cell and 𝑃𝑆

is the force due to a growing pressure inside the cell. This growing force compensates for the

cell membrane elasticity modelled by harmonic potentials. Finally the noise term, [, is defined

as a Gaussian white noise with ⟨[(𝑥, 𝑡)⟩ = 0 and ⟨[(𝑥, 𝑡)[(𝑥′, 𝑡′)⟩=2𝐷𝛿(𝑡 − 𝑡′)𝛿(𝑥 − 𝑥′).

At each time step, the internal pressure increases by the growth rate 𝛥(𝑃𝑆), resulting in

a gradual increase in the pressure force (FP) and the cell volume. When the volume of the

cell reaches a critical threshold, given by the parameter 𝑉div, the cell divides into two daughter

cells. The distinguishing characteristics of the cell division are the orientation and the location

of the division plane. Cell division can be either symmetric or asymmetric, depending on the

position of the division plan. In this study, we used symmetric cell division, in which the

volumes of the daughter cells become half the volume of the parent cell, and the mechanical

properties are a copy of the parent cell’s properties. The division algorithm is accounts for the

planar expansion of epithelial tissue: The division plane is selected by randomly sampling a

vector from a circle in the plane defined by the vector normal to the epithelial plane. To prevent

buckling during growth, three-dimensional cells are confined between two frictionless plates

with repulsion in the direction normal to the plates [258, 14]. More details of the theoretical

basis, the code implementation, and the mapping of the parameters can be found in Refs. [10,

14, 258]. Parameters for the simulations performed in this study are provided in Table 5.1.
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Table 5.1: The parameters for the cells used in this study. These values are based on the HeLa
(named after Henrietta Lacks [16]) cell properties. † indicates units of 𝛥𝑡 and ∗ units of mean
time to cell division, which varies between cell types and is set to 1.0 in CellSim3D.

Parameter Notation Sim. Units SI Units
Nodes per cell 𝑁c 180 -
Node mass m 0.04 40 fg
Bond stiffness 𝑘B 1000 100 nN/`m
Bond damping coefficient 𝛾int 100 0.01 g/s
Minimum pressure (𝑃𝑆)0 50 0.5 nN/`m2

Maximum pressure (𝑃𝑆)∞ 65 0.65 nN/`m2

Pressure growth rate 𝛥(𝑃𝑆) 0.002 2.0 × 10−5 nN/`m2

Attraction stiffness 𝐾A 10-2000 1-200 nN/`m
Strong attraction stiffness 𝐾A

strong 2000 200 nN/`m
Weak attraction stiffness 𝐾A

weak 10 1 nN/`m
Attraction range 𝑅A

0 0.3 3 `m
Repulsion stiffness 𝐾R 10 × 105 10 × 104 nN/m
Repulsion range 𝑅A

0 0.2 2 `m
Growth count interval - 1000 †
Inter-membrane friction 𝛾ext 1 10 `g/𝑠
Medium friction 𝛾m 0.4 4 `g/𝑠
Time step 𝛥𝑡 1.0 × 10−4 ∗
Threshold division volume 𝑉div 2.9 2900 `m3
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5.2.2 Disorder

Pinning impurities were randomly positioned (at time 𝑡 = 0) as immobile cells that do not grow.

They interact with regular cells via adhesion, repulsion, and friction, with the same strengths

as the regular cells do. Importantly, when the adhesion interaction between the cells is strong,

so is the interaction between the cells and the disorder. The same applies for the case of weak

cell-cell interaction. The pinned cells maintain their spherical shapes and sizes throughout the

simulation. For each simulated parameter set, ten independent simulations were performed for

data averaging. The parameters for quenched disorder are shown in Table 5.2.

Table 5.2: The area density, 𝑁
𝐴

, for quenched disorder in SI units ( 1
`m2 ) in the different config-

urations (linear and radial), and at different attraction stiffnesses ( nN
`m ). The parameters for the

strong and weak cases are given in Table 5.1.

Configuration
Attraction stiffness 1 (weak) 200 (strong)

Moving linear interface 0.0010 0.0003
Moving linear interface at high disorder density 0.0012 -
Moving radial interface 0.0008 0.000075
Pinned radial interface 0.0012 -

5.2.3 Colony configurations

Simulations of both linear and radial growth at strong and weak cell-cell adhesion strengths

in the presence of quenched disorder were performed at both low and high disorder densities,

see Table 5.1 for parameters and Table 5.2 for disorder area densities. The initial configuration

of the linear interface was a line of 240 cells in a box of size 600 × 1, 000 × 1.8. For linear

interfaces in the low disorder density regime at weak and strong cell-cell adhesion, 60,000 and

18,000 immobile cells were initially distributed at random in the box, while in the high disorder

density regime at weak cell-cell adhesion, 72,000 immobile cells were randomly distributed in

the box, see Table 5.2 for disorder area density. Figure 5.1 shows time evolution of a linear

interface.
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For radial growth, the initial configuration consisted of a single cell at the center of the

box of size 800 × 800 × 1.8. In the low disorder density regime at weak and strong cell-cell

adhesion strengths, respectively, 51, 200 and 4, 800 immobile cells were initially distributed at

random in the box. In the case of high disorder density at weak cell-cell adhesion strength, the

box contained 77, 400 randomly distributed immobile cells, see Table 5.2. In the low disorder

density regime, the colonies maintained their circular morphology with interface overhangs.

In high disorder density regime, however, the cell colonies developed a chiral morphology

with branched structures lacking circular interfaces for scaling analysis. Snapshots of circu-

lar colony expansion, interface evolution and chiral colony morphology at different times are

shown in Fig. 5.2.

5.3 Analyses

5.3.1 Scaling analysis

Interface width

The standard deviation of the front height across a length scale 𝑙 at time 𝑡 can be used to define

the interface’s local width function, 𝑤(𝑙, 𝑡), which represents the fluctuation around the average

height of the interface [6] as

𝑤(𝑙, 𝑡) =
{

1
𝑁

𝑁∑︁
𝑖=1

[ℎ𝑖 (𝑡) − ⟨ℎ𝑖⟩𝑙]2
} 1

2

𝐿

, (5.3)

where 𝐿 is the the length of the growing front. For radial growth, the height, ℎ𝑖 (𝑡), is replaced

by the distance 𝑟𝑖 (𝑡) from the centre of mass of the cell colony. ⟨ℎ𝑖⟩𝑙 is the local average of

the subsets of arc length 𝑙, and {.}𝐿 is the overall average. The fluctuations cannot increase

indefinitely, and there exists a saturation time, 𝑡s.

For times greater than the saturation time 𝑡 ≫ 𝑡𝑠, when the local length 𝑙 equals the total

interface length 𝐿, the width function 𝑤(𝐿, 𝑡) represents the interface variance and increases
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Figure 5.1: (a-b) Colony expansion (red cells) in a medium with quenched disorder (blue cells)
with linear initial configuration. (a) At weak and (b) strong cell-cell adhesion strength. (c)
Interface evolution at different times (d) at weak and (lower right) strong cell-cell adhesion
strength. The scaling analysis was done using overhang-corrected interfaces [6]. For units, see
Table 5.1.
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Figure 5.2: (a,b) Radially growing colony (red cells) in a medium with quenched disorder (blue
cells). (a) At weak and (b) strong cell-cell adhesion strength. (c) Interface evolution at different
times at weak cell-cell adhesion strength. The interface has overhangs, but the scaling analysis
was done using overhang-corrected interfaces [6]. (d) Morphology for a system started with
a single cell at the centre of a box on a substrate with a high density of quenched disorder
at weak cell-cell adhesion strength. Due to the high disorder density, the morphology is not
round but instead chiral with branched structures. Eventually the interface becomes pinned by
the disorder and the growth stops. The final population of the cell colony consists of roughly
10,000 cells. For units, see Table 5.1.
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with the interface length 𝐿 according to 𝑤(𝐿, 𝑡) ∼ 𝐿𝛼, where 𝛼 is to referred as the global

roughness exponent. For times smaller than the saturation time, the interface variance increases

as 𝑤(𝐿, 𝑡) ∼ 𝑡𝛽, where 𝛽 is the growth exponent.

For self-affine interfaces the width function 𝑤(𝐿, 𝑡) satisfies the Family-Vicsek dynamic

scaling relation [117]. This scale invariant behavior implies that the total interface length, 𝐿,

is the only characteristic length scale in the system, and that all length scales are subject to the

same physics. However, for 𝑡 > 𝑡s the local width function 𝑤(𝑙, 𝑡) may increase as a function

of the local length, 𝑙, with a local roughness exponent [6] 𝛼loc as

𝑤(𝑙, 𝑡) ∼ 𝑙𝛼loc . (5.4)

The local roughness exponent may differ from the global roughness exponent and can also be

derived from the power law behavior of the height-height correlation function, which is defined

as

𝐶 (ℓ, 𝑡) = ⟨|ℎ(𝑥, 𝑡) − ℎ(𝑥 + ℓ, 𝑡) |2⟩x ∼ ℓ 2Z for ℓ ≪ b∥ , (5.5)

where b∥ is the parallel correlation length of the interface, and ℓ is the lateral distance between

different points on the interface. The the height-height correlation function obeys the scaling

ansatz [6]

𝐶 (ℓ, 𝑡) ∼ ℓ 2Z𝑐(ℓ/𝑡1/𝑧c), (5.6)

where 𝑐(𝑥) is constant for 𝑥 ≪ 1 and 𝑐(𝑥) ∼ 𝑥− 2Z , for 𝑥 ≫ 1. In growth models with

anomalous behavior, the global roughness (𝛼) and dynamic exponents (𝑧) calculated from the

interface width function differ from Z and 𝑧c calculated from the height-height correlation

function [298, 251]. In these models, the scaling function 𝑐(𝑥) can be different from constant

for 𝑥 ≪ 1, and the scaling relation for the height-height correlation function becomes [298,

115]

𝐶 (ℓ, 𝑡) ∼ 𝐶 (1, 𝑡)ℓ 2Z𝑐(ℓ/b (𝑡)), (5.7)
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where b (𝑡) = [𝑡/𝐶 (1, 𝑡)]1/𝑧c
. The average step height, 𝐶 (1, 𝑡), grows as

𝐶 (1, 𝑡) ∼ 𝑡 2_. (5.8)

This modified scaling ansatz, Eq. 5.7, implies 𝛼 = Z + _𝑧/2(1 − _) and 𝑧 = 𝑧𝑐/(1 − _) [115].

For 𝑡 ≪ 𝑡𝑠 the value of the local width function 𝑤(𝑙, 𝑡) increases with time with the growth

exponent 𝛽 as

𝑤(𝑙, 𝑡) ∼ 𝑡𝛽 for 𝑡 ≪ 𝑡𝑠 . (5.9)

Structure factor

The above real-space analysis takes into account all wavelengths, including short ones,

which indicates that finite-size effects can be expected. As a solution, the power-law

behavior of the power spectrum of the height fluctuations where only long-wavelength modes

contribute to the scaling behavior should be analyzed. To calculate the structure factor,

𝑆(𝑘, 𝑡) = ⟨ℎ̂(𝑘, 𝑡) ℎ̂(−𝑘, 𝑡)⟩, the 𝑘th Fourier mode ℎ̂(𝑘, 𝑡) needs to be evaluated.

The Family-Vicsek scaling form of the structure factor can be then given as

𝑆(𝑘, 𝑡) = 𝑘−(2𝛼+1)𝑠(𝑘𝑡 1
𝑧 ), where (5.10)

𝑠(𝑢 = 𝑘𝑡
1
𝑧 ) =


const for 𝑢 ≫ 1;

𝑢2𝛼+1 for 𝑢 ≪ 1.
(5.11)

Here, 𝛼 is the global roughness exponent and 𝑠(𝑢 = 𝑘𝑡
1
𝑧 ) the scaling function. Systems with

different local and global roughness exponents represent what is known as anomalous roughen-

ing [299]. This phenomenon has been observed in various growth models [300, 301, 302] and

experiments [303, 304, 87]. Two known types of anomalous roughening are intrinsic anoma-

lous roughening, where 𝛼loc < 1 and 𝛼 > 𝛼loc , and superroughening, where 𝛼 > 1 and
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𝛼loc = 1 [305, 299]. In such systems the scaling function, 𝑠(𝑢), has the general form

𝑠(𝑢 = 𝑘𝑡
1
𝑧 ) =


𝑢2(𝛼−𝛼s) for 𝑢 ≫ 1;

𝑢2𝛼+1 for 𝑢 ≪ 1,
(5.12)

where the spectral roughness exponent, 𝛼s, is independent from the global roughness exponent.

In system with intrinsic anomalous roughening, 𝛼s = 𝛼loc < 1, and 𝛼s is different from global

roughness exponent, 𝛼.

5.3.2 Chi-squared minimization

Chi-squared minimization was used to determine the slope and the 𝑦-intercept of the line that

best fits the data. As every data point in our case was measured ten times, there is a standard

error 𝜎𝑖 that can be associated with individual points in the graphs at different times or lengths.

The model’s prediction is a lin-lin or log-log straight line 𝑓 (𝑥) = 𝑏 + 𝑎 𝑥 with parameters 𝑎 and

𝑏. The Chi-squared function is calculated by summing the squares of the differences between

the model’s prediction and the observed data 𝑦𝑖, then dividing by the data’s variance. It is

defined as

�̃�2 =

𝑁d∑︁
𝑖=1

(𝑦𝑖 − 𝑓 (𝑥𝑖; 𝑎, 𝑏))2

𝜎2
𝑖

, (5.13)

where 𝑁d is the total number of data points. The optimal values for the model parameters 𝑎

and 𝑏 are obtained by minimization of the chi-squared function. Goodness of fit, the p-values,

are calculated from the chi-squared probability function 𝑄(𝜒2 |𝑁d − 2) corresponding to the

probability of accepting the null hypothesis of obtaining the same model parameters if the

experiment was performed numerous times with identical setup. A p-value near unity indicates

that the fit is good, whereas a small p-value indicates that the fit is poor.
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Figure 5.3: Interface velocity calculated from the time evolution of the mean colony radius
(⟨𝑅⟩) and the mean interface height (⟨ℎ⟩) for radially (circles) and linearly (triangles) expand-
ing interfaces, respectively. For units, see Table 5.1.

5.4 Results

Interface velocity

For both linear and radial colonies at low disorder densities, the interfaces move at a constant

velocity and do not become pinned by disorder, Figure 5.3.

In the case of linear interface at weak cell-cell adhesion strength, the interface moves at

the velocity of ⟨𝑣⟩ = 1.82 ± 0.02. At strong cell-cell adhesion strength the velocity drops to

⟨𝑣⟩=0.74 ± 0.02.

In radial interface growth, the velocities are higher, ⟨𝑣⟩ = 2.19 ± 0.03 at weak cell-cell

adhesion strength, and ⟨𝑣⟩=1.86 ± 0.02 in the case of strong adhesion strength.

Two cases deserves special attention: First, in linear growth with weak cell-cell adhe-

sion and high disorder density, the growth slows down and there is a crossover from ⟨𝑣⟩1 =

1.06 ± 0.03 at short times to ⟨𝑣⟩2 = 0.73 ± 0.07 at late times. Second, in the case of weak
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adhesion strength and high disorder density in circular expansion, the colonies develop a chi-

ral morphology in which the branches proliferate and get pinned over time, preventing the

definition of a circular interface and the evaluation of its velocity.

Fractal dimension

The fractal dimensions of interfaces were evaluated using the box-counting method, Fig. 5.4.

As a general trend, the fractal dimensions of the linear interfaces are slightly larger compared

to the circular ones. In addition, the fractal dimensions here are slightly higher than those in the

absence of quenched disorder [14]. Table 5.3 lists the fractal dimensions in the current study,

and several past experiments and simulations under different conditions.

The one outlier regarding the fractal dimension is the system that develops chiral mor-

phology, that is, the circularly growing system with high disorder density. The result is 𝑑f =

1.74 ± 0.06. This value is within the margin of error to computer simulations of the diffusion

limited aggregation (DLA) fractal model with 𝑑DLA
f = 1.71 [306, 307]. This chiral morphol-

ogy has no well-defined interface but rather a branched structure, and it has been observed, for

example, in bacterial growth on agar plates with a low nutrient concentration [308, 309, 310].

Roughness exponents for linear interfaces

The interface roughness, 𝑤(𝑙, 𝑡), was evaluated from Eq. 5.9. For linear interface growth with

quenched disorder, increasing the cell-cell adhesion strength or the disorder density resulted in

higher growth exponents (𝛽) than in the absence of disorder, see Ref. [14] and Table 5.3. The

local roughness exponents, 𝛼loc, were obtained from Eq. 5.4. The exponents have the same

value at weak adhesion strength both low and high disorder density. At strong adhesion strength

and low disorder density, 𝛼loc increases slightly, Table 5.3. These local roughness exponents

are also less than what has been obtained from simulations without quenched disorder, see

Ref. [14] and Table 5.3.

The global roughness exponents (𝛼) were calculated via structure factor analysis, Eq. 5.11.
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Figure 5.4: Fractal dimension (𝑑f) determined by plotting box counts vs. box size for the
linear interface (triangles) 1) at weak (red triangles) and 2) at strong (orange triangles) adhesion
strength, and 3) at weak cell-cell adhesion in high disorder density (purple triangle). For the
radially expanding interface (circles) 1) at weak (green circles) and 2) strong (blue circles) cell-
cell adhesion, and high disorder density (violet circles). The colony fractal dimension, (𝑑col

f ),
for colony expansion at weak cell-cell adhesion began with a single cell in the centre of a box
on a substrate with a high density of quenched disorder. This system does not have a dense
and round morphology, instead it forms slowly to a chiral morphology with branched structure
until the colony interface becomes pinned with the disorder on the substrate. The colony fractal
dimension is very close to the DLA fractal model, 𝑑f = 1.71.
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The results are shown in Fig. 5.5. As in the case of 𝛼loc, the global roughness exponents have

lower values than those from simulations without quenched disorder [14], see Table 5.3. The

values are in the same range and independent of the adhesion strength and disorder concentra-

tion, whereas for linear colony growth in media without quenched disorder [14], the value of

the global roughness exponent depends on the adhesion strength, see Table 5.3.

Figure 5.6 shows the correlation exponent (Z) defined via Eq. 5.5. Interestingly, the expo-

nent is the same in all cases for linear growth, independent of the disorder density or cell-cell

adhesion, Table 5.3. The scaling regime, however, increases as cell-cell adhesion increases.

The correlation exponent was also determined in the absence of disorder based on the data

from Ref. [14]. In that case, the correlation function shows a crossover between two exponents

both at weak and strong cell-cell adhesion, Table 5.3. For shorter scales, the exponents are

within the margin error to the value Zweak = 0.53 obtained in the presence of disorder. For

longer scales, the exponent crosses over to about Z ≈ 0.32.

The scaling exponents of linear interface growth at low disorder density at weak adhesion

strengths are compatible with KPZ scaling exponents, whereas the global roughness exponent

of linear interface growth at weak adhesion strengths in media without quenched disorder is

greater than the KPZ global roughness exponent, see Table 5.3.

Roughness exponents for radial growth

Next, we determine the scaling exponents for radially expanding interfaces. As with linear

interfaces, the presence of disorder leads to higher growth exponents (𝛽) compared to the cases

in the absence of disorder, Table 5.3. Similarly to linear colony growth, the local roughness

exponents (𝛼loc) are in the same range, but somewhat smaller than without disorder [14], see

Table 5.3.

The global roughness exponents (𝛼) were calculated via structure factor analysis, Eq. 5.11.

Similar to linearly expanding interfaces, for the radially expanding interface in media with

quenched disorder, the global roughness exponents are in the same range and independent
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Figure 5.5: The structure factor (Eq. 5.10) measured at three different times, green: long time;
orange: intermediate time; blue: short time, and different conditions (indicated by line type;
legend). (a) For the linear interface: Solid lines: strong cell-cell adhesion and low disorder
density; dashed lines: weak adhesion, low disorder density; dotted lines: weak adhesion, high
disorder density. The black dashed line with a slope of = −2.0 is drawn to guide the eye. (b)
for the radial interface at low disorder density: Solid lines: strong cell-cell adhesion; dashed
lines: weak adhesion. The black dashed line with a slope of = −2.26 is drawn to guide the eye.
The global roughening exponent for each case is reported in Table 5.3. For units, see Table 5.1.



5.4. Results 125

Table 5.3: Interface fractal dimension (𝑑f), global (𝛼) and local (𝛼loc) roughness exponents,
correlation function exponent (Z ; Eq. 5.5), growth exponent (𝛽), and average step height ex-
ponent (_), in different configurations with different cell-cell adhesion stiffness strengths, and
quenched disorder densities, see Tables 5.1 and 5.2. For the DLA-like chiral geometry, the
fractal dimension is the colony fractal dimension. The exponents for the well-knows cases of
KPZ, qKPZ and MBE for one-dimensional interfaces are also given for reference. † indicates
experiments in heterogeneous media and ∗ indicates the crossover with two different regimes.

Configuration Adhesion 𝑑f 𝛼 𝛼loc Z 𝛽 _

Kardar-Parisi-Zhang (KPZ) [5] - - 1/2 1/2 - 1/3 -
quenched KPZ (qKPZ) [289] - - 3/4 3/4 - 3/5 -
Molecular beam epitaxy (MBE) [86] - - 3/2 1.0 - 3/8 -
linear interface at high disorder density weak 1.33 ± 0.06 0.50 ± 0.03 0.53 ± 0.05 0.53 ± 0.01 0.49 ± 0.07 -
linear interface at low disorder density weak 1.34 ± 0.03 0.52 ± 0.04 0.53 ± 0.02 0.53 ± 0.01 0.33 ± 0.08 -
linear interface strong 1.28 ± 0.07 0.47 ± 0.07 0.55 ± 0.05 0.53 ± 0.01 0.67 ± 0.07 -
circular interface at high disorder density weak 1.74 ± 0.06 - - - -

DLA-like chiral geometry -
circular interface at low disorder density weak 1.23 ± 0.02 0.64 ± 0.04 0.60 ± 0.02 0.58 ± 0.01 0.46 ± 0.13 -
circular interface strong 1.23 ± 0.01 0.63 ± 0.04 0.62 ± 0.02 0.58 ± 0.01 0.47 ± 0.13 -
Mazarei et al. [14] (linear interface) weak 1.22 ± 0.01 0.75 ± 0.04 0.59 ± 0.01 0.51 ± 0.01∗ 0.28 ± 0.01 0.02 ± 0.01

0.31 ± 0.03∗

Mazarei et al. [14] (linear interface) strong 1.26 ± 0.01 0.52 ± 0.02 0.62 ± 0.02 0.55 ± 0.01∗ 0.25 ± 0.02 0.01 ± 0.01
0.33 ± 0.04∗

Mazarei et al. [14] (circular interface) weak 1.13 ± 0.01 0.95 ± 0.04 0.66 ± 0.01 0.59 ± 0.01∗ 0.40 ± 0.04 0.37 ± 0.01
0.32 ± 0.01∗

Mazarei et al. [14] (circular interface) strong 1.21 ± 0.01 0.71 ± 0.02 0.70 ± 0.01 0.60 ± 0.01∗ 0.42 ± 0.06 0.47 ± 0.01
0.35 ± 0.01∗

Bru et al. [13] (circular interface) - 1.12−1.34 ± 0.03 1.5 ± 0.15 0.90 ± 0.10 - 0.38 ± 0.07 -
Huergo et al. [89] (circular & Vero Cells) - 1.20 ± 0.05 0.5 ± 0.05 - - 0.32 ± 0.04 -
Huergo et al. [4] (circular & HeLa Cells) - 1.20 ± 0.05 0.5 ± 0.05 - - 0.32 ± 0.04 -
Huergo et al.† [83] (linear & Vero Cells) - - 0.63 ± 0.03 - - 0.75 ± 0.05 -
Vicsek et al.† [82] (linear interface) - - 0.78 ± 0.07 - - - -
Galeano et al.† [253] (circular interface) - 1.18 ± 0.02 0.86 ± 0.04 - - - -
Rapin et al.† [279] (linear interface) - - - - 0.58∗ -

0.13 − 0.25∗ -

of the adhesion strengths, where, as previously mentioned, the global roughness exponent is

dependent on the adhesion strength in the absence of quenched disorder, see Fig. 5.5 and Ta-

ble 5.3.

The global roughness exponents in media with quenched disorder, similar to linearly ex-

panding interfaces, are smaller than the global roughness exponents for the radially expanding

interface in media without quenched disorder [14], see Table 5.3.

The correlation exponents (Z) were obtained by determining the height-height correlation

function, Eq. 5.5, shown in Fig. 5.6, and they have the same value at both strong and weak

adhesion strengths, see Table 5.3. Figure 5.6 shows the height-height correlation functions for

radially expanding interfaces in media without quenched disorder, and show a crossover with
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two different correlation exponents for both weak and strong cell-cell adhesion, see Table 5.3.

5.5 Discussion and conclusions

Comparison of the present data with previous results for epithelial tissue growth in media

without quenched disorder [14] shows that quenched disorder can significantly alter the mor-

phology of the interface and cell colony. It also affects cell motility and duplication rate in the

colony, resulting in higher fractal dimensions and slower spreading rates. This is consistent

with previous experiments for cell colony growth in plain and gel media [311, 83].

At the limit of high disorder concentration, colony growth exhibits branched chiral

morphologies and the fractal dimension is quite close to the fractal dimension of clusters in

diffusion-limited aggregation [306]. This has also been observed in bacterial growth on agar

plates at low nutrient concentrations [308, 309, 310]. In the absence of quenched disorder,

increasing adhesion strength affects the colony morphology and increases the interface fractal

dimension [14]. Here, we have shown that the fractal dimension is independent of the cell-cell

adhesion strength for colony expansion on heterogeneous substrates.

In the absence of disorder, adhesion strength is a crucial parameter that generates both KPZ

and MBE-like scaling for colony expansion at strong and weak cell-cell adhesion strength,

respectively [14]. Here, we have demonstrated that in the presence of quenched disorder, the

local and global roughness exponent are independent of adhesion strength. This indicates that

the effect of adhesion strength on interface roughness and morphology become insignificant

on heterogeneous substrates. Disorder does, however, alter the growth exponent. The growth

exponent for linear colony expansion at strong adhesion are within the margin of error of those

obtained by Huergo et al. in experiments of linear interface expansion of Vero Cells in a gel

medium [83]. However, in the case of the linear interface expansion at weak adhesion with

both high and low disorder, the growth exponent is different from the one reported by Huergo

et al.



5.5. Discussion and conclusions 127

100 101 102 103

101

102

103

104

105

C(
)

slo
pe = 1.06

Weak (high disorder density)
Weak (low disorder density)
Strong

100 101 102 103

100

101

102

C(
)

slo
pe

 =
 1

.11

slo
pe = 0.66

slo
pe

 =
 1

.0
2

slo
pe = 0.62

Weak
Strong

a) b)

100 101 102 103
100

101

102

C(
)

slo
pe

 =
 1

.1
6

Weak
Strong

100 101 102 103

100

101

102

C(
)

slo
pe

 =
 1

.2
0

slo
pe = 0.71

slo
pe

 =
 1

.1
9

slope = 0.65

Weak
Strong

c) d)

Figure 5.6: The height-height correlation function vs length (ℓ) for the linear interface in a
medium (a) with quenched disorder (b) without quenched disorder, and for the radial interface
in a medium (c) with quenched disorder (d) without quenched disorder at (green) long (orange)
intermediate (blue) short time at different adhesion strengths and disorder densities: Solid
lines: strong cell-cell adhesion and low disorder density; dashed lines: weak adhesion, low
disorder density; dotted lines: weak adhesion, high disorder density. The correlation function
exponents, Z , are reported in the Table 5.3. For units, see Table 5.1.
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At low disorder density and weak adhesion, colony expansion from a single line showed

KPZ-like scaling. This is in contrast to the situation without disorder [14]. Although, in-

creasing adhesion strength and disorder density does not affect the local and global roughness

exponents, the higher disorder density leads to higher growth exponents and makes the scaling

behavior of this configuration unclassified. The systems with radial growth at both weak and

strong adhesion in media with low disorder density do not show any scaling universality class

behavior. This is in contrast to the case of weak adhesion strength in the absence of disorder

that displays MBE-like behavior [14]. These results indicate that the concepts of scaling be-

havior in characterizing cell colony growth should be used with caution due to sensitivity to

parameters such as disorder concentration and cell-cell adhesion strengths.

The growth exponents for linear and radial interface growths differ for both strong and

weak cell-cell adhesion. The fractal dimensions for radial interfaces are lower than the fractal

dimensions for linear interfaces, and the local and global roughness exponents are greater for

the radial interface than for the linear interface. The substrate topologies for linear and radial

colony expansions are different. The radial configuration grows on a plane, whereas the linear

configuration grows on a cylinder because of the periodicity in one direction. Both the plane

and the cylinder have the same Gaussian curvature. However, the first homotopy groups of a

plane and a cylinder are different, despite the fact that there is no local difference between the

two. A continuous contraction to a point is possible for every closed loop in the plane, but only

for some closed loops on the cylinder.

Independent of adhesion strength and geometries studied here, interface growth in media

without quenched disorder does not belong to the superroughening or the intrinsic anomalous

roughness subclasses reported in Refs. [305, 299, 87, 303, 300, 301]. The average step

height exponent, _, and the modified scaling ansatz for the height-height correlation function

(Eq. 5.7) [115, 298], are also not applicable to the type of anomalous behavior in interface

growth in media without quenched disorder. The results imply the existence of a new type of

anomalous behavior, perhaps necessitating a new scaling ansatz for the interface width scaling
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relation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have studied the growth kinetics and interface roughness dynamics of cell

population growth using a kinetic division model, CellSim3D, for deformable cells in medium

with and without quenched disorder. CellSim3D is a 3D cell simulator utilized for studying

cellular tissue mechanics. In the first version of the package [10], cells were modelled as me-

chanical objects that can have a symmetric random division and mechanical interaction with

their environment within a box with rigid walls. The force field was composed of intramem-

brane forces, cell-cell adhesion and repulsion, cell-cell and cell-environment friction, internal

pressure, and random forces for Brownian motion.

In this study, we have implemented several new features to the previous version of Cell-

Sim3D. In the current version of CellSim3D, the boundary conditions have been expanded to

include periodic boundary conditions and Lees-Edwards boundary conditions, enabling the

simulation of bulk systems in a simple shear flow. Additionally, the current version enables

asymmetric division rule. The addition of this division rule to CellSim3D makes it permissi-

ble to have two daughter cells with different sizes after the cell division [312]. This type of

cell division is essential for the differentiation of stem cells into cells with distinct mechanical

130
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properties, morphology, and biological function [209, 210, 211].

Apoptosis of cells has also been implemented in the current version of CellSim3D. It is

modeled as a Poisson process in which the average interval between the events remains con-

stant, and each cell undergoes apoptosis at a random time, regardless of preceding events. The

latest version also offers bicellular tissue simulations in which cells can differ in cell-cell and

cell-environment friction, size, internal pressure, growth rate, division threshold size, mem-

brane stiffness, and apoptosis characteristics such as shrinking rate. Finally, cells can take

ellipsoidal shapes in addition to the spherical shape that was the only option in the previous

edition.

The current software version can operate on multiple GPUs with MPI communication be-

tween GPUs. The multi-GPU version allows us to boost throughput by performing several

processes in parallel on multiple GPUs and by processing larger data volumes than a single

GPU’s memory can support. Both spatial domain decomposition and processor communica-

tion are based on the algorithm defined in Ref. [12]. Using OpenMPI libraries, a CUDA-aware

MPI version of CellSim3D is also available. This version provides direct GPU-to-GPU com-

munications made possible by the NVIDIA GPUDirect technology [236], reducing the data

communication time among processors.

Decades have been devoted to the study of the interface roughness scaling of growing

epithelial tissue, but the question of the universality of colonies’ interface roughness scaling

remains open. It is intriguing to speculate on what would happen to adaptive evolution if

cell colony expansion dynamics were forced into a single dynamical universality class. The

previous findings showed that nutrition, apoptosis, substrate heterogeneity, and mechanical

stresses form a range of sources cause changes in both quantitative and qualitative tissue growth

behaviors, see Refs. [32, 258, 52].

Different scaling phenomena, such as the Kardar-Parisi-Zhang (KPZ) and Molecular Beam

Epitaxy (MBE) universality classes, and the complete absence of universality, have been re-

ported in different research [87, 89, 4, 83, 254]. It is plausible to believe that the tissue’s me-
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chanical properties influence both the effectiveness of evolution and the adaptability of growth

dynamics. In this thesis, we investigated the effect of mechanical parameters on the scaling be-

haviors of epithelial tissue growth and settled the apparent scaling disagreement in the previous

experimental findings [87, 89, 4, 83].

We demonstrated that the interface roughness scales in the MBE-like universality class

under the conditions of weak cell-cell adhesion and isotropic colony growth. Experimental

studies by Brú et al. [13, 87] on the surface scaling of epithelial tumors in vitro and in vivo

confirm this finding. In contrast, a KPZ-like scaling is observed in line configuration colonies

with strong cell-cell adhesion. Experiments conducted by Huergo et al. confirm this finding [4,

88, 89].

Regardless of the growth scaling behavior, the fractal dimensions of the interface ranged

between 1.13 and 1.26 in all of the examined examples of cell colony growth in medium

without quenched disorder. This is consistent with earlier experimental studies on epithelial

tissues [13, 88, 89, 4, 253]. However, for both circular and linear configurations, the interface

fractal dimension was shown to be slightly higher under conditions of strong cell-cell adhesion.

This is consistent with the findings of Torres Hoyos et al. [252], who discovered that malignant

and invasive tumors with less cell-cell adhesion have a smaller fractal dimension than benign

tumors with higher adhesion among cells.

All examples of radial expansion and line growth with varying adhesion parameters re-

vealed linear expansion at a constant rate. In the experimental studies, Brú et al. [13] dis-

covered that radially growing cell colonies initially develop exponentially and subsequently

linearly with time. Similarly, Huergo et al. [89, 4] observed that once the cell population ex-

ceeds 700–1,000 cells, radially expanding colonies grow at a constant velocity, and the line

configuration expansion is also governed by the law of constant velocity [88]. These findings

directly contradict the Gomperzian model of cancer growth, see Ref. [262]. This suggests that

cells are partially contact-inhibited and that the majority of activity occurs within a narrow

strip along the interface. We also observed that increases in cell-cell adhesion decrease frontal
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velocities in both linear and radial configurations.

We observed that the cell-cell adhesion and the global roughness exponent have an in-

verse relationship. As adhesion strength increases, the exponent of global roughness decreases.

Furthermore, we showed that the global roughness exponent is insensitive to changes in cell-

medium friction, intermembrane friction, symmetric and asymmetric types of cell division, and

having two different types of cells with different cell membrane stiffness in a radially expanding

system.

In addition, the development of epithelial tissues in a medium with quenched disorder in

both a linear and radial configuration was analyzed. We studied the situation where the dis-

order density is just below the critical density at which the interface becomes trapped by the

disordered substrate. Under such circumstances, the velocity of the interface is constant from

the beginning. In both linear and radial interface growth at both strong and weak adhesion

strengths, the fractal dimension of the system in a medium with quenched disorder was greater

than the fractal dimension of the interface in a medium without quenched disorder. We also

found that, in contrast to colony growth in medium without quenched disorder, the fractal di-

mension of the colony interface does not increase when the strength of cell-cell adhesion is

increased.

We found that both the local and global roughness exponents of radial and linear interfaces

are smaller when quenched disorder is present than when it is not. We also found that in the

presence of quenched disorder, the growth exponent is higher than in the absence of quenched

disorder. The values of the local and global roughness exponents in colony expansion on

a heterogeneous substrate are found to be unrelated to cell-cell adhesion strength, while the

growth exponent is found to still be dependent on adhesion strength.

We also examined cell proliferation in radially expanding colonies in a disordered medium

at weak cell-cell adhesion strength at high disorder density. At low disorder density, the

colonies maintain their spherical shape, and the interface advances at a slow and steady rate.

However, at high disorder density, the disordered substrate pins the interface. Under this con-
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dition, colonies form slowly into chiral morphologies with branching structures, and their

colony fractal dimension values are in close accordance with simulations of the DLA frac-

tal model [306], as observed by experimental studies of bacterial growth on agar plates under

conditions of low nutrient concentration [313, 81, 93].

We discovered that the substrate topology influences both the interface roughness expo-

nents and fractal dimension. The radial interface growth has higher local and global roughness

exponents than the linear interface growth. The interface fractal dimension is smaller for the

radial than the linear colony expansion. Due to periodicity in only one direction, the linear con-

figuration expands along the surface of a cylinder, whereas the radial configuration expands on

a flat plane. A plane and a cylinder have distinct first homotopy groups. Every closed loop

in the plane can undergo a continuous contraction to a point, whereas only a subset of closed

loops on the cylinder can continuously contract to a point.

Many studies have been conducted in recent decades to identify the fundamental charac-

teristics of cell and tumor growth [13, 4, 314, 315, 316, 91]. Understanding the fundamental

mechanisms of tumor growth is crucial for comprehending how tumors grow and spread, which

aids in the development of novel diagnostic and treatment techniques. Previous experimental

studies have reported different scaling universality classes, including KPZ and MBE, for tumor

interface roughness [13, 87, 89, 4, 253]. In each of these universality classes, the underlying

surface growth mechanism is distinct. We indicate that the underlying mechanism of surface

growth in tumor progression cannot be described by a single scaling universality class and

strongly depends on multiple factors, including cell-cell adhesion and substrate heterogeneity.

6.2 Future Work

6.2.1 Cell Division Rules

One of the important mechanism among the many ways multicellular organisms regulate the

topology and geometry of their tissues is the orientation of cell division planes. The current
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version of CellSim3D uses a random direction chosen by sampling a unit vector from a sphere

to find the normal vector to the cell division plane. In symmetric division, the plane of cell

division crosses through the center of the mass of the cell; in asymmetric division, the plane

is displaced from the center, causing the cell to divide into two different sizes. The division

rule can also be done due to the geometrical rule where the division plane is along the shortest

path [317], and the mechanical rule where the division plane is along the maximal tension

axis [318].

In order to implement the geometrical hypothesis, we can use a method similar to the

shortest path version of Errera’s rule, picking the direction of division, ®n, based on how much

it reduces the cell shape [215, 318],

®n𝑡M𝐶 ®n = min{®u𝑡M𝐶 ®u}∥®u∥=1, (6.1)

where M𝐶 is the shape tensor of the cell. According to the mechanical hypothesis, the stress is

maximum along the division direction, ®n, which follows the following condition:

®n𝑡S𝐶 ®n = max{®u𝑡S𝐶 ®u}∥®u∥=1, (6.2)

where S𝐶 is the stress tensor derived from the energy density’s functional derivative with re-

spect to its strain [318].

6.2.2 Cell Polarity

In both the previous [10] and upgraded versions of CellSim3D, we assumed that cell adhesion

molecules (CAMs) are always uniformly distributed over the cell surface. However, proteins

and other biological components are not distributed equally throughout the surface of a polar-

ized cell. Polarity in a cell determines the position and function of adhesion molecules [263,

264, 265]. Cell migration [319], differentiation [320], and maybe even division [321] are just

a few of the processes that are affected by cell polarity. Polarized cells may exhibit directional
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differences in their mechanical properties and cell-cell interactions.

In cell models such as the Vertex model [78] and the Cellular Potts Model [322] the standard

way to introduce polarity is to define a polarity vector P̂. In the current version of CellSim3D,

the adhesion spring constant is represented as a constant across all cell nodes. Alternately, we

can make it depend on the orientation of the node within the cell. Consequently, the spring

constant 𝑘 𝐴 can be expressed as 𝑘 𝑖𝑛𝑡𝑒𝑟 = 𝑘 𝐴 (r̂𝑖 · P̂𝑚) for any 𝑟𝑖 such that r𝑖 = x𝑖 − x̄𝑚, where x̄𝑚

is the center of mass of the cell m. Hence, intermembrane forces become attractive if they act

in the direction of the polarity vector, and repulsive if they act in the opposite direction. Other

parameters, such as the coefficients of intermembrane friction (𝛾𝑖𝑛𝑡), can also be extended in

the same manner.

6.2.3 Multicellular Tissue Simulation

During embryonic development, biological tissue structures form as a result of complex mul-

ticellular processes. To know and understand how diverse multicellular behaviors affect the

development of tissue morphology, it is necessary to model the mechanical interconnections

between diverse cellular activities in multicellular tissues. An object-oriented version of Cell-

Sim3D is the simplest approach to simulating cells of varying types and characteristics. To

ensure efficient object-oriented programming on the GPU without losing performance, various

considerations are necessary.

On single instruction, multiple data (SIMD) architectures such as GPU, object-oriented

programming can be slow due to inefficient memory access. The most time-consuming part of

processing data is moving it into and out of vector registers. In this case, creating a database

containing identical objects in the well-known Structure of Arrays (SOA) data layout will en-

hance memory access. As a result, all of a field’s values can be stored in a single array. SOA

is the usual data structure for GPU programmers to achieve optimal efficiency. There are a

few libraries and prototypes that enable object-oriented programming on GPUs without losing

performance, see Refs. [323, 324].
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6.2.4 Surface Analysis

Single-cell or collective motion can regulate cellular migration, both of which are dependent

on intercellular interactions and intracellular regulation. All of these processes contribute to

the growth of biological matter, such as the expansion of tissues and the invasion of tumors.

Using CellSim3D, we can examine how the mechanical properties of cells, as well as cell

division and apoptosis, affect the dynamics and morphology of tissue growth and the tumors

invasion. One-dimensional interface roughness is analyzed as a function of a group of these

factors including, cell-cell adhesion and cell-cell friction. Furthermore, we can study the effect

of other parameters, such as cell division, apoptosis rate, and cell shape, on tissue growth and

interface roughness.

Scaling exponents for systems with 𝑑 > 1 are frequently determined numerically due to

intractable mathematical difficulties. CellSim3D is a three-dimensional model capable of rep-

resenting three-dimensional tissues. As we did for the 1 + 1 system, we can simulate a three-

dimensional tissue to determine the roughness exponents and how they depend on mechanical

parameters such as cell-cell adhesion and cell-environment friction and other parameters, such

as cell division rules and cell division and apoptosis rates that influence tissue homeostatic

pressure.
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[163] M. Kotrla, A. Levi, and P. Šmilauer, “Roughness and nonlinearities in (2+ 1)-

dimensional growth models with diffusion,” Europhysics Letters, vol. 20, no. 1, p. 25,

1992.
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