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Abstract

We present new results on different aspects of quantum field theory, which are divided

into three main parts. In part I, we find and prove a new behavior of massless tree-level

scattering amplitudes, including the biadjoint scalar theory, the U(N) non-linear sigma

model, and the special Galileon, within specific subspaces of the kinematic space. We

also derive new formulas for the double-ordered biadjoint scalar and ϕp amplitudes, which

can be obtained as integrals over the positive tropical Grassmannian and under limiting

procedures on the kinematic invariants. This reveals surprising connections with cubic

amplitudes. We also present alternative versions of the formulas for ϕp amplitudes from

combinatorial considerations in terms of non-crossing chord diagrams. In part II, we inves-

tigate the generalization of quantum field theory introduced by Cachazo, Early, Guevara

and Mizera (CEGM) in 2019. We use soft limits to determine the number of singular

solutions of the generalized scattering equations in certain cases and propose a general

classification of all configurations that can support singular solutions. We also describe

the generalized Feynman diagrams that compute CEGM amplitudes. These are planar

arrays of Feynman diagrams satisfying certain compatibility conditions, and we propose

combinatorial bootstrap methods to obtain them. Finally, in part III, we analyze different

types of quark gluon plasmas in the presence of a background magnetic field using top-

down holographic models. We explore conformal and nonconformal theories as consistent

truncations of N = 8 gauged supergravity and identify a universal behavior in the N = 2∗

gauge theory.

Keywords: quantum field theory, scattering amplitude, Feynman diagram, CEGM am-

plitude, tropical Grassmannian, AdS/CFT, quark gluon plasma.
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Summary for Lay Audience

Quantum field theory provides an excellent mathematical framework for explaining nat-

ural phenomena. In recent years, new approaches have emerged, allowing for the discovery

of novel properties and alternative perspectives on the framework. This thesis investigates

various aspects of quantum field theory. Firstly, we focus on scattering amplitudes, the

primary physical observables of the theory that determine the likelihood of a scattering

process, and which are tested in particle accelerators. Our research identifies new proper-

ties of scattering amplitudes for massless particles, and introduces new formulas for their

computation using the positive tropical Grassmannian space. Our study is motivated by

the fact that obtaining new information on the behavior and structure of scattering ampli-

tudes is important in order to understand what makes such functions special and relevant

to the physical world.

In addition, we explore the recent CEGM generalization of quantum field theory. Its

physical relevance is still mysterious, but we study it with the aim of developing new tools

for learning more about nature. Specifically, we analyze solutions to the equations that

govern the CEGM formula and characterize the objects that compute the corresponding

generalized amplitudes from a more familiar quantum field theoretic perspective.

Finally, we use the AdS/CFT correspondence, a duality between a quantum field the-

ory and a gravitational theory, to study aspects of the quark gluon plasma, a state of

matter similar to that which prevailed in the early universe and that can be reproduced

in experiments. We identify a universal behavior in a theory with intrinsic scale which

partially resembles the theory of quantum chromodynamics. This enables us to gain a

better understanding of the properties of more realistic quark gluon plasmas.

Overall, this thesis presents new insights into quantum field theory observables, as well
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as exploring aspects of the CEGM generalization and the potential of the AdS/CFT duality

for enhancing our knowledge of the physical world.
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“For beauty is the only thing that time cannot harm. Philosophies fall away like sand,

and creeds follow one another like the withered leaves of Autumn; but what is beautiful is a

joy for all seasons and a possession for all eternity.”

Oscar Wilde

“I’ve dreamt in my life dreams that have stayed with me ever after, and changed my

ideas: they’ve gone through and through me, like wine through water, and altered the colour

of my mind. And this is one: I’m going to tell it — but take care not to smile at any part

of it.”

Emily Brontë
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Chapter 1

Introduction

An important part of all the observed natural phenomena can be explained from quantum

field theory. This theoretical framework seamlessly blends two foundational pillars of the-

oretical physics, quantum mechanics and special relativity, both of which were established

in the early 20th century. Quantum field theory provides the foundation for our under-

standing of interacting physical systems, and its many remarkable scientific achievements

include the prediction of the anomalous magnetic moment of the electron [173].

Among the most fundamental physical quantities we find scattering amplitudes, which

determine the probability of a scattering process to happen, and as such they serve as the

primary physical observables in quantum field theory. Scattering amplitudes can be tested

at high energy colliders like the Large Hadron Collider (LHC), and thus build important

bridges between theory and experiments. In fact, scattering of particles at the LHC is

what triggered the discovery of the Higgs boson in 2012 [1].

In 1949 Feynman and Dyson introduced a robust way for computing scattering ampli-

tudes perturbatively by summing over diagrams which make local interactions and unitary
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evolution in spacetime manifest [116, 100, 101]. Each of these diagrams represents a pos-

sible way the scattering could happen, and they evaluate to a mathematical expression.

These are known by the name of Feynman diagrams. They were originally introduced to

compute scattering between electrons and photons, described by the theory of quantum

electrodynamics (QED). Later on, Feynman diagrams were also used for calculating col-

lisions of other particles like quarks and gluons, which constitute the building blocks of

atomic nuclei, governed by the non-Abelian theory of quantum chromodynamics (QCD).

However, this diagrammatic approach turns out to be most of the time impractical

and, perhaps more crucially, it obscures properties inherent to scattering amplitudes. As

a prime example, Parke and Taylor proposed in 1986 an extremely compact formula for

the maximally helicity violating (MHV) sector of scattering amplitudes of gluons [176],

in contrast with the huge number of terms that would appear from Feynman’s method

due to the introduction of spurious terms. This important result opened the door for new

ideas for computing and understanding scattering amplitudes from different perspectives,

making new properties manifest at the cost of obscuring already known ones, and some

without even making any reference to spacetime [22]. In fact, it was in 2003, after Nair’s

work [171], when Witten introduced a groundbreaking method for computing scattering

amplitudes [206] by formulating the S-matrix of N = 4 super Yang-Mills (SYM) —a

supersymmetric “relative” of QCD— from correlation functions of a certain string theory

obtained by integrating over the moduli space of maps of punctured Riemann spheres

to twistor space CP3|4 [182, 73, 79, 82]. Another major breakthrough in the field was

due to Britto, Cachazo, Feng and Witten (BCFW) in 2005 [48], when they developed

recursion relations for constructing scattering amplitudes just from knowledge about the

their analytic structure, and other physical properties [35].

There has been an increasing interest in the study of massless particle scattering in the

2



last years, one of the reasons being the simplifications they evoke. But there is a more

fundamental motivation for studying them: most of the particles of the Standard Model

are effectively considered massless at high enough energies, with the exception of the Higgs

boson and probably the neutrinos1 [179, 121]. Therefore, gaining a deeper understanding

of the scattering of massless particles can be of significant physical importance.

1.1 S-matrices in QFT and CEGM amplitudes

One approach of particular interest for this thesis will come from the CHY formulation,

proposed by Cachazo, He and Yuan in 2013 [75, 76, 77, 78]. This is a unifying formula that

computes tree-level scattering amplitudes in arbitrary spacetime dimensions for different

theories of massless particles, like scalars, gluons or gravitons. The CHY formula does not

make use of Feynman diagrams, but is an integral defined in the moduli space X(2, n)2

of n points on a one-dimensional complex projective space CP1. This formula extended

Witten’s approach to formulate various quantum field theory amplitudes from a worldsheet

perspective. It has the form3

An =

∫
dµn IL IR

1Although the neutrinos were considered massless when the Standard Model of particle physics was
established.

2This space is most famously known as M0,n, the moduli space of genus zero Riemann surfaces with n
punctures.

3Throughout the thesis we will assume that momentum conservation holds, and will therefore not write
the amplitude as a distribution.
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where IL and IR are theory dependent “half-integrands”, making properties like the double

copy [37] manifest. The measure can be written as

dµn = (|ij||jk||ki|)2
∏

1≤a≤n
a̸=i,j,k

dσa δ (Ea) ,

with |ab| := σa − σb being the Plücker coordinates on X(2, n) and σa the position of the

punctures, and is independent of the choice of i, j, k [73]. A key element in the CHY

formula are the scattering equations

Ea :=
∑

1≤b≤n
b̸=a

sab
σa − σb

= 0 ,

with sab := (pa + pb)
2, which connect the space of kinematic invariants to X(2, n). These

equations can also be computed as the critical points of an SL(2,C) invariant potential

function

S =
∑

1≤a<b≤n

sab log|ab| ,

and have appeared in different contexts like in the tensionless regime of string scattering

[113, 114, 127, 126, 14]. The scattering equations completely localize the CHY integral on

their (n− 3)! solutions {σ(s)
a }s=1,...,(n−3)! and allow us to write the amplitude as

An =

(n−3)!∑
s=1

(|ij||jk||ki|)2

det
(

∂Ea

∂σb

) IL IR

∣∣∣∣∣∣
σa=σ

(s)
a

.

The weights of the measure and the half-integrands under SL(2,C) transformations on the

punctures make the CHY integral SL(2,C) invariant.
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There are plenty of theories known to have a CHY representation [78], and we will

study some of them in chapter 2 in order to prove a new behavior developed by scattering

amplitudes on certain subspaces of the kinematic space. The simplest scattering amplitudes

that admit a CHY representation are those of the biadjoint scalar theory [77]. This is a

theory with a U(N)×U(Ñ) flavour group and a scalar field in the biadjoint representation

with cubic interactions. Its tree scattering amplitudes can be color-decomposed [161] in

terms of partial amplitudes mn(α, β), which depend on two orderings α and β. In their

CHY representation, the half-integrands are given by the Parke-Taylor functions PT(α)

and PT(β), defined as

PT(12 · · ·n) = 1

|12||23| · · · |n1|
.

These biadjoint scalar amplitudes have also shown to be important e.g. as key elements in

the field-theory Kawai-Lewellen-Tye (KLT) relations between pure gravity and Yang-Mills

scattering amplitudes [153, 38, 40, 75, 76, 77, 168]. They can also be defined in terms of

Feynman diagrams or metric trees, as described later in chapters 2 and 3.

In 2019 Cachazo, Early, Guevara and Mizera (CEGM) proposed a natural generalization

of the scattering equations to higher dimensional projective spaces CPk−1 [71], showing

deep connections with tropical Grassmannians [195, 194, 140]. We will start exploring

this connection in chapter 3 for k = 2, which is when the generalization reduces to the

quantum field theory realm, where we will construct new formulas that compute scattering

amplitudes for various massless scalar theories.

The generalized scattering equations are now computed as the critical points of an

SL(k,C) invariant potential function

S(k) :=
∑

1≤a1<a2<...<ak≤n

sa1,a2,...,ak log|a1, a2, ..., ak| ,
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where sa1,a2,...,ak are completely symmetric rank-k tensors corresponding to generalized

kinematic invariants, which satisfy analogous momentum conservation and masslessness

conditions. The moduli space on which the generalized scattering equations are defined

can be written as a quotient of the Grassmannian G(k, n) by the torus action on each of

the columns of a matrix representative of a k-plane, i.e., X(k, n) := G(k, n)/(C∗)n, and

|a1, a2, ..., ak| can be thought of as Plücker coordinates on X(k, n). In chapter 4 we will

study the generalized scattering equations, and in particular their number of solutions.

The CEGM generalization begs for an analogous definition of the CHY integral for the

biadjoint theory, and in [71] CEGM proposed the following integral

m(k)
n (α, β) =

∫
dµ(k)

n PT(k)(α)PT(k)(β)

to compute a “higher-k amplitude”4, where the higher-k Parke-Taylor functions are defined

as

PT(k)(12 · · ·n) = 1

|12 · · · k||23 · · · k + 1| · · · |n1 · · · k − 1|
.

In chapter 4 we will give a more extensive review of this formula, including the measure

dµ
(k)
n , and in chapter 5 we will describe the analogous objects to Feynman diagrams that

compute these generalized CEGM amplitudes.
4Throughout this thesis we will use the terminology “higher-k amplitude”, “CEGM amplitude” or “gen-

eralized amplitude” to refer to the CEGM generalization of biadjoint amplitudes. But it is well to keep
in mind that there might exist an analogous generalization for other theories, especially after the recent
introduction of color factors [72]. The study of this possibility is, however, beyond the scope of this thesis.
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1.2 Holographic Quark-Gluon Plasmas

One of the peculiarities of QCD is that at low enough energies the theory becomes strongly

coupled, and quarks and gluons find themselves forming hadrons. This phenomenon goes

by the name of confinement, and in this situation perturbation theory is not useful anymore.

It is at much higher energies when the coupling becomes very small (at energies way above

a characteristic energy scale of roughly 300 MeV [207]) and perturbation theory can be

used. Moreover, deep in the past the universe was in a very high temperature state, one

in which quarks and gluons were deconfined and formed a strongly coupled state of matter

known as the quark gluon plasma (QGP). In fact, this plasma is currently created at

particle accelerators like RHIC or the LHC from high-energy collisions, where after some

time it cools down back to the hadronic phase.

It is therefore important to use nonperturbative methods for studying strongly coupled

non-Abelian plasmas if we want to have a better general understanding of QCD. For that

purpose, one can resort to one of the deepest discoveries in theoretical physics of the last

decades: the AdS/CFT correspondence, also known as holography or the gauge/string

duality [160, 204, 129, 8]. AdS/CFT is a conjectured duality between a quantum field

theory and a string theory living in a higher dimensional spacetime. The first example

of an AdS/CFT correspondence was due to Maldacena in 1997 [160], which relied on the

physics of D3-branes [178]. The duality involves N = 4 SU(Nc) SYM on 4-dimensional

Minkowski spacetime, which is a conformal field theory (CFT), and type IIB string theory

on AdS5 × S5. This duality is an example of a theory of quantum gravity, which can be

described in terms of an ordinary quantum field theory.

While N = 4 SYM is characterized by the coupling constant g and the rank of the gauge

group Nc (i.e. the number of colors), type IIB string theory on AdS5 × S5 is characterized
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by the string scale ls, in units of the curvature radius L, and Newton’s constant G. One

can show that the following relations between parameters follow5

L8

G
∼ L8

l8P
∼ N2

c ,
L4

l4s
∼ λ

where lP is the Planck length and λ ≡ g2Nc is ’t Hooft’s coupling constant. One of the

powers of AdS/CFT is that in the limit g → 0 and Nc → ∞, such that λ → ∞, the theory

simplifies and can be approximated by classical (super)gravity, i.e. described by Einstein’s

general relativity equations.

The duality suggests the following identity for the partition functions on both sides

ZCFT(ϕ) = Zstring(Φ|∂AdS) ,

where ϕ is a source on the CFT side and Φ|∂AdS = ϕ is the value of a string field Φ at

the AdS boundary. Note that ZCFT(ϕ) allows for the computation of correlation functions

of gauge invariant operators, and therefore includes all the physical information about the

theory. Moreover, in the large Nc limit the right hand side reduces to Zstring(Φ|∂AdS) ∼

exp[−Sgrav(ϕ)], where Sgrav(ϕ) is the on-shell supergravity action. This means that we can

study a strongly coupled gauge theory with a large number of colors, i.e. in the planar limit

[200], from a classical theory of gravity living in a higher spacetime dimension. Since S5

is a compact manifold, it is convenient to dimensionally reduce and get a tower of Kaluza-

Klein modes in AdS5. In this way the holographic principle is realized [201, 198, 44], with

the extra dimension in the bulk being related to the direction of the renormalization group

flow of the gauge theory.

Despite the fact that N = 4 SYM is different than QCD, e.g. in the number of
5Here we are omitting numerical factors, which are irrelevant for the argument.
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colors or in that it is conformal and highly supersymmetric, studying this theory and other

holographic models has led people to infer important ideas in the understanding of the

properties of the QGP and the strongly-coupled dynamics of QCD, including predictions

for real world physics [155, 141, 50, 33, 156, 163, 193, 188, 158, 57, 58, 51, 34, 91, 111,

23, 24, 145, 130, 59, 164, 166, 165, 202, 184]. In fact, by introducing a finite temperature

one obtains a deconfined thermal state for the strongly coupled gauge theory, keeping

some qualitative resemblance with QCD, which is nowadays understood to be dual to a

black brane background on the gravity side [128]. One can even generate confinement, e.g.

from D4-branes followed by compactifying one dimension on a circle [205]. In chapter 6

we will perform an analysis for different QGPs under a background magnetic field, using

holographic models for both conformal and nonconformal gauge theories with N = 4 SYM

as their ultraviolet fixed point. For example, we will focus on the N = 2∗ gauge theory,

which is a mass-deformed version of N = 4 SYM, and is therefore nonconformal.

The advancements quantum field theory has brought into the understanding of the

natural world can only be seen with admiration, and the unknown yet to be discovered is

approached with excitement. In this thesis we take a modest step towards a better un-

derstanding of some quantum field theoretic aspects, from both the perturbative and the

nonperturbative approach. The thesis is divided into three differentiated parts: part I con-

sists of chapter 2, in which we discover and study a novel behavior developed by scattering

amplitudes that we call 3-splits; and chapter 3, where we present novel formulas for com-

puting scattering amplitudes from the positive tropical Grassmannian Trop+G(2, n). In

part II we depart from the quantum field theory realm and analyze aspects of the CEGM
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generalization of quantum field theory, where we study the solutions of the generalized

scattering equations using soft limits in chapter 4, and in chapter 5 we describe the gen-

eralized Feynman diagrams that compute CEGM amplitudes for any k. Finally, in part

III we study strongly coupled QGPs from various holographic models under a background

magnetic field, whose analysis is presented in chapter 6.
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PART I

Scattering Amplitudes

The first part of the thesis will explore novel aspects of massless tree-level scattering am-

plitudes for different quantum field theories.

In the first chapter of this part we discover and present a novel behavior developed by

certain tree-level scalar scattering amplitudes, including the biadjoint, the U(N) non-linear

sigma model (NLSM), and the special Galileon, when a subset of kinematic invariants

vanishes without producing a singularity. This behavior exhibits properties which we call

smooth splitting and semi-locality. The former means that an amplitude becomes the

product of exactly three amputated currents, while the latter means that any two currents

share one external particle. We call these smooth splittings 3-splits. As they cannot be

obtained from standard factorization, they are a new phenomenon in quantum field theory

(QFT). Along the way, we also show how smooth splittings naturally lead to the discovery

of mixed amplitudes in the NLSM and special Galileon theories and to novel BCFW-like

recursion relations for NLSM amplitudes. Finally, we present a discussion of potential

future research directions based on the insights gained from our results.

In the second chapter we present new formulas for computing tree-level scattering ampli-

11



tudes as integrals over the positive tropical Grassmannian Trop+G(2, n), thus producing

a global Schwinger parameterization. In particular, we present formulas for the double-

ordered partial biadjoint scalar and for ϕ4 theories. The new formulas are obtained by

applying a limiting procedure on the kinematic invariants. We perform a combinatorial

study of this procedure, start the exploration of analogous formulas for general ϕp theories

and discover that ϕp amplitudes can be expressed as a sum of products of cubic amplitudes.

We also investigate physical properties like factorization and soft limits, and end with a

discussion on various ideas related with our results.
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Chapter 2

Smoothly Splitting Amplitudes and

Semi-Locality

2.1 Introduction

Unitarity and locality are the basic pillars of quantum field theory. Using them as con-

straints on the S-matrix allows for the construction of scattering amplitudes using recursion

relations such as the BCFW [48, 47, 46] or Berends-Giele [93] techniques. At tree-level1,

unitarity implies that scattering amplitudes have simple poles of the form 1/(P 2−m2+ iϵ),

with P the sum of momenta of a subset of particles participating in the process and m

the mass of a particle in the spectrum of the theory. Moreover, the residues are also com-

pletely determined to be the product of two smaller scattering amplitudes; this property is

called factorization. The original set of particles is partitioned into two sets, often called
1Instead of restricting to tree-level, the correct way to describe this is by saying that one-particle states

in the completeness relation imply the presence of poles. In this chapter we only work at tree-level so the
restriction is enough.
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“left” and “right”. The two amplitudes in the residue only share an “internal” particle, with

momentum P , which is taken to be on-shell, i.e. P 2 = m2. Now, locality is the statement

that tree-level amplitudes do not have any other kind of singularities which makes clear the

power of the constraints in their computation. There is an important caveat; unitary and

locality constrain singularities at finite momenta and unless emergent symmetries at large

momenta are present [19], there could be singularities at infinite momenta which prevent

the complete reconstruction of the amplitude [35, 110].

Scattering amplitudes in theories with color/flavour are dramatically simplified by the

color decomposition into partial amplitudes [93]. The main reason for the simplification

is that each partial amplitude can only contain a certain subset of all possible poles the

full amplitude can have. These are called planar poles. For the canonical ordering I =

(1, 2, . . . , n), the only possible poles are of the form 1/(pi + pi+1 + . . . + pi+m)
2. From

now on we restrict our attention to massless theories and only to the canonical ordering.

Therefore we will simply refer to it as the planar ordering.

Conventional wisdom would say that in regions where kinematic invariants of the form

(pi + pj)
2 vanish and are not planar then a partial amplitude would not have any inter-

esting behavior. In this chapter we show that in fact there are subspaces in the space of

kinematic invariants where some non-planar kinematic invariants vanish and the partial

amplitude becomes the product of lower point objects without becoming singular. We call

the resulting behavior of amplitudes a smooth splitting and the corresponding subspace of

kinematics invariants split kinematics.

Unlike standard factorizations, smooth splittings are semi-local, i.e., a particle can

participate in two of the factors. Each factor is not an amplitude but an amputated

Berends-Giele current (see e.g. [159]) as they possess one emerging leg which is off-shell.

The current is said to be amputated because the propagator corresponding to the off-shell
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leg is not present.

We find that amplitudes factor in exactly three pieces and we call the corresponding

behavior a 3-splitting. When one of the amputated currents only has two on-shell external

legs, it becomes trivial, i.e. it is a constant. In such degenerate 3-splits, all original particles

but one are either in the “left” or “right” currents while exactly one on-shell external particle

is in both. In general 3-splits, each pair of currents shares an external on-shell particle.

We call this phenomenon semi-locality.

A very important property of 3-splits is that they cannot be obtained from standard

unitarity or factorization arguments and thus they do not have any close analog within

the standard QFT literature. However, in the recent generalization of QFT amplitudes

known as CEGM amplitudes [71], analogous 3-split behavior is common but it appears as

the residue of a pole.

A simple way to define split kinematics is by using the structure of the matrix of

Mandelstam invariants with entries sa,b. Start by introducing three rows and columns

labeled by (i, j, k) with i < j < k with non-zero entries and not all three labels cyclically

adjacent. Without loss of generality we often set i = 1. This gives the matrix a “tic-tac-toe”

structure. In other words, the matrix now has nine chambers. Split kinematics simply sets

to zero the elements sa,b in the six non-diagonal chambers. A schematic representation is

given in figure 2.1.

Here the dark entries are non-zero while white entries are zero. Of course, since we are

dealing with massless particles any invariant of the form sa,a is zero and hence the white

diagonal.

There are exactly
(
n
3

)
− n 3-splits. Incidentally, this is also the dimension of the space

of kinematic invariants of generalized k = 3 CEGM amplitudes and in particular it is the
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Figure 2.1: Matrix of Mandelstam invariants sab for the n = 27 split kinematics (1, 10, 19),
having set to zero all sab’s in the unshaded regions.

number of planar basis elements, each of which characterizes a pole [107]. Degenerate 3-

splits are achieved when two of the labels (i, j, k) are consecutive in the canonical ordering.

The simplest non-trivial 3-split is obtained from the n = 6 biadjoint partial amplitude

m6(I, I) under the (1, 3, 5) split kinematics, i.e, by setting s24 = s46 = s62 = 0 and the

result is given by

m6(I, I)|split kin. =
(

1

s12
+

1

s23

)(
1

s34
+

1

s45

)(
1

s56
+

1

s61

)
. (2.1)

This example is discussed in detail in section 2.2. Here we only point out the semi-local

character of the expression since particle 3 participates in the first and second factor,

particle 5 in the second and third, and particle 1 in the third and first. It is also clear

that any of the three factors are obtained from a four-point (three on-shell) Berends-Giele

current by amputating the propagator of the off-shell leg. For example, in the first factor
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the off-shell leg has momentum PI = −p1 − p2 − p3 and P 2
I = s123 ̸= 0.

2.1.1 Main Results

Now we present the main results in the chapter. We show that on the (i, j, k) split kine-

matics subspace, the biadjoint partial amplitude becomes the product

mn(I, I)|split kin. = J (i, i+1, . . . , j−1, j)J (j, j+1, . . . , k−1, k)J (k, k+1, . . . , i−1, i). (2.2)

We further show that J (1, 2, . . . ,m) denotes an amputated current with the off-shell leg

carrying momentum −(p1 + p2 + · · ·+ pm).

Surprisingly, we find that not only biadjoint amplitudes exhibit smooth splitting but

so do non-linear sigma model (NLSM) [151] and special Galileon amplitudes [78]. The

special Galileon theory does not have color/flavor ordering and thus it seems to be outside

the scope of the construction. However, the derivative interactions manage to keep the

amplitude finite in the limit as split kinematics is approached. In both NLSM and special

Galileon amplitudes, smooth splitting produces currents in their corresponding extended

theories, as defined by Cachazo, Cha, and Mizera (CCM) [65]. In fact, the smooth splitting

behavior provides a new approach to discover the extended theories without resorting to

soft limits.

In very schematic form, NLSM and special Galileon amplitudes split as follows,

ANLSM
n (I)

∣∣
split kin.

= J NLSM(I) J NLSM⊕ϕ3

(I1|β1) J NLSM⊕ϕ3

(I2|β2) (2.3)

and

AsGal
n

∣∣
split kin.

= J sGal J sGal⊕ϕ3

(β1) J sGal⊕ϕ3

(β2) (2.4)
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where Ii and βi are planar orderings of certain subsets of particle labels. These formulas

are derived in section 2.4.

As explained above, having knowledge of the behavior of amplitudes in regions of the

space of kinematic invariants can be used to partially or totally reconstruct them. Split

kinematics provides novel regions that can be used in addition to unitarity to constrain

amplitudes. In fact, NLSM amplitudes are examples where standard recursive techniques

do not work [151]. This motivated the use of soft-limits in their recursive construction [87].

Here we show how smooth splitting leads to novel BCFW relations for NLSM amplitudes

that do not require knowledge of soft limits.

More precisely, the new BCFW construction induces split kinematics at two points on

the one-dimensional deformation space, chosen to be z = 1 and z = −1. We prove that

the following formula,

ANLSM
n (I) =

1

2πi

∮
|z|=ϵ

dz
ANLSM(z)

z(1− z2)
,

provides a recursion relation without contributions at infinity. As an example we obtain a

new formula for the six-point amplitude

ANLSM
6 (I) =

(s12 + s23 − s123)(s45 + s56)

s123
+

(s23 + s34)(s56 + s61 − s234)

s234
+

(s34 + s45 − s345)(s61 + s12 − s345)

s345
+ s34 + s45 − s345.

(2.5)

The chapter is organized as follows. We start in section 2.2 with examples that motivate

and illustrate smooth splitting and split kinematics. This kinematics generically leads to

smooth 3-splits but we also point out the border cases in which it produces smooth 3-

splits with only two nontrivial factors. In section 2.3, we study 3-splits in the biadjoint

theory. We prove the general formula in terms of three amputated currents using the CHY
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formalism. In section 2.4, we consider NLSM and special Galileon amplitudes. In section

2.5, we use smooth splittings to derive novel BCFW-like recursion relations for NLSM

amplitudes in which soft limits are not required. In section 2.6 we discuss relations to

soft limits, generalizations to other theories, soft triangulations and conncetions to CEGM

amplitudes.

2.2 Split Kinematics

The purpose of this section is to give a presentation of our main results with the biadjoint

theory as an example; further discussion and proofs are given in subsequent sections,

including extensions to other theories.

We first introduce split kinematics in Definition 2.2.1 for Mandelstam invariants si,j

and later for planar basis invariants si,i+1,...,j. We shall always assume that a triple (i, j, k)

has the cyclic order i < j < k.

Definition 2.2.1. Given any triple of distinct indices i, j, k that is not a (cyclic) interval

in {1, . . . , n} of the form (a, a + 1, a + 2), say with with 1 ≤ i < j < k ≤ n, the split

kinematics subspace is characterized by the following condition: sa,b = 0 whenever the pair

(a, b) interlaces the triple (i, j, k), having modulo cyclic rotation

a < i < b < j < k, or

a < j < b < k < i, or (2.6)

a < k < b < i < j.

For example, for n = 7 particles and the triple (1,3,6), the split kinematics subspace is
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cut out by the equations

s24 = 0, s25 = 0, s27 = 0, s47 = 0, s57 = 0.

We first formulate the notion of a smooth split in full generality, in the prototypical

case, the biadjoint scalar partial amplitude mn(I, I), and then show that only the case of

a smooth 3-split can be achieved by a suitable restriction of the amplitude to a subspace

of the kinematic space.

The definition of the biadjoint theory can be found e.g. in [78]. Here we only provide

the definition of mn(I, I) as it is our main object of study.

Definition 2.2.2. Let T be the set of all planar unrooted binary trees with n leaves. A

momentum vector, p ∈ R1,D−1 with p2 := p · p = 0, is assigned to each leaf such that

sab = (pa+ pb)
2 and p1+ p2+ . . .+ pn = 0. Given a tree T ∈ T , each edge e of T partitions

the leaves into two sets Le ∪Re = [n]. Clearly,

(∑
a∈Le

pa

)2

=

(∑
a∈Re

pa

)2

:= P 2
e .

The partial biadjoint amplitude then given by

mn(I, I) :=
∑
T∈T

1∏
e∈E(T ) P

2
e

, (2.7)

where E(T ) is the edge set of T .

Definition 2.2.3. For any d ≥ 2, a smooth d-split is a decomposition

mn(I, I)|split kin. = J (j1, . . . , j2)J (j2, . . . , j3) · · · J (jd, . . . , j1), (2.8)
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where each J (a, . . . , b) is an amputated current, with exactly one off-shell leg.

In fact, we claim that in Definition 2.2.3, only the case d = 3 is possible. Assuming

this for now, then we have the following cases.

1. No pair of labels is cyclically consecutive, that is

{(j1, j2), (j2, j3), (j3, j1)} ∩ {(1, 2), (2, 3), . . . , (n, 1)} = ∅.

In this case, all three factors are nontrivial amputated currents.

2. If exactly one pair is cyclically consecutive, say (j3, j1) = (j3, j3+1) (modulo n), then

J (j3, . . . , j1) = 1 and equation (2.8) reduces to

mn(I, I)|split kin. = J (j1, . . . , j2)J (j2, . . . , j1 − 1). (2.9)

3. If two pairs are cyclically consecutive, so the triple is a single cyclic interval (j, j +

1, j + 2), then no condition is imposed on the kinematics.

Evidently, the
(
n
3

)
−n nontrivial smooth 3-splits are in in bijection with the interior tripods

in a polygon with cyclic vertices, or equivalently, collections of triples (i, j, k) such that no

two pairs of indices are cyclically adjacent.

Now we show that only d = 3 can be achieved by restricting mn(I, I) to some subspace

of the kinematic space2.

The argument is very simple. First note that by equation (2.7), a biadjoint amplitude

mn(I, I) must have degree −(n−3) in the Mandelstam invariants (or in physics terminology,
2Here we are assuming that the sab are formal variables; later we shall specialize to the case when they

are inner products of momentum vectors.
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mass dimension −2(n− 3)). Now, an amputated current is nothing but an amplitude with

one leg off-shell, i.e. such that one of the corresponding momentum vectors does not have

zero Minkowski norm. Therefore the degree of a current agrees with that of an amplitude

with the same number of legs.

Supposing that we had a smooth d-split as in equation (2.8), then the degree of the

product would be

−
d∑

t=1

(jt+1 − jt − 1) = −(n− d), (2.10)

where the indices are cyclic modulo n, which matches the degree of mn(I, I) only when

d = 3. Thus, smooth d-splits cannot occur for d ̸= 3 as such.

2.2.1 Split Kinematics: Planar Poles

Here we describe how the conditions imposed by split kinematics translate into planar pole

decomposition. All relations between planar basis elements that occur when imposing split

kinematics have the form

sa1,a2,...,am = sa1,a2,...,ar + sar,ar+1,...,am ,

for a1 < ar < am modulo n. To state the criterion determining which planar poles decom-

pose in this way it is convenient to draw the n indices 1, . . . , n on the boundary of a disk.

Given a split (i, j, k), then we connect the three legs i, j, k in the center of the disk to form

a tripod, as in figure 2.2, which partitions the disk into three connected components which

we identify with the amputated currents themselves. The split kinematics conditions in

terms of planar pole decomposition are given by the following. One has to draw all possible

arcs joining two labels on the disk so that they cross one leg of the tripod. For example,
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Figure 2.2: The tripod (1,4,8) for n = 12 particles.

an arc joining labels 2 and 6 in figure 2.2 is a valid arc since it crosses leg 4. If we call an

arc joining labels a1 and am as {a1, a2, ..., am}, with a1 < a2 < · · · < am modulo n, and

provided the arc only crosses the tripod leg r, this corresponds to the condition

sa1,a2,...,am = sa1,a2,...,ar + sar,ar+1,...,am .

This is pictorially expressed in figures 2.3 and 2.4, where the arcs are represented in red

curved lines.

Figure 2.3: Planar basis relations for the n = 6 split kinematics given by the split (1, 3, 5).
The conditions are given by s234 = s23 + s34, s456 = s45 + s56, and s612 = s61 + s12.
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Figure 2.4: Conditions imposed in the planar kinematic invariants for the split (1, 5, 7).
These translate into s23456 = s2345+ s56, s3456 = s345+ s56, s456 = s45+ s56, s678 = s67+ s78,
s812 = s81 + s12, s8123 = s81 + s123 and s81234 = s81 + s1234.

We conclude our discussion of split kinematics with some issues that require further

exploration. We caution that we know very little about the preimage of split kinematics

as a subvariety of the Cartesian product of n copies of Minkowski space R1,D−1, as it is the

intersection of a large number of hypersurfaces of the form

pa · pb = −xa,1xb,1 +
D∑
j=2

xa,jxb,j = 0,

where

pa = (xa,1, . . . , xa,D)

for a = 1, . . . , n. Moreover, we do not know in general the minimum dimension D which
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makes the intersection nontrivial, nor do we know the topology of the subvariety. Such

questions are beyond the scope of this thesis and are left to future work.

2.3 Smoothly Splitting Biadjoint Amplitudes

In this section we prove the formula obtained by smoothly splitting biadjoint amplitudes.

In many standard quantum field theory arguments Feynman diagrams make properties

manifest and they are the standard tool for proofs. However, due to the semi-locality of

smooth splits we choose to proceed using the Cachazo-He-Yuan (CHY) formalism, intro-

duced in chapter 1.

Recall that in the CHY formalism, partial amplitudes mn(I, I) are obtained as an inte-

gration over the moduli space of n punctures on CP1, M0,n, using the scattering equations

[75, 76, 77, 78]. Consider the following parameterization of M0,n using inhomogeneous

coordinates for the puncturesσ1 σ2 σ3 σ4 · · · σn

1 1 1 1 · · · 1

 /SL(2,C). (2.11)

The CHY potential is defined as a function of the Plücker coordinates |a b| = σa − σb and

takes the form

Sn =
∑
a<b

sab log|a b| . (2.12)

It is not difficult to show that Sn is invariant under SL(2,C) transformations and therefore

one can fix the location of three punctures.

We are interested in studying the behavior of amplitudes on the (i, j, k) split kinematic
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subspace. Therefore it is natural to fix σi = 0, σj = 1, and σk = ∞. Recall that

1 ≤ i < j < k ≤ n.

Here it is convenient to set i = 1. Note that each term in the potential function (2.12)

corresponds to an entry in the matrix of Mandelstam invariants shown schematically in

figure 2.1. This already shows that the potential function splits into three parts, each

corresponding to one of the diagonal blocks in figure 2.1 with extra terms corresponding

to the rows and columns in the set {1, j, k}. More explicitly, the potential (2.12) can be

written as

Sn = B(1,j) + B(j,k) + B(k,1) +R1 +Rj +Rk + T1j + Tjk + Tk1 (2.13)

with the terms coming from the interior of the three blocks

B(1,j) :=
∑

1<a<b<j

sab log|a b|, B(j,k) :=
∑

j<a<b<k

sab log|a b|, B(k,1) :=
∑

k<a<b≤n

sab log|a b|, (2.14)

and the extra terms

R1 :=
∑

a/∈{1,j,k}

sa1log|a 1|, Rj :=
∑

a/∈{1,j,k}

sajlog|a j|, Rk :=
∑

a/∈{1,j,k}

saklog|a k|, (2.15)

T1j := s1jlog|1 j|, Tjk := sjklog|j k|, Tk1 := sk1log|k 1|. (2.16)

Using the SL(2,C) gauge fixing described above, (2.15) and (2.16) become

R1 =
∑

a/∈{1,j,k}

sa1log(σa), Rj =
∑

a/∈{1,j,k}

sajlog(1− σa), Rk + Tk1 + Tjk = 0, T1j = 0.

(2.17)

In the last two equations we have used momentum conservation in the form s1k + s2k +
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. . .+ snk = 0 and that log(σ1 − σj) = log(1) = 0, respectively. The non-vanishing terms in

(2.17) can be redistributed into the three parts from the blocks in (2.14) to define

S(1,j) :=
∑

1<a<b<j

sab log|a b|+
∑

1<a<j

sa1log(σa) +
∑

1<a<j

sajlog(1− σa),

S(j,k) :=
∑

j<a<b<k

sab log|a b|+
∑

j<a<k

sa1log(σa) +
∑

j<a<k

sajlog(1− σa),

S(k,1) :=
∑

k<a<b≤n

sab log|a b|+
∑

k<a≤n

sa1log(σa) +
∑

k<a≤n

sajlog(1− σa).

(2.18)

Using this the CHY potential (2.12) can be written as

Sn = S(1,j) + S(j,k) + S(k,1). (2.19)

Close inspection of this formula reveals something remarkable. Each term only depends

on the location of the non-fixed punctures within the range specified by the labels. For

example, S(j,k) is only a function of σa with j < a < k. Having analysed the behavior

of the CHY potential function, the next step is to study the CHY integral representation

of the amplitude. We start by writing the formulation with σ1, σj and σk set to generic

values,

mn(I, I) =
∫ n∏

a=1

′dσaδ

(
∂S
∂σa

)
(|1 j||j k||k 1|PTn(I))2 , (2.20)

where the prime in the product means that a /∈ {i, j, k}. Here PT stands for Parke-Taylor

function or factor and it is defined as

PTn(I) :=
1

|1 2||2 3| · · · |n− 1n||n 1|
. (2.21)
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Let us write the combination that appears in the integrand of (2.20) more explicitly showing

the locations of labels 1, j, k,

|1 j||j k||k 1|PTn(I) :=
|1 j||j k||k 1|

|1 2||2 3| · · · |j − 1, j||j j + 1| · · · |k − 1 k||k k + 1| · · · |n− 1n||n 1|
.

(2.22)

Using the gauge fixing σ1 = 0, σj = 1, and σk = ∞ one finds that (2.22) becomes

(
1

σ2|2 3| · · · |j − 2 j − 1|(σj−1 − 1)

)
×
(

1

(1− σj+1)|j + 1 j + 2| · · · |k − 2 k − 1|

)
×(

1

|k + 1 k + 2| · · · |n− 1n|σn

)
.

(2.23)

Once again, each of the factors depends only on the variables in one of the three sets

defined by the potentials S(1,j), S(j,k), and S(k,1). Reorganizing the CHY integral (2.20) one

finds that it splits into three factors, i.e.

mn(I, I)|split kin. =

(∫ j−1∏
a=2

dσaδ

(
∂S(1,j)

∂σa

)
PT(1,j)

)(∫ k−1∏
a=j+1

dσaδ

(
∂S(j,k)

∂σa

)
PT(j,k)

)
(∫ n∏

a=k+1

dσaδ

(
∂S(k,1)

∂σa

)
PT(j,k)

)
,

(2.24)

with PT(1,j), PT(j,k) and PT(k,1) defined as each of the factors in (2.23) respectively. The

last step is the identification of each factor in (2.24) with amputated currents.

In order to complete the argument let us start by reinterpreting the potential functions

S(1,j), S(j,k), and S(k,1) in (2.18). The first function S(1,j) can be thought of as the CHY
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potential for a current with one off-shell particle with momentum PK := −p1−p2− . . .−pj

and gauge fixed so that σ1 = 0, σj = 1 and σK = ∞. Here we follow the definition given by

Naculich in [170] and reviewed in appendix A. Note that we have introduced the notation

K for the off-shell leg and should not be confused with the kth particle of the original

amplitude.

The second function S(j,k) requires a rearrangement before it can be identified. Note

that ∑
j<a<k

sa1 log(σa) = 2
∑

j<a<k

pa · p1 log(σa). (2.25)

Using momentum conservation,

p1 = −(p2 + p3 + · · · pj−1)− (pj + pj+1 + · · ·+ pk)− (pk+1 + pk+2 + · · ·+ pn)

and noticing that on the (1, j, k) split kinematic subspace

pa · p1 = −pa · (pj + pj+1 + · · ·+ pk) ∀ a : j < a < k

once can write S(j,k) in (2.18) as

S(j,k) =
∑

j<a<b<k

sab log|a b|+
∑

j<a<k

2pa · PI log (σa) +
∑

j<a<k

sajlog (1− σa). (2.26)

Comparing the formula (A.4) in the appendix it is straightforward to conclude that this is

the CHY potential for a current with off-shell momentum PI := −pj − pj+1 − · · · − pk and

gauge fixed so that σI = 0, σj = 1 and σk = ∞. Finally, the function S(k,1) in (2.18) can
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be written as

S(k,1) =
∑

k<a<b≤n

sab log|a b|+
∑

k<a≤n

sa1log (σa) +
∑

k<a≤n

2pa · PJ log (1− σa) , (2.27)

where PJ := −pk − pk+1 − · · · − pn − p1. Comparing to (A.4) one has a current gauge

fixed so that σ1 = 0, σJ = 1, and σk = ∞. Let us reinterpret the factors into which

the Parke-Taylor function in equation (2.23) decomposed, i.e. PT(1,j), PT(j,k) and PT(k,1).

Consider

PT(1,j) =

(
1

σ2|2 3| · · · |j − 2 j − 1|(σj−1 − 1)

)
. (2.28)

This is indeed a standard |1j||jK||K1|PT(1, 2, . . . , j−1, j,K) with the gauge fixing σ1 = 0,

σj = 1 and σK = ∞. Likewise,

PT(j,k) = |jk||kI||Ij|PT(j, j + 1, . . . , k − 1, k, I)|σI=0,σj=1,σk=∞

and

PT(k,1) = |k1||1J ||Jk|PT(k, k + 1, . . . , n, 1, J)|σ1=0,σJ=1,σk=∞ .

Combining all these results the final form of the biadjoint amplitude on the (1, j, k) split

kinematic subspace is

mn(I, I)|split kin. = J (1, 2, ..., j)J (j, j + 1, ..., k)J (k, k + 1, ..., n, 1). (2.29)

The three amputated currents were defined in terms of Feynman diagrams in section 2.2

and their CHY formulations are discussed in detail in appendix A.
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2.4 Smoothly Splitting NLSM and Special Galileon Am-

plitudes

In this section we derive and study how split kinematics induces smooth splits in two

other theories of scalars that admit a CHY formulation: the U(N) non-linear sigma model

(NLSM) and the special Galileon.

2.4.1 NLSM Amplitudes

Historically, interest in the NLSM started from studying an effective field theory of interac-

tions of Goldstone bosons known as pions [125]. It is well-known that in this theory, when

a single particle becomes soft, scattering amplitudes vanish implying that there must be

a non-linearly realized symmetry. This phenomenon is known as the Adler zero [4, 199].

Instead, the double soft limit is the relevant one when one tries to obtain information about

the spontaneously broken symmetries of the theory [13]. The lagrangian of the NLSM can

be written as [78]

LNLSM =
1

8λ2
Tr(∂µU†∂µU) , (2.30)

where we have used the Cayley transform to write U = (IN×N + λΦ)(IN×N − λΦ)−1. Here

Φ = ϕIT
I where ϕI are the scalars carrying a flavour index, T I are the U(N) generators,

and λ is a constant.

The CHY formula for NLSM amplitudes, which is non-vanishing only for an even num-
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ber of particles, was proposed in [78] as

ANLSM
n (I) =

∫
dµ̂nPTn(I) det′An , (2.31)

where we have defined the CHY measure3

dµn ≡
∏

a̸=i,j,k

dσaδ

(
∂S
∂σa

)

with dµ̂ := (|ij||jk||ki|)2dµ, where σi, σj and σk are the fixed punctures, and An is an n×n

dimensional matrix with entries Aab ≡ sab
σa−σb

. In (2.31), det′An is the reduced determinant

of An and is defined as

det′An :=
1

(σp − σq)2
detA[p q]

n ,

where A[p q]
n is the submatrix of An defined by removing the pth and qth rows and columns.

This reduction is necessary since the matrix An has co-rank 2 on the support of the delta

functions in the measure. It is not difficult to show that det′An is independent of the

choice of p and q.

To start the study of the behaviour of NLSM amplitudes under split kinematics, let

us first repeat the argument that led to the conclusion that only d = 3-splits are possible

for the biadjoint amplitude presented in (2.10). NLSM amplitudes have degree one in

Mandelstam invariants (or equivalently, mass dimension two) for any values of n. This

immediately implies that it is impossible to smoothly split NLSM amplitudes in terms

of NLSM amputated currents which also have the same degree as the amplitudes. This

leads to the expection that NLSM amplitudes should vanish on split kinematics. However,

considering explicit examples reveals a surprising result. Directly evaluating the n = 8

3The notation here slightly differs from the one introduced in chapter 1.
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NLSM amplitude on split (1, 3, 6) kinematics gives rise to

ANLSM
8 (I)|(1,3,6) = (s12 + s23)

(
s34 + s45

s345
+

s45 + s56
s456

− 1

)(
s67 + s78

s678
+

s78 + s81
s781

− 1

)
.

(2.32)

The first factor has the form of an n = 4 NLSM amputated current and hence degree

one. The second and third factors in the split do not have the form of NLSM amplitudes.

In fact, five-point NLSM amplitudes vanish. These new currents therefore belong to a

theory that extends the NLSM and have dimension zero leading to a consistent split. It is

surprising that by simply exploring a region of the space of Mandelstam invariants one can

find amplitudes of a different theory emerging from those of the original one. Exactly the

same phenomenon was observed by Cachazo, Cha, and Mizera [65] when they computed

the coefficient of the Adler zero and found exactly the same kind of extended amplitudes.

These so-called mixed amplitudes involve NLSM particles (pions) and biadjoint scalars.

The particular currents in (2.32) correspond to mixed 5-point amputated currents of

pions and biadjoint scalars [65], where particles 1, 3, 6 and the new off-shell ones with

momenta −(p3+p4+p5+p6) and −(p6+p7+p8+p1) are identified with biadjoint scalars,

while the rest are NLSM scalars. In fact, we will show that smoothly splitting NLSM

amplitudes either vanish or produce one amputated current of the standard NLSM theory

as well as two amputated currents in the extended NLSM theory, i.e. with an odd number

of biadjoint scalars and an even number of NLSM scalars.

The CHY formulation of all mixed NLSM amplitudes corresponding to the extended

theory was found in [65]. It contains an additional U(Ñ) flavour group and a biadjoint
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scalar field. Its CHY formula is

ANLSM⊕ϕ3

n (I|β) =
∫

dµ̂nPTn(I)PTβ detAβ̄ . (2.33)

The notation here requires some explanation. Both species of particles share the canonical

ordering, I, but the biadjoint scalars also respect the ordering β in the U(Ñ) flavour group

indices. Here β̄ represents the particles in the complement of the set β in [n]. It is also

common in the literature to use PTβ ≡ PT(β) in order to avoid cluttering of the formulas.

Let us present the general result for 3-splits of NLSM amplitudes postponing the proof

to section 2.4.4. At first sight there seem to be four cases to consider. As in previous

sections, cyclic invariance allows us to study (1, j, k)-split kinematics without losing gener-

ality. The cases correspond to the different choices for the parity of j and k. However, one

can check that all choices except for j ∈ 2Z + 1 and k ∈ 2Z + 1, lead to one current with

an even number of points and two with an odd number of points. The case j ∈ 2Z+1 and

k ∈ 2Z+ 1 requires all three currents to have an even number of points. This, however, is

not possible as discussed above and leads to a vanishing result, i.e. a zero of the amplitude,

as shown in section 2.4.3.

Let us present the explicit result for j ∈ 2Z+ 1 and k ∈ 2Z, knowing that other cases

can be obtained by reflections and relabeling,

ANLSM
n (I)|split kin. = J NLSM

j+1 (I)× J NLSM⊕ϕ3

k−j+2 (I|β1)× J NLSM⊕ϕ3

n−k+3 (I|β2) , (2.34)

Here β1 = {I, j, k}, β2 = {1, J, k}, with I, J denoting off-shell legs, and with the currents

defined using the CHY formula (2.33) as explained in more detail in section 2.4.4. A simple

argument using degree (or mass dimension) counting reveals that having three biadjoint
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particles in each mixed current is the only possibility4.

2.4.2 Special Galileon Amplitudes

The second theory we study in this section is the special Galileon, which was discovered

in [78] (see also [88, 143]) and whose CHY formula is given by

AsGal
n =

∫
dµ̂n(det′An)

2 , (2.35)

where dµ̂n is the same CHY measure used in other theories and det′An is the same reduced

determinant appearing in the NLSM CHY formula.

This theory is a special case of some scalar theories known as Galileon theories, which

have appeared in different contexts, e.g. in cosmology and in the decoupling limit of

massive gravity [142, 99, 152]. The general Galileon lagrangian is given by

LGal = −1

2
∂µϕ∂

µϕ+
∞∑

m=3

gmϕdet{∂µa∂νbϕ}m−1
a,b=1 , (2.36)

which computes non-vanishing amplitudes for any number of particles. However, the special

Galileon amplitude (2.35) vanishes for an odd number of particles. It also vanishes when

a single particle becomes soft.

Special Galileon amplitudes have degree n − 1 in the kinematic invariants, i.e. they

have mass dimension 2(n − 1). Once again the same analysis as done in (2.10) reveals

that it is impossible to find a smooth splitting of special Galileon amplitudes in terms of
4The reason why |β1| = |β2| = 3 is the following. The degree of an amputated mixed current is

3 − n + |β̄i| and that of a NLSM amputated currents is 1. Using this in (2.34) imposes the constraint
1 = j − n + 2 + |β̄1| + |β̄2|. Since |β1| + |β̄1| = k − j + 2 and |β2| + |β̄2| = n − k + 3, it must be that
|β1|+ |β2| = 6. Mixed amplitudes only exist for |βi| > 2 and therefore |β1| = |β2| = 3.
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special Galileon amputated currents which also have the same degree as the amplitudes.

This again leads to the expectation that special Galileon amplitudes should vanish on split

kinematics. Another reason not to expect a smooth splitting is that, unlike biadjoint scalar

and NLSM amplitudes, special Galileon particles do not have any flavour structure and

hence no ordering, i.e., the complete permutation invariant amplitude must be considered5.

This implies that it contains a permutation invariant set of poles. This means that the

Mandelstam invariants set to zero in a given split kinematics point could be producing

singularities in the amplitude. Indeed, this is the case: some individual Feynman diagrams

do diverge. All this makes it surprising that special Galileon amplitudes smoothly split.

Moreover, it is by using its CHY formulation, which re-sums Feynman diagrams, that the

behavior on split kinematics is most easily understood. For this reason, we do not need

to take a limit to produce smooth splits. Instead, smooth splits appear directly when

imposing split kinematics to its CHY formula.

From the NSLM amplitude discussion it is reasonable to expect that special Galileon

amplitudes split into products of mixed amputated currents. We recall the CHY formula

for the most general mixed amplitudes, which now involve all three kinds of particles

discussed so far [65],

AsGal⊕NLSM2⊕ϕ3

n (α|β) =
∫

dµ̂n (PTα detAᾱ)
(
PTβ detAβ̄

)
. (2.37)

This extended theory contains a U(N)×U(Ñ) biadjoint scalar and a NLSM field for each

of the two flavour groups. Here the biadjoint scalars correspond to labels α ∩ β while the

special Galileon particles correspond to labels ᾱ∩ β̄. The U(N) and U(Ñ) NLSM particles

correspond to α ∩ β̄ and ᾱ ∩ β, respectively.
5Note that biadjoint and NLSM amplitudes are also permutation invariant since their fields are bosons.

However, the flavour structure allows for a decomposition in terms of color-ordered partial amplitudes.
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Once again, the behavior of sGal amplitudes on (1, j, k)-split kinematics depends on the

parity of j and k. The amplitudes vanish when both j and k are odd and splits in terms

of an amputated current of the original theory times two mixed currents corresponding to

mixed amplitudes of the special form when α = β in (2.37), i.e.

AsGal⊕ϕ3

n (β) =

∫
dµ̂nPT2

β(detAβ̄)
2 . (2.38)

The final formula for (1, j, k)-split kinematics with j ∈ 2Z + 1 and k ∈ 2Z, knowing that

other cases can be obtained by reflections and relabeling, is

AsGal
n |split kin. = J sGal

j+1 × J sGal⊕ϕ3

k−j+2 (β1)× J sGal⊕ϕ3

n−k+3 (β2) . (2.39)

Here β1 = {I, j, k}, β2 = {1, J, k}, with I, J denoting off-shell legs. We present the proof

of this formula in section 2.4.5.

2.4.3 Behavior of det′An on Split Kinematics

In the following subsections we use the CHY argument seen for the biadjoint scalar theory

in section 2.3 to derive how 3-splits appear in NLSM and special Galileon theories under

split kinematics. In order to achieve it, we first have a look at the behavior of the reduced

determinant that enters into the CHY formulation of these theories, under split kinematics.

Recall that the reduced determinant is independent of the choice of removing any two

rows and columns. Therefore, we can remove row and column 1 and we still have to remove

one more row and column.

Without loss of generality, consider again the split kinematics (1, j, k). Under this
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Figure 2.5: General form of the matrix A[1]
n , i.e. when we remove row and column 1.

kinematics, the matrix An after removing row and column 1 has the form of the matrix in

figure 2.5, where the entries are Aa,b ≡ sab
σa−σb

and A{a,b} are matrices defined as

A{a,b} =


0 Aa,a+1 Aa,a+2 · · · Aa,b

−Aa,a+1 0 Aa+1,a+2 · · · Aa+1,b

...
... . . . ...

...

−Aa,b −Aa+1,b · · · −Ab−1,b 0

 . (2.40)

We point out that A{1,n} = An in this notation. The rest of the entries are zero. For the

argument we will use the following lemma:
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Lemma 2.4.1. Let M ∈ C2m×2m be antisymmetric and L ∈ Cr×r generic, then

det



M

0 0 0 · · · 0

0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

c1 c2 c3 · · · cr

0 0 · · · 0 d1

0 0 · · · 0 d2
...

... . . . ...
...

0 0 · · · 0 dr

L



= det(M)det(L) (2.41)

for any values of da and ca.

The proof of the lemma is very simple and we present it in appendix B. Now recall

from the CHY proof in the biadjoint scalar that the potential splits into three terms S(1,j),

S(j,k) and S(k,1), where S(1,j) produces an amputated current with j+1 legs, S(j,k) produces

an amputated current with k − j + 2 legs and S(k,1) produces an amputated current with

n − k + 3 legs. Also recall that for non-vanishing NLSM and special Galileon amplitudes

n is always even.

Let us consider the case in which j ∈ 2Z+1 and k ∈ 2Z. Motivated by the fact that in

the following subsections we send puncture σk to infinity, here we remove row and column

k from the matrix to end up with the that in figure 2.6, where the upper-left block A{2,j} is

(j−1)× (j−1) dimensional, and therefore even-dimensional. We also note that A{j+1,k−1}

has dimension k− j−1 and that A{k+1,n} has dimension n−k. Given the statement (2.41)

above, and the fact that the determinant of a block-diagonal matrix is the product of the
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determinants of each block, we know that detA[1k]
n = detA{2,j} detA{j+1,k−1} detA{k+1,n}.

Figure 2.6: General form of the matrix A[1k]
n where we emphasize the three different blocks

that play the role in its determinant.

Now notice that if k is even then A{j+1,k−1} and A{k+1,n} are even-dimensional. In this

case the block A{2,j} will give rise to the NLSM or special Galileon amputated current,

whilst each of the two blocks A{j+1,k−1} and A{k+1,n} that are embedded into a bigger one

will give rise to the mixed amputated currents.

If k is odd then A{j+1,k−1} and A{k+1,n} are odd-dimensional and therefore the whole

determinant vanishes since the determinant of an odd-dimensional antisymmetric matrix

is zero. What this is telling us is the following. When j and k are odd, we know that all

of the three amputated currents will have an even number of external particles, since n is

even. Hence, the determinant is protecting the whole object from becoming a product of

only non-mixed amputated currents!
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2.4.4 Proof for NLSM Amplitudes

Now we are ready to prove how 3-splits are produced in NLSM amplitudes. Without loss

of generality, we consider again the split kinematics (1, j, k). Recall from section 2.3 that

under this kinematics the CHY potential Sn splits into S(1,j), S(j,k) and S(k,1), which are

the potentials given by the parameterizations (2.42), (2.43) and (2.44), respectively, with

their corresponding particle identifications

S(1,j) :

1 2 3 4 j − 1 j K[ ]
0 σ2 σ3 σ4 · · · σj−1 1 1

1 1 1 1 · · · 1 1 0

, (2.42)

S(j,k) :

I j j + 1 j + 2 k − 1 k[ ]
0 1 σj+1 σj+2 · · · σk−1 1

1 1 1 1 · · · 1 0

(2.43)

and

S(k,1) :

J k k + 1 k + 2 n 1[ ]
1 1 σk+1 σk+2 · · · σn 0

1 0 1 1 · · · 1 1

. (2.44)

Let us consider again j ∈ 2Z+1 and k ∈ 2Z, without loss of generality. From section 2.4.3

we know that the determinant also splits like detA[1k]
n = detA{2,j} detA{j+1,k−1} detA{k+1,n}.

Given the above separation of the moduli space and that of detA[1k]
n , one can identify ev-

ery factor in the smooth split with an amputated current. Namely, we will note that S(1,j)

generates an amputated current with an even number of particles. The other two factors,
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given by S(j,k) and S(k,1), will correspond to amputated currents with an odd number of

particles, and therefore are mixed amputated currents.

Let us see this in more detail. Before going to the split kinematics subspace, and after

gauge fixing the punctures σ1 = 0, σj = 1 and σk = ∞, the NLSM CHY formula (2.31)

picks up two copies of the Fadeev-Popov factor |1j||jk||k1| and is expressed as

ANLSM
n (I) =

∫
dµn(|1j||jk||k1|)2PTn(I)det′A[1k]

n .

One copy of the Fadeev-Popov factor cancels with det′A[1k]
n = detA[1k]

n

(σ1−σk)2
to produce a finite

object. The second copy combines with the Parke-Taylor to produce the neat separation

shown in equation (2.23), given by the product of Parke-Taylors PT(1,j) ×PT(j,k) ×PT(k,1)

defined in section 2.3.

Now we go to the split kinematics subspace (1, j, k) with j ∈ 2Z + 1 and k ∈ 2Z.

Recall that in this kinematics the determinant of the original matrix splits as detA[1k]
n =

detA{2,j} detA{j+1,k−1} detA{k+1,n}. This implies that in this subspace the NLSM ampli-

tude separates into three pieces

(∫
dµ(1,j)PT(1,j)detA{2,j}

)(∫
dµ(j,k)PT(j,k)detA{j+1,k−1}

)(∫
dµ(k,1)PT(k,1)detA{k+1,n}

)

where dµ(a,b) is the CHY measure defined by S(a,b). Notice that any dependence on σk has

disappeared.

Let us first analyze the first factor in detail. From (2.42) and the definition of the

reduced determinant we know that det′AS(1,j)
=

detA{2,j}
(σ1−σK)2

where AS(1,j)
is the matrix with
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elements sab
σa−σb

generated by (2.42). We also note that

PT(1,j) = |1j||jK||K1|PT(12 · · · jK)|σ1=0, σj=1, σK=∞ .

This implies that if we start with the expression

∫
dµ(1,j)(|1j||jK||K1|)2 PT(12 · · · jK)det′AS(1,j)

as we had gauge-fixed punctures σ1, σj and σK , then 1
(σ1−σK)2

is what is needed to combine

with one copy of the Fadeev-Popov factor |1j||jK||K1| to make the expression finite when

σK = ∞, which becomes ∫
dµ(1,j)PT(1,j)detA{2,j} .

Additionally, from (2.43) one can see that if the set β1 = {I, j, k} is identified with

the biadjoints, where the complement is given by β̄1 = {j + 1, ..., k − 1}, then we have

detAβ̄1
= detA{j+1,k−1}. Similarly, from (2.44), if the set β2 = {1, J, k} is identified with the

biadjoints, whose complement is given by β̄2 = {k+1, ..., n}, we have detAβ̄2
= detA{k+1,n}.

Hence, we see from (2.31) and (2.33) that we end up with the 3-split

ANLSM
n (I)|split kin.=

JNLSM
j+1 (I)︷ ︸︸ ︷(∫

dµ(1,j)(|1j||jK||K1|)2 PT(12 · · · jK)det′AS(1,j)

)
×
(∫

dµ(j,k)PT(j,k)PTβ1 detAβ̄1

)
︸ ︷︷ ︸

JNLSM⊕ϕ3

k−j+2 (I|β1)

×
(∫

dµ(k,1)PT(k,1)PTβ2 detAβ̄2

)
︸ ︷︷ ︸

JNLSM⊕ϕ3

n−k+3 (I|β2)

.

(2.45)

To conclude, we note that, given that the only particles we identify with the biadjoint
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scalars are contained in the set {1, j, k, I, J,K}, since every current will contain three of

these particles, it follows that we will always have 3 biadjoints in the mixed amputated

currents. In fact, the only particle in this set which is not identified with a biadjoint scalar

corresponds to the off-shell particle in the non-mixed current. This implies that the non-

mixed current will contain two biadjoints and therefore its expression is equivalent to that

of a current with only pions.

2.4.5 Proof for Special Galileon Amplitudes

In this subsection we show that special Galileon amplitudes smoothly split under split kine-

matics. We make use of the fact that special Galileon amplitudes admit a CHY formulation

to derive this behavior in a similar fashion as with the NLSM amplitudes.

Let us consider again the case with j ∈ 2Z+1 and k ∈ 2Z without loss of generality and

recall the separation of moduli spaces given in (2.42), (2.43) and (2.44). From section 2.4.3

we know that the determinant also splits like detA[1k]
n = detA{2,j} detA{j+1,k−1} detA{k+1,n}.

For the same reason as in the previous section, we identify again det′AS(1,j)
=

detA{2,j}
(σ1−σK)2

.

Also, given that β1 = {I, j, k} and β2 = {1, J, k}, we can identify the determinants

detAβ̄1
= detA{j+1,k−1} and detAβ̄2

= detA{k+1,n}. A similar analysis as in section 2.4.4

leads to

AsGal
n |split kin. =

J sGal
j+1︷ ︸︸ ︷(∫

dµ(1,j)(|1j||jK||K1| det′AS(1,j)
)2
)
×

J sGal⊕ϕ3

k−j+2 (β1)︷ ︸︸ ︷(∫
dµ(j,k)PT2

β1
(detAβ̄1

)2
)

×
(∫

dµ(k,1)PT2
β2
(detAβ̄2

)2
)

︸ ︷︷ ︸
J sGal⊕ϕ3

n−k+3 (β2)

(2.46)
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where we stress again that the fact that the only particles we identify with β1 and β2

are contained in the set {1, j, k, I, J,K} shows why we will always have 3 biadjoints in

the mixed amputated currents. Again, the only particle in this set which is not identified

with a biadjoint scalar corresponds to the off-shell particle in the non-mixed current. This

implies that the non-mixed current will contain two biadjoints and therefore its expression

is equivalent to that of a current with only Galileons.

2.5 Applications: New Recursion Relations for NLSM

Amplitudes

In this section we show how to use smooth splittings of NLSM amplitudes as data to

build BCFW-like recursion relations. It is well-known that standard BCFW relations are

not applicable to the NLSM. In order to explain the reason let us review the procedure.

Consider some subset of momenta and introduce a one-complex parameter deformation

pi(z) = pi + zri such that pi(z)
2 = 0 and momentum conservation remains valid for all

z. This means that the amplitude evaluated on this new kinematics can be considered

a function ANLSM(z) such that ANLSM(0) = ANLSM
n (I), i.e. it agrees with the desired

amplitude at z = 0. Now

ANLSM
n (I) =

1

2πi

∮
|z|=ϵ

dz
ANLSM(z)

z
.

Deforming the contour one gets a formula for ANLSM
n (I) in terms of residues where propaga-

tors give simple poles. These residues are determined via unitarity to be products of smaller

amplitudes and hence the recursive structure. However, there is also the contribution of a

pole at z = ∞ which is in general not known.
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Thus, the condition for the recursion to work is that ANLSM(z) vanishes as z → ∞. In

general this is not the case in the NLSM due to the presence of contact terms. One possible

solution is to design deformations such that the kinematics becomes that of a soft-limit

for some z = z∗. Let us choose z∗ = 1. The NLSM is known to vanish in a soft-limit and

therefore one can consider

ANLSM
n (I) =

1

2πi

∮
|z|=ϵ

dz
ANLSM(z)

z(1− z)
.

Now, if the new deformation does not make the behaviour of ANLSM(z) worse as z → ∞

then ANLSM(z)
z(1−z)

has a better behavior while its residue at z = 1 vanishes. As it turns out,

either a combination of several of these improvements are needed [87] or knowing the

behavior of subleading terms in soft limits is needed so that ANLSM(z)
z(1−z)2

can be used [65].

Either way, new information is needed in order to construct a successful recursion relation.

The strategy we will use is therefore to introduce a complex deformation such that at

some values z = z∗ split kinematics is achieved so that its behaviour can be used instead

of soft limits. Given that split kinematics is completely defined in terms of Mandelstam

invariants, it is convenient to introduce a version of the BCFW procedure for sab directly

without starting with momentum vectors. In general, given a matrix of Mandelstam in-

variants, a BCFW deformation is achieved by

sab(z) = sab + zrab. (2.47)

Imposing that sab(z) is a valid matrix of Mandelstam invariants for any z simply implies

that so must be rab. In a sense, (2.47) interpolates between two sets of Mandelstam

invariants, the original one at z = 0 and the new one at z = ∞.
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In order to construct the desired deformation let us select a particular 3-split (i, j, k).

This is achieved by imposing that a certain subset of kinematic invariants vanish. Let us

denote such set V(i,j,k). For example, for n = 6 and (1, 3, 5) one has V(1,3,5) = {s24, s46, s62}.

Requiring the deformed kinematics to reach the 3-split kinematics at z = 1 can be achieved

by choosing rab = −sab if sab ∈ V(i,j,k). More explicitly, one finds

sab(z) =

 (1− z)sab if sab ∈ V(i,j,k)

sab + zrab otherwise.
(2.48)

as discussed above, one must require that momentum conservation is satisfied and this

means that
n∑

b=1

rab = 0 for a ∈ {1, 2, . . . , n}.

Let us consider the NLSM amplitude under the deformation (2.48). Using the CHY for-

mulation it is easy to show that the mass dimension of ANLSM
n (I) is 2, i.e. it is of degree

one in Mandelstam invariants. This gives

ANLSM(z) = O(z) as z → ∞. (2.49)

This behavior implies that even the modified function ANLSM(z)/z(1−z) still has a pole at

z = ∞. The way to solve this problem is to change the deformation so that in addition to

reaching (i, j, k)-split kinematics at z = 1 it reaches a different split kinematics point, say
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(r, p, q), at a different point, say z = −1. A straightforward way of doing this is by using

sab(z) =



(1− z)sab if sab ∈ V(i,j,k) and sab /∈ V(r,p,q)

(1 + z)sab if sab /∈ V(i,j,k) and sab ∈ V(r,p,q)

(1− z)(1 + z)sab if sab ∈ V(i,j,k) and sab ∈ V(r,p,q)

sab + zrab otherwise.

(2.50)

However, this has the problem of making every Mandelstam invariant sab ∈ V(i,j,k) ∩V(r,p,q)

a polynomial of degree 2 in z. Such polynomials would spoil the counting and the construc-

tion. Therefore we must require that V(i,j,k)∩V(r,p,q) = ∅. A simple choice that achieves the

desired deformation is (1, 2, 4) and (1, 3, 4). It is easy to prove that V(1,2,4) ∩ V(1,3,4) = ∅.

More explicitly,

V(1,2,4) = {s3a : a = 5, 6, . . . , n},

V(1,3,4) = {s2a : a = 5, 6, . . . , n}.

Now we are ready to present the BCFW-like construction. Consider the complex deforma-

tion:

sab(z) =


(1− z)s2b if a = 2, b ∈ {5, 6, . . . , n}

(1 + z)s3b if a = 3, b ∈ {5, 6, . . . , n}

sab + zrab otherwise.

(2.51)

Here we are using momentum conservation

n∑
b=1

sab(z) = 0. (2.52)

The function ANLSM(z) has poles at finite values of z exactly where planar kinematic
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invariants involving an odd number of particles vanish. This is because the theory possesses

interactions vertices with only an even number of legs. Let us call the set of planar

invariants in poles

Pn := {si,i+1,...,i+m−1 : i ∈ [n], m ∈ 2Z}. (2.53)

The choice of rab in (2.51) is arbitrary as long as all invariants in Pn become polynomials

of degree exactly one under the deformation (2.51).

The BCFW-like formula for the NLSM is then obtained by deforming the contour of

ANLSM
n (I) =

1

2πi

∮
|z|=ϵ

dz
ANLSM(z)

z(1− z2)
,

giving rise to6

ANLSM
n (I) =

1

2
ANLSM(1) +

1

2
ANLSM(−1) +

∑
s(z∗)=0 : s∈Pn

ANLSM
L (z∗)

1

(1− (z∗)2)s
ANLSM

R (z∗).

(2.54)

In this formula

ANLSM(1) = ANLSM
n (I)

∣∣
split kin. (1,3,4)

= J NLSM⊕ϕ3

(5, . . . , n|1, I(1), 4)× (s12 + s23) , (2.55)

where J NLSM⊕ϕ3
(5, . . . , n|1, I(1), 4) stands for the (n−1)-point current evaluated on sab(1).

Likewise,

ANLSM(−1) = ANLSM
n (I)

∣∣
split kin. (1,2,4)

= J NLSM⊕ϕ3

(5, . . . , n|1, I(−1), 4) (s23 + s34) . (2.56)

6Clearly the original contour |z| = ϵ is defined to be counterclockwise. The contour deformation leads
to contours around the poles at z = 1, z = −1, etc., which are clockwise and therefore the residues pick
up an extra minus sign. Also, for contours |s(z)| = ϵ, note that the pole in the amplitude is of the form
1/s(z) ≡ 1/(s + az) for some a. This means that the residue of 1/z(1 − z2)(s + az) is −1/(1 − (z∗)2)s.
The minus sign cancels the one needed to make the contour counterclockwise.
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Finally, ANLSM
L (z∗) and ANLSM

R (z∗) are the amplitudes that result from the standard fac-

torization at the planar poles of the deformed amplitude.

2.5.1 Example: Six-Point NLSM Amplitude

In order to illustrate the BCFW formula (2.54) let us apply it to the six-point NLSM

amplitude. The complex deformation is given by

sab(z) =


(1− z)s2b if a = 2, b ∈ {5, 6}

(1 + z)s3b if a = 3, b ∈ {5, 6}

sab + zrab otherwise.

(2.57)

Momentum conservation only imposes six constrains and we find that the remaining free-

dom can be used to make the following choice

{ r12 → 0, r13 → 0, r14 → 0, r15 → 0, r16 → 0,

r24 → −s25 − s26 − Λ2, r34 → s35 + s36 − Λ2,

r45 → s26 − s36 + Λ2, r46 → s25 − s35 + Λ2,

r56 → −s25 − s26 + s35 + s36 − Λ2, r23 → Λ2
}
.

(2.58)

Recall that the original sab are assumed to satisfy momentum conservation. In order

to use the recursion formula (2.54) it is convenient to introduce the planar invariants

s123(z), s234(z) and s345(z). These are deformations of the usual planar invariants, e.g.

s123(z) = s12(z) + s13(z) + s23(z) = s123 + zΛ2. (2.59)
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Now we list the contribution from each of the poles in P6. The first contribution is from

s123(z
∗) = 0, i.e. z∗ = −s123/Λ

2. This is given by

(s12(z
∗) + s23(z

∗))
1

s123(1− (z∗)2)
(s45(z

∗) + s56(z
∗)) . (2.60)

The other two contributions are similar. Instead of presenting their expressions as functions

of Λ we use the fact that the final answer must be Λ independent and then present their

limit as Λ → ∞. In the order s123(z
∗) = 0, s234(z

∗) = 0 and s345(z
∗) = 0 the contributions

are:

(s12 + s23 − s123)(s45 + s56)

s123
+

(s23 + s34)(s56 + s61 − s234)

s234
+

(s34 + s45 − s345)(s61 + s12 − s345)

s345
.

(2.61)

Finally, the contributions from split kinematic points z = 1 and z = −1 are computed

using mixed currents in the NLSM ⊕ ϕ3 theory defined in [65],

J (4, 5|1, I(z), 3) = s34(z) + s45(z)

s345(z)
+

s45(z) + s51(z)

s451(z)
− 1. (2.62)

This means that

ANLSM(1) = J (5, 6|1, I(1), 3)× (s23(1) + s34(1)), (2.63)

ANLSM(−1) = J (5, 6|1, I(−1), 3)× (s12(−1) + s23(−1)). (2.64)

We also present these results in the limit Λ → ∞,

1

2
ANLSM(1) = 0,

1

2
ANLSM(−1) = s34 + s45 − s345. (2.65)
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Adding all five contributions gives the expression

ANLSM
6 (I) =

(s12 + s23 − s123)(s45 + s56)

s123
+

(s23 + s34)(s56 + s61 − s234)

s234
+

(s34 + s45 − s345)(s61 + s12 − s345)

s345
+ s34 + s45 − s345,

(2.66)

which agrees with the well-known result

ANLSM
6 (I) =

(
1

2

(s12 + s23)(s45 + s56)

s123
− s12

)
+ perm. (2.67)

where the permutations indicate five other terms obtained from the one shown by sending

all labels i → i+mmod 6 with m ∈ {1, 2, 3, 4, 5}.

2.6 Discussion

In this chapter we have uncovered a new behavior of tree-level scattering amplitudes on

subspaces of the kinematic space. Smoothly splitting amplitudes on the (i, j, k) split kine-

matic subspace leads to a product of three amputated currents in which the particle set

does not partition. This semi-locality is what makes smooth splits different from standard

factorization and as far as we know not derivable from unitarity arguments. In fact, the

closest behavior in the literature to smoothly splitting an amplitude seems to be the soft

limit.

Obtaining new information on the behavior of amplitudes on subspaces of the kinematic

space is important in order to understand what makes such functions special and relevant

to the physical world. The semi-local behavior we have found involves currents which have

to be turned into amplitudes in order to be observables. It is interesting to note that when
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further conditions on the kinematic space are imposed in order to require the currents

to become amplitudes at least one of them vanishes. It would be interesting to further

explore this phenomenon and perhaps associated with a mechanism for ensuring locality

in observables.

In this chapter we have only scratched the surface of this fascinating topic and therefore

there are many directions to be explored. Here we only provide a partial list (see also [69]

for more).

2.6.1 Comparison with the Soft Limit

As mentioned above, the closest behavior to semi-locality seems to be the soft limit. It

is therefore instructive to consider the similarities and differences. In a soft limit the

momentum of a particle, say the nth particle, is taken to zero, i.e. pn → τ p̂n with τ → 0.

In this limit

mn(In, In) →
(

1

sn−1,n

+
1

sn,1

)
mn(In−1, In−1) +O(τ 0). (2.68)

The so-called soft factor is reminiscent of a four-particle amplitude. Of course, we have seen

in this work, this expectation is not correct since sn−1,n,1/sn−1,n ̸= 0, i.e. the momentum of

the fourth leg is off-shell. The ratio is needed in order to remove the trivial τ dependence.

Nevertheless, this soft factor can be thought of as an amputated current J (n−1, n, 1) and

once again we get a semi-local factorization

mn(In, In) → J (n− 1, n, 1)mn(In−1, In−1) +O(τ 0) , (2.69)

in which particles n− 1 and 1 participate in both factors.

While the semi-local feature is similar to that of smooth splits the main difference is
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that this is achieved in a singular limit and there are subleading corrections.

In order to compare let us consider the (1, n− 2, n− 1) split kinematic subspace. This

is simply defined as the subspace with san = 0 for a ∈ {2, 3, . . . , n− 3}. Here the biadjoint

amplitude smoothly splits as

mn(In, In)|split kin. = J (n− 1, n, 1)J (1, 2, . . . , n− 2). (2.70)

Note that in order to reach the soft limit subspace from the (1, n−2, n−1) split kinematic

subspace one has to impose the additional constrains sn−2,n = sn−1,n = sn,1 = O(τ)

with τ → 0. In this limit the off-shell leg of J (1, 2, . . . , n − 2) which has momentum

PI = pn−1 + pn becomes PI → pn−1 and therefore on-shell, turning the current into the

amplitude mn(In−1, In−1). It is also worth noticing that the direction in which the soft limit

subspace is approached is important. If we were to take the limit sn−2,n → 0 first, then

sn−1,n + sn,1 → 0 due to momentum conservation and therefore the current J (n− 1, n, 1)

would vanish.

We interpret this close connection between soft limits and how an amplitude smoothly

splits as saying that the (1, n−2, n−1) split kinematic subspace provides a “pre-soft limit”.

It would be interesting to explore this connection further.

2.6.2 Generalization to Other Theories

One of the most pressing questions is to find out if there are other theories with amplitudes

that smoothly split. In this work only scalar theories that admit a CHY representation

were considered. One of the key ingredients was the behavior of the matrix An on the split

kinematic subspace. There are other theories with CHY formulations based on the same
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matrix, such as the Born-Infeld theory. In such theories a new element is also present,

it is a matrix that combines momenta and polarization vectors, known as Ψ(pa, ϵa). It

seems reasonable to expect that imposing conditions on the polarization vectors one could

smoothly split such amplitudes. Of course, if the Pfaffian of Ψ shows a good behavior then

a whole new branch of theories could also smoothly split, such as Yang-Mills.

The attentive reader might have noticed that neither Born-Infeld nor Yang-Mills am-

plitudes can split solely in terms of currents within the corresponding theories as a degree

(dimension) counting argument reveals. This means that currents outside the theories are

needed. It is known that the Born-Infeld (BI) theory admits an extension in which BI

photons interact with emergent YM gluons. It would be interesting to further explore this

connection.

2.6.3 Relation to Causal Diamonds and the Soft-Limit Triangula-

tion

A surprising connection between solutions to the wave equations and the space of planar

Mandelstam invariants was uncovered in [16]. Properties of scattering amplitudes, such

as factorization, can be translated into properties of the causal structure of an emergent

space-time.

It is natural to consider what conditions on the causal structure are imposed on the

(i, j, k)-split kinematic subpsace. Somehow the conditions that planar invariants which

involve a chain of labels, which in the notation of [16] correspond to Xa,b = sa,a+1,...,b,b+1 or

Xa,b = ηa+1,b+1, can split into, e.g., Xa,b = Xa,i−1 +Xi,b, must have a meaning in terms of

how different regions interact with each other. It would be interesting to find a geometric

interpretation of the semi-local property in this context.
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In order to give more evidence that there are interesting connections, note that a

recursion for biadjoint scattering amplitudes was presented in [136, 186, 16] using a novel

soft-limit triangulation. For the reader’s convenience we rewrite Equation 16 of [16] below,

mn =
n∑

i=4

(
1

X1,3

+
1

X2,i

)
m̂nL

× m̂nR
. (2.71)

In this equation the hatted amplitudes are the smaller amplitudes into which mn factors

near the X2,i = 0 region with variables shifted so that X2,j → X2,j −X2,i.

Let us consider the n = 5 and n = 6 cases in order to show how degenerate 3-splits can

naturally appear from (2.71) by setting to zero all but one of the terms. The explicit form

of (2.71) for n = 5 reads (see also [16, eq. 17]),

m5(I, I) =
(

1

s12
+

1

s23

)(
1

s51 − s23
+

1

s45

)
+

(
1

s12
+

1

s51

)(
1

s34
+

1

s23 − s51

)
. (2.72)

Requiring the first term to vanish by setting the second factor to zero implies that we are

exploring the subspace of kinematics space where s23 = s45 + s51. Using that for n = 5

s23 = s451 we get the condition of a (2, 3, 5)-split which is a degenerate 3-split, i.e.

s451 = s45 + s51

or s41 = 0. Evaluating the second term in (2.72) on this subspace gives

m5(I, I)|split kin. =
(

1

s12
+

1

s51

)(
1

s34
+

1

s45

)
= J (5, 1, 2)J (3, 4, 5). (2.73)

Of course, this is a degenerate 3-split because the third amputated current is trivial, i.e.

J (2, 3) = 1.
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Let us now consider the n = 6 case. The formula (2.71) becomes

m6(I, I) =
(

1

s12
+

1

s23

)
m̂(4, 5, 6, 1, I) +

(
1

s12
+

1

s234

)
m̂(2, 3, 4, I)m̂(5, 6, 1, I)+(

1

s12
+

1

s61

)
m̂(2, 3, 4, 5, I).

(2.74)

As explained in the definition of (2.71) each hatted amplitude must be appropriately shifted

and the meaning of the emergent particle I is different in each term. Let us select kinematic

invariants that set to zero the second and third terms in (2.74). This is achieved by

s234 = s23 + s34, s2345 = s23 + s345 (2.75)

which is clearly the (6, 1, 3)-split kinematic subspace, i.e., s24 = s25 = 0. As expected, the

first term in (2.74) gives the expected answer, i.e.

m6(I, I)|split kin. =
(

1

s12
+

1

s23

)
J (3, 4, 5, 6). (2.76)

A similar analysis shows that setting to zero the first and third terms in (2.74) by only

imposing linear constrains leads to subspace in which the second term vanishes as well and

therefore we do not get any interesting split.

We have also considered each term in (2.74) evaluated on the (1, 3, 5)-split and (2, 4, 6)-

split kinematic subspaces and found that the second term always vanishes while the other

two are non-trivial functions which have to be added in order to exhibit the 3-split behavior.
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2.6.4 CEGM Amplitudes: Connections and Prospects

Let us now point out an intriguing similarity between the smooth splitting in equation (2.1)

and a particular residue of the generalized biadjoint scalar partial amplitudes m
(k)
n (I, I),

proposed by Cachazo, Early, Guevara and Mizera (CEGM) in [71] and introduced in chap-

ter 1.

Recall that the CEGM construction starts with a generalization of the CHY formula

for the biadjoint theory which is an integral over the space of n marked points on CP1, also

known as X(2, n), to an integral over the space of n marked points in CPk−1, i.e. X(k, n).

The CEGM generalization of the CHY potential function is

S(k) :=
∑

j1<j2<...<jk

sj1,j2,...,jk log|j1, j2, . . . , jk| (2.77)

where |a1, a2, . . . ak| denote Plücker coordinates of X(k, n). There are several important

novelties in the theory, which we recall, for the reader’s convenience. First, the kinematic

invariants for the theory are higher rank-k analogs of Mandelstam invariants sij; they are

indexed by k-element subsets, and we use the notation sJ = sj1,...,jk . Here, the general-

ization of masslessness is imposed by requiring sJ be zero whenever an index is repeated.

One also has the n linear relations which generalize momentum conservation,

∑
J∋a

sJ = 0

for each a = 1, . . . , n.
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In [71], the generalized biadjoint scalar m
(k)
n (I, I) was constructed as follows

m(k)
n (I, I) :=

∫ (k−1)(n−k−1)∏
α=1

dxα δ

(
∂S(k)

n

∂xα

)
× (PT(k)(I))2 (2.78)

where PT(k)(I) is the X(k, n) analog of the Parke-Taylor function PT(I) presented in

equation (2.21) and xα is some parameterization of X(k, n). In the same way that the

k = 2 formula controls the leading order in an expansion around α′ = 0 of string theory

integrals, (2.78) has been shown to control the leading order in generalized string integrals

[14].

In order to present the connection with the smooth splitting of biadjoint amplitudes

let us specialize to the case k = 3 and n = 6. Following [71], one finds that the kinematic

invariant R̃, defined by

R̃ = s156 + s256 + s345 + s346 + s356 + s456, (2.79)

is a pole of m(3)
6 (I, I); it is the residue at R̃ = 0 that is now of interest. In terms of the

planar basis of kinematic invariants, introduced and developed by Early in [108, 107, 106] in

the context of permutohedral and hypersimplicial blades, equation (2.79) can be rewritten

as R̃ = η246(s), where

η246 =
1

6
(6s123 + 5s124 + 4s125 + 3s126 + 4s134 + 3s135 + 2s136 + 2s145 + s146 + 6s156

+ 3s234 + 2s235 + s236 + s245 + 5s256 + 6s345 + 5s346 + 4s356 + 3s456) . (2.80)

For the biadjoint scalar, which corresponds here to the case k = 2, one recovers the planar
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kinematic invariants, as

ηij = si+1···j .

One can check directly (see for instance [71, 42, 107]), that the residue of m
(3)
6 (I, I) at

η246 = 0 is a product of three factors

Resη246=0(m
(3)
6 (I, I)) =

(
1

η236
+

1

η124

)(
1

η256
+

1

η146

)(
1

η346
+

1

η245

)
. (2.81)

This expression is intriguingly similar to that of (2.1). Looking forward, we focus on

an important outcome of this chapter: we have established, using the CHY formalism,

that the kind of novel behavior for residues of generalized CEGM amplitudes that has

been observed in [71], with more progress in [14, 134], has an analog in three different

quantum field theories, as a semi-local “shadow”. This shadow appears not only for the

cubic scalar partial amplitude, but also for NLSM and, more surprisingly, the special

Galileon amplitudes where a planar order is not present. One of the most significant –

and intriguing – contrasts is that the semi-local smooth 3-splits into amputated currents

that we have explored in this paper do not occur at residues of the amplitude but on

certain subspaces of the kinematic space where the amplitude does not have a singularity;

but for m
(3)
n (I, I) it has been observed directly to occur on residues where one (or more)

compatible planar basis elements ηj1j2j3 vanishes [107]. The 3-splitting behavior is not very

well-understood, and in fact it remains a very pressing open question whether it continues

to occur in any generality. What lessons need to be learned here?

Another interesting direction would be to study split kinematics in the context of

likelihood geometry and in particular likelihood degenerations [197, 6]. It is natural to

propose generalizations of split kinematics for higher rank k ≥ 3; could one describe what

happens to the solutions to the CEGM scattering equations as one approaches the split
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kinematics subspace, not only for k = 2, but for k = 3 and beyond? In the next section

we sketch a promising and related direction for future research.

2.6.5 CEGM Amplitudes: Smooth Splits at k = 3

Here we show how generalized k = 3 amplitudes smoothly split when restricted to a

kinematic subspace analogous to the one previously studied for quantum field theory am-

plitudes.

In order to study smooth splits in generalized amplitudes we will use the CEGM for-

mulation [71]. Without loss of generality, we consider the k = 3 split kinematics subspace

(1, 2, j, j+1) defined by setting to zero any sabc whose indices do not satisfy 1 ≤ a, b, c ≤ j+1

or j ≤ a, b, c ≤ 2, where the indices are understood modulo n. Due to the existing SL(3,C)

redundancy we can fix four particles, and a natural choice is the gauge fixing

1 2 j j + 1


0 0 1 1

0 1 0 1

1 0 0 1

(2.82)

where punctures 2 and j are sent to infinity. Let us however start by writing the k = 3

CEGM formula for punctures 1, 2, j and j + 1 fixed to generic values

m(3)
n (I, I) =

∫ n∏
a=1

′
2∏

t=1

dxt,aδ

(
∂S(3)

∂xt,a

)
(V1,2,j,j+1 PT(3)

n (I))2 (2.83)

where V1,2,j,j+1 ≡ |1, 2, j||2, j, j + 1||j, j + 1, 1||j + 1, 1, 2| and the prime in the product
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means a ̸∈ {1, 2, j, j + 1}. The k = 3 Parke-Taylor function is given by

PT(3)
n (I) =

1

|123||234| · · · |n12|
.

Using the gauge fixing (2.82) the factor V1,2,j,j+1 PT(3)
n (I) can be written as the product

V1,2,j,j+1 PT(3)
(1,2,...,j,j+1)︷ ︸︸ ︷(

|12j||2, j, j + 1||j, j + 1, 1||j + 1, 1, 2|
|123||234| · · · |j − 2, j − 1, j||j − 1, j, j + 1||j, j + 1, 1||j + 1, 1, 2|

)
×
(

|j, j + 1, 1||j + 1, 1, 2||12j||2, j, j + 1|
|j, j + 1, j + 2||j + 1, j + 2, j + 3| · · · |n− 1, n, 1||n12||12j||2, j, j + 1|

)
︸ ︷︷ ︸

Vj,j+1,1,2 PT(3)
(j,j+1,...,n,1,2)

,

(2.84)

where V1,2,j,j+1 = Vj,j+1,1,2. The first factor corresponds to the Parke-Taylor function for a

generalized amplitude with the double ordering (1, 2, ..., j + 1) multiplied by the Fadeev-

Popov factor V1,2,j,j+1 that appears from the fixing of punctures 1, 2, j and j+1. Similarly,

the second factor corresponds to the Parke-Taylor function for the double ordering (j, j +

1, ..., n, 1, 2) multiplied by the same Fadeev-Popov factor. Notice that the variables in each

factor and after the gauge fixing (2.82) have completely decoupled.

Now let us have a look at the k = 3 CEGM potential

S(3)
n :=

∑
1≤a<b<c≤n

sabc log|abc|

in the split kinematics subspace (1, 2, j, j + 1). Note that in this kinematics the potential

splits into

S(3)
n = S(3)

j+1 +W
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where the first term

S(3)
j+1 :=

∑
1≤a<b<c≤j+1

sabc log|abc|

is the k = 3 CEGM potential for a generalized amplitude with particles (1, 2, ..., j+1) and

the second term W is an object that we still have to identify. Let us look at it in more

detail. This term can be written as

W :=
∑

j≤a<b<c≤2

sabc log|abc| − s12jlog|12j| − s1,2,j+1log|1, 2, j + 1| − s1,j,j+1log|1, j, j + 1|

− s2,j,j+1log|2, j, j + 1|

(2.85)

where the indices in the sum are understood modulo n. After using the gauge fixing (2.82)

we have

log|12j| = log|1, 2, j + 1| = log|1, j, j + 1| = log|2, j, j + 1| = 0

and the variables in the two terms S(3)
j+1 and W completely decouple. Moreover, we can

now identify W|(2.82) with the k = 3 CEGM potential for a generalized amplitude with

particles (j, j + 1, ..., n, 1, 2), i.e.

W|(2.82) ≡ S(3)
(j...n12)|(2.82) .

Putting all the pieces together one can see that with the gauge fixing (2.82) the CEGM
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integral (2.83) under the split kinematics (1, 2, j, j + 1) splits into

m(3)
n (I, I)|(1,2,j,j+1) =

(∫ j−1∏
a=3

2∏
t=1

dxt,aδ

(
∂S(3)

j+1|(2.82)

∂xt,a

)
(V1,2,j,j+1 PT(3)

(1,2,...,j,j+1))
2|(2.82)

)

×

(∫ n∏
a=j+2

2∏
t=1

dxt,aδ

(
∂S(3)

(j...n12)|(2.82)

∂xt,a

)
(Vj,j+1,1,2 PT(3)

(j,...,n,1,2))
2|(2.82)

)
(2.86)

where from (2.83) one can see that the first factor is identified with an object that resembles

the generalized amplitude m
(3)
j+1(α1, α1) with α1 = (1, 2, ..., j + 1), while the second factor

is identified with an object that resembles the generalized amplitude m
(3)
n−j+3(α2, α2) with

α2 = (j, ..., n, 1, 2). However, these two factors in the split are not amplitudes since their

particles do not satisfy momentum conservation. We leave the interpretation of these

resulting objects for future research.

The CEGM construction turned out to reveal a rich connection between physical and

combinatorial ideas through the mathematics of the tropical spaces and, in particular,

the positive tropical Grassmannian Trop+G(k, n) [98]. In the following chapter, we will

examine part of its potential for gaining insights into quantum field theory when k = 2.
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Chapter 3

Global Schwinger Formulae

3.1 Introduction

The positive tropical Grassmannian Trop+G(2, n) [195] is the space of all planar metric

trees with n leaves and vertices of any degree. Hence, in some sense it governs the singu-

larity structure of any planar tree-level scattering amplitude of massless scalar fields with

arbitrary polynomial interactions.

For example, tree-level partial amplitudes of massless scalars in the biadjoint represen-

tation of U(N)×U(Ñ) with only cubic interactions, mn(α, β), are computed by summing

over all n-particle cubic Feynman diagrams which are planar with respect to both, α and

β, orderings. The partial amplitudes with the largest number of diagrams are the ones

where both orderings coincide, e.g., mn(I, I). In a recent work by Cachazo and Early [66],

a formula for mn(I, I) as a single integral over Trop+G(2, n) was presented,

mn(I, I) =
∫
Rn−3

dn−3x exp(−Fn(x)) . (3.1)
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Here the function Fn(x) =
∑

a,b t[a,b]f[a,b](x) is a piece-wise linear function defined on

Trop+G(2, n) via the “tropical cross-ratios” f[a,b](x), and t[a,b] := (pa + pa+1 + · · · + pb)
2

are standard planar kinematic invariants. This construction is reviewed in detail in section

3.2.

When restricted to a single cone of Trop+G(2, n), the corresponding integral becomes

nothing but the Schwinger parameterization of a single Feynman diagram. In this sense,

Trop+G(2, n) provides a global Schwinger parameterization of the amplitude. The regions

in Trop+G(2, n) corresponding to trees with one or more higher-degree vertices are of

measure zero and therefore do not contribute to the integral.

In this chapter we continue the study of global Schwinger parameterizations by extend-

ing the construction to all partial amplitudes mn(α, β) and to amplitudes in scalar theories

with ϕp-interactions and p > 3. In both cases, our construction starts with the global

Schwinger formulation of mn(I, I) and proceeds with a limiting procedure on the planar

kinematic invariants to obtain amplitudes in other theories.

In the case of mn(α, I) partial amplitudes, the limiting procedure on kinematic invari-

ants produces indicator functions in the integrand. These indicator functions describe the

regions of the original Trop+G(2, n) that intersect with Trop+Gα(2, n), defined with the

ordering α. Our first result is the following,

mn(α, I) =
∫
Rn−3

dn−3x exp (−Gα(x))1S(Hα)(x) , (3.2)

where Gα(x) is a piece-wise linear function that depends on the ordering α, and 1S(Hα)(x)

is an indicator function. We provide a derivation and examples of this formula in section

3.3.

The next set of theories we study are a straightforward generalization of mn(I, I) in
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which one sums over only planar Feynman diagrams with ϕp-interaction vertices. We

denote such amplitudes by Aϕp

n . In this work we only consider planarity with respect to

the cannonical ordering I and therefore there is no need to specify it. Of course, Aϕp

n is

defined to be zero if no Feynman diagram exists for the particular number of external

particles.

In order to obtain the global Schwinger formulation of Aϕp

n , the limiting procedure on

kinematic invariants produces distributions in the integrand. In particular, the Dirac delta

functions localize the integral over Rn−3 to regions of measure zero1, those where trees with

higher-degree vertices live. For example, for ϕ4 amplitudes we find

Aϕ4

n =

∫
Rn−3

dn−3x exp

(
−

even∑
a<b

t[a,b]f[a,b](x)

)
Q(x) , (3.3)

where Q(x) is the distribution obtained from the limiting procedure and the sum is over

b − a ≡ 0 mod 2. This procedure, together with the derivation of the global Schwinger

formula for Aϕ4

n , is developed in section 3.4. In section 3.5 we provide several examples.

Our global Schwinger formula for ϕ4 amplitudes reveals surprising connections to cubic

amplitudes: we find that each of the Cn/2−1 regions that define the support of the dis-

tributions in the integrand is in bijection with a mn/2+1(α, I) amplitude. We study this

feature in section 3.6, where we propose a combinatorial procedure to obtain such regions

from non-crossing chord diagrams. This implies that Aϕ4

n can also be expressed as a sum

over regions. These results motivate a formula for the general schematic structure of Aϕ4

n

1Each corresponds to a polyhedral cone in Trop+G(2, n).
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in terms of cubic amplitudes based on the Lagrange inversion procedure

Aϕ4

n =

(
2

nh
n/2−1
0

)
1

2πi

∮
|z|=ϵ

dz

(
h(z)

z

)n/2

with h(x) =
∞∑
i=0

mi+2(I, I)xi . (3.4)

Here h0 = m2(I, I) := P 2 and m3(I, I) := 1.

The fact that Aϕ4

n is computed as a sum over regions is very reminiscent of the recent

constructions based on Stokes polytopes [30, 29, 149, 9, 186, 196], which were motivated

by the connection between ϕ3 amplitudes and the associahedron [167, 12]. It is known that

some Stokes polytopes are associahedra and therefore their contribution could coincide

with that of some of the regions we find. However, we find that only associahedra or

intersections of associahedra [64] appear in our construction.

In section 3.7 we start the exploration of ϕp amplitudes in general. We propose an

analogous limiting procedure and obtain the corresponding global Schwinger formula

Aϕp

n =

∫
Rn−3

dn−3x exp

(
−

Kp∑
a<b

t[a,b]f[a,b](x)

)
Q(x) . (3.5)

where Kp indicates that the sum is over ordered pairs (a, b) such that b− a ≡ 0 mod p− 2.

We also propose a diagrammatic construction to find the regions that compute Aϕp

n

as non-crossing (p − 2)-chord diagrams (these are counted by the Fuss-Catalan numbers2

FC(n−2)/(p−2)(p − 2, 1)). The sum over all contributions leads to the expected number of

trees in Aϕp

n , which is also given by Fuss-Catalan numbers, FC(n−2)/(p−2)(p−1, 1). Moreover,

2Here FCm(q, r) is the Fuss-Catalan number given by

FCm(q, r) ≡ r

mq + r

(
mq + r

m

)
.
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we point out a connection to m(n+2(p−3))/(p−2)(α, I) amplitudes and provide some examples.

We also propose a formula giving the general structure of Aϕp

n in terms of cubic amplitudes.

Of course, Aϕp

n amplitudes have also been recently studied and found to be related to a

class of polytopes known as accordiohedra [162, 181, 10, 154, 150, 147, 148, 146] (see also

[25, 26] for related work). Some accordiohedra are associahedra and therefore as in the

case of ϕ4 we suspect that contributions from such accordiohedra could coincide with that

of some of our regions.

In section 3.8 we explore physical properties like factorization and soft limits for the par-

tial biadjoint amplitude and for CEGM amplitudes using their global Scwhinger formulas.

We conclude in section 3.9 with discussions on possible future research directions including

connections between our schematic formulas for Aϕp

n and those that express general Green

functions in terms of connected Green functions in planar theories, a way to connect to

accordiohedra constructions, and possible extensions to CEGM generalized amplitudes.

3.2 Global Schwinger Formula for mn(I, I)

In this section we review the construction of the global Schwinger formula for mn(I, I)

introduced and proved in [66]. Consider a single metric tree T with n leaves and all

internal vertices of degree three. We follow the mathematical convention and call these

binary trees3. Label the leaves of T so that it is planar with respect to the ordering

I := (1, 2, . . . , n). Its contribution to an amplitude can be constructed as follows. First,
3The name stems from the fact that when a leaf is selected as a root, then walking up along the tree

implies that at each internal vertex there are exactly two possible edges to choose from in order to continue
the walk.
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define the function

F(T ) := −
∑

1≤a,b≤n

dabsab , (3.6)

where dab represents the matrix of distances, i.e., the distance from leaf a to leaf b. Man-

delstam invariants sab := (ka + kb)
2 satisfy

sab = sba, saa = 0, and
n∑

b=1

sab = 0 ∀a. (3.7)

Let ea be the length of the edge containing the ath leaf and write dab = ea+ eb+ dint
ab where

dint
ab is the length of the internal edges along the unique path connecting a and b. Due to

momentum conservation (3.7), ea drops out from the function F(T ) and it can be written

as

F(T ) =
n−3∑
i=1

fIitIi , (3.8)

where fI denotes the length of an internal edge that partitions the set leaves of T as

I ∪ Ic = [n]. The kinematic invariant multiplying fI is defined as the square of the

momentum flowing through the edge under consideration, i.e.,

tI :=

(∑
a∈I

ka

)2

=
∑

{a,b}⊂I

sab . (3.9)

The conditions (3.7) guarantee that tI = tIc . Finally, the contribution to the amplitude is

R(T ) =

∫
O+

dn−3f exp(−F(T )) =
n−3∏
i=1

∫ ∞

0

dfIi exp(−fIitIi) =
n−3∏
i=1

1

tIi
. (3.10)
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where O+ := (R+)n−3 is the positive orthant in Rn−3. Of course, the integral formulas are

only defined for tIi > 0 but once the answer is in the rational function form, it is valid

for any values tIi ̸= 0. Note that the second integral in (3.10) is the standard Schwinger

formula and the edge lengths fI are the Schwinger parameters.

Denoting the set of all binary trees which are planar with respect to an ordering of the

leaves α := (α1, α2, . . . , αn) by Pln(α), the amplitude is computed as

mn(I, I) =
∑

T ∈ Pln(I)

R(T ) . (3.11)

In [194], Speyer and Sturmfels introduced the tropical Grassmannian TropG(2, n) and

showed that it agrees with the moduli space of phylogenetic trees studied by Billera, Holmes

and Vogtmann (BHV) [39]. Motivated by the work of Postnikov [180] on totally positive

Grassmannians, Speyer and Williams introduced positive tropical Grassmannians [195]. In

particular, Trop+G(2, n) parameterizes the space of planar trees on n leaves. This means

that Trop+G(2, n) must provide a global definition of Schwinger parameters which unifies

all the individual Schwinger representations into a single integral.

In order to present the formula, one starts with G+(2, n) and then tropicalizes the

Plücker coordinates. Such a positive parameterization of G+(2, n) is given by4

1 0 −1 −(1 + x̃1) −(1 + x̃1 + x̃2) · · · −(1 + x̃1 + · · ·+ x̃n−3)

0 1 1 1 1 · · · 1

 (3.12)

where x̃a ∈ R+. Note that any minor ∆ab with a < b is positive. The tropicalization

of a minor ∆ab of (3.12) proceeds by replacing addition, x̃i + x̃j, with the min-function,

min(xi, xj), and multiplication x̃ix̃j with addition xi + xj. Note that we drop the tilde to
4Here we suppress the torus coordinates which under tropicalization map to the ea’s which drop out.
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differentiate the two sets of variables. This is important since while x̃a ∈ R+, the tropical

variables are unconstrained, i.e., xa ∈ R.

The connection to the space of planar trees is simply the identification of (minus) the

distance matrix dab with the tropical Plücker coordinates. It is not difficult to evaluate

∆Trop
ab (x) and find

−dab ↔ ∆Trop
ab (x) =

 min(xa−2, xa−1, . . . , xb−3) 2 ≤ a ≤ b− 1, 4 ≤ b ≤ n

0 otherwise
, (3.13)

where x0 := 0 and whenever there is a single argument min(x) := x. It might seem strange

that some dab are sent to zero, however, recall that momentum conservation makes the

physics independent of the lengths ea which can then be used to set to zero some of the

entries dab. The choice corresponds to a choice of frame in (3.12). Using this in (3.6) one

defines the “tropical potential function”

Fn(x) :=
∑

1≤a<b≤n

sab∆
Trop
ab (x) =

n∑
b=4

b−1∑
a=2

sabmin(xa−2, xa−1, . . . , xb−3) . (3.14)

The scattering amplitude (3.11) now has a single integral representation [66]

mn(I, I) =
∫
Rn−3

dn−3x exp(−Fn(x)) . (3.15)

Note that the integral is over all Rn−3. Of course, the integral in (3.15) might not exist for

some values of kinematic invariants. Let us discuss the regions of convergence. The best

approach is to write the tropical potential function Fn(x) in terms of planar kinematic

invariants. This is easily done by introducing the notation t[a,b] to denote tI with I =
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{a, a+ 1, . . . , b− 1, b}, a set of consecutive labels, and using

sab = t[a,b] − t[a+1,b] − t[a,b−1] + t[a+1,b−1] . (3.16)

Here one defines t[c,d] = 0 whenever c ≥ d. For example, s14 = t[1,4] − t[2,4] − t[1,3] + t[2,3]

while s23 = t[2,3]. Using (3.16) in Fn(x) and arranging by planar kinematic invariants one

finds

Fn(x) =
∑
a<b

t[a,b]

(
∆Trop

a,b (x)−∆Trop
a,b+1(x)−∆Trop

a−1,b(x) + ∆Trop
a−1,b+1(x)

)
. (3.17)

Figure 3.1: In a generic tree, the combination of distances −da,b + da,b+1 + da−1,b − da−1,b+1

equals twice the length of the edge which removal would split the diagram into two parts,
one containing a and b and the other a− 1 and b+ 1.

The quantity in brackets has a very beautiful interpretation when thought of as −da,b+

da,b+1 + da−1,b − da−1,b+1 for a single planar Feynman diagram. This is nothing but twice

the length of the edge partitioning the labels as {a, a+1, . . . , b−1, b}∪{b+1, b+2, . . . , a−

2, a − 1}, i.e., what used to be f[a,b], see figure 3.1. Of course, for this to be the case, it
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better be that it is always non-negative. This is easily seen to be the case by noticing the

following general property for any three real numbers A,B,C,

A−min(A,B)−min(A,C) + min(A,B,C) ≥ 0 . (3.18)

The proof is left as an exercise to the reader5. It is important to mention that the condition

∆Trop
a,b (x) + ∆Trop

a−1,b+1(x) ≥ ∆Trop
a,b+1(x) + ∆Trop

a−1,b(x) (3.19)

is part of what is referred to as a positive tropical Plücker relation and it must be satisfied

in order to be in Trop+G(2, n).

Finally, the condition for the integral formula (3.15) to exist is simply that all planar

kinematic invariants be positive. In the rest of this work, only the formula with planar

invariants will be used. This why it is convenient to introduce special notation for the

combination of tropical minors in (3.17),

f[a,b](x) := ∆Trop
a,b (x)−∆Trop

a,b+1(x)−∆Trop
a−1,b(x) + ∆Trop

a−1,b+1(x) , (3.20)

so that Fn(x) =
∑

a,b t[a,b]f[a,b](x) and we arrive at the final form of the global Schwinger

formula [66]

mn(I, I) =
∫
Rn−3

dn−3x exp

(
−
∑
a<b

t[a,b]f[a,b](x)

)
. (3.21)

Figures 3.2 and 3.3 qualitatively represent how the standard Schwinger parameterization

is related to the global Schwinger parameterization.
5Hint: A−min(A,B) = −min(A−A,B−A) = −min(0, B−A) ≥ 0. Repeated use leads to −min(0, B−

A)−min(0, (B −A)−min(0, C −A)).
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Figure 3.2: In the standard Schwinger parameterization for n = 4, the amplitude equals
to the sum of two integrals, each of them given by integrating over the positive inter-
nal length ℓa of the corresponding metric tree, and weighted by the Mandelstam as-
sociated to the propagator, i.e. m4(I, I) =

∫ +∞
0

dℓ1exp(−s12ℓ1) +
∫ +∞
0

dℓ2exp(−s23ℓ2).
The global Schwinger formula can be understood as the projection onto a single line,
given by the integral over e.g. x1 of the piece-wise linear function F4(x), i.e. m4(I, I) =∫ +∞
−∞ dx1exp(−(s24min(0, x1) + s34x1)).

3.3 From mn(I, I) to mn(α, β)

In order to extend the global Schwinger formula (3.21) for mn(I, I) to all other partial

amplitudes, mn(α, β), let us first review their definition. Recall that Pln(α) denotes the

set of all binary trees which are planar with respect to the ordering of the leaves defined

by α = (α1, α2, . . . , αn). Given a second ordering β = (β1, β2, . . . , βn), one can determine

the set of trees which are planar with respect to both orderings by simply finding the

intersection Pln(α) ∩ Pln(β), and therefore,

mn(α, β) =
∑

T ∈ Pln(α)∩ Pln(β)

R(T ) . (3.22)
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Figure 3.3: The global Schwinger parameterization for n = 5 viewed as a projection of
Trop+G(2, 5). Right : A positive part of the space of binary metric trees with 5 leaves. A
point in each quadrant is in correspondence with a metric tree where the internal lengths
are the Schwinger parameters, and a point in each semi-ray is therefore in correspondence
with a planar kinematic invariant. Left : The global Schwinger formula as a unification of 5
integrals into a single two-dimensional integral, parametrized by two tropical variables x1

and x2. The red lines on the plane define the domains where the tropical potential F5(x)
becomes linear.

Depending on conventions, there might be an overall sign which depends on the two or-

derings chosen. Since our main concern is the kinematic dependence of the amplitude, we

refer the reader to [77] for details on the definition of the sign6.

Without loss of generality we assume that β = I = (1, 2, . . . , n). Now, recall that tI is

planar with respect to an ordering if the set I coincides with the set of labels of an interval

in the ordering. For example, if α = (1, 2, 5, 4, 3, 6) then I = {1, 2, 5} is planar with respect

to α but not with respect to I while I = {3, 4, 5} is planar with respect to both orderings.

Let PK(α) denote the set of all planar kinematic invariants with respect to α.
6For example, one could decide to define partial amplitudes so that the sign is included in the traces

of the flavour groups. While convenient when individual partial amplitudes are considered, this makes
properties such as the U(1)-decoupling identity, which involves several partial amplitudes, cumbersome.
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Proposition 3.3.1. Consider the set of planar kinematic invariants PK(I), set tI = 1/ϵ

whenever tI /∈ PK(α), and evaluate mn(I, I) on it to get a function of ϵ and kinematic

invariants in PK(α) ∩ PK(I), m(ϵ)
n (I, I). Then

mn(α, I) = lim
ϵ→0

m(ϵ)
n (I, I) . (3.23)

Proof. Since all trees in m
(ϵ)
n (I, I) that do not contribute to mn(α, I) contain at least one

kinematic invariant that has been set to 1/ϵ, in the limit their contribution to the amplitude

vanishes. Since invariants in PK(α) ∩ PK(I) are ϵ-independent, so are the corresponding

Feynman diagram contributions R(T ) to (3.22).

The construction of the global Schwinger formula for mn(α, I) proceeds in exactly the

same way. Let us define the ϵ-dependent tropical potential function, Fn(x, ϵ), by starting

with Fn(x) and restricting to the kinematic space of Proposition 3.3.1. More explicitly,

Fn(x) :=
∑

I∈ PK(I)

tI fI(x) → Fn(x, ϵ) :=
∑

I∈PK(α)∩ PK(I)

tI fI(x) +
1

ϵ

 ∑
I /∈PK(α)∩ PK(I)

fI(x)

 . (3.24)

Let us define the finite and divergent parts to be Fn(x, ϵ) = Gα(x) +
1
ϵ
Hα(x), i.e.,

Gα(x) :=
∑

I∈PK(α)∩ PK(I)

tI fI(x) , Hα(x) :=
∑

I /∈PK(α)∩ PK(I)

fI(x) . (3.25)

Note that we have chosen to add the subscript α to indicate that the form of the functions

depends on the α-ordering. Using (3.23) and (3.15) one finds

mn(α, I) = lim
ϵ→0+

∫
Rn−3

dn−3x exp(−Fn(x, ϵ)) . (3.26)
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Defining the limit as a directional limit from above is necessary for the convergence of the

integral since all planar kinematic invariants must be positive. Moreover, it also allows the

limit to be taken inside the integral. Using (3.25) one finds

mn(α, I) =
∫
Rn−3

dn−3x exp (−Gα(x)) lim
ϵ→0+

exp

(
−1

ϵ
Hα(x)

)
. (3.27)

The function resulting from computing the limit is nothing but an indicator function. In

general, given two sets S, U such that S ⊂ U ,

1S : U → {0, 1}, 1S(x) =

 1 if x ∈ S,

0 otherwise.
(3.28)

In the case at hand, we define the set S(Hα) := {x ∈ Rn−3 : Hα(x) = 0} ⊂ Rn−3. This

leads to the final formula for the global Schwinger formula,

mn(α, I) =
∫
Rn−3

dn−3x exp (−Gα(x))1S(Hα)(x) . (3.29)

Example 3.3.2. Consider α = (1324). In this case

Gα(x) = −s23min(0, x1) , Hα(x) = x1 −min(0, x1) . (3.30)

The set S(Hα) = {x1 : x1 ≤ 0} = (−∞, 0] and therefore,

m4(1324, I) =
∫ ∞

−∞
dx1 exp (s23min(0, x1))1(−∞,0](x1) =

∫ 0

−∞
dx1 exp (s23 x1) =

1

s23
. (3.31)

Let us present a more interesting example.
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Example 3.3.3. Consider α = (123654). In this case

Gα(x) =s12 (x1 −min (0, x1))− s23 min (0, x1) + s45 (x2 −min (x2, x3))+

s56 (x3 −min (x2, x3)) + t123 (min (x2, x3)− x1) ,

Hα(x) =x1 −min(x1, x2, x3) .

(3.32)

In the expression for Gα(x) we have already used that x1 ≤ min(x2, x3) is the condition

imposed by requiring Hα(x) = 0 in order to simplify the expression. The set S(Hα) = {x1 :

x1 ≤ min(x2, x3)}. In this case it is convenient to write the indicator function as a product

of two Heaviside step functions θ(x2 − x1)θ(x3 − x1) so that

m6(123654, I) =
∫
R3

d3x exp (−Gα(x1, x2, x3)) θ(x2 − x1)θ(x3 − x1) . (3.33)

This integral is easily evaluated to give the expected result

m6(123654, I) =
(

1

s12
+

1

s23

)(
1

s45
+

1

s56

)
1

t123
. (3.34)

3.4 From ϕ3 Amplitudes to ϕ4 Amplitudes

The positive tropical Grassmannian Trop+G(2, n) is the space of all planar metric trees.

In other words, trees with vertices of any degree 3 ≤ d ≤ n are part of the space. In

the previous section, amplitudes of theories where only Feynman diagrams corresponding

to binary trees were discussed. At first it might be puzzling that a formula for mn(I, I)

involves an integration over the entire Trop+ G(2, n). However, this is easily understood

by noticing that the regions in Trop+G(2, n) which correspond to trees with at least one

vertex of degree d > 3 are of measure zero and do not contribute to the integral.

79



In this section we extend the idea used to obtain mn(α, I) from mn(I, I) by a limiting

procedure in order to obtain a global Schwinger formula for Aϕ4

n . The main difference is that

while the limiting procedure produced indicator functions leading to mn(α, I), here it pro-

duces Dirac delta functions that localize the integral to the regions of measure zero where

ϕ4 planar trees are located. The process unearths a surprising connection to mn/2+1(α, I)

amplitudes.

Proposition 3.4.1. Consider the space of kinematic invariant of n = 2m massless parti-

cles with t[a,b] = 1/ϵ whenever b− a ≡ 1 mod 2 and let m(ϵ)
n (I, I) denote mn(I, I) evaluated

on it. Then

Aϕ4

n = lim
ϵ→0

1

(2ϵ)n/2−1
m(ϵ)

n (I, I) . (3.35)

Proof. Consider any Feynman diagram T (4) contributing to Aϕ4

n , that is, any completely

ternary planar tree on n-leaves. Such a diagram has n/2 − 1 vertices of degree 4. The

strategy is to find out how many planar binary trees give rise to T (4) by collapsing edges,

i.e., taking their length to zero. This is easily done by realizing that for each degree-four

vertex of T (4) there are exactly two ways, compatible with planarity, of growing an edge to

produce two degree-three vertices. This means that there are 2n/2−1 binary trees that give

rise to T (4). Of course, not all binary trees descend to a ternary diagram. Note that under

the kinematics in the proposition, ϕ3 Feynman diagrams that collapse to ϕ4 diagrams have

exactly n/2−2 ϵ-independent propagators and (n−3)− (n/2−2) = n/2−1 which become

1/t = ϵ. Diagrams that do not produce a ϕ4 diagram have at least one extra propagator

of the form 1/t = ϵ. Therefore, in the limit ϵ → 0 the ϕ4 amplitude is recovered.
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3.4.1 Global Schwinger Formula for Aϕ4

n

Following the same steps as in section 3.3 we start the derivation of the global Schwinger

formulation of Aϕ4

n by using Proposition 3.4.1 and the representation for mn(I, I) given in

(3.21), i.e.

Aϕ4

n = lim
ϵ→0+

1

(2ϵ)n/2−1

∫
Rn−3

dn−3x exp

(
−
∑
a<b

t[a,b](ϵ)f[a,b](x)

)
. (3.36)

Rewrite

Fn(x, ϵ) =
∑
a<b

t[a,b]f[a,b](x) = G(x) +
1

ϵ
H(x) (3.37)

with

G(x) =
even∑
a<b

t[a,b]f[a,b](x) , H(x) =
odd∑
a<b

f[a,b](x) , (3.38)

where the sums are over ordered pairs (a, b) such that b− a ≡ 0 mod 2 (even) or b− a ≡ 1

mod 2 (odd).

Unlike the cases considered in the previous section, the limit ϵ → 0 of m(ϵ)
n (I, I) does

not lead to a finite answer and therefore commuting the limit and the integration in (3.36)

must be carefully defined. We take the approach in which

Q(x) := lim
ϵ→0+

1

(2ϵ)n/2−1
exp

(
−1

ϵ
H(x)

)
(3.39)

is to be treated as a distribution. Since H(x) ≥ 0, it is clear that Q(x) only has support

in regions where H(x) = 0. In the next section we show that solutions to H(x) = 0 are

regions of dimension n/2− 1 in Rn−3 which are classified by non-crossing chord diagrams.
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Here we show the explicit form of H(x),

H(x) =
n−3∑
a=0

xa + 2
n−4∑
a=0

n−3∑
b=a+1

(−1)b−a min(xa, xa+1, ..., xb) . (3.40)

Thus, the distribution Q(x) becomes a sum over distributions that localize the integral to

the regions. This gives the first form of the global Schwinger formula for the ϕ4 theory,

Aϕ4

n =

∫
Rn−3

dn−3x exp

(
−

even∑
a<b

t[a,b]f[a,b](x)

)
Q(x) . (3.41)

In the next section we present some examples that motivate a second version of the formula

as a sum over regions labelled by non-crossing chord diagrams.

3.5 Computing ϕ4 Amplitudes Using the Global Schwinger

Formula

In this section we illustrate the use of the global Schwinger formula (3.41) by considering

several examples.

3.5.1 Four-Point Amplitude

The four-particle kinematic space is only two dimensional, s12, s23. Therefore G(x) = 0

and

H(x) = x1 − 2min(0, x1) = |x1|. (3.42)
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The distribution in the integral is

Q(x) = lim
ϵ→0+

1

2ϵ
exp

(
−1

ϵ
|x1|
)

= δ(x1) . (3.43)

This implies that (3.41) becomes

Aϕ4

4 =

∫
R
dx1δ(x1) = 1 . (3.44)

3.5.2 Six-Point Amplitude

The six-particle kinematic space is nine dimensional, s12, s23, . . . , s61, t[1,3], t[2,4], t[3,5]. Eval-

uating H(x) one finds

H(x) =x1 + x2 + x3 − 2min(0, x1)− 2min(x1, x2)− 2min(x2, x3)

+ 2min(0, x1, x2) + 2min(x1, x2, x3)− 2min(0, x1, x2, x3) . (3.45)

Setting H(x) to zero gives rise to two regions,

R1 = {x1 = 0, x2 = x3} , R2 = {x1 = x2 > 0, x3 = 0} . (3.46)

The distribution Q(x) then becomes

Q(x) = Q1(x) +Q2(x) , with Q1(x) := δ(x1)δ(x2 − x3) , Q2(x) := θ(x1)δ(x1 − x2)δ(x3) .

(3.47)

Instead of computing (3.41) as a single object, let us split it by regions

A
ϕ4:(1)
6 =

∫
R3

d3x exp(−G(x))Q1(x) =
1

t123
+

1

t234
. (3.48)
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A
ϕ4:(2)
6 =

∫
R3

d3x exp(−G(x))Q2(x) =
1

t345
. (3.49)

Adding up the two contributions leads to the amplitude

Aϕ4

4 =
1

t123
+

1

t234
+

1

t345
. (3.50)

3.5.3 Eight-Point Amplitude

The eight-particle kinematic space is twenty dimensional, s12, s23, . . . , s81, t123, t234, . . . , t812,

and t[1,4], t[2,5], t[3,6], t[4,7]. Evaluating H(x) using (3.40) one finds five regions:

R1 = {x1 = 0, x2 = x3, x4 = x5} ,

R2 = {x1 = 0, x2 = x5, x3 = x4, x2 < x3} ,

R3 = {x5 = 0, x1 = x2, x3 = x4, x1 > 0, x3 > 0} ,

R4 = {x3 = 0, x1 = x2, x4 = x5, x1 > 0} ,

R5 = {x5 = 0, x1 = x4, x2 = x3, x2 > x1 > 0} . (3.51)

The distribution Q(x) then becomes

Q(x) = Q1(x) +Q2(x) +Q3(x) +Q4(x) +Q5(x) (3.52)
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with

Q1(x) := δ(x1)δ(x2 − x3)δ(x4 − x5) ,

Q2(x) := θ(x3 − x2)δ(x1)δ(x2 − x5)δ(x3 − x4) ,

Q3(x) := θ(x1)θ(x3)δ(x5)δ(x1 − x2)δ(x3 − x4) ,

Q4(x) := θ(x1)δ(x3)δ(x1 − x2)δ(x4 − x5) ,

Q5(x) := θ(x1)θ(x2 − x1)δ(x5)δ(x1 − x4)δ(x2 − x3) .

The contributions from each region are:

A
ϕ4:(1)
8 =

1

t123t456
+

1

t456t781
+

1

t781t234
+

1

t234t678
+

1

t678t123
,

A
ϕ4:(2)
8 =

1

t567

(
1

t123
+

1

t234

)
,

A
ϕ4:(3)
8 =

1

t812

(
1

t345
+

1

t567

)
,

A
ϕ4:(4)
8 =

1

t345

(
1

t678
+

1

t781

)
,

A
ϕ4:(5)
8 =

1

t456t812
. (3.53)

The amplitude Aϕ4

8 is the sum over all five contributions and gives rise to the familiar

expression in terms of 12 Feynman diagrams.

3.5.4 One Region for All n

In the next section we provide a diagrammatic technique for finding all regions contributing

to Aϕ4

n . In this last example, we study the contribution from the analog to R1 for all n.
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The region is defined in the following proposition.

Proposition 3.5.1. The function

H(x) =
odd∑
a<b

f[a,b](x) , (3.54)

defined in (3.38), vanishes in the region

R1 = {x0 = x1, x2 = x3, x4 = x5, . . . , xn−4 = xn−3} . (3.55)

Proof. Since H(x) is the sum of non-negative functions, f[a,b](x), we have to show that

each such function vanishes on R1. Using the definitions (3.20), (3.13), one has

f[a,b](x) = min(xa−2, xa−1, . . . , xb−3)−min(xa−2, xa−1, . . . , xb−3, xb−2) (3.56)

−min(xa−3, xa−2, . . . , xb−3) + min(xa−3, xa−2, . . . , xb−3, xb−2) .

By definition, H(x) only contains f[a,b](x) with b− a ≡ 1 mod 2. This means that on R1,

either xa−3 = xa−2 or xb−3 = xb−2. This is easily seen by considering two cases: If a ∈ 2Z

then b ∈ 2Z + 1 and therefore a − 3 ∈ 2Z + 1, b − 3 ∈ 2Z, and xb−3 = xb−2 on R1. The

same can be repeated when a ∈ 2Z+ 1 to conclude that xa−3 = xa−2. Finally, note that if

xa−3 = xa−2 then the first and third terms in (3.56) cancel each other while the second and

fourth do too. If xb−3 = xb−2 then the first and second cancel while the third and fourth

do too.

In order to evaluate the contribution from R1 it is convenient to define the following
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combination of kinematic invariants,

rab := sab + sa,b+1 + sa+1,b + sa+1,b+1 . (3.57)

It is also useful to write rab in terms of planar invariants using (3.16),

rab = −t[a,b−1] + t[a,b+1] + t[a+2,b−1] − t[a+2,b+1] . (3.58)

Note that if a ∈ 2Z and b ∈ 2Z + 1, then all four invariants in (3.58) belong to the set of

ϕ4 invariants. Restricting the tropical potential function (3.14) to R1 one finds

Fn(x) = Gn(x) =
even∑
a=2

odd∑
b=5

rabmin(xa−2, xa, . . . , xb−5, xb−3) +
even∑
a=2

ta,a+1,a+2xa−2 . (3.59)

In sums labeled “even” (“odd”) the index only takes even (odd) values. The first equality

is due to the fact that on R1 the function Hn(x) = 0.

The function Gn(x) has exactly the structure of a tropical potential for mn/2+1(I, I) if

the labels are identified as xa → xa/2. This is well-defined since a only takes even values

in (3.59). Instead of using the mapping, we keep the original labels and write the tropical

potential for mn/2+1(I, I) as

F ϕ3

n/2+1(x0, x2, . . . , xn) :=
even∑
a=2

odd∑
b=5

sa,b+1 min(xa−2, xa, . . . , xb−5, xb−3) +
even∑
a=2

sa,a+2xa−2 .

(3.60)

Matching the coefficients gives the map of kinematic invariants,

rab = sa,b+1 , ta,a+1,a+2 = sa,a+2 , a ∈ {2, 4, 6 . . .} , b ∈ {5, 7, 9, . . .} . (3.61)
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We conclude that the contribution of region R1 to Aϕ4

n is nothing but mn/2+1(I, I) with

kinematic invariants given by (3.61). This result prompts the following proposition.

Proposition 3.5.2. Consider Aϕ4

n evaluated on the following subspace of kinematic invari-

ants,

t[a,b] =
1

ϵ
, a ∈ {3, 5, . . . , n− 3} , b ∈ {a+ 2, a+ 4, . . . , n− 1} . (3.62)

to produce a function A
ϕ4(ϵ)
n . Then,

lim
ϵ→0

Aϕ4(ϵ)
n = mn/2+1(I, I), (3.63)

for some bijection of the set of planar kinematic invariants.

Proof. Let us start by proving the spaces of kinematic invariants possess the same cardinal-

ity. The set of planar kinematic invariants of Aϕ4

n has cardinality of n(n−4)/4. For example,

it is 0, 3, 8, 15 for n = 4, 6, 8, 10. In the statement of the proposition, (n−2)(n−4)/8 of the

kinematic invariants are set to 1/ϵ so there are only (n− 4)(n+2)/8 left. Let us introduce

n3 := n/2 + 1, then (n− 4)(n+ 2)/8 = n3(n3 − 3)/2 which is the cardinality of the set of

planar kinematic invariants for mn3=n/2+1(I, I).

The rest of the proof is based on the fact that in the kinematic space of interest and

the corresponding limit, only region R1 contributes to the amplitude. Since the result from

region R1 was shown to be mn3=n/2+1(I, I) for some bijetion of the kinematic invariants in

this subsection, then the statement of the proposition follows. In order to actually complete

the proof, we first need to classify all regions and this is done in the next section. We

therefore postpone the completion of the proof to the end of the next section in subsection

3.6.3.
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3.6 Combinatorial Description of Regions

In the previous section we provided some examples of how the global Schwinger formula

for Aϕ4

n is evaluated. The result decomposes as a sum over regions (cones) which are in

bijection with noncrossing chord diagrams. In this section we provide a systematic study of

the structure of the regions. The unexpected appearance of mn/2+1(I, I) in the contribution

from one of the regions, explained in section 3.5.4, motivates a similar interpretation for

the other regions. Indeed, in all examples we have studied we find that all contributions are

related to mn/2+1(α, I) for some choice of ordering α. In order to make the study systematic,

we propose a diagrammatic procedure for finding all the regions that contribute to Aϕ4

n and

show how each such region is in bijection with a cubic mn/2+1(α, I) amplitude.

3.6.1 Regions for Aϕ4

n : Non-Crossing Chord Diagrams

Let us start by defining non-crossing chord diagrams in our context.

Definition 3.6.1. Place n− 2 points labeled 0, 1, . . . , n− 3 in increasing order on the real

line. A non-crossing chord diagram is a perfect matching of the points such that all edges

can be drawn as chords on the upper half plane without any crossings. Let us denote the

chord connecting points a and b as θab.

Conjecture 3.6.2. The regions contributing to Aϕ4

n are in bijection with the set of all

Cn/2−1 possible non-crossing chord diagrams defined in 3.6.1. Moreover, the region R

corresponding to a particular diagram is obtained as follows:

• For each chord θab set xa = xb.

• If a chord θab surrounds another chord θcd, then xa = xb < xc = xd.
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In other words, the regions defined by non-crossing chord diagrams are all the solutions to

H(x) = 0.

Let us note that the case in which no chord surrounds any other chord corresponds to

R = {x0 = x1, x2 = x3, . . . , xn−4 = xn−3} . (3.64)

This is nothing but the region R1 which was proven to set H(x) = 0 in Proposition (3.5.1).

Example 3.6.3. Consider two of the examples presented in section 3.5. For n = 4 there

is a single chord diagram. It has a single chord θ01 and therefore the region is given by

x0 = x1. Recall that x0 = 0 and so x1 = 0. For n = 6 there are two non-crossing chord

diagrams as shown in figure 3.4. The corresponding regions can be seen to match R1 and

    0                   1               2                   3     0                   1               2                   3 

Figure 3.4: Non-crossing chord diagrams for n = 6. On the right, the chord θ03 surrounds
the chord θ12 and therefore the condition x0 < x1 is imposed.

R2 in (3.46), i.e.,

R1 = {x0 = x1, x2 = x3} , R2 = {x0 = x3, x1 = x2, x0 < x1} . (3.65)

Finally, we leave as an exercise to the reader to check that the five regions for n = 8

presented in (3.51) correspond to the diagrams in figure 3.5.
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    0                   1                  2                   3                   4                   5     0                   1                  2                   3                   4                   5

    0                   1                  2                   3                   4                   5     0                   1                  2                   3                   4                   5

    0                   1                  2                   3                   4                   5

Figure 3.5: Non-crossing chord diagrams for n = 8. In the second diagram θ25 surrounds
θ34 and therefore x2 < x3. In the third diagram θ05 surrounds both θ12 and θ34 and therefore
x0 < x1 and x0 < x3. In the fourth diagram θ03 surrounds θ12 so x0 < x1. Finally, in the
fifth diagram θ05 surrounds θ14 which surrounds θ23 so x0 < x1 < x2.

In the last example of section 3.5 we found that the contribution to region R1 was

computed by a biadjoint ϕ3 amplitude with n/2+1 particles, i.e., mn/2+1(I, I). The attentive

reader might have noticed that in all examples provided so far, the structure of the answer

resembles that of mn/2+1(α, I) for some permutation α. We leave the precise connection

between α and a region for future work and here we concentrate on the schematic structure

of Aϕ4

n for which we have an all n proposal.

3.6.2 Products of ϕ3 Amplitudes: Towards mn/2+1(α, I)

In order to understand the structure of each region, it is useful to introduce an additional

chord to the non-crossing chord diagrams described above. More precisely, we introduce

two new points, which could be denoted −1 and n − 2, and we always draw a chord

between them. The point −1 is located to the left of 0 and n − 2 is to the right of n − 3
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so that the chord θ−1,n−2 surrounds the whole diagram. This can be understood as a way

of introducing into the figure the fixed particles 1 and 2 in the parameterization (3.12).

Definition 3.6.4. An extended non-crossing chord diagram (also known as indecomposable

non-crossing chord diagram) associated to Aϕ4

n is a non-crossing chord diagram on n points

labeled by {−1, 0, 1, 2, . . . , n−3, n−2} in which θ−1,n−2 is always included. We also define a

meadow of an extended non-crossing chord diagram as any region in the diagram delimited

by more than one chord and by the line where the points lie.

The claim is that a meadow delimited by m chords and the real line corresponds to

a biadjoint (m + 1)-subamplitude participating in mn/2+1(α, I). Moreover, we also claim

that any chord θab shared by two meadows corresponds to a propagator in mn/2+1(α, I) of

the form 1/t[a+3,b+2]. This also fixes the topology of the cubic double-ordered amplitude.

Before describing the consequences of this proposal, let us give some examples to illus-

trate it.

Example 3.6.5. Consider the region described by the diagram in figure 3.6 for n = 10.

Using the diagram it is easy to recognize the region as

R = {x0 = x1, x2 = x5, x3 = x4, x6 = x7, x2 < x3} . (3.66)

Since the green meadow is delimited by 4 chords and the real line then it corresponds to a

5-particle subamplitude of m6(α, I), while the blue meadow is delimited by 2 chords and the

real line and thus corresponds to a 3-particle subamplitude. The disk diagram on the right

is intended to represent the topology of m6(α, I) given the diagram on the left. The reader

familiar with the CHY description of biadjoint partial amplitudes would recognize the disk

diagram as encoding the two orderings α and I. Finally, notice that the chord θ25 is shared
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Figure 3.6: Left: An extended non-crossing chord diagram for n = 10 where the meadows
have been coloured. The additional points −1 and 8 together with the chord θ−1,8 joining
them are coloured in magenta. Right: Disc diagram of an m6(α, I) amplitude corresponding
to the contribution of the region on the left.

by two meadows, hence it generates the propagator 1/t567 in m6(α, I). The conclusion is

that the contribution of this region to Aϕ4

10 is schematically given by

m3 ×m5 ×
1

t567
. (3.67)

Example 3.6.6. Consider another region contributing to Aϕ4

10 , described by the diagram

in figure 3.7. In this case we have two 4-particle subamplitudes and one propagator of the

Figure 3.7: Left: An extended non-crossing chord diagram for n = 10 where the meadows
have been coloured. Right: Disc diagram of an m6(α, I) amplitude corresponding to the
contribution of the region on the left.

form 1/t[3,7]. The contribution of this region to Aϕ4

10 is schematically given by

(m4)
2 × 1

t[3,7]
. (3.68)
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Note that (m4)
2 stands for the product of two distinct four-point ϕ3 amplitudes. Since we

are only interested in the schematic structure, i.e. in the number of amplitudes of a given

type, we keep track of that using exponents.

Example 3.6.7. Consider now a region contributing to Aϕ4

8 . The region is defined by the

diagram in figure 3.8. We leave as an exercise for the reader to show that this corresponds to

region R5 in the example given in section 3.5.3. The extended non-crossing chord diagram

Figure 3.8: Left: An extended non-crossing chord diagram for n = 8 where the meadows
have been coloured. Right: Disc diagram of an m5(α, I) amplitude corresponding to the
contribution of the region on the left.

contains three meadows delimited by two chords (i.e. three 3-particle subamplitudes) and

two propagators corresponding to the chords θ05 and θ14. Accoding to our proposal, these

propagators are 1/t[3,7] = 1/t812 and 1/t456, respectively. Once again, the schematic form

of the contribution is

(m3)
3 × 1

t812
× 1

t456
. (3.69)

If we define m3 := 1 this is exactly the contribution A
ϕ4:(5)
8 presented in (3.53).

Based on these and many other examples, we have found a formula that reproduces the

schematic structure of Aϕ4

n in every case. The formula is based on the Lagrange inversion

procedure relating the series expansion of a function f(x) with that of its compositional
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inverse. We review some related material in appendix C. Here we simply present the final

form of the proposal. Let

h(x) =
∞∑
i=0

hix
i :=

∞∑
i=0

mi+2x
i , (3.70)

where mi+2 represents a generic (i+2)-particle amplitude in the biadjoint ϕ3 scalar theory

of the form mi+2(I, I). Since the mass dimension of mi+2(I, I) is −2(i−1) we are motivated

to define m2 := P 2 and m3 := 1. Here 1/P 2 represents a generic propagator.

The claim is that the schematic form of the amplitude Aϕ4

n is given by

Aϕ4

n =

(
2

nh
n/2−1
0

)
1

2πi

∮
|z|=ϵ

dz

(
h(z)

z

)n/2

. (3.71)

Let us compute the first few cases of (3.71),

Aϕ4

4 =h1 = m3 ,

Aϕ4

6 =
h2
0h2 + h0h

2
1

h2
0

= m4 +m2
3

1

P 2
,

Aϕ4

8 =
h3h

3
0 + 3h1h2h

2
0 + h3

1h0

h3
0

= m5 + 3m3m4
1

P 2
+m3

3

(
1

P 2

)2

,

Aϕ4

10 =m6 + 4m5m3
1

P 2
+ 2m2

4

1

P 2
+ 6m4m

2
3

(
1

P 2

)2

+m4
3

(
1

P 2

)3

.

There are several consistency checks that can be done on (3.71). The first is that the

number of non-crossing chord diagrams with n/2 − 1 chords is Cn/2−1. Therefore if we

set all mr := 1 so that the contribution from each region is unity, one must find that
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Aϕ4

n = Cn/2−1. This means that we must set

h(x) =
∞∑
i=1

xi =
1

1− x
, (3.72)

and evaluate

Aϕ4

n =

(
2

n

)
1

2πi

∮
|z|=ϵ

dz

(
1

z(1− z)

)n/2

= Cn/2−1 . (3.73)

The last equality follows from the Lagrange inversion formula with f(x) = x(1 − x) and

g(x) = xB2(x), where B2(x) is the generating function of Catalan numbers.

The second check is that if Aϕ4

n is evaluated on “planar kinematics” [77, 107, 66], i.e.

on the kinematic point where all planar Mandelstam invariants that participate in Aϕ4

n

are unity, t[a,b] = 1, then Aϕ4

n simply counts the number of planar ternary trees (with all

internal vertices of degree four). The numbers are known to be given by the Fuss-Catalan

sequence, FCn/2−1(3, 1). For n = 4, 6, 8, 10 one has FCn/2−1(3, 1) = 1, 3, 12, 55. This check

can be done by realizing that on planar kinematics mn = Cn−2 and therefore

h(x) =
∞∑
i=1

Ci x
i = B2(x) =

1−
√
1− 4x

2x
. (3.74)

As shown in appendix C in (C.8), it is indeed the case that

FCr(3, 1) =
1

2πi

∮
|z|=ϵ

dz

r + 1

(
1−

√
1− 4z

2z2

)r+1

, (3.75)

which gives the required relation when r = n/2− 1.
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3.6.3 Completing the Proof of Proposition 3.5.2

In order to complete the proof of Proposition 3.5.2 we have to show that all regions that

contribute to Aϕ4

n , except for R1, are O(ϵ) when

t[a,b] =
1

ϵ
, a ∈ {3, 5, . . . , n− 3} , b ∈ {a+ 2, a+ 4, . . . , n− 1} . (3.76)

Recall that R1 is the region corresponding to n/2 − 1 non-crossing chords so that none

is surrounded by any other. According to the rules explained in this section, this means

that no propagator is generated. One the other hand, every single other region has at least

one chord surrounded by another, say θef and therefore there is at least one propagator

in the region’s contribution to the amplitude. The propagator is 1/t[e+3,f+2]. Clearly

f − e ≥ 3 so that the chord can contain at least another one. This means that the chords

of interest can only have e ∈ {0, 1, . . . , n− 6} and f ∈ {e+ 3, e+ 4, . . . , n− 3}. Therefore

each region different from R1 contains at last one propagator of the form 1/t[a,b] with

a ∈ {3, 4, . . . , n − 3} and b ∈ {a + 2, a + 3, . . . , n − 1}. But this is exactly the range of

propagators set to ϵ and this concludes the proof.

3.7 From ϕ3 Amplitudes to ϕp Amplitudes

In this section we extend the limiting procedure used to obtain Aϕ4

n from mn(I, I) to make

a general conjecture for any Aϕp

n amplitude and its global Schwinger formulation. We also

propose a diagrammatic procedure for finding all the regions that contribute to Aϕp

n and

point out a connection with m(n+2(p−3))/(p−2)(α, I) amplitudes. To start with, the limiting

procedure that generates Aϕp

n from mn(I, I) is the following.
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Proposition 3.7.1. Consider the region of the kinematic space of n massless particles

where t[a,b] = 1/ϵ whenever b− a ̸≡ 0 mod p− 2 and let m(ϵ)
n (I, I) denote mn(I, I) evaluated

on it. Then

Aϕp

n = lim
ϵ→0

1

(Cp−2 ϵp−3)
n−2
p−2

m(ϵ)
n (I, I), (3.77)

where Cm is the mth Catalan number.

Proof. The proof is analogous to that of Proposition 3.4.1. First, consider any Feynman

diagram T (p) of Aϕp

n , that is, any (p− 1)-ary planar tree on n-leaves. Such a diagram has

(n − 2)/(p − 2) vertices of degree p. The strategy is again to find out how many planar

binary trees give rise to T (p) by collapsing edges, i.e., taking their length to zero. This

is easily done by realizing that for each degree-p vertex of T (p) there are exactly Cp−2

ways, compatible with planarity, of growing a tree to produce Cp−2 degree-three vertices.

This means that there are C(n−2)/(p−2)
p−2 binary trees that give rise to T (p). Of course, not

all binary trees descend to a (p − 1)-ary diagram. Note that under the kinematics in the

proposition, ϕ3 Feynman diagrams that collapse to ϕp diagrams have exactly (n−p)/(p−2)

ϵ-independent propagators and therefore (n− 3)− (n− p)/(p− 2) = (p− 3)(n− 2)/(p− 2)

which become 1/t = ϵ. Diagrams that do not produce a ϕp diagram have at least one

extra propagator of the form 1/t = ϵ. Therefore, in the limit ϵ → 0 the ϕp amplitude is

recovered.

As in section 3.4, one can write the global Schwinger formula for Aϕp

n as a single integral

Aϕp

n =

∫
Rn−3

dn−3x exp

(
−

Kp∑
a<b

t[a,b]f[a,b](x)

)
Q(x) , (3.78)

where Kp means that the sum is over ordered pairs (a, b) such that b − a ≡ 0 mod p − 2.
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Here Q(x) is defined as

Q(x) := lim
ϵ→0+

1

(Cp−2 ϵp−3)
n−2
p−2

exp
(
−1

ϵ
H(x)

)
(3.79)

with

H(x) =
∑

a<b:(a,b)/∈Kp

f[a,b](x) . (3.80)

Note that due to the non-negativity of H(x), Q(x) only has support in regions where

H(x) = 0. Again, the distribution Q(x) becomes a sum over distributions that localize the

integral to these regions. This means that equation (3.78) can also be understood as a sum

over regions, where these as associated to diagrams as explained in the next subsection.

3.7.1 Combinatorial Description of Regions

In this subsection we conjecture that the solutions of H(x) = 0 are regions of dimension

n/(p − 2) − 1 in Rn−3 which are classified by non-crossing (p − 2)-chord diagrams. The

definition of non-crossing (p− 2)-chord diagrams, in our context, is the following.

Definition 3.7.2. Place n − 2 points labeled 0, 1, . . . , n − 3 on the real line in increasing

order. A non-crossing (p − 2)-chord diagram is a perfect matching of the points such

that each matching involves (p − 2) points joined by a (p − 2)-chord and drawn on the

upper half plane without any crossings. Let us denote the (p − 2)-chord connecting points

a1, a2, . . . , ap−2 as θa1,a2,...,ap−2 (for general k-chord diagrams see e.g. [208].)

Conjecture 3.7.3. The regions contributing to Aϕp

n are in bijection with the set of all
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FC(n−2)/(p−2)(p− 2, 1)7 possible non-crossing (p− 2)-chord diagrams. Moreover, the region

R corresponding to a particular diagram is obtained as follows:

• For each (p− 2)-chord θa1,a2,...,ap−2 set xa1 = xa2 = · · · = xap−2.

• If a (p−2)-chord θa1,a2,...,ap−2 surrounds another (p−2)-chord θb1,b2,...,bp−2, then xa1 =

xa2 = · · · = xap−2 < xb1 = xb2 = · · · = xbp−2.

In other words, the regions defined by the non-crossing (p− 2)-chord diagrams are all the

solutions to H(x) = 0, where H(x) is given by (3.80), and the sum of their contributions

produces all the FC(n−2)/(p−2)(p− 1, 1) trees of ϕp.

Example 3.7.4. Consider the n = 10 amplitude for ϕ6. There are four non-crossing

4-chord diagrams and are shown in figure 3.9.

Reading from top to bottom and recalling that x0 = 0, the four regions generated by

these diagrams correspond, respectively, to

R1 = {x1 = x2 = x3 = 0, x4 = x5 = x6 = x7} ,

R2 = {x1 = x2 = x7 = 0, x3 = x4 = x5 = x6, x3 > 0} ,

R3 = {x1 = x6 = x7 = 0, x2 = x3 = x4 = x5, x2 > 0} ,

R4 = {x5 = x6 = x7 = 0, x1 = x2 = x3 = x4, x1 > 0} .

7Recall that FCm(q, r) is the Fuss-Catalan number given by

FCm(q, r) ≡ r

mq + r

(
mq + r

m

)
.

Note that for q = 2 and r = 1 the Fuss-Catalan numbers coincide with the Catalan numbers, i.e.
FCm(2, 1) = Cm.
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    0               1                2                 3                4                5                 6                7               

    0               1                2                 3                4                5                 6                7               

    0               1                2                 3                4                5                 6                7               

    0               1                2                 3                4                5                 6                7               

Figure 3.9: All possible non-crossing 4-chord diagrams for n = 10 and p = 6. Each diagram
contains exactly two 4-chords. In the top diagram one 4-chord joins points 0, 1, 2, 3 while
the second 4-chord joins 4, 5, 6, 7. In the second diagram the 4-chord θ0127 surrounds θ3456.
In the third, θ0167 surrounds θ2345. In the last diagram, θ0567 surrounds θ1234.

Therefore, the distribution Q(x) is given by

Q(x) = Q1(x) +Q2(x) +Q3(x) +Q4(x)

with
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    0               1                2                 3                4                5                 6                7                8                   0               1                2                 3                4                5                 6                7                8               

    0               1                2                 3                4                5                 6                7                8                   0               1                2                 3                4                5                 6                7                8               

    0               1                2                 3                4                5                 6                7                8                   0               1                2                 3                4                5                 6                7                8               

    0               1                2                 3                4                5                 6                7                8                   0               1                2                 3                4                5                 6                7                8               

    0               1                2                 3                4                5                 6                7                8                   0               1                2                 3                4                5                 6                7                8               

    0               1                2                 3                4                5                 6                7                8                   0               1                2                 3                4                5                 6                7                8               

Figure 3.10: All possible non-crossing 3-chord diagrams for n = 11 and p = 5.

Q1 := δ(x1)δ(x2)δ(x3)δ(x4 − x5)δ(x5 − x6)δ(x6 − x7) ,

Q2 := θ(x3)δ(x1)δ(x2)δ(x7)δ(x3 − x4)δ(x4 − x5)δ(x5 − x6) ,

Q3 := θ(x2)δ(x1)δ(x6)δ(x7)δ(x2 − x3)δ(x3 − x4)δ(x4 − x5) ,

Q4 := θ(x1)δ(x5)δ(x6)δ(x7)δ(x1 − x2)δ(x2 − x3)δ(x3 − x4) .

The contributions from each region are

A
ϕ6:(1)
10 =

1

t[1,5]
+

1

t[2,6]
, A

ϕ6:(2)
10 =

1

t[5,9]
,

A
ϕ6:(3)
10 =

1

t[4,8]
, A

ϕ6:(4)
10 =

1

t[3,7]
. (3.81)
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The amplitude Aϕ6

10 is the sum over all FC2(4, 1) = 4 contributions and gives rise to the

familiar expression with FC2(5, 1) = 5 Feynman diagrams.

Example 3.7.5. Consider now the n = 11 case for ϕ5. There are 12 non-crossing 3-chord

diagrams and are represented in figure 3.10. Reading from left to right and top to bottom,

the 12 regions generated by these diagrams correspond, respectively, to

R1 = {x1 = x2 = 0, x3 = x4 = x5, x6 = x7 = x8} ,

R2 = {x1 = x2 = 0, x3 = x7 = x8, x4 = x5 = x6, x3 < x4} ,

R3 = {x1 = x2 = 0, x5 = x6 = x7, x3 = x4 = x8, x3 < x5} ,

R4 = {x4 = x5 = 0, x1 = x2 = x3, x6 = x7 = x8, x1 > 0} ,

R5 = {x1 = x5 = 0, x2 = x3 = x4, x6 = x7 = x8, x2 > 0} ,

R6 = {x7 = x8 = 0, x1 = x2 = x3, x4 = x5 = x6, x1 > 0, x4 > 0} ,

R7 = {x4 = x8 = 0, x1 = x2 = x3, x5 = x6 = x7, x1 > 0, x5 > 0} ,

R8 = {x1 = x8 = 0, x2 = x3 = x4, x5 = x6 = x7, x2 > 0, x5 > 0} ,

R9 = {x7 = x8 = 0, x1 = x5 = x6, x2 = x3 = x4, x2 > x1 > 0} ,

R10 = {x7 = x8 = 0, x1 = x2 = x6, x3 = x4 = x5, x3 > x1 > 0} ,

R11 = {x1 = x8 = 0, x2 = x6 = x7, x3 = x4 = x5, x3 > x2 > 0} ,

R12 = {x1 = x8 = 0, x2 = x3 = x7, x4 = x5 = x6, x4 > x2 > 0} .

We leave as an exercise to the reader to find the distributions associated to these regions
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and to show that the contributions from each region are:

A
ϕ5:(1)
11 =

1

t[2,5]t[8,11]
+

1

t[2,5]t[2,8]
+

1

t[5,8]t[2,8]
+

1

t[5,8]t[5,11]
+

1

t[8,11]t[5,11]
,

A
ϕ5:(2)
11 =

1

t[6,9]

(
1

t[2,5]
+

1

t[5,11]

)
, A

ϕ5:(3)
11 =

1

t[7,10]

(
1

t[2,5]
+

1

t[5,11]

)
,

A
ϕ5:(4)
11 =

1

t[3,6]

(
1

t[8,11]
+

1

t[2,8]

)
, A

ϕ5:(5)
11 =

1

t[4,7]

(
1

t[8,11]
+

1

t[2,8]

)
,

A
ϕ5:(6)
11 =

1

t[3,9]

(
1

t[3,6]
+

1

t[6,9]

)
, A

ϕ5:(7)
11 =

1

t[7,10]t[3,6]
,

A
ϕ5:(8)
11 =

1

t[4,10]

(
1

t[4,7]
+

1

t[7,10]

)
, A

ϕ5:(9)
11 =

1

t[4,7]t[3,9]
,

A
ϕ5:(10)
11 =

1

t[5,8]t[3,9]
, A

ϕ5:(11)
11 =

1

t[5,8]t[4,10]
, A

ϕ5:(12)
11 =

1

t[6,9]t[4,10]
. (3.82)

The amplitude Aϕ5

11 is the sum over all FC3(3, 1) = 12 contributions and gives rise to the

familiar expression with FC3(4, 1) = 22 Feynman diagrams.

From these examples note that even for p > 4 the structure of the contribution of

each region also resembles that of a cubic amplitude. In particular, it has the structure

of m(n+2(p−3))/(p−2)(α, I) for some permutation α. Here we will only concentrate on the

schematic structure of Aϕp

n for all n, leaving again the precise connection between α and

the region to future work.

3.7.2 Products of ϕ3 Amplitudes: Towards m(n+2(p−3))/(p−2)(α, I)

As in the p = 4 case, in order to understand the structure of each region it is useful to

introduce an additional (p − 2)-chord to the non-crossing (p − 2)-chord diagrams from

Definition 3.7.2. This is done by adding p− 2 new points labelled −p+ 3,−p+ 4, . . . ,−1
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and n− 2 so that the new set of points is {−p+ 3,−p+ 4, . . .− 1, 0, 1, 2, . . . , n− 3, n− 2}

and points are located in increasing order on the real line8.

Definition 3.7.6. An extended non-crossing (p−2)-chord diagram is a non-crossing (p−2)-

chord diagram on n points labelled by {−p + 3,−p + 4, . . .− 1, 0, 1, 2, . . . , n− 3, n− 2} in

which θ−p+3,−p+4,...,−1,n−2 is always included. We also define a meadow of an extended non-

crossing (p − 2)-chord diagram as any region in the diagram delimited by more than one

(p− 2)-chord and by the line where the points lie.

From now on we will abuse notation and use θab to refer to the unique path in a

(p − 2)-chord joining two points a and b. Therefore, the general claim is that a meadow

delimited by m such paths and the real line corresponds to a biadjoint (m+1)-subamplitude

participating in m(n+2(p−3))/(p−2)(α, I). We also claim that the upper boundary of a meadow,

θab, corresponds to a propagator in m(n+2(p−3))/(p−2)(α, I) of the form 1/t[a+3,b+2], with the

exception of the pair {a, b} = {−1, n − 2}. This also fixes the topology of the cubic

double-ordered amplitude.

Let us again give some examples to illustrate the proposal.

Example 3.7.7. Consider the extended non-crossing 4-chord diagram of ϕ6 for n = 14

shown in figure 3.11.

In this extended diagram the points −3, −2, −1 and 12 together with the 4-chord

θ−3,−2,−1,12 that joins them are coloured in magenta. One can see that there are two mead-

ows coloured in green and blue. The green meadow is delimited by the real line and by 2

paths θ−1,12 and θ0,11, thus it corresponds to a 3-point subamplitude appearing in m5(α, I).

Similarly, the blue meadow is delimited by 3 paths θ2,11, θ36 and θ7,10 and the real line,
8In fact, any choice where at least one point is on the left of 0 and one point is on the right on n− 3 is

valid.
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Figure 3.11: Left: An extended non-crossing chord diagram of ϕ6 for n = 14 where the
meadows have been coloured. Right: Disc diagram of an m5(α, I) amplitude corresponding
to the contribution of the region on the left.

thus it corresponds to a 4-point subamplitude of m5(α, I). The upper boundary of the blue

meadow is θ2,11 and this means that there is a propagator of the form 1/t[5,13]. The upper

boundary of the green meadow is of the form θ−1,n−2 and it does not generate a propagator.

Therefore, the schematic form of the contribution is

m3 ×m4 ×
1

t[5,13]
.

Example 3.7.8. Now consider another extended non-crossing 4-chord diagram of ϕ6 for

n = 14 shown in figure 3.12. As in the previous example, one can see that there are

Figure 3.12: Left: An extended non-crossing chord diagram of ϕ6 for n = 14 where the
meadows have been coloured. Right: Disc diagram of an m5(α, I) amplitude corresponding
to the contribution of the region on the left.

three meadows coloured in green, blue and red. The green meadow is delimited by the real

line and by 2 paths θ−1,12 and θ0,11 and gives rise to a 3-point subamplitude appearing in

m5(α, I). Similarly, the blue meadow is delimited by the real line and 2 paths θ05 and θ14,

thus it corresponds to a 3-point subamplitude of m5(α, I). Likewise, the red meadow is
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delimited by the real line and 2 paths θ5,10 and θ69 and gives rise to a 3-point subamplitude

of m5(α, I). We also have two propagators of the form 1/t[3,7] and 1/t[8,12]. Therefore, the

schematic form of the contribution is

(m3)
3 × 1

t[3,7]
× 1

t[8,12]
.

3.7.3 Schematic Structure of Aϕp

n

Before proposing a Lagrange inversion-like formula to reproduce the schematic structure

of Aϕp

n , we present more examples:

Aϕ5

8 =m4 + 2m2
3

1

P 2
, Aϕ5

11 = m5 + 6m3m4
1

P 2
+ 5m3

3

(
1

P 2

)2

,

Aϕ5

14 =m6 + 4m2
4

1

P 2
+ 8m5m3

1

P 2
+ 28m4m

2
3

(
1

P 2

)2

+ 14m4
3

(
1

P 2

)3

,

Aϕ6

10 =m4 + 3m2
3

1

P 2
, Aϕ6

14 = m5 + 9m3m4
1

P 2
+ 12m3

3

(
1

P 2

)2

,

Aϕ7

12 =m4 + 4m2
3

1

P 2
,

Aϕ8

14 =m4 + 5m2
3

1

P 2
. (3.83)

Let us make a proposal for the all n structure of Aϕp

n amplitudes in terms of biadjoint cubic

amplitudes and then perform the same consistency check as done for ϕ4. The proposal is

motivated by the fact, proven in appendix C, that f(x) = x/Bk−1(x) and g(x) = xBk(x)

are compositional inverses of each other if Br(x) is the generating function of the Fuss-

Catalan numbers FCm(r, 1). This led us to propose a recursive structure in which we
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define

h3(x) :=
∞∑
i=0

mi+2x
i (3.84)

and

hk(x) =
∞∑
j=0

hk,jx
j :=

∞∑
j=0

1

2πi

∮
|z|=ϵ

dz

j + 1

(
hk−1(z)

z

)j+1

xj . (3.85)

The structure of the Aϕp

n amplitude is then given by

Aϕp

n =
hp,(n−2)/(p−2)

h
(p−3)(n−2)/(p−2)
0

. (3.86)

The first consistency check is that the number of non-crossing (p− 2)-chord diagrams with

(n− 2)/(p− 2) chords is FC(n−2)/(p−2)(p− 2, 1). Therefore if one sets all mi+2 := 1 so that

the contribution from each region is unity, one must find that Aϕp

n = FC(n−2)/(p−2)(p−2, 1).

In section 3.6.2 we showed that setting

h3(x) =
∞∑
i=1

xi =
1

1− x
= B1(x) , (3.87)

turns h4(x) into the generating function of the numbers FCm(3, 1). Iterating the procedure

one finds that hk(x) turns into the generating function of the numbers FCm(k − 1, 1).

The second check is evaluating Aϕp

n on planar kinematics so that Aϕp

n counts the number

of unrooted planar (p− 1)-ary trees (with all internal vertices of degree p). The numbers

are known to be given by the Fuss-Catalan sequence, FC(n−2)/(p−2)(p − 1, 1). This check

can again be done by realizing that on planar kinematics mn = Cn−2 and therefore

h3(x) =
∞∑
i=1

Ci x
i = B2(x) =

1−
√
1− 4x

2x
. (3.88)
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Iterating one finds that hk(x) = Bk−1(x), the generating function of the Fuss-Catalan

numbers FCm(k − 1, 1) as required. In appendix C we provide several examples that

illustrate the iteration procedure and the resulting formulas for Aϕp

n .

3.8 Factorization and Soft Limits

In this section we study how physical properties like factorization and soft limits are realized

in the partial biadjoint amplitude mn(I, I) by using the global Schwinger formula. We also

study soft limits in the CEGM amplitude from its analogous global Schwinger formulation

presented in [66].

3.8.1 Factorization

One of the basic features of tree-level scattering amplitudes is that unitarity and locality

constrain them so that the only existing poles have the schematic form 1/P 2, where P

is the sum of momenta of a subset of particles participating in the scattering, and the

residues at these poles correspond to the product of two lower-point amplitudes.

In this section we initiate a qualitative study of how factorization is realized from the

global Schwinger formulation perspective for the partial biadjoint amplitude. For example,

we can consider the residue of mn(I, I) when s34...r = 0, which corresponds to a factorization

of the form

mr−1(3, 4, ..., r, I|3, 4, ..., r, I)×mn−r+2(I, r + 1, ..., 1, 2|I, r + 1, ..., 1, 2) ,

where I is a new intermediate particle carrying momentum −(p3 + p4 + · · ·+ pr).
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From the global Schwinger formula point of view, what we want to find is the region

that produces a divergence when s34...r is small. We start by recalling the global Schwinger

formula

mn(I, I) =
∫
Rn−3

dn−3x exp(−Fn(x)) , (3.89)

where the tropical potential can be written as

Fn(x) :=
n∑

b=4

b−1∑
a=2

sabmin(xa−2, xa−1, . . . , xb−3) . (3.90)

If we apply the change of variables x1 = τ−1 and xa = τ−1 + ua, for a ∈ {2, ..., r − 3}, we

claim that the factorization is produced when τ → 0+. This means that one of the tropical

directions is flattened in the factorization limit. The way to see this is by noticing that

after applying the change of variables, using momentum conservation considering that now

s34...r → 09, and at leading order in τ we have

Fn(x) → τ−1s34...r + FL(u) + FR(x) , (3.91)

where

FL(u) =
r∑

b=5

b−1∑
a=3

sabmin(ua−2, ua−1, · · · , ub−3) , (3.92)

9For example, we will have (s3,r+1+ · · ·+sr,r+1) = −(sr+2,r+1+ · · ·+sn,r+1+s1,r+1+s2,r+1) = sI,r+1.
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with u1 := 0 and

FR(x) =s2,r+1min(0, xr−2) + sI,r+1xr−2

+ s2,r+2min(0, xr−2, xr−1) + sI,r+2min(xr−2, xr−1) + sr+1,r+2xr−1

· · ·

+ s2,nmin(0, xr−2, ..., xn−3) + sI,nmin(xr−2, ..., xn−3) + · · ·+ sn−1,nxn−3 .

(3.93)

Here we have expanded FR(x) for clarity. This implies that (3.89) becomes

−
∫

dττ−2exp(−τ−1s34...r)

∫
Rr−4

dr−4u exp(−FL(u))

∫
Rn−r−2

dn−r−2x exp(−FR(x)) . (3.94)

Comparing to (3.89), we see that the second and third integrals give rise to the amplitudes

mr−1(3, 4, ..., r, I|3, 4, ..., r, I) and mn−r+2(I, r+1, ..., 1, 2|I, r+1, ..., 1, 2), respectively. The

limits of integration of the integral over τ are from 0 to τ0, where τ0 is positive and

arbitrarily small. After integrating, if we expand in s34...r/τ0 we find that the leading

order produces the desired pole 1/s34...r. Hence the factorization. In order to complete the

proof, one should show that the region considered here is the only one that produces the

divergence. We leave this as an exercise for the reader.

3.8.2 Soft Limits: Biadjoint Scalar Amplitudes

In order to study soft limits from the global Schwinger formula we proceed in a similar

way as in the factorization case. Now, we consider a soft particle, e.g. particle n, such that

san = τ ŝan with τ → 0, and look for the regions that produce a divergence. Namely, we

consider the part of (3.89) which depends on xn−3, since it is the part in which particle n
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appears ∫ ∞

−∞
dxn−3 exp

(
−

n−1∑
a=2

sanmin(xa−2, xa−1, ..., xn−2)

)
, (3.95)

with x0 = 0 and xn−2 = ∞. There are two regions that contribute to the pole as τ → 0.

One is when xn−3 ∈ (−∞,min(x0, x1, ..., xn−4)). If we use momentum conservation we find

that in this region we have

∫ min(x0,x1,...,xn−4)

−∞
dxn−3exp(s1nxn−3) =

exp(s1nmin(x0, x1, ..., xn−4))

s1n
=

1

τ ŝ1n
+O(τ 0) .

The second region that contributes to the pole is xn−3 ∈ (max(x0, x1, ..., xn−4),∞). In this

case we find that the contribution will come from

∫ ∞

max(x0,x1,...,xn−4)

dxn−3exp(−sn−1,nxn−3) =
exp(−sn−1,nmax(x0, x1, ..., xn−4))

sn−1,n

=
1

τ ŝn−1,n

+O(τ 0) .

The remaining regions of integration will contribute O(τ 0). Therefore, the amplitude in

the soft limit behaves as expected

mn(I, I) =
1

τ

(
1

ŝ1n
+

1

ŝn−1,n

)
mn−1(I, I) +O(τ 0) . (3.96)

3.8.3 Soft Limits: CEGM Amplitudes

One of the many fascinating properties of the still mysterious CEGM generalized ampli-

tudes is their behavior in soft limits. Using the CHY representation and the global residue

theorem, García-Sepúlveda and Guevara proved that k = 2, i.e. biadjoint scalar, am-

plitudes are the leading soft factors of k > 2 amplitudes, after some relabellings in the
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generalized kinematic invariants [123]. In particular, they showed that in the soft limit10

sa1a2...ak−1n = τ ŝa1a2...ak−1n, with τ → 0, the higher-k amplitude becomes

m(k)
n (I, I) → 1

τ k−1
m

(2)
k+2(I, I)×m

(k)
n−1(I, I) +O(τ−k+2) . (3.97)

Now we will perform a similar analysis than the one we did for the partial biadjoint scalar

amplitude, using the global Schwinger formula for higher-k amplitudes

m(k)
n (I, I) =

∫
R(k−1)(n−k−1)

d(k−1)(n−k−1)x exp(−F (k)
n (x)) . (3.98)

In order to obtain the tropical potential F (k)
n (x), one starts with G+(k, n) and then tropi-

calizes the Plücker coordinates to define the function

F (k)
n (x) :=

∑
1≤a1<a2<...<ak≤n

sa1,a2,...,ak∆
Trop
a1,a2,...,ak

(x) ,

where sa1,a2,...,ak are the generalized kinematic invariants and ∆Trop
a1,a2,...,ak

(x) are the tropi-

calized Plücker coordinates. We refer the reader to the original paper [66] for more details.

In order to study soft limits using the global Schwinger formula for CEGM amplitudes,

it is instructive to start with the simplest example, i.e. k = 3

m(3)
n (I, I) =

∫
R2(n−4)

dn−4xdn−4y exp(−F (3)
n (x)) . (3.99)

Consider the soft limit for particle n and the part of the integral over Trop+G(3, n) which

depends on xn−4 and yn−4, since it is the part in which particle n appears. We now
10Here we will say that the soft limit is for particle n. However, it is important to stress that the physical

notion of what a particle is in the CEGM generalization is not clear yet.
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want to separate the integral into regions that will contribute to the pole as τ → 0 when

sabn = τ ŝabn. We claim that these regions will be given by the large xn−4 and large yn−4

behavior, since xa and ya for a < n − 4 will only affect subleading order contributions.

Thus we can set them to zero without affecting the leading order, and the part F (3) of the

tropical potential that we are interested in is given by

F (3) =
n−2∑
a=3

s1anmin(0, xn−4) + s1,n−1,nxn−4 +
n−3∑
a=2

a<b<n−1

sabnmin(0, xn−4, xn−4 + yn−4)

+
n−3∑
a=2

sa,n−1,n(xn−4 + min(0, yn−4)) + sn−2,n−1,n(xn−4 + yn−4) .

(3.100)

This tropical function has 5 regions where it becomes linear. These correspond to

{xn−4 < 0, yn−4 < 0} , {xn−4 < 0, yn−4 > 0} , {xn−4 > 0, yn−4 > 0} ,

{xn−4 > 0, yn−4 < 0, xn−4 + yn−4 > 0} , {xn−4 > 0, yn−4 < 0, xn−4 + yn−4 < 0} .

Integrating over the five regions one obtains the expected leading soft factor

1

τ 2

(
1

ŝ12nt̂2,...,n−1

+
1

ŝ12nŝn−2,n−1,n

+
1

ŝn−2,n−1,nt̂1,...,n−2

+
1

t̂1,...,n−2ŝn−1,n,1

+
1

ŝn−1,n,1t̂2,...,n−1

)
,

(3.101)

where we have used

t1,...,n−2 :=
n−2∑
a=1

sa,n−1,n , t2,...,n−1 := −
n−2∑
a=2

a<b<n

sabn .

The rest of the regions contribute to subleading orders.
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The attentive reader may have noticed the similarity between F (3) and the k = 2

tropical potential for 5 particles11

F5(w) = s24min(0, w1) + s34w1 + s25min(0, w1, w2) + s35min(w1, w2) + s45w2 .

In fact, if we define w1 = xn−4 and w2 = xn−4 + yn−4, both F (3) and F5(w) map to each

other. Let us write the coefficients in F5(w) in terms of the planars poles, and using the

map we find the following identification

s51 = t2,...,n−1 , s12 = t1,...,n−2 , s23 = s12n , s34 = sn−1,n,1 , s45 = sn−2,n−1,n .

By substituting the planar poles into the n = 5 biadjoint amplitude

m5(I, I) =
1

s12s34
+

1

s23s45
+

1

s34s51
+

1

s45s12
+

1

s51s23

we recover the expected soft factor. This provides an alternative way to compute the

leading soft factor without having to evaluate the integral for each region.

In general, we expect that an analogous procedure will work. More concretely, if we

consider the part of the integral over Trop+G(k, n) that only depends on x
(1)
n−(k+1), x

(2)
n−(k+1),

..., x(k−1)
n−(k+1) (where, e.g., for k = 3 we have x(1)

n−4 = xn−4 and x
(2)
n−4 = yn−4) and set the other

variables to zero without affecting the leading order, we end up with a tropical function

F (k) that splits into Ck
12 regions where it becomes linear. Evaluating this part of the

integral over all the regions will produce the leading soft factor.
11We will now use variables w for the k = 2 tropical integral to avoid confusion with the notation for

higher-k.
12Where Cm is the mth Catalan number.
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Equivalently, we can map F (k) with the k = 2 tropical potential Fk+2(x) by defining

wi =
i∑

a=1

x
(a)
n−(k+1) .

Then we solve for the coefficients and substitute into the n = k + 2 partial biadjoint

amplitude to obtain the leading soft factor.

We have checked that this works up to k = 5, and we conjecture that it holds in general.

3.9 Discussions

In this chapter we have extended the global Schwinger formulation to all partial amplitudes

mn(α, β), and also to amplitudes in ϕp theories. Aϕp

n is given as a sum over regions, each

of which is proposed to be in bijection with a ϕ3 biadjoint partial amplitude. This leads

to the statement that Aϕp

n amplitudes can be understood as a sum of products of cubic

amplitudes.

A very simple diagrammatic procedure for listing all regions contributing to an ampli-

tude was found in terms of non-crossing k-chord diagrams. Given one such diagram, we

have provided an algorithm for determining the structure of the contribution in terms of ϕ3

amplitudes (meadows) and propagators (“frontiers” separating meadows). Every meadow

can be seen to be related to a cubic amplitude participating in m(n+2(p−3))/(p−2)(α, I). Our

identification so far is lacking a direct way of determining the permutation α from the non-

chord diagram. It would also be very important to find a purely combinatorial method

to determine the precise bijection between the set of planar kinematic invariants in each

object.
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Our main focus has been on a combinatorial prescription for ϕp amplitudes. How-

ever, it would be interesting to find a diagrammatic procedure, in the lines of that for ϕp

amplitudes, to determine the regions that compute mn(α, β) so that Hα(x) = 0 in (3.25).

We end the chapter with three topics for future research.

3.9.1 Relation to Green Functions in Planar Theories

The standard way of computing Green functions, Gn, from connected Green functions,

Gc
n, is via an exponentiation procedure. However, it is well-known that in planar theories

this does not work [45]. This is because planarity forces points of the Green function

Gn(x1, x2, . . . , xn), to be on the boundary of a disk and a connected Green function for

points in a subset J ⊂ {x1, x2, . . . , xn} can be thought of as cutting the disk into regions

so that one of them only contains the points in J . Having done this, another connected

Green function can only be constructed from the pieces left, and so on. In [45], a theory

that only admits Green functions with an even number n = 2q of points was considered

and gave rise to the following combinatorial problem: in how many ways can 2q points on

a disk be clustered in non-overlapping sets so that there are r1 pairs, r2 quadruplets, etc.

As shown in [45] this is solved by the coefficients of the formula relating Green functions

G2q =
∑
ri≥0

δq,(
∑

i i ri)
(2q)!

(2q + 1−
∑

i ri)!

(Gc
2)

r1

r1!

(Gc
4)

r2

r2!
. . .

(
Gc

2q

)rq
rq!

. (3.102)

Here the Kronecker delta guarantees that each of the 2q points participates in each term.

Up to this point, this discussion seems to be completely independent of the formulas

found in this work. In order to see the connection, let us list the first few cases as done in
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eq. (31) of [45],

G4 =Gc
4 + 2 (Gc

2)
2 ,

G6 =Gc
6 + 6Gc

4G
c
2 + 5 (Gc

2)
3 ,

G8 =Gc
8 + 4 (Gc

4)
2 + 8Gc

6G
c
2 + 28Gc

4 (G
c
2)

2 + 14 (Gc
2)

4 .

Comparing to the expressions for ϕ5 amplitudes in (3.83), i.e.

Aϕ5

8 =m4 + 2m2
3

1

P 2
,

Aϕ5

11 =m5 + 6m3m4
1

P 2
+ 5m3

3

(
1

P 2

)2

,

Aϕ5

14 =m6 + 4m2
4

1

P 2
+ 8m5m3

1

P 2
+ 28m4m

2
3

(
1

P 2

)2

+ 14m4
3

(
1

P 2

)3

,

it is clear that there must be a relation. The fact that the coincidence of the structure

continues to all multiplicities is shown using the Lagrange inversion formula in appendix

C. It is natural to expect that the relation extends to all ϕp amplitudes as follows. Let

m = p − 3, and place mq points on a disk. Now count all possible ways of clustering the

points in non-overlapping sets so that there are r1 groups of m points each, r2 groups of

2m points, etc. Then the formula that relates Aϕp

n amplitudes and Green functions is given

by the natural generalization of (3.102),

Gmq =
∑
ri≥0

δq,(
∑

i i ri)
(mq)!

(mq + 1−
∑

i ri)!

(Gc
m)

r1

r1!

(Gc
2m)

r2

r2!
. . .

(
Gc

mq

)rq
rq!

. (3.103)

We leave it as an exercise for the reader to check that the coefficients we have presented

in the text and the ones in appendix C are indeed the correct values of the combinatorial

problem and the coefficients in (3.103).
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It would be very interesting to explore this connection further, in particular to matrix

models with Φp−1 interactions as the one studied in [45].

3.9.2 Possible Connection with Stokes Polytopes

Recent work on the computation of ϕp amplitudes as a sum over contributions obtained

from various polytopes known as accordiohedra is very reminiscent of the structures we

have uncovered using the global Schwinger formulation. Developing a connection between

the two approaches is certainly an important problem. Here we restrict to ϕ4 amplitudes

and therefore to Stokes polytopes in order to point out some possible directions. Most of

the formulations using Stokes polytopes construct the amplitudes as (see e.g equation (5)

of [181])

Aϕ4

n =
∑

Symmetry:σ

∑
Primitive:P

αP m
(σ.P )
P,n (3.104)

where the sum is over all primitive Stokes polytopes and the symmetry classes into which

they fall. The m(σ.P )
P,n are the contributions obtained from the corresponding polytope. Here

the αP are the so-called weights, which are in general rational numbers.

Consider for example,

Aϕ4

6 = α1

(
1

X1,4

+
1

X3,6

)
+ α2

(
1

X2,5

+
1

X1,4

)
+ α3

(
1

X3,6

+
1

X2,5

)
. (3.105)

Here there are three polytopes and the weights have to be chosen to be αa = 1/2.

In [186], Salvatori and Stanojevic propose a way to simplify (3.104) by reducing the

redundancy by taking certain limits of kinematic invariants in each term. Let us rewrite
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Eq. 4.8 of [186] for n = 6,

Aϕ4

6 =

(
1

X1,4

+
1

X3,6

)
+ lim

X1,4→∞

(
1

X2,5

+
1

X1,4

)
. (3.106)

In this formula, the first bracket comes from the Stokes polytope with reference 1, 4 while

the second bracket comes from the reference 2, 5. Here Xi,j can be identified with the planar

invariants t[a,b] in a simple way. Note that (3.106) groups the three terms in the same way as

that found in our construction (3.48) and (3.49) coming from the two possible non-crossing

chord diagrams. In [186], the n = 8 amplitude is also computed. The amplitude is given

as a sum over five Stokes polytopes. Our formula (3.53) also has five regions. However,

while our regions all contribute with a factor of one, Eq. 4.10 of [186] has four terms with

coefficient +1 and one with −1. In fact, only the first region can be matched directly; it

coincides with the first polytope, i.e. the one with no limits and which gives rise, in our

language, to m5(I, I). We suspect that there exist other combinations with different limits

which could match our formula term by term. One hint is that every one of our terms is

isomorphic to either an associahedron or to intersections of two associahedra.

3.9.3 Towards Generalized ϕp Amplitudes

Another intriguing feature of our procedure for constructing the regions from the extended

non-crossing chord diagrams for ϕ4 is the introduction of two additional points (−1 and

n−2) and a chord joining them. The relevance of this additional chord lies in the way each

meadow is associated to a cubic amplitude. For now we have conceived these diagrams

simply as combinatorial objects, but if one attempts to relate each of the labels 0, 1, . . . , n−3

in the diagram to the particles 3, 4, . . . , n respectively, then the new chord θ−1,n−2 has the

interpretation of identifying particles 1 and 2, which in their tropicalized variables are set
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to −∞ and +∞. However, one has to be careful in that the variable xa−3 coming from the

parameterization (3.12) does not exactly correspond to a single particle a as it appears in

all rows r ≥ a. It might seem puzzling that for a general value of p, we introduce p − 2

additional points to the non-crossing (p − 2)-chord diagrams and join them with another

(p−2)-chord. Strikingly, p−2 is precisely the number of particles with tropicalized variables

set at infinity that appear in the higher-k version of the global Schwinger parameterization

using Trop+G(k, n) for k = p − 2 (see [66] for its construction). It would be interesting

to explore if there is a connection with these generalized objects and CEGM generalized

amplitudes [71]. One direction to tackle is to try and find an analog of ϕp amplitudes

for higher-k theories, using a similar limiting procedure on the planar arrays of Feynman

diagrams that will be described in chapter 5. We provided a first step in the original paper

[74], and we refer the reader to it for details.

We will now start the second part of the thesis, in which we explore some aspects of

the CEGM generalization of quantum field theory. In fact, we will take a mathematical

detour and extend the study to higher-k amplitudes and their connection to some of the

topics presented in part I.
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PART II

Higher-k Amplitudes

The second part of the thesis will explore aspects of the CEGM generalization of quantum

field theory introduced in chapter 1.

In the first chapter of this second part we study the generalization of the scattering

equations on X(2, n), the configuration space of n points on CP1, to higher dimensional

projective spaces. One of the new features of the scattering equations in X(k, n) with

k > 2 is the presence of both regular and singular solutions in a soft limit. Here we study

soft limits in X(3, 7), X(4, 7), X(3, 8) and X(5, 8), find all singular solutions, and show

their geometrical configurations. We also propose a classification of all configurations that

can support singular solutions for general X(k, n) and comment on their contribution to

soft expansions of generalized biadjoint amplitudes.

In the second chapter of this part we find and describe the analogous objects to Feynman

diagrams that compute CEGM amplitudes. Planar collections of Feynman diagrams were

first proposed by Borges and Cachazo as the natural generalization of Feynman diagrams

for the computation of k = 3 biadjoint amplitudes. In the second chapter we introduce

planar matrices of Feynman diagrams as the objects that compute k = 4 biadjoint ampli-
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tudes. These are symmetric matrices of metric trees satisfying compatibility conditions.

We also introduce two notions of combinatorial bootstrap techniques for finding collections

from Feynman diagrams and matrices from collections. As applications of the first, we find

all 693, 13 612, and 346 710 collections for (k, n) = (3, 7), (3, 8), and (3, 9) respectively. As

applications of the second kind, we find all 90 608 and 30 659 424 planar matrices that com-

pute (k, n) = (4, 8) and (4, 9) biadjoint amplitudes respectively. We also start the study

of higher dimensional arrays of Feynman diagrams, including the combinatorial version of

the duality between (k, n) and (n− k, n) objects.
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Chapter 4

Singular Solutions in Soft Limits

4.1 Introduction

Recall that in 2019, Cachazo, Early, Guevara and Mizera (CEGM) introduced and studied a

natural generalization of the scattering equations, which connect the space of Mandelstam

invariants to that of points on CP1 [113, 114, 75, 76], to higher dimensional projective

spaces CPk−1 [71]. The equations are obtained by computing the critical points of a

potential function

Sk ≡
∑

1≤a1<a2···<ak≤n

sa1a2···ak log (a1, a2, . . . , ak). (4.1)

Here sa1a2···ak are a generalization of Mandelstam invariants while (a1, a2, · · · , ak) can be

thought of as Plücker coordinates on G(k, n). The configuration space of n points on CPk−1

is obtained by modding out by a torus action C∗ on each of the points, i.e., X(k, n) :=

G(k, n)/(C∗)n [190].
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The kinematic invariants are completely symmetric tensors satisfying

saabc··· = 0,
∑

a2,a3,...,ak

sa1a2···ak = 0 ∀ a1. (4.2)

These are the analogs of masslessness and momentum conservation conditions. These

conditions guarantee that the potential function is invariant under the torus action and

therefore one can choose inhomogeneous coordinates for points on CPk−1. For example,

when k = 3 one can use (xi, yi) while the Plücker coordinates are then replaced by

|abc| := det


1 1 1

xa xb xc

ya yb yc

 . (4.3)

Having a higher-k version of the scattering equations, the most natural question is to

determine the number of solutions, i.e. the number of critical points of the potential

Sk. The standard scattering equations, i.e. k = 2, possess (n − 3)! solutions and the

original proof given in [77] uses that a soft particle decouples from the rest and proceeds by

induction. The argument relies on the fact that as the soft limit is approached, all solutions

stay away from boundaries of X(2, n), i.e. the n points are in a generic configuration.

These solutions are known as regular solutions. The terminology comes from the study

of factorization limits, i.e. when a physical kinematic invariant vanishes. In such a limit,

some solutions give rise to configurations where the Riemann sphere degenerates into two

spheres joined by a single, emergent puncture. Such solutions are called singular solutions.

In [71] it was found that when k ≥ 3 regular solutions in a soft limit cannot possi-

bly account for all solutions. This was deduced by computing the regular solutions for

X(3, 7) → X(3, 6) and X(4, 7) → X(4, 6). The numbers were shown to be 1 092 and
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1 152 respectively. Since X(3, 7) and X(4, 7) are isomorphic, they must possess the same

number of total solutions. Motivated by this, Cachazo and Rojas designed a technique

for determining the number of missing solutions for X(4, 7) as the rank of a matrix built

out of generalized biadjoint amplitudes thus finding 120 [81]. This implies that the total

number of solutions is exactly 1 272 and that the number of singular solutions for X(3, 7)

and X(4, 7) must be 180 and 120 respectively.

For X(3, 8) → X(3, 7) and X(5, 8) → X(5, 7) one can also compute the number of

regular solutions and find them to be 128 472 and 129 312 respectively. Once again, since

X(3, 8) is isomorphic to X(5, 8) there must be singular solutions. At this point there is

no technique for computing the total number of solutions from the scattering equations

or generalized biadjoint scalar amplitudes. However, the total number of solutions can

be related to the number of uniform matroids over finite fields [6]. Using this one can

reproduce the correct number for X(2, n), X(3, 6), and X(3, 7). Moreover, it also predicts

188 112 solutions for X(3, 8).

In this chapter we study the soft limits of scattering equations on X(3, 7), X(4, 7),

X(3, 8), and X(5, 8) and find all singular solutions. In each case, singular solutions cor-

respond to configurations where the soft particle develops some linear dependence with

subsets of the hard particles while every minor containing only hard particles remains fi-

nite. Such linear dependencies prevent the decoupling of the soft particle from the rest.

The simplest example corresponds to X(3, 7) when particle 7 is taken to be soft and a

configuration where |147|, |257| and |367| vanish. This means that the terms containing

s147, s257 and s367 cannot be dropped in the scattering equations for the hard particles as

it is usually the case for regular solutions.

We find that in every case it is possible to define a new set of scattering equations in

the strict soft limit. This is a completely novel phenomenon. The strict soft limit scat-
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tering equations can be solved or its solutions counted using some of the same techniques

developed for the original scattering equations. In fact, using a soft-limit approach one

finds again regular and singular solutions.

Based on these examples we propose a general classification of all configurations that

can support singular solutions in X(k, n) for general k and n. For example, when k = 3

there are
⌊
n−1
2

⌋
− 2 distinct topologies corresponding to 3, ...,

⌊
n−1
2

⌋
lines intersecting at

the soft particle position. For higher k, there are configurations that are inherited from

lower k values as well as new ones corresponding to at least k (k−2)-planes intersecting at

the soft particle location. The general structure hints at a recursive structure for X(k, n)

similar to that found for X(2, n).

An elegant structure of soft theorems was unearthed by García-Sepúlveda and Guevara

in generalized biadjoint amplitudes [123] in 2019, as reviewed in section 3.8 of chapter 3.

One of the surprising results is the fact that standard k = 2 biadjoint amplitudes serve as

soft factors for k > 2 amplitudes. They computed the leading order behavior of amplitudes

in the soft limit, i.e., as τ → 0 with sabn = τ ŝabn, assuming a decoupling of the soft particle

from the scattering equations governing the hard particles. We find that in all examples

we studied their assumption is indeed correct as singular solutions can at most contribute

to subleading terms in the soft limit expansion.

This chapter is organized as follows: In section 4.2 we review the standard argument

for k = 2 adding an explanation for why no singular solutions are found. In section 4.3 we

review what it is known regarding regular solutions, in particular, how this led to the pre-

diction of the existence of singular solutions. In section 4.4 we find all singular solutions in

the soft limits X(3, 7) → X(3, 6) and X(4, 7) → X(4, 6). In section 4.5 we find all singular

solutions in the soft limits X(3, 8) → X(3, 7) and X(5, 8) → X(5, 7). In the latter we

find for the first time topologically distinct configurations leading to singular solutions. In
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section 4.6, we make our proposal for all configurations that can support singular solutions

and explain the evidence supporting it. We end in section 4.7 with discussions regarding

the contribution of singular solutions to the soft expansion of generalized biadjoint scalar

amplitudes. Moreover, in appendix E we show how the counting of the number of singular

solutions works from the bounded chambers method in some particular cases for k = 3,

and in appendix F we comment on the geometrical interpretation of some of the singular

configurations in X(5, 8).

4.2 Soft Limits in X(2, n)

Scattering equations on X(2, n) have provided a direct connection between locality and

unitarity constraints in tree-level scattering amplitudes and properties of the moduli space

of punctured Riemann spheres. The way this happens is somewhat surprising. The scat-

tering equations for n particles possess Nn = (n − 3)! solutions and when a factorization

channel, in which particles separate into two sets L, R, containing nL > 1 and nR > 1

particles, is approached, N singular
n := (nL − 2)!× (nR − 2)! solutions become singular. More

explicitly, all punctures in L (or R) approach each other1. However, cross ratios involv-

ing only particles on L (or R) remain finite and lead to the blow up picture where two

Riemann spheres are joined by a new puncture with one containing particles in L and the

other particles in R.

The singular solutions are the most relevant to ensure the correct physical behavior

of scattering amplitudes in the Cachazo-He-Yuan (CHY) formulation as they produce the

kinematic pole while the remaining N regular
n := (n− 3)!−N singular

n are regular. This means

that the CHY formula remains finite on them. This is precisely the opposite to what
1This is in some SL(2,C) gauge choice.
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happens in a soft limit. Indeed, in X(2, n) one finds only regular solutions and they are

the ones responsible for the leading order behavior of amplitudes in the limit and control

the corresponding soft theorems [203, 83, 189, 5]. In this section we review the soft limit

analysis as preparation for X(k, n) with k > 2.

4.2.1 Regular Solutions

Let us write the scattering equations in a form that manifestly exhibits the dependence on

particle n:

Ea :=
n−1∑
b=1

sab
xab

+
san
xan

with 1 ≤ a ≤ n− 1 and En :=
n−1∑
b=1

snb
xnb

(4.4)

with xab = xa − xb and the equations are obtained by requiring Ea = 0 for all a.

The soft limit in particle n is defined by taking san = τ ŝan with τ → 0. Regular solutions

are defined as those where none of the punctures approach another. More explicitly, xab ̸= 0

for all values of a and b. Under this assumption it is easy to see from (4.4) that all n

dependence can be dropped from the first n− 1 equations. This set of equations precisely

corresponds to that of a system of n− 1 particles and therefore can be solved to find Nn−1

solutions. In other words, in the soft limit, the nth particle decouples from the equations

that control the rest. However, the possible values of xn are not arbitrary since τ drops

from the last equation in (4.4) to give

n−1∑
b=1

ŝnb
xn − xI

b

= 0 (4.5)

where xI
b is any one of the Nn−1 solutions for the hard particles. At first sight this equation
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leads to a polynomial in xn of degree n − 2 but the coefficient of xn−2
n vanishes due to

momentum conservation and hence it leads to n− 3 solutions for xn. Since this is true for

each xI
b one finds N regular

n = (n− 3)Nn−1.

Under the assumption that N singular
n = 0 one finds the recursion relation Nn = (n −

3)Nn−1 with N4 = 1 and whose solution is Nn = (n − 3)!. Now we turn to proving that

N singular
n = 0.

4.2.2 Absence of Singular Solutions

A singular solution is one which does not obey the condition for decoupling the soft particle

from the equations determining the rest. This can only happen when xin = τ x̂in, i.e.

vanishes in the soft limit for some values of i. Let us denote the set of such particles D.

Clearly D must contain more than one element for if |D| = 1 then the last equation in

(4.4) becomes En = ŝin/x̂in = 0 which has no solutions.

Let us assume that |D| ≥ 2 and parameterize xi = xn + τui for i ∈ D. Here we follow

an argument originally presented in [75] for factorization limits but perfectly applicable to

the situation at hand. It is simple to show that for any a /∈ D

xanEa =
∑
b/∈D

xan

xab

sab +
∑
b∈D

(
1 + τ

ub

xab

)
sab. (4.6)

Of course, this must be zero when the scattering equations are imposed. Adding all these

equations one finds ∑
a/∈D

xanEa = 0 ⇒

(∑
a/∈D

ka

)2

= O(τ). (4.7)

However, an implicit assumption in a soft limit is that the kinematics of the system of n−1
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particles is generic and therefore no kinematic invariant involving only hard particles is

allowed to vanish. This means that (4.7) is a contradiction and therefore singular solutions

do not exist in the soft limit X(2, n) → X(2, n− 1).

4.3 Regular Solutions in X(k, n) → X(k, n− 1)

In this section we review the known results for the counting of regular solutions in the soft

limits X(k, n) → X(k, n − 1). As discussed in the previous section, regular solutions are

defined as those for which the soft particle decouples from the equations determining the

configuration of the others. This means that we can assume that the system X(k, n−1) has

been solved and N (k)
n−1 solutions have been found. The task at hand is then to determine

the number of solutions for the position of particle n from the equations

▽nSk = 0. (4.8)

Here the gradient is taken only with respect to the coordinates of particle n since all other

particle positions are assumed to have been found. Let us denote the number of solutions

to (4.8) as Softk,n. The notation is motivated by soft theorems. This means that the

number of regular solutions is N (k):regular
n = Softk,n ×N (k)

n−1.

In the soft limit X(2, n) → X(2, n−1) we have seen that (4.8) is a single equation with

Soft2,n = n − 3 solutions and therefore N (2):regular
n = (n − 3) × N (2)

n−1. Of course, we have

seen that N (2):regular
n is also equal to the total number of solutions N (2)

n .

The only other case that is known for all n is the soft limit X(3, n) → X(3, n− 1). In
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[71] it was found that

Soft3,n =
1

8
(n− 4)(n3 − 6n2 + 11n− 14). (4.9)

The first few values are Soft3,5 = 2, Soft3,6 = 13, Soft3,7 = 42, and Soft3,8 = 101. By explicit

computations it was found in [71] that N (3)
5 = 2 and N (3)

6 = 2 × 13 = 26. This means

that there are no singular solutions for n ≤ 6. Therefore the number of regular solutions

for n = 7 is N (3):regular
7 = 42× 26 = 1 092. In [81], it was proven that the total number of

solutions for n = 7 is N (3)
7 = 1272 and with this the number of regular solutions in the

soft limit X(3, 8) → X(3, 7) is N (3):regular
8 = 101× 1 272 = 128 472. In section 4.5 we show

that the total number of solutions for X(3, 8) is N (3)
8 = 188 112. Therefore the number

of regular solutions for n = 9 is N (3):regular
9 = 205 × 188 112 = 38 562 960. Since the total

number of solutions for X(3, 9) is not presently known we cannot determine N (3):regular
n for

n ≥ 10.

In [71], the number of regular solutions was identified with the number of bounded

chambers by real hyperplanes when the kinematics was chosen in a special region known

as the positive region (reviewed in section 4.4.1). This identification is also based on the

assumption that all solutions are real in the positive region. Using this approach Soft4,6 = 6,

Soft4,7 = 192 and Soft4,8 = 1858 were computed. Here we have pushed the computation

of bounded chambers up to n = 16 leading to the following proposal

Soft4,n =
1

1296
(n−5)(n8−13n7−5n6+1019n5−7934n4+29198n3−57510n2+57276n−20736).

(4.10)

These results imply that

N (4):regular
7 = 6× 192 = 1 152, N (4):regular

8 = 1272× 1 858 = 2 363 376. (4.11)
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For k = 5 much less is known: Soft5,7 = 24, Soft5,8 = 5388 and Soft5,9 = 204 117. This

leads to

N (5):regular
8 = 24× 5 388 = 129 312, N (5):regular

9 = 204 117× 188 112. (4.12)

The last result uses that the total number of solutions of the scattering equations on X(5, 8)

is N (5)
8 = N (3)

8 = 188 112.

4.4 Singular Solutions in X(3, 7) → X(3, 6) and X(4, 7) →

X(4, 6)

We have already seen that there cannot be singular solutions for k = 2. For higher k,

however, it is possible to keep all minors without the soft particle finite while sending some

of the minors involving the soft particle to zero. This makes singular solutions possible

for k > 2. In this section we study the first examples where singular solutions appear,

which correspond to X(3, 7) → X(3, 6) and X(4, 7) → X(4, 6). This analysis also explains

why there are not singular solutions for X(3, 6) → X(3, 5) explaining the agreement of the

regular soft counting of solutions with the total number of solutions found in [71].

4.4.1 Singular Solutions in X(3, 7) → X(3, 6)

The first explicit example where we have singular solutions is in X(3, 7). In order to obtain

the singular solutions, we study the soft limit for, e.g., particle n = 7, i.e. sab7 → τ ŝab7

(with τ → 0). The singular solutions arise from configurations where three lines2 in CP2 (or
2In this chapter we use the word “line” to refer to a complex line, i.e., CP1, or to a real line. The

meaning should be clear from the context.
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RP2 if all solutions are real), each defined by two hard particles, meet at the soft particle.

One such configuration is where lines 14, 25 and 36 meet at the particle 7 as shown in

figure 4.1. This implies that all three determinants |147|, |257| and |367| vanish. There

exist
(
6
2

)(
4
2

)(
4
2

)
/3! = 15 different such configurations.

For each configuration, it is possible to choose coordinates to find equations governing

the system at τ = 0. The new scattering equations have 12 solutions. Therefore there are

N (3):singular
7 = 12× 15 = 180 singular solutions.

Figure 4.1: Configuration of singular solutions in X(3, 7). Left : Near the soft limit three
lines 14, 25 and 36 almost cross the soft particle. Right : In the strict soft limit the three
lines meet at the soft particle.

The way to get the solutions is the following. Take the configuration where |147|, |257|

and |367| vanish as an example. A convenient choice of gauge fixing in projective space is


1 0 0 1 1 1 1

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

 gauge fixing→


1 0 0 1 1 1 1

0 1 0 1 x5 x6 x7

0 0 1 1 y5 y6 y7

 . (4.13)

Under the parametrization sab7 → τ ŝab7, terms containing s147, s257 and s367 cannot be
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dropped in the equations for the hard particles

∂S̃3

∂xa

+
∑
b̸=a,7

τ ŝab7
|ab7|

∂|ab7|
∂xa

= 0,
∂S̃3

∂ya
+
∑
b ̸=a,7

τ ŝab7
|ab7|

∂|ab7|
∂ya

= 0, for a = 1, . . . 6 (4.14)

where S̃3 is the potential of hard particles, S̃3 ≡
∑

1≤a<b<c≤6 sabc log(a, b, c). They also

dominate in the two scattering equations for the soft particle

∂S3

∂x7

=
τ ŝ147
|147|

∂|147|
∂x7

+
τ ŝ257
|257|

∂|257|
∂x7

+
τ ŝ367
|367|

∂|367|
∂x7

+O(τ) = 0 ,

∂S3

∂y7
=

τ ŝ147
|147|

∂|147|
∂y7

+
τ ŝ257
|257|

∂|257|
∂y7

+
τ ŝ367
|367|

∂|367|
∂y7

+O(τ) = 0 . (4.15)

The subleading terms O(τ) in the above equations (4.14) and (4.15) can be omitted in the

soft limit3. In contrast to regular solutions, where we solve the equations for hard particles

first, here the equations for the soft particle (4.15) are simpler and we solve them first. Note

that there are three dominating terms in each of the equations (4.15). Algebraically, one

can check that there would be no solutions for x7 and y7 if there were only two dominating

terms in each of the equations (4.15). In fact, this is the reason why there are no singular

solutions for X(3, 6) → X(3, 5). The fact that at least three terms are needed has a more

intuitive geometric explanation which we give in the next subsection.

We then parametrize each determinant as |147| = τu, |257| = τv and |367| = τp, that

is

x6 = y5 − τ(u+ v + p), x7 = y5 − τ(u+ v), y7 = y5 − τv. (4.16)
3This is because the terms shown explicitly in (4.15) are of order O(τ0) since the minors in the denom-

inators vanish as O(τ) thus canceling the explicit factor of τ in the numerators.
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In the soft limit, the new set of scattering equations, with variables x5, y5, y6, u, v and p is

lim
τ→0

∂S3

∂xi

∣∣∣∣
(4.16)

= 0, lim
τ→0

∂S3

∂yi

∣∣∣∣
(4.16)

= 0, for i = 1, . . . 7. (4.17)

Among the 14 equations (4.17), only 6 of them are independent. Furthermore, we can

separately solve for u, v and p from (4.17) and obtain equations involving only hard particles

(∂S̃3

∂y5
+

∂S̃3

∂x6

)∣∣∣∣∣
x6→y5

= 0,
∂S̃3

∂x5

∣∣∣∣∣
x6→y5

= 0,
∂S̃3

∂y6

∣∣∣∣∣
x6→y5

= 0 . (4.18)

Solving these equations we find that, compared to the original scattering equations for

6 particles, which have 26 solutions, now the requirement that lines 14, 25 and 36 pass

through a common point reduces the number of solutions to 12.

Singular Solutions on Positive Kinematics

We have seen the kind of configurations that produce singular solutions in X(3, 7) →

X(3, 6). However, a purely algebraic approach sheds little light on why such configurations

can produce singular solutions while others cannot. Moreover, unless a more geometric

understanding is reached, it seems hopeless to uncover the general structure for all soft

limits X(k, n) → X(k, n− 1).

In this subsection, we make use of kinematic data in what is known as the positive

region K+
3,n to study and visualize the solutions (for more the details on K+

3,n see [80, 71]).

The main advantage is that one can develop intuition on why there are singular solutions

through explicit geometric pictures.

Let us briefly review the construction of kinematic data in the positive region K+
k,n for

general k. We start by selecting k+1 particles A1, A2, · · · , Ak+1 to be fixed by the action of
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SL(k,C). This time k−1 particles, say A2, A3, · · · , Ak, can be sent to infinity in k−1 differ-

ent directions by setting their homogeneous coordinates to (0, 1, 0, · · · , 0), (0, 0, 1, · · · , 0)

, · · · , (0, 0, · · · , 0, 1), respectively. The other two are chosen to be, in inhomogeneous

coordinates, at the origin and at (1, 1, · · · , 1) on the plane (x1, x2, · · · , xk−1) ∈ Rk−1.

Since interactions in the potential function are controlled by the determinants |a1a2...ak|,

a given particle is not directly sensitive to the location of any other particle but only sen-

sitive to the (k− 2)-planes defined by any other k− 1 particles. In order to find the analog

of the positive region, let us again consider the potential function

Sk =
∑

1≤a1<a2<···<ak≤n
|{a1,a2,··· ,ak}∩{A1,A2,··· ,Ak+1}|≤k−1
|{a1,a2,··· ,ak}∩{A2,A3,··· ,Ak}|≤k−2

sa1,a2,··· ,ak log |a1, a2, · · · , ak| . (4.19)

Therefore, this positive region K+
k,n is defined by requiring all invariants that explicitly

appear in (4.19) to be positive. This is possible because the set of all such invariants

form a basis of the kinematic space. Since critical points of the potential correspond to

equilibrium points, they can only lie inside the bounded chambers of this space, assuming

they are all real.

Let us define the subregion of K+
k,n where all solutions to the scattering equations are

real by K+,R
k,n . When k = 2, it is known that K+,R

2,n = K+
2,n. Moreover, since K+

2,n contains

all soft limits, it is possible to smoothly go from one to another without ever leaving K+,R
2,n .

In [71], it was argued that for k = 3 it turns out that K+,R
3,n ⊂ K+

3,n is disconnected. In fact,

each soft limit seems to live in its own region. For our present problem of X(3, 7), it is

enough to know that sufficiently near the soft limit of particle 7 all solutions are real.

Singular solutions are called singular because they make some minors |ab7| containing

particle 7 vanish. Geometrically, this means that lines ab in RP2 space will dominate. The
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remaining lines can be omitted for the soft particle at first. Therefore, in order to bound

particle 7 in RP2 space, we need at least 3 such dominating lines. That is, we need at least

three vanishing minors involving particle 7 while keeping the other minors still finite. For

n = 7, this can be achieved for example by letting |147|, |257| and |367| vanish. There

are 15 such kind of configurations. In appendix E, we further find out that there are 12

bounded chambers to bound the soft particle 7, which means there are 12 solutions for

each of the configurations.

4.4.2 Singular Solutions in X(4, 7) → X(4, 6)

Another simple example is X(4, 7). Taking again particle 7 to be soft, i.e. sabc7 → τ ŝabc7

(with τ → 0), all singular solutions come from 30 different configurations where determi-

nants of the form |1237|, |3457|, |1567| and |2467| vanish. We can geometrically interpret

this configuration in the soft limit as having the soft particle as the intersection of four

planes, and each hard particle lying on the intersection of two of those planes. We give a

very schematic representation, i.e. drawing RP3 on a plane, of this in figure 4.2.

Figure 4.2: A configuration of singular solutions in X(4, 7). Left : Near the soft limit four
2-planes 123, 345, 561 and 246 almost cross the soft particle. Right : In the strict soft limit
the soft particle lies in the intersection of the four 2-planes.

There are 4 solutions for each of these configurations, so we obtain a total amount of
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N (4):singular
7 = 4× 30 = 120 singular solutions.

The way to get the solutions is the following. For a configuration where |1237|, |3457|,

|1567| and |2467| vanish, a convenient choice of gauge fixing in projective space is


1 0 1 0 0 1 1

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

z1 z2 z3 z4 z5 z6 z7


gauge fixing→


1 0 1 0 0 1 1

0 1 1 0 0 x6 x7

0 0 1 1 0 y6 y7

0 0 1 0 1 z6 z7

 . (4.20)

We then parameterize each determinant as |1237| = τu, |3457| = τv, |5617| = τp, and

|2467| = τq, that is

x6 =
τ(vy6 + p) + y6
τ(q − u) + z6

, x7 = τv + 1, y7 = τ(q − u) + z6, z7 = τq + z6 . (4.21)

When we plug this into the original scattering equations and take the strict soft limit

τ → 0, we obtain a new set of scattering equations with variables u, v, p, q, y6 and z6

lim
τ→0

∂S4

∂xi

∣∣∣∣
(4.21)

= 0, lim
τ→0

∂S4

∂yi

∣∣∣∣
(4.21)

= 0, lim
τ→0

∂S4

∂zi

∣∣∣∣
(4.21)

= 0, for i = 1, . . . 7. (4.22)

Among the above 21 equations, only 6 of them are independent. The system is simple

enough that all variables except one can be eliminated using resultants producing an ir-

reducible polynomial of degree 4 for the left over variable. This means that there are 4

solutions. Note that in this case one can again eliminate u, v, p and q in the new scattering

equations (4.22) first and then reduce the system to one only involving hard particles

(∂S̃4

∂x6

+ z6
∂S̃4

∂y6

)∣∣∣∣∣
x6→ y6

z6

= 0,
(∂S̃4

∂z6
+ x6

∂S̃4

∂y6

)∣∣∣∣∣
x6→ y6

z6

= 0, (4.23)
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where S̃4 is the potential of hard particles, S̃4 ≡
∑

1≤a<b<c<d≤6 sabcd log |a, b, c, d|. Here

we just present two independent equations and the remaining variables are y6 and z6.

Compared to the original scattering equations for 6 particles, which has 6 solutions, now

the requirement that the planes 123, 345, 561 and 246 pass through a common point reduces

the number of solutions to 4. Therefore, the number of singular solutions for X(4, 7) is

N (4):singular
7 = 30× 4 = 120, as expected.

Singular Solutions on Positive Kinematics

Now, we make the use of kinematic data in the positive region K+
4,n (or more precisely

in K+,R
4,n ) (4.19) to study the solutions. Singular solutions make some minors of the form

|abc7|, i.e. containing particle 7, vanish. Geometrically, this means that planes abc in RP3

space will dominate. The remaining planes can be omitted for the soft particle at first.

Therefore, in order to bound particle 7 in RP3 space, we need at least 4 such dominating

planes. That is, we need at least four vanishing minors involving particle 7 while keeping

the other minors still finite. For n = 7, this can be achieved for example by letting

|1237|, |3457|, |1567| and |2467| vanish. In figure 4.2 the soft particle is bounded inside a

tetrahedron whose volume is of order τ when we use the kinematic data from the positive

region. It is not trivial for six hard particles to form such a tetrahedron while any four of

them are not allowed to lie in a common plane. One can check that this is the only kind

of configuration, up to relabelling, that achieves this goal for X(4, 7).

Here we introduce another description of the tetrahedron, which can be generalized

to describe more complicated polytopes. We view each vertex of the tetrahedron as an

auxiliary point and give each of them a label, ranging from 8 to 11, see figure 4.3.

Note that particle labels are from 1 to 7. Hard particles 1-6 lie on the lines determined by
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Figure 4.3: Top: The soft particle lies inside a tetrahedron. Bottom: Three projections
of the tetrahedron from the point of view of particles 2, 4 and 5, respectively, when these
are sent to infinity. In the strict soft limit, the tetrahedron as well as its three projections
collapse to a point.

{8,11}, {8,9}, {9,11}, {9,10}, {10,11} and {8,10} respectively. Using the auxiliary points,

we can understand the relative positions of the hard particles. Alternatively, now we can

ignore the auxiliary points and imagine how these hard particles form some dominating

planes to bound the soft particle.

We can also describe this tetrahedron through its projections from 3 orthogonal direc-

tions. As particles 2, 4 and 5 are sent to infinity in different directions, we can say that the

three projections in figure 4.3 are just what the tetrahedron would look like if one stands at

the position of 2, 4 and 5 respectively. In the first projection, vertices 8 and 9 are pinched

from the view of particle 2, which has been sent to infinity. We can say that particle 2 lies

on the lines determined by {8,9}. The remaining two projections are completely analogous.

There are 4 solutions for this particular configuration. For generic points in K+
4,7 there

141



are complex solutions. However, the region K+,R
4,7 is non-empty and therefore restricting to

it one can find all four real solutions. Looking at the new equations (4.22) for X(4, 7), it

is very hard to see whether there are solutions. Using the positive kinematic data in K+,R
4,7

and viewing the solutions as equilibrium points, we see at least that there are possible

solutions for the soft particle 7.

A beautiful way to count the number of solutions is from the dual limit in the dual

space X(3, 7) as we explain now.

Singular Solutions from a Dual Hard Limit

One new feature of k > 2 kinematics is that in addition to soft limits there are also “hard

limits”. In fact, these are dual to each other under the isomorphism X(k, n) ∼ X(n− k, n)

with the corresponding action on kinematic invariants [71, 123]. In the case at hand, the

soft limit of particle 7 in X(4, 7) is dual to the hard limit of particle 7 in X(3, 7). It is

important not to confuse it with the soft limit of particle 7 in X(3, 7) analyzed at the

beginning of the section.

The reason for the name is easily seen from the relation among kinematic invariants.

Consider X(4, 7) ∼ X(3, 7) and the relation sabcd = sefg with {e, f, g} = {1, 2, . . . , 7} \

{a, b, c, d}. This means that the soft limit in X(4, 7), i.e. sabc7 → 0 with the rest finite,

implies sabc → 0 if 7 /∈ {a, b, c} and finite for any invariant containing 7, i.e. sab7. Going

back to the singular solutions in X(4, 7), one can explicitly visualize the four solutions

for each of the 30 configurations by using the dual hard limit in X(3, 7). Recall that the

singular solutions in X(4, 7) come from configurations where the determinants of the form

|1237|, |3457|, |1567| and |2467| vanish. Just as for kinematic invariants, this corresponds

to having the determinants |456|, |126|, |234| and |135| vanishing in X(3, 7).
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If we gauge fix the homogeneous coordinates of particles 3 and 6 to infinity as (0, 0, 1)

and (0, 1, 0), and of particles 4 and 1 to be the origin (1, 0, 0) and (1, 1, 1), then the

configurations that give rise to singular solutions automatically fix particles 2 and 5 to be

at (1, 0, 1) and (1, 1, 0) respectively.

Therefore, for generic positive kinematics in RP2 we are left with four bounded cham-

bers, which correspond to equilibrium points where particle 7 can be. These points cor-

respond to the 4 solutions of the system. We give a graphical representation in figure

4.4.

Figure 4.4: Four bounded chambers from the hard limit in X(4, 7). Left: the gauge-fixed
particles 1, 3, 4 and 6 create repelling black lines. Right: the singular configurations
automatically fix the position of particles 2 and 5 to be in the two remaining vertices of
the square [0, 1]2, and create a new repelling (orange) line. This produces four bounded
chambers (shown in grey) where particle 7 can be.

4.5 Singular Solutions in X(3, 8) → X(3, 7) and X(5, 8) →

X(5, 7)

Now we move on to two more complicated cases, X(3, 8) and X(5, 8), each of which have

their own new features. In the former, the equations are complicated enough that counting
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solutions directly is not straightforward as in previous cases. Instead we use that the new

scattering equations at τ = 0 can also be analysed in soft limits to count solutions. The

new equations also turn out to have both regular and singular solutions. In the latter case,

we find the first example in which several topologically distinct configurations contribute

to singular solutions. Of course, we expect this to be the generic behavior for higher k and

n.

4.5.1 Singular Solutions in X(3, 8) → X(3, 7)

In order to obtain the singular solutions, we study the soft limit for, e.g., particle n = 8,

i.e. sab8 → τ ŝab8 (with τ → 0). The singular solutions arise from configurations where

three lines in CP2, each defined by two hard particles, meet at the soft particle. In the

same spirit as for X(3, 7), we let e.g. |148|, |258| and |368| vanish and we find 568 singular

solutions. The large number of the solutions is the reason this case resists a direct approach

as mentioned above. There are
(
7
2

)(
5
2

)(
3
2

)
/3! = 105 different configurations of this kind and

therefore N (3):singular
8 = 105× 568 = 59 640.

Let us now explain how to count the solutions for each singular configuration. The 568

solutions can be counted by taking a second soft limit, say that of particle 7. The solutions

to the new scattering equations come in three different types. The first corresponds to

regular solutions and the other two to singular solutions. Since the three kinds come from

the singular solutions for the particle 8 we can denote them as (regular7, singular8) and

(singular7, singular8) of type A and type B.

The first class of solutions, (regular7, singular8), come from decoupling particle 7

from the remaining hard particles. We obtain 12 solutions for the hard particles and each

gives 41 solutions for particle 7 leading to 12× 41 = 492 such solutions.
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The first kind of (singular7, singular8) solutions come from configurations in which

particle 7 belongs to one of the already existing three lines and lies in the intersection of

two other new lines (see left side of figure 4.5). For instance, this would correspond to

vanishing determinants of the form |147|, |267| and |357|. We find 6 solutions for each of

the 6 possible configurations of this kind.

The second kind of (singular7, singular8) solutions corresponds to the case where

three new lines intersect at particle 7 (see right side of figure 4.5). For instance, this would

correspond to vanishing determinants of the form |167|, |247| and |357|. We find 5 solutions

for each of the 8 possible configurations of this kind.

Notice that in these last two cases there is a symmetry between particles 7 and 8.

Combining these results one finds that the number of solutions to the equations that arise in

a particular singular configuration in the soft limit of particle 8 is 41×12+8×5+6×6 = 568.

Figure 4.5: Left : representation of (singular7, singular8) type A configurations. Right :
representation of (singular7, singular8) type B configurations.

Let us now explain how the procedure is implemented. We can again use a similar

gauge fixing as in previous cases and parameterize the space as

x6 = y4 − τ(u+ v + p), x8 = y4 − τ(u+ v), y8 = y4 − τv. (4.24)
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When we take the strict soft limit τ → 0 we obtain a set of new equations with 8 variables:

u, v, p, x5, y5, y6, x7 and y7. The equations are given by

lim
τ→0

∂S3

∂xi

∣∣∣∣
(4.24)

= 0, lim
τ→0

∂S3

∂yi

∣∣∣∣
(4.24)

= 0, for i = 1, . . . 8. (4.25)

More explicitly, we have

lim
τ→0

∂S3

∂x8

∣∣∣∣
(4.24)

=
s368
p

− s148
u

, lim
τ→0

∂S3

∂x8

∣∣∣∣
(4.24)

=
s148
u

− s258
v

,

lim
τ→0

∂S3

∂y5

∣∣∣∣
(4.24)

=
s258
v

+
∂S̃3

∂y5

∣∣∣∣∣
x6→y5

, lim
τ→0

∂S3

∂x6

∣∣∣∣
(4.24)

= −s368
p

+
∂S̃3

∂y5

∣∣∣∣∣
x6→y5

, (4.26)

with S̃3 defined as the potential S̃3 ≡
∑

1≤a<b<c≤7 sabc log(a, b, c). This allows us to easily

eliminate u, v and p and reduce the new set of equations (4.25) to ones involving fewer

particles, {
∂S̃3

∂y5
+

∂S̃3

∂x6

,
∂S̃3

∂x5

,
∂S̃3

∂y6
,

∂S̃3

∂x7

,
∂S̃3

∂y7

}∣∣∣∣∣
x6→y5

= 0 . (4.27)

Now we have 5 independent equations and the remaining variables are x5, y5, y6, x7 and

y7. So we have reduced a problem of 8 particles to one of 7 particles.

This means we can now start with the set of equations (4.27) and study them inde-

pendently of where they came from, i.e. the eight-particle problem, just like we did in the

X(3, 7) case. As mentioned above, when the soft limit sab7 → ϵŝab7 (with ϵ → 0) is taken,

there are again both regular and singular solutions for (4.27).

For the (regular7, singular8) solutions, all terms involving particle 7 can be omitted

in the first three equations in (4.27), which become exactly the same equations as (4.18)

and give 12 solutions for x5, y5 and y6. We plug each solution into the last two equations in

(4.27) and obtain 41 solutions for x7 and y7. Compared to the regular solutions in X(3, 7),
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roughly speaking, we can see that the requirement x6 = y5 reduces the number of solutions

for x7 and y7 from 42 to 41. In total, we obtain 12× 41 = 492 solutions from this sector.

We give a graphical representation and counting of these solutions in appendix E.

For the (singular7, singular8) solutions, note that the three lines 12, 34 and 56 already

intersect at the same point (i.e. the position of particle 8, but this fact is irrelevant for our

present problem). Now we need another 3 lines intersecting at the position of particle 7 in

the CP2 in the strict second soft limit ϵ → 0. There are 2 different kinds of configurations

that we graphically represented in figure 4.5.

For the first configuration, which corresponds to requiring |147|, |267| and |357| to

vanish, we re-parameterize the CP2 space using the constraints

|147| = ϵ q, |267| = ϵ r, |357| = ϵ s, (4.28)

that is

y6 = ϵ(q + r + s) + x5, x7 = sϵ+ x5, y7 = ϵ(q + s) + x5. (4.29)

If one plugs them in into (4.27) and takes the strict soft limit ϵ → 0, a new set of scattering

equations with variables q, r, s, x5 and y5 arises. Again we can easily eliminate q, r and s

and reduce the new set of equations to those only involving the six hard particles

∂Ŝ3

∂y5
+

∂Ŝ3

∂x6

∣∣∣∣∣
x6→y5,y6→x5

= 0 ,
∂Ŝ3

∂x5

+
∂Ŝ3

∂y6

∣∣∣∣∣
x6→y5,y6→x5

= 0 , (4.30)

with Ŝ3 defined as the potential of 6 particles, i.e. Ŝ3 ≡
∑

1≤a<b<c≤6 sabc log(a, b, c). It turns

out that there are 6 solutions to these equations.

For the second type of configuration, i.e., where |167|, |247| and |357| are taken to
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vanish, we re-parameterize the CP2 space using the constraints

|167| = ϵ q, |247| = ϵ r, |357| = ϵ s, (4.31)

that is

x7 = ϵs+ x5, y7 = 1− ϵr, y6 =
−ϵ(q + ry5) + y5

ϵs+ x5

. (4.32)

When we plug this into (4.27) and take the strict soft limit ϵ → 0, we obtain a set of new

scattering equations with variables q, r, s, x5 and y5. Again we can easily eliminate q, r

and s and reduce the new set of equations to those only involving 6 hard particles

∂Ŝ3

∂y5
+

∂Ŝ3

∂x6

+
x5

y5

∂Ŝ3

∂x5

∣∣∣∣∣
x6→y5,y6→x5

= 0 ,
x2
5

y5

∂Ŝ3

∂x5

+
∂Ŝ3

∂y6

∣∣∣∣∣
x6→y5,y6→x5

= 0. (4.33)

These equations have 5 solutions. Therefore, we obtain a total of 6 × 6 + 8 × 5 = 76

(singular7, singular8) solutions.

Summarizing, we have proven that there are 568 solutions for the new set of equations

(4.27). Therefore, as mentioned above, we find that the total number of singular solutions

for X(3, 8) is N (3):singular
8 = 105× 568 = 59 640. Together with the already known 128 472

regular solutions, mentioned in section 4.3, we get a total of N (3):total
8 = 188 112 solutions,

which is consistent to a proposal made by Lam that this should be related to the number

of representations of uniform matroids as defined in [192].

Of course, the challenge now is to reproduce the same number of total solutions for the

dual space X(5, 8). Confirming that N (5):total
8 = 188 112 would be a very strong consistency

check on our constructions and on the number itself.
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4.5.2 Singular Solutions in X(5, 8) → X(5, 7)

Unlike any case considered previously, the soft limit X(5, 8) → X(5, 7) has four kinds

of topologically distinct singular solutions. In order to describe them let particle 8 be

soft. As summarized in table 4.1, the four kinds of singular solutions come from the

configurations where either 4, 5, 6, or 7 minors involving particle 8 vanish. Each class has

210, 420, 210, and 840 different configurations, respectively. For each of them, there are

96, 24, 8, and 32 solutions respectively, as we show below. Thus we obtain N (5):singular
8 =

210× 96 + 420× 24 + 210× 8 + 840× 32 = 58 800 singular solutions.

Topology
type

Vanishing minors Number of
configurations

Number of
solutions

1 |57238|, |57148|, |53468|, |51268| 210 96
2 |12358|, |12468|, |15678|, |23478|, |34568| 420 24
3 |12378|, |12458|, |13568|, |23468|, |25678|, |34578| 210 8
4 |12348|, |12358|, |12368|, |12378|, |14568|, |24578|, |34678| 840 32

Table 4.1: Four different topologies of singular configurations for X(5, 8) defined by the
list of vanishing minors.

Type 1 Configuration

The first configuration in table 4.1 is slightly subtler than the remaining ones so we describe

it in a separate subsection. The soft particle 8 can be thought of as being projected from

CP4 space to CP3 space through the particle 5 and then being crossed by four 2-planes in

the projection space just like the case X(4, 7). We give a very schematic representation,

i.e. drawing RP3 on a plane, of the projection in figure 4.6, where particle 5 is sent to

infinity. The four vertices of the tetrahedron in this projection actually correspond to four

parallel lines in RP4 space. We can think of these four lines intersecting at the infinity

point, particle 5.
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Figure 4.6: The geometrical interpretation of the topology type 1 near the soft limit,
from the point of view of particle 5, is that the projection of the soft particle lies inside a
tetrahedron just like in X(4, 7). In the strict soft limit, in projection space, the tetrahedron
collapses to a point where the projection of the soft particle 8 lies while in CP4 space, the
four 3-planes 5723, 5714, 5346, and 5128 share a common line that crosses particles 5 and
8.

There are no analogs to this case for k = 3 because there are no singular solutions

for k = 2. Starting at k = 4, however, the soft particle can be projected into a lower-

dimensional space and its projection satisfies the requirement of that particular dimension

as long as n is large enough.

The way to obtain the solutions in the soft limit sabcd8 → τ ŝabcd8 (with τ → 0) is the

following. First, we parameterize X(5, 8) as



1 0 0 0 0 1 1 1

x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

z1 z2 z3 z4 z5 z6 z7 z8

w1 w2 w3 w4 w5 w6 w7 w8


gauge fixing−→



1 0 0 0 0 1 1 1

0 1 0 0 0 1 x7 x8

0 0 1 0 0 1 y7 y8

0 0 0 1 0 1 z7 z8

0 0 0 0 1 1 w7 w8


.

(4.34)

Notice that a direct consequence of sending particle 5 to infinity in the direction of w is

that all vanishing minors |57238|, |57148|, |53468| and |51268| become independent of w8.
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Next, we make a reparameterization under the constraints

|57238| = τu, |57148| = τv, |53468| = τp, |51268| = τq , (4.35)

that is

y7 =
τ(−qx7 + ux7 − v) + x7z7

τp+ 1
, x8 = τp+ 1, y8 = τ(u− q) + z7, z8 = τu+ z7. (4.36)

We then plug this into the original scattering equations and take the strict soft limit τ → 0

{
lim
τ→0

∂S5

∂xi

, lim
τ→0

∂S5

∂yi
, lim

τ→0

∂S5

∂zi
, lim

τ→0

∂S5

∂wi

}∣∣∣∣
(4.36)

= 0, for i = 1, . . . 8. (4.37)

Since all vanishing minors are independent of w8, the above 32 equations only depend

on 7 variables u, v, p, q, x7, z7 and w7. Correspondingly, only 7 of these equations are

independent since e.g. the leading order of ∂S5

∂w8
in τ vanishes. Hence, we must require its

subleading contribution to vanish

lim
τ→0

1

τ

∂S5

∂w8

∣∣∣∣
(4.36)

= 0. (4.38)

One can solve the equations for the leading order in (4.37) and obtain 16 solutions for u,

v, p, q, x7, z7 and w7. When each of these solutions is plugged into the subleading term

(4.38), we find 6 solutions for w8. Therefore, the total number of solutions is 16× 6 = 96

as shown in table 4.1.

Now we can again use the kinematic data from the positive region (4.19), assuming

all solutions are real, to interpret the singular solutions. Singular solutions make some

minors |abcd8| containing particle 8 become singular. Geometrically, this means that 3-
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planes abcd in RP4 space will dominate. The remaining planes can be omitted for the soft

particle at first. Therefore, in order to bound particle 8 in RP4 space, it seems we need

at least five such dominating planes. This is the case for the remaining 3 configurations

in table 4.1. However, it is not the case for type 1 configuration described now. The

four dominating 3-planes do not bound the soft particle. They produce equilibrium lines

instead of equilibrium points for the soft particle.

As shown in figure 4.6, any equilibrium point in the projection space will correspond to

an equilibrium line in RP4 space. The soft particle 8 can lie at any point of these equilibrium

lines and won’t be pushed to infinity by the dominating 3-planes. This corresponds to the

fact that the leading order of ∂S5

∂w8
in τ vanishes. It has no constraints on the positions of

particle 8 in the direction from which 5 is sent to infinity.

The position of the soft particle 8 is finally determined by considering the normal 3-

planes determined by the hard particles as well. This corresponds to equation (4.38). In

each of the equilibrium lines, there are 6 equilibrium points considering both dominating

and non-dominating minors.

Other Three Types of Configurations

For the second configuration in table 4.1, we make a reparameterization of (4.34) under

the constraints

|12358| = τu, |12468| = τv, |15678| = τp, |23478| = τq, |34568| = τr , (4.39)
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that is

w7 = −τ(−ry7 + rz7 − qx7 + qz7 + ux7 − uy7 + vx7 − vz7 + p)− y7 + z7
x7 − z7

,

x8 = τr + 1, y8 = −τ(rz7 + ux7 − ry7 − uy7 + p)− y7 + z7
x7 − z7

, z8 = −τu,

w8 = −τ(−ry7 + rz7 + ux7 − uy7 + vx7 − vz7 + p)− y7 + z7
x7 − z7

. (4.40)

When this is plugged into the original scattering equations and the strict soft limit τ → 0

is taken, we obtain a new set of scattering equations with variables u, v, p, q, y6 and z6{
lim
τ→0

∂S5

∂xi

, lim
τ→0

∂S5

∂yi
, lim

τ→0

∂S5

∂zi
, lim

τ→0

∂S5

∂wi

}∣∣∣∣
(4.21)

= 0, for i = 1, . . . 8. (4.41)

Among the above 32 equations, only 8 of them are independent. One can find that there

are 24 solutions by solving the system above. We can also easily eliminate u, v, p , q and

r in the new scattering equations (4.41) and then reduce the system to one only involving

hard particles{
∂S̃5

∂y7
+

x7 − z7
y7 − z7

∂S̃5

∂x7

,
∂S̃5

∂z7
+

y7 − x7

y7 − z7

∂S̃5

∂x7

,
∂S̃5

∂w7

+
(x7 − z7)

2

z7 − y7

∂S̃5

∂x7

}∣∣∣∣∣
w7,y8,w8→ y7−z7

x7−z7

= 0,

(4.42)

where S̃5 is the potential for hard particles, S̃5 ≡
∑

1≤a<b<c<d<e≤7 sabcde log |a, b, c, d, e|. In

(4.42) we presented only three independent equations for the three remaining variables y7,

z7 and w7. Notice that even though the equations in (4.42) are different from the original

scattering equations for X(5, 7), they share the same number of solutions.

It is not obvious that there are solutions for the new equations (4.41). Let’s use the

positive kinematic data to clarify it. Recall that, in the soft limit for X(3, 7), the soft
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particle is bounded by a 2-simplex, i.e. a triangle, formed by three lines in RP2. For

X(4, 7), the soft particle is bounded by a 3-simplex, i.e. a tetrahedron, formed by four

planes in RP3 space. It turns out that for X(5, 8), we can geometrically interpret the second

configuration in table 4.1 as having the soft particle bounded by a 4-simplex formed by

five 3-planes in RP4. Its four projections are shown in figure 4.7.

Figure 4.7: Geometrical interpretation for the topology type 2 near the soft limit. The soft
particle is bounded by a 4-simplex. Here we show four projections of the 4-simplex from
the viewpoint of particles 2, 3, 4 and 5, respectively. In the strict soft limit the 4-simplex
collapses to a point where the soft particle lies.

The five vertices of the 4-simplex can be seen as auxiliary points, each of them having

a label ranging from 9 to 13. The five facets of the 4-simplex, each of them corresponding

to a tetrahedron, have vertices labelled by {9, 10, 12, 13}, {9, 10, 11, 13}, {9, 11, 12, 13},

{9, 10, 11, 12} and {10, 11, 12, 13}, respectively. They are passed by the five dominating

3-planes 1235, 1246, 1567, 2347 and 3456, respectively.

In the first projection shown in figure 4.7, two points {9, 10} are pinched from the

viewpoint of particle 2, which has been sent to infinity. We can say that particle 2 lies

on the line determined by {9,10}. Particles 1 and 6 lie on the line determined by {9,13}

154



and {11,13} respectively. Particle 7 lies on a 2-plane determined by three vertices of the

4-simplex {9, 11, 12}. The remaining three projections are completely analogous.

The polytopes in the remaining two configurations in table 4.1 are slightly more compli-

cated. Actually, now there are two bounded chambers formed by the dominating 3-planes

for the configurations type 3 and type 4. The soft particle can lie in either of the two

bounded chambers. See appendix F for more details. In the following, we just show how

to get the solutions for general kinematic data.

For type 3, we make a reparameterization of (4.34) under the constraints

|12378| = τu, |12458| = τv, |13568| = τp, |23468| = τq, |25678| = τr, |34578| = τs ,

(4.43)

that is

y7 =
τ(s+ r − v + vz7 − p) + x7 − z7

τ(s− p) + x7 − 1
, w7 =

τ(qz7 + u)− z7
τ(p− s)− x7

,

x8 = τs+ x7, y8 = τv, z8 = τ(s− p) + x7, w8 = 1− τq. (4.44)

When this is plugged into the original scattering equations and the strict soft limit τ → 0

is taken, we obtain a new set of scattering equations which has 8 solutions.

Likewise for type 4, we make a reparameterization of (4.34) under the constraints

|12348| = τu, |12358| = τv, |12378| = τp, |14568| = τq, |24578| = τr, |34678| = τs ,

(4.45)
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that is

z7 =
τ(rv − rp+ qv − qp+ uv + sv − uvx7) + vx7 − vy7 + wy7 − w

u (−τ(r + q) + y7 − 1)
,

w7 =
τ(r + q + u+ s− ux7) + x7 − y7

τ(r + q)− y7 + 1
,

x8 = −τ(q + r) + y7, y8 = y7 − τr, z8 = −τv, w8 = τu , (4.46)

which will make |12368| = τ(u + v) vanish as well. When we plug this into the original

scattering equations and take the strict soft limit τ → 0, we obtain a new set of scattering

equations which has 32 solutions.

As mentioned before, combining all these results we obtain N (5):singular
8 = 420 × 24 +

210 × 8 + 840 × 32 + 210 × 96 = 58 800 singular solutions. In addition to the already

known N (5):regular
8 = 24 × 5388 = 129 312 regular solutions, the total number of solutions

for X(5, 8) is N (5)
8 = 188 112, which is exactly the same as the result obtained for X(3, 8).

4.6 General Configurations that Support Singular Solu-

tions

In this section we explain what we believe are all configurations of points that lead to

singular solutions in soft limits X(k, n) → X(k, n− 1) for general k and n. Our proposal

is based on the examples already computed and on many other configurations for which

we have been able to compute particular solutions.

In general, recall that singular solutions will make some minors involving the soft par-

ticle vanish while keeping all other minors non-vanishing. In particular, no subset of only
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hard particles should develop any linear dependence detected by the vanishing of a single

minor as this would imply that the hard-particle kinematics is not generic. We start by as-

signing each hard particle a position in the CPk−1 and each vanishing minor will correspond

to a (k − 2)-plane determined by (k − 1) particles.

We state our conjecture distinguishing k = 3 from k > 3. The reason is that k = 3 is

the base case for the rest since k = 2 does not have singular solutions.

For k = 3 and n = 2m + 1 or n = 2m + 2 with m ≥ 3, we conjecture that singular

solutions come from configurations where 3, 4, · · · ,m lines meet at the soft particle re-

spectively. Each line is determined by two hard particles and of course no subset of three

hard particles are allowed to be collinear. We have checked that up to n = 14 there are

indeed solutions supported by all such configurations. In figure 4.8, we show all three

configurations for n = 11.

Figure 4.8: All configurations of singular solutions in n = 11. The soft particle is rep-
resented as a red point and the hard particles are represented as blue points. Left : one
possible situation is when we have 3 vanishing minors involving the soft particle. Namely,
we have three lines, each one passing through two hard particles, intersecting at the soft
particle. The rest of the hard particles do not develop any linear dependence. Center :
another possible situation is when we have 4 vanishing minors involving the soft particle,
i.e. 4 lines. Right : the last possibility in n = 11 is when we have m = 5 vanishing minors
involving the soft particle, i.e. 5 lines.

For k ≥ 4, we conjecture that singular solutions come from two kinds of configurations.

The first kind of configurations is obtained from the cases with lower k and n. More
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explicitly, this kind requires that all vanishing minors share a set of hard particles. Besides,

the remaining hard particles together with the soft particle are projected by the common

hard particles to a lower dimension space and their projections satisfy the requirement of

that particular dimension.

For example, we already know there are singular solutions where three minors of the

form |14n|, |25n| and |36n| vanish for k = 3 and n ≥ 7. Thus we expect that for any

k ≥ 4 and n ≥ k + 4, there will always be solutions coming from configurations where

three minors of the form |1478 · · · k+3, n|, |2578 · · · k+3, n| and |3678 · · · k+3, n| vanish.

The hard particles 1-6 together with the soft particle are projected to a lower dimension

space through the hard particles 7, 8, · · · , k+3 one by one. Finally, they are projected to

CP2 and the projection of the soft particle is crossed by three lines. We have numerically

checked that for any n ≤ 12 and 4 ≤ k ≤ n− 4, there are indeed solutions of this kind.

Similarly, we already know there are singular solutions where four minors of the form

|123n|, |345n|, |561n| and |246n| vanish for k = 4 and n = 7. Thus we expect that for

any k ≥ 4 and n ≥ k + 3, there will always be solutions coming from configurations

where four minors of the form |12378 · · · k + 2, n|, |34578 · · · k + 2, n|, |56178 · · · k + 2, n|

and |24678 · · · k + 2, n| vanish. The hard particles 1-6 together with the soft particle are

projected to a lower dimension space through the hard particles 7, 8, · · · , k+2 one by one.

Finally, they are projected to CP3 and the projection of the soft particle is crossed by four

planes. We have numerically checked that for any n ≤ 11 and 4 ≤ k ≤ n − 3, there are

indeed solutions of this kind.

The second kind of configurations correspond to those where at least k (k − 2)-planes

meet at the soft particle location. Each of the (k− 2)-planes are determined by k− 1 hard

particles. Besides, by slightly changing the position of hard particles, these (k − 2)-planes

can form a polytope with infinitesimal volume around the position of the soft particle
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without any hard particle as one of its vertices. Of course, no subset of k hard particles

can lie on a single (k − 2)-plane as this would imply an unwanted linear dependence. In

particular, any configuration that supports singular solutions must still support singular

ones for higher n and the same k.

For example, for k = 4 and n = 8, we find 7 different topologies of configurations that

satisfy the requirements to support singular solutions, as shown in table 4.2. We have

I |1478|, |2578|, |3678|
II |1238|, |3458|, |5618|, |2468| III |1238|, |3458|, |5678|, |2468|
IV |1478|, |2578|, |3678|, |1238|, |4568| V |1238|, |1458|, |1678|, |2468|, |2578|
VI |1238|, |1458|, |1678|, |2468|, |2578|, |3478|
VII |1238|, |1248|, |1258|, |1268|, |1278|, |3458|, |3678|

Table 4.2: Seven different topologies of singular configurations for X(4, 8) defined by the
list of vanishing minors.

numerically checked that there are solutions for each of them.

The first topology belongs to the first kind of configurations which are related to that

of X(3, 7) through projection. For the remaining six topologies, there are at least 4 planes

meeting at the soft particle location.

The second topology is the same configuration that supports the singular solutions in

X(4, 7). The third topology has one hard particle changed in the third vanishing minor

with respect to the second topology. Note that no matter what hard particle in a single

minor in the second configuration is changed as 7, they all lead to the configuration of the

same topology.

Comparing the first and fourth topology, we see in addition to three common minors

|1478|, |2578|, |3678|, the fourth topology has two more vanishing ones |1238|, |4568|, which

supports singular solutions. However, if we just add one more vanishing minor, such as
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|1238|, to those of the first topology, there will be no singular solutions. This is because

by slightly changing the position of hard particles, the four planes 147, 257, 367 and 123

can form a polytope with infinitesimal volume around the position of the soft particle but

with the hard particle 7 as one of the vertices, which is forbidden.

Another way to think about it is to use the geometry description using positive kine-

matic data (4.19). For the first configuration, three planes 147, 257 and 367 share a

common line that crosses particles 7 and 8. The final position of the soft particle 8 in

the line is determined by both vanishing and finite minors. However, we can also fix the

position of 8 in the line by imposing two more vanishing minors. That is the case of the

fourth configuration. One can imagine that we cannot just impose one more vanishing

minor as this will push the particle 8 in the line into infinity, i.e. there will be no singular

solutions where only 4 minors of the form |1478|, |2578|, |3678| and |1238| vanish.

We have also checked many other examples up to k = 6, all of them having solutions

(see table 4.3).

k n Vanishing minors
4 9 |123n|, |345n|, |567n|, |781n|
4 9 |123n|, |124n|, |126n|, |127n|, |345n|, |368n|
4 10 |123n|, |345n|, |567n|, |789n|
4 10 |123n|, |145n|, |167n|, |246n|, |257n|, |347n|, |389n|
5 9 |1235n|, |1246n|, |1567n|, |2347n|, |3458n|
6 10 |12358n|, |12468n|, |15678n|, |23478n|, |34589n|

Table 4.3: Some explicit examples supporting singular solutions, where particle n is the
soft one.
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4.7 Discussions

In this chapter we started the study of singular solutions in soft limits. This is a new

phenomenon for scattering equations on X(k, n) with k > 2. We computed all singular

solutions for all cases with n < 9, except for X(4, 8). This proved that studying sin-

gular solutions is an effective technique for computing the number of solutions in cases

where other known techniques cannot be applied. For example, we have proven that

N (3)
8 = N (5)

8 = 188 112. Also, even in cases where indirect approaches are possible, singu-

lar solutions prove to be a much simpler route as seen in the alternative determination of

N (3)
7 = N (4)

7 = 1272.

One of the most pressing issues is to extend our study to all X(3, n) → X(3, n − 1)

cases with n > 8. In section 4.6, we presented a conjecture for all configurations that can

support singular solutions. It is very tempting to suggest that in this case, it would be

possible to count solutions using a recursive approach. Recall that in X(3, 8) → X(3, 7)

we resorted to a second soft limit in order to count solutions. Such “fibration” structure is

familiar in the k = 2 case where X(2, n) can be thought of as a fibration over X(2, n− 1)

(see e.g. [169]). For k = 3 the structure we have uncovered is much more interesting and

we leave its study for future work.

The scattering equations have been a powerful tool for studying properties of scattering

amplitudes via the CHY formalism [76, 77]. The quantum field theory whose amplitudes

have the simplest CHY formulation is a theory with a U(N)× U(Ñ) flavour group and a

scalar field in the biadjoint representation with cubic interactions (for related developments

see e.g. [78, 49, 94, 168, 167, 12, 120, 185, 29, 181, 96, 42]). It is not surprising that this

is the first theory to have been generalized so that it has a CHY representation based on

X(k, n) with k > 2 [81]. We now turn to a discussion on such biadjoint amplitudes and
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their soft limit behavior on singular solutions using the explicit cases we have computed

and the conjecture regarding the general configurations that can support them.

4.7.1 Generalized Biadjoint Scalar Soft Limit

Recall the generalized biadjoint scalar amplitude [81]

m(k)
n [α|β] =

∫ [
1

Vol[SL(k,C)]

n∏
a=1

k−1∏
i=1

dxi
a

]
n∏

a=1

k−1∏′

i=1

δ

(
∂S
∂xi

a

)
PT(k)

n [α]PT(k)
n [β], (4.47)

where the Parke-Taylor functions correspond to

PT(k)
n [12 · · ·n] = 1

|12 · · · k||23 · · · k + 1| · · · |n1 · · · k − 1|
. (4.48)

Now consider the soft limit for one particle, for instance sabn = τ ŝabn. Following our

conjecture in section 4.6, one can analytically show that when τ → 0 the singular solutions

for k = 3 and general n can at most contribute to order O(τ−1) to the amplitude. The

argument goes as follows. For k = 3 and n ≥ 7 we have seen that there is always one

singular configuration with 3 vanishing minors involving the soft particle. If we choose

e.g. particle n to be the soft one, we parameterize the vanishing minors as |abn| ∼ uτ .

This means that the Jacobian for the change of variables will give an O(τ 3) factor in the

amplitude4. Moreover, given the form of the singular configurations, we can at most have

two vanishing determinants in the Parke-Taylor functions. This produces an O(τ−4) factor

in the amplitude. Hence, the leading contribution of the singular solutions to the biadjoint

scalar amplitude in k = 3 is of order O(τ−1).
4Note that for singular configurations with m vanishing minors the Jacobian gives orders of O(τm).

That’s why having only 3 vanishing minors corresponds to the leading contribution.
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Now we move on to explain the contribution to the amplitude for the cases k = 4 and

n = 7, and k = 5 and n = 8 in the soft limit. Consider again the biadjoint scalar amplitude

(4.47). For k = 4 and n = 7 the singular configurations are those where 4 vanishing minors

involve the soft particle. The Jacobian for the change of variables thus gives an order

O(τ 4) to the amplitude. From the Parke-Taylor functions (4.48) we again obtain a factor

of O(τ−4), hence the contribution to the amplitude in this case is of the order O(τ 0).

For k = 5 and n = 8 the analysis is slightly different. In this case the configuration

that gives a more dominant contribution to the amplitude is the one with only 4 vanishing

minors. Following the same procedure as for k = 4 and n = 7, this would naively give us

again a total contribution of order O(τ 0) to the amplitude. However, recall that the leading

order in τ for one of the soft scattering equations vanished in this configuration. This means

that we get an extra factor of O(τ−1) in the amplitude, coming from the subleading term of

the vanishing soft scattering equation (4.38). Therefore, the contribution to the amplitude

in this case is of the order O(τ−1)5.

We haven’t obtained the whole set of singular solutions for higher values of k and n,

but in what follows we make a prediction on their contribution to the biadjoint scalar

amplitudes in the soft limit expansion based on our conjecture in section 4.6.

For any k ≥ 4 and n ≥ k + 3, as we have already explained, there will always be some

singular solutions from configurations where four minors of the form |12378 · · · k + 2, n|,

|34578 · · · k + 2, n|, |56178 · · · k + 2, n| and |24678 · · · k + 2, n| vanish. We can use the

gauge redundancy of SL(k,C) to send 7, 8, · · · , k + 2 to infinity in different directions. A

direct consequence is that the leading order for the scattering equations of the soft particle

corresponding to these directions vanish. See section 4.5.2 as an example. This means
5Singular configurations with 5, 6 and 7 vanishing minors give orders of O(τ1), O(τ2) and O(τ1),

respectively.
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that we get a factor of O(τ 4−k) from the subleading term of the vanishing soft scattering

equations. The Jacobian for the change of variables in this case gives an order O(τ 4) and

the Parke-Taylor functions (4.48) also give a factor of O(τ−4). Thus we expect that the

contribution to the amplitude in this case is at most of the order O(τ 4−k). Besides X(5, 8),

we have numerically checked the existence of such kind of solutions for X(6, 9).

Similarly, for any k ≥ 3 and n ≥ k + 4, singular solutions from configurations where

three minors of the form |1278 · · · k + 3, n|, |3478 · · · k + 3, n| and |5678 · · · k + 3, n| vanish

will contribute to the amplitude with order O(τ 2−k) at most. The reason is as follows.

Consider the second kind of configurations conjectured in section 4.6. The Jacobian for

the change of variables in this case gives an order O(τ k) at most since there are at least

k vanishing minors. Although any Parke-Taylor function has k minors involving the soft

particles, there can be at most (k−1) vanishing ones, otherwise some minors only involving

hard particles must vanish. Since in this case all the scattering equations keep their leading

terms, the upper bound of the contribution of the singular solutions is of order O(τ 2−k).

We have numerically checked the existence of such kind of solutions for X(4, 8) and X(5, 9).

The leading contribution to the biadjoint scalar theory amplitude is O(τ 1−k). This

actually implies that singular solutions do not contribute to leading order. We summarize

these results in table below:

k = 3 k = 4 k = 5
Regular solutions O(τ−2) O(τ−3) O(τ−4)
Singular solutions for n = 7 O(τ−1) O(τ 0) -
Singular solutions for n = 8 O(τ−1) O(τ−2) O(τ−1)
Singular solutions for n ≥ 9 O(τ−1) O(τ−2) O(τ−3)

Table 4.4: Leading order contribution in the soft limit expansion. The results in black are
obtained from analytic derivation. The results in red come from what we conjecture.

From table 4.4 one can notice an interesting pattern. For k ≥ 4 the singular solutions
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for n = k + 3 do not contribute to the subleading term. For n > k + 3, though, the

singular solutions will always be relevant, i.e. will contribute to the subleading term in the

biadjoint scalar amplitude. This special case k ≥ 4 and n = k + 3 is nothing but the case

that just comes after n = k + 2, i.e. when no singular solutions arise. This phenomenon

does not appear in k = 3 since for n = 6 there are no singular solutions, as explained

before. Therefore, for k = 3 the singular solutions will always contribute to the subleading

term.

These results in fact resonate with the recent work of García-Sepúlveda and Guevara

[123]. More precisely, they computed the leading order behavior of biadjoint scalar ampli-

tudes in the limit when a soft particle decouples from the scattering equations of the hard

particles. Hence, no singular configurations were taken into account. With this assumption,

they found that the leading soft factor for the m
(k)
n amplitude is

S(k)
n = m

(k)
k+2(I|I)(T̂

(p,q)

k+2 → T̂
(p,q)

n ) (4.49)

where the canonical ordering is assumed and

T̂
(p,q)

n :=
n∑

a1,...,ar=1

ŝ12...qa1...ar(n−k+q+r+1)...n−1n (4.50)

are planar kinematic invariants, 0 ≤ r ≤ k−2 and 1 ≤ q ≤ k−r, and r denotes the number

of summed indices. The fact that singular solutions do not contribute to the leading order

in the soft limit expansion of the biadjoint scalar amplitudes serves to corroborate their

statement (4.49) for the cases already mentioned. Indeed, they numerically checked that

only regular solutions contribute to leading order for k = 3 and n = 7, 8, for k = 4 and

n = 7 and for k = 5 and n = 8.
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Chapter 5

Generalized Feynman Diagrams

5.1 Introduction

In this chapter, we conclude our exploration of the CEGM generalization of quantum field

theory by approaching it from a viewpoint that is more familiar to physicists. Specifically,

we will identify the analogous objects to Feynman diagrams that contribute to CEGM

amplitudes and utilize them to perform calculations for some examples.

As pointed out in [71], these higher-k “biadjoint amplitudes” were shown to have deep

connections to tropical Grassmannians. This led to the proposal that generalized Feynman

diagrams could be identified with facets of the corresponding TropG(k, n) [71]. Motivated

by the connection (as described in chapter 3) between TropG(2, n) with metric trees, which

can be identified as Feynman diagrams, and that of TropG(3, n) with metric arrangements

of trees [140], Cachazo and Borges introduced a generalization to k = 3 called planar

collections of Feynman diagrams as the objects that compute k = 3 biadjoint amplitudes

[42].
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The computation of a k = 3 biadjoint amplitude is completely analogous to that of

the standard k = 2 amplitude but defined as a sum over planar collections of Feynman

diagrams

m(3)
n (α, β) =

∑
C∈Ω(α)∩Ω(β)

R(C), (5.1)

with Ω(α) the set of all collections of Feynman diagrams which are planar with respect to

the α-ordering [42]. More explicitly, the ith tree in a collection is a tree with n− 1 leaves

{1, 2, . . . , n} \ i which is planar with respect to the ordering induced by deleting i from α.

This is why the collection is called planar and not the individual trees. The value R(C) of

a planar collection C is obtained from the following function

F(C) =
∑
i,j,k

πijk sijk (5.2)

defined in terms of the metrics of the trees in the collection d
(i)
jk which satisfy a compatibility

condition d
(i)
jk = d

(j)
ik = d

(k)
ij , thus defining a completely symmetric rank three tensor πijk :=

d
(i)
jk [140]. Recall that sijk is the k = 3 generalization of Mandelstam invariants, defined as

completely symmetric rank-three tensors satisfying

siij = 0,
n∑

j,k=1

sijk = 0, ∀i ∈ {1, 2, . . . , n}. (5.3)

The explicit value is then computed as

R(C) =
∫
∆

d2(n−4)fI expF(C) , (5.4)

where the domain ∆ is defined by the requirement that all internal lengths of all Feynman

diagrams in the collection be positive [42]. Figure 5.1 is an example of a planar collection
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Figure 5.1: An example of a planar collection of Feynman diagrams for n = 6 and with
relations between the internal lengths after imporsing the compatibility conditions πijk :=

d
(j)
kl = d

(k)
jl = d

(l)
jk .

that corresponds to a bypiramidal facet in TropG(3, 6), and integrates to

R(C) =
∫
∆

dxdydzdw exp(−
∑
a<b<c

sabcπabc) =
R + R̃

RR̃t1234t3456t5612
, (5.5)

where ∆ = {x > 0, y > 0, z > 0, w > 0, u > 0, v > 0} and R, R̃, t1234, t3456 and t5612 are

planar poles of the (k, n) = (3, 6) CEGM amplitude given by

ta1,a2,...,am :=
∑

{a,b,c}⊂{a1,a2,...,am}

sabc ,

R := t1234 + s345 + s346 , R̃ := t1234 + s125 + s126 .

In this chapter we continue the study of planar collections of Feynman diagrams by

exploiting an algorithm proposed in [42] for determining all collections for k = 3 and n

points by a “combinatorial bootstrap” starting from k = 2 and n-point planar Feynman

diagrams. We review in detail the algorithm in section 5.2 and use it to construct all 693,

13 612, and 346 710 collections for (k, n) = (3, 7), (3, 8) and (3, 9) respectively. The 693

collections for (k, n) = (3, 7) were already obtained in [42] by imposing a planarity condition
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on the metric tree arrangements presented by Herrmann, Jensen, Joswig, and Sturmfels

in their study of the tropical Grassmannian TropG(3, 7) in [140]. Also, there are deep

connections between positive tropical Grassmannians and cluster algebras as explained by

Speyer and Williams in [195] and explored by Drummond, Foster, Gürdogan, and Kalousios

in [96]. In the latter work it was found that Trop+G(3, 8) can be described in terms of

25 080 clusters. Here we show that our 13 612 planar collections for (3, 8) encode exactly

the same information as their 25 080 clusters. The cluster algebra analysis of Trop+ G(3, 9)

has not appeared in the literature but it should be possible to obtain them from our 346 710

collections.

We also start the exploration of the next layer of generalizations of Feynman diagrams in

section 5.3 and propose that k = 4 biadjoint amplitudes are computed using planar matrices

of Feynman diagrams. In a nutshell, an n-point planar matrix of Feynman diagrams M is

an n×n matrix with Feynman diagrams as entries. The Mij entry is a Feynman diagram

with n − 2 leaves {1, 2, . . . , n} \ {i, j}. Each tree has a metric defined by the minimum

distance between leaves, d(ij)kl . Here we use superscripts to denote the entry in the matrix of

trees and subscripts for the two leaves whose distance is given. Planar matrices of Feynman

diagrams must satisfy a compatibility condition on the metrics

d
(ij)
kl = d

(ik)
jl = d

(il)
kj = d

(kl)
ij = d

(jl)
ik = d

(kj)
il . (5.6)

This means that the collection of all metrics defines a completely symmetric rank four

tensor πijkl := d
(ij)
kl .

Using this we generalize the prescription for computing the value R(T ) and R(C) of

k = 2 and k = 3 “diagrams” to R(M) for k = 4 and therefore their contribution to

generalized k = 4 amplitudes. Moreover, we find that a second class of combinatorial
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bootstrap approach can be efficiently used to simplify the search for matrices of diagrams

that satisfy the compatibility conditions (5.6). The idea is that any column of a planar

matrix of Feynman diagrams must also be a planar collection of Feynman diagrams but

with one less particle. In the first of our two main examples, any matrix for (k, n) = (4, 8)

must have columns taken from the set of 693 (k, n) = (3, 7) planar collections. Using

that the matrix must be symmetric, one can easily find 91 496 matrices of trees satisfying

this purely combinatorial condition. Therefore the set of all valid planar matrices for

(k, n) = (4, 8) must be contained in the set of those 91 496 matrices. Surprisingly, we find

that only 888 such matrices do not admit a generic metric satisfying (5.6). This means

that there are exactly 90 608 planar matrices of Feynman diagrams for (k, n) = (4, 8).

We also find efficient ways of computing their contribution to m
(4)
8 (I, I). As the second

main example of the technique, we used the (3, 8) planar collections to construct candidate

matrices in (4, 9). We found 33 182 763 such symmetric objects. Computing their metrics

we found that 2 523 339 of them are degenerate and therefore the total number of planar

matrices of Feynman diagrams for (4, 9) is 30 659 424. We presented all these results in the

original paper [74] and in this chapter we will only comment on them. The 888 degenerate

matrices also appeared as good non-regular triangulations of the m = 2 amplituhedron, as

described by Łukowski, Parisi and Williams [157].

After identifying collections with (3, n) amplitudes and matrices with (4, n), it is natural

to introduce planar (k−2)-dimensional arrays of Feynman diagrams as the objects relevant

for the computation of (k, n) biadjoint amplitudes. In section 5.4 we discuss these objects

and explain the combinatorial version of the duality connecting (k, n) and (n−k, n) biajoint

amplitudes at the level of the arrays. We end in section 5.5 with some discussions.
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5.2 Planar Collections of Feynman Diagrams

In this section we give a short review of the definition and properties of planar collections

of Feynman diagrams [42]. Emphasis is placed on a technique for constructing n-particle

planar collections starting from special ones obtained by “pruning” n-point planar Feynman

diagrams and then applying a “mutation” process. Here we borrow the terminology muta-

tion from the cluster algebra literature [117, 118, 36]. The reason for this becomes clear

below. This pruning-mutating technique is the first combinatorial bootstrap approach we

use in this work. The second kind is introduced in section 5.3 as a way of constructing

planar matrices of Feynman diagrams from planar collections.

Figure 5.2: An example for an initial planar collection obtained by pruning a 6-point
Feynman diagram. Above is the 6-point Feynman diagram to be pruned. Below is the
planar collection of 5-point Feynman diagrams obtained by pruning the leaves 1, 2, ..., 6 of
the above Feynman diagram, respectively.

Without loss of generality, from now on we only consider the canonical ordering I :=

(1, 2, . . . , n) and every time an object is said to be planar, it means with respect to I. Recall

that for k = 2 the objects of interest are n-particle planar Feynman diagrams in a ϕ3 scalar

theory. There are exactly Cn−2 such diagrams1. When Feynman diagrams are thought of
1Cm is the mth Catalan number.
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as metric trees, a length is associated to each edge and if any of the n− 3 internal lengths

becomes zero we say that the tree degenerates. Here is where the power of restricting to

planar objects comes into play; once a given planar tree degenerates, there is exactly one

more planar tree that shares the same degeneration. These two planar Feynman diagrams

only differ by a single pole and we say that they are related by a mutation. Starting

from any planar Feynman diagram, one can get all other planar Feynman diagrams by

repeating mutations. If no new Feynman diagrams are generated, we are sure we have

obtained all of the Feynman diagrams of certain ordering. Here the terminology mutation

precisely coincides with the one used in cluster algebras since planar Feynman diagrams are

known to be in bijection with clusters of an A-type cluster algebra and mutations connect

clusters in exactly the same way as degenerations connect planar metric trees. This precise

connection between objects connected via degenerations and cluster mutations does not

hold for higher k and therefore we hope the abuse of terminology will not cause confusion

[42].

For the computation of k = 3 biadjoint amplitudes, planar n-point Feynman diagrams

are replaced by planar collections of (n − 1)-point Feynman diagrams. Each collection is

made out of n Feynman diagrams with the ith tree defined on the set {1, 2, · · · , n} \ i and

planar the respect to the ordering (1, 2, · · · , i − 1, i + 1, · · · , n). Each tree has its own

metric defined as the matrix of minimal lengths from one leaf to another. The metric for

the ith-tree is denoted as d
(i)
jk with j, k ∈ {1, 2, · · · , n} \ i. Moreover, the metrics have to

satisfy a compatibility condition d
(j)
kl = d

(k)
jl = d

(l)
jk . A necessary condition for two planar

collections of Feynman diagrams to be related is that their individual elements, i.e. the

(n − 1)-point Feynman diagrams, are either related by a mutation or are the same. Of

course, in order to prove that the collections are actually related it is necessary to study

the space of metrics and show that the two share a common degeneration. The key idea is
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that we can get all planar collections of Feynman diagrams by repeated mutations, starting

at any single collection. What is more, we can tell whether we have obtained all of the

collections when there are no new collections produced by mutations 2.

A more efficient variant of the mutation procedure described above is obtained by

introducing multiple initial collections. In fact there is a canonical set of planar collections

which are easily obtained from n-point planar Feynman diagrams. Let us define the initial

planar collections as those obtained via the following procedure. Consider any n-point

planar Feynman diagram T and denote the tree obtained by pruning (or removing) the ith

leaf by Ti. Then the set {T1, T2, . . . , Tn} is a planar collection of Feynman diagrams. Let

us illustrate this with a simple example seen in figure 5.2.

(k, n) Number of
collections

Numbers of collections for each kind Number of
layers

(3,5) 5 2-mut. 05

(3,6) 48 4-mut. 6-mut. 346 2

(3,7) 693 6-mut. 7-mut. 8-mut. 4595 28 70

(3,8) 13 612 8-mut. 9-mut. 10-mut. 11-mut. 12-mut. 89 672 1 488 2 280 96 76

(3,9) 346 710

10-mut. 11-mut. 12-mut. 13-mut. 14-mut.

11186 147 61 398 78 402 12 300 7 668
15-mut. 16-mut. 17-mut.

522 270 3

Table 5.1: Summary of results for planar collections of Feynman diagrams for k = 3
and up to n = 9. The second column gives the total numbers of planar collections. The
third column provides the numbers of collections for each kind, classified by the number
of mutations. The fourth column indicates how many layers of mutations are necessary to
find the complete set of collections starting with the Cn−2 initial collections.

2Here we assume that the set of all of planar collections is connected. We have checked this to be the
case up to n = 9.
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Using all such Cn−2 collections as starting points one can then apply mutations to each

and start filling out the space of planar collections in n-points. When the method is applied

to (k, n) = (3, 5) we obtain all planar collections without the need of any mutations since

every single planar collection in this case is dual to a (2, 5) Feynman diagram. Next, we

apply the technique to reproduce the known results for (3, 6) starting from the C4 = 14

initial collections. We find that after only three layers of mutations we get all planar

collections. Repeating the procedure for (3, 7) we find all 693 planar collections stating

from the initial C5 = 42 collections after four layers of mutations.

Our first new results in this work are the computation of all 13 612 planar collections

in (3, 8) and all 346 710 in (3, 9). Details on the results and the ancillary files where the

collections were presented and provided in [74, section 4]. All results are summarized in

table 5.1. We classify the planar collections according to their numbers of mutations and

count the numbers of collections for each kind as well. The precise definition of metrics

and degenerations of planar collections of Feynman diagrams was given in [42].

5.3 Planar Matrices of Feynman Diagrams

In the previous section we introduced an efficient algorithm for finding all planar collections

of Feynman diagrams based on a pruning-mutation procedure. Such collections compute

k = 3 biadjoint amplitudes. The next natural question is what replaces planar collections

for k = 4 biadjoint amplitudes. Inspired by the way a single planar Feynman diagram

defines a collection by pruning one leaf at a time, we start with a matrix of Feynman

diagrams where the i, j element is obtained by pruning the ith and jth leaves of an n-point
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planar Feynman diagrams as the relevant objects for k = 4,

M =



∅ T (1,2) . . . T (1,n−1) T (1,n)

T (2,1) ∅ . . . T (2,n−1) T (2,n)

...
... . . . ...

...

T (n−1,1) T (n−1,2) . . . ∅ T (n−1,n)

T (n,1) T (n,2) . . . T (n,n−1) ∅


, (5.7)

as first proposed in [42]. We denote the Feynman diagram in the ith row and jth column,

where labels i and j are absent, by T (i,j). We add a metric to every Feynman diagram

T (i,j) in the matrix, and denote the lengths of internal and external edges as f (ij)
I and e

(ij)
m

respectively. Correspondingly, we can use d
(ij)
kl to denote the minimal distance between

two leaves k and l. Up to this point, the edge lengths and hence distances d(ij)kl of different

Feynman diagrams in the matrix have no relations. We can relate them by imposing

compatibility conditions analogous to those for collections of Feynman diagrams. This

leads to the following definition.

Definition 5.3.1. A planar matrix of Feynman diagrams is an n × n matrix M with

component Mij given by a metric tree with leaves {1, 2, . . . , n} \ {i, j} and planar with

respect to the ordering (1, 2, · · · , /i, · · · , /j, · · · , n) satisfying the following conditions

• Diagonal entries are the empty tree Mii = ∅.

• Compatibility (5.6)

d
(ij)
kl = d

(ik)
jl = d

(il)
kj = d

(kl)
ij = d

(jl)
ik = d

(kj)
il .

Note that the compatibility condition has several important consequences. The first is
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that since a given metric is symmetric in their labels, i.e. d(ij)kl = d
(ij)
lk which is obvious from

its definition as the minimum distance from k to l, one finds that the matrix M must be

symmetric as stated in the following lemma.

Lemma 5.3.2. Planar matrices of Feynman diagrams are symmetric.

Proof. The symmetry of the matrix follows from realizing that the compatibility condition

requires that d
(ij)
kl = d

(kl)
ij and therefore the symmetry of the metric on the left hand side

in the leave labels k and l implies that of the right hand side is symmetric in the matrix

labels k and l. In order to complete the proof, it is enough to note that a binary metric

tree is uniquely determined by its metric as we show in appendix G.

Planar collections of Feynman diagrams have (n− 4)n internal edges; n− 4 for each of

the n trees in the collection. However, only 2(n−4) are independent once the compatibility

condition is imposed on the metrics as reviewed in [42]. In the case of planar matrices of

Feynman diagrams there are
(
n
2

)
(n − 4) internal lengths f

(ij)
I with 1 ≤ i < j ≤ n, 1 ≤

I ≤ n − 5 while the compatibility conditions (5.6) reduce the number down to 3(n −

5) independent ones. This means that a planar matrix has at least 3(n − 5) possible

degenerations. The precise number depends on the structure of the trees in the matrix.

In analogy with planar collections, we say that two planar matrices are related via

a mutation if they share a co-dimension one degeneration. Recall that an initial planar

collection is obtained by pruning a leaf of the same n-point planar Feynman diagram to

produce n different (n−1)-point trees. We can also get an initial planar matrix by pruning

two different leaves at a time from the same n-point planar Feynman diagram. See figure

5.3 for an example. Using all such Cn−2 matrices as starting points one can then apply

mutations to each and start filling out the space of planar matrices in n-points.
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Figure 5.3: An example for a 6-point initial planar matrix. Above we show a 6-point Feyn-
man diagram. Below there is a symmetric matrix of 4-point Feynman diagrams obtained
by pruning two leaves from the set 1, 2, · · · , 6 at a time of the above Feynman diagram.
The Feynman diagram from the ith column and jth row has the ith and jth leaves pruned.

The contribution to the amplitudes of every planar matrix can be calculated individu-
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ally. Consider the function of a planar matrix of Feynman diagrams M,

F(M) :=
∑

1≤i,j,k,l≤n

πijkl sijkl, (5.8)

with πijkl := d
(ij)
kl . Here sijkl are the generalized symmetric Mandelstam invariants intro-

duced in [71]. These satisfy the conditions

siijk = 0,
n∑

j,k,l=1

sijkl = 0 ∀i. (5.9)

At this point it is not obvious but these conditions make it possible to write F(M) in a

form free of any length of leaves e
(ij)
m . In section 5.4 we explain this phenomenon in more

generality for any value of k.

An integral of F(M) over independent internal lengths {f1, f2, · · · , f3(n−5)} gives the

contribution to k = 4 biadjoint amplitudes

R(M) =

∫
∆

d3(n−5)fI expF(M) , (5.10)

where the domain ∆ is defined by the condition that all
(
n
2

)
(n − 4) internal lengths are

positive and not only the 3(n− 5) independent ones. For future use we comment that it is

possible to consider (5.10) also for degenerate matrices and in such cases it integrates to

zero as its domain is a set of measure zero.

Another important observation is that, in the j-th column or row of a planar matrix,

all Feynman diagrams are free of particle j and the compatibility condition (5.6) requires

d
(ij)
kl = d

(kj)
li = d

(lj)
ik , (5.11)
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for every three different particles i, k, l of the remaining n − 1 particles. This means the

j-th column or row is nothing but a planar collection of Feynman diagrams. Each column

of a planar matrix is therefore made out of planar collections of (3, n − 1). Besides, once

several columns have been fixed, the remaining columns have much less choices because of

the symmetry requirement of the matrix. This simple but powerful observation leads to

the second kind of combinatorial bootstrap, which we describe next.

5.3.1 Second Combinatorial Bootstrap

Suppose we have obtained all of the N planar collections for the ordering (1, 2, · · · , n− 1).

Let us denote the set of all such collections as E3,n−1 = {C1, C2, · · · , CN}. The last column

{T (1,n), T (2,n), · · · , T (n−1,n)} (here we have omitted the trivial empty tree ∅) of any planar

matrix M, where by definition particles 1, 2, · · · , n− 1 are deleted respectively in addition

to the common missing particle n, must be an element of E3,n−1.

Now we consider a cyclic permutation with respect to the order (1, 2, · · · , n − 1, n) of

particle labels of the set E3,n−1,

E
(a)
3,n−1 = {C(a)

1 , C(a)
2 , · · · , C(a)

N } := E3,n−1

∣∣
i→i+a

. (5.12)

Clearly, particle labels are to be understood modulo n. One can see that E
(a)
3,n−1 is the

set of all planar collections for the ordering (1, 2, · · · , a − 1, a + 1, · · · , n) with parti-

cle a absent. By definition, we have E
(n)
3,n−1 ≡ E

(0)
3,n−1 ≡ E3,n−1. The a-th column

{T (1,a), T (2,a), · · · , T (a−1,a), T (a+1,a), · · · , T (n−1,a)} (here we have once again omitted the triv-

ial tree ∅) of a planar matrix M must belong to the set E
(a)
3,n−1. Thus any planar matrix
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of Feynman diagrams must take the form

M = [C(1)
i1

, C(2)
i2

, · · · , C(n)
in

] , with 1 ≤ i1, · · · , in ≤ N . (5.13)

Naively, we have N choices for each column and hence Nn candidate planar matrices. In

principle, one could take this set of Nn matrices and impose the compatibility condition

on the metrics thus reducing the set to that of all planar matrices of Feynman diagrams.

However, this procedure is impractical already for n = 7 where N = 693.

Luckily, according to the Lemma 5.3.2, the symmetry requirement of a planar matrix

reduces this number dramatically. It is much more efficient to find possible planar matrices

from all of the symmetric matrices of the form (5.13). Using this method we have obtained

all planar matrices up to n = 9. Table 5.2 is a summary of our results.

(4, 6) (4, 7) (4, 8) (4, 9)
Planar Matrices 14 693 90 608 30 659 424
Degenerate Matrices 0 0 888 2 523 339

Table 5.2: Number of planar matrices of Feynman diagrams and number of degenerate
matrices for different values of n.

More explicitly, when this method is applied to (k, n) = (4, 6), we obtain exactly all

14 planar matrices, which are dual to the C4 = 14 planar Feynman diagrams of (2, 6). As

there are 693 planar collections in (3, 7), the duality between (3, 7) and (4, 7) implies that

there should be 693 planar matrices in (4,7) as well. In fact, our combinatorial bootstrap

procedure results in exactly that number! Moreover, in section 5.4 we explain how the 693

planar matrices of Feynman diagrams map one to one onto the 693 planar collections via

the duality.

Our second set of new results corresponds to the more interesting cases of (4, 8) and

(4, 9), where our procedure leads to 91 416 and 33 182 763 symmetric matrices respectively.
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Having the set of all possible candidate matrices, we further determined that 90 608

and 30 659 424 of them respectively satisfy the compatibility conditions (5.6) while not

becoming degenerate and thus get these numbers of planar matrices of Feynman diagrams.

We see that in both cases, the combinatorial bootstrap came very close to the correct

answer. We comment that the extra 888 and 2 523 339 “offending” symmetric matrices

are actually degenerate planar matrices. This means that if we were to use all matrices

obtained from the bootstrap in the formula for the amplitude we would still get the correct

answer since the extra matrices integrate to zero under the formula (5.10). So we can just

use all of the symmetric matrices to calculate the biadjoint amplitudes for k = 4 as well.

Below we show two explicit examples for n = 6, 7 in order to illustrate the procedure.

These examples show why this is an efficient technique for getting planar matrices from

collections of (3, n − 1). Details on the results for (4, 8) and (4, 9) and the ancillary files

where the collections are presented are provided in the original paper [74].

5.3.2 A Simple Example: From (3, 5) to (4, 6)

Now we proceed to show an explicit example of how to obtain planar matrices of Feynman

diagrams for (4, 6). In this example, given the duality (4, 6) ∼ (2, 6), we could obtain the

planar matrices by picking n = 6 Feynman diagrams in k = 2 and remove two leaves in

a systematic way as shown in figure 5.3. Here, however, we introduce an algorithm to

get the matrices using a second bootstrap approach constrained by the consistency condi-

tions explained above, thus obtaining planar matrices from planar collections of Feynman

diagrams of (3, 5).

This algorithm works for general n, i.e. it obtains planar matrices of (4, n) from planar

collections of (3, n−1), and is going to be particularly useful for larger n, where the number
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of matrices is considerably large.

Before going through the algorithm, let’s review the planar collections of (3, 5). There

are 5 planar collections of Feynman diagrams E3,5 = {C1, C2, C3, C4, C5} [42]. These can

come from the caterpillar tree in n = 5 and its 4 cyclic permutations, shown in figure 5.4.

Figure 5.4: The five k = 2 planar Feynman diagrams and their corresponding collections
in (k, n) = (3, 5).

In what follows, we will adopt the notation T [ab|cd] for a 4-point Feynman diagram

with a, b and c, d sharing a vertex, i.e.

T [ab|cd] :=
b

a

c

d

(5.14)
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By applying cyclic permutations (5.12) on E3,5 we get the set E
(1)
3,5 , E

(2)
3,5 , · · · , E

(6)
3,5 with

E
(6)
3,5 = E3,5. In the more compact notation defined above we have, for instance 3

E
(1)
3,5 = {C(1)

1 , C(1)
2 , C(1)

3 , C(1)
4 , C(1)

5 }

=



T [45|63] T [34|56] T [45|63] T [34|56] T [34|56]

T [45|62] T [24|56] T [45|62] T [24|56] T [45|62]

T [23|56] , T [23|56] , T [35|62] , T [23|56] , T [35|62]

T [23|46] T [34|62] T [34|62] T [23|46] T [34|62]

T [23|45] T [34|52] T [23|45] T [23|45] T [34|52]


, (5.15)

E
(2)
3,5 = {C(2)

1 , C(2)
2 , C(2)

3 , C(2)
4 , C(2)

5 }

=



T [34|56] T [45|63] T [34|56] T [34|56] T [45|63]

T [14|56] T [45|61] T [14|56] T [45|61] T [45|61]

T [13|56] , T [35|61] , T [13|56] , T [35|61] , T [13|56]

T [34|61] T [34|61] T [13|46] T [34|61] T [13|46]

T [34|51] T [13|45] T [13|45] T [34|51] T [13|45]


. (5.16)

The idea of the second bootstrap is that each column of a planar matrix is a planar

collection. In other words, a planar matrix must take the form

M = [C(1)
i1

, C(2)
i2

, · · · , C(6)
i6

] , with 1 ≤ i1, · · · , i6 ≤ 5 , (5.17)

3Here, for example, one can see the cyclic permutation {1 → 3, 2 → 4, 3 → 5, 4 → 6, 5 → 1, 6 → 2} of
C1 as {T [45|63], T [45|62], T [23|56], T [23|46], T [23|45]} with the leaves 3, 4, 5, 6 and 1 pruned, respectively,
in addition to the common missing leaf 2. We rotate the list from right by 1 to get a planar collection C(2)

1

with the leaves 1, 3, 4, 5 and 6 pruned, respectively.

183



where each element in M corresponds to a column, thus the i-th column belongs to the set

E
(i)
3,5 subject to the i-th permutation. There are five choices for the first column, since there

are five collections in (3, 5). However, once one of the collections is chosen, the choices for

the remaining five columns get substantially reduced. For example, let’s choose the first

column of the matrix to be the first collection C(1)
1 . The symmetry of the matrix implies

T (1,2) = T (2,1), thus the first tree of the second column C(2)
i2

must be the first tree of the

first column, i.e. T [45|63] 4. By looking at (5.15) and (5.16) we find that only C(2)
2 and

C(2)
5 satisfy this requirement. Similarly, we select candidates from E

(i)
3,5 by again imposing

the symmetry condition T (1,i) = T (i,1) now for i = 3, 4, 5, 6 (see figure 5.5 for a sketch).

Figure 5.5: Illustration of the second combinatorial bootstrap for obtaining planar matrices
of Feynman diagrams. Here we choose C(1)

1 , C(2)
2 and C(3)

1 as the first three columns and
then get a symmetric planar matrix by filling in the remaining three columns with C(4)

2 ,
C(5)
1 and C(6)

2 . See also table 5.3.

With this approach, the number of choices for the remaining 5 columns has been reduced

from the naive 55 = 3125 to 2× 2× 3× 3× 3 = 108. Therefore, we can now forget about

the first column and focus on the possible 108 choices for the remaining 5 columns. Let’s

4Recall that C(1)
1 = {T [45|63], T [45|62], T [23|56], T [23|46], T [23|45]}.
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for instance choose C(2)
2 = {T [45|63], T [45|61], T [35|61], T [34|61], T [13|45]} for the second

column of the matrix. Because of the symmetry condition T (2,i) = T (i,2) in (5.7), only one

or two candidates are selected for each of the remaining four columns, see third row in

figure 5.5.

By going on with the procedure above, we end up with a planar matrix of Feynman

diagrams

[C(1)
1 , C(2)

2 , C(3)
1 , C(4)

2 , C(5)
1 , C(6)

2 ] (5.18)

=



∅ T [45|63] T [45|62] T [23|56] T [23|46] T [23|45]

T [45|63] ∅ T [45|61] T [35|61] T [34|61] T [13|45]

T [45|62] T [45|61] ∅ T [25|61] T [24|61] T [12|45]

T [23|56] T [35|61] T [25|61] ∅ T [23|61] T [23|51]

T [23|46] T [34|61] T [24|61] T [23|61] ∅ T [23|41]

T [23|45] T [13|45] T [12|45] T [23|51] T [23|41] ∅


,

which happens to be M1 in table 5.3 on the next page and is also the example shown in

figure 5.3.

Had we chosen C(2)
5 for the second column instead of C(2)

2 , we would have found another

two planar matrices using the same procedure, which correspond to M2 and M3 in table

5.3. Hence, we find a total of 3 planar matrices for the initial choice C(1)
1 .

Likewise, one finds 3, 2, 4 and 2 planar matrices for the initial choices C(1)
2 , C(1)

3 , C(1)
4

and C(1)
5 , respectively, thus giving 14 planar matrices in total. One can check that all these

14 matrices satisfy the compatibility conditions (5.6). Therefore, all of them contribute to

the biadjoint amplitude in k = 3.

In table 5.3 we present all 14 planar matrices of Feynman diagrams in (4, 6), explicitly
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showing the corresponding collections in each column.

Matrix Collections Matrix Collections
M1 [C1, C2, C1, C2, C1, C2] M8 [C3, C2, C1, C5, C4, C4]
M2 [C1, C5, C4, C4, C3, C2] M9 [C4, C4, C3, C2, C1, C5]
M3 [C1, C5, C4, C1, C5, C4] M10 [C4, C1, C5, C4, C1, C5]
M4 [C2, C4, C3, C2, C4, C3] M11 [C4, C3, C2, C4, C3, C2]
M5 [C2, C1, C5, C4, C4, C3] M12 [C4, C3, C2, C1, C5, C4]
M6 [C2, C1, C2, C1, C2, C1] M13 [C5, C4, C4, C3, C2, C1]
M7 [C3, C2, C4, C3, C2, C4] M14 [C5, C4, C1, C5, C4, C1]

Table 5.3: Planar matrices of Feynman diagrams in (4, 6). Here we abbreviate
[C(1)

i1
, C(2)

i2
, · · · , C(6)

i6
] as [Ci1 , Ci2 , · · · , Ci6 ] since the superscripts can be inferred from the po-

sition of Ci in the brackets.

5.3.3 A More Interesting Example: From (3, 6) to (4, 7)

Now we comment on another example, in this case on how to obtain planar matrices of

Feynman diagrams for (4, 7) using the second bootstrap again. The starting point are the

48 planar collections of (3,6), i.e. E3,6 = {C1, C2, · · · , C48}, which can be obtained from

the first bootstrap. The cyclic permutations (5.12) give the set E
(1)
3,6 , E

(2)
3,6 , · · · , E

(7)
3,6 with

E
(7)
3,6 = E3,6. Then a planar matrix must take the form

M = [C(1)
i1

, C(2)
i2

, · · · , C(7)
i7

] , with 1 ≤ i1, · · · , i7 ≤ 48 , (5.19)

where the i-th column belongs to the set E(i)
3,6. Now we have 48 choices for the first column.

Once again, we repeat the same procedure as before but now for 7 columns, and we get

693 planar matrices. One can check that all these 693 symmetric matrices satisfy the

compatibility conditions (5.6). Therefore, all of them are planar matrices and contribute

to the biadjoint amplitude in k = 4.
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After summing over every choice of the first column as well as every possible choice

for the remaining columns allowed by the candidates at each step, we get 693 symmetric

matrices in total, which are much more than the 42 initial planar matrices for (4, 7) used

in the pruning-mutation procedure of section 5.2. There are 693 planar collections in (3, 7)

as well and how they are dual to 693 planar matrices is explained in section 5.4.

The ordering of collections in E3,6 is not relevant as long as its cyclic permutations

E
(1)
3,6 , · · · , E

(7)
3,6 change covariantly. For the readers’ convenience, we borrow Table 1 from

[42] containing all 48 collections and place it as table H.1 in appendix H. We adopt the same

ordering notation as in [42] so that we can present more details of the second bootstrap.

A collection in table H.1 is given by 6 trees characterized by 6 numbers. For example,

the first collection C1 expressed by [4, 4, 4, 3, 3, 3] means the collection given in figure 5.2,

where the “middle leaves" are 4, 4, 4, 3, 3 and 3 respectively. Its cyclic permutations

give C(1)
1 , C(2)

1 , · · · , C(7)
1 with C(7)

1 = C1, which act as the first element of E(1)
3,6 , E

(2)
3,6 , · · · , E

(7)
3,6

respectively.

If we choose C(1)
1 as the first column, it happens that from each E

(2)
3,6 , · · · , E

(7)
3,6 there

are 14 collections satisfying the symmetry requirement T (1,i) = T (i,1). For example, for the

second and third column, their 14 possible choices of collections are

C(2)
1 , C(2)

15 , C
(2)
19 , C

(2)
24 , C

(2)
26 , C

(2)
34 , C

(2)
39 , C

(2)
42 , C

(2)
43 , C

(2)
44 , C

(2)
45 , C

(2)
46 , C

(2)
47 , C

(2)
48 , (5.20)

C(3)
3 , C(3)

7 , C(3)
10 , C

(3)
14 , C

(3)
17 , C

(3)
21 , C

(3)
28 , C

(3)
31 , C

(3)
32 , C

(3)
33 , C

(3)
36 , C

(3)
38 , C

(3)
41 , C

(3)
48 . (5.21)

We see that the naive number of choices for the remaining 6 columns reduces from 486 ∼

1× 1010 down to 146 ∼ 8× 106.

Now we can forget the first column and focus on the 146 candidates for the remaining

6 columns. If we choose C(2)
1 from (5.20) as the second column, we find only one collection
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C(3)
48 from (5.21) that satisfies the requirement T (2,3) = T (3,2). Similarly, we find that

there is only one collection from 14 candidates for the remaining 4 columns satisfying the

requirement T (2,i) = T (i,2) as well for i = 4, 5, 6, 7. This time we see that the naive number

of choices for the remaining five columns dramatically reduces from 145 ∼ 5 × 105 to 1.

Hence the only choice that makes up a planar matrix of the form (5.19) is

[C(1)
1 , C(2)

1 , C(3)
48 , C

(4)
41 , C

(5)
27 , C

(6)
18 , C

(7)
8 ] . (5.22)

Had we chosen the remaining collections C(2)
15 , · · · , C

(2)
47 or C(2)

48 in (5.20) as the second column

instead of C(2)
1 , we would have found 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 3, 3 and 9 planar matrices

respectively. Thus there are 32 planar matrices in total with C(1)
1 as the first column.

Similarly, we can get all of the planar matrices with C(1)
2 , ..., C(1)

47 or C(1)
48 as the first column

of the matrix. By adding them up, including the 32 ones for C(1)
1 , we obtain all the 693

planar matrices in (4, 7).

We computed all the planar collections of Feynman diagrams for the cases (3, 6), (3, 7),

(3, 8) and (3, 9) using the first combinatorial bootstrap, as well as all the planar matrices

of Feynman diagrams for (4, 7), (4, 8) and (4, 9) using the second combinatorial bootstrap,

and we refer the reader to [74, section 4] for a detailed explanation.

5.4 Higher k or Planar Arrays of Feynman Diagrams

and Duality

Planar collections can be thought of as one-dimensional arrays while planar matrices as

two-dimensional arrays of Feynman diagrams satisfying certain conditions. It is natural

to propose that the computation of generalized biadjoint amplitudes for any (k, n) can be
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done using k − 2 dimensional arrays of Feynman diagrams.

Definition 5.4.1. A planar array of Feynman diagrams is a (k− 2)-dimensional array A

with dimensions of size n. The array has as component Ai1,i2,...,ik−2
a metric tree with leaves

in the set {1, 2, . . . , n} \ {i1, i2, . . . , ik−2} and which is planar with respect to the ordering

(1, 2, · · · , /i1, · · · , /i2, · · · , /ik−2, · · · , n) satisfying the following conditions

• Diagonal entries are the empty tree A...,i,...,i,... = ∅.

• Compatibility: d
(i3,...,ik)
i1i2

is completely symmetric in all k indices.

A point which has not been explained so far is why each element in a collection, matrix

or in general an array is called a Feynman diagram. We now turn to this point. The

contribution to an amplitude of a given planar array of Feynman diagrams is computed

using the function

F(A) =
∑

i1,i2,...,ik

si1i2···ikd
(i3,...,ik)
i1i2

. (5.23)

For k = 2 it is easy to show that this function is independent of the external edge’s lengths

by writing dij = ei+ej+dinternalij and using momentum conservation. For k = 3 it was noted

in [42] that the function F(C) can also be written in a way that it is also independent of

the external edges. However, the proof is not as straightforward. In order to easily see this

property all we have to do is to treat each tree in the array as a true Feynman diagram

with its own kinematics.

The element in the array Ai1,i2...,ik−2
is an (n− k + 2)-particle Feynman diagram with

particle labels {1, 2, . . . , n} \ {i1, i2 . . . , ik−2}. As such, one has to associate the proper

kinematic invariants satisfying momentum conservation. Let us introduce the notation
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I := {i1, i2 . . . , ik−2} and I for its complement. Then we have

s
(I)
ii = 0,

∑
j∈I

s
(I)
ij = 0 ∀i ∈ I. (5.24)

Using these kinematic invariants one can parametrize the (k, n) invariants as

si1i2...ik :=
∑

I∪{j1,j2}={i1,i2,...,ik}

s
(I)
j1,j2

, (5.25)

where the sum is over all possible ways of decomposing {i1, i2, . . . , ik} into two sets of k−2

and 2 elements respectively. To illustrate the notation consider k = 3 where

sijk := s
(i)
jk + s

(j)
ki + s

(k)
ij . (5.26)

This parametrization is very redundant but as any good redundancy it makes at least one

property of the relevant object manifest. In this case it is the independence of the external

edges of F(A). Let us continue with the k = 3 case in order not to clutter the notations

but the general k version is clear. Using (5.26) one can write

F(C) =
∑
i,j,k

sijkd
(i)
jk (5.27)

as

F(C) = 1

3

n∑
i=1

∑
j,k

s
(i)
jkd

(i)
jk . (5.28)

Here we used the symmetry property of d(i)jk to identify all three terms coming from using

(5.26). The new form is nothing but a sum over the functions F (T ) for each of the trees

in the collection and therefore it is clearly independent of the external edges as expected.
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Let us now discuss how the two kinds of combinatorial bootstraps work for general

planar arrays of Feynman diagrams. The first kind of combinatorial bootstrap, which we

called pruning-mutating in section 5.2, is simply the process of producing Cn−2 initial ar-

rays of Feynman diagrams by starting with any given n-point planar Feynman diagram and

pruning k− 2 of its leaves in all possible ways to end up with an array of (n− k+2)-point

Feynman diagrams. Starting from these initial planar arrays, one computes the corre-

sponding metrics and find all their possible degenerations. Approaching each degeneration

one at a time one can produce a new planar array by resolving the degeneration only in the

other planar possible way. Repeating the mutation procedure on all new arrays generated

until no new array is found leads to the full set of planar arrays of Feynman diagrams.

The second kind of combinatorial bootstrap, as described in section 5.3 for planar

matrices, is the idea that the compatibility conditions on the metrics of the trees making

the array force it to be completely symmetric. This simple observation together with the

fact that any subarray where some indices are fixed must in itself be a valid planar array

of Feynman diagrams for some smaller values of k and n gives strong constrains on the

objects. As it should be clear from the examples presented in section 5.3, the second

bootstrap approach is more efficient than the first one if all planar arrays in (k− 1, n− 1)

are known. This means that one could start with (3, 6) and produce the following sequence:

(3, 6) → (4, 7) → (5, 8) → (6, 9) → (7, 10) . . . (5.29)

The reason to consider this sequence is that after obtaining all its elements, one can

construct all (3, n) planar collections via duality. Of course, in order to do that efficiently

one has to find a combinatorial way of performing the duality directly at the level of the

graphs.

191



5.4.1 Combinatorial Duality

Let us start by defining some notation that will be used in this section. We will denote Tn

as a planar tree in (2, n), Cn as a planar collection in (3, n) and Mn as a planar matrix in

(4, n). In general, a planar array An will correspond to a (k − 2)-dimensional array with

dimensions of size n. In order to understand how the combinatorial duality works, we also

introduce the concept of combinatorial soft limit. The combinatorial soft limit for particle

i applied to An is defined by removing the i-th (k− 3)-dimensional array from An, as well

as removing the i-th label to the remaining (k − 3)-dimensional arrays. Therefore, the

combinatorial soft limit takes us from (k, n) → (k, n− 1).

It is useful to introduce a superscript A(i)
n to refer to an array obtained from a combi-

natorial soft limit for particle i. Notice that this notation slightly differs from the one we

use in earlier sections.

With this in hand, we can define the particular duality (2, n) ∼ (n− 2, n) as taking the

tree Tn of (2, n) and applying the combinatorial soft limit to particles i1, ..., in−2 in order

to remove n− 2 leaves to obtain the corresponding dual A(i1,...,in−2)
n−2 of (n− 2, n).

For general (k, n) with k < n − 2 the duality works as follows. Consider a (k − 2)-

dimensional planar array An of (k, n). By taking the combinatorial soft limit for particle i,

we end up with A(i)
n−1 of (k, n−1). Apply this step n times for all the n particles. Now dual-

ize each of the n objects to directly obtain the corresponding (n−k−2)-dimensional array

An of (n− k, n), hence the duality. The combinatorial duality can be simply summarized

as

(k, n)
soft−−→
limit

n× (k, n− 1) −−−−→
dualize

(n− k, n) (5.30)
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Illustrative example: (3, 7) ∼ (4, 7)

Now we proceed to show the explicit example for (3, 7) ∼ (4, 7). The combinatorial soft

limit for particle i applied to a planar collection Cn corresponds to removing the i-th tree

in Cn as well as removing the i-th label in all the rest of the trees in Cn. Therefore, it

implies Cn → C(i)
n−1. Similarly, the combinatorial soft limit for particle i applied to a planar

matrix Mn corresponds to removing the i-th column and row in Mn as well as removing

the i-th label in all the rest of the trees in Mn. Therefore, it implies Mn → M(i)
n−1.

Before studying (3, 7) ∼ (4, 7) let us consider (3, 6) ∼ (3, 6) as this will be useful below.

Using (5.30) we can see

(3, 6)
soft−−→
limit

6× (3, 5) −−−−→
dualize

(3, 6) (5.31)

where the duality (2, 5) ∼ (3, 5) is one of the most basic ones which was used as a motivation

for introducing planar collections in [42].

Now consider one planar collection Cn=7 of (3, 7). By taking the combinatorial soft

limit for particle i, we end up with a collection C(i)
n=6 in (3, 6). Given that (3, 6) ∼ (3, 6),

this collection is dual to another collection C̃(i)
n=6, which corresponds to the i-th column of a

planar matrix Mn=7 in (4, 7). This means that if we now take the combinatorial soft limit

for the other particles in Cn=7 we end up with the full matrix Mn=7. Hence, the objects

Cn=7 and Mn=7 are dual.

We can also see this by following an equivalent path. Consider one planar matrix Mn=7

of (4, 7). By taking the combinatorial soft limit for particle i, we end up with a planar

matrix M(i)
n=6 of (4, 6). Notice that this matrix is dual to the planar tree T

(i)
n=6 of (2, 6)

which is an element of Cn=7, so by repeating the soft limit for all the remaining particles

we end up with the full Cn=7 of (3, 7).
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5.5 Outlook

Generalized biadjoint amplitudes as defined by a CHY integral over the configuration space

of n points in CPk−1 with k > 2 provide a very natural step beyond standard quantum

field theory [71]. An equally natural generalization of quantum field theory amplitudes

is obtained by first identifying standard Feynman diagrams with metric trees and their

connection to TropG(2, n). In [140], arrangements of metric trees where introduced as

objects corresponding to TropG(3, n). A special class of such arrangement, called planar

collections of Feynman diagrams were then proposed as the simplest generalization of

Feynman diagrams in [42]. In this work we introduced (k − 2)-dimensional planar arrays

of Feynman diagrams as the all k generalization. One of the most exciting phenomena is

that these (k − 2)-dimensional arrays define generalized biadjoint amplitudes.

The fact that both definitions of generalized amplitudes, either as a CHY integral or

as a sum over arrays, coincide is non-trivial. In fact, a rigorous proof of this connection,

perhaps along the lines of the proof for k = 2 given by Dolan and Goddard [94, 95], is a

pressing problem. One possible direction is hinted by the observations made in section 5.4,

where each Feynman diagram in an array was given its own kinematics along with its own

metric. Of course, what makes the planar array interesting is the compatibility conditions

for the metrics of the various trees in the array. Understanding the physical meaning of

such conditions is also a very important problem. However, this already gives a hint as

to what to do with the CHY integral. Borrowing the k = 3 example in section 5.4, the

kinematics is parameterized as sijk = s
(i)
jk + s

(j)
ik + s

(k)
ij . Recall that in the CHY formulation

on CP2 introduced in [71] one starts with a potential function

S(3)
n :=

∑
i,j,k

sijklog |ijk| (5.32)
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with |ijk| Plücker coordinates in G(3, n). Even though the object is antisymmetric in all

its indices, only its absolute value is relevant in S(3)
n since the way it enters in the CHY

formula is only via the equations needed for the computation of its critical points. This

means that |ijk| can be used to define “effective” k = 2 Plücker coordinates of the form

|jk|(i) := |ijk|. In other words, once a label is selected, say i, then all other points in CP2

can be projected onto a CP1 using the ith-point. This means that the potential S(3)
n can be

written as a sum over n k = 2 potentials in a way completely analogous to F(C) in (5.28),

i.e.

S(3)
n =

1

3

n∑
i=1

∑
j,k

s
(i)
jk |jk|

(i). (5.33)

One can then write a k = 3 CHY formula as a product over n k = 2 CHY integrals linked

by the “compatibility constraints” imposing that the absolute value of |jk|(i), |ij|(k), |ik|(j)

all be equal.

The CEGM formula has paved the way for investigating a natural generalization of

quantum field theory. Another generalization of quantum field theory, known as string

theory, also also offered deep insights into various aspects of physical theories owing to

its rich structure. One notable contribution of string theory comes from its ability to

express a theory of quantum gravity as a conventional quantum field theory, an idea we will

explore further in the upcoming chapter. It is exhilarating to contemplate the possibility

of significant advancements resulting from the CEGM generalization. Some other recent

developments partly related to the higher-k framework, which have not been mentioned in

this thesis, can be found in [133, 97, 21, 67, 115, 2, 119, 3, 175, 139, 132, 135, 137, 17, 68,

43].
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PART III

Holographic Quark Gluon Plasmas

In the third part of the thesis, we shift our focus from examining aspects of perturbative

quantum field theory and its CEGM generalization and delve into the non-perturbative

realm of strongly coupled gauge theories using the AdS/CFT correspondence introduced in

chapter 1. In particular, and in the only chapter of this part, we use top-down holographic

models to study the thermal equation of state of strongly coupled quark-gluon plasmas

in an external magnetic field. We identify different conformal and non-conformal theories

within consistent truncations of N = 8 gauged supergravity in five dimensions (including

STU models and gauged N = 2∗ theory) and show that the ratio of the transverse to the

longitudinal pressure PT/PL as a function of T/
√
B can be collapsed to a “universal” curve

for a wide range of the adjoint hypermultiplet masses m. We stress that this does not

imply any hidden universality in magnetoresponse, as other observables do not exhibit any

universality. Instead, the observed collapse in PT/PL is simply due to a strong dependence

of the equation of state on the (freely adjustable) renormalization scale: in other words, it

is simply a fitting artifact. Remarkably, we do uncover a different universality in N = 2∗

gauge theory in the external magnetic field: we show that the magnetized N = 2∗ plasma

has a critical point at Tcrit/
√
B whose value varies by 2% (or less) as m/

√
B ∈ [0,∞). At
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criticality, and for large values of m/
√
B, the effective central charge of the theory scales

as ∝
√
B/m.
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Chapter 6

Quark-Gluon Plasmas in a Magnetic

Field

6.1 Introduction and summary

In [112] the authors used the recent lattice QCD equation of state (EOS) data in the

presence of a background magnetic field [27, 28], and the holographic EOS results1 for the

strongly coupled N = 4 SU(N) maximally supersymmetric Yang-Mills (SYM) to argue

for a universal magnetoresponse. While N = 4 SYM is conformal, the scale invariance is

explicitly broken by the background magnetic field B and its thermal equilibrium stress-

energy tensor is logarithmically sensitive to the choice of the renormalization scale. It was

shown in [112] that both the QCD and the N = 4 SYM data (with optimally adjusted
1Studied for the first time in [92].
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renormalization scale) for the pressure anisotropy R,

R ≡ PT

PL

, (6.1)

i.e. defined as a ratio of the transverse PT to the longitudinal PL pressure, collapse onto a

single universal curve as a function of T/
√
B, at least for T/

√
B ≳ 0.2 or correspondingly

for R ≳ 0.5, see [112, figure 6]. The authors do mention that the “universality” is somewhat

fragile: besides the obvious fact that large-N N = 4 SYM is not QCD (leading to inherent

ambiguities as to how precisely one would match the renormalization schemes in both

theories — hence the authors opted for the freely-adjustable renormalization scale in SYM),

one observes the universality in R, but not in other thermodynamic quantities (e.g. PT/E

— the ratio of the transverse pressure to the energy density).

So, is there a universal magnetoresponse? In this chapter we address this question in a

controlled setting: specifically, we consider holographic models of gauge theory/string the-

ory correspondence [160, 8] where all the four-dimensional strongly coupled gauge theories

discussed have the same ultraviolet fixed point: N = 4 SYM. We discuss two classes of

theories:

• conformal gauge theories corresponding to different consistent truncations of N = 8

gauged supergravity in five dimensions2 [41];

• nonconformal N = 2∗ gauge theory (N = 4 SYM with a mass term for the N = 2

hypermultiplet) [177, 61, 41] (PW).

In the former case, the anisotropic thermal equilibrium states are characterized by the
2In this class of theories there is a well motivated choice of the renormalization scale — namely, it is

natural to have it be the same for all the theories in the class.
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temperature T , the background magnetic field B and the renormalization scale µ; in the

latter case, we have additionally a hypermultiplet mass scale m.

Before we present results, we characterize more precisely the models studied.

CFTdiag: N = 4 SYM has a global SU(4) R-symmetry. In this model the magnetic field

is turned on for the diagonal U(1) of the R-symmetry. This is the model of [112], see also

[92]. See section 6.2.1 for technical details.

CFTSTU : Holographic duals of N = 4 SYM with U(1)3 ⊂ SU(4) global symmetry

are known as STU models [32, 89]. In this conformal theory the background magnetic

field is turned on for one of the U(1)’s. This model is a consistent truncation of N = 8

five-dimensional gauged supergravity with two scalar fields dual to two dimension ∆ = 2

operators. As we show in section 6.2.2, in the presence of the background magnetic field

these operators will develop thermal expectation values.

nCFTm: As we show in section 6.2.3, within consistent truncation of N = 8 five-

dimensional gauged supergravity presented in [41], it is possible to identify a holographic

dual to N = 2∗ gauge theory with a single U(1) global symmetry. In this model the

background magnetic field is turned on in this U(1). The label m ∈ (0,+∞) denotes the

hypermultiplet mass of the N = 2∗ gauge theory.

CFTPW,m=0: This conformal gauge theory is a limiting case of the nonconformal nCFTm

model:

CFTPW,m=0 = lim
m/

√
B→0

nCFTm .

Its bulk gravitational dual contains two scalar fields dual to dimension ∆ = 2 and ∆ = 3

operators of the N = 2∗ gauge theory. As we show in section 6.2.3, in the presence of the

background magnetic field these operators will develop thermal expectation values.

CFTPW,m=∞: This conformal gauge theory is a limiting case of the nonconformal nCFTm
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model:

CFTPW,m=∞ = lim
m/

√
B→∞

nCFTm .

Its holographic dual can be obtained from the N = 8 five dimensional gauged supergravity

of [41] using the "near horizon limit” of [144]3, followed by the uplift to six dimensions

— the resulting holographic dual is Romans F (4) gauged supergravity in six dimensions

[183, 90]4. The six dimensional gravitational bulk contains a single scalar, dual to di-

mension ∆ = 3 operator of the effective CFT5. There is no conformal anomaly in odd

dimensions. Furthermore, there is no invariant dimension-five operator that can be con-

structed only with the magnetic field strength — as a result, the anisotropic stress-energy

tensor of CFTPW,m=∞ plasma is traceless, and is free from renormalization scheme ambi-

guities. Details on the CFTPW,m=∞ model are presented in section 6.2.3. The renormal-

ization scheme-independence of CFTPW,m=∞ is a welcome feature: we will use the pressure

anisotropy (6.1) of the theory as a benchmark to compare with the other conformal and

nonconformal models.

And now the results. There is no universal magnetoresponse. Qualitatively, among

conformal/nonconformal models we observe three different IR regimes (i.e. when T/
√
B is

small):

In CFTdiag it is possible to reach deep IR, i.e. the T/
√
B → 0 limit. For T/

√
B ≲ 0.1

the thermodynamics is BTZ-like with the entropy density5 [92]

s → N2

3
BT , as

T√
B

→ 0 . (6.2)

3See appendix D of [53] for details of the isotropic (no magnetic field) thermal states of N = 2∗ plasma
in the limit m/T → ∞. The first hint that N = 2∗ plasma in the infinite mass limit is an effective five
dimensional CFT appeared in [52].

4See [86] for a recent discussion.
5We independently reproduce this result.
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Both in CFTPW,m=0 and CFTPW,m=∞ (and in fact in all nCFTm models) there is a

terminal critical temperature Tcrit which separates thermodynamically stable and unstable

phases of the anisotropic plasma. Remarkably, this Tcrit is universally determined by the

magnetic field B, (almost) independently6 of the mass parameter m of nCFTm:

CFTPW,m=0 −→ nCFTm −→ CFTPW,m=∞

Tcrit√
B

: 0.29823(5) −→ [0.29823(6), 0.30667(1)] −→ 0.30673(9)

m√
2B

: 0 −→ [1/100, 10] −→ ∞ ,

i.e. the variation of Tcrit/
√
B with mass about its mean value is 2% or less, see figure 6.7

(left panel). We leave the extensive study of this critical point to future work, and only

point out that the specific heat at constant B at criticality has a critical exponent7 α = 1
2
:

cB = −T
∂2F
(∂T )2

∣∣∣∣
B

=
∂s

∂ lnT

∣∣∣∣
B

∝ (T − Tcrit)
−1/2 , (6.3)

where F is the free energy density, see figure 6.6.

The CFTSTU model in the IR is different from the other ones. We obtained reliable

numerical results in this model for T/
√
B ≳ 0.06: we neither observe the critical point

as in the CFTPW,m=0 and CFTPW,m=∞ models, nor the BTZ-like behavior (6.2) as in the

CFTdiag model, see figure 6.3 (left panel).
6A very weak dependence on the mass parameter has been also observed for the equilibration rates in

N = 2∗ isotropic plasma in [55].
7The critical point with the same mean-field exponent α has been observed in isotropic thermodynamics

of N = 2∗ plasma with different masses for the bosonic and fermionic components of the hypermultiplet
[60].
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Figure 6.1: Anisotropy parameter R = PT/PL for conformal models CFTdiag (black curves),
CFTSTU (blue curves), CFTPW,m=0 (green curves) and CFTPW,m=∞ (red curves) as a func-
tion of T/

√
B. RCFTPW,m=∞ is renormalization scheme independent; for the other models

there is a strong dependence on the renormalization scale δ = ln B
µ2 : different panels rep-

resent different choices for δ; all the models in the same panel have the same value of δ,
leading to identical high-temperature asymptotics, T/

√
B ≫ 1.

In figure 6.1 we present the pressure anisotropy parameter R (6.1) for the conformal

theories: CFTdiag (black curves), CFTSTU (blue curves), CFTPW,m=0 (green curves) and

CFTPW,m=∞ (red curves) as a function of8 T/
√
B. R is renormalization scheme independent

in the CFTPW,m=∞ model, while in the former three conformal models it is sensitive to

δ ≡ ln
B

µ2
, (6.4)

8We use the same normalization of the magnetic field in holographic models as in [112].
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Figure 6.2: Renormalization scale δ is adjusted separately for the CFTdiag, CFTSTU and
CFTPW,m=0 models (see (6.7)) to ensure that in all these models the pressure anisotropy
R = 0.5 occurs for the same value of T√

B
as in the CFTPW,m=∞ model (see (6.6)). This

matching point is highlighted with the dashed brown lines.

where µ is the renormalization scale. We performed high-temperature perturbative anal-

ysis, i.e. as T/
√
B ≫ 1, to ensure that the definition of δ is consistent across all the

conformal models sensitive to it, see appendix J. In the { top left, top right, bottom left,

bottom right } panel of figure 6.1 we set {δ = 4 , δ = 2.5 , δ = 3.5 , δ = 7} (correspondingly)

for RCFTdiag
, RCFTSTU

and RCFTPW,m=0
— notice that while all the curves exhibit the same

high-temperature asymptotics, the anisotropy parameter R is quite sensitive to δ; in fact,

RCFTdiag
diverges for δ = 2.5 (because PL crosses zero with PT remaining finite). Varying

δ, it is easy to achieve RCFTdiag
, RCFTSTU

and RCFTPW,m=0
in the IR to be “to the left” of the
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scheme-independent (red) curve RCFTPW,m=∞ (top panels and the bottom left panel); or "to

the right” of the scheme-independent (red) curve RCFTPW,m=∞ (the bottom right panel).

In figure 6.1 we kept δ the same for the conformal models CFTdiag, CFTSTU and

CFTPW,m=0. This is very reasonable given that one can match δ across all the models

by comparing the UV, i.e. T/
√
B ≫ 1 thermodynamics (see appendix J) — there are no

other scales besides T and B, and thus by dimensional analysis9,

PT/L = T 4 P̂T/L

(
T√
B
,

µ√
B

)
. (6.5)

If we give up on maintaining the same renormalization scale for all the conformal models,

it is easy to “collapse” all the curves for the pressure anisotropy, see figure 6.2. We will

not perform sophisticated fits as in [112], and instead, adjusting δ independently for each

model, we require that in all models the pressure anisotropy R = 0.5 is attained at the

same value of T/
√
B (represented by the dashed brown lines):

T√
B

∣∣∣∣
CFTdiag ,CFTSTU ,CFTPW,m=0

=
T√
B

∣∣∣∣
CFTPW,m=∞

= 0.51796(7) . (6.6)

Specifically, we find that (6.6) is true, provided

{
δCFTSTU

, δCFTdiag
, δCFTPW,m=0

}
= {3.9592(4) , 4.2662(0) , 4.1659(8)} . (6.7)

In a nutshell, this is what was done in [112] to claim a universal magnetoresponse for

R ≳ 0.5. Rather, we interpret the collapse in figure 6.2 as nothing but a fitting artifact,

possible due to a strong dependence of the anisotropy parameter R on the renormalization

scale.
9The asymptotic AdS5 radius L always scales out from the final formulas.
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Figure 6.3: Entropy densities s in conformal models, relative to the entropy densities of
the UV fixed points sUV at the corresponding temperature (see (6.8)), as functions of
T/

√
B: CFTdiag (black), CFTSTU (blue), CFTPW,m=0 (green) and CFTPW,m=∞ (red). Left

panel: vertical dashed lines indicate critical temperatures Tcrit separating thermodynam-
ically stable and unstable phases of CFTPW,m=0 (green) and CFTPW,m=∞ (red) models.
Right panel: the dashed black line is the small-T asymptote of the relative entropy in the
CFTdiag model, see (6.9).

To further see that there is no universal physics, we can compare renormalization

scheme-independent anisotropic thermodynamic quantities of the models: the entropy den-

sities, see figure 6.3. The color coding is as before: CFTdiag (black curves), CFTSTU (blue

curves), CFTPW,m=0 (green curves) and CFTPW,m=∞ (red curves). We plot the entropy

densities relative to the entropy density of the UV fixed point at the corresponding tem-

perature (see equation (D.13) for the CFTPW,m=∞ model in [53]):

sUV

∣∣∣∣
CFTdiag ,CFTSTU ,CFTPW,m=0

=
1

2
π2N2T 3 , (m×sUV )

∣∣∣∣
CFTPW,m=∞

=
432

625
π3N2T 4 . (6.8)

The dashed vertical lines in the left panel indicate the terminal (critical temperature)

Tcrit/
√
B for CFTPW,m=0 (green) and CFTPW,m=∞ (red) models which separates thermo-

dynamically stable (top) and unstable (bottom) branches. Notice that s/sUV diverges for
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Figure 6.4: Anisotropy parameter R = PT/PL for nonconformal models nCFTm for select
values of the hypermultiplet mass m, see (6.10), as a function of T/

√
B (solid curves; from

pink to dark blue as m increases). The dashed red curve is a benchmark model CFTPW,m=∞
— where the anisotropy parameter is renormalization scale independent. In the left panel
the renormalization scale is set to δ = 4 for all nCFTm models; in the right panel it is
separately adjusted for each nCFTm model to ensure that all the curves pass through the
matching point, highlighted with dashed brown lines.

the CFTdiag model as T/
√
B → 0 — this is reflection of the IR BTZ-like thermodynamics

(6.2); the dashed black line is the IR asymptote

s

sUV

∣∣∣∣
CFTdiag

→ 2

3π2

B

T 2
, as

T√
B

→ 0 . (6.9)

In nCFTm models it is equally easy to ’collapse’ the data for the pressure anisotropy.

In these models we have an additional scale m — the mass of the N = 2 hypermultiplet.

In the absence of the magnetic field, i.e. for isotropic N = 2∗ plasma, the thermodynamics

is renormalization scheme-independent10 [54]. Once we turn on the magnetic field, there

is a scheme-dependence. In figure 6.4 we show the pressure anisotropy for N = 2∗ gauge
10Scheme-dependence arises once we split the masses of the fermionic and bosonic components of the

N = 2∗ hypermultiplet [54].
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Figure 6.5: Left panel: entropy densities s in nCFTm models, relative to the entropy density
of the UV fixed point (the N = 4 SYM in this case) sUV at the corresponding temperature
(see (6.8)), as functions of T/

√
B. Color coding of the solid curves agrees with that in

figure 6.4 — see (6.10) for the set of the hypermultiplet masses. Additional dashed and
dotted curves correspond to additional values of m, within the same interval (6.10). Each
nCFTm model has a terminal critical point. In the right panel we show this for the model
with m/

√
2B = 1: the brown lines identify the critical temperature Tcrit/

√
B and the

relative entropy at the criticality scrit/sUV (these quantities are presented in figure 6.7).
“Top” solid black curve denotes the thermodynamically stable branch and "bottom” dashed
black curve denotes the thermodynamically unstable branch (see figure 6.6 for further
details).

theory for select values of m (solid curves from pink to dark blue),

m√
2B

=

{
1

100
, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

}
. (6.10)

The dashed red curve represents the anisotropy parameter of the conformal CFTPW,m=∞

model, which is renormalization scheme-independent. In the left panel the renormalization

scale δ = 4 for all the nCFTm models. In the right panel, we adjusted δ = δm for each

nCFTm model independently, so that the pressure anisotropy RnCFTm = 0.5 at the same

temperature as in the CFTPW,m=∞ model, see (6.6). This matching point is denoted by

dashed brown lines.
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Figure 6.6: nCFTm model with m/
√
2B = 1 is used to highlight phases of the anisotropic

plasma. Following (6.3) we evaluate the constant-B specific heat of the plasma. The dashed
brown lines highlight the location of the critical point. Left panel: the specific heat diverges
as one approaches the critical temperature; it is negative for the branch denoted by the
dashed black curve (see also the right panel of figure 6.5), indicating the thermodynamic
instability. Right panel: (cB/s)

−2 vanishes at criticality, with nonvanishing slope. This
implies that the critical exponent α = 1

2
, see (6.11).

As in conformal models, the entropy densities (which are renormalization scheme in-

dependent thermodynamic quantities) are rather distinct, see left panel of figure 6.5. The

color coding is as in figure 6.4, except that we collected more data11 in addition to (6.10):

these are the dashed and dotted curves. The entropy density of the UV fixed point is defined

as in (6.8). All the nCFTm models studied, as well as the CFTPW,m=0 and CFTPW,m=∞

conformal models, have a terminal critical point Tcrit that separates the thermodynami-

cally stable (top solid) and unstable (bottom dashed) branches, which we presented for the
m√
2B

= 1 nCFTm model in the right panel. The dashed brown lines identify the critical

temperature Tcrit and the entropy density scrit at criticality. In figure 6.6 we present results

for the specific heat cB in this model defined as in (6.3). Indeed, the (lower) thermody-

namically unstable branch has a negative specific heat (left panel); approaching the critical
11To have a better characterization of the critical points.
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Figure 6.7: nCFTm models as well as the conformal models CFTPW,m=0 and CFTPW,m=∞
have terminal critical temperature, separating thermodynamically stable and unstable
phases. In the left panel we present Tcrit/

√
B as function of m/

√
2B; in the right panel we

present the relative entropy at criticality γ = scrit/sUV (6.13). The dots represent results
for the nCFTm models; the dashed horizontal lines (left panel) represent the critical tem-
perature for the CFTPW,m=0 model (green) and the CFTPW,m=∞ model (red). The dashed
black curve (right panel) represents the asymptote of γ as m/

√
B → ∞, see (6.14).

temperature from above we observe the divergence in the specific heat, both for the stable

and the unstable branches. To extract a critical exponent α, defined as

cB ∝
(

T

Tcrit

− 1

)−α

, T → Tcrit + 0 , (6.11)

we plot (right panel) the dimensionless quantity c2B/s
2 as a function of T/

√
B. Both the

stable (solid) and the unstable (dashed) curves approach zero, signaling the divergence of

the specific heat at the critical temperature (vertical dashed brown line), with a finite slope

— this implies that the critical exponent is

α =
1

2
. (6.12)

There is a remarkable universality of the critical points in nCFTm and conformal
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CFTPW,m=0 and CFTPW,m=∞ models. In figure 6.7 (left panel) we present the results

for the critical temperature as a function of m/
√
2B in nCFTm models (points). The hor-

izontal dashed lines indicate the location of the critical points for the CFTPW,m=0 (green)

and CFTPW,m=∞ (red) conformal models. In the right panel the dots represent the relative

entropy,

γ = γ(m/
√
B) ≡ scrit

sUV

, (6.13)

at criticality for the nCFTm models. Effectively, γ as in (6.13) measures the number of

DOF at critical point in anisotropic plasma relative to the number of DOF (or the central

charge) of the UV fixed point (N = 4 SYM). The dashed black line is a simple asymptotic

for γ as m/
√
B → ∞, γ∞,

γ∞ =

√
2B

m
. (6.14)

One can understand the origin of the asymptote (6.13) from the fact that nCFTm models

in the large m limit should resemble the conformal model CFTPW,m=∞; thus, we expect

that γ∞ ≈ γCFTPW,m=∞ . Indeed,

γCFTPW,m=∞ =
scritCFTPW,m=∞

sUV,CFTdiag

=
scrit

sUV

∣∣∣∣
CFTPW,m=∞︸ ︷︷ ︸

1.0603(7)

×
sUV,CFTPW,m=∞

sUV,CFTdiag︸ ︷︷ ︸
864π
625

×Tcrit
m

=1.0603(7) × 864π

625
√
2

× Tcrit√
B︸︷︷︸

0.30673(9)

×
√
2B

m
= 0.99883(9) ×

√
2B

m
,

(6.15)

where we extracted numerically the value of scrit

sUV
for the CFTPW,m=∞ conformal model,

used (6.8) to analytically compute the second factor in the first line, and substituted the

numerical value for Tcrit/
√
B of the CFTPW,m=∞ model in the second line.

We now outline the rest of the chapter, containing technical details necessary to obtain
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the results reported above. In section 6.2 we introduce the holographic theory of [41] and

explain how the various models discussed here arise as consistent truncations of the lat-

ter: CFTdiag in section 6.2.1, CFTSTU in section 6.2.2, and nCFTm in section 6.2.3. The

conformal models CFTPW,m=0 and CFTPW,m=∞ are special limits of the nCFTm model

and are discussed in sections 6.2.3 and 6.2.3 correspondingly. Holographic renormalization

is by now a standard technique [191], and we only present the results for the boundary

gauge theory observables. Due to the numerical character of this work, it is important

to validate the numerical results in the limits where perturbative computations (analyt-

ical or numerical) are available. We have performed such validations in appendix J, i.e.

when T√
B

≫ 1. We did not want to overburden the reader with details, and so we did

not present the checks of the agreement of the numerical parameters (e.g. as in (6.38))

with the corresponding perturbative counterparts — but we have performed such checks

in all models. There are further important constraints on the numerically obtained energy

density, pressure, entropy, etc., of the anisotropic plasma: the first law of the thermody-

namics dE = Tds (at constant magnetic field and the mass parameter, if available), and

the thermodynamic relation between the free energy density and the longitudinal pressure

F = −PL. The latter relation can be proved (see appendix I) at the level of the equations

of motion, borrowing the holographic arguments of [57] used to establish the universality

of the shear viscosity to the entropy density in the holographic plasma models. Still, as the

first law of thermodynamics, it provides an important consistency check on the numerical

data — we verified these constraints in all the models, both perturbatively in the high-

temperature limit, to O
(

B4

T 8

)
inclusive, see appendix J, and for finite values of B/

√
T , see

appendix J.1 – once again, we present only partial results of the full checks.

This chapter is a step in broadening the class of strongly coupled magnetized gauge

theory plasmas (both conformal and massive) amenable to controlled holographic analysis.
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We focused on the equation of state, extending the work of [112]. The next step is to

analyze the magneto-transport in these models, in particular the magneto-transport at

criticality.

6.2 Technical details

The starting point for the holographic analysis is the effective action of [41]:

S5 =
1

4πG5

∫
M5

d5ξ
√
−g

[
R

4
− 1

4

(
ρ4ν−4F (1)

µν F
(1)µν + ρ4ν4F (2)

µν F
(2)µν + ρ−8F (3)

µν F
(3)µν

)
− 1

2

4∑
j=1

(∂µϕj)
2 − 3 (∂µα)

2 − (∂µβ)
2 − 1

8
sinh2(2ϕ1)

(
∂µθ1 +

(
A(1)

µ + A(2)
µ − A(3)

µ

))2
− 1

8
sinh2(2ϕ2)

(
∂µθ2 +

(
A(1)

µ − A(2)
µ + A(3)

µ

))2 − 1

8
sinh2(2ϕ3)(∂µθ3 + (−A(1)

µ + A(2)
µ

+ A(3)
µ ))2 − 1

8
sinh2(2ϕ4)

(
∂µθ4 −

(
A(1)

µ + A(2)
µ + A(3)

µ

))2 − P
]
,

(6.16)

where the F (J) are the field strengths of the U(1) gauge fields, A(J), and P is the scalar

potential. We introduced

ρ ≡ eα , ν ≡ eβ . (6.17)

The scalar potential, P , is given in terms of a superpotential

P =
g2

8

[ 4∑
j=1

(
∂W

∂ϕj

)2

+
1

6

(
∂W

∂α

)2

+
1

2

(
∂W

∂β

)2 ]
− g2

3
W 2 , (6.18)
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where

W =− 1

4ρ2ν2

[(
1 + ν4 − ν2ρ6

)
cosh(2ϕ1) +

(
−1 + ν4 + ν2ρ6

)
cosh(2ϕ2)

+
(
1− ν4 + ν2ρ6

)
cosh(2ϕ3) +

(
1 + ν4 + ν2ρ6

)
cosh(2ϕ4)

]
.

(6.19)

In what follows we set gauged supergravity coupling g = 1, this corresponds to setting

the asymptotic AdS5 radius to L = 2. The five dimensional gravitational constant G5 is

related to the rank of the supersymmetric N = 4 SU(N) UV fixed point as

G5 =
4π

N2
. (6.20)

6.2.1 CFTdiag

The holographic dual to the CFTdiag conformal model is a consistent truncation of (6.16)

with

α = β = ϕj = θj = 0 , A(1)
µ = A(2)

µ = A(3)
µ =

2√
3
Aµ , (6.21)

leading to

SCFTdiag
=

1

16πG5

∫
M5

d5ξ
√
−g

[
R− 4FµνF

µν + 3

]
, (6.22)

where we used the normalization of the bulk U(1) to be consistent with [112].

This model has been extensively studied in [92, 112] and we do not review it here.

214



6.2.2 CFTSTU

The holographic dual to the CFTSTU is a special case of the STU model [31, 32, 89], a

consistent truncation of the effective action (6.16) with

θj = ϕj = 0 , (6.23)

leading to

SSTU =
1

4πG5

∫
M5

d5ξ
√
−g

[
R

4
− 1

4

(
ρ4ν−4F (1)

µν F
(1)µν + ρ4ν4F (2)

µν F
(2)µν

+ ρ−8F (3)
µν F

(3)µν

)
− 3 (∂µα)

2 − (∂µβ)
2 − PSTU

]
,

(6.24)

and the scalar potential

PSTU = −1

4
(ρ2ν2 + ρ2ν−2 + ρ−4) . (6.25)

We would like to keep a single bulk gauge field, so we can set two of them to zero and work

with the remaining one. The symmetries of the action allow us to choose whichever gauge

field we want. To see this, notice that the action (6.24) is invariant under F
(1)
µν → F

(2)
µν

together with ν → ν−1. Moreover, (6.24) with F
(1)
µν ≡ 2Fµν and F

(2)
µν = F

(3)
µν = 0 is the

same as with F
(3)
µν ≡ 2Fµν and F

(1)
µν = F

(2)
µν = 0 for the gauge fields and with the scalar field

redefinitions ρ → ν1/2ρ−1/2 and ν → ν1/2ρ1/2. Thus, we arrive to the holographic dual of

CFTSTU as

SCFTSTU
=

1

4πG5

∫
M5

d5ξ
√
−g

[
R

4
− ρ4ν−4FµνF

µν − 3 (∂µα)
2 − (∂µβ)

2 − PSTU

]
, (6.26)
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where once again we used the normalization of the remaining gauge field as in [112].

Solutions to the gravitational theory (6.26) representing magnetic black branes dual to

anisotropic magnetized CFTSTU plasma correspond to the following background ansatz12:

ds25 = −c21 dt2 + c22
(
dx2 + dy2

)
+
(r
2

)2
dz2 + c24 dr2 , F = B dx ∧ dy , (6.27)

where all the metric warp factors ci as well as the bulk scalars ρ and ν are functions of the

radial coordinate r,

r ∈ [r0,+∞) , (6.28)

where r0 is a location of a regular Schwarzschild horizon, and r → +∞ is the asymptotic

AdS5 boundary. Introducing a new radial coordinate

x ≡ r0
r
, x ∈ (0, 1] , (6.29)

and denoting

c1 =
r

2

(
1− r40

r4

)1/2

a1 , c2 =
r

2
a2 , c4 =

2

r

(
1− r40

r4

)−1/2

a4

B =
1

2
r20 b ,

(6.30)

12Note that we fixed the radial coordinate r with the choice of the metric warp factor in front of dz2.
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we obtain the following system of ODEs (in a radial coordinate x, ′ = d
dx

):

0 = a′1 +
a1

ν4ρ4a32x(3a2 − 2a′2x)(1− x4)

(
ν4ρ4a22xa

′
2

(
(x4 − 1)xa′2 − 2(x4 − 3)a2

)
− 2ν2ρ2a42x

2(x4 − 1)
(
3ν2(ρ′)2 + ρ2(ν ′)2

)
− 256ρ8a24x

4b2 + 2ν2a42
(
a24(ν

4ρ6 + ρ6 + ν2
)

− 3ν2ρ4)

)
,

(6.31)

0 = a′4 +
a4

3ν4ρ4a42x(3a2 − 2a′2x)(x
4 − 1)

(
9ν4ρ4a32x

2(x4 − 1)(a′2)
2 + 6ν2ρ2a52x

2(x4 − 1)

×
(
3ν2(ρ′)2 + ρ2(ν ′)2

)
+ 256a24ρ

8x4 (9a2 − 4a′2x) b
2 − 4ν2a42x(2a

2
4(ν

4ρ6 + ρ6 + ν2)

+ 3ν2ρ4(x4 − 2))a′2 + 6ν2a52(a
2
4(ν

4ρ6 + ρ6 + ν2)− 3ν2ρ4)

)
,

(6.32)

0 = a′′2 −
(a′2)

2

a2
− 512a24ρ

4x2(3a2 − a′2x)

3ν4a42(x
4 − 1)

b2 +
a′2

3xρ4ν2(x4 − 1)

(
4a24(ρ

6ν4 + ρ6 + ν2)

+ 3ρ4ν2(x4 − 1)

)
,

(6.33)

0 = ρ′′ − (ρ′)2

ρ
+

256a24ρ
4x2(2ρ′x+ ρ)

3ν4a42(x
4 − 1)

b2 +
ρ′

3xν2ρ4(x4 − 1)

(
4a24(ρ

6ν4 + ρ6 + ν2)

+ 3ρ4ν2(x4 − 1)

)
− a24(ρ

6ν4 + ρ6 − 2ν2)

3ρ3ν2x2(x4 − 1)
,

(6.34)

0 = ν ′′ − (ν ′)2

ν
− 256a24ρ

4x2(3ν − 2ν ′x)

3ν4a42(x
4 − 1)

b2 +
ν ′

3ρ4ν2x(x4 − 1)

(
4a24(ρ

6ν4 + ρ6 + ν2)

+ 3ρ4ν2(x4 − 1)

)
− a24ρ

2(ν4 − 1)

νx2(x4 − 1)
.

(6.35)

Notice that r0 is completely scaled out from all the equations of motion. equations (6.31)-

(6.35) have to be solved subject to the following asymptotics:
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in the UV, i.e. as x → 0+,

a1 = 1 + a1,2 x4 +O(x8 lnx) , a2 = 1 +
(
a2,2 − 32b2 lnx

)
x4 +O(x6) ,

a4 = 1 +

(
−a1,2 +

64

3
b2 − 4

3
n2
1 − 4r21 − 2a2,2 + 64b2 lnx

)
x4 +O(x6) ,

ρ = 1 + r1 x2 +O(x4) , ν = 1 + n1 x2 +O(x4) ;

(6.36)

in the IR, i.e. as y ≡ 1− x → 0+,

a1 = a1,h,0 +O(y) , a2 = a2,h,0 +O(y) , ρ = rh,0 +O(y) , ν = nh,0 +O(y) ,

a4 =
3a22,h,0r

2
h,0n

2
h,0

(3a42,h,0n
6
h,0r

6
h,0 + 3a42,h,0n

2
h,0r

6
h,0 + 96b2r8h,0 + 3a42,h,0n

4
h,0)

1/2
+O(y) .

(6.37)

In total, given b — roughly the ratio
√
B
T

, the asymptotic expansions are specified by 8

parameters:

{a1,2 , a2,2 , r1 , n1 , a1,h,0 , a2,h,0 , rh,0 , nh,0} , (6.38)

which is the correct number of parameters necessary to provide a solution to a system of

three second order and two first order equations, 3×2+2×1 = 8. The parameters n1 and

r1 correspond to the expectation value of two dimension ∆ = 2 operators of the boundary

CFTSTU ; the other two parameters, a1,2 and a2,2, determine the expectation value of its
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stress-energy tensor. Using the standard holographic renormalization we find:

⟨Ttt⟩ ≡ E =
r40

512πG5

(
3− 6a1,2 − 128b2 ln r0 + 128b2 ln 2 + 4a2,2 + 64b2 κ

)
,

⟨Txx⟩ = ⟨Tyy⟩ ≡ PT =
r40

512πG5

(
3− 6a1,2 − 128b2 ln r0 + 128b2 ln 2 + 4a2,2 + 64b2 κ

)
,

⟨Tzz⟩ ≡ PL =
r40

512πG5

(
3− 6a1,2 − 128b2 ln r0 + 128b2 ln 2 + 4a2,2 + 64b2 κ

)
,

(6.39)

for the components of the boundary stress-energy tensor, and

s =
r30a

2
2,h,0

32G5

, T =

√
3
[
a42,h,0n

2
h,0(n

4
h,0r

6
h,0 + r6h,0 + n2

h,0) + 32b2r8h,0
]1/2

a1,h,0r0

12πr2h,0n
2
h,0a

2
2,h,0

, (6.40)

for the entropy density and the temperature. Note that, as in N = 4 SYM [112],

⟨T µ
µ⟩ = − r40b

2

4πG5

= −N2

4π2
B2 , (6.41)

where we used (6.30) and (6.20). The (holographic) free energy density is given by the

standard relation

F = E − Ts . (6.42)

The constant parameter κ in (6.39) comes from the finite counterterm of the holographic

renormalization; we find it convenient to relate it to the renormalization scale µ in (6.4) as

κ = 2 ln(2πµ) . (6.43)

As shown in appendix J.0.1, the renormalization scheme choice (6.43) implies that in the
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high-temperature limit T 2 ≫ B,

RCFTSTU
= 1− 4B2

π4T 4
ln

T

µ
√
2
+O

(
B4

T 8
ln2 T

µ

)
. (6.44)

We can not solve the equations (6.31)-(6.35) analytically; adapting numerical techniques

developed in [7], we solve these equations (subject to the asymptotics (6.36) and (6.37))

numerically. The results of numerical analysis are data files assembled of parameters (6.38),

labeled by b. It is important to validate the numerical data (in addition to the standard

error analysis). There are two important constraints that we verified for CFTSTU (and in

fact all the other models):

• The first law of thermodynamics (FL), dE/(Tds) − 1 (with B kept fixed), leads to

the differential constrain on data sets (6.38) (here ′ = d
db

):

FL : 0 =

√
3r2h,0n

2
h,0a2,h,0((2a

′
2,2 − 3a′1,2)b+ 32b2 + 6a1,2 − 4a2,2 − 3)

(4a′2,h,0b− 3a2,h,0)a1,h,0
√

a42,h,0n
2
h,0((n

4
h,0 + 1)r6h,0 + n2

h,0) + 32b2r8h,0

− 1 .

(6.45)

• Anisotropy introduced by the external magnetic field results in PT ̸= PL. From

the elementary anisotropic thermodynamics (see [112] for a recent review), the free

energy density of the system F is given by

F = −PL =⇒ 0 =
E + PL

sT
− 1 . (6.46)

We emphasize that holographic renormalization (even anisotropic one) naturally en-

forces (6.42) (see [50] for one of the first demonstrations), but not (6.46). In appendix
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I we present a holographic proof13 of the thermodynamic relation (TR) (6.46). Ap-

plying it to CFTSTU model we arrive at the constraint

TR : 0 =

√
3(1− 2a1,2)r

2
h,0n

2
h,0

a1,h,0
√

a42,h,0n
2
h,0((n

4
h,0 + 1)r6h,0 + n2

h,0) + 32b2r8h,0

− 1 . (6.47)

In appendix J.0.1 we have verified FT and TR in the CFTSTU model to order O(b4) ∼

O(B4/T 8) inclusive14.

Technical details presented here are enough to generate the CFTSTU model plots re-

ported in section 6.1.

6.2.3 nCFTm

There is a simple consistent truncation of the effective action (6.16) to that of the PW

action [177], supplemented with a single bulk U(1) gauge field. Indeed, setting

β = 0 =⇒ ν = 1 , ϕ2 = ϕ3 ≡ χ , ϕ1 = ϕ4 = 0 ,

A(1) = A(2) ≡
√
2A , A(3) = 0 , θJ = 0 .

(6.48)

we find

SnCFTm =
1

4πG5

∫
M5

d5ξ
√
−g

[
R

4
− 3 (∂µα)

2 − (∂µχ)
2 − PPW − ρ4FµνF

µν

]
, (6.49)

13The proof follows the same steps as in the first proof of the universality of the shear viscosity to the
entropy density in holography [57].

14Additionally, as in the nCFTm model with m/
√
2B = 1 (see appendix J.1), we checked both relations

for finite b.
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where PPW is the Pilch-Warner scalar potential of the gauged supergravity:

PPW =
1

48

(
∂WPW

∂α

)2

+
1

16

(
∂WPW

∂χ

)2

− 1

3
W 2

PW ,

WPW =− 1

ρ2
− 1

2
ρ4 cosh(2χ) .

(6.50)

We use the same holographic background ansatz, the same radial coordinate x, as for the

CFTSTU model (6.27)-(6.30); except that now we have the bulk scalar fields α and χ (here
′ = d

dx
):

0 = a′1 +
2a1a2x

3a2 − 2a′2x

(
(χ′)2 + 3(α′)2

)
+

a1a
′
2

2a2
− a1(x

4 − 9)

4x(x4 − 1)
+

64a1a
2
4e

4αx3b2

a32(3a2 − 2a′2x)(x
4 − 1)

− a1a2a
2
4

8x(3a2 − 2a′2x)(x
4 − 1)

(
2e8α + 16e−4α − e8α−4χ + 16e2α+2χ + 16e2α−2χ − e8α+4χ

)
+

3a1a2
4x(3a2 − 2a′2x)

,

(6.51)

0 = a′4 +
2a4a2x

3a2 − 2a′2x

(
(χ′)2 + 3(α′)2

)
− 3a4a

′
2

2a2
+

64a34e
4αx3(9a2 − 4a′2x)b

2

3a42(3a2 − 2a′2x)(x
4 − 1)

+
a34(3a2 − 4xa′2)

24x(3a2 − 2a′2x)(x
4 − 1)

(
2e8α + 16e2α+2χ − e8α−4χ + 16e2α−2χ + 16e−4α − e8α+4χ

)
− a4(12a2 − a′2x(x

4 + 7)x)

2(x4 − 1)(3a2 − 2a′2x)x
,

(6.52)

0 = a′′2 −
(a′2)

2

a2
− 128a24e

4αx2(3a2 − a′2x)b
2

3a42(x
4 − 1)

+
a′2

12x(x4 − 1)

(
12(x4 − 1) + a24(2e

8α

+ 16e2α+2χ − e8α−4χ + 16e2α−2χ + 16e−4α − e8α+4χ)

)
,

(6.53)
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0 = α′′ +
64a24e

4αx2(2α′x+ 1)b2

3a42(x
4 − 1)

+
α′

12x(x4 − 1)

(
12(x4 − 1) + a24(2e

8α + 16e2α+2χ

− e8α−4χ + 16e2α−2χ + 16e−4α − e8α+4χ)

)
− a24

12x2(x4 − 1)

(
2e8α + 4e2α+2χ − e8α−4χ

+ 4e2α−2χ − 8e−4α − e8α+4χ

)
,

(6.54)

0 = χ′′ +
128a24χ

′e4αx3b2

3a42(x
4 − 1)

+
χ′

12x(x4 − 1)

(
12(x4 − 1) + a24(2e

8α + 16e2α+2χ − e8α−4χ

+ 16e2α−2χ + 16e−4α − e8α+4χ)

)
− a24 (8e

2α+2χ + e8α−4χ − 8e2α−2χ − e8α+4χ)

8x2(x4 − 1)
.

(6.55)

As in the CFTSTU model, r0 is completely scaled out from all the equations of motion.

equations (6.51)-(6.55) have to be solved subject to the following asymptotics:

in the UV, i.e. as x → 0+,

a1 = 1− x4

(
4α2

1,0 + 2α1,0α1,1 +
α2
1,1

2
− 64b2

3
+ 2χ0χ1,0 + 2a2,2,0 + a4,2,0

)
+O(x6) ,

a2 = 1 + x4
(
−32b2 lnx+ a2,2,0

)
+O

(
x6 lnx

)
,

a4 = 1− 2

3
x2χ2

0 + x4

(
−4α2

1,1 ln2 x+

(
−8α1,0α1,1 + 64b2 − 8

3
χ4
0 − 2α2

1,1

)
lnx

+ a4,2,0

)
+O

(
x6 ln3 x

)
,

α = x2 (α1,1 lnx+ α1,0) +O
(
x4 ln2 x

)
,

χ = χ0x+

(
4

3
χ3
0 lnx+ χ1,0

)
x3 +O

(
x5 ln2 x

)
;

(6.56)
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in the IR, i.e. as y ≡ 1− x → 0+,

a1 = a1,h,0 +O(y) , a2 = a2,h,0 +O(y) , α = ln rh,0 +O(y) , χ = ln ch,0 +O(y) ,

a4 = 4
√
3a22,h,0r

2
h,0c

2
h,0

(
a42,h,0(r

6
h,0(16c

6
h,0 − r6h,0(1− c4h,0)

2) + 16c2h,0(r
6
h,0 + c2h,0))

+ 512b2c4h,0r
8
h,0

)−1/2

+O(y) .

(6.57)

The non-normalizable coefficients α1,1 (of the dimension ∆ = 2 operator) and χ0 (of the

dimension ∆ = 3 operator) are related to the masses of the bosonic and the fermionic

components of the hypermultiplet of N = 2∗ gauge theory. When both masses are the

same (see [54])

α1,1 =
2

3
χ2
0 . (6.58)

Furthermore, carefully matching to the extremal PW solution [177, 61] (following the same

procedure as in [54]) we find
B

m2
=

2b

χ2
0

, (6.59)

where m is the hypermultiplet mass. We find it convenient to use

η ≡ m√
2B

=⇒ χ0 = 2
√
b η , (6.60)

to label different mass parameters in nCFTm models, see (6.10). In total, given η and b,

the asymptotics expansions are specified by 8 parameters:

{a2,2,0 , a4,2,0 , α1,0 , χ1,0 , a1,h,0 , a2,h0 , rh,0 , ch,0} , (6.61)
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which is the correct number of parameters necessary to provide a solution to a system

of three second order and two first order equations, 3 × 2 + 2 × 1 = 8. Parameters α1,0

and χ1,0 correspond to the expectation values of dimensions ∆ = 2 (O2) and ∆ = 3

(O3) operators (correspondingly) of the boundary nCFTm; the other two parameters, a2,2,0

and a4,2,0, determine the expectation value of its stress-energy tensor. Using the standard

holographic renormalization [31] we find:

⟨Ttt⟩ ≡ E =
r40

1536πG5

(
9− 64b2

(
η4 + 6 ln r0 − 6 ln 2− 3κ+ 6

)
+ 192α1,0bη

2 + 72α2
1,0

+ 48a2,2,0 + 18a4,2,0 + 48
√
bηχ1,0

)
,

⟨Txx⟩ = ⟨Tyy⟩ ≡ PT =
r40

4608πG5

(
9− 64b2(−7η4 + 18 ln r0 − 18 ln 2− 9κ+ 15)

− 192α1,0bη
2 + 72α2

1,0 + 144
√
bηχ1,0 + 72a2,2,0 + 18a4,2,0

)
,

⟨Tzz⟩ ≡ PL =
r40

4608πG5

(
9 + 64b2

(
7η4 + 18 ln r0 − 18 ln 2− 9κ− 6

)
− 192α1,0bη

2

+ 72α2
1,0 + 144

√
bηχ1,0 + 18a4,2,0

)
,

(6.62)

for the components of the boundary stress-energy tensor,

O2 =
r20

8πG5

(
α1,0 −

2

3
η2b

)
, O3 = − r30

16πG5

(
χ1,0 +

8

3
η3b3/2

)
, (6.63)
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for the expectation values of the relevant operators, and

s =
r30a

2
2,h,0

32G5

, T =

√
3r0a1,h,0

48πa22,h,0c
2
h,0r

2
h,0

[
a42,h,0(16c

2
h,0(r

6
h,0 + c2h,0)− r6h,0((c

4
h,0 − 1)2r6h,0

− 16c6h,0)) + 512b2c4h,0r
8
h,0

]1/2
,

(6.64)

for the entropy density and the temperature. Note that, as expected [60],

⟨T µ
µ⟩ =− r40

4πG5

(
b2
(
1− 4

3
η4
)
+ α1,0bη

2 − 1

4

√
bηχ1,0

)
=− 2m2 O2 −m O3 −

N2

4π2
B2 ,

(6.65)

where in the second equality we used (6.30), (6.20), (6.63) and (6.60). The (holographic)

free energy density is directly given by the standard relation (6.42). The constant parameter

κ in (6.62) comes from the finite counterterm of the holographic renormalization; we fix it

as in (6.43).

We can not solve the equations (6.51)-(6.55) analytically; adapting numerical techniques

developed in [7], we solve these equations (subject to the asymptotics (6.56) and (6.57))

numerically. The results of numerical analysis are data files assembled of parameters (6.61),

labeled by b and η. As for the CFTSTU model, we validate the numerical data verifying

the differential constraint from the first law of the thermodynamics dE = Tds (FL) and
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the algebraic constraint from the thermodynamic relation F = −PL (TR):

FL : 0 =
4
√
3a2,h,0c

2
h,0r

2
h,0

a1,h,0(3a2,h,0 − 4ba′2,h,0)

(
8(4bη2 + 3α1,0)(α1,0 − α′

1,0b)− 4
√
b(2χ′

1,0b− 3χ1,0)η

− 3a′4,2,0b− 8a′2,2,0b− 32b2 + 6a4,2,0 + 16a2,2,0 + 3

)(
a42,h,0(16c

2
h,0(r

6
h,0 + c2h,0)

− r6h,0((c
4
h,0 − 1)2r6h,0 − 16c6h,0)) + 512b2c4h,0r

8
h,0

)−1/2

− 1 ,

(6.66)

TR : 0 =
4
√
3r2h,0c

2
h,0

9a1,h,0

(
64b2η4 + 96α1,0bη

2 + 72
√
bηχ1,0 + 72α2

1,0 − 384b2 + 36a2,2,0

+ 18a4,2,0 + 9

)(
a42,h,0(16c

2
h,0(r

6
h,0 + c2h,0)− r6h,0((c

4
h,0 − 1)2r6h,0 − 16c6h,0))

+ 512b2c4h,0r
8
h,0

)−1/2

− 1 .

(6.67)

In appendix J.1 we have verified FT and TR in the nCFTm model with m/
√
2B = 1

numerically.

Technical details presented here are enough to generate nCFTm model plots reported

in section 6.1.

CFTPW,m=0

The CFTPW,m=0 model is a special case of the nCFTm model when the hypermultiplet

mass m is set to zero. This necessitates setting the non-normalizable coefficients α1,1 and

χ0 to zero =⇒ η = 0 in (6.60). From (6.55) it is clear that this m = 0 limit is consistent

with

η(x) ≡ 0 =⇒ χ1,0 = 0 , (6.68)
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implying that the Z2 symmetry of the holographic dual, i.e. the symmetry associated with

χ ↔ −χ, is unbroken. In what follows, we study the Z2-symmetric phase of the CFTPW,m=0

anisotropic thermodynamics15,

O3 = 0 . (6.69)

In appendix J.0.2 we verified FT and TR in CFTPW,m=0 to order O(b4) inclusive; we

also present O(B4/T 8) results for RCFTPW,m=0
and confirm that the renormalization scheme

choice of κ as in (6.43) leads to

RCFTPW,m=0
= RCFTSTU

+O
(
B4

T 8

)
. (6.70)

CFTPW,m=∞

The holographic dual to the CFTPW,m=∞ model can be obtained as a particular decoupling

limit χ → ∞ of the effective action (6.49). As emphasized originally in [144], the super-

symmetric vacuum, and the isotropic thermal equilibrium states of the theory [53, 52] are

locally that of the 4 + 1 dimensional conformal plasma. We derive the 5 + 1 dimensional

holographic effective action SCFTPW,m=∞ (trivially) generalizing the arguments of [144].

It is the easiest to start with the N = 2∗ vacuum in a holographic dual, the PW

geometry [177]. The IR limit corresponds to χ → ∞, thus, introducing a new radial

coordinate u → ∞,

e2χ ≃ 2u , e6α ≃ 2

3u
, eA ≃

(
2

3u4

)1/3

k , (6.71)

15It is interesting to investigate whether this Z2 symmetry can be spontaneously broken, and if so, what
is the role of the magnetic field. This, however, is outside the scope of the current paper.

228



the background metric becomes

ds2PW ≃
(

3

2u2

)4/3
[
4du2 +

(
2k

3

)2

ηµνdx
µdxν

]
. (6.72)

The parameter k = 2m here is defined as in PW [177, 61]. Introducing [144]

e4ϕ2 ≡ e2(α−χ) ≃
(

1

12u4

)1/3

, e4ϕ1 ≡ e6α+2χ ≃ 4

3
, (6.73)

the metric (6.72) can be understood as a KK reduction of the locally AdS6 metric on a

compact x6 ∼ x6 + L6:

ds26 = e−2ϕ2ds2PW + e6ϕ2dx2
6 ≃ 33/2

2u2

[
4du2 +

(
2k

3

)2

ηµνdx
µdxν +

1

9
dx2

6

]
. (6.74)

The metric (6.74) and the scalar ϕ1 (6.73) is a solution [144] to d = 6 N = (1, 1) F (4)

SUGRA [183]

SF (4) =
1

16πG6

∫
M6

dξ6
√
−g6

(
R6 − 4(∂ϕ1)

2 + e−2ϕ1 + e2ϕ1 − 1

16
e6ϕ1

)
, (6.75)

where, using the PW five-dimensional Newton’s constant G5,

L6

G6

=
1

G5

. (6.76)

Notice that the bulk gauge field in (6.49) can be reinterpreted as a gauge field in the

six-dimensional metric (6.74)

√
−gPW ρ4FµνF

µν︸ ︷︷ ︸
in ds2PW

=
√
−g6 e2ϕ1F[6]µνF

µν
[6]︸ ︷︷ ︸

in ds26

, (6.77)
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leading to

SCFTPW,m=∞ =
1

16πG6

∫
M6

dξ6
√
−g6

(
R6 − 4(∂ϕ1)

2 + e−2ϕ1 + e2ϕ1 − 1

16
e6ϕ1

− 4e2ϕ1F[6]µνF
µν
[6]

)
,

(6.78)

which is precisely the (truncated) effective action of the F (4) gauged supergravity of [86]16.

Solutions to the gravitational theory (6.78) representing magnetic branes dual to anisotropic

magnetized CFTPW,m=∞ plasma correspond to the following background ansatz:

ds25 = −c21 dt2 + c22
(
dx̂2 + dŷ2

)
+ c33

(
dẑ2 + dx̂6

)
+ c24 dr2 , F[6] = B[6] dx̂ ∧ dŷ , (6.79)

where all the metric warp factors ci as well as the bulk scalar ϕ1 are functions of the radial

coordinate r. The rescaled, i.e. ˆ coordinates, are related to PW coordinates xµ and the

KK direction x6 as follows (compare with (6.74)):

{t̂, x̂} ≡ x̂µ =
2k

3
xµ , x̂6 =

1

3
x6 . (6.80)

It is convenient to fix the radial coordinate r and redefine the metric warp factor, the bulk

scalar, and the magnetic field as

c1 =
33/4r

21/2

(
1− r50

r5

)1/2

a1 , c2 =
33/4r

21/2
a2 , c3 =

33/4r

21/2
,

c4 =
33/421/2

r

(
1− r50

r5

)−1/2

a4 , B[6] =
1

2
r20 b̂ , ϕ1 =

1

4
ln

4

3
+ p .

(6.81)

16The identification is as follows: Ai = 0, B = 0, X = e−ϕ1 , m = 1
4 and g2 = 1

2 .
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The radial coordinate r changes

r ∈ [r0,+∞) , (6.82)

where r0 is a location of a regular Schwarzschild horizon, and r → +∞ is the asymptotic

AdS6 boundary17. The bulk scalar field p is dual to a dimension ∆ = 3 of the effective

five-dimensional boundary conformal theory. Introducing a radial coordinate x as in (6.29)

we obtain the following system of ODEs (in a radial coordinate x, ′ = d
dx

):

0 = a′1 +
a1

36a32x(x
5 − 1)(2a2 − a′2x)

(
18x2a22(x

5 − 1)(2a22(p
′)2 − (a′2)

2)

+ 18xa32(3x
5 − 8)a′2 − 4a24(27a

4
2 − 8b̂2x4)e2p − 9a42(9a

2
4e

−2p − e6pa24 − 20)

)
,

(6.83)

0 = a′4 −
a4

36a42x(x
5 − 1)(2a2 − a′2x)

(
18a32x

2(1− x5)(2a22(p
′)2 + 3(a′2)

2)

+ x(90a42(x
5 − 2) + a24(32e

2pb̂2x4 + 9a42(12e
2p + 9e−2p − e6p)))a′2

− 3a2(a
2
4(32e

2pb̂2x4 + 3a42(12e
2p + 9e−2p − e6p))− 60a42)

)
,

(6.84)

0 = a′′2 −
(a′2)

2

a2
+

1

36(x5 − 1)xa42

(
a24(32e

2pb̂2x4 + 9a42(12e
2p + 9e−2p − e6p))

+ 36a42(x
5 − 1)

)
a′2 −

32e2pa24b̂
2x2

9a32(x
5 − 1)

,

(6.85)

0 = p′′ +
1

36(x5 − 1)xa42

(
a24(32e

2pb̂2x4 + 9a42(12e
2p + 9e−2p − e6p)) + 36a42(x

5 − 1)

)
p′

+
a24

36a42x
2(x5 − 1)

(
32e2pb̂2x4 − 27a42(4e

2p − 3e−2p − e6p)

)
.

(6.86)

As before, r0 is completely scaled out of all the equations of motion. Equations. (6.83)-

17AdS6 of radius LAdS6
= 33/421/2 is a solution with r0 = 0, b̂ = 0 and a1 = a2 = a4 ≡ 1 and p ≡ 0.
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(6.86) have to be solved subject to the following asymptotics:

in the UV, i.e. as x → 0+,

a1 =1 + a1,5x
5 +O(x9) , a2 = 1 +

8

9
b̂2x4 + a2,5x

5 +O(x7) ,

a4 =1− 4

3
b̂2x4 − (a1,5 + 2a2,5)x

5 +O(x6) , p = p3x
3 +

4

9
b̂2x4 +O(x6) ;

(6.87)

in the IR, i.e. as y ≡ 1− x → 0+,

a1 = a1,h,0 +O(y) , a2 = a2,h,0 +O(y) , p = ln ph,0 +O(y) ,

a4 =
30a22,h,0ph,0

(5p4h,0(9a
4
2,h,0(12− p4h,0) + 32b̂2) + 405a42,h,0)

1/2
+O(y) .

(6.88)

In total, given b̂, the asymptotic expansions are specified by 6 parameters:

{a1,5 , a2,5 , p3 , a1,h,0 , a2,h,0 , ph,0} , (6.89)

which is the correct number of parameters necessary to provide a solution to a system

of two second order and two first order equations, 2 × 2 + 2 × 1 = 6. The parameter

p3 corresponds to the expectation value of a dimension ∆ = 3 operator of the boundary

theory; the other two parameters, a1,5 and a2,5, determine the expectation value of its

stress-energy tensor. Using the standard holographic renormalization we find:

⟨T[5]t̂t̂⟩ ≡ E[5] =
27r50
32πG6

(1− 2a1,5 + a2,5) ,

⟨T[5]x̂x̂⟩ = ⟨T[5]ŷŷ⟩ ≡ P[5]T =
27r50

128πG6

(1− 2a1,5 + 6a2,5) ,

⟨Tẑẑ⟩ = ⟨T[5]x̂6x̂6⟩ ≡ P[5]L =
27r50

128πG6

(1− 2a1,5 − 4a2,5) ,

(6.90)
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for the components of the boundary stress-energy tensor, and

s[5] =
27r40a

2
2,h,0

16G6

, T[5] =

√
5r0a1,h,0

48πa22,h,0ph,0

[
9a42,h,0(9− p8h,0 + 12p4h,0) + 32b̂2p4h,0

]1/2
, (6.91)

for the entropy density and the temperature. Note that,

⟨T µ
[5] µ⟩ = 0 . (6.92)

There is no renormalization scheme dependence in (6.90), and the trace of the stress-energy

tensor vanishes — there is no invariant dimension-five operator that can be constructed

only with the magnetic field strength. The (holographic) free energy density is given by

the standard relation (6.42). In (6.90)-(6.91) we used the subscript [5] to indicate that

the thermodynamic quantities are measured from the perspective of the effective five-

dimensional boundary conformal theory; to convert to the four-dimensional perspective,

we need to account for (6.80), see also [53],

{
E , PT , PL

}
=

{
E[5], P[5]T , P[5]L

}
×

(
2k

3

)4

︸ ︷︷ ︸
(dt̂·dv̂ol3)/(dt·dvol3)

× L6

3︸︷︷︸∮
dx̂6

,

s = s[5] ×
(
2k

3

)3

︸ ︷︷ ︸
dv̂ol3/dvol3

× L6

3︸︷︷︸∮
dx̂6

, T = T[5] ×
(
2k

3

)
︸ ︷︷ ︸
dt̂/dt

, b = b̂ ×
(
2k

3

)2

︸ ︷︷ ︸
dx̂∧dŷ/dx∧dy

.

(6.93)

As for the other models discussed in this paper, the first law of thermodynamics dE =

Tds (at fixed magnetic field) and the thermodynamic relation F = −PL lead to constraints
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on the numerically obtained parameter set (6.89) (here ′ = d

db̂
):

FL : 0 =
6(2b̂a′2,5 − 4b̂a′1,5 − 5a2,5 + 10a1,5 − 5)

√
5a2,h,0ph,0

5a1,h,0(32b̂2p4h,0 − 9a42,h,0(p
8
h,0 − 12p4h,0 − 9))1/2(a′2,h,0b̂− a2,h,0)

− 1 , (6.94)

TR : 0 =
6(1− 2a1,5)ph,0

√
5

a1,h,0(32b̂2p4h,0 − 9a42,h,0(p
8
h,0 − 12p4h,0 − 9))1/2

− 1 . (6.95)

In appendix J.0.3 we verified FT and TR in the CFTPW,m=∞ model to order O(b̂4) inclusive;

we also present O(B4/T 8) results for RCFTPW,m=∞ .
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Chapter 7

Conclusion

In this thesis we studied several aspects of quantum field theory. We started uncovering

a novel behavior developed by tree-level scattering amplitudes, finding that on the (i, j, k)

split kinematic subspace amplitudes in the biadjoint scalar, NLSM and special Galileon

theories split semi-locally into the product of three amputated currents without becoming

singular. The semi-local property of these 3-splits makes an important difference from

standard factorization, in which the particle set partitions. However, when one imposes

further conditions on the kinematic space in order to turn currents into amplitudes, i.e. into

observables, at least one of them vanishes, and in this sense locality is protected. We also

found that, for the cases of NLSM and special Galileon amplitudes, smooth splits provide

an alternative way to discover their extended theories by simply exploring subspaces of the

kinematic space. Moreover, we used 3-splits to reconstruct NLSM amplitudes from novel

recursion relations without resorting on soft limits. As far as we know, 3-splits are not

derivable from unitarity arguments and therefore represent a new phenomenon in quantum

field theory.
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The smooth split phenomenon happens in all the theories that we studied, and it is

important to ask whether other theories analogously split. Our analysis and proofs of

3-splits using CHY suggest that this could very well be the case. The reason is that the

CHY potential and the integrands in the CHY formulas had a very interesting behavior

under split kinematics, one which made the split very transparent. For example, it is

tempting to start studying smooth splits for the Born-Infeld theory, as it admits a CHY

formulation which contains the same matrix An that appears in both the NLSM and

special Galileon representations. As we previously comment, reproducing 3-splits for Born-

Infeld amplitudes would open the door for amplitudes in other theories like Yang-Mills and

Einstein gravity to smoothly split, although new conditions on the polarization vectors are

expected for this to happen. It is also intriguing that the 3-split behavior is very similar to

the residue of one of the possible factorizations that higher-k amplitudes can have. It would

be very interesting to dig further into this connection, and see if this behavior is indeed

coming from the CEGM generalization of quantum field theory. This would imply that we

could gain new insights into quantum field theory by studying the higher-k framework.

We then extended the global Schwinger construction, which computes the partial biad-

joint amplitude mn(I, I) as an integral over the positive tropical Grassmannian Trop+G(2, n),

to all amplitudes mn(α, β) and proposed a formula for general ϕp theories, making use of

non-crossing chord diagrams along the way. We found that ϕp amplitudes can be thought of

as a sum of products of cubic amplitudes, and presented a formula for this general schematic

structure based on the Lagrange inversion procedure. The different global Schwinger con-

structions provide an alternative way for computing scattering amplitudes, from geometri-

cal and combinatorial considerations. It would be interesting to extend the study to loop

level and even to other theories. An exciting possibility would be to find a way to include

numerators, as this could provide a new transparent way to find and prove important
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properties of scattering amplitudes, like the double copy. One of the reasons to expect

this is that, as we saw in this thesis, the global Schwinger formula already proved to be

useful for studying well known properties of scattering amplitudes like factorization or soft

limits. Furthermore, as there is a global Schwinger formula for general Trop+G(k, n), one

could try to define ϕp-like amplitudes for higher-k theories or start studying how the global

Schwinger formula for higher-k behaves at poles, as this could be instructive for learning

more about factorizations in CEGM amplitudes.

In fact, this thesis has also uncovered novel perspectives regarding the CEGM general-

ization of quantum field theory. First, let us recall that a key aspect of the CHY formula

are the scattering equations, which connect the space of n points on CP1 with the space of

kinematic invariants. The scattering equations possess (n − 3)! solutions and localize the

CHY integral on them. The CEGM formulation contains analogous generalized scattering

equations on X(k, n), and one natural question was to determine their number of solu-

tions. We found all the singular solutions —i.e. the solutions in which the n points do not

remain in a generic configuration in a soft limit— for the cases X(3, 7), X(4, 7), X(3, 8)

and X(5, 8). We also proposed a general classification for all singular solutions for any k

and n. Since the scattering equations have been a powerful tool for studying properties of

scattering amplitudes via CHY, like KLT orthogonality or the color-kinematics duality, it

would be fascinating to find new physical applications from the generalized scattering equa-

tions, which could also help in constructing analogous Yang-Mills and gravity generalized

amplitudes.

Since Feynman diagrams make spacetime properties like local interactions manifest,

knowing about the analogous objects to Feynman diagrams that compute CEGM ampli-

tudes could be of physical interest. Building up on work by Borges and Cachazo, who

described generalized Feynman diagrams for k = 3, we extended the study to any k, find-
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ing that in general they correspond to planar arrays of lower-point Feynman diagrams

satisfying some compatibility conditions. These objects compute the higher-k amplitudes,

and they are in bijection with the maximal cones of the positive tropical Grassmannian

Trop+G(k, n). It turns out that every Feynman diagram in quantum field theory has a dual

description in terms of planar arrays. We also found a combinatorial bootstrap approach

to obtain all these objects. One intriguing aspect of these results is that the planar arrays

actually correspond to groups of standard Feynman diagrams, each with its own kinemat-

ics and its own metric. It could be important to understand the physical meaning of the

compatibility conditions for the metrics of all the trees in the group. Moreover, as CEGM

amplitudes factorize in exotic ways, e.g. into three pieces, in contrast with factorizations

of standard amplitudes into two lower-point ones, it would be important to have a better

combinatorial understanding of how planar arrays behave at poles. This could provide

hints of what the notion of locality is in the CEGM formulation, and could help us obtain

a field theoretic-like description of it. For example, a fascinating possibility would be to

find a quantum theory that inevitably entails the planar arrays.

Finally, we moved on to study nonperturbative aspects of quantum field theory and

analyzed various holographic models under a background magnetic field. These models

describe the quark gluon plasma state of matter which shares some properties with the

deconfined phase of the QCD plasma that prevailed in the early universe. In particular, we

focused on conformal gauge theories as consistent truncations of N = 8 gauged supergravity

in 5 dimensions, and on the nonconformal N = 2∗ gauge theory. We performed numerical

simulations to show that there was no universal magnetoresponse as claimed in a previous

article, since their results were due to a strong dependence on the renormalization scale, as

well as other thermodynamic quantities did not show any universality. We found, however,

a different universality for the N = 2∗ gauge theory in a magnetic field background: the
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corresponding plasma has a critical point for some Tc/
√
B, where Tc corresponds to a

critical temperature and B is the magnetic field, which barely varies for different values of

m/
√
B, where m is the hypermultiplet mass.
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Appendix A

Definition of Amputated Currents

Throughout chapter 2, we have used amputated currents in various quantum field theories

of scalars in order to characterize the behavior of the corresponding amplitudes when

restricted to the split kinematic subspace. In this appendix we give a formal definition of

the objects.

Currents are objects in quantum field theory which appear when one interpolates be-

tween correlation functions and scattering amplitudes. Recall that the LSZ formalism

starts with a correlation function of operators in coordinate space G(x1, x2, . . . , xn). Fourier

transforming to momentum space produces a distribution localized on the momentum con-

servation loci

δD(p1 + p2 + · · ·+ pn)G̃(p1, p2, . . . , pn) .

This is due to translational invariance of the correlation function G(x1, x2, . . . , xn). The

function G̃(p1, p2, . . . , pn) has simple poles of the form 1/p2i and a scattering amplitude is
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obtained by the limiting procedure (or multidimensional residue computation)

A(p1, p2, . . . , pn) =

(
n∏

i=1

lim
p2i→0

p2i

)
G̃(p1, p2, . . . , pn). (A.1)

The process of multiplying by p2i is called “amputating” the ith-leg. A current is defined by

performing all but one of the operations in (A.1). Let us assume that the nth-leg is spared.

Then,

J(p1, p2, . . . , pn−1) :=

(
n−1∏
i=1

lim
p2i→0

p2i

)
G̃(p1, p2, . . . , pn−1, pn). (A.2)

Note that the current still possesses the 1/p2n pole and hence the nth leg is said to remain

off-shell, i.e. p2n ̸= 0. In chapter 2, the relevant object is the amputated current, i.e.

J (p1, p2, . . . , pn−1) := p2nJ(p1, p2, . . . , pn−1). (A.3)

In general, (amputated) currents are not unique. This is most apparent in gauge theories

where currents are not even gauge invariant. The reason is that physical observables are

obtained from scattering amplitudes and therefore any two currents that differ by some-

thing that vanishes when p2n = 0 lead to the same physical consequences. Here, however,

we are using currents to determine the behavior of amplitudes and as such there can be

no ambiguity. Luckily, for scalar theories there is a natural prescription which provides

the required definition. The Feynman diagrams used to compute correlation functions

in momentum space and amplitudes are combinatorially identical. The prescription is to

write each Feynman diagram in terms of a basis of Mandelstam invariants provided by the

planar ones with respect to the canonical order I. Each such invariant can be made to

depend on only a set of particles not containing label n. Each Feynman diagram is then

fully amputated.
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While this definition is precise, it is not very effective in practice as computing am-

plitudes or currents using Feynman diagrams quickly becomes impractical as n increases.

This is why we provide a definition using the CHY formalism. In fact, this definition leads

exactly to the amputated currents that appear in smooth splittings.

Consider the most general CHY potential for n particles and we will allow three of

them to be off-shell, say particles i, j, k. Of course, we are only interested in the case with

a single off-shell particles but the construction is more uniform is we allow all three to be

off-shell. Following Naculich’s construction [170], we define the modified CHY potential1

Sn =
∑
a<b

2pa · pb log (σa − σb) + (p2i + p2j − p2k) log (σi − σj)+

(p2k + p2i − p2j) log (σk − σi) + (p2j + p2k − p2i ) log (σj − σk).

(A.4)

Note that this potential was designed as to preserve SL(2,C) invariance. This means that

three of the punctures can be fixed and it is natural to take the set {σi, σj, σk} to be

{0, 1,∞}. Let us choose σi = 0, σj = 1, and σk = ∞. In this case the potential becomes

Sn =
∑

a<b : a,b/∈{i,j,k}

sab log (σa − σb) +
∑

a/∈{i,j}

(2pa · pi log (σa) + 2pa · pj log (1− σa) ) . (A.5)

Note that any term containing σk drops out while log(σi − σj) = log 1 = 0.

Having constructed the CHY potential it is possible to give the CHY formula for the

five kinds of amputated currents used in the main text. We present them in the form of a

lemma. In the lemma the CHY potential Sn is always the one defined in (A.5). We also

use A[p q]
n to denote the submatrix of the matrix An obtained by removing the pth and qth

rows and columns. The entries of the n × n matrix An that do not involve off-shell legs
1Naculich works directly with the scattering equations and not with the potential but it is straightfor-

ward to translate.
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are given by the standard expression Aab = sab/(σa − σb). Likewise, A[i j k]
n denotes the

submatrix of the matrix An obtained by removing the ith, jth and kth rows and columns.

Before proceeding, a comment on notation is required. An amputated current is often

written in a form in which the nth particle corresponds to the off-shell leg and to indicate

this the nth label is not shown as in (A.3). However, in the statement of the lemma we

allow the off-shell leg to be any leg in a given set and therefore all labels are shown in the

currents.

Lemma A.0.1. Let q ∈ {i, j, k} represent the off-shell leg of the current. Then the CHY

representation of a biadjoint amputated current is given by,

J (1, 2, . . . , n) =

∫ ∏
a/∈{i,j,k}

dσaδ

(
∂Sn

∂σa

)(
|i j||j k||k i|

|1 2||2 3| · · · |n− 1n||n 1|

)2

. (A.6)

The CHY representation of a NLSM amputated current is,

J NLSM(1, 2, . . . , n) =

∫ ∏
a/∈{i,j,k}

dσaδ

(
∂Sn

∂σa

)(
|i j||j k||k i|

|1 2||2 3| · · · |n− 1n||n 1|

)
|i j||j k||k i|

|p q|2
detA[p q]

n .

(A.7)

Here q is arbitrary (with q ̸= p), although in practise it is convenient to choose it in the

set {i, j, k}.

Similarly, the CHY representation of a mixed NLSM amputated current is given by,

J NLSM⊕ϕ3

(1, 2, . . . , n|i, j, k) =
∫ ∏

a/∈{i,j,k}

dσaδ

(
∂Sn

∂σa

)(
|i j||j k||k i|

|1 2||2 3| · · · |n− 1n||n 1|

)
detA[i j k]

n .

(A.8)
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The CHY representation of a special Galileon amputated current is,

J sGal =

∫ ∏
a/∈{i,j,k}

dσaδ

(
∂Sn

∂σa

)(
|i j||j k||k i|

|p q|2
detA[p q]

n

)2

(A.9)

and finally the CHY representation of a mixed special Galileon amputated current is,

J sGal⊕ϕ3

(i, j, k) =

∫ ∏
a/∈{i,j,k}

dσaδ

(
∂Sn

∂σa

)(
detA[i j k]

n

)2
. (A.10)

Proof. To prove the lemma it is required to show that the corresponding CHY formulas

reproduce the amputated currents as defined using Feynman diagrams. However, for scalar

field theories, this is evident from the Dolan-Goddard proof of biadjoint amplitudes [94]

and from Naculich’s general construction [170].
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Appendix B

Proof of Determinantal Product

Formula: Lemma 2.4.1

In chapter 2 we proved the smooth splitting formula for NSLM and special Galileon am-

plitudes using Lemma 2.4.1. In this appendix we provide the proof. For the reader’s

convenience we rewrite the statement of the Lemma.

Lemma B.0.1. Let M ∈ C2m×2m be antisymmetric, L ∈ Cr×r, and W ∈ C(2m+r)×(2m+r)
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defined in terms of M and L as follows

W :=



0 M1,2 · · · M1,2m−1 M1,2m 0 0 0 · · · 0

−M1,2 0 · · · M2,2m−1 M2,2m 0 0 0 · · · 0
...

...
... . . . ...

...
...

... . . . ...

−M1,2m−1 −M2,2m−1 · · · 0 M2m−1,2m 0 0 0 · · · 0

−M1,2m −M2,2m · · · −M2m−1,2m 0 c1 c2 c3 · · · cr

0 0 · · · 0 d1 L1,1 L1,2 · · · L1,r−1 L1,r

0 0 · · · 0 d2 L2,1 L2,2 · · · L2,r−1 L2,r

...
... . . . ...

...
...

... . . . ...
...

0 0 · · · 0 dr Lr,1 Lr,2 · · · Lr,r−1 Lr,r


(B.1)

with da and ca arbitrary complex numbers, then the following holds

det(W ) = det(M)det(L). (B.2)

Proof. Let us compute the determinant on the LHS of (B.0.1) using the 2m-th column to

expand. Note that the contribution from any da is of the form

det

 P Q

0 R

 = det(P )det(R) (B.3)
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where

P =



0 M1,2 M1,3 · · · M1,2m−1

−M1,2 0 M2,3 · · · M2,2m−1

−M1,3 −M2,3 0 · · · M3,2m−1

...
...

... . . . ...

−M1,2m−1 −M2,2m−1 −M3,2m−1 · · · 0


. (B.4)

Since P is an odd-dimensional antisymmetric matrix, its determinant is zero and therefore

the determinant (B.3) vanishes. This implies that the determinant on the LHS of (B.0.1)

is independent of da. Likewise, the determinant can also be shown to be independent of

ca.

Having proved that (B.3) is independent of the values of da and ca, it is possible to set

them to any convenient values. In this case, it is clear that by setting da = ca = 0 for all

a ∈ {1, 2, . . . , r} one is left with the determinant of a block diagonal matrix. Using the

elementary property of determinants that the determinant of a block-diagonal matrix is

the product of the determinants of the blocks the result follows.
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Appendix C

Lagrange Inversion Formula and

Fuss-Catalan Numbers

Given a function f(x) that admits a series expansion around x = 0 and f(0) = 0 while

f ′(0) ̸= 0, the Lagrange inversion formula gives a series expansion for the compositional

inverse of f(x), i.e. for a function g(x) such that g(f(x)) = x, in terms of the series

coefficients of f(x).

Let us review one particular formulation which is relevant for this work. Start by

defining an auxiliary function h(x) such that h(x) = x/f(x). Let

h(x) =
∞∑
i=0

hix
i (C.1)

be the series expansion of h(x) around x = 0. Now define

gr :=
1

2πi

∮
|z|=ϵ

dz

r + 1

(
h(z)

z

)r+1

. (C.2)
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The Lagrange inversion formula states that the series expansion of g(x) is of the form

g(x) = x
∞∑
r=0

grx
r . (C.3)

The proof is fairly simple. Consider the RHS of (C.2) and write it in terms of f(z) and

then write z = g(u),

1

2πi

∮
|z|=ϵ

dz

r + 1

(
1

f(z)

)r+1

=
1

2πi

∮
|u|=ϵ

du

r + 1
g′(u)

(
1

f(g(u))

)r+1

=
1

2πi

∮
|u|=ϵ

du

(r + 1)

g′(u)

ur+1
.

(C.4)

Now, taking the derivative of (C.3),

g′(x) =
∞∑
r=0

(r + 1)grx
r (C.5)

and plugging in it into the last expression on the right in (C.4) one finds (C.2).

Before seeing explicitly how this works in the context of interest, let us review some

well-known facts about generating functions of Fuss-Catalan numbers, in particular, how

they are interconnected via the Lagrange inversion formula.

Let Bk(x) be the generating of the Fuss-Catalan numbers FCn(k, 1). The function

Bk(x) satisfies the equation Bk(x) = 1 + xBk(x)
k. Now let us prove that

f(x) :=
x

Bk−1(x)
, g(x) := xBk(x) (C.6)

are compositional inverses of each other. Start with Bk(x) = 1 + xBk(x)
k and multiply

by xk−1 so that we get an equation for g(x) of the form xk−2g(x) = xk−1 + g(x)k. Now

let p(x) be the compositional inverse of g(x), i.e., g(p(x)) = x. Letting x = p(u) in
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xk−2g(x) = xk−1 + g(x) leads to u p(u)k−2 = p(u)k−1 + uk. Let us prove that f(x) satisfies

the same equation as p(x). Starting with Bk−1(x) = 1 + xBk−1(x)
k−1 and substituting

Bk−1(x) = x/f(x) gives x/f(x) = 1 + xk/f(x)k−1. Multiplying by f(x)k−1 we obtain the

same equation satisfied by p(x).

In the case at hand, we are interested in k = 3 so that

h(x) = B2(x) =
1−

√
1− 4z

2z
(C.7)

is the generating function of Catalan numbers, and gr becomes the Fuss-Catalan number

FCr(3, 1). In this case (C.2) reads

FCr(3, 1) =
1

2πi

∮
|z|=ϵ

dz

r + 1

(
1−

√
1− 4z

2z2

)r+1

(C.8)

with

g(x) = xB3(x), with B3(x) :=
∞∑
r=0

FCr(3, 1)x
r . (C.9)

Let us see how this applies to our construction in section 3.6. Let us consider the following

choice for the function h(x)

h(x) =
∞∑
i=0

mi+2x
i (C.10)

where mi+2 represents a generic (i+2)-particle amplitude in the biadjoint ϕ3 scalar theory

of the form mi+2(I, I). Since the mass dimension of mi+2(I, I) is −2(i−1) we are motivated

to define m2 := P 2 and m3 := 1. Here 1/P 2 represents a generic propagator. We will soon

see why this somewhat strange definition of m2 is useful. Let us start by noticing that the

number of Feynman diagrams contributing to mi+2(I, I) is the Catalan number Ci.

The claim is that the form of the amplitude Aϕ4

n is determined by the coefficient gn/2−1
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divided by h
n/2−1
0 . Let us compute the first few cases of (C.2) in order to illustrate the use

of the formula,

Aϕ4

4 =
g1
h0

=h1 = m3

Aϕ4

6 =
g2
h2
0

=
h2
0h2 + h0h

2
1

h2
0

= m4 +m2
3

1

P 2

Aϕ4

8 =
g3
h3
0

=
h3h

3
0 + 3h1h2h

2
0 + h3

1h0

h3
0

= m5 + 3m3m4
1

P 2
+m3

3

(
1

P 2

)2

.

Finally, specializing to what is called planar kinematics, in which all planar invariants are

set to unity, one finds that Aϕ4

n counts the number of Feynman diagrams contributing to

the amplitude. This is the number of ternary planar unrooted trees with n leaves which is

known to be the given by the Fuss-Catalan numbers. Applying the same kinematics to the

ϕ3 amplitudes one can replace each by the corresponding Catalan numbers and therefore

we reproduce the relation (C.2).

C.0.1 Extension to ϕp: Iterated Structure

Let us explicitly construct the iteration used in section 3.7.2 to propose the schematic

structure of ϕp amplitudes.

Let us start by defining generating functions

hk(x) =
∞∑
j=0

hk,jx
j . (C.11)

The goal is to construct a recursive procedure that determines all coefficients hk,j as func-
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tions of the base case defined to be

h3(x) =
∞∑
j=0

hjx
j . (C.12)

Note that for the base function we have denoted the coefficients by hj instead of h3,j. This

was done in order not clutter the formulas. Using the expression in (3.85)

hk(x) =
∞∑
j=0

hk,jx
j :=

∞∑
j=0

1

2πi

∮
|z|=ϵ

dz

j + 1

(
hk−1(z)

z

)j+1

xj (C.13)

let us present some results for the expansions.

For ϕ4 amplitudes we have h4(x) with coefficients

h0

h0h1

h0h
2
1 + h2

0h2

h0h
3
1 + 3h2

0h1h2 + h3
0h3

h0h
4
1 + 6h2

0h
2
1h2 + 2h3

0h
2
2 + 4h3

0h1h3 + h4
0h4

h0h
5
1 + 10h2

0h
3
1h2 + 10h3

0h1h
2
2 + 10h3

0h
2
1h3 + 5h4

0h2h3 + 5h4
0h1h4 + h5

0h5.

(C.14)

These coefficients are a refinement of the Narayana numbers. Let us see this more
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explicitly. Consider first the table of coefficients (see OEIS entry A134264, [174]),

1

1

1, 1

1, 3, 1

1, 6, 2, 4, 1

1, 10, 10, 10, 5, 5, 1

1, 15, 30, 5, 20, 30, 3, 15, 6, 6, 1

1, 21, 70, 35, 35, 105, 21, 21, 35, 42, 7, 21, 7, 7, 1.

(C.15)

If we now set h0 = x and all other hi = 1, then terms with the same power of h0 are

combined. For example, 2h2
2h

3
0+4h1h3h

3
0 in the fifth row of (C.14) becomes 2x3+4x3 = 6x3.

Carrying this out one gets

x

x

x2 + x

x3 + 3x2 + x

x4 + 6x3 + 6x2 + x

x5 + 10x4 + 20x3 + 10x2 + x

x6 + 15x5 + 50x4 + 50x3 + 15x2 + x

x7 + 21x6 + 105x5 + 175x4 + 105x3 + 21x2 + x.

(C.16)

These coefficients are the Narayana numbers (OEIS entry A001263, [174]).
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Let us consider ϕ5 amplitudes, so we have h5(x) with coefficients

h0

h2
0h1

2h3
0h

2
1 + h4

0h2

5h4
0h

3
1 + 6h5

0h1h2 + h6
0h3

14h5
0h

4
1 + 28h6

0h
2
1h2 + 4h7

0h
2
2 + 8h7

0h1h3 + h8
0h4

42h6
0h

5
1 + 120h7

0h
3
1h2 + 45h8

0h1h
2
2 + 45h8

0h
2
1h3 + 10h9

0h2h3 + 10h9
0h1h4 + h10

0 h5.

(C.17)

Listing only the coefficient allows us to present one more row (OEIS entry A338135, [174]),

1

1

2, 1

5, 6, 1

14, 28, 4, 8, 1

42, 120, 45, 45, 10, 10, 1

132, 495, 330, 22, 220, 132, 6, 66, 12, 12, 1.

(C.18)

Once again, if we set h0 = x and all other hi = 1, then (C.17) becomes the generating

functions for the 2-Narayana numbers. In general one finds the triangle of m-Narayana

numbers, where the standard ones correspond to m = 1. The 2-Narayana numbers are
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then given by the coefficients in (see e.g. section 6.8 of [172])

x

x2

x4 + 2x3

x6 + 6x5 + 5x4

x8 + 12x7 + 28x6 + 14x5

x10 + 20x9 + 90x8 + 120x7 + 42x6

x12 + 30x11 + 220x10 + 550x9 + 495x8 + 132x7

(C.19)

C.0.2 One Function to Compute Them All

There is one more interesting property of these representation of ϕp amplitudes which

interconnects them. Consider the coefficients of the function h4(x). Some of them are

explicitly shown in (C.14).

The claim is that the coefficients of the function hk(x) can be obtained from those of

h4(x) by simply setting to zero all ha with a /∈ (k − 3)Z (see text in OEIS entry A338135

for k = 5 case, [174]). For example, h5(x) is obtained by setting all ha with a odd to zero.

Of course, every other coefficient of h4(x) vanishes completely but the ones that do not

reproduce h5(x).

One direct way to understand the relation among the different generating functions

hk(x) is by recalling the combinatorial problem they solve. As explained in the discussions,

set m = k − 3 and place mq points on a disk. Now count all possible ways of clustering

the points in non-overlapping sets so that there are r1 groups of m points each, r2 groups

of 2m points, etc. Clearly, h4(x), for which m = 1, contains all other problems counted by

hk(x) with k > 4 as special cases.

278



Appendix D

Computing a Region for n = 12 that

Leads to m7(1234576, I)

Directly computing amplitudes Aϕ4

n , using the global Schwinger formula presented in chap-

ter 3 becomes harder as n grows. In this appendix, we show how to use the global Schwinger

formula to find an explicit map from a region to mn/2+1(α, I). Having the precise bijection

of kinematic invariants, one gets the contribution of the region without ever carrying out

an integral. The region under consideration is

R = {x0 = x3 < x1 = x2, x4 = x5, x6 = x7, x8 = x9} . (D.1)

Let us consider the behavior of the G12(x) part of the tropical potential on a region Rext

where the condition x3 < x1 is relaxed an therefore contains R, i.e.,

R ⊂ Rext = {x0 = x3 x1 = x2, x4 = x5, x6 = x7, x8 = x9} . (D.2)
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The function G12(x) can be seen to be a linear combination of the following 14 piecewise

linear functions

min (x1, x3) , min (x3, x5) , min (x5, x7) , min (x7, x9) ,

min (x1, x3, x5) , min (x3, x5, x7) , min (x5, x7, x9) ,

min (x1, x3, x5, x7) ,min (x3, x5, x7, x9) ,min (x1, x3, x5, x7, x9) ,

x1, x5, x7, x9.

Note that x1 is always accompanied by x3 when it is an argument in a min function. This

means that when restricting to R, i.e. imposing x3 < x1 on the functions, x1 drops out

and we are left with the following 11 functions,

min (x3, x5) , min (x5, x7) , min (x7, x9) ,

min (x3, x5, x7) , min (x5, x7, x9) ,

min (x3, x5, x7, x9) , x1, x3, x5, x7, x9.

It is easy to compute the coefficients of each of the 11 functions to be

t[2,8] − t[2,6] − t[6,8], −t[6,8] + t[6,10] − t[8,10], −t[8,10] + t[8,12] − t[10,12],

t[2,10] − t[2,8] + t[6,8] − t[6,10], −t[6,10] + t[6,12] + t[8,10] − t[8,12],

t[6,10] − t[2,10] − t[6,12], t[3,5], t[2,6] − t[3,5], t[6,8], t[8,10], t[10,12].

Note that the coefficient of x1 is t[3,5], which is precisely the invariant in the propagator

that must appear according to the rules for the non-crossing diagram corresponding to the

region R. The only other place where t[3,5] appears is in the coefficient of x3. This means
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that we can write the integral over x1 as

∫ ∞

−∞
dx1θ(x1 − x3) exp

(
−t[3,5](x1 − x3)

)
=

1

t[3,5]
. (D.3)

Combining the left over terms and relabeling variables so that xa → x(a−3)/2 one finds the

“effective” potential

F6 = (t[2,8] − t[2,6] − t[6,8])min (x0, x1) + (−t[6,8] + t[6,10] − t[8,10])min (x1, x2)

+ (−t[8,10] + t[8,12] − t[10,12])min (x2, x3) + (t[2,10] − t[2,8] + t[6,8] − t[6,10])min (x0, x1, x2)

+ (−t[6,10] + t[6,12] + t[8,10] − t[8,12])min (x1, x2, x3)

+ (t[6,10] − t[2,10] − t[6,12])min (x0, x1, x2, x3) + t[2,6]x0 + t[6,8]x1 + t[8,10]x2 + t[10,12]x3 .

It is a simple exercise to match the coefficients with that of the tropical potential function

for m6(I, I). The non-trivial fact is that the result is not only a map but a bijection between

the corresponding sets of planar invariants. This is left as an exercise for the reader.
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Appendix E

Singular Solutions in X(3, n) from

Bounded Chambers Counting

In this appendix, related to chapter 4, we show how to visualize and count the number of

singular solutions in X(3, 7) and the number of (regular7, singular8) solutions in X(3,8)

with positive kinematics.

E.0.1 Singular Solutions in X(3, 7)

We have seen in section 4.4.1 that with positive kinematic data all the solutions we obtain

are real. This means we can analyze them by counting bounded chambers in RP2 space

when |147|, |257| and |367| vanish. We expect to find 12 bounded chambers, which would

correspond to the 12 solutions for each of the 15 existing configurations.

The bounded chambers come in the following way. First, we use the same gauge fixing

for the first four particles as explained in section 4.4.1. This creates 5 repelling lines, one of
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them crossing the diagonal of the square [0, 1]2 created by particles 1 and 4. It is precisely

on this line where the soft particle 7 must be. We can have solutions where particle 7

is outside the square [0, 1]2, since particles 5 and 6 can simultaneously create bounded

chambers for each other. We represent this situation in figure E.1.

Figure E.1: Left : the first four particles are gauge-fixed. This creates 5 repelling lines,
drawn in black, and particle 7 must be on the line that passes through 1 and 4. Center :
we now consider the situation in which the soft particle 7 is in the outside-right(left) of
the square [0, 1]2. Right : particles 5 and 6 must lie on the blue dashed lines created by
particles 7, 2 and 3. This only happens if both particles bound each other through particle
4(1) (red and orange lines). The two grey bounded chambers are those where particles 5
and 6 can be.

This configuration gives rise to 2 different solutions, since particles 5 and 6 can bound

each other through particles 1 and 4 when particle 7 is outside the square [0, 1]2.

Next, we also find solutions in the particular situation in which the soft particle 7 is

inside the square [0, 1]2, but particles 5 and 6 are both outside of it. In this case, particles

5 and 6 also bound each other. We represent this situation in figure E.2.

This configuration also gives rise to 2 different solutions, since particles 5 and 6 can

bound each other through particles 1 and 4.

Finally, we also find solutions coming from having the soft particle 7 and the two

remaining hard particles inside the square [0, 1]2. We represent this situation in figure E.3:

This last situation gives rise to 3 solutions where both hard particles are in the same
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Figure E.2: Left : the first four particles are gauge-fixed. This creates 5 repelling lines,
drawn in black, and particle 7 must be on the line that passes through 1 and 4. Center :
we now consider the situation in which the soft particle 7 is inside the square [0, 1]2. Right :
particles 5 and 6 must lie on the blue dashed lines created by particles 7, 2 and 3. This only
happens if both particles bound each other through particle 4(1) (red and orange lines).
The two grey bounded chambers are those where particles 5 and 6 can be.

Figure E.3: Left : the first four particles are gauge-fixed. This creates 5 repelling lines,
drawn in black, and particle 7 must be on the line that passes through 1 and 4. Center :
we now consider the situation in which the soft particle 7 is inside the square [0, 1]2. This
means that e.g. particle 5 must be in one of the two existing bounded chambers. Right :
particles 5 and 6 must lie on the blue dashed lines created by particles 7, 2 and 3. If we
choose particle 5 to be e.g. in the lower-right bounded chamber, this creates 3 additional
repelling lines, drawn in orange, which leave four bounded chambers where particle 6 can
be, shown in grey.

original bounded chamber, and 1 solution where both are in the different two original

bounded chambers. Hence, there are a total of 2 × (3 + 1) = 8 solutions, since we can

also choose particle 5 to be in the upper-left bounded chamber at first. Therefore, for this

configuration, we count 2+ 2+8 = 12 different solutions which correspond to the singular

solutions already found before.
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E.0.2 (regular7, singular8) Solutions in X(3,8)

It turns out that the (regular7, singular8) solutions studied in section 4.5.1 are all real

too. This opens the possibility to count them in RP2 space in the same way as in appendix

E.0.1. If we use the same gauge-fixing as in section 4.4.1 and consider the singular situation

in which e.g. |148|, |258| and |368| vanish, we find ourselves in a similar fashion as in E.0.1,

i.e. with 12 different situations. Yet, now we deal with one more particle (in this case

particle 7) which is decoupled from the other hard particles. This particle can be found in

41 different equilibrium points, which gives the 12× 41 = 492 solutions. Below we give an

explicit visualization of one of the 12 different situations we can have:
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Figure E.4: Top-Left : particles 1, 2, 3 and 4 are gauge-fixed. This creates 5 repelling
lines, and particle 8 must be on the line that passes through the two black points, which
correspond to particles 1 and 4. Particles 2 and 3 are sent to infinity. Top-Right : we now
consider e.g. the third situation seen in E.0.1. The two new black points correspond to
particles 5 and 8, and new repelling lines appear due to their interaction with the other
particles. Bottom: if we choose particles 5 and 6 to be e.g. on the two different original
bounded chambers (see Top-Left figure), this leaves us with 41 bounded chambers where
particle 7 can be.
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Appendix F

Geometry Descriptions of Type 3 and 4

Configurations in X(5, 8)

F.1 Geometry Descriptions of Type 3 and 4 Configura-

tions in X(5, 8)

We can use the positive kinematic data to help us visualize the geometry underlying the

singular solutions of the topologies type 3 and type 4 in table 4.1 in chapter 4. For the

topology type 3, there are two bounded chambers formed by the six dominating 3-planes.

See their projections in figure F.1.

The F-vectors of bounded chambers are both {8, 16, 14, 6}. The 8 vertices of each

bounded chamber are labelled by {9, 10, 11, 12, 13, 14, 15, 16} and {9, 10, 11, 12, 17, 18, 19, 20},

respectively. For convenience, let’s call the two bounded chambers as blue and red. Among

the six facets of each bounded chamber, two are tetrahedrons and the remaining four are
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Figure F.1: Four projections from the viewpoint of particles 2, 3, 4 and 5, respectively, of
the two bounded chambers (shown in blue and red) for the topology type 3 in table 4.1
and near the soft limit. Here we represent the case in which the soft particle is bounded
by the blue chamber. The green edges correspond to shared edges by the blue and red
chambers. In the strict soft limit, the two bounded chambers collapse to a point where the
soft particle lies.

truncated triangular prisms. The two bounded chambers don’t share any facet but a dim-2

boundary of vertices {9, 10, 11, 12}. Any dominating 3-plane passes through both facets

of different bounded chambers, see table F.1. Particles 1, 4, 6 and 7 lie in the lines that

Particles to determine
dominating 3−planes

Vertices of the facet passed
by the blue chamber

Vertices of the facet passed
by the red chamber

{1,2,3,7} {9,10,11,12,13,16} {9,10,11,12,18,19}
{1,2,4,5} {9,12,13,14,15,16} {9,12,17,18}
{1,3,5,6} {9,10,13,14} {9,10,17,18,19,20}
{2,3,4,6} {9,10,11,12,14,15} {9,10,11,12,17,20}
{2,5,6,7} {10,11,13,14,15,16} {10,11,19,20}
{3,4,5,7} {11,12,15,16} {11,12,17,18,19,20}

Table F.1: Dominating 3-planes and the facets they pass by in figure F.1.

pass through {9, 13, 18}, {12, 15, 17}, {10, 14, 20} and {11, 16, 19}, respectively. Whilst

particles 2, 3, and 5, which are sent to infinity, can be thought of as the intersections of

four lines determined by four pairs of vertices. See the first, second and fourth projections
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in figure F.1.

The auxiliary points have proven to be very useful to understand the relative positions

of the hard particles. Alternatively, now we can ignore them and imagine how these hard

particles form some dominating planes to bound the soft particle.

In the strict soft limit, the two bounded chambers collapse to a point. Some sets of

four dominating 3-planes share a point where the soft particle lies, while some share a line.

For example, the four dominating 3-planes 1237, 1245, 2346, and 2567 share a common

line where particles 2 and 8 lie.

There are 8 solutions of variables u, v, p, q, r, s, x7 and z7 for the new set of scattering

equations,

{
lim
τ→0

∂S5

∂xi

, lim
τ→0

∂S5

∂yi
, lim

τ→0

∂S5

∂zi
, lim

τ→0

∂S5

∂wi

}∣∣∣∣
(4.44)

= 0, for i = 1, . . . 8. (F.1)

These 8 solutions can be divided into four pairs. Although the two solutions of each pair

are different, using the reparameterization (4.44), they produce the same set of values for

{x7, y7, z7, w7, x8, y8, z8, w8}, which corresponds to the fact that the two bounded chambers

collapse to a single point.

For the topology type 4, there are two bounded 4-simplices formed by the dominating

3-planes using positive kinematic data. See their projections in figure F.2.

As summarized in table F.2, these two bounded chambers share a tetrahedron of vertices

{9, 10, 11, 12} as a common facet, which is passed by the dominating 3-plane determined

by {1, 2, 3, 6}. Another three dominating 3-planes pass both facets of different bounded

chambers. Two dominating 3-planes only pass a facet of either the blue or red bounded

chamber. As for the last dominating 3-plane, it just passes a dim-2 boundary determined

by {9, 10, 11} of the shared facet.
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Figure F.2: Four projections from the viewpoint of particles 2, 3, 4 and 5, respectively, of
the two bounded 4-simplices (shown in blue and red) for the topology type 4 in table 4.1
and near the soft limit. In the strict soft limit, the two bounded chambers collapse to a
point where the soft particle lies.

The six hard particles 1, 2, 3, 5, 6 and 7 lie on the lines determined by {9,11}, {10,11},

{9,10}, {11,12}, {9,13}, {10,14}, respectively, while particle 4 lies on the line that passes

{12, 13, 14} at the same time.

Particles to determine
dominating 3−planes

Vertices of the facet passed
by the blue chamber

Vertices of the facet passed
by the red chamber

{1,2,3,6} {9,10,11,12} {9,10,11,12}
{1,4,5,6} {9,11,12,13} {9,11,12,14}
{2,4,5,7} {10,11,12,13} {10,11,12,14}
{3,4,6,7} {9,10,12,13} {9,10,12,14}
{1,2,3,5} {9,10,11,13} -
{1,2,3,7} - {9,10,11,14}
{1,2,3,4} - -

Table F.2: Dominating 3-planes and the facets they pass by in figure F.2.
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Appendix G

Proof of One-to-one Map of a Binary

Tree and its Metric

Lemma G.0.1. Given that two cubic trees TA and TB have the same valid non-degenerate

metric dij, then TA = TB.

Proof. We are going to provide a proof by induction. First, consider the base case where

TA and TB are 3-point trees. It is clear that there exists a unique solution to d12 = e1+ e2,

d13 = e1 + e3 and d23 = e2 + e3. Since TA and TB have the same non-degenerate metric,

the lengths e
(A)
i = e

(B)
i must be identical, thus TA = TB.

Now let us assume that the lemma is true for all (n − 1)-point cubic metric trees and

consider two n-point cubic trees TA and TB that have the same non-degenerate metric dij.

Next let us find leaves i and j such that dil − djl is l independent. Such a pair of leaves

must exist because the condition is true for any pair of leaves which belong to the same

“cherry” as shown in the diagrams in figure G.1. Moreover, only leaves in cherries satisfy

this condition in a cubic non-degenerate tree.
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Figure G.1: Two n-point cubic trees with pairs i and j joined by the vertex α.

Removing the cherries from both trees and introducing a new leaf α one can define

a metric for the the (n − 1)-point cubic trees in figure G.2, whose leaves are given by

({1, 2, . . . , n} \ {i, j}) ∪ {α}.

Figure G.2: Two (n− 1)-point cubic trees with external edges e
(A)
α = f (A) and e

(B)
α = f (B)

such that d
(A)
kl = d

(B)
kl .

Such a metric is defined in terms of the metric of the parent trees as follows. d(A)
kl = dkl

if k, l ̸= α and d
(A)
kα = dki − e

(A)
i . Likewise d

(B)
kl = dkl if k, l ̸= α and d

(B)
kα = dki − e

(B)
i . It is

easy to see from the figure that the two metrics are identical, i.e. d
(A)
kl = d

(B)
kl .

Using the induction hypothesis, the two metric trees in figure G.2 must be the same.

In order to complete the proof all we need is to show that e(A)
i = e

(B)
i and e

(A)
j = e

(B)
j . The

fact that dil = e
(A)
i +d

(A)
αl = e

(B)
i +d

(B)
αl immediately implies e(A)

i = e
(B)
i , hence TA = TB.
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Appendix H

All Planar Collections of Feynman

Diagrams for (3, 6)

Below we reproduce for the reader’s convenience table 1 of [42] which contains all 48 planar

collections of Feynman diagrams for (3, 6). The notation in this case is very compact and

requires some explanation. Each collection for (3, 6) is made out of 5-point trees. The tree

in the ith-position must be planar with respect to the ordering (1, 2, . . . , /i, . . . , n). There

is a single topology of five-point trees, i.e. a caterpillar tree with two cherries and one

leg. Therefore it is possible to specify it by giving the label of the leaf attached to the leg.

Using this, each collection becomes a one-dimensional array of six numbers.
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Planar collections of trees in k = 3 and n = 6

Collection Trees Collection Trees

C1 [4, 4, 4, 3, 3, 3] C25 [6, 6, 6, 5, 4, 1]

C2 [4, 4, 4, 3, 6, 5] C26 [6, 6, 6, 6, 6, 3]

C3 [4, 4, 4, 3, 2, 2] C27 [6, 6, 6, 1, 1, 1]

C4 [4, 4, 4, 1, 4, 4] C28 [6, 6, 6, 2, 2, 1]

C5 [4, 4, 4, 1, 1, 1] C29 [6, 3, 2, 5, 4, 1]

C6 [4, 4, 6, 6, 6, 5] C30 [6, 3, 2, 1, 1, 1]

C7 [4, 4, 6, 6, 2, 2] C31 [6, 3, 2, 2, 2, 1]

C8 [4, 5, 5, 5, 4, 4] C32 [2, 5, 5, 5, 2, 2]

C9 [4, 6, 6, 5, 4, 4] C33 [2, 5, 2, 2, 2, 2]

C10 [4, 6, 6, 2, 2, 4] C34 [2, 1, 4, 3, 3, 3]

C11 [4, 1, 1, 1, 4, 4] C35 [2, 1, 4, 3, 6, 5]

C12 [4, 1, 1, 1, 1, 1] C36 [2, 1, 4, 3, 2, 2]

C13 [4, 3, 2, 5, 4, 4] C37 [2, 1, 6, 6, 6, 5]

C14 [4, 3, 2, 2, 2, 4] C38 [2, 1, 6, 6, 2, 2]

C15 [5, 5, 4, 3, 3, 3] C39 [2, 1, 1, 1, 3, 3]

C16 [5, 5, 4, 3, 6, 5] C40 [2, 1, 1, 1, 6, 5]

C17 [5, 5, 5, 5, 2, 5] C41 [2, 1, 1, 1, 2, 2]
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Planar collections of trees in k = 3 and n = 6

Collection Trees Collection Trees

C18 [5, 5, 6, 6, 6, 5] C42 [3, 5, 5, 5, 4, 3]

C19 [5, 5, 1, 1, 3, 3] C43 [3, 5, 5, 1, 1, 3]

C20 [5, 5, 1, 1, 6, 5] C44 [3, 3, 6, 3, 3, 3]

C21 [5, 5, 2, 2, 2, 5] C45 [3, 3, 6, 6, 6, 3]

C22 [6, 5, 5, 5, 4, 1] C46 [3, 3, 2, 5, 4, 3]

C23 [6, 5, 5, 1, 1, 1] C47 [3, 3, 2, 1, 1, 3]

C24 [6, 6, 6, 3, 3, 3] C48 [3, 3, 2, 2, 2, 3]

Table H.1: All 48 planar collections of trees for n = 6 in a compact notation tailored to

this case and explained in the text.
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Appendix I

Proof of −PL = E − sT in holographic

magnetized plasma

The proof follows the argument for the universality of the shear viscosity to the entropy

density in holographic plasma [57].

Consider a holographic dual to a four dimensional1 gauge theory in an external magnetic

field. We are going to assume that the magnetic field is along the z-direction, as in (6.27).

We take the (dimensionally reduced — again, this can be relaxed) holographic background

geometry to be

ds25 = −c21 dt2 + c22
(
dx2 + dy2

)
+ c23 dz2 + c24 dr2 , ci = ci(r) . (I.1)

At extremality (whether or not the extremal solution is singular or not within the trunca-
1Generalization to other dimensions is straightforward.
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tion is irrelevant), the Poincaré symmetry of the background geometry guarantees that

Rtt +Rzz = 0 , (I.2)

where Rµν is the Ricci tensor in the orthonormal frame. Clearly, an analogous condi-

tion must be satisfied for the full gravitational stress tensor of the matter supporting the

geometry

Ttt + Tzz = 0 . (I.3)

Because turning on the nonextremality will not modify (I.3), we see that (I.2) is valid away

from extremality as well. Computing the Ricci tensor for (I.1) reduces (I.2) to

0 = Rtt +Rzz =
1

c1c22c3c4

d

dr

[(
c1
c3

)′
c22c

2
3

c4

]
=⇒

(
c1
c3

)′
c22c

2
3

c4
= const . (I.4)

Explicitly evaluating the ratio of the const in (I.4) in the UV (r → ∞) and IR (r → rhorizon)

we recover

0 =
E + PL

sT
− 1 , (I.5)

for each of the models we study.

We should emphasize that the condition (I.2) can be explicitly verified using the equa-

tions of motion in each model studied. The point of the argument above (as the related

one in [57]) is that this relation is true based on the symmetries of the problem alone.
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Appendix J

Conformal models in the limit

T/
√
B ≫ 1

In holographic models, supersymmetry at extremality typically guarantees that equilibrium

isotropic thermodynamics is renormalization scheme independent (compare the N = 2∗

model with the same masses for the bosonic and the fermionic components m2
b = m2

f ,

versus the same model with m2
b ̸= m2

f [54]). This is not the case for the holographic mag-

netized gauge theory plasma in four space-time dimensions, see [112] for N = 4 SYM. In

this appendix we discuss the high temperature anisotropic equilibrium thermodynamics

of the conformal (supersymmetric in vacuum) models. For the (locally) four dimensional

models ( CFTdiag, CFTSTU and CFTPW,m=0 ) matching high-temperature equations of state

is a natural way to relate renormalization schemes in various theories. In the CFTPW,m=∞

model, which is locally five dimensional, magnetized thermodynamics is scheme indepen-

dent.
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J.0.1 CFTSTU

The high temperature expansion corresponds to the perturbative expansion in b. In what

follows we study anisotropic thermodynamics to order O(b4) inclusive. Introducing

a1 = 1 +
∞∑
n=1

a1,(n) b
2n , a2 = 1 +

∞∑
n=1

a2,(n) b
2n , a4 = 1 +

∞∑
n=1

a4,(n) b
2n ,

ρ = 1 +
∞∑
n=1

ρ(n) b
2n , ν = 1 +

∞∑
n=1

ν(n) b
2n ,

(J.1)

so that (see (6.36) and (6.37) for the asymptotics)

a1,2 =
∞∑
n=1

a1,2,(n) b
2n , a2,2 =

∞∑
n=1

a2,2,(n) b
2n , r1 =

∞∑
n=1

r1,(n) b
2n ,

n1 =
∞∑
n=1

n1,(n) b
2n , a1,h,0 = 1 +

∞∑
n=1

a1,h,0,(n) b
2n , a2,h,0 = 1 +

∞∑
n=1

a2,h,0,(n) b
2n ,

rh,0 = 1 +
∞∑
n=1

rh,0,(n) b
2n , nh,0 = 1 +

∞∑
n=1

nh,0,(n) b
2n ,

(J.2)

we find

at order n = 1:

0 =a′′2,(1) +
x4 + 3

x(x4 − 1)
a′2,(1) −

128x2

x4 − 1
, (J.3)

0 =a′4,(1) −
4x4

3(x4 − 1)
a′2,(1) +

4(16x4 + a4,(1))

x(x4 − 1)
, (J.4)

0 =a′1,(1) +
2(x4 − 3)

3(x4 − 1)
a′2,(1) +

4(16x4 − 3a4,(1))

3x(x4 − 1)
, (J.5)
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0 =ρ′′(1) +
x4 + 3

x(x4 − 1)
ρ′(1) +

4(16x4 − 3ρ(1))

3x2(x4 − 1)
, (J.6)

0 =ν ′′
(1) +

x4 + 3

x(x4 − 1)
ν ′
(1) −

4(16x4 + ν(1))

x2(x4 − 1)
; (J.7)

and at order n = 2 (we will not need ρ(2) and ν(2)):

0 =a′′2,(2) +
x4 + 3

x(x4 − 1)
a′2,(2) − (a′2,(1))

2 +
128x4 + 24a4,(1)

3x(x4 − 1)
a′2,(1) +

512x2(ν(1) − ρ(1))

x4 − 1

−
128x2(2a4,(1) − 3a2,(1))

x4 − 1
,

(J.8)

0 =a′4,(2) −
4x4

3(x4 − 1)
a′2,(2) +

4a4,(2)
x(x4 − 1)

+ 2x

(
(ρ′(1))

2 +
1

3
(ν ′

(1))
2

)
+

x(x4 − 9)

9(x4 − 1)
(a′2,(1))

2

−
4(3x4a4,(1) − 3a2,(1)x

4 − 32x4 + 6a4,(1))

9(x4 − 1)
a′2,(1) +

8((ν(1))
2 + 3(ρ(1))

2)

3x(x4 − 1)

−
256x3(ν(1) − ρ(1))

x4 − 1
+

2(96x4a4,(1) − 128a2,(1)x
4 + 3(a4,(1))

2)

x(x4 − 1)
,

(J.9)

0 = a′1,(2) +
2(x4 − 3)

3(x4 − 1)
a′2,(2) −

4

x(x4 − 1)
a4,(2) +

x(x4 − 9)

9(x4 − 1)
(a′2,(1))

2 −
8(ν2

(1) + 3ρ2(1))

3x(x4 − 1)

−
2(3a2,(1)x

4 − 3a1,(1)x
4 − 64x4 − 9a2,(1) + 12a4,(1) + 9a1,(1))

9(x4 − 1)
a′2,(1) −

2

x(x4 − 1)
(a4,(1))

2

+ 2x

(
(ρ′(1))

2 +
1

3
(ν ′

(1))
2

)
+

4(32x4 − 3a1,(1))

3x(x4 − 1)
a4,(1) +

64x3(a1,(1) − 4a2,(1))

3(x4 − 1)

−
256x3(ν(1) − ρ(1))

3(x4 − 1)
.

(J.10)
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Eqs. (J.3) and (J.4) can be solved analytically:

a2,(1) =32

(
ln(x) ln(1 + x)− dilog(x) + ln(x) ln

(
1 + x2

)
+ dilog(1 + x)

+
1

2
dilog(1 + x2)

)
+

16

3
π2 ,

a4,(1) =
16x4

3(x4 − 1)
(π2 − 8dilog(x) + 8 ln(x) ln

(
x2 + 1

)
+ 4dilog(x2 + 1) + 8dilog(1 + x)

+ 8 ln(x) ln(1 + x)− 12 ln(x)) ,

(J.11)

while the remaining ones have to be solved numerically. We find:

(n) a1,2,(n) a2,2,(n) r1,(n) n1,(n)

(1) 16
3
− 16π2

9
8 −4

3
π2 4π2

(2) 1541.8(0) -3358.0(0)

(J.12)

(n) a1,h,0,(n) a2,h,0,(n) rh,0,(n) nh,0,(n)

(1) -7.2270(2) 4
3
π2 -9.770(3) 29.310(9)

(2) 1336.5(8) -2069.9(8)

(J.13)

An important check on the numerical results are the first law of thermodynamics FL

(6.45) and the thermodynamic relation TR (6.47). Given the perturbative expansions

(J.2), we can represent

FL =
∞∑
n=1

fl(n) b
2n , TR =

∞∑
n=1

tr(n) b
2n , (J.14)

where
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at order n = 1:

fl(1) : 0 =
2

3
a2,h,0,(1) − 16− a1,h,0,(1) ,

tr(1) : 0 = −2a2,h,0,(1) −
16

3
− 2a1,2,(1) − a1,h,0,(1) ;

(J.15)

and at order n = 2:

fl(2) : 0 =
896

9
− 2

3
a1,h,0,(1)a2,h,0,(1) + a21,h,0,(1) − 2r2h,0,(1) −

2

3
n2
h,0,(1) +

19

9
a22,h,0,(1)

+
64

3
nh,0,(1) −

64

3
rh,0,(1) −

4

3
a2,2,(2) +

32

3
a2,h,0,(1) +

10

3
a2,h,0,(2)

+ 16a1,h,0,(1) − a1,h,0,(2) + 2a1,2,(2) ,

tr(2) : 0 = 2a1,h,0,(1)a2,h,0,(1) + 2a1,h,0,(1)a1,2,(1) + a21,h,0,(1) + 4a2,h,0,(1)a1,2,(1) +
128

3

+ 3a22,h,0,(1) − 2r2h,0,(1) −
2

3
n2
h,0,(1) +

32

3
a1,2,(1) − 2a1,2,(2) +

16

3
a1,h,0,(1)

− a1,h,0,(2) + 32a2,h,0,(1) − 2a2,h,0,(2) −
64

3
rh,0,(1) +

64

3
nh,0,(1) .

(J.16)

Using the results (J.12) and (J.13) (rather, we use more precise values of the parameters

reported — obtained from numerics with 40 digit precision) we find

at order n = 1:

fl(1) : 0 = −7.7822(6)× 10−15 , tr(1) : 0 = −7.1054(3)× 10−15 ; (J.17)

and at order n = 2:

fl(2) : 0 = −1.9681(5)× 10−6 , tr(2) : 0 = 2.4872(6)× 10−6 . (J.18)
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Using the perturbative expansion (J.2), it is straightforward to invert the relation be-

tween T/
√
B and b (see (6.40) and (6.30)), and use the results (6.39) with (6.43), along with

the analytical values for the parameters (J.12) and (J.13) (and the analytical expression

for a1,h,0,(1) obtained from (J.15)) to arrive at

RCFTSTU
= 1− 4B2

π4T 4
ln

T

µ
√
2
+

(
π2

18
+

a2,2,(2)
512

− 2

3
+ 8 ln2 T

µ
√
2

)
B4

π8T 8
+ · · ·

= 1− 4B2

π4T 4
ln

T

µ
√
2
+

(
−6.67694906(1) + 8 ln2 T

µ
√
2

)
B4

π8T 8
+O

(
B6

T 12
ln3 T

µ

)
.

(J.19)

It is important to keep in mind that the value a2,2,(2) is sensitive to the matter content

of the gravitational dual — set of relevant operators in CFTSTU that develop expectation

values in anisotropic thermal equilibrium.

J.0.2 CFTPW,m=0

The high temperature expansion of the Z2 symmetric, χ ≡ 0 phase, of anisotropic CFTPW,m=0

plasma thermodynamics corresponds to the perturbative expansion in b. In what follows

we study anisotropic thermodynamics to order O(b4) inclusive. Introducing

a1 = 1 +
∞∑
n=1

a1,(n) b
2n , a2 = 1 +

∞∑
n=1

a2,(n) b
2n , a4 = 1 +

∞∑
n=1

a4,(n) b
2n ,

α =
∞∑
n=1

α(n) b
2n ,

(J.20)
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so that (see (6.56) and (6.57) for the asymptotics)

a2,2,0 =
∞∑
n=1

a2,2,0,(n) b
2n , a4,2,0 =

∞∑
n=1

a4,2,0,(n) b
2n , α1,0 =

∞∑
n=1

α1,0,(n) b
2n ,

a1,h,0 = 1 +
∞∑
n=1

a1,h,0,(n) b
2n , a2,h,0 = 1 +

∞∑
n=1

a2,h,0,(n) b
2n ,

rh,0 = 1 +
∞∑
n=1

rh,0,(n) b
2n ,

(J.21)

we find

at order n = 1:

0 =a′′2,(1) +
x4 + 3

x(x4 − 1)
a′2,(1) −

128x2

x4 − 1
, (J.22)

0 =a′4,(1) −
4x4

3(x4 − 1)
a′2,(1) +

4(16x4 + a4,(1))

x(x4 − 1)
, (J.23)

0 =a′1,(1) +
2(x4 − 3)

3(x4 − 1)
a′2,(1) +

4(16x4 − 3a4,(1))

3x(x4 − 1)
, (J.24)

0 =α′′
(1) +

x4 + 3

x(x4 − 1)
α′
(1) +

4(16x4 − 3α(1))

3x2(x4 − 1)
; (J.25)

and at order n = 2 (we will not need α(2)):

0 =a′′2,(2) +
x4 + 3

x(x4 − 1)
a′2,(2) +

128x4 + 24a4,(1)
3x(x4 − 1)

a′2,(1) − (a′2,(1))
2

−
128x2(2a4,(1) + 4α(1) − 3a2,(1))

x4 − 1
,

(J.26)
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0 = a′4,(2) −
4x4

3(x4 − 1)
a′2,(2) + 2x(α′

(1))
2 +

x(x4 − 9)

9(x4 − 1)
(a′2,(1))

2

−
4(x4(3a4,(1) − 3a2,(1) − 32) + 6a4,(1))

9(x4 − 1)
a′2,(1) +

8α(1)(32x
4 + α(1))

x(x4 − 1)

+
2(32x4(3a4,(1) − 4a2,(1)) + 3a24,(1) + 2a4,(2))

x(x4 − 1)
,

(J.27)

0 =a′1,(2) +
2(x4 − 3)

3(x4 − 1)
a′2,(2) +

x(x4 − 9)

9(x4 − 1)
(a′2,(1))

2 +
2

9(x4 − 1)

(
x4(3a1,(1) − 3a2,(1) + 64)

− 9a1,(1) − 12a4,(1) + 9a2,(1)

)
a′2,(1) + 2x(α′

(1))
2 −

8α2
(1)

x(x4 − 1)
+

256x3α(1)

3(x4 − 1)

− 2

3x(x4 − 1)

(
6a4,(2) + 32x4(4a2,(1) − a1,(1)) + 2a4,(1)(−32x4 + 3a1,(1)) + 3a24,(1)

)
.

(J.28)

Eqs. (J.22) and (J.23) can be solved analytically, see (J.11), while the remaining ones have

to be solved numerically. We find:

(n) a2,2,0,(n) a4,2,0,(n) α1,0,(n) a1,h,0,(n) a2,h,0,(n) rh,0,(n)

(1) 8 16π2

9
−4

3
π2 -7.2270(2) 4

3
π2 -9.770(3)

(2) -1203.9(2) 1064.0(4) 652.34(4) -863.4(3)

(J.29)

An important check on the numerical results are the first law of thermodynamics FL

(6.66) and the thermodynamic relation TR (6.67). Given the perturbative expansions

(J.21), and using the representation (J.14), we find:

at order n = 1:

fl(1) : 0 =
2

3
a2,h,0,(1) − 16− a1,h,0,(1) ,

tr(1) : 0 = −2a2,h,0,(1) − 48− a1,h,0,(1) + 4a2,2,0,(1) + 2a4,2,0,(1) ;

(J.30)
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and at order n = 2:

fl(2) : 0 = −2

3
a2,h,0,(1)a1,h,0,(1) +

896

9
+

32

3
a2,h,0,(1) +

10

3
a2,h,0,(2) − 2r2h,0,(1) +

19

9
a22,h,0,(1)

+ a21,h,0,(1) − 8α2
1,0,(1) − a1,h,0,(2) −

16

3
a2,2,0,(2) − 2a4,2,0,(2) + 16a1,h,0,(1) −

64

3
rh,0,(1) ,

tr(2) : 0 =
2432

9
− 8a2,2,0,(1)a2,h,0,(1) − 4a2,h,0,(1)a4,2,0,(1) − 4a1,h,0,(1)a2,2,0,(1)

− 2a1,h,0,(1)a4,2,0,(1) + a21,h,0,(1) + 48a1,h,0,(1) − a1,h,0,(2) +
352

3
a2,h,0,(1) − 2a2,h,0,(2)

+ 2a2,h,0,(1)a1,h,0,(1) + 3a22,h,0,(1) − 2r2h,0,(1) + 8α2
1,0,(1) −

64

3
rh,0,(1) −

64

3
a2,2,0,(1)

+ 4a2,2,0,(2) −
32

3
a4,2,0,(1) + 2a4,2,0,(2) .

(J.31)

Using the results (J.29) (rather, we use more precise values of the parameters reported —

obtained from numerics with 40 digit precision) we find

at order n = 1:

fl(1) : 0 = −7.7822(6)× 10−15 , tr(1) : 0 = −2.9555(5)× 10−15 ; (J.32)

and at order n = 2:

fl(2) : 0 = −1.6451(1)× 10−6 , tr(2) : 0 = 2.2505(2)× 10−6 . (J.33)

Using the perturbative expansion (J.21), it is straightforward to invert the relation

between T/
√
B and b (see (6.64) and (6.30)), and use the results (6.62) with (6.43), along
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with the analytical values for the parameters (J.29), to arrive at

RCFTPW,m=0
= 1− 4B2

π4T 4
ln

T

µ
√
2
+

(
π2

18
+

a2,2,0,(2)
512

− 2

3
+ 8 ln2 T

µ
√
2

)
B4

π8T 8
+ · · ·

= 1− 4B2

π4T 4
ln

T

µ
√
2
+

(
−2.4697(5) + 8 ln2 T

µ
√
2

)
B4

π8T 8
+O

(
B6

T 12
ln3 T

µ

)
.

(J.34)

Note that while the first line in (J.34) is equivalent to the corresponding expression in

(J.19), the numerical values (compare the second lines) are different: this is related to

the fact that the value a2,2,0,(2) in the CFTPW,m=0 dual is “sourced” by a single dimension

∆ = 2 operator (the scalar field α in the holographic dual), while the value a2,2,(2) in the

CFTSTU model is “sourced” by two dimension ∆ = 2 operators (the scalar fields ρ and ν

in the holographic dual).

J.0.3 CFTPW,m=∞

The high temperature expansion corresponds to the perturbative expansion in b̂. In what

follows we study anisotropic thermodynamics to order O(b̂4) inclusive. Introducing

a1 = 1 +
∞∑
n=1

a1,(n) b̂
2n , a2 = 1 +

∞∑
n=1

a2,(n) b̂
2n , a4 = 1 +

∞∑
n=1

a4,(n) b̂
2n ,

p =
∞∑
n=1

p(n) b̂
2n ,

(J.35)
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so that (see (6.36) and (6.37) for the asymptotics)

a1,5 =
∞∑
n=1

a1,5,(n) b̂
2n , a2,5 =

∞∑
n=1

a2,5,(n) b̂
2n , p3 =

∞∑
n=1

p3,(n) b̂
2n ,

a1,h,0 = 1 +
∞∑
n=1

a1,h,0,(n) b̂
2n , a2,h,0 = 1 +

∞∑
n=1

a2,h,0,(n) b̂
2n ,

ph,0 = 1 +
∞∑
n=1

ph,0,(n) b̂
2n ,

(J.36)

we find

at order n = 1:

0 =a′′2,(1) +
x5 + 4

(x5 − 1)x
a′2,(1) −

32x2

9(x5 − 1)
, (J.37)

0 =a′4,(1) −
1

(x5 − 1)x

(
5

4
a′2,(1)x

6 − 5a4,(1) −
4

3
x4

)
, (J.38)

0 =a′1,(1) +
3x5 − 8

4(x5 − 1)
a′2,(1) +

1

(x5 − 1)x

(
4

9
x4 − 5a4,(1)

)
, (J.39)

0 =p′′(1) +
x5 + 4

x(x5 − 1)
p′(1) −

1

x2(x5 − 1)

(
6p(1) −

8

9
x4

)
; (J.40)

and at order n = 2 (we will not need p(2)):

0 =a′′2,(2) +
x5 + 4

x(x5 − 1)
a′2,(2) − (a′2,(1))

2 +
2(4x4 + 45a4,(1))

9x(x5 − 1)
a′2,(1)

+
32x2

9(x5 − 1)

(
3a2,(1) − 2a4,(1) − 2p(1)

)
,

(J.41)
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0 =a′4,(2) −
1

x(x5 − 1)

(
5

4
a′2,(2)x

6 − 5a4,(2)

)
+

x(x5 − 6)

8(x5 − 1)
(a′2,(1))

2 − 1

36(x5 − 1)

(
45a4,(1)x

5 − 45a2,(1)x
5 − 8x4 + 90a4,(1)

)
a′2,(1) +

x

2
(p′(1))

2 +
1

6x(x5 − 1)

(
16x4p(1)

+ 24x4a4,(1) − 32a2,(1)x
4 + 18p2(1) + 45a24,(1)

)
,

(J.42)

0 = a′1,(2) +
1

x(x5 − 1)

(
3

4
a′2,(2)x

6 − 5a4,(2) − 2a′2,(2)x

)
+

x(x5 − 6)

8(x5 − 1)
(a′2,(1))

2 +
x

2
(p′(1))

2

+
1

36(x5 − 1)

(
27a1,(1)x

5 − 27a2,(1)x
5 + 8x4 − 72a1,(1) − 90a4,(1) + 72a2,(1)

)
a′2,(1)

− 1

18x(x5 − 1)

(
45a24,(1) − 16x4p(1) − 8a1,(1)x

4 − 16x4a4,(1) + 32a2,(1)x
4 + 54p2(1)

+ 90a1,(1)a4,(1)

)
.

(J.43)

Eqs. (J.37) and (J.38) can be solved analytically1, while the remaining ones have to be

solved numerically. We find:

(n) a1,5,(n) a2,5,(n) p3,(n) a1,h,0,(n) a2,h,0,(n) ph,0,(n)

(1) -0.25581(6) −32
45

-0.645(2) -0.12878(5) 0.27576(4) -0.25155(9)

(2) 0.22327(6) -0.5489(8) 0.20658(5) -0.2934(9)
(J.44)

An important check on the numerical results are the first law of thermodynamics FL

(6.94) and the thermodynamic relation TR (6.95). Given the perturbative expansions

(J.36), and using the representation (J.14), we find:
1However, the resulting expressions are too long to be presented here. For the same reason we report

only the numerical expression for a2,h,0,(1).
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at order n = 1:

fl(1) : 0 = − 4

45
− 2

5
a1,5,(1) − a1,h,0,(1) +

1

5
a2,5,(1) ,

tr(1) : 0 = − 4

45
− 2a2,h,0,(1) − 2a1,5,(1) − a1,h,0,(1) ;

(J.45)

and at order n = 2:

fl(2) : 0 =
8

675
+

2

5
a1,5,(1)a1,h,0,(1) −

1

5
a1,h,0,(1)a2,5,(1) + a21,h,0,(1) +

16

45
a2,h,0,(1)

+ 2a2,h,0,(2) +
4

45
a1,h,0,(1) − a1,h,0,(2) −

8

45
ph,0,(1) −

4

225
a2,5,(1)

− 3

5
a2,5,(2) +

8

225
a1,5,(1) +

6

5
a1,5,(2) −

3

5
p2h,0,(1) + a22,h,0,(1) ,

tr(2) : 0 =
8

675
+

8

15
a2,h,0,(1) − 2a2,h,0,(2) −

8

45
ph,0,(1) −

3

5
p2h,0,(1) + 3a22,h,0,(1)

+ 4a2,h,0,(1)a1,5,(1) + 2a2,h,0,(1)a1,h,0,(1) + 2a1,5,(1)a1,h,0,(1) + a21,h,0,(1)

− 2a1,5,(2) − a1,h,0,(2) +
4

45
a1,h,0,(1) +

8

45
a1,5,(1) .

(J.46)

Using results (J.44) (rather, we use more precise values of the parameters reported —

obtained from numerics with 40 digit precision) we find

at order n = 1:

fl(1) : 0 = 1.8010(4)× 10−12 , tr(1) : 0 = 9.8392(9)× 10−12 ; (J.47)

and at order n = 2:

fl(2) : 0 = −1.0535(2)× 10−12 , tr(2) : 0 = −3.3646(2)× 10−12 . (J.48)
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Figure J.1: Numerical checks of the first law of thermodynamics dE = Tds (left panel,
fixed B and m) and the basic thermodynamic relation F = −PL (right panel) in the
nCFTm model with m =

√
2B. The dashed parts of the curves indicate thermodynamically

unstable branches of the model.

Using the perturbative expansion (J.36), it is straightforward to invert the relation

between T/
√
B and b̂ (see (6.93)), and arrive at

RCFTPW,m=∞ =1 +
3125

512
a2,5,(1)

B2

π4T 4
+

390625

4718592

(
90a1,5,(1)a2,5,(1) + 180a1,h,0,(1)a2,5,(1)

+ 180a22,5,(1) + 16a2,5,(1) + 45a2,5,(2)

)
B4

π8T 8
+O

(
B6

T 12

)
=1− 625

144

B2

π4T 4
+ 7.2682(1)

B4

π8T 8
+O

(
B6

T 12

)
.

(J.49)

J.1 FT and TR in a nCFTm model

In this appendix we verified the first law of the thermodynamics (FL) and the basic ther-

modynamic relation F = −PL (TR) in various anisotropic magnetized holographic plasma

models perturbatively in T√
B
≫ 1. In fact, we verified both constraints, in all the models

considered in chapter 6, for finite values of T√
B

. In Fig. J.1 we present the checks on these
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constraints in the nCFTm model with m√
2B

= 1.
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