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Abstract 

 
 

Dent-gouges and corrosions are two of the well-known failure mechanisms that threaten the 

structural integrity management of oil and gas pipelines.  Dent-gouges or corrosions markedly 

reduce the burst capacity of pipelines as a result of localized wall thickness reduction.  Fitness-for-

service (FFS) assessment is commonly employed to maintain the integrity of in-service pipelines 

containing flaws and the burst capacity evaluation is central to the FFS assessment.  As the 

predictive accuracy of existing FFS models is generally very poor, the use of machine learning 

(ML) tools provides a viable option to develop burst capacity models with high accuracy.  The 

main objective of the present thesis is to facilitate the FFS assessment of dent-gouges and 

corrosions based on ML tools. 

 

The first study proposes an improved burst capacity model for pipelines containing dent-gouges 

based on European Pipeline Research Group (EPRG) burst capacity model using full-scale burst 

tests by adding a correction term.  The Gaussian process regression (GPR) is employed to quantify 

the correction term, which is a function of six non-dimensional random variables incorporating the 

effect of pipe and geometric properties, sizes of dent-gouges, and internal pressure loading 

condition.  The accuracy of the improved EPRG model, i.e. EPRG-C model, is validated based on 

the comparison between the test and predicted burst capacities corresponding to the test data, and 

shown to be markedly greater than that of the EPRG model, suggesting the high effectiveness of 

the correction term. 

 

The second study presents a limit state-based assessment (LSBA) framework for pipelines 

containing dent-gouges to achieve reliability consistent outcomes.  The LSBA is formulated based 

on the EPRG-C model proposed in the first study by assigning appropriate partial safety factors to 

key variables as well as the internal pressure.  The calibration of partial safety factors is carried 

out by making the outcomes of LSBA are consistent with those of the reliability-based assessment 

given different pre-selected allowable failure probabilities.  The failure probabilities corresponding 

to extensive assessment cases covering wide ranges of pipe geometric and material properties, 

sizes of dent-gouges and the model error are evaluated using the first-order reliability method.  The 
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validity of the calibrated partial safety factors is demonstrated using independent assessment cases 

and two illustrative examples.  The advantages of LSBA over the deterministic assessment 

procedure in terms of achieving reliability-consistent assessment outcomes is further 

demonstrated. 

 

The third study employs a deep learning algorithm tabular generative adversarial network (TGAN) 

to generate synthetic burst tests by capturing the joint probability distribution based on real full-

scale burst test data of corroded pipelines.  Two other ML tools, random forest (RF) and extra tree 

(ET), are used to tune the hyper-parameters and validate the credibility of TGAN-generated data.  

A simple criterion is proposed to eliminate the outliers contained in the synthetic data.  The results 

indicate that the synthetic burst test data match well with the real data, suggesting that TGAN can 

accurately capture the joint probability distribution of real test data and generate credible synthetic 

data. 

 

The fourth study develops new ML-based burst capacity models for dent-gouges with combined 

real and synthetic full-scale burst tests.  The synthetic burst test data are generated using TGAN 

framework, which is proposed in the third study.  The results of which are used as the basis 

combined with the real burst tests to develop ML burst capacity models based on three ML tools, 

i.e. RF, ET and GPR.  The proposed models are shown to be more accurate than the models 

developed using real test data only.  The analysis result further indicates that trained models are 

markedly more accurate than the semi-empirical EPRG model widely employed in the pipeline 

industry. 
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Summary for Lay Audience 

 
Pipelines buried underground are commonly considered as the most efficient means to transport 

large quantities of oil and gas products such as the carbon dioxide and crude oil.  However, the 

structural integrity of pipelines is often threatened by various defects.  The occurrence of such 

defects leads to the reduction of the pressure containment capacity (i.e. burst capacity).  Dent-

gouges and corrosions are two of the most commonly observed failure mechanisms in practice, 

which pose direct threats to the pipeline integrity.  The fitness-for-service (FFS) assessment is 

generally employed in pipeline industry to ensure the integrity of pipelines.  This research aims at 

improving the accuracy of FFS assessment models for pipe specimens containing dent-gouges and 

corrosions using machine learning (ML) tools. 

 

Empirical and semi-empirical burst capacity models have been proposed in the literature to predict 

the burst capacity of pipelines containing dent-gouges, e.g. the dent-gouge fracture model adopted 

by the European Pipeline Research Group (EPRG).  However, as the simulation of a dent-gouge 

is very complex, the EPRG model is associated with considerable errors.  This study employs the 

machine learning (ML) tools to improve the accuracy of the EPRG model based on the full-scale 

burst test data.  The improved EPRG model can then be employed as the basis to develop limit 

state-based assessment framework to identify critical dent-gouge defects for mitigation to facilitate 

the performance-based pipeline integrity management.  However, because of the high cost to 

conduct full-scale burst tests, the number of available pipe segments reported in the literature is 

scarce, which casts doubt on the model credibility from a practical standpoint.  To address this 

limitation, the tabular generative adversarial network (TGAN) is used to generate synthetic full-

scale burst tests by capturing the joint probability.  By combing real and credible TGAN-generated 

synthetic data of dent-gouges, large quantities of full-scale burst tests are used to develop and 

validate ML burst capacity models. 
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1 Introduction 

1.1 Background 

Onshore and offshore pipelines have been the most critical methods to transport large quantities 

of oil and gas products from production sites to users.  Although pipelines have a good record of 

safety, historical incident data indicate that failures occasionally occur due to the mechanical 

damages, which result in serious consequences and threaten the structural integrity (Cosham and 

Hopkins 2004).  According to the pipeline incident data collected by the United Kingdom Onshore 

Pipeline Operators’ Association (UKOPA), mechanical damages led to 21.6% of oil and gas 

pipeline failures from 1962 to 2019 (Goodfellow et al. 2021).  Furthermore, 32.8% of reported 

incidents of onshore gas pipelines collected from 1984 to 2019 were caused by the mechanical 

damages in United States (Cosham and Hopkins 2020).  The mechanical damages are caused by 

the impact of an equipment that hits the external surface of pipelines.  A so-called dent-gouge, i.e. 

the combination of a dent and a gouge oriented along the longitudinal direction at the same 

location, is a more severe defect compared with the equivalent dent or gouge as a result of the 

comparatively lower burst capacity.  This markedly reduced burst capacity can be attributed to the 

geometrically unstable failure behaviors (Macdonald and Cosham 2005): dents can be introduced 

under either zero or non-zero internal pressures.  After the removal of indenters, dents tend to 

rebound elastically and re-round under the effect of internal pressure.  The rebounding and re-

rounding behaviors induce high plastic strain at the base of the gouge and reduce the material 

toughness due to the cold worked hardened layer.  The induced plastic strain then facilitates the 

initiation of new cracks and growth of existing cracks, which therefore reduces the burst capacity 

of a dent-gouge.  In addition to the mechanical damage, the metal-loss corrosion, characterized by 

the wall thickness reduction due to the interaction between soil and buried pipelines, is another 

major threat for the failure of pipelines (Cosham et al. 2007; Lam and Zhou 2016).  For instance, 

Lam and Zhou (2016) summarized that 32% of reported incidents were attributed to corrosion 

based on the incidents collected by the Pipeline and Hazardous Material Safety Administration 

(PHMSA) in the United States from 2002 to 2013.   

The fitness-for-service (FFS) assessment is commonly carried out to ensure the integrity of 

pipelines containing dent-gouges and corrosions.  The high resolution in-line inspection (ILI) tool 
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is used in a timely manner to periodically detect and size the defects.  For a dent-gouge, the ILI-

reported features typically include the maximum gouge depth dg (in the through wall thickness 

direction), maximum dent depth Hr (in the through wall thickness direction), and the maximum 

gouge length lg (in the pipe longitudinal direction) as depicted in Fig. 1.1 (McNealy et al. 2008; 

Gao and Krishnamurthy 2010; CSA 2019).  Given the ILI information, pipeline engineers are able 

to predict the burst capacity at the dent-gouges using existing empirical and semi-empirical burst 

capacity models, such as the Q-factor model and the dent-gouge fracture model adopted by the 

European Pipeline Research Group (EPRG) in the late 1980s, which is therefore referred to as the 

EPRG model in practice (Roovers et al. 2000; Macdonald and Cosham 2005; Seevam et al. 2008; 

Cosham and Hopkins 2020).  The EPRG model is shown to be more accurate than the Q-factor 

model based on multiple full-scale burst tests of pipe specimens containing dent-gouges reported 

in the literature (Jones 1982; Maxey 1986; Kiefner et al. 1996; Farrag and Francini 2011; Zarea et 

al. 2012; Zhao et al. 2021) and it has been used as the basis to develop a number of variants in the 

intervening years, e.g. models proposed by Spiekhout et al. (1986), Bai and Song (1997) and 

Linkens et al. (1998).  These models are proposed by deconstructing the EPRG model into several 

components and reformulating in terms of the failure assessment diagram approach.  However, no 

significant improvements are observed from the variants by comparing the predicted burst 

capacities against the test burst capacities on rings and.  This can be partially explained by the full-

scale burst tests used to evaluate the predictive accuracy of the EPRG model and its variants: the 

tests include the dent depths measured under zero pressures only, while those tests associated with 

the dent depths measured under non-zero pressures are excluded from the database.  Furthermore, 

the exclusion of the gouge length in the definition of the EPRG model casts doubt on its application 

from a practical standpoint.  These observations suggest that the EPRG model does not adequately 

capture the effect of geometric properties and loading conditions (i.e. zero or non-zero pressure at 

the introduction of dents) on the burst capacity of dent-gouged pipelines. 
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Figure 1.1 A dent-gouged defect on a pipe segment 

For an ILI-detected corrosion defect, the maximum depth d, maximum length l and maximum 

width w (see Figure 1.2) are reported and used in practice to evaluate the corresponding burst 

capacity based on the semi-empirical FFS models, e.g., B31G Modified (Kiefner and Vieth 1989), 

CSA (CSA 2019), DNV (DNV 2010) and RSTRENG (Kiefner and Vieth 1990).  The accuracy of 

these burst capacity models has been evaluated by comparing the test burst capacities with the 

corresponding burst capacities predicted by the practical FFS assessment models based on full-

scale burst tests involving artificially-induced and naturally-occurring corrosion anomalies (Zhou 

and Huang 2012; Amaya-Gómez et al. 2019).  The results indicate that all of these well-known 

models are associated with considerable model errors and this observation is potentially attributed 

to the ignorance of the effect of the corrosion width, which can to some extent affect the test burst 

capacity (Su et al. 2016; Zhang and Zhou 2020).  Studies focusing on developing burst capacity 

models by incorporating the corrosion width have also been reported in recent years based on the 

parametric analysis cases using finite element analysis (FEA) (Su et al. 2016; Shuai et al. 2017; 

Sun and Cheng 2018; Bao et al. 2018; Arumugam et al. 2020; Zhang and Zhou 2021).  It should 

be emphasized that the corrosion anomalies are idealized as regular-shaped in performing 

parametric FEA.  The results suggest that the predicted burst capacity decreases as the rectangular-

shaped corrosion width increases with all other parameters unchanged, while the width effect 

indicated by the semi-ellipsoidal-shaped corrosion anomalies is beneficial on the burst capacity, 

especially for deep, relatively short defects (Su et al. 2016; Zhang and Zhou 2021).  However, the 

idealized corrosion anomalies fail to capture the geometric characteristics of naturally-occurring 
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defects such that the artificially-induced defects are somewhat inappropriate for the FFS 

assessment studies. 

 

Figure 1.2 A corrosion defect on a pipe segment 

To address the above-described inaccuracy of the existing FFS models for dent-gouged and 

corroded pipelines, machine learning (ML) tools are recognized as possible solutions to accurately 

determine the burst capacity of pipelines containing dent-gouges and corrosions.  The use of ML 

tools has been widely applied to the regression tasks and various studies have reported the 

successful application of robust ML models in the pipeline integrity management practice (Lu et 

al. 2021a; Phar and Dar 2021; Zhang and Tian 2022).  For instance, Kumar et al. (2022) developed 

an artificial neural network model to predict the failure pressure of pipe specimens with interacting 

circumferentially-aligned corrosion defects subjected to combined internal pressure and axial 

compressive stress.  Phan and Dhar (2021) used three ML tools, namely the support vector 

regression, random forest and artificial neural network, to predict the burst capacity of corroded 

pipelines based on full-scale burst tests of pipe specimens.  The analysis results suggested that the 

ML-based models provided more accurate predictions than those of the existing empirical models.   

It is noted that the quantity of full-scale burst tests of pipe specimens is critical to the development 

and validation of ML-based burst capacity models.  However, the majority of the proposed ML-

based burst capacity models reported in the literature are developed based on limited number of 

full-scale burst test data, which somewhat reduces the credibility of applying proposed burst 

capacity models in practice.  This limitation is possibly attributed to the fact that defects are 

sometimes not able to be detected by ILI tools such as pipes with large buckles or large dents 
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because the tools won’t fit, thus reducing the quantity of full-scale burst test data (CSA 2019).  In 

addition, the execution of full-scale burst tests of naturally occurring defects is costly and time-

consuming, which again reduces the number of available data to be collected.  To address the 

above-described data scarcity, the sampling of synthetic full-scale burst test data by capturing the 

joint probability distribution of a given dataset is a possible option to enhance the burst test 

database.  The tabular generative adversarial network (TGAN) is therefore employed to generate 

synthetic data (Xu and Veeramachaneni 2018).  TGAN has been applied and validated in a few 

research fields but its application in the pipeline engineering field is however lacking in the 

literature.  By demonstrating the applicability of TGAN framework, it can be applied to enhance 

the given real dataset using TGAN-generated synthetic data.  The combined real and synthetic data 

can then be employed to develop ML-based burst capacity models for pipelines containing flaws 

to facilitate the FFS assessment of steel transmission pipelines. 

The burst capacity models are used to identify critical defects based on ILI-reported information: 

the predicted burst capacity is divided by the maximum operating pressure (MOP) to compute the 

so-called failure pressure ratio (FPR) (Yan et al. 2020).  If the value of FPR is equal to or less than 

the pre-selected safety factor (e.g. 1.25 for class location 1 as indicated by CSA Z662), the pipe is 

considered unfit for continued service and excavated (Yan et al. 2020).  It is noted that various 

uncertainties are involved in the deterministic FFS assessment, such as the measurement errors 

from the inherent ILI tool specification (McNealy et al. 2008; Gao and Krishnamurthy 2010; CSA 

2019), the material properties including the yield strength and material toughness (CSA 2019), and 

the considerable model errors involved in the practical FFS models (Macdonald and Cosham 2005; 

Zhou and Huang 2012), suggesting that the utilization of FPR is unlikely to achieve reliability 

consistent outcomes.  These uncertainties can be explicitly accounted for in the probabilistic of 

failure calculation using reliability-based assessment approach (Yan et al. 2020; Xiang et al. 2022).  

However, as it is computationally expensive to evaluate the probability of failure corresponding 

to each ILI-identified defect, the limit state-based assessment (LSBA) offers a rigorous framework 

to take these uncertainties into consideration as a compromise between deterministic and 

probabilistic FFS assessments.  By applying appropriate partial safety factors with respect to input 

variables, it is expected that the LSBA leads to reliability consistent outcomes such that pipeline 

engineers are able to identify critical defects and take mitigation actions. 
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1.2 Objective 

The support of the present research is financially provided by the Natural Sciences and Engineering 

Research Council of Canada (NSERC).  The main objectives of this thesis are summarized as 

follows. 

1) Proposed an improved burst capacity model for pipelines containing dent-gouges based on the 

EPRG model by adding a correction term quantified by the Gaussian process regression to improve 

the predictive accuracy. 

2) Presented a framework for the limit state-based assessment of pipeline containing dent-gouges 

based on the improved EPRG model by assigning partial safety factors to key input variables and 

pipeline internal pressure to achieve reliability consistent assessment outcomes. 

3) Developed a TGAN framework to effectively generate a large number of high-quality synthetic 

full-scale burst test data for corroded pipelines based on real burst tests to facilitate the 

development of engineering critical assessment models. 

4) Developed ML-based burst capacity models for pipelines containing dent-gouges using random 

forest, extra tree and Gaussian process regression algorithms based on combined TGAN-generated 

synthetic and real full-scale burst tests. 

This research will facilitate the FFS assessment employed in the pipeline integrity management 

practice for pipelines containing dent-gouges and corrosions using ML tools. 

1.3 Scope of the study 

This thesis consists of four main topics presented in Chapters 2 to 5, respectively.  Chapter 2 

proposes an improvement of the well-known European Pipeline Research Group (EPRG) burst 

capacity model for pipelines containing dent-gouges by adding a correction term to the EPRG 

model.  The Gaussian process regression (GPR) is employed to quantify the correction term as a 

function of six non-dimensional input variables based on full-scale dent-gouge burst tests collected 

from the open literature.  The linear prior mean function and squared exponential kernel are 

considered in the Gaussian process regression, with the corresponding hyper-parameters evaluated 

using the maximum likelihood method from the training set of the collected full-scale test data. 
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The predictive accuracy of the proposed model is validated based on a comparison of the observed 

and predicted burst capacities for the test data.  The relative importance of the input variables for 

the correction term is also evaluated to have an in-depth understanding of the influence of each 

parameter in developing the proposed model. 

Chapter 3 proposes a limit state-based assessment (LSBA) framework for dent-gouges.  The 

formulation of the LSBA framework is developed based on the improved EPRG model proposed 

in the Chapter 2 by employing factored dent depth, factored gouge depth and factored toughness.  

The partial safety factors are calibrated by making the outcomes of the LSBA are consistent with 

those of the reliability-based assessment through the use of confusion matrix for a set of critical 

assessment cases representative of in-service pipelines.  The probabilities of failures are evaluated 

using FORM by considering the considerable uncertainties contained in the pipe attributes, 

material properties, dimensions of dent-gouges and model error of the improved EPRG model.  

The calibrated PSFs are validated based on the non-critical assessment cases and two hypothetical 

examples.  The advantages of LSBA are further investigated in comparison with the deterministic 

FFS assessment.  

Chapter 4 employs a deep learning tool tabular generative adversarial network (TGAN) to generate 

synthetic full-scale burst test data for corroded pipe specimens by capturing the joint probability 

distribution of five dimensionless random variables characterizing a database containing real full-

scale burst tests collected from the literature.  A simple criterion is proposed to identify outliers 

contained in the synthetic dataset.  Two machine learning models regarding the random forest (RF) 

and extra tree (ET) tools, are trained using the real and synthetic test data to predict the burst 

capacity of corroded pipelines for the purpose of tuning the hyper-parameters and validating the 

credibility of the synthetic data as well.  The credibility of generated synthetic data is evaluated by 

comparing the basic statistics, correlation matrices and marginal distributions with those of the 

real data and the accuracy of the ML-based models. 

Chapter 5 develops ML-based burst capacity models of steel pipelines containing dent-gouges 

using three machine learning tools, i.e. RF, ET and GPR.  A dataset containing real full-scale burst 

tests of pipe specimens containing dent-gouges is collected from the literature; the TGAN is then 

employed to generate synthetic dent-gouge test data to enhance the real test dataset.  The predictive 



8 
 

 

accuracy of the models trained using the combined synthetic and real test data is evaluated.  The 

accuracy of the three machine learning models trained is further assessed by comparing with that 

of the semi-empirical burst capacity model widely employed in the pipeline industry.  The 

importance of each variable in developing ML-based models are investigated as well. 

1.4 Thesis format 

This thesis is prepared in an Integrated-Article Format as specified by the School of Graduate and 

Postdoctoral Studies at Western University, London, Ontario, Canada containing six chapters. 

Chapter 1 presents the introduction of the thesis which includes the research background, objective 

of this thesis, scope of the study and thesis format. Chapters 2 through 5 are the main body of the 

thesis, of which each chapter solves an individual topic. The main conclusions and 

recommendations for future research regarding the topics in the thesis are provided in Chapter 6. 
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2 Improvement of Burst Capacity Model for Pipelines 
Containing Dent-gouges Using Gaussian Process 
Regression 

2.1 Introduction 

Mechanical damage (i.e. external mechanical interference) is a major cause of failures of onshore 

and offshore oil and gas transmission pipelines (Lam and Zhou 2016; Zhu and Wang 2018).  The 

mechanical damage can be dents, gouges or dents containing gouges (dent-gouges), often inflicted 

during the construction and excavation of the pipeline, or by trawling gear actions for offshore 

pipelines.  A plain dent is defined as a damage that causes a smooth change in the curvature of the 

pipe wall without any reduction in the wall thickness (Roovers et al. 2000).  Extensive 

experimental and numerical studies (Belonos and Ryan 1958; McClure et al. 1962; Maxey 1986; 

Hopkins et al. 1989; Blachut and Iflefel 2006) have shown that plain smooth dents do not adversely 

impact the burst capacity of pipelines.  A gouge is a metal-loss defect on the pipeline as a result of 

a foreign objective in contact with and scraping material out of the pipe external surface (Cosham 

and Hopkins 2020; Macdonald and Cosham 2005).  Although a gouge can have any orientation, 

those oriented along the longitudinal direction of the pipeline are the most severe because they are 

perpendicular to the hoop stress resulting from the pipe internal pressure.  Longitudinally-oriented 

gouges are therefore the focus of the relevant literature.   

The behavior of a dent-gouge under internal pressure is complex.  The dent undergoes elastic 

rebounding (i.e. spring-back) after the removal of the indenter and also tends to re-round under the 

internal pressure (Cosham and Hopkins 2020).  The base of the gouge may contain cracks; the re-

rounding of the dent induces a tensile strain around the gouge region, which facilitates the growth 

of existing cracks at the base of the gouge and initiation of new cracks.  The failure of the dent-

gouge under internal pressure typically involves a combination of plastic flow and ductile tearing 

(Cosham and Hopkins 2020; Macdonald and Cosham 2005).  The burst capacity of a dent-gouge 

is lower than that of the same plain dent without the gouge and that of the same gouge without the 

dent (Macdonald and Cosham 2005).  A large number of full-scale burst tests of pipe specimens 

containing dent-gouges have been reported in the literature (Jones 1982; Maxey 1986; Tyson and 

Wang 1988; Macdonald and Cosham 2005; Farrag and Francini 2011; Zarea et al. 2012; Zhao et 

al. 2021).  Empirical and semi-empirical models have also been developed to predict the burst 
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capacity of dent-gouges based on the full-scale burst test data (Macdonald and Cosham 2005).  

Perhaps the most well-known dent-gouge model in the pipeline industry is the semi-empirical 

fracture model originally developed at the British Gas in the 1980s and later adopted by the 

European Pipeline Research Group (EPRG) (Roovers et al. 2000; Macdonald and Cosham 2005), 

and is commonly known as the EPRG model in the pipeline industry (Seevam et al. 2008; 

Goodfellow et al. 2018).  The key assumptions involved in the EPRG model are: 1) the dent is 

smooth, continuous and longitudinally oriented with a constant width, and 2) the gouge is a 

longitudinally-oriented part-through wall crack with a constant depth (i.e. in the through wall 

thickness direction) and located at the deepest point of the dent (Cosham and Hopkins 2020).  

A few variations of the EPRG model have been reported in the literature (Cosham and Hopkins 

2020), e.g. the models proposed by Bai and Song (1997), Linkens et al. (1998) and Francis et al. 

(2004).  The model proposed by Linkens et al. (1998) has been incorporated in the software 

package, PIPIN, used by the Health and Safety Executive (HSE) of the United Kingdom, whereas 

Francis et al.’s model was commissioned by the United Kingdom Onshore Pipeline Association 

(UKOPA) and therefore is also known as the UKOPA model.  However, none of such models 

offered significant improvements to the original EPRG model as pointed out by Cosham and 

Hopkins (2020).  It is a challenging task to develop an accurate dent-gouge model as many factors 

and uncertainties affect the burst capacity of a dent-gouge (Cosham and Hopkins 2020): the sizes 

and shapes of the dent and gouge, the spring-back and re-rounding of the dent, the cracking at the 

base of the gouge, and the lowered ductility and toughness of the work hardened layer at the base 

of the gouge.  Cosham and Hopkins (2020) compared the observed and EPRG model-predicted 

burst capacities for a large set of full-scale burst tests collected from the literature and observed 

marked scatter in the predictions.   

The objective of the present study is to improve the predictive accuracy of the dent-gouge model 

by utilizing full-scale burst tests of dent-gouges reported in the literature and the Gaussian process 

regression (GPR), which is a class of non-parametric Bayesian models that have been widely used 

in machine learning (Rasmussen and Williams 2006).  The last few years have seen applications 

of GPR in a wide range of civil engineering fields.  To cite a few examples, Lee et al. (2020) 

developed a surrogate model to predict the mechanical characteristics of corroded steel strands by 

combining GPR and finite element analyses.  Olalusi and Awoyera (2021) employed GPR to 
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evaluate the shear resistance of steel fiber reinforced concrete beams.  Almustafa and Nehdi (2021) 

used GPR to predict the response of reinforced concrete slab retrofitted with fiber reinforced 

polymer under blast loading.  Heng et al. (2022) incorporated GPR in the probabilistic fatigue 

crack growth model for orthotropic steel bridge decks.  However, the use of GPR to develop or 

improve fitness-for-service assessment models for pipelines has, to the best of our knowledge, 

been scarcely reported in the literature.    

In this study, an extensive database of full-scale burst tests of pipe specimens containing dent-

gouges is first established from the open literature.  The test data are then used to evaluate and 

compare the accuracy of the EPRG model and its two variations, i.e. the models proposed by Bai 

and Song (1997) and Linkens et al. (1998) (referred to as the PIPIN model hereafter), respectively 

(the UKOPA model is similar to the PIPIN model and therefore not considered in the present 

study).  The comparison provides the basis for selecting an appropriate dent-gouge model for 

improvement, which involves adding a correction term to the model.  The prior and posterior 

distributions of the correction term are evaluated using GPR based on the above-mentioned burst 

test database.  The accuracy of the improved dent-gouge model is further demonstrated using the 

burst test database.   

The rest of this chapter is organized as follows.  Section 2.2 briefly reviews the three dent-gouge 

burst capacity models mentioned above.  Section 2.3 presents details of the full-scale burst test 

data collected from the literature and a comparison of the predictive accuracy of the burst capacity 

models based on the collected data.  Section 2.4 describes the GPR methodology and its application 

to the improvement of the dent-gouge model, as well as the validation of the improved dent-gouge 

model based on the test data, followed by concluding remarks in Section 2.5.  

2.2 Burst capacity models for dent-gouges 

EPRG model 

The burst capacity at a dent-gouge, PEPRG, according to the EPRG model is computed as follows 

(Roovers et al. 2000; Macdonald and Cosham 2005; Goodfellow et al. 2018).   

𝑃𝐸𝑃𝑅𝐺 =
4𝑤𝑡�̅�

𝜋𝐷
cos−1 [exp− {113

1.5𝜋𝐸

�̅�2𝐴23𝑑𝑔
(𝑌1 (1 − 1.8

𝐻0

𝐷
) +
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𝑌2 (5.1
𝐷

𝑤𝑡

𝐻0

𝐷
))

−2

exp [
ln(0.738𝐶𝑣23)−1.9

0.57
]}]  (2.1) 

𝜎 = 1.15𝜎𝑦 (1 −
𝑑𝑔

𝑤𝑡
) (1 −

𝑑𝑔

𝑀1𝑤𝑡
)
−1

 (2.2) 

𝑀1 = √1 +
0.52𝑙𝑔

2

𝐷𝑤𝑡
  (2.3) 

𝑌1 = 1.12 − 0.23 (
𝑑𝑔

𝑤𝑡
) + 10.6 (

𝑑𝑔

𝑤𝑡
)
2

− 21.7 (
𝑑𝑔

𝑤𝑡
)
3

+ 30.4 (
𝑑𝑔

𝑤𝑡
)
4

  (2.4) 

𝑌2 = 1.12 − 1.39 (
𝑑𝑔

𝑤𝑡
) + 7.32 (

𝑑𝑔

𝑤𝑡
)
2

− 13.1 (
𝑑𝑔

𝑤𝑡
)
3

+ 14.0 (
𝑑𝑔

𝑤𝑡
)
4

  (2.5) 

where 𝜎 is the so-called flow stress; D and wt are the pipe outside diameter and wall thickness, 

respectively; dg and lg are the gouge depth and length, respectively; H0 is the dent depth measured 

after the removal of the indenter (i.e. after spring-back) at zero internal pressure; M1 is the so-

called Folias (bulging) factor; y and E are the yield strength and Young’s modulus, respectively, 

of the pipe steel; Cv23 and A23 are the upper-shelf impact energy and fracture area, respectively, of 

the 2/3-size Charpy v-notch (CVN) specimen, and Y1 and Y2 are the compliance factors estimated 

by empirical fitting equations, i.e. Eqs. (2.4) and (2.5).  Because of the empirical nature of 

converting the CVN impact energy to the material fracture toughness implicit in Eq. (2.1), y and 

E must be in MPa, dg in mm, Cv23 in Joule, and A23 in mm2.   

It should be clarified that the EPRG model as presented in Roovers et al. (2000) assumes the gouge 

length to be infinitely long and therefore does not include the gouge length in the definition of the 

flow stress 𝜎 as given by Eq. (2.2).  Equation (2.2) is adopted from Cosham and Hopkins (2020) 

as they indicated that the inclusion of the (finite) gouge length in the flow stress definition leads 

to less conservative predictions for tests involving pipe vessels.  By setting the gouge length to be 

infinity in Eq. (2.2), the flow stress reverts to that defined in Roovers et al. (2000).  Given the 

above, Eqs. (2.1) - (2.5) are still referred to as the EPRG model in the present study for simplicity 

and the fact that the EPRG model is well recognized in the pipeline industry.   

In practice, the dent depth is often measured after spring-back at non-zero pressure conditions (e.g. 
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from an inline inspection); therefore, the following empirical equation has been proposed by EPRG 

to compute H0 from Hr (i.e. the dent depth after spring-back at non-zero pressure) (Roovers et al. 

2000):   

𝐻0 = 1.43𝐻𝑟  (2.6) 

Roovers et al. (2000) reported that the EPRG model was applied to 240 full-scale tests with H0/D 

ranging from 0.25 to 10.15%, dg/wt from 1.4 to 66.3%, D from 168 to 1050 mm, wt from 5.74 to 

16.25 mm, lg from 50 to 543.75 mm, y from 279 to 587 MPa and Cv23 from 11 to 142 J.  

Bai and Song’s (B&S) model  

The B&S model for the burst capacity at a dent-gouge, PB&S, involves the following equations (Bai 

and Song 1997).  

𝑃𝐵&𝑆 =
4𝑤𝑡𝜎𝑝

𝜋𝐷
cos−1 [exp (−

125𝜋𝐸(𝐶𝑣−17.6)

𝑌𝐵&𝑆
2 𝐴𝑑𝑔𝜎𝑝

2 )]  (2.7) 

𝜎𝑝 = 𝜑𝜎𝑦 (1 −
𝑑𝑔

𝑤𝑡
) (1 −

𝑑𝑔

𝑀2𝑤𝑡
)
−1

 (2.8) 

𝑀2 =
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√1 + 0.6275 (

𝑙𝑔

√𝐷𝑤𝑡
)
2

− 0.003375 (
𝑙𝑔

√𝐷𝑤𝑡
)
4

 (
𝑙𝑔

√𝐷𝑤𝑡
)
2

≤ 50

0.032 (
𝑙𝑔

√𝐷𝑤𝑡
)
2

+ 3.3                                       (
𝑙𝑔

√𝐷𝑤𝑡
)
2

> 50

  (2.9) 

𝑌𝐵&𝑆 =
𝐹

√𝑄
(1 −

1.8𝐻0

𝐷
+
5.1𝑍𝐻0

𝑤𝑡
) (2.10) 

where σp is similar to 𝜎 (Eq. (2.2)) in the EPRG model except that the 1.15 factor in Eq. (2.2) is 

replaced by the factor  in Eq. (2.8), the value of which is suggested by Bai and Song (1997) to be 

around 1.25; M2 is similar to M1 (i.e. the Folias factor) in the EPRG model; Cv and A are the upper-

shelf impact energy and fracture area of the full-size CVN specimen, respectively, and F, Q and Z 

are factors involved in calculating the stress intensity factor at a surface crack in plates based 

primarily on equations given by Newman and Raju (1981) (see Appendix A for detailed 

expressions).  Similar to the EPRG model, the empirical nature of converting the CVN impact 
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energy to the material fracture toughness implicit in Eq. (2.7) dictates that the units of Cv, A, E, σp 

and dg in Eq. (2.7) must be J, mm2, MPa, MPa and mm, respectively.     

PIPIN model 

The PIPIN model is based on the EPRG model but presented in a failure assessment diagram 

(FAD) format (Linkens et al. 1998; Chaplin 2015; Cosham and Hopkins 2020).  The Option 1 FAD 

in R6 Rev 3 (Milne et al. 1988) is incorporated into the model.  The PIPIN model assumes that the 

gouge is a notch with a micro crack at the base of the notch and that the depth of the micro crack 

is a linear function of the product of the hoop stress and dent depth (Cosham and Hopkins 2020).  

The burst capacity based on the PIPIN model, PPIPIN, is given by (Linkens et al. 1998; Chaplin 

2015),  

𝑃𝑃𝐼𝑃𝐼𝑁 =
2𝑤𝑡𝜎𝑃𝐼𝑃

𝐷
  (2.11) 

where PIP is the nominal hoop stress to cause the assessment point corresponding to the dent-

gouge to fall on the assessment line in the context of FAD.  The assessment line is described by 

the following equation: 

𝐾𝑟
𝑐 = (1 − 0.14𝐿𝑟

2)(0.3 + 0.7 exp(−0.65𝐿𝑟
6))  (2.12) 

𝐿𝑟 =
𝜎𝑃𝐼𝑃

𝜎𝑦(1−
𝑑𝑔

𝑤𝑡
)
  (2.13) 

where 𝐾𝑟
𝑐 is the critical fracture ratio at a given plastic collapse load ratio (Lr).  The fracture ratio, 

Kr, corresponding to the assessment point is given by,  

𝐾𝑟 =
𝐾𝑝+𝐾𝑠

𝐾𝐼𝐶
+ 𝜌  (2.14) 

𝐾𝑝 = 𝑌3𝐾𝑆𝐶𝐹𝜎𝑚√𝜋𝑎𝑚  (2.15) 

𝐾𝑠 = 𝑌4𝐾𝑆𝐶𝐹𝜎𝑏√𝜋𝑎𝑚  (2.16) 

𝜎𝑚 = 𝜎𝑃𝐼𝑃(1 −
1.8𝐻0

𝐷
)  (2.17) 
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𝜎𝑏 =
5.1𝜎𝑃𝐼𝑃𝐻0

𝑤𝑡
  (2.18) 

where Kp and Ks are the stress intensity factors corresponding to the primary and secondary 

stresses, respectively, calculated using the depth of the micro crack (am); KIC is the fracture 

toughness;  is the plastic correction factor; KSCF is a stress concentration factor for the micro-

crack and assumed to equal 3; m and b are the membrane and bending stresses at the dent, 

respectively.  Details of the evaluation of Y3, Y4, am, and  are given in Appendix B.  If the direct 

measurement of KIC is unavailable, an empirical equation, i.e. KIC = (CvE/A)0.5, is recommended to 

estimate KIC.   

2.3 Full-scale burst test data 

2.3.1 Data collection 

Burst tests of full-scale pipe specimens containing dent-gouges are collected from the open 

literature to evaluate the predictive accuracy of the three burst capacity models reviewed in Section 

2.2.  The criteria employed to collect the test data are: 1) the pipe specimens are thin-walled, i.e. 

D/wt ≥ 20, subjected to internal pressure only, and 2) each specimen contains an external 

longitudinally oriented part-through wall gouge associated with an axially oriented dent.  The 

information of a given test may be reported in more than one source; in this case, the first-hand 

information (i.e. that reported by the researchers who conducted the test) is recorded in the present 

study because such information is considered the most reliable.  Cross-checking has also been 

performed to prevent double counting the same test data.  A total of 190 test data are collected 

from the literature.  Table 2.1 summarizes the data sources, sequence of introducing the dent and 

gouges on the specimen, and internal pressure condition (i.e. zero or non-zero pressure) at which 

the dent and gouge are introduced on the specimen.  Note that 102 out of the 123 data points 

reported by Jones (1982) are tests involving pipe rings (as opposed to vessels) with dent-gouges.  

For the pipe ring tests, the gouge length is considered infinite and therefore not reported.  Detailed 

information of each of the 190 data points is provided in Appendix C.  The ranges of the geometric 

and material properties of the pipe specimens involved in the collected test data are summarized 

in Table 2.2.  Although dents are introduced at non-zero internal pressure for some of the tests, the 

dent depths corresponding to zero internal pressure are reported in all 190 test data.   
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Table 2.1 A summary of 190 full-scale burst tests of pipe specimens containing dent-gouges  

Source # of data points Dent Gouge 

Jones (1982) 123 1a, NPb 2a, NP 

Maxey (1986) 25 2, NP 1, NP 

Kiefner et al. (1996) 17 2, Pb 1, NP 

Farrag and Francini (2011) 
17 2, P 1, NP 

3 Simultaneously introduced, P 

Zarea et al. (2012) 5 Simultaneously introduced, NP 

Total 190  

a: “1” and “2” indicate the order in which the dent (or gouge) is introduced on the specimen.  

b: “NP” and “P” represent that the dent (or gouge) is introduced at zero and non-zero internal 

pressure, respectively.   

Table 2.2 Ranges of geometric and material properties of the 190 test data 

 D (mm) wt (mm) D/wt H0/D (%) dg/wt (%) lg (mm) σy (MPa) Cv23 (J) 

Min 219.1 4.8 34.5 0.4 1.4 50.8 279 16.3 

Max 1066.8 18.0 110.7 23.2 60 508.0a 543 160.5 

a: The gouges on the pipe ring specimens are considered infinitely long.  

2.3.2 Predictive accuracy of dent-gouge models based on test data 

The three burst capacity models described in Section 2.2 are used to predict the burst capacities of 

the test specimens described in Section 2.3.1.  For the ring specimens, the predicted burst capacities 

are computed by assuming lg = ∞ in the corresponding formulations of each model.  Furthermore, 

the actual (as opposed to nominal) geometric and material properties of the pipe specimens are 

employed in the burst capacity evaluations.  The test and predicted burst capacities, both 

normalized by P0 = 2wtσy/D, are compared in Fig. 2.1 for the three dent-gouge models considered.  

Figure 2.1 indicates that there is marked scatter in the burst capacities predicted by all three models.  

Table 2.3 summarizes the means and coefficients of variation (COV) of the test-to-predicted ratios 

corresponding to the three models for the 190 test data.  The results in Table 2.3 indicate that the 

EPRG and PIPIN models are on average somewhat conservative, whereas the B&S model is 

slightly non-conservative on average.  The burst capacities predicted by all three models are 

associated with high variability as evident from the COV values of the corresponding test-to-

predicted ratios.   
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We also separate the entire dataset into two subsets, one (subset #1) containing specimens in which 

the dent is introduced under zero internal pressure and the other (subset #2) containing specimens 

in which the dent is introduced under non-zero internal pressure.  The means and COVs of the test-

to-predicted ratios corresponding to these two subsets are also summarized in Table 2.3.  The 

results indicate that the dent-gouge models result in on average markedly more conservative 

predictions for subset #2 than those for subset #1.  Since the B&S and PIPIN models do not provide 

marked improvements in the predictive accuracy over the EPRG model, the latter is selected as 

the basis for the model improvement by using GPR as detailed in Section 2.4.   

              

                          (a) EPRG model                                                    (b) B&S model 

  

     (c) PIPIN model 

Figure 2.1 Comparisons of the normalized test and predicted burst capacities for the 190 

test data 
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Table 2.3 Mean and COV of the test-to-predicted ratios corresponding to the three dent-

gouge models 

Model  
Internal pressure at the 

introduction of dent 
# of applicable 

test data  

Test-to-predicted ratios 

Mean COV (%) 

EPRG 

Zero  153 1.05 40.3 

Non-zero  37 1.83 41.6 

All 190 1.21 49.2 

B&S 

Zero  153 0.85 33.9 

Non-zero 37 1.48 41.3 

All 190 0.97 45.9 

PIPIN 

Zero  153 1.00 51.1 

Non-zero 37 2.39 67.4 

All 190 1.27 78.8 

2.4 Improvement of the dent-gouge model using GPR 

2.4.1 Gaussian process regression 

For clarity and easy reference, GPR is briefly reviewed in this section.  A Gaussian process is a 

collection of Gaussian random variables.  It follows that the entire collection or any of its subsets 

follows a joint Gaussian distribution (Rasmussen and Williams 2006).  Let Y(x) denote a function 

of an s-dimensional vector of input variables x = {x1, x2, …, xs}.  In the following, bold non-italic 

symbols are used to denote vectors and matrices, whereas regular italic symbols are used to denote 

scalars and elements of vectors (or matrices).  Assume that Y = {Y(x1), Y(x2), …, Y(xn)} (xi = {xi,1, 

xi,2, …, xi,s} for i = 1, 2, …, n) forms a Gaussian process.  The distribution of Y is expressed as Y 

~ N(, ), where N(•, •) denotes the joint Gaussian distribution, and  and  denote the mean 

vector and covariance matrix, respectively, of Y.  The covariance between Y(xi) and Y(xj), ij (i, j 

= 1, 2, …, n), is evaluated as ij = k(xi, xj), where k(xi, xj) is a suitably chosen covariance function 

(or kernel) of xi and xj (Rasmussen and Williams 2006).  Let Y be then divided into two disjoint 

subsets Yt and Yr of dimensions m and (n – m), respectively.  If values of Yt, yt, have been 

observed, it follows from the property of the joint Gaussian distribution that the distribution of Yr 

conditional on Yt = yt is also Gaussian and expressed as, 

Yr|(Yt = yt) ~ N(r|t, r|t) (2.19) 

𝛍𝑟|𝑡 = 𝛍r + 𝚺𝑟𝑡(𝚺𝑡)
−1(𝒚𝑡 − 𝛍t)  (2.20) 

𝚺𝑟|𝑡 = 𝚺𝑟 − 𝚺𝑟𝑡(𝚺𝑡)
−1(𝚺𝑟𝑡)

T (2.21) 
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where t and r are the (prior) covariance matrices of Yt and Yr, respectively; t and r are the 

(prior) mean values of Yt and Yr, respectively; rt is the (n-m) × m covariance matrix between the 

elements of Yr and those of Yt; “T” denotes transposition, and r|t and r|t are the mean and 

covariance of Yr conditional on yt (i.e. the posterior mean and covariance).  It follows from Eqs. 

(2.20) and (2.21) that the mean and covariance of Yr are updated based on observed values of Yt; 

this is the essence of GPR.  We refer to Yt and corresponding m × s values of the input variables, 

xtk (k = 1, 2, …, m), as the training set, whereas Yr and corresponding (n-m) × s values of the input 

variables, xru (u = 1, 2, …, n-m), are referred to as the regression set.  

The above formulations are obtained by assuming yt to be noise-free, whereas observations often 

contain noises (e.g. measurement errors) in practice.  To deal with noisy observations, define 

Zt = Yt +  (2.22) 

 ~ N(, n
2I) (2.23) 

where  is an m-dimensional vector of identical mutually-independent zero-mean Gaussian random 

variables that represent noises; n
2 is the variance of the noise, and I is an m × m unit matrix.  

Assuming  to be independent of Y leads to Zt ~ N(t, t + n
2I).  Consider the Gaussian process 

consisting of Yr and Zt.  The distribution of Yr conditional on observed values of Zt, zt, is then 

given by, 

Yr|(Zt = zt) ~ N(r|tn, r|tn) (2.24) 

𝛍𝑟|𝑡𝑛 = 𝛍𝑟 + 𝚺𝑟𝑡(𝚺𝑡 + 𝜂𝑛
2𝐈)−1(𝒛𝑡 − 𝛍𝑡)  (2.25) 

𝚺𝑟|𝑡𝑛 = 𝚺𝑟 − 𝚺𝑟𝑡(𝚺𝑡 + 𝜂𝑛
2𝐈)−1(𝚺𝑟𝑡)

T (2.26) 

The key component of GPR is the kernel, k(xi, xj), used to define the covariance matrix of Y.  Many 

kernels have been proposed in the literature such as the squared exponential, Matérn and rational 

quadratic functions (Rasmussen and Williams 2006).  For example, the most commonly used 

squared exponential (SE) function, kSE(xi, xj), is given by: 
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𝑘𝑆𝐸(𝐱𝑖, 𝐱𝑗) = 𝜂𝑦
2 exp(−

1

2
∑

(𝑥𝑖,𝑞−𝑥𝑗,𝑞)
2

𝑙𝑞
2

𝑠
𝑞=1  )  (2.27) 

where y
2 is the variance of Y, and lq (q = 1, 2, …, s) is the so-called length scale associated with 

input variable xq.  The length scale lq characterizes the relevance of xq: the greater is lq, the less 

relevant is xq in GPR.  The SE function is a stationary kernel in that the covariance depends only 

on the separation between xi and xj.  

It is common to consider a zero prior mean in GPR, i.e. t = r = 0.  Note that the posterior mean 

(r|t or r|tn
) is in general non-zero.  However, explicit mean functions can also be used to reflect 

the specific prior knowledge of Y (Murphy 2012).  For example, the prior mean of Y(xi) (i = 1, 2, 

…, n), i, can be assumed as a linear function of the corresponding input variables (Rasmussen 

and Nickish 2010): 

𝜇𝑖 = 𝑏0 + 𝒃
T𝐱𝑖  (2.28) 

where b0 and b = {b1, b2, …, bs}
T are the parameters of the linear mean function.  Let  denote the 

vector of parameters involved in GPR, also known as the hyper-parameters of GPR.  In the case 

of the squared exponential kernel combined with the linear mean function,  = {y, lq, b0, bq (q = 

1, 2, …, s), n}.  Let L(|zt) denote the likelihood of the observed values zt.  Then the log likelihood, 

ln(L(|zt)), is given by 

ln(𝐿(𝛉|𝐳𝑡)) = −
1

2
(𝐳𝑡 − 𝛍𝑡)

T(𝚺𝑡 + 𝜎𝑛
2𝐈)−𝟏(𝐳𝑡 − 𝛍𝑡) −

1

2
ln(det(𝚺𝑡 + 𝜎𝑛

2𝐈)) −
m

2
ln(2π)  (2.29) 

where det(•) denotes the determinant of •.  The first and second terms on the right hand side of 

Eq. (2.29) represent, respectively, the fit of the model to the data and penalty due to the model 

complexity (Wilson et al. 2014).  Given the training set, i.e. zt and xtk (k = 1, 2, …, m),  can be 

estimated from the maximum likelihood method: 

�̃� = argmax
𝛉

{ln(𝐿(𝛉|𝐳𝑡))}  (2.30) 

where �̃� is the maximum likelihood estimate of .  Given �̃�, zt, xtk and xru (u = 1, 2, …, n-m), the 

updated mean and covariance of Yr conditional on zt can be readily obtained from Eqs. (2.25) and 
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(2.26).  

2.4.2 Using GPR to improve the EPRG model 

To improve the EPRG model, we propose to add a correction term Y to the model: 

𝑃𝐸𝑃𝑅𝐺−𝐶

𝑃0
=

𝑃𝐸𝑃𝑅𝐺

𝑃0
+ 𝑌  (2.31) 

where PEPRG-C denotes the burst capacity predicted by the improved EPRG model (referred to as 

the EPRG-C model hereafter), and P0 = 2wtσy/D.  The correction term Y is expected to be a function 

of the pipe geometric and material properties as well as the sizes of the dent and gouge.  As 

reflected from the results in Table 2.3, the predictive accuracy of the EPRG model is influenced 

by the internal pressure condition (zero or non-zero) at the time of introducing the dent.  This 

suggests that Y depends also on such a pressure condition.  It follows that Y is considered to be a 

function of the following six non-dimensional input variables:  

𝐱 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} = {
𝐷

𝑤𝑡
,
𝐻0

𝐷
,
𝑑𝑔

𝑤𝑡
,

𝑙𝑔

√𝐷𝑤𝑡
,
𝐴23(𝑤𝑡−𝑑𝑔)𝜎𝑦

𝐶𝑣23
, 𝜉} (2.32) 

where  is a binary variable that equals zero and unity for zero and non-zero internal pressures, 

respectively, at the introduction of the dent.  Two pipe material properties, i.e. σy and Cv23, are 

combined into a single non-dimensional variable x5 = A23(wt-dg)σy/Cv23 to approximately quantify 

the relative potential for plastic collapse and fracture of the remaining ligament at the gouge: (wt-

dg)σy quantifies the resistance to plastic collapse, whereas Cv23/A23 quantifies the resistance to 

fracture.  While the fracture ratio (Kr) and load ratio (Lr) are more relevant parameters to quantify 

fracture and plastic collapse, considering them as input variables for the correction term is 

problematic because it will introduce (likely strong) dependence between these variables and other 

variables such as H0/D, dg/wt and 
𝑙𝑔

√𝐷𝑤𝑡
 since Kr and Lr depend on the dent and gouge geometry as 

reflected in Eqs. (2.14) - (2.18) as well as in the formulations given in Cosham and Hopkins (2020).  

This may lead to numerical issues in the GPR updating.  Therefore, A23(wt-dg)σy/Cv23 is considered 

a more practical and robust choice than Kr and Lr.   

It is assumed that the correction terms corresponding to different sets of the input variables x form 

a Gaussian process (Y).  The 190 full-scale burst test data described in Section 2.3.1 can be 
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employed to evaluate the hyper-parameters of Y.  To this end, we separate the entire test dataset 

into a training set and a regression set.  The values of (Ptest – PEPRG)/P0 (Ptest denotes the test burst 

capacity) corresponding to the training set represent noisy observations of Yt, i.e. zt.  The noise 

can be attributed to the measurement error associated with Ptest.  Once the hyper-parameters are 

evaluated from the training set using the maximum likelihood method, the posterior means and 

covariance of the correction terms corresponding to the regression set are evaluated using Eqs. 

(2.25) and (2.26).  The accuracy of the correction term is assessed by comparing Ptest with PEPRG-

C for the regression set, where PEPRG-C for a given data point in the regression set is evaluated as, 

𝑃𝐸𝑃𝑅𝐺−𝐶

𝑃0
=

𝑃𝐸𝑃𝑅𝐺

𝑃0
+ 𝜇𝑟|𝑡𝑛 (2.33) 

The training and regression sets are set up to include 80 and 20%, respectively, of the test data (i.e. 

152 and 38 data points in the training and regression sets, respectively).  Since the test data consists 

of pipe vessels and rings, the vessel specimens are randomly split into 80 and 20% portions to be 

included in the training and regression sets, respectively, and the same treatment is applied to the 

ring specimens.  As the actual gouge length of the ring specimen is not reported (the gouge is 

considered infinitely long for such specimens), the value of 
𝑙𝑔

√𝐷𝑤𝑡
 for the ring specimens is assumed 

to equal 50 in GPR as an approximation of the infinite gouge length. 

The selection of the kernel is perhaps the most important step in GPR.  In addition to the SE kernel 

given by Eq. (2.27), we consider four other stationary kernels in the analysis, namely the 

exponential, rational quadratic and two commonly used special Matérn class kernels (Rasmussen 

and Williams 2006).  The equations for these kernels are given as follows:  

𝑘𝐸(𝐱𝑖, 𝐱𝑗) = 𝜂𝑦
2 exp (−√∑

(𝑥𝑖,𝑞−𝑥𝑗,𝑞)
2

𝑙𝐸𝑞
2

6
𝑞=1 )  (Exponential) (2.34) 

𝑘𝑅𝑄(𝐱𝑖, 𝐱𝑗) = 𝜂𝑦
2 (1 +

1

2𝛼
∑

(𝑥𝑖,𝑞−𝑥𝑗,𝑞)
2

𝑙𝑅𝑞
2

6
𝑞=1 )

−𝛼

  (Rational quadratic) (2.35) 

𝑘𝑀1(𝐱𝑖, 𝐱𝑗) = 𝜂𝑦
2 (1 +√3∑

(𝑥𝑖,𝑞−𝑥𝑗,𝑞)
2

𝑙𝑀1𝑞
2

6
𝑞=1 )exp(−√3∑

(𝑥𝑖,𝑞−𝑥𝑗,𝑞)
2

𝑙𝑀1𝑞
2

6
𝑞=1 )  (Matérn class-1)(2.36) 
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𝑘𝑀2(𝐱𝑖, 𝐱𝑗) = 𝜂𝑦
2 (1 +√5∑

(𝑥𝑖,𝑞−𝑥𝑗,𝑞)
2

𝑙𝑀2𝑞
2

6
𝑞=1 +

5

3
∑

(𝑥𝑖,𝑞−𝑥𝑗,𝑞)
2

𝑙𝑀2𝑞
2

6
𝑞=1 )exp(−√5∑

(𝑥𝑖,𝑞−𝑥𝑗,𝑞)
2

𝑙𝑀2𝑞
2

6
𝑞=1 )  

(Matérn class-2) (2.37) 

where lEq, , lRq, lM1q and lM2q (q = 1, 2, …, 6) are parameters of the kernels.   

The prior mean of the correction term is assumed to be zero or expressed as a linear function of 

the input variables (i.e. Eq. (2.28)).  The latter assumption is based on the fact that the EPRG model 

leads to biased predictions of the burst capacity as shown in Table 2.3.  It follows that the five 

assumptions for the kernel and two assumptions for the prior mean result in ten scenarios in terms 

of the kernel and prior mean combination.  The numerical analysis is carried out using Matlab® 

version R2019b and calculation of hyper-parameters is employed by maximizing the log-

likelihood function given by Eq. (2.29).  To avoid local maxima, different initial points are used to 

start the search. 

The R-squared (R2) method (Chakraborty and Elzarka 2018) is employed to compare the 

performance of the ten scenarios involving different assumptions for the kernel and mean function.  

For a given scenario, the R2 values are calculated for both the training and regression sets using 

the following equation: 

𝑅2 = 1 −
∑ (𝑃𝑡𝑒𝑠𝑡,𝑖−𝑃𝐸𝑃𝑅𝐺−𝐶,𝑖)

2
𝑖

∑ (𝑃𝑡𝑒𝑠𝑡,𝑖−�̅�𝑡𝑒𝑠𝑡)
2

𝑖
  (2.38) 

where Ptest,i and PEPRG-C,i denote, respectively, the burst capacities observed in the test and predicted 

by the EPRG-C model for the ith (i = 1, 2, …) data point in a given dataset (training or regression), 

and �̅�𝑡𝑒𝑠𝑡 denotes the mean value of test burst capacities for the dataset.  The value PEPRG-C for a 

given point in the regression set is evaluated using Eq. (2.33); for the training set, PEPRG-C is 

evaluated as PEPRG-C = PEPRG + t|tn
P0, where t|tn

 is obtained using Eq. (2.25) but with r and rt 

on the right hand side replaced by t and t, respectively.  It follows that the closer is the value of 

R2 to unity, the better fit is the GPR model to the data.  Models for which the R2 value for the 

regression set is markedly lower than that for the training set are avoided as such models suffer 

from data overfitting (Notarnicola et al. 2008).  
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The analysis results indicate that models with a linear prior mean function are more accurate than 

those with the zero prior mean.  The values of PEPRG-C and Ptest for the training and regression sets 

for the combinations of the linear prior mean function and five different kernels are depicted in 

Fig. 2.2; the corresponding values of R2 are also shown in the figure.  As shown in Fig. 2.2, the 

SE, rational quadratic and two Matern class kernels are found to result in practically the same R2 

values on both the training and regression sets, whereas the R2 value associated with the 

exponential kernel on the regression set is slightly lower than those associated with the other four 

kernels. Given the above, the linear prior mean function combined with the SE kernel is adopted 

in GPR.  The values of the corresponding hyper-parameters estimated from the maximum 

likelihood method are summarized in Table 2.4.   

    

                     (a) SE (training set)                                             (b) SE (regression set) 

    

               (c) Exponential (training set)                              (d) Exponential (regression set) 
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           (e) Rational Quadratic (training set)              (f) Rational Quadratic (regression set) 

    

              (g) Matérn class-1 (training set)                      (h) Matérn class-1 (regression set) 

    

              (i) Matérn class-2 (training set)                      (j) Matérn class-2 (regression set) 

Figure 2.2 Performance of training and regression sets in the GPR model using the linear 

prior function with five different kernels 

Table 2.4 Estimated values of hyper-parameters in GPR with linear mean function and SE 

kernel 

Description Symbol Max. likelihood estimate Associated input variable 
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Std. dev. of Y y 0.19 N/A 

Std. dev. of noise n 0.07 N/A 

Length scales in 

the SE kernel 

l1 34.39 D/wt 

l2 0.01 H0/D 

l3 0.03 dg/wt 

l4 0.26 𝑙𝑔/√𝐷𝑤𝑡 

l5 2.89 A23(wt-dg)σy/Cv23 

l6 0.29  

Coefficients in the 

linear prior mean 

function  

b0 0.24 N/A 

b1 0.002 D/wt 

b2 0.02 H0/D 

b3 -0.42 dg/wt 

b4 -0.00023 𝑙𝑔/√𝐷𝑤𝑡 

b5 -0.03 A23(wt-dg)σy/Cv23 

b6 0.12  

Table 2.5 summarizes the means and COVs of Ptest/PEPRG and Ptest/PEPRG-C corresponding to the 

entire test dataset, training set and regression set.  The results clearly demonstrate that the 

predictive accuracy of the EPRG-C model is markedly higher than that of the original EPRG 

model, indicating the high effectiveness of GPR to evaluate the correction term.  To clarify the 

effects of the correction term for individual data points, values of Ptest/PEPRG and Ptest/PEPRG-C 

corresponding to the training and regression sets are depicted in Fig. 2.3.  As shown in Fig. 2.3, 

the correction term is particularly effective for the data points for which predictions by the EPRG 

model are highly conservative.   

Table 2.5 Comparison of the predictive accuracy of the EPRG and EPRG-C models 

 All data (190) Training set (152) Regression set (38) 

 Ptest/PEPRG Ptest/PEPRG-C Ptest/PEPRG Ptest/PEPRG-C Ptest/PEPRG Ptest/PEPRG-C 

Mean 1.21 0.99 1.19 0.99 1.28 1.01 

COV (%) 49.2 8.8 53.9 8.7 27.0 9.2 
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                     (a) Training set                                                      (b) Regression set 

Figure 2.3 Effectiveness of the correction term for individual data points in the training 

and regression sets 

As shown in Eq. (2.33), the correction term is defined as the posterior mean, which consists of the 

prior mean and updating component based on observations, i.e. the first and second terms, 

respectively, on the right hand side of Eq. (2.25).  To illustrate the importance of the observation-

based updating, we define PEPRG-P = PEPRG + rP0 and compare Ptest/PEPRG-P and Ptest/PEPRG-C for 

the regression set in Fig. 2.4.  The figure clearly shows that the scatter in Ptest/PEPRG-C is markedly 

less than that in Ptest/PEPRG-P.  While the mean of Ptest/PEPRG-C for the regression set (1.01, see Table 

2.5) is similar to that of Ptest/PEPRG-P, which equals 1.01, the COV of Ptest/PEPRG-C (9.2%, see Table 

2.5) for the regression set is markedly lower than that of Ptest/PEPRG-P, which equals 19.5%.  These 

results suggest that the high accuracy of the EPRG-C model is attributed primarily to the updating 

process involved in GPR.  The EPRG-C model is discussed from a deterministic perspective in the 

above; however, the model can be cast in a probabilistic framework straightforwardly by using the 

posterior distribution of the correction term obtained from GPR.  Figure 2.5 depicts the 95% 

probability interval of the EPRG-C model (i.e. PEPRG-C ± 1.96r|tnP0, where r|tn is the posterior 

standard deviation of the correction term) for the regression set.   
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Figure 2.4 Effect of prior and posterior means to the correction term using regression set 

  

Figure 2.5 The 95% probability interval associated with PEPRG-C for the regression set 

Since six input variables are employed in GPR, it is valuable to gain insights into the relative 

importance of these variables in the model.  As described in Section 2.4.1, the magnitude of the 

length scale corresponding to a given input variable in the SE kernel reflects the importance of the 

variable.  The ranges of the six input variables however differ substantially within the training set 

e.g. D/wt varying from 34.50 to 110.73 whereas dg/wt from 0.01 to 0.60.  To remove the influences 

of these different ranges, we compare the normalized length scales as summarized in Table 2.6, 

defined as lq/sq (q = 1, 2, …, 6) with sq being the standard deviation of the qth input variable in the 

training set (Chalupka et al. 2013).  The results in Table 2.6 indicate that the normalized gouge 
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length 𝑙𝑔/√𝐷𝑤𝑡 is the most important input variable for the correction term as it has the smallest 

normalized length scale.  The gouge depth dg/wt is the second most important input variable and 

the dent depth, H0/D, has almost the same importance as the gouge depth.  The variable , i.e. the 

internal pressure condition at the introduction of the dent, ranks below the dent depth and gouge 

depth.  That D/wt and A23(wt-dg)σy/Cv23 are the least important variables suggests that they have 

been adequately accounted for in the original EPRG model.  

To facilitate the practical application of the EPRG-C model, a flowchart depicting the procedure 

of evaluating PEPRG-C based on GPR for a pipeline containing a dent-gouge defect (i.e. the target 

case) is shown in Fig. 2.6.  The EPRG-C model is considered applicable for the ranges of the 

parameters associated with the 190 test data collected in the present study, i.e. 219.1 ≤ D ≤ 1066.8 

mm, 4.78 ≤ wt ≤ 17.98 mm, 0.004 ≤ H0/D ≤ 0.232, 0.014 ≤ dg/wt ≤ 0.6, 50.8 ≤ lg ≤ 508 mm, 279 ≤ 

σy ≤ 543 MPa and 16.3 ≤ Cv23 ≤ 160.5 J.  Finally, it is worth noting that one may advocate using 

the entire 190 test data as the training set to compute PEPRG-C when applying the EPRG-C model 

in practice.  We however argue against this approach and suggest that the training set of 152 data 

points be used to compute PEPRG-C.  This is because one will not have an independent dataset (i.e. 

the regression set) to validate the GPR model if the entire 190 data points are employed as the 

training set.  Furthermore, this approach may lead to overfitting by the GPR model that is 

impossible to detect, which can have serious implications in practice.   

Table 2.6 Normalized length scales corresponding to the six input variables in GPR 

Input variable Normalized length scale 

D/wt 2.360 

H0/D 0.275 

dg/wt 0.214 

𝑙𝑔/√𝐷𝑤𝑡 0.011 

A23(wt-dg)σy/Cv23 0.944 

 0.735 
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Figure 2.6 A step-by-step procedure of applying the EPRG-C model in practice 

 

2.5 Conclusions 

The burst capacity model for pipelines containing dent-gouges is investigated in this study.  A total 

of 190 full-scale burst tests of pipe specimens containing dent-gouges are collected from the 

literature and used to evaluate the predictive accuracy of three existing dent-gouge models, namely 

the EPRG, B&S and PIPIN models.  The results indicate that the predictive accuracy of all three 

models is poor, with marked scatter associated with the test-to-predicted ratios.  An improvement 

of the EPRG model, referred to as the EPRG-C model, is then proposed by adding a correction 

term to the EPRG model.  The correction term is assumed to be a function of six non-dimensional 

input variables that characterize the geometric and material properties of the pipeline, geometry of 

the dent-gouge, and whether the internal pressure is zero or non-zero when the dent is introduced.   
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GPR is employed to quantify the correction term based on the collected full-scale test data.  The 

linear prior mean function and squared exponential kernel are adopted to parameterize GPR.  The 

190 test data are divided into a training set and a regression set that consist of 80 and 20% of the 

data, respectively.  The correction term is defined as the posterior mean given noisy observations 

of the correction term corresponding to the training set.  The correction term is shown to be highly 

effective and makes the EPRG-C model markedly more accurate than the original EPRG model: 

the mean and COV of the test-to-predicted ratios associated with the EPRG-C model equal 1.01 

and 9.2%, respectively, for the regression set.  The analysis further indicates that the normalized 

gouge length is the most important input variable for the correction term.  It is worth noting that 

applying GPR in regression tasks can be computationally expensive: the solutions require the 

computation of a matrix inversion and storing large matrices in memory.  The present study offers 

a new perspective on using full-scale test data to improve the fitness-for-service assessment models 

for pipelines.   
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3 Limit State-based Fitness-for-service Assessment of Steel 
Pipelines Containing Dent-gouges 

3.1 Introduction 

One of the common failure mechanisms for buried oil and gas pipelines is mechanical damage due 

to impact by foreign objects such as excavation equipment and rocks (Lam and Zhou 2016; Tian 

and Lu 2022).  A dent-gouge is a severe form of the mechanical damage that can markedly reduce 

the pressure containment capacity (i.e. burst capacity) of the affected pipeline (Gao and 

Krishnamurthy 2010; Cosham and Hopkins 2020).  Fitness-for-service (FFS) assessments of dent-

gouges that do not lead to immediate failures of pipelines are therefore an important component 

of the pipeline integrity management program.  The high-resolution in-line inspection (ILI) tool is 

routinely employed to detect and size dent-gouges (and other types of damages such as corrosion) 

on pipelines (McNealy et al. 2008; Gao and Krishnamurthy 2010).  Based on the ILI data, the burst 

capacity of the pipeline at the dent-gouge can be evaluated, often deterministically, using models 

of empirical or semi-empirical nature together with nominal geometric and material properties of 

the pipeline.  For example, a semi-empirical model widely used in the pipeline industry is the dent-

gouge fracture model adopted by the European Pipeline Research Group (EPRG), i.e. the well-

known EPRG model (Roovers et al. 2000; Macdonald and Cosham 2005; Cosham and Hopkins 

2020).  The burst capacity evaluated is divided by the nominal operating pressure of the pipeline, 

i.e. the maximum operating pressure (MOP), to compute the so-called failure pressure ratio (FPR) 

at the dent-gouge (Al-Amin et al. 2020).  If FPR is greater than or equal to a pre-defined safety 

factor, e.g. 1.1 for natural gas transmission pipelines as recommended in ASME B31.8S (ASME 

2020), the dent-gouged pipeline is considered fit for service without the need for repair; otherwise, 

the pipe segment is excavated and repaired (or replaced).  It is recognized that many uncertainties 

are involved in the FFS assessment of dent-gouges.  For instance, the ILI-reported sizes of the 

dent-gouge contain measurement errors (McNealy et al. 2008; Gao and Krishnamurthy 2010); the 

relevant material properties of the pipeline such as the yield strength and fracture toughness are 

inherently random (CSA 2019), and dent-gouge burst capacity model can involve considerable 

model uncertainties (He and Zhou 2022).  In light of these uncertainties, it is desirable to achieve 

reliability consistent outcomes of FFS assessments.  Specifically, this means that the estimated 

failure probabilities of the pipe segments that are deemed fit for service without repair do not 
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exceed a pre-defined allowable failure probability.  The deterministic procedure utilizing FPR is 

unlikely to achieve reliability consistent assessments given that it lacks a rigorous framework to 

account for uncertainties from different sources.  This difficulty can be overcome by using the 

reliability-based assessment (RBA) methodology (Zhou et al. 2015; CSA 2019; Yan et al. 2020); 

however, such an assessment has limited practicality as the majority of pipeline engineers are not 

well-versed in the structural reliability analysis.  The limit state-based assessment (LSBA) is a 

suitable compromise between the deterministic and reliability-based assessment procedures.  The 

LSBA incorporates appropriately calibrated partial safety factors (PSFs) in a deterministic 

assessment format to achieve reliability consistent outcomes.  This is in essence the same as the 

limit states design in which appropriately calibrated PSFs are incorporated in deterministic design 

checks to achieve (on average) reliability consistent designs of engineering structures with respect 

to applicable (ultimate) limit states (Ellingwood et al. 1980; Nowak 1995; Bartlett et al. 2003; 

Bairán and Casas 2018; Velarde et al. 2020).  

Bai and Song (1997) proposed a limit state design approach for pipelines containing dent-gouges.  

The authors consider a single PSF that applies to the pipe internal pressure, although three other 

uncertain quantities (i.e. the pipe wall thickness, gouge depth and model error) are indicated to 

have marked impact on the reliability of dent-gouged pipelines.  The values of the PSF are 

calibrated corresponding to two target reliability levels based on a single analysis case.  Given the 

single PSF format as well as limited scope of the calibration, it is doubtful that the PSF reported 

in Bai and Song (1997) will lead to reliability consistent assessments of dent-gouges in practice.  

LSBA of pipelines containing corrosion defects and cracks have been adopted in various standards.  

DNVGL-RP-F101 (DNV 2017) recommends PSFs applied, respectively, to the burst capacity of 

corroded pipelines predicted by a semi-empirical model and depth of the corrosion defect.  The 

values of the PSFs depend on the safety class of the pipeline, corrosion inspection method and 

inspection accuracy; however, the methodology used to calibrate the PSFs is not described in the 

document.  BS 7910 (BS 7910 2015) recommends PSFs for the fracture assessment of pipelines 

and other metallic structures containing cracks.  The PSFs are calibrated based on several different 

target reliability levels using the first order second moment reliability method.  Details of the 

calibration process are however unavailable.  

The PSF-based assessments of existing bridges and infrastructure systems have been investigated 
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by many researchers.  For example, Cremona and Poulin (2017) described the calibration of PSFs 

for existing bridges based on in-situ experiments.  Gino et al. (2020) compared two approaches 

proposed by the fib of defining PSFs for existing concrete structures through a case study of a 

prestressed reinforced concrete bridge in Italy.  Jongejan et al. (2020) discussed the calibration of 

PSFs for the flood protection assessment of levee systems in the Netherlands.  The methodologies 

employed in the above-mentioned studies to calibrate PSFs are similar to those commonly used 

for the development of design standards (Ellingwood et al. 1980; Bartlett et al. 2003) but with 

additional considerations for the relevant information of existing structures such as the residual 

service life, information from in-situ and laboratory tests and measurements of loads applied.   

The objective of the present study is to calibrate the PSFs for carrying out LSBA of dent-gouged 

pipelines such that reliability consistent assessment outcomes are achieved.  To this end, a suitable 

burst capacity model for dent-gouges is selected for the assessment.  Key input parameters to which 

PSFs are applied are identified.  A novel calibration process is then proposed to evaluate the PSFs 

corresponding to different allowable failure probabilities by involving a large number of analysis 

cases representative of the real-world FFS assessment.  Finally, the validity of the calibrated partial 

safety factors is demonstrated through analysis cases independent of those considered in the 

calibration.   

The rest of the paper is organized as follows.  Section 3.2 describes the dent-gouge burst capacity 

model adopted in the present study.  Section 3.3 presents the formulation of the LSBA, summarizes 

the probabilistic characteristics of random variables, presents a set of analysis cases representative 

of those in real-world assessments, proposes the novel calibration process of PSFs, validates the 

calibrated PSFs and presents additional calibration results; the comparison between the LSBA and 

deterministic FFS assessment based on the representative assessment cases is discussed in Section 

3.4, followed by conclusions in Section 3.5.  

3.2 Dent-gouge burst capacity model 

Several empirical and semi-empirical burst capacity models for dent-gouged pipelines have been 

proposed in the literature (Jones 1982; Maxey 1986; Roovers et al. 2000; ASME 2020).  However, 

the predictive accuracy of these models has been shown to be poor (Cosham and Hopkins 2020; 

He and Zhou 2022).  He and Zhou (2022) recently proposed an improvement of the EPRG model, 
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referred to as the EPRG-C model, by adding a correction term to the model prediction and 

employed the Gaussian process regression (GPR) to quantify the correction term based on a 

database of full-scale burst tests of dent-gouged pipe specimens collected from the literature.  He 

and Zhou (2022) showed that GPR is highly effective in quantifying the correction term such that 

the accuracy of the EPRG-C model is markedly higher than that of the EPRG model.  Therefore, 

the EPRG-C model is employed in the present study to evaluate the burst capacity of a dent-gouged 

pipeline.  It should be clarified that the EPRG model considered by He and Zhou (2022) is a 

slightly modified version of the original EPRG model (Roovers et al. 2000) in that the former 

considers the actual gouge length whereas the latter idealizes the gouge to be infinitely long 

(Cosham and Hopkins 2020).  The burst capacity predicted by the EPRG-C model, PEPRG-C, is 

computed as follows.  

𝑃𝐸𝑃𝑅𝐺−𝐶 = 𝑃𝐸𝑃𝑅𝐺 + 𝜇𝑐|𝑜𝑃0  (3.1) 

𝑃𝐸𝑃𝑅𝐺 =
4𝑤𝑡�̅�

𝜋𝐷
cos−1 [exp− {113

1.5𝜋𝐸

�̅�2𝐴23𝑑𝑔
(𝑌1 (1 − 1.8

1.43𝐻𝑟

𝐷
) +

𝑌2 (5.1
𝐷

𝑤𝑡

1.43𝐻𝑟

𝐷
))

−2

exp [
ln(0.738𝐶𝑣23)−1.9

0.57
]}]  (3.2) 

𝜎 = 1.15𝜎𝑦 (1 −
𝑑𝑔

𝑤𝑡
) (1 −

𝑑𝑔

𝑀1𝑤𝑡
)
−1

 (3.3) 

𝑀1 = √1 + 0.52 (
𝑙𝑔

√𝐷𝑤𝑡
)
2

  (3.4) 

𝑌1 = 1.12 − 0.23 (
𝑑𝑔

𝑤𝑡
) + 10.6 (

𝑑𝑔

𝑤𝑡
)
2

− 21.7 (
𝑑𝑔

𝑤𝑡
)
3

+ 30.4 (
𝑑𝑔

𝑤𝑡
)
4

  (3.5) 

𝑌2 = 1.12 − 1.39 (
𝑑𝑔

𝑤𝑡
) + 7.32 (

𝑑𝑔

𝑤𝑡
)
2

− 13.1 (
𝑑𝑔

𝑤𝑡
)
3

+ 14.0 (
𝑑𝑔

𝑤𝑡
)
4

  (3.6) 

where PEPRG denotes the burst capacity predicted by the EPRG model; P0  = 2wtσy/D; D, wt and σy 

denote the pipe outside diameter, wall thickness and yield strength, respectively; M1 is the so-

called Folias factor; Cv23 and A23 indicate the upper-shelf impact energy and net cross-sectional 

area of a 2/3-sized Charpy V-notch (CVN) specimen, respectively; dg and lg denote the gouge 
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depth and gouge length (along the wall thickness and pipe axial directions), respectively; Hr is the 

dent depth under non-zero internal pressure, and c|o is the correction factor obtained using GPR 

and full-scale burst test data (He and Zhou 2022).  It is noted that the dent depth in the EPRG 

model corresponds to zero internal pressure, denoted by H0.  An empirical equation is proposed in 

Roovers et al. (2000) to relate H0 to Hr, i.e. H0 = 1.43Hr.  For in-service pipelines, it is assumed in 

this study that the dent depth, typically measured by an ILI tool, corresponds to the non-zero 

internal pressure condition.  Therefore, 1.43Hr (as opposed to H0) is employed in Eq. (3.2).   

The correction factor c|o is the posterior mean given observations of a Gaussian process that is a 

function of six non-dimensional input variables, i.e. {
𝐷

𝑤𝑡
,
1.43𝐻𝑟

𝐷
,
𝑑𝑔

𝑤𝑡
,

𝑙𝑔

√𝐷𝑤𝑡
,
𝐴23(𝑤𝑡−𝑑𝑔)𝜎𝑦

𝐶𝑣23
, 𝜉}, with  

equal to unity and zero for dents introduced under non-zero and zero internal pressures, 

respectively.  In this study, all dents are assumed to be introduced under non-zero internal pressure, 

i.e.  = 1.  Well-established GPR formulations are used to compute c|o as follows (He and Zhou 

2022):  

𝜇𝑐|𝑜 = 𝜇𝑐 + 𝚺𝑐𝑜(𝚺𝑜 + 𝜂𝑛
2𝐈)−1(𝒛𝑜 − 𝛍𝑜)  (3.7) 

where o and o are the prior mean values and covariance, respectively, of the training set 

containing 152 full-scale burst test data that are used to train the Gaussian process model (see 

Appendix C for details of the dataset); zo denotes observed values associated with the 152 test data 

with the ith element (i = 1, 2, …, 152), zo,i, equal to (Ptest,i – PEPRG,i)/P0,i; Ptest,i is the burst capacity 

observed in the test for the ith data point; c is the prior mean of the target case; co is the covariance 

between the target case and training set; I is a 152 × 152 identity matrix, and n is the standard 

deviation of a zero-mean Gaussian noise term.  The linear prior mean function is employed to 

compute c and elements of o.  For the given set of input variables {x1, x2, x3, x4, x5, x6} = 

{
𝐷

𝑤𝑡
,
1.43𝐻𝑟

𝐷
,
𝑑𝑔

𝑤𝑡
,

𝑙𝑔

√𝐷𝑤𝑡
,
𝐴23(𝑤𝑡−𝑑𝑔)𝜎𝑦

𝐶𝑣23
, 𝜉}, the corresponding prior mean  is given by,  

𝜇 = 𝑏0 + ∑ 𝑏𝑖
6
𝑖=1 𝑥𝑖 (3.8) 

The squared exponential kernel, kSE(xj, xk), is employed to evaluate o and co; that is, the 

covariance between two sets of input variables, xj and xk, is given by, 



44 
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𝑙𝑖
2

6
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In Eqs. (3.7) - (3.9), n, p, b0, bi, and li (i = 1, 2, …, 6) are hyper-parameters of the Gaussian 

process, the values of which are obtained using the maximum likelihood method based on the 152 

training data points and summarized in Table 3.1.  More detailed descriptions of the EPRG-C 

model can be found in Section 2.  

Table 3.1 Values of the hyper-parameters in the Gaussian process for computing the 

correction factor in the EPRG-C model 

Hyper-parameter Value 

p 0.19 

n 0.07 

l1 34.39 

l2 0.01 

l3 0.03 

l4 0.26 

l5 2.89 

l6 0.29 

b0 0.24 

b1 0.002 

b2 0.02 

b3 -0.42 

b4 -0.00023 

b5 -0.03 

b6 0.12 

3.3 LSBA of dent-gouged pipelines 

3.3.1 Formulation 

As described in Introduction, the LSBA of dent-gouged pipelines can be formulated as follows: 

{
𝑃𝜙 < 𝛼𝑃𝑐:           𝑅𝑒𝑝𝑎𝑖𝑟

𝑃𝜙 ≥ 𝛼𝑃𝑐:     𝑁𝑜 𝑟𝑒𝑝𝑎𝑖𝑟
  (3.10) 

where P denotes the factored burst capacity at the dent-gouge, and Pc denotes the factored 

internal pressure of the pipeline with  ( > 1) and Pc representing the load factor and characteristic 

value of the internal pressure, respectively.  Following the general limit states design concept, one 

evaluates P using the EPRG-C model with values of the model input variables (e.g. the pipe 
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diameter and wall thickness, steel yield strength, and dent depth) set to either the corresponding 

characteristic values or characteristic values multiplied by the respective PSFs (i.e. resistance 

factors).  In deterministic FFS assessments of pipelines, the nominal values of input variables are 

almost always used.  Therefore, for simplicity and consistence with the typical industry practice, 

the characteristic values of the input variables on both sides of Eq. (3.10) are defined in this study 

to be the corresponding nominal values.  Table 3.2 summarizes descriptions of nominal values of 

the input variables.  Note that A23 and E, which are part of the input to the EPRG-C model, are not 

included in Table 3.2 as they are treated as deterministic constants in the analysis, i.e. A23 = 53.33 

mm2 and E = 2.07×105 MPa.  

Table 3.2 Descriptions of nominal values of input variables in LBSA of dent-gouge 

Variable Nominal value 

D (mm) Nominal pipe outside diameter (Dn) 

wt (mm) Nominal pipe wall thickness (wtn) 

y (MPa) 
Specified minimum yield strength (SMYS) for 

a given steel grade 

Cv23 (J) 
Impact energy of 2/3-sized CVN specimen 

provided in the material test report (Cv23n) 

Hr (mm) Dent depth reported by ILI tool (Hrn) 

dg (mm) Gouge depth reported by ILI tool (dgn) 

lg (mm) Gouge length reported by ILI tool (lgn) 

Internal pressure (P) (MPa) MOP 

3.3.2 Selection of input variables assigned with PSFs 

In the design code calibration, PSFs associated with the capacity are typically assigned to material 

strength properties, e.g. the concrete compressive strength and steel yield strength (Schmidt and 

Bartlett 2002; Bartlett 2007).  In this study, the two material strengths in the EPRG-C model are 

y and Cv23.  It is noted that the uncertainty in y is markedly less than that in Cv23: the coefficient 

of variation (COV) of y is generally 3-4%, whereas the COV of Cv23 is 15-20% (CSA 2019).  

Furthermore, the ratio y/Cv23 is part of the input feature 
𝜎𝑦(𝑤𝑡−𝑑𝑔)𝐴23

𝐶𝑣23
 related to the correction term 

in the EPRG-C model (see Section 3.2).  Based on these considerations, PSF is assigned to Cv23 

but not to y; that is, cvCv23n and SMYS are employed in the EPRG-C model to compute P, where 

cv (0 < cv < 1) denotes the PSF for Cv23.   

The dent depth (Hr) and gouge depth (dg) of the dent-gouge have a large impact on the burst 
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capacity; on the other hand, the impact of the gouge length (lg) is relatively small (Cosham and 

Hopkins 2020).  The sizes of the dent-gouge have non-negligible uncertainties due to the 

measurement error associated with the ILI tool (McNealy et al. 2008; Gao and Krishnamurthy 

2010).  Based on these considerations, PSFs are assigned to Hr and dg, but not to lg; in other words, 

HrHrn, dgdgn and lgn are employed in the EPRG-C model to compute P, where Hr (Hr > 1) and 

dg (dg > 1) denote the PSFs for Hr and dg, respectively.  It follows from the above discussions 

that Eq. (3.10) can now be rewritten as, 

{
𝑃𝜙 < 𝛼MOP:          𝑅𝑒𝑝𝑎𝑖𝑟

𝑃𝜙 ≥ 𝛼MOP:     𝑁𝑜 𝑟𝑒𝑝𝑎𝑖𝑟
  (3.11a) 

𝑃𝜙 = 𝑃𝐸𝑃𝑅𝐺−𝐶(𝐷𝑛, 𝑤𝑡𝑛, SMYS,𝜙𝑐𝑣𝐶𝑣23𝑛, 𝜙𝐻𝑟𝐻𝑟𝑛, 𝜙𝑑𝑔𝑑𝑔𝑛, 𝑙𝑔𝑛)  (3.11b) 

where the notation PEPRG-C(•) is used to emphasize that the factored burst capacity is evaluated 

using the EPRG-C model with the input variables taken as either their nominal values or nominal 

values multiplied by the corresponding PSFs.  It must be emphasized that the resistance factors are 

included in the evaluation of the correction factor in the EPRG-C model, i.e. cvCv23n, HrHrn and 

dgdgn are employed to compute c|o in P.  The following section describes the calibration process 

to determine appropriate values of the four PSFs, i.e. cv, Hr, dg and .   

3.3.3 Calibration of PSFs 

3.3.3.1 Methodology 

The calibration of PSFs for the design code typically involves assuming the factored resistance to 

equal the factored load effect and then adjusting values of PSFs to ensure that the computed 

reliability of a wide range of design cases on average achieves the pre-defined target reliability 

level (Bartlett et al. 2003).  This calibration process is however inapplicable to the present study: 

while one can always ensure the factored resistance to equal the factored load effect by choosing 

appropriate decision variables (e.g. the concrete compressive strength) in a design, one cannot 

ensure the same in the FFS assessment of dent-gouges because the only decision variable in the 

assessment is the decision of repair or no repair.  A novel process to calibrate cv, Hr, dg and  is 

therefore proposed in this study.  This process starts by considering a large set of assessment cases 

representative of those in practice.  These assessment cases cover wide ranges of nominal values 
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of the input variables such as Dn, wtn, SMYS and Hrn.  The first-order reliability method (FORM) 

is then employed to evaluate the probabilities of failure (pf) of the assessment cases (Melchers 

1999; Low and Tang 2007; Zhou et al. 2015).  Those assessment cases with the failure probabilities 

falling within a narrow probability band enclosing the pre-defined allowable failure probability 

(pfa) are identified and referred to as the critical assessment cases.  Finally, the values of cv, Hr, 

dg and  are selected such that outcomes of LSBA of the critical assessment cases are consistent 

with those of RBA.  That is, for a given critical assessment case, P ≥ MOP if pf ≤ pfa (i.e. no 

repair), and P < MOP if pf > pfa (i.e. repair).  It is expected that the values of cv, Hr, dg and  

will lead to consistent outcomes of the LSBA and RBA for the non-critical assessment cases, i.e. 

P >> MOP if pf << pfa, and P << MOP if pf >> pfa.  It is worth noting that the proposed PSF 

calibration process is to certain extent the reverse of the typical PSF calibration process for design 

codes.   

3.3.3.2 Assessment cases 

We assume the assessment cases to have the same Dn = 610 mm and MOP = 8.0 MPa, but different 

wtn.  Note that Dn, wtn, MOP and SMYS for a given pipeline are coupled by the following equation 

(Zhou et al. 2015): 

𝑤𝑡𝑛 =
MOP∙𝐷𝑛

2∙𝑈𝐹∙SMYS
  (3.12) 

where UF (UF < 1) is the utilization factor representing the safety margin in the hoop stress in a 

pristine pipe under internal pressure.  The value of UF generally ranges from 0.4 to 0.8 for 

transmission pipelines in Canada and the United States (Nessim et al. 2009; Zhou et al. 2015).  By 

considering three representative pipe steel grades (i.e. X52, X60 and X70) and four representative 

values of UF (i.e. 0.8, 0.72, 0.6 and 0.5), the nominal wall thicknesses of the assessment cases are 

evaluated from Eq. (3.12) and summarized in Table 3.3.  For a given steel grade, four values of 

Cv23n representative of low to high Charpy toughness are further assumed: 30, 60, 90 and 120 J.  

This results in a total of 48 pipelines with unique sets of pipe attributes and material properties.  In 

terms of sizes of the dent-gouge, we consider five values of Hrn/Dn: 1.5, 2.0, 2.5, 3.0 and 3.5%; 

four values of dgn/wtn: 15, 25, 30 and 40%, and three values of lgn: 50, 100 and 200 mm.  This leads 

to 60 unique sets of dent-gouge sizes.  The permutation of the 48 pipelines and 60 dent-gouge sizes 



48 
 

 

then results in a total of 2880 assessment cases.  The burst capacities of 414 assessment cases 

predicted by the EPRG-C model using nominal values of the input variables are found to be less 

than or equal to 0.9MOP.  Such capacities are considered very low such that these cases likely 

correspond to immediate failures of the dent-gouge and are therefore not relevant to the present 

study.  By eliminating these 414 cases, a total of 2466 assessment cases are included in the 

reliability analysis. 

Table 3.3 Combinations of wtn, SMYS and UF of the assessment cases considered in the 

calibration of PSFs (Dn = 610 mm and MOP = 8.0 MPa) 

No. wtn (mm) Steel grade SMYS (MPa) UF 

1 6.31 X70 483 0.80 

2 7.02 X70 483 0.72 

3 8.42 X70 483 0.60 

4 10.10 X70 483 0.50 

5 7.37 X60 414 0.80 

6 8.19 X60 414 0.72 

7 9.82 X60 414 0.60 

8 11.79 X60 414 0.50 

9 8.52 X52 358 0.80 

10 9.47 X52 358 0.72 

11 11.36 X52 358 0.60 

12 13.63 X52 358 0.50 

3.3.3.3 Reliability analysis and critical assessment cases 

The limit state function, g, for burst of a pipeline at a dent-gouge defect under internal pressure is 

given by, 

𝑔 = 𝜁𝑃𝐸𝑃𝑅𝐺−𝐶 − 𝑃   (3.13) 

where ζ is the model error associated with the EPRG-C model, and g ≤ 0 implies failure.  The 

FORM is employed to evaluate pf as 

𝑝𝑓 = Φ(−𝛽)  (3.14) 

where β denotes the reliability index obtained from the FORM, and Ф(·) represents the standard 

normal distribution.   

The probabilistic characteristics of the input variables in the reliability analysis are summarized in 
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Table 3.4.  It is assumed that all random variables are mutually independent.  The statistics of Cv23 

are based on Annex O of CSA Z662 (CSA 2019), which recommends that Cv23 be characterized 

by a lognormal distribution with the COV (%) equal to 2.23Cv23n
0.46 and 4.21Cv23n

0.29 for Cv23n ≤ 

100 J and Cv23n > 100 J, respectively.  The quantities εHr, εdg and εlg in Table 3.4 denote the additive 

measurement errors that are assumed to be associated with the ILI-reported dent depth, gouge 

depth and gouge length, respectively; that is, Hr, dg and lg are assumed to be related to Hrn, dgn and 

lgn as follows:  

𝐻𝑟 = 𝐻𝑟𝑛 + 𝜀𝐻𝑟  (3.15) 

𝑑𝑔 = 𝑑𝑔𝑛 + 𝜀𝑑𝑔  (3.16) 

𝑙𝑔 = 𝑙𝑔𝑛 + 𝜀𝑙𝑔  (3.17) 

The zero-mean normal distributions are assigned to εHr, εdg and εlg (CSA 2019).  Gao and 

Krishnamurthy (2010) reported that the sizing accuracy of the ILI tool employing the magnetic 

flux leakage technology is ±0.78%Dn for the dent depth and ±12%wtn for the gouge depth at 80% 

certainty and 95% confidence level.  This implies that the standard deviations of εHr and εdg are 

0.6%Dn and 9.3%wtn, respectively (API 1163 2021).  There is a lack of information in the literature 

about εlg.  Note that the sizing error of the ILI tool for the length of metal-loss corrosion defects is 

commonly assumed to be ±10 mm, implying a standard deviation of 7.8 mm of the measurement 

error (Miller and Sander 2006; Stephens and Nessim 2006).  The same sizing error is assumed for 

the gouge length given that a gouge is a metal-loss defect.  The probabilistic characteristic of the 

model error associated with the EPRG-C model () are assigned based on the test-to-predicted 

ratios reported in Section 2 for a dataset of 38 full-scale burst tests that are used to validate the 

accuracy of the EPRG-C model.   

It is emphasized that the reliability analysis carried out in the present study is time independent 

although a dent-gouge can be a time-dependent threat as micro cracks at the base of the gouge may 

grow due to the cyclic nature of the pipe internal pressure (Cosham and Hopkins 2020).  The time-

independent assumption is justified because engineers need to decide if a dent-gouge should be 

repaired as soon as possible shortly after being detected by ILI.   
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Table 3.4 Probabilistic characteristics of random variables in the reliability analysis 

Variable Distribution 
Mean/ 

nominal 
COV (%) Source 

D Deterministic 1.0 - CSA (2019) 

wt Normal 1.01 

1.6 for wtn ≤ 8 mm 

Zhou and Bao (2020) 
1.6 + 0.15(wtn - 8) for  

8 < wtn ≤ 12 mm 

2.2 for wtn > 12 mm 

σy Normal 1.1 3.5 CSA (2019) 

Cv23 Lognormal 1.0 

2.23Cv23n
0.46 for  

Cv23n ≤ 100 J CSA (2019) 

Yan et al. (2020) 4.21Cv23n
0.29 for  

Cv23n > 100 J 

εHr 

(%Dn) 
Normal 0 a0.6 Gao and Krishnamurthy (2010) 

εdg 

(%wtn) 
Normal 0 a9.3 Gao and Krishnamurthy (2010) 

εlg (mm) Normal 0 a7.8 Miller and Sander (2006) 

Stephens and Nessim (2006) 

P Gumbel 1.03 2.0 CSA (2019) 

ζ Lognormal 1.01 9.2 He and Zhou (2022) 
aThe values are standard deviations. 

The FORM is employed to evaluate β values for the 2466 analysis cases described in Section 

3.3.3.2, of which 634 cases are observed to have β values less than or equal to 1.0 (i.e. pf ≥ 0.159).  

These cases are excluded from further considerations as their failure probabilities are too high such 

that they likely correspond to immediate failures in practice.  It follows that 1832 analysis cases 

are considered relevant.  Figure 3.1 depicts the β values for a set of cases with wtn = 10.1 mm, X70 

steel, UF = 0.5 and different values of Cv23n, Hrn/Dn, dgn/wtn and lgn.  The figure indicates that β 

decreases markedly as the dent depth increases.  The reliability index is also sensitive to the gouge 

depth and Charpy toughness: β decreases rapidly as the gouge depth increases or the toughness 

decreases (all else being the same).  On the other hand, Fig. 3.1 indicates that β is insensitive to 

the gouge length.   

Figure 3.2 depicts values of β corresponding to cases with different steel grades but similar wtn 

(i.e. wtn = 8.19, 8.42 and 8.52 mm) to demonstrate the impact of the steel grade on the failure 

probability.  The figure indicates that β is not sensitive to the steel grade if other input variables 

remain the same.  These observations justify the selection of the input variables to which PSFs are 

assigned as described in Section 3.3.2.   
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(a) Cv23n = 60 J 

                           

(b) Cv23n = 90 J 
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(c) Cv23n = 120 J 

Figure 3.1 β values for cases with wtn = 10.1 mm, X70 steel (SMYS = 483 MPa), UF = 0.5 

and different values of Cv23n, Hrn/Dn, dgn/wtn and lgn 

 

Figure 3.2 β values for cases with similar wtn values, dgn/wtn = 15%, Hrn/Dn = 1.5%, lgn = 50 

mm and different steel grades  

To facilitate the selection of critical assessment cases to calibrate PSFs, the β values for the 1832 
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assessment cases are depicted in Fig. 3.3.  The critical assessment cases depend on the allowable 

failure probability pfa.  The selection of appropriate allowable failure probabilities for in-service 

pipelines is a complex task and beyond the scope of the present study; for illustrative purpose, pfa 

= 5 × 10-3 or equivalently a target reliability index βT of 2.57 (represented by the dash line in Fig. 

3.3) is considered.  Those cases with β = βT ± 0.2, i.e. 2.8 × 10-3 ≤ pf ≤ 8.9 × 10-3 are selected as 

the critical assessment cases as shown within the gray band in Fig. 3.3.  This results in a total of 

264 critical assessment cases, of which 124 cases have pf > pfa (i.e. cases needing repair), and 140 

cases have pf ≤ pfa (i.e. cases not needing repair).  Figure 3.4 depicts the breakdowns of the 264 

cases in terms of Cv23n, wtn and sizes of the dent-gouge.  The figure suggests that the 264 cases are 

representative of the full ranges of the pipe properties and dent-gouge sizes considered in the 

calibration of PSFs.  

    

Figure 3.3 The β values for the 1832 assessment cases with βT = 2.57 (264 critical 

assessment cases within the gray band) 
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(a)  

 

(b)  

 

(c)  
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(d)  

 

(e) 

Figure 3.4 Breakdowns of 264 critical assessment cases in terms of (a) Cv23n, (b) wtn, (c) lgn, 

(d) dgn/wtn, and (e) Hrn/Dn 

3.3.3.4 Determination of PSFs 

As described in Section 3.3.3.1, values of PSFs should ideally be determined such that the 

outcomes of LSBA are identical to those of RBA for the 264 critical assessment cases.  In reality, 

outcomes of LSBA will likely differ from those of RBA for some cases.  It follows from the binary 

assessment outcomes (i.e. repair and no repair) that a confusion matrix comparing the outcomes 

of LSBA and RBA can be constructed as depicted in Fig. 3.5, where TR, FN, FR and TN denote 

true repair, false non-repair, false repair and true non-repair, respectively.   
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Figure 3.5 Confusion matrix based on the outcomes of LSBA and RBA 

Let NTR, NTN, NFR and NFN denote the number of critical assessment cases in TR, TN, FR and FN, 

respectively, corresponding to a given set of PSFs.  The adequacy of the set of PSFs can then be 

quantified by the common performance indices associated with the confusion matrix, i.e. the true 

repair rate (TRR) or sensitivity, true non-repair rate (TNR) or specificity, and overall accuracy 

(ACC), which are defined as follows: 

TRR =
𝑁𝑇𝑅

𝑁𝑇𝑅+𝑁𝐹𝑁
  (3.18) 

TNR =
𝑁𝑇𝑁

𝑁𝑇𝑁+𝑁𝐹𝑅
   (3.19) 

ACC =
𝑁𝑇𝑅+𝑁𝑇𝑁

𝑁𝑇𝑅+𝑁𝐹𝑁+𝑁𝑇𝑁+𝑁𝐹𝑅
  (3.20) 

We propose to determine the PSFs by maximizing the following objective function fo: 

𝑓𝑜 = 𝑤TRR + (1 − 𝑤)TNR  (3.21) 

where w and (1 - w) denote the relative weights assigned to TRR and TNR, respectively.  Note that 

the ideal set of PSFs leads to fo equal to unity, i.e. TRR = TNR = 1.  Note further that a false non-

repair is considered to have more serious consequences than a false repair: a missed repair may 

result in failure of the pipeline, whereas an unnecessary repair results mainly in higher maintenance 

costs.  Therefore, a greater weight (i.e. 0.5 < w < 1) is proposed to be assigned to TRR than to 

TNR.   

A few practical aspects are considered in determining the values of cv, Hr, dg and .  First, the 

value of α is bounded between 1.1 and 1.5 for consistency with the value of the safety factor 

typically used in deterministic FFS assessments of pipelines in the United States and Canada (Zhou 
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et al. 2015; Al-Amin et al. 2020; Yan et al. 2020).  Second, a lower bound of 0.6 is assigned to cv 

to avoid potentially very low factored toughness (cvCv23n) values that are beyond the applicability 

of the EPRG-C model (Macdonald and Cosham 2005).  It follows that values of PSFs are 

determined by the following constrained optimization procedure: 

{𝜙𝑐𝑣, 𝜙𝐻𝑟 , 𝜙𝑑𝑔, 𝛼} = argmax
𝜙𝑐𝑣,𝜙𝐻𝑟,𝜙𝑑𝑔,𝛼

𝑓𝑜   

𝑠. 𝑡.  0.6 ≤ 𝜙𝑐𝑣 < 1,𝜙𝐻𝑟 > 1,𝜙𝑑𝑔 > 1, 1.1 ≤ 𝛼 ≤ 1.5  (3.22) 

The values of PSFs determined using Eq. (3.22) for w = 0.6, 0.7, and 0.8 are summarized in Table 

3.5, along with the corresponding values of fo, TRR, TNR and ACC.  As shown in Table 3.5, the 

calibrated PSFs corresponding to w = 0.60 are the same as those corresponding to w = 0.70.  As w 

increases to 0.80, the PSFs change somewhat with cv decreasing from 0.65 to 0.61 and Hr also 

decreasing from 1.05 to 1.01.  PSFs calibrated by assuming w = 0.80 lead to high TRR (100%) but 

relatively low TNR (59.3%); on the other hand, PSFs calibrated with w = 0.60 and 0.70 lead to 

more balanced assessment outcome, i.e. high TRR as well as reasonably high TNR and ACC.  The 

outcomes of RBA and LSBA for the 264 critical assessment cases are compared in Fig. 3.6.  As 

shown in Fig. 3.6, the outcomes of LSBA are consistent with those of the RBA for the majority of 

the critical assessment cases.   

Table 3.5 Calibrated PSFs and associated values of fo, TRR, TNR and ACC corresponding 

to pfa = 5 × 10-3 and different w values  

w 
Calibrated PSFs 

fo 
Performance indices 

dg Hr cv α TRR (%) TNR (%) ACC (%) 

0.60 1.21 1.05 0.65 1.33 0.891 92.7 83.6 87.9 

0.70 1.21 1.05 0.65 1.33 0.900 92.7 83.6 87.9 

0.80 1.21 1.01 0.61 1.33 0.919 100.0 59.3 78.4 
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(a) LSBA with dg = 1.21, Hr = 1.05, cv = 0.65, and  =  (w = ) 

  

(b) LSBA with dg = 1.21, Hr = 1.01, cv = 0.61, and  =  (w = ) 

Figure 3.6 Outcomes of RBA and LSBA employing different calibrated values of dg, Hr, 

cv and  for the 264 critical assessment cases  

3.3.3.5 Validation of calibrated PSFs 

The validity of the calibrated PSFs is first demonstrated by carrying out LSBA on the 1568 non-

critical cases of the 1832 assessment cases described in Section 3.3.3.2.  The confusion matrices 
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of the LSBA with two sets of PSFs and RBA outcomes for the non-critical assessment cases are 

constructed and shown in Table 3.6.  Figure 3.7 depicts pf versus the corresponding values of (P 

- MOP)/MOP for these cases.  The results in Table 3.6 and Fig. 3.7 indicate that LSBA utilizing 

the calibrated PSFs is highly accurate in identifying both repairs and non-repairs of the 1568 non-

critical assessment cases.  

Table 3.6 Confusion matrix of the LSBA and RBA (pfa = 5  10-3) outcomes for the 1568 

non-critical assessment cases by using different calibrated values of dg, Hr, cv and  in 

LSBA  

(a) dg = 1.21, Hr = 1.05, cv = 0.65, and  =  (w = ) 

RBA 
LSBA 

Repair No repair 

Repair 870 2 

No repair 0 696 

 

(b) dg = 1.21, Hr = 1.01, cv = 0.61, and  =  (w = ) 

RBA 
LSBA 

Repair No repair 

Repair 872 0 

No repair 0 696 

 

  

(a) dg = 1.21, Hr = 1.05, cv = 0.65, and  =  (w = ) 
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(b) dg = 1.21, Hr = 1.01, cv = 0.61, and  =  (w = ) 

Figure 3.7 pf versus (P - MOP)/MOP for 1568 non-critical assessment cases based on 

different calibrated values of dg, Hr, cv and  in LSBA  

The validity of the calibrated PSFs is further demonstrated by considering two examples that are 

different from the cases described in Section 3.3.3.2.  The first example, representative of small-

diameter pipelines with relatively low MOPs, has Dn = 406 mm, wtn = 3.15 mm, SMYS = 358 

MPa (i.e. X52 steel), MOP = 4 MPa and UF = 0.72, while the second example, representative of 

large-diameter, high-pressure pipelines, has Dn = 762 mm, wtn = 10.96 mm, SMYS = 483 MPa 

(i.e. X70 steel), MOP = 10 MPa and UF = 0.72.  The pipe attributes and the assumed ILI-reported 

dent depths Hrn/Dn, gouge depths dgn/wtn and gouge lengths lgn are summarized in Table 3.7, along 

with the values of Cv23n.  Three dent-gouge defects are considered for each example with the defect 

sizes also summarized in Table 3.7.  The outcomes of LSBA for the defects listed in Table 3.7 are 

depicted in Fig. 3.8 in comparison with the outcomes of RBA.  Figure 3.8 indicates that the 

outcomes of LSBA and RBA are consistent for all of the defects given in Table 3.7, which again 

demonstrates the validity of the calibrated PSFs. 

Table 3.7 Pipe attributes and dent-gouge geometries considered in hypothetical examples 1 

and 2  

Example Defect 
Dn 

(mm) 

wtn 

(mm) 

SMYS 

(MPa) 

Hrn/Dn 

(%) 

dgn/wtn 

(%) 

lgn 

(mm) 

Cv23n 

(J) 

MOP 

(MPa) 
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1 

1 

406 

 

3.15 

 

358 

3.4 30 180 115  

4 

 

2 2.5 25 120 70 

3 1.1 16 60 30 

2 

1  

762 

 

 

10.96 

 

 

483 

 

2.1 25 150 130  

10 

 

2 1.4 20 130 95 

3 1.0 18 70 75 

 

  

Figure 3.8 Outcomes of LSBA with dg = 1.21, Hr = 1.05, cv = 0.65 and  = 1.33 (w = 0.60) 

and RBA (pfa = 5  10-3) for the dent-gouge defects given in Table 3.7 

3.3.3.6 Additional calibration results 

Additional analyses are carried out to calibrate values of PSFs corresponding to an allowable 

failure probability pfa = 1 × 10-3, i.e. βT = 3.1.  To this end, assessment cases with β ranging from 

2.9 to 3.3, i.e. 4.83 × 10-4 ≤ pf ≤ 1.87× 10-3, are deemed critical, leading to a total of 211 critical 

assessment cases involved in the calibration..  Note that these cases include 104 repairs (pf > 1 × 

10-3) and 107 non-repairs (pf ≤ 1 × 10-3).  The PSFs are calibrated through the constrained 

optimization formulated in Eq. (3.22).  The calibrated PSFs are summarized in Table 3.8, along 

with the other relevant information such as values of w, TRR, TNR and ACC.  It is observed as w 

increases, calibrated PSFs result in higher TRR but relatively lower TNR and ACC, consistent 

with the observations obtained in Section 3.3.3.4.  The outcomes of LSBA based on the calibrated 

PSFs for the 1621 non-critical assessment cases are summarized in Table 3.9.  The results indicate 

that the calibrated PSFs lead to highly accurate identifications of both repairs and non-repairs, 
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further demonstrating the validity and effectiveness of LSBA employing the PSFs.  

Table 3.8 Calibrated PSFs and associated values of TRR, TNR and ACC corresponding to 

pfa = 1 × 10-3 and different w values based on 211 critical assessment cases 

w 
Calibrated PSFs Performance indices 

dg Hr cv α TRR (%) TNR (%) ACC (%) 

0.60 1.30 1.06 0.60 1.42 90.4 72.0 81.0 

0.70 1.28 1.23 0.62 1.38 95.2 61.7 78.2 

0.80 1.23 1.10 0.61 1.50 100.0 46.7 73.0 

 

Table 3.9 Predictive performance of LSBA outcomes for the 1621 non-critical assessment 

cases corresponding to pfa = 1 × 10-3 by using different calibrated values of dg, Hr, cv and 

 in LSBA 

w 
Calibrated PSFs Performance indices 

dg Hr cv α TRR (%) TNR (%) ACC (%) 

0.60 1.30 1.06 0.60 1.42 100.0 100.0 100.0 

0.70 1.28 1.23 0.62 1.38 100.0 99.8 99.9 

0.80 1.23 1.10 0.61 1.50 100.0 98.3 99.6 
 

3.4 Comparison with deterministic FFS assessments 

It is valuable to examine the advantages of LSBA over deterministic FFS assessment that employs 

the failure pressure ratio (FPR) as described in the Introduction.  We consider the 264 critical 

assessment cases described in Section 3.3.3.3 as the basis for the comparison.  Figure 3.9 depicts 

the outcomes of LSBA employing dg = 1.21, Hr = 1.05, cv = 0.65 and α = 1.33 (corresponding 

to pfa = 5 × 10-3 and w = 0.6) in comparison with FPRs for the 264 critical assessment cases, where 

FPR = PEPRG-C/MOP with PEPRG-C evaluated using the nominal values of the input variables.  Figure 

3.9 clearly illustrates the inadequacy of the FPR-based deterministic assessment procedure: 

reliability-consistent outcomes are untenable regardless of how the pre-defined safety factor (e.g. 

1.75 or 2.0) is chosen to separate repairs and non-repairs in the deterministic assessment.   
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Figure 3.9 Outcomes of LSBA with dg = 1.21, Hr = 1.05, cv = 0.65 and  = 1.33  

(corresponding to pfa = 5 × 10-3 and w = 0.6) in comparison with FPRs for 264 critical 

assessment cases 

3.5 Conclusions 

The present study presents a framework for carrying out LSBA of steel pipelines containing dent-

gouges to achieve reliability-consistent assessment outcomes. The LSBA is formulated by 

computing the factored burst capacity at a dent-gouge using the factored gouge depth (dgdgn), dent 

depth (HrHrn) and Charpy toughness (cvCv23n) in the EPRG-C model.  A dent-gouge requires 

rehabilitation if the factored burst capacity is less than the factored pipe internal pressure (αMOP).  

The partial safety factors (i.e. dg, Hr, cv and α) are calibrated using a noval methodology by 

making the outcomes of LSBA consistent with those of RBA (with a pre-defined pfa) through the 

use of confusion matrix for a set of critical assessmsent cases with representative pipe attriburtes 

and dent-gouge sizes.  The FORM is employed to evaluate the failure probabilities of the 

assessment cases by taking into account uncertainties involved in the pipe geometric and material 

properties, sizes of dent-gouges, as well as the model error associated with the EPRG-C model. 

The PSFs are calibrated for two values of pfa, i.e. 510-3 and 110-3, respectively, for illustrative 

purposes.  The validity of the calibrated PSFs is then verified based on non-critical assessment 

cases independent of those cases considered in the calibration and two additional pipeline 

examples.  The advantages of LSBA over the deterministic assessment procedure in terms of 
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achieving reliability-consistent assessment outcomes are demonstrated using the cases considered 

in the calibration.  The LSBA framework and novel calibration process developed in this study 

can be applied to pipelines containing other types of flaws such as metal-loss corrosion and stress 

corrosion cracking defects, and will largely facilitate the performance-based pipeline integrity 

management practice.   
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4 Generation of Synthetic Full-scale Burst Test Data for 
Corroded Pipelines Using the Tabular Generative Adversarial 
Network 

4.1 Introduction 

Metal-loss corrosion is one of the most common threats to the structural integrity of oil and gas 

pipelines (Lam and Zhou 2016).  Corrosion leads to localized wall thickness losses of pipelines 

and a reduction of their burst capacities, i.e. the maximum internal pressure a pipeline can 

withstand.  A naturally-occurring corrosion defect on a pipeline typically has an irregular depth 

profile in the through wall thickness direction and also extends along the pipe longitudinal and 

circumferential directions in irregular patterns.  The depth and length of the corrosion defect, and 

the area of the defect projected on a longitudinal plane perpendicular to the wall thickness are 

considered main features affecting the burst capacity of corroded pipelines.   

Full-scale burst tests of pipe specimens containing machined and naturally-occurring corrosion 

defects are extensively reported in the literature (e.g. Vieth and Kiefner 1993; Cronin 2000; 

Benjamin et al. 2007; Al-Owasis et al. 2018).  For instance, Vieth and Kiefner (1993) conducted 

and summarized 168 full-scale burst tests of pipe specimens containing naturally-occurring 

corrosion defects covering wide ranges of geometric and material properties, as well as corrosion 

dimensions.  Cronin (2000) performed 30 full-scale burst tests of end-capped specimens made of 

X42, X46, X52 and X55 steel grades with naturally-occurring corrosion defects.  Benjamin et al. 

(2007) conducted full-scale burst tests of twelve pipe specimens manufactured using high steel 

grades.  Each pipe specimen contained two or more longitudinally- or circumferentially-aligned 

rectangular machined defects.  Al-Owasis et al. (2018) carried out 31 full-scale burst tests of X52 

and X60 specimens containing single or multiple interacting corrosion defects of various 

geometry.   

Many semi-empirical burst capacity models for corroded pipe specimens have also been 

developed, for example, the well-known B31G (ASME 1991), B31G Modified (Kiefner and Vieth 

1989), RSTRENG (Kiefner and Vieth 1990), DNV (DNV 2010) and P-sqr models (Zhang et al. 

2018).  Extensive studies have been carried out to compare the predictive accuracy of these burst 

capacity models based on full-scale burst tests of corroded pipe specimens, e.g. Zhou and Huang 
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(2012a); Amaya-Gómez et al. (2019), and Zhu (2021).  The use of machine learning (ML) methods 

to develop burst capacity models has also been reported in the recent literature (Lu et al. 2021a; 

Lu et al. 2021b; Phan and Dhar 2021; Zhang and Tian 2022).  For example, Lu et al. (2021a) 

developed an ensemble data-driven model combining the relevance vector machine and multi-

objective swarm algorithm to predict the burst capacity based on burst test data collected from the 

literature.  The relevance vector machine was used as the basic predictor to train the model, 

whereas the multi-objective swarm method was adopted to improve the predictive accuracy as well 

as stability.  Phan and Dhar (2021) employed the random forest, support vector machine and 

artificial neural network algorithms to predict the burst capacity of corroded pipelines based on 

the burst tests in the literature and showed that the ML-based models were significantly more 

accurate than several existing empirical models.   

It is noted that the full-scale burst tests play a critical role in the development and validation of 

semi-empirical and ML-based burst capacity models for corroded pipelines.  However, it is costly 

and time-consuming to conduct full-scale burst tests of corroded pipe specimens.  This limits the 

quantity of such data available in the open literature, in particular those data involving naturally 

corroded pipe specimens.  To address this limitation, one can employ the finite element analysis 

(FEA) to perform burst tests numerically, provided that the finite element model has been 

adequately validated (Sun and Cheng 2018; Bao et al. 2018; Zhang and Zhou 2020; Arumugam et 

al. 2020).  Alternatively, one can generate synthetic burst test data by characterizing the joint 

probability distribution of a given dataset of burst tests and then sampling from such a joint 

distribution.  While the use of FEA to evaluate the burst capacity of corroded pipelines has been 

extensively reported in the literature, studies focusing on the generation of synthetic burst test data 

are scarce, if any.   

Statistical tools such as copulas and Bayesian networks have been employed to generate synthetic 

data (Oliva et al. 2016; Patki et al. 2016).  Deep learning neural models based on the generative 

adversarial network (GAN) were recently developed to generate synthetic data.  Park et al. (2018) 

proposed the tableGAN to generate synthetic data corresponding to a tabular dataset.  Xu and 

Veeramachaneni (2018) proposed the tabular GAN (TGAN) to generate synthetic tabular data.  

There are some fundamental differences between the tableGAN and TGAN algorithms.  For 

instance, the convolutional neural network is employed in tableGAN, whereas the recurrent neural 
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network is adopted in TGAN.  Furthermore, tableGAN optimizes the authenticity of the synthetic 

data by minimizing the cross entropy loss, whereas TGAN focuses on the marginal distribution 

(Xu and Veeramachaneni 2018).  TGAN is employed in the present study because it takes into 

account the information of all columns in the tabular data during training (Engelmann and 

Lessmann 2020).  TGAN has been applied in a few studies in the civil engineering field recently.  

Marani et al. (2020) employed TGAN to generate synthetic test data, which are then used to train 

ML-based models to predict the compressive strength of ultra-high-performance concrete.  

Almustafa and Nehdi (2021) used TGAN to generate synthetic data points, which are then 

combined with real test data to train an ML-based model to predict the maximum displacement of 

fiber reinforced polymer-strengthened reinforced concrete slab under blast loading.  Aldosari et al. 

(2021) generated synthetic samples to train an artificial neural network model to predict the length 

of corrosion defects on pipelines based on signals obtained from inspection tools.   

The primary objective of the present study is to explore the use of TGAN to generate synthetic 

full-scale burst test data for corroded pipe specimens.  To this end, a database containing real burst 

tests of corroded pipe specimens is first established from the literature.  This database is then 

employed to generate synthetic burst test data using TGAN and perform outlier identification.  

Two ML algorithms, namely the extra tree (ET) and random forest (RF), are employed to carry 

out hyper-parameters tuning of TGAN based on training using real data only and validation using 

synthetic and real data, and evaluate the credibility of the synthetic data based on training using 

real and synthetic data and validation using the real test data only.  It must be emphasized that the 

present study is not aimed at developing ML-based models to predict the burst capacity of corroded 

pipelines – many burst capacity models have been proposed in the literature as discussed in the 

previous sections.  The sole purpose of employing the RF and ET algorithms is to tune the hyper-

parameters of TGAN and validate the credibility of the synthetic data generated by TGAN.  The 

main contribution of this paper is the presentation of detailed formations of TGAN, which are 

somewhat lacking in the literature, and development of methodologies to tune the hyper-

parameters of TGAN, identify outliers in the generated synthetic data, and validate the credibility 

of the synthetic data.  While TGAN is applied to burst tests of corroded pipe specimens in this 

study, we envision that the TGAN framework presented can be employed to generate synthetic 

data for other types of full-scale tests such as corroded pipe specimens under complex loading 

conditions (e.g. internal pressure combined with bending) and burst tests of pipe specimens 
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containing dent-gouges.  This provides a promising means of incorporating deep learning tools in 

the pipeline integrity management practice.  

The rest of the paper is organized as follows.  Section 4.2 presents the full-scale burst test database 

established based on information in the literature; Section 4.3 presents detailed formulations of 

TGAN methodology and a simple methodology to identify potential outliers in the synthetic burst 

test data generated by TGAN; the ET and RF models employed in the hyper-parameter tuning and 

validation of the credibility of the synthetic data are also briefly described in Section 4.3, and 

Section 4.4 presents the synthetic burst test data and validation of the credibility of the synthetic 

data.  Concluding remarks are provided in Section 4.5. 

4.2 Full-scale burst test data 

A total of 258 full-scale burst test data for corroded pipe specimens are collected from studies 

reported in the literature between 1993 and 2018 (Chouchaoui 1993; Kiefner et al. 1996; Cronin 

2000; Bjornoy et al. 2000; Benjamin et al. 2000; Kim et al. 2004; Freire et al. 2006; Oh et al. 2007; 

Souza et al. 2007; Benjamin et al. 2007; Chauhan and Brister 2009; Belachew et al. 2016; Al-

Owasis et al. 2018; Zhang et al. 2018).  The defect is located on the pipe external surface for all 

test specimens.  Note that 59 data points reported by Chauhan and Brister (2009) are excluded 

because these are tests involving pipe rings as opposed to pipe vessels with corrosion defects.  The 

detailed information of all 258 data points is summarized in Appendix D. 

The burst tests database is characterized by five non-dimensional random variables that quantify 

the pipe material and geometric properties, geometry of the corrosion defect and burst capacity 

observed in the test.  These variables include D/wt, d/wt, l/(Dwt)
0.5, y/u, and ptest/py, where D and 

wt denote the pipe outside diameter and wall thickness, respectively; y and u denote the pipe 

yield and ultimate tensile strengths, respectively; d and l denote the defect depth (i.e. in the through 

pipe wall thickness direction) and length (i.e. in the pipe axial direction), respectively; ptest denotes 

the burst capacity observed in the test, and py = 2ywt/D.  The selection of D/wt, d/wt and l/(Dwt)
0.5 

is justified as they are considered in almost all well-known semi-empirical burst capacity models.  

The variable y/u reflects the strain hardening property of the pipe steel, which has a marked 

impact on the burst capacity of pristine and corroded pipelines (Zhu and Leis 2005; Sun et al. 

2020).  The value of u is missing in some of the test data collected; in this case, y/u is replaced 
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by the ratio between the specified minimum yield and tensile strengths (SMYS/SMTS) 

corresponding to the reported pipe steel grade as an approximation.  Figure 4.1 summarizes the 

correlation coefficients among the five variables.  The correlation coefficient, ρxy, of two sets of 

data, xs and ys (s = 1, 2, …, N), is computed using the following equation:   

𝜌𝑥𝑦 =
∑ (𝑥𝑠−�̅�)(𝑦𝑠−�̅�)
𝑁
𝑠=1

√∑ (𝑥𝑠−�̅�)2
𝑁
𝑠=1 ∑ (𝑦𝑠−�̅�)2

𝑁
𝑠=1

  (4.1) 

where N denotes the number of data points in each set of data, and �̅� and �̅� denote the mean values 

of xs and ys, respectively.  As shown in Fig. 4.1, the correlations among the four input variables, 

i.e. D/wt, d/wt, l/(Dwt)
0.5 and y/u, are generally low.  There are a modest positive correlation 

between D/wt and ptest/py, and modest negative correlations between d/wt and ptest/py and between 

y/u and ptest/py.  It is somewhat surprising that the correlation between l/(Dwt)
0.5 and ptest/py is 

close to zero; however, this does not necessarily suggest that l/(Dwt)
0.5 has no effect on ptest/py.  

   

Figure 4.1 Correlation coefficients of the five random variables associated with the real 

full-scale burst test data collected from the literature 

4.3 Machine learning algorithms 

4.3.1 Tabular GAN 

GAN proposed by Goodfellow et al. (2014) is an appealing approach to generate synthetic images.  

GAN consists of two opposing networks, i.e. the generator and discriminator.  The former aims at 
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generating credible synthetic images to fool the discriminator, while the latter determines how 

likely the synthetic images is real.  The competition between the generator and discriminator 

enables them to be more powerful through repeated training, and eventually the discriminator can 

no longer differentiate between the real and synthetic images.  The TGAN method is a variant of 

GAN aimed at generating synthetic tabular data (Xu and Veeramachaneni 2018).  For clarity and 

completeness, key formulations of TGAN are presented in the following.  Note that TGAN can 

deal with both continuous (numerical) and discrete (categorical) random variables.  Since the burst 

tests database in the present study contains continuous random variables only, the formulation for 

treating discrete random variables is not presented for brevity and can be found in Xu and 

Veeramachaneni (2018).  Let T denote a table containing nc columns of continuous random 

variables {C1, …, Cnc
} and nr rows of data.  In the subsequent descriptions, bold non-italic symbols 

are used to denote vectors and matrices.  The random variables in T follow an unknown joint 

probability distribution, and the jth (j = 1, 2, …, nr) row in T, i.e. {cj,1, …, cj,nc
}, is an nc-dimensional 

vector sampled from this joint distribution.  

For each random variable (i.e. each column) in T, a Gaussian mixture model (GMM) with k 

components is suggested by Xu and Veeramachaneni (2018) to fit the data to deal with the multiple 

modes that may be present in the data.  The k Gaussian distributions for column Ci (i = 1, 2, …, 

nc) are defined by their mean values μi = { 𝜇𝑖
1, 𝜇𝑖

2, … , 𝜇𝑖
𝑘 } and standard deviations si = 

{𝑠𝑖
1, 𝑠𝑖

2, … , 𝑠𝑖
𝑘}.  For each value cj,i (j = 1, 2, …, nr) included in Ci, its probability is a weighted sum 

of the probabilities of the k Gaussian distributions with the weights j,i = {𝜔𝑗,𝑖
1 , 𝜔𝑗,𝑖

2 , … , 𝜔𝑗,𝑖
𝑘 }.  Given 

j,i, cj,i is then transformed to vj,i = tanh (
𝑐𝑗,𝑖−𝜇𝑖

𝑞

2𝑠
𝑖
𝑞 ), where q = argmaxm𝜔𝑗,𝑖

𝑚 (m = 1, 2, …, k), and 

tanh(•) denotes the hyperbolic tangent function. That is, cj,i is first normalized by the mean and 

standard deviation of the Gaussian distribution with the largest weight.  The tanh function then 

transforms the normalized value of cj,i to a value between -1 and 1 as typically carried out in neural 

network models (Wang et al. 2021).  It follows that each column in T is replaced by two columns: 

one column contains the values of v, while the other contains the values of .  The total number 

of columns in T after the above-described data transformation becomes 2nc.   

The long short-term memory (LSTM) model (Houdt et al. 2020) is employed as the generator (G) 

in TGAN to produce synthetic data (Xu and Veeramachaneni 2018).  LSTM generates the 
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synthetic tabular data on a column-by-column basis; a so-called LSTM cell (or step) is used to 

generate data in a given column, and sequentially connected cells (or steps) are used to generate 

the data following the order of columns in table T.  Figure 4.2 depicts the structure of the LSTM 

cell at step t, ct.   

   

Figure 4.2 The structure of the LSTM cell ct 

Three control gates, i.e. the forget, input and output gates, are included in ct.  The input to the cell, 

zt, is an (nz × nb) matrix of random numbers independently sampled from the standard Gaussian 

distribution, where nz is a hyper-parameter that can be tuned for optimal model performance, and 

nb (1 ≤ nb ≤ nr) is the batch size, i.e. the number of rows of data generated in a given batch.  The 

size of the hidden state, which is analogous to the number of neurons in a cell, is a hyper-parameter 

denoted by nh.  The symbol “⁎” in Fig. 4.2 represents element-wise multiplication of matrices; 

sgmd and sfmx represent the sigmoid and softmax activation functions, respectively (Graves 

2012).  The other inputs to ct include the (nh × nb) hidden matrix yt-1, which carries the information 

from the previous cell t-1, and the (nh × nb) weighted context matrix at-1, which stores the long-

term dependency information representing the weighted average output of all previous LSTM 

cells.  The input is processed in the three control gates using Eqs. (4.2) through (4.8) as follows.  

Note that the activation function is applied on an element-wise basis and that the matrix operation 

is employed in Eqs. (4.2) through (4.8) except for Eqs. (4.6) and (4.7).  

𝐟𝑡 = sgmd(𝐰𝑓𝐳𝑡 + 𝐮𝑓𝐲𝑡−1 + 𝐛𝑓)  (4.2) 
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𝐢𝑡 = sgmd(𝐰𝑖𝐳𝑡 + 𝐮𝑖𝐲𝑡−1 + 𝐛𝑖)  (4.3) 

𝐨𝑡 = sgmd(𝐰𝑜𝐳𝑡 + 𝐮𝑜𝐲𝑡−1 + 𝐛𝑜)  (4.4) 

𝐫𝑡 = tanh (𝐰𝑐𝐳𝑡 + 𝐮𝑐𝐲𝑡−1 + 𝐛𝑟)  (4.5) 

𝐡𝑡 = 𝐨𝑡 ∗ tanh (𝐟𝑡 ∗ 𝐚𝑡−1 + 𝐫𝑡 ∗ 𝐢𝑡)  (4.6) 

𝐚𝑡 = ∑ (sfmx(𝛄𝑡)𝑠 ∗ 𝐡𝑠
𝑡−1
𝑠=1 )  (4.7) 

𝐲𝑡 = tanh (𝐮ℎ𝐡𝑡)  (4.8) 

In the above equations, ft, it, ot and rt are (nh × nb) activation matrices for the forget gate, input 

gate, output gate and cell, respectively, at step t; w• is an (nh × nz) weight matrix (the subscript “•” 

is a generic symbol denoting f, i, o, or c); u• is an (nh × nh) weight matrix; b• is an (nh × nb) bias 

matrix; γt is an (nh × nb) attention weight matrix; ht is the (nh × nb) matrix combining the outputs 

from the forget, input and output gates, and uh is an (nh × nh) weight matrix used to project ht into 

the (nh × nb) matrix yt.  If ct corresponds to the column containing the values of v in the 

(transformed) table T, then an nb-dimensional vector of v values, vt, is obtained as,  

𝐯𝑡 = tanh (𝐰𝑣𝐲𝑡)  (4.9) 

where wv is a (1 × nh) weight matrix.  If ct corresponds to the column containing the values of  in 

T, then a (k × nb) matrix of t is obtained from, 

𝛚𝑡 = sfmx(𝐰𝑢𝐲𝑡)  (4.10) 

where wu is a (k × nh) weight matrix.  The normalization using the sfmx function is carried out on 

a column-by-column basis in Eq. (4.10).  

The multi-layer perceptron (MLP), which is a neural network with l number of fully connected 

layers including the input (Eq. (4.11)), hidden (Eq. (4.12)) and output (Eq. (4.13)) layers, is 

employed as the discriminator (DI).  The values of vt and t of all columns generated by the 

generator in one batch are concatenated together to form a ((k + 1)nc × nb) input matrix (z(DI)) to 

the discriminator.  The calculations in the discriminator are represented by the following equations.  
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𝐠1
(DI)

= L(DO (BN(𝐰1
(DI)𝐳(DI))))  (4.11) 

𝐠𝑠
(DI)

= L(DO(BN(𝐰𝑠
(DI) (𝐠𝑠−1

(DI)⊕divr(𝐠𝑠−1
(DI)))))) (s = 2, 3, …, l-1) (4.12) 

𝑔𝑙
(DI)

= Ave(sgmd(𝐰𝑙
(DI) (𝐠𝑙−1

(DI)⊕divr(𝐠𝑙−1
(DI)))))  (4.13) 

In Eqs. (4.11) - (4.13), ⊕ denotes the concatenation operation; w(DI) 1 is an (nDI × (k + 1)nc) weight 

matrix with nDI being the hyper-parameter defining the number of neurons per layer in the 

discriminator; BN(•) is the batch normalization operation, which stabilizes and expedites the 

learning by normalizing the input to all neurons in a given layer to have a zero mean and a unit 

variance (Ioffe and Szegedy 2015), and L(•) denotes the leaky reflect linear activation function 

that is applied element-wise, i.e. L(x) = max(αx, x) with α being a hyperparameter usually set to 

be 0.01 (Sharma et al. 2020).  DO(•) refers to the dropout operation whereby part of the neurons 

within the layer is ignored to reduce the co-dependency among neurons and prevent overfitting 

(Srivastava et al. 2014); g(DI) 1 is the (nDI × nb) output matrix from the first layer; divr(•) generates 

the (nDI × nb) mini-batch discriminator matrix that is used to represent the similarity between 

different inputs (Salimans et al. 2016); gs
(DI) is the (nDI × nb) output matrix from the sth (s = 2, 3, 

…, l - 1) layer; ws
(DI) is an (nDI × 2nDI) weight matrix, and wl

(DI) is a (1 × 2nDI) weight matrix.  The 

discriminator eventually produces a single scalar gl
(DI) that is the average (Ave) value of all the 

elements in the nb-dimensional vector sgmd(𝐰𝑙
(DI)(𝐠𝑙−1

(DI)⊕divr(𝐠𝑙−1
(DI)))).  The batch (i.e. nb 

rows) of generated data are rejected if gl
(DI) is less than 0.5, and accepted otherwise.  

The loss functions for the generator and discriminator, LG and LDI, are defined as follows (Xu and 

Veeramachaneni 2018): 

𝐿𝐺 = −
1

𝑛𝑏
∑ log(𝑝𝑠

′)𝑛𝑏
𝑠=1 +

1

𝑛𝑏
∑ ∑ KL(𝛚𝑠,𝑖

′ , 𝛚𝑠,𝑖)
𝑛𝑐
𝑖=1

𝑛𝑏
𝑠=1   (4.14) 

𝐿𝐷𝐼 = −
1

𝑛𝑏
∑ log(𝑝𝑠)
𝑛𝑏
𝑠=1 +

1

𝑛𝑏
∑ log(𝑝𝑠

′)𝑛𝑏
𝑠=1   (4.15) 
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where ps and 𝑝𝑠
′  (s = 1, 2, …, nb) represent the probabilities of the sth real data and synthetic data 

to be identified as real data in the discriminator, respectively; KL(• •) represents the Kullback-

Leibler divergence (Perez-Cruz et al. 2008), and s,i and 𝛚𝑠,𝑖
′  are weights from the corresponding 

GMM model of the real and synthetic data, respectively.  It follows that if LG is small, the synthetic 

data is similar to the real data, and if LDI is small, the discriminator is better at distinguishing the 

difference between the real and synthetic data.  

4.3.2 Identification of outliers in synthetic data 

Since TGAN may not exactly capture the joint probability distribution of the real data, it is possible 

that the synthetic data generated by TGAN contain outliers.  Xu and Veeramachaneni (2018) did 

not propose a general methodology to identify outliers in the synthetic data.  In this study, we 

propose a simple criterion to identify outliers in the synthetic burst test data by considering that 

the burst capacity of a corroded pipeline must be less than that of the same pipeline under the 

corrosion-free condition.  Many theoretical and semi-empirical equations have been proposed to 

compute the burst capacity of a pristine thin-walled pipe (Wang et al. 2009; Zhou and Huang 

2012b; Zhu and Leis 2012).  We employ the following equation, which has been shown to have a 

high accuracy (Zhou and Huang 2012b):  

𝑝𝑏0 =
2𝜎𝑢𝑤𝑡

𝐷
  (4.16) 

where pb0 is the burst capacity of a pristine pipe.  It follows that ptest/py of a given synthetic data 

point must be lower than σu/σy.  Those data points with ptest/py ≥ σu/σy are therefore outliers and 

removed.   

4.3.3 Random forest and extra tree 

The classification and regression tree (CART) algorithm, which is an implementation of a decision 

tree, is a machine learning approach used for classification and regression problems (Loh 2014; 

Breiman et al. 2017).  The basic idea of CART is to randomly split samples (i.e. data points used 

to build an ML model) into several parts recursively until all data points are partitioned 

satisfactorily.  In this way, a complex prediction problem is simplified into multiple less complex 

problems.  Each decision tree contains three types of nodes: the root, decision, and leaf nodes.  

Only one root node exists in a given decision tree and contains all samples.  The root node is 
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randomly decomposed into numerous decision nodes, and leaf nodes contain sets of data that could 

no longer be partitioned representing the outcome of decision nodes.  However, a single decision 

tree has in general poor accuracy as a result of the randomly chosen split (i.e. the generation of a 

decision or leaf node) and is prone to overfitting problems.  The ensemble method (Ahmad et al. 

2018), which combines multiple decision trees to carry out the analysis, is proposed to overcome 

such difficulties.   

RF and ET are two ensemble tree methods that have been widely used in engineering applications 

with a high accuracy in both classification and regression problems (e.g. Marani et al. 2020; Phan 

and Dhar 2021; Zhang et al. 2021).  RF generates various decision trees using the bagging 

algorithm (or bootstrap aggregation) whereby samples are randomly selected with replacement to 

form a new dataset in each decision tree, and a subset of the input features is also randomly chosen 

in each split.  ET employs the entire original dataset in all decision trees (i.e. root nodes are 

identical in all trees, thus eliminating bagging) and chooses a random value in a split within 

randomly selected subset of features.  Finally, the output values of all decision trees are aggregated 

with the corresponding mean value denoted as the final prediction given a set of input.  Further 

details of RF and ET can be found in Breiman (2001) and Breiman et al. (2017).  

4.3.4 Methodologies for evaluating the credibility of synthetic data generated 
by TGAN 

The credibility of the synthetic data generated by TGAN is examined by comparing the marginal 

distributions and correlation coefficient matrix associated with the synthetic data with those 

associated with the real data: closely matched marginal distributions and correlation matrices of 

the real and synthetic data indicate high credibility of the synthetic data.  The credibility of the 

synthetic data can be further inferred by the predictive accuracy of the RF- and ET-based burst 

capacity models trained using the real and synthetic data.  Following typical practice in training 

and validating ML models, we randomly separate the real test dataset into two subsets: R1 and R2 

consisting of 206 and 52 data points, respectively, i.e. 80 and 20% of the total samples.  The dataset 

R1 is used in TGAN to generate the synthetic data and also used to train the RF and ET models, 

whereas R2 is used to quantify the predictive accuracy of the RF and ET models and therefore 

demonstrate the credibility of the synthetic data.  It is emphasized that R2 is completely 

independent of the synthetic dataset.  For a given dataset, the predictive accuracy of the ET and 
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RF models is evaluated using two metrics, namely the root mean squared error (RMSE) and 

coefficient of determination (R2) as defined in the following.   

RMSE = √
1

𝑁
∑ (𝜂𝑡,𝑠 − 𝜂𝑝,𝑠)

2𝑁
𝑠=1   (4.17) 

𝑅2 = 1 −
∑ (𝜂𝑡,𝑠−𝜂𝑝,𝑠)

2𝑁
𝑠=1

∑ (𝜂𝑡,𝑠−�̅�𝑡)
2𝑁

𝑠=1

  (4.18) 

where t,s is the value of ptest/py of the sth (s = 1, 2, …, N) data point in the dataset; N is the total 

number of data points in the dataset; p,s is the value of pb/py for the sth test data, with pb being the 

burst capacity predicted by the RF or ET model, and �̅�𝑡 denotes the mean value of t associated 

with the dataset.   

Consider the scenario where RF and ET models are trained using the real test dataset R1 and then 

applied to the real test dataset R2.  Consider another scenario where RF and ET models are trained 

using the synthetic dataset and then applied to R2.  If the predictive accuracy (as quantified by the 

RMSE and R2 values) of the R1-trained RF and ET models evaluated based on dataset R2 is similar 

to the predictive accuracy of the synthetic data-trained RF and ET models evaluated based on R2, 

one can infer that the credibility of the synthetic data is validated.   

4.4 Results and discussions 

4.4.1 Hyper-parameter tuning 

Before TGAN is employed to generate the synthetic data, the RF and ET models are first trained 

using R1.  This facilitates the tuning of hyper-parameters of TGAN as described later.  The open-

source platform Python is used to implement the training of the RF and ET models.  A five-fold 

cross validation is used to tune the hyper-parameters of the RF and ET models (Browne 2000).  

That is, R1 is equally divided into five subsets; four of which are then used to evaluate the hyper-

parameters with the remaining subset used as the verification set, and the process repeats for five 

times with identical hyper-parameters such that each subset has been employed as a verification 

set once.  The predictive accuracy of the trained model corresponding to a given set of hyper-

parameters is evaluated on the verification set, and the average predictive accuracy resulting from 

the cross validation is defined as the accuracy associated with the set of hyper-parameters.  Many 
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iterations are then carried out to search the set of hyper-parameters leading to satisfactorily high 

average predictive accuracy.  The tuned hyper-parameters for the ET and RF models are 

summarized in Table E.1 in Appendix E. 

The online Python-based TGAN engine provided by researchers at the Massachusetts Institute of 

Technology (https://pypi.org/project/tgan/) is employed to generate the synthetic data.  The tuning 

of the hyper-parameters of TGAN involves the RF and ET models trained using R1 as described 

above.  A synthetic dataset is generated based on a given set of hyper-parameters.  The outliers in 

the dataset, which account for about 1% of the total data points, are then identified and removed 

based on the criterion described in Section 4.3.2.  The resulting outlier-free synthetic dataset is 

denoted by S.  The number of data points in S is selected to be 400 as this is about twice the size 

of R1 and therefore considered sufficiently large.  The RF and ET models trained using R1 are then 

used to predict the burst capacities corresponding to S as well as R2.  For brevity, this scenario is 

referred to as TR1-AR2, i.e. the RF and ET models are trained on R1 and then applied to R2. The 

suitable set of hyper-parameters of TGAN is determined by ensuring that the predictive accuracy 

of the RF and ET models when applied to the synthetic dataset, referred to as the TR1-AS scenario, 

is consistent with that corresponding to the TR1-AR2 scenario.  A simple flowchart illustrating the 

hyper-parameter tuning process for TGAN is depicted in Fig. 4.3.  The final hyper-parameters 

selected for TGAN are summarized in Table E.2 of Appendix E.  The values of RMSE and R2 

associated with the RF and ET models corresponding to the TR1-AS and TR1-AR2 scenarios are 

summarized in Table 4.1.   

Table 4.1 Values of RMSE and R2 associated with the RF and ET models corresponding to 

the TR1-AR2 and TR1-AS scenarios 

 TR1-AR2 TR1-AS 

 RF ET RF ET 

RMSE 0.106 0.094 0.107 0.090 

R2 0.849 0.881 0.858 0.899 
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Figure 4.3 Hyper-parameter tuning process of TGAN 

4.4.2 Credibility of the synthetic data 

The credibility of the synthetic dataset S generated using the final tuned hyper-parameters of 

TGAN is first validated based on the similarity between probabilistic characteristics of S and those 

of R1.  To this end, the means, standard deviations (Std), minimums and maximums of D/wt, d/wt, 

l/(Dwt)
0.5, σy/σu and ptest/py associated with S and R1 are compared in Table 4.2.  The probability 

density functions (PDF) of the five random variables in S and R1 are depicted in Fig. 4.4.  Table 

4.2 and Fig. 4.4 indicate that the marginal distributions of the five random variables associated 

with the real burst test data are adequately captured by the synthetic data.  The correlation 

coefficients associated with S and R1 are compared in Fig. 4.5, which suggests that the joint 

probability distribution of the random variables is also captured by the synthetic data.   

Table 4.2 Comparison of basic statistics of the synthetic dataset (S) and real dataset (R1) 

 D/wt d/wt l/(Dwt)0.5 σy/σu ptest/py 

 R1 S R1 S R1 S R1 S R1 S 

Mean 60.39 59.27 0.58 0.57 4.79 4.13 0.76 0.76 0.95 0.95 

Std 18.97 18.74 0.15 0.16 5.86 5.89 0.07 0.07 0.28 0.27 

Min 25.21 27.91 0.09 0.12 0.37 0.36 0.58 0.60 0.33 0.39 
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Max 109.09 94.31 0.80 0.77 54.03 54.03 0.98 0.91 1.57 1.53 

 

            

                                            (a)                                                                     (b) 

          

                                           (c)                                                                       (d) 
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      (e) 

Figure 4.4 Comparisons of PDFs of the five random variables in R1 and S 

 

    

Figure 4.5 The correlation coefficients of different random variables corresponding to R1 

and S (bracketed values for S) 

The credibility of the synthetic data is further evaluated by employing the R2 dataset to quantify 

and compare the predictive accuracy of the RF and ET models trained using R1, S and combined 
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R1 and S.  Note that the dataset combining R1 and S is referred to as M.   The corresponding 

scenarios are referred to as TR1-AR2, TS-AR2 and TM-AR2.  The values of RMSE and R2 

calculated based on the R2 dataset corresponding to different scenarios are summarized in Table 

4.3.  The observed values of ptest/py (i.e. t) are compared with the values of ptest/py predicted by 

the RF and ET models (i.e. p) in Figs. 4.6 and 4.7 for different datasets.  The results shown in 

Table 4.3 indicate that the predictive accuracy of the RF and ET models in the TS-AR2 and TM-

AR2 scenarios are consistent with that of the RF and ET models in the benchmark scenario TR1-

AR2. This provides an indirect, yet strong validation of the credibility of the synthetic dataset.  It 

is worth noting that the accuracy of the RF model in the TM-AR2 scenario is noticeably higher 

than that of the RF model in the TR1-AR2 scenario.  This suggests that the training of the RF model 

becomes noticeably more effective by combining the real and synthetic datasets than by using R1 

only.  Figure 4.7 indicates, as expected, that the accuracy of the RF and ET models is higher for 

the dataset used to train the models (i.e. R1, S or M) than that for the R2 dataset, which is 

independent of R1 and S.  The figure also indicates that the scattering in the t - p plot for the R2 

dataset is generally similar in different scenarios.  Given that the synthetic dataset is demonstrated 

to adequately capture the joint probability distribution of the real burst test data, the combined 

synthetic and real burst test data can then be used to facilitate the development and validation of 

burst capacity models for corroded pipelines.  This is however beyond the scope of the present 

study and will be the topic of future investigations.  Future investigations should also explore the 

use of TGAN to generate synthetic full-scale burst test data for pipelines containing other types of 

flaws such as surface-breaking cracks and dent-gouges to facilitate the engineering critical 

assessment of pipelines under various threats.    

Table 4.3 Predictive accuracy of the RF and ET models for the R2 dataset in three different 

scenarios 

 TR1-AR2 TS-AR2 TM-AR2 

 RF ET RF ET RF ET 

RMSE 0.106 0.094 0.092 0.093 0.089 0.092 

R2 0.849 0.881 0.886 0.884 0.893 0.886 
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                      (a) R1 dataset in TR1-AR2                                    (b) R2 dataset in TR1-AR2 

      

                      (c) S dataset in TS-AR2                                        (d) R2 dataset in TS-AR2 

     

                      (e) M dataset in TM-AR2                                        (f) R2 dataset in TM-AR2 
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Figure 4.6 Comparison of observed (or generated) and RF-predicted ptest/py values for 

different datasets involved in the three scenarios: TR1-AR2, TS-AR2 and TM-AR2   

   

                      (a) R1 dataset in TR1-AR2                                    (b) R2 dataset in TR1-AR2 

   

                      (c) S dataset in TS-AR2                                        (d) R2 dataset in TS-AR2 
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                      (e) M dataset in TM-AR2                                        (f) R2 dataset in TM-AR2 

Figure 4.7 Comparison of observed (or generated) and ET-predicted ptest/py values for 

different datasets involved in the three scenarios: TR1-AR2, TS-AR2 and TM-AR2   

 

4.5 Conclusions  

The present study employs a deep learning tool known as the tabular generative adversarial 

network (TGAN) to generate synthetic full-scale burst test data for corroded pipelines.  A database 

containing a total of 258 real full-scale burst tests of corroded pipe specimens is established first 

based on the information in the open literature.  The real burst test dataset is characterized by five 

random variables, namely D/wt, d/wt, l/(Dwt)
0.5, y/u, and ptest/py.  The dataset is randomly split 

into two subsets (R1 and R2) containing 80 and 20% of the total samples, respectively.  The subset 

R1 is then used to train the generator and discriminator in TGAN to generate synthetic full-scale 

burst test data that capture the joint probability distribution of the five random variables as reflected 

in the real burst test data.  The subset R2 is used to validate the credibility of the synthetic data.   

The long-short term memory and multi-layer perceptron models are employed in the generator and 

discriminator, respectively.  Detailed formulations for the generator and discriminator, which are 

somewhat lacking in the literature, are clarified in this paper.  A simple criterion is proposed to 

identify outliers in the synthetic dataset generated by TGAN by stipulating that the burst capacity 

of a corroded pipe specimen must be lower than that of the specimen under the corrosion-free 

condition.  The hyper-parameters of TGAN are tuned by ensuring that the predictive accuracy of 

the RF and ET models in the TR1-AR2 scenario is similar to that in the TR1-AS scenario.  Finally, 

the credibility of the synthetic data is validated by comparing the probabilistic characteristics of 

the synthetic data with those of the real data and by comparing the predictive accuracy of the RF 

and ET models in the TR1-AR2, TS-AR2 and TM-AR2 scenarios.  It should be noted that although 

TGAN has been reported to have enough flexibility to generate synthetic data, the use of TGAN 

however faces some practical obstacles.  First, TGAN may not be adequate to identify the severe 

imbalance of a categorical variable with multiple classes, leading to insufficient training of minor 

classes.  Second, TGAN requires a large quantity of data to update the weights and biases in the 

generator and discriminator models to achieve desired effect on generating credible synthetic data.  
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It is a demanding task to obtain a large quantity of full-scale test data in the pipeline integrity 

management field.   
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5 Development of Machine Learning-based Burst Capacity 
Models for Pipelines Containing Dent-gouges with Synthetic 
Full-scale Burst Test Data Generated Using Tabular 
Generative Adversarial Network 

5.1 Introduction 

Buried oil and gas pipelines occasionally fail due to mechanical damages caused by excavation 

equipment or rocks impacting the pipeline (Cosham and Hopkins 2004; Lam and Zhou 2016).  

Common forms of mechanical damages are dents, gouges and dent-gouges (Macdonald and 

Cosham 2005).  A plain dent is a permanent inward deformation of the pipe wall (Cosham and 

Hopkins 2004).  A gouge is an external surface damage characterized by localized loss of the pipe 

wall thickness as a result of the pipeline in contact with a foreign object (Cosham and Hopkins 

2020).  A gouge that is oriented in the longitudinal direction of the pipeline is more severe than 

those in other orientations because it is perpendicular to the hoop stress in the pipe wall, the main 

stress component due to the pipe internal pressure.  A dent-gouge (Fig. 5.1) is a severe mechanical 

damage as the burst capacity of a pipeline containing a dent-gouge is lower than that of the same 

plain dented and that of the same gouged in the undented pipeline (Macdonald and Cosham 2005).  

In the subsequent discussions, the gouge in a dent-gouge defect is assumed to be longitudinally 

oriented.   

 

Figure 5.1 A schematic of the geometry of a dent-gouge on a pipe segment 

Full-scale burst tests of pipe specimens containing dent-gouges have been carried out and reported 

in the literature (Jones 1982; Maxey 1986; Farrag and Francini 2011; Zarea et al. 2012; Zhao et al. 

2021).  Empirical and semi-empirical models have also been proposed to evaluate the burst 
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capacity of pipelines containing dent-gouges, e.g. the dent-gouge fracture model presented by 

Cosham and Hopkins (2020) and Q-factor model (Roovers et al. 2000; Macdonald and Cosham 

2005; Seevam et al. 2008).  The predictive accuracy of dent-gouge burst capacity models is 

generally poor (Macdonald and Cosham 2005; Cosham and Hopkins 2020) because modeling a 

dent-gouge involves many challenging aspects (Cosham and Hopkins 2020).  For example, the 

depths of dents inflicted at non-zero internal pressure are less than those inflicted at zero internal 

pressure due to the pressure stiffening and re-rounding effect; the material toughness at the base 

of the gouge is lower due to the cold work, and the gouge may contain micro cracks at the base.   

Machine learning (ML) algorithms are possible options to develop more accurate burst capacity 

models for dent-gouges based on the relevant full-scale burst test data.  Indeed, ML algorithms 

have been employed to predict the burst capacity of pipelines containing corrosion defects (Chin 

et al. 2020; Phar and Dar 2021).  However, ML-based burst capacity models for dent-gouges have, 

to our best knowledge, not been reported in the literature.  This can perhaps be partly attributed to 

the limitations of the test data available in the open literature.  While there are a relatively large 

number of full-scale burst test data for dent-gouges in the literature, the majority of the test data 

involve ring specimens as opposed to vessel specimens.  The gouge length is unreported for ring 

specimens because such specimens simulate dent-gouges with an infinite gouge length 

(Macdonald and Cosham 2005).  Cosham and Hopkins (2020) indicated that the consideration of 

the finite gouge length in the dent-gouge model leads to less conservative predictions.  It follows 

that ring specimens may not be adequately suitable for the development of ML-based dent-gouge 

models.  This markedly reduces the number of available test data for the training and validation of 

ML models.  In addition, the internal pressure condition (i.e. zero or non-zero) at which dents are 

introduced markedly influences the burst capacity of the test specimen (Macdonald and Cosham 

2005; Cosham and Hopkins 2020).  However, the majority of the dent-gouge tests involve dents 

introduced at zero internal pressure.  This imbalance in the available test data also presents 

challenges to the development of ML-based dent-gouge models.   

The objective of the present study is to develop ML-based burst capacity models for pipelines 

containing dent-gouged defects based on the full-scale burst test data in the literature.  To address 

the above-described limitations of the test data, the tabular generative adversarial network (TGAN) 

(Xu and Veeramachaneni 2018), a deep learning algorithm for generating synthetic tabular dataset, 
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is employed to generate synthetic test data based on the real full-scale test data.  Three ML 

algorithms, namely the random forest (RF), extra tree (ET) and Gaussian process regression 

(GPR), are then employed to train and validate dent-gouge burst models using the combined real 

and synthetic test data.  The predictive accuracy of the developed ML models is shown to be 

markedly higher than that of the semi-empirical model in the literature.  The present study presents 

a novel, viable option of developing ML-based fitness-for-service assessment models for pipelines 

containing flaws based on a combination of real and synthetic full-scale test data.  

The rest of the paper is organized as follows.  Section 5.2 describes the full-scale burst test data of 

pipe specimens containing dent-gouges collected from the literature.  Section 5.3 describes the key 

fundamentals of TGAN as well as the methodology proposed in the present study for tuning the 

hyper-parameters of TGAN.  Section 5.4 briefly reviews fundamentals of the three ML algorithms 

adopted in the present study, i.e. RF, ET and GPR.  Section 5.5 presents main results of the present 

study, including the synthetic dent-gouge test data generated using TGAN, validation of the 

credibility of the synthetic data, development of the dent-gouge burst models based on the real and 

synthetic test data using RF, ET and GPR, comparison of the predictive accuracy of the ML models 

with that of the semi-empirical model presented in Cosham and Hopkins (2020), and feature 

importance for random variables in developing ML models.  Concluding remarks are presented in 

Section 5.6.   

5.2 Full-scale burst test data  

A database of full-scale burst tests of pipe specimens containing dent-gouges is essential to the 

development of the ML-based burst capacity models.  For reasons described in the Introduction, 

we consider only full-scale tests of pipe vessels (as opposed to rings) reported in the literature.  To 

this end, a total of 88 full-scale burst tests are retrieved from the literature (Jones 1982; Maxey 

1986; Kiefner et al. 1996; Farrag and Francini 2011; Zarea et al. 2012); 51 and 37 specimens have 

the dents introduced under zero and non-zero internal pressures, respectively.  The values of nine 

variables are recorded for each test specimen, namely the burst pressure observed in the test (Ptest), 

outside diameter (D) and wall thickness (wt) of the pipe specimen, yield strength (σy) and impact 

energy (Cv23) of the 2/3-sized Charpy v-notch (CVN) specimen of the pipe steel, dent depth at zero 

internal pressure (H0), gouge depth (dg), gouge length (lg), and ζ indicating the zero (ζ = 0) or non-

zero (ζ = 1) internal pressure under which the dent is introduced on the specimen.  Note that the 
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variable Cv23 quantifies the fracture toughness of the pipe steel.  While it is more accurate to 

quantify the fracture toughness using parameters such as the stress intensity factor and J-integral, 

such information is rarely available for the test specimens or in practice.  Therefore, the Charpy 

impact energy is commonly employed in the burst capacity models for dent-gouges (Cosham and 

Hopkins 2020).  Note further that the dent depth (H0) introduced on a specimen under zero internal 

pressure is greater than that (Hr) introduced under non-zero internal pressure, all else being the 

same.  An empirical equation has been proposed by the European Pipeline Research Group (EPRG) 

(Roovers et al. 2000) to relate H0 to Hr, i.e. H0 = 1.43Hr, and widely adopted in the pipeline 

industry.  Although dents are introduced at non-zero pressure for 37 of the 88 specimens collected 

in this study, H0 is reported in the source documents for all 88 specimens.  It is however unclear 

how H0 is evaluated for the 37 specimens in the source documents.   

Table 5.1 summarizes basic statistics of all nine variables except ζ corresponding to the 88 test 

specimens.  More detailed information of the 88 test specimens is summarized in Appendix F.  As 

shown in Fig. 5.2, the correlation coefficients among different variables are generally low.  We 

further point out the generally low correlations between each of the eight input variables (i.e. D, 

wt, H0, dg, lg, ζ, σy and Cv23) and the output variable Ptest.  This implies the complex relationships 

between the input variables and Ptest.   

Table 5.1 Summary of basic statistics of the variables associated with the 88 specimens 

included in the dent-gouge test database 

 D (mm) wt (mm) H0 (mm) dg (mm) lg (mm) σy (MPa) Cv23 (Joule) Ptest (MPa) 

Min 219.1 4.8 7.6 0.2 50.8 279.0 20.4 1.4 

Max 1066.8 18.0 91.4 6.1 508.0 542.9 160.5 19.4 

Mean 580.0 8.6 27.6 2.2 262.5 394.6 52.5 8.9 
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Figure 5.2 Correlation coefficients between variables associated with the 88 specimens in 

the dent-gouge test database 

5.3 Tabular generative adversarial networks 

5.3.1 Fundamentals 

TGAN proposed by Xu and Veeramachaneni (2018) is a variant of the generative adversarial 

network (Goodfellow et al. 2014).  TGAN generates synthetic tabular data using the generator and 

discriminator networks.  The generator is used to generate synthetic tabular data while the 

discriminator determines how likely the synthetic data are real.  For completeness, the 

fundamentals of TGAN are briefly described in the following.  Consider a real tabular dataset T 

consisting of Nc columns representing Nc continuous random variables and Nd columns 

representing Nd discrete random variables.  Further assume that there are Nr rows of data in T.  It 

follows that the (Nc + Nd) variables follow an unknown joint probability distribution and that each 

row in T is an observation sampled from this joint probability distribution.   

TGAN generates a synthetic tabular dataset by capturing the joint probability distribution of the 
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random variables in T.  A data transformation step is first carried out in TGAN.  The marginal 

probability distribution of each continuous random variable in T is represented by a Gaussian 

mixture model (GMM) with n Gaussian distributions.  The value of the jth continuous random 

variable (j = 1, 2, …, Nc) at the ith (i = 1, 2, …, Nr) row is then normalized by the mean and standard 

deviation of the Gaussian distribution that has the greatest weight within the GMM.  The value of 

the rth discrete random variable (r = 1, 2, …, Nd) at the ith row in T is transformed by employing 

the one-hot-encoding representation method (Yu et al. 2022).  A noise term is also considered in 

the one-hot-encoding to avoid overfitting (Mougan et al. 2022).  After the data transformation, the 

original (Nc + Nd) columns of data in T are replaced by (Nc(n+1) + ∑ 𝑘𝑟
𝑁𝑑
𝑟=1 ) columns of 

transformed data, with kr denoting the number of discrete values (or categories) associated with 

the rth (r = 1, 2, …, Nd) discrete random variable.  The long short-term memory (LSTM) neural 

network (Houdt et al. 2020) is then employed as the generator in TGAN to produce the synthetic 

tabular data.  The fully connected multi-layer perceptron (MLP) neural networks are employed as 

the discriminator to differentiate between the real and synthetic data.  The performance of the 

generator and discriminator is improved through repeated training to minimize the loss functions 

for the generator and discriminator until the discriminator can no longer distinguish the synthetic 

data from the real data.  Detailed formulations of TGAN can be found in Xu and Veeramachaneni 

(2018) and Section 4.   

5.3.2 Hyper-parameter tuning 

The tuning of the hyper-parameters involved in TGAN is an essential step to avoid the mode 

collapse problem, i.e. the generator can produce a small set of synthetic data that can easily fool 

the discriminator (Pei et al. 2021).  In the present study, the hyper-parameter tuning is carried out 

by involving the dent-gouge fracture model presented in Cosham and Hopkins (2020), referred to 

as the C&H model in the following sections (see Appendix G for details of the model).  The C&H 

model is identical to the dent-gouge fracture model adopted by EPRG (i.e. the well-known EPRG 

model) (Roovers et al. 2000) except that the former takes into account the (finite) gouge length 

whereas the latter assumes the gouge to be infinitely long.  The C&H model is employed to predict 

the burst capacities (PC&H) corresponding to the real and synthetic test data.  It is expected that 

probabilistic characteristics of Ptest/PC&H corresponding to the synthetic test dataset are very similar 

to those of Ptest/PC&H corresponding to the real test dataset if the hyper-parameters of TGAN are 
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selected properly, i.e. tuned.  The Kolmogorov-Smirnov (KS) test (Hesamian and Chachi 2015; 

Srimani et al. 2021) is employed to quantify the similarity between the empirical cumulative 

distribution functions (CDF) of Ptest/PC&H corresponding to the real and synthetic datasets, with the 

null hypothesis defined as the two empirical CDFs being identical.  The KS test calculates the 

difference between two CDFs at each data point in the real dataset.  The null hypothesis is rejected 

if the maximum absolute difference, KSm, between the two CDFs is greater than the critical value 

KSc, which is a function of the sample sizes of the real and synthetic datasets and a pre-defined 

significance level α (e.g. 1 or 5%) as follows (Turan et al. 2018):  

KS𝑐 = √−
1

2
ln (

𝛼

2
)√

𝑁1+𝑁2

𝑁1𝑁2
  (5.1) 

where N1 and N2 are the number of data points in the real and synthetic datasets, respectively. 

5.4 ML models for predicting the dent-gouge burst capacity 

5.4.1 Random forest and extra tree 

The decision tree (DT) algorithm is a supervised ML method that can predict the target value by 

analyzing the complicated relationship between a set of input variables.  DT is known for its 

simplicity and computational efficiency, as well as easy interpretability of the tree growth 

(Breiman et al. 2017).  A DT starts with the root node, which contains all the data points in the 

given dataset for the model development.  The root node is then divided into two decision nodes 

corresponding to two subsets of the dataset, and a decision node can be further divided into two 

higher level decision nodes.  A decision node that is not divided further is called the terminal or 

leaf node.  The split of the root node or a decision node is carried out by minimizing the within-

node variance (Breiman et al. 2017).  The value of each input variable that minimizes the within-

node variance is evaluated.  The value of the input variable resulting in the largest reduction in the 

within-node variance is then selected to split the node.  Such a process proceeds recursively until 

all data points are partitioned adequately in the leaf nodes.  However, DT is prone to overfitting 

such that it is generally used as the basis for other tree-based algorithms. 

Random forest (RF) is a well-known tree-based algorithm that adopts the idea of ensemble 

learning, which combines multiple decision trees to enhance the predictive accuracy (Breiman 
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2001).  The bootstrap aggregation, also referred to as bagging, is a frequently used ensemble 

learning methodology, whereby data within a given dataset are randomly sampled with 

replacement to construct a new dataset to reduce variance in predictions (Breiman 1996).  The 

bagging is incorporated in the RF algorithm and considered for all trees.  It should be emphasized 

that the best split of a node at each depth level employed in RF is decided based on a randomly 

selected subset of input variables as opposed to all input variables employed in DT.  Given a new 

data point, each tree in a given RF provides a specific prediction.  The mean value of the 

predictions given by all the trees is defined as the final prediction of RF. 

Extra tree (ET) is an extension of RF and differs from RF in two main aspects: the entire dataset 

is employed in all decision trees without bagging, and the best split is chosen completely at random 

in ET among a random subset of input variables selected for each node.  As the randomness of ET 

comes from the random selection of the split value, it is therefore also referred to as the extremely 

randomized trees algorithm.  Compared with the RF, ET is less computationally intensive because 

of the random splits. 

5.4.2 Gaussian process regression 

The Gaussian process regression (GPR) is a non-parametric Bayesian approach that makes 

inferences of probabilistic characteristics of random variables given observations.  It is assumed 

that a dependent variable (e.g. the burst capacity of a dent-gouged pipeline) follows a Gaussian 

distribution that depends on a set of input variables (e.g. the pipe outside diameter, wall thickness, 

geometry of the dent-gouge, etc.).  Multiple dependent variables corresponding to different sets of 

input variables form a Gaussian process, which follows a multivariate Gaussian distribution.  If 

the values of a subset of the dependent variables in the Gaussian process are observed (e.g. through 

tests), then the mean values and covariance of the remaining dependent variables in the process 

can be updated based on the formulations for the conditional multivariate Gaussian distribution 

(Rasmussen and Williams 2006).  The mean values and covariance before and after the updating 

are known as the prior and posterior means and covariance, respectively.  GPR can also deal with 

observations containing noises, e.g. due to measurement errors.  The most important component 

of GPR is the so-called kernel (or covariance function), which is used to quantify the covariance 

between two dependent variables in the Gaussian process as a function of the input variables 

associated with them.  Many functional forms of the kernel (e.g. exponential, squared exponential 
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and rational quadratic) have been proposed in the literature (Rasmussen and Williams 2006).  

While zero prior mean values are often assumed in GPR (the posterior mean values are generally 

non-zero due to the updating), the prior mean can be assumed to be a function of the input variables 

(He and Zhou 2022b).  The parameters involved in the kernel and prior mean function are 

collectively referred to as the hyper-parameters of GPR, which are typically evaluated using the 

maximum likelihood method based on the observed values of the dependent variables.  Detailed 

formulations of GPR are referred to Rasmussen and Williams (2006) and Section 2.     

5.5 Results 

5.5.1 Synthetic dent-gouge burst test data 

The Python-based TGAN engine available at https://pypi.org/project/tgan/ is employed in this 

study to generate the synthetic data.  To start, the real test dataset described in Section 5.2 is 

randomly divided into two subsets: a training dataset R1 and a validation dataset R2 containing 70 

and 30% of all the data points, respectively (i.e. 62 data points in R1 and 26 in R2).  The stratified 

sampling method (Uçar et al. 2020) is employed to ensure that the proportion (42%) of data points 

with dents introduced at non-zero internal pressures in the entire dataset is maintained in R1 and 

R2.  The dataset R1 is incorporated in TGAN to generate the synthetic data, whereas R2 is used to 

demonstrate the predictive accuracy of the ML-based burst capacity models for dent-gouges.  It 

follows from the description in Section 5.3.1 that the real test dataset T incorporated in TGAN has 

Nc = 8, Nd = 1 (k1 = 2) and Nr = 62.  The number of Gaussian distribution in the GMM is selected 

to be five, i.e. n = 5 (see Section 5.3.1).  

The hyper-parameters of TGAN are tuned by using the methodology described in Section 5.3.2.  

For each set of hyper-parameters, a synthetic dataset of 600 data points is generated.  The random 

search is then carried out to determine the optimal set of hyper-parameters.  The values of the 

tuned hyper-parameters are summarized in Appendix H.  The detailed descriptions of each hyper-

parameter can be found in Xu and Veeramachaneni (2018) and Section 4.  The synthetic dataset 

generated using the tuned hyper-parameters is denoted by S.  

The CDFs of Ptest/PC&H corresponding to R1 and S are depicted in Figs. 5.3 and almost identical.  

The corresponding value of KSm equals 0.09, which is markedly smaller than the value of KSc 

(equal to 0.18) calculated based on a 5% significance level, i.e.  = 5% in Eq. (5.1).   
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Figure 5.3 Comparison of empirical CDFs of test-to-predicted ratios based on R1 and S 

datasets 

The credibility of S is further validated by comparing probabilistic characteristics of R1 and S.  

Table 5.2 summarizes the minimum values, maximum values, means and standard deviations of 

D, wt, H0, dg, lg, σy, Cv23 and Ptest in R1 and S, respectively.  Figure 5.4 compares the probability 

density functions (PDF) of these variables in R1 and S.  The correlation matrices of R1 and S are 

compared in Fig. 5.5.  The results shown in Table 5.2 and Figs. 5.4 - 5.5 indicate that the marginal 

distributions and correlation coefficients of the continuous random variables in R1 are adequately 

captured by the synthetic data in S.  

Table 5.2 Summary of basic statistics of the real dataset (R1) and synthetic dataset (S)  

Feature Dataset Min Max Mean Std 

D (mm) 
R1 219.1 1066.8 582.7 230.1 

S 219.1 1066.8 566.2 227.9 

wt (mm) 
R1 4.8 18.0 8.7 2.9 

S 4.9 18.0 8.4 2.8 

H0 (mm) 
R1 7.6 91.4 27.5 17.0 

S 7.9 92.9 29.3 16.3 

dg (mm) 
R1 0.2 6.1 2.3 1.4 

S 0.2 6.1 2.2 1.3 

lg (mm) 
R1 50.8 508.0 273.3 109.2 

S 49.0 508.0 278.1 105.3 

σy (Mpa) R1 279.0 542.9 393.9 59.2 
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S 279.0 538.4 393.6 60.6 

Cv23 (J) 
R1 20.4 160.5 55.1 34.9 

S 21.1 160.5 57.6 34.0 

Ptest (Mpa) 
R1 1.4 19.4 8.8 4.3 

S 1.9 19.4 8.7 4.3 

 

        

                                         (a)                                                                         (b) 

        

                                       (c)                                                                         (d) 
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                                        (e)                                                                         (f) 

        

                                         (g)                                                                       (h) 

Figure 5.4 Comparisons of PDFs of continuous random variables in R1 and S datasets 
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Figure 5.5 Correlation coefficients of random variables in the R1 and S (bracketed values) 

datasets 

5.5.2 ML models for dent-gouge burst capacity 

Once the credibility of the synthetic test data is verified, 438 data points are randomly selected 

from S and combined with R1 to form a new dataset of 500 data points, denoted by M, to train the 

RF, ET and GPR models to predict the burst capacity of dent-gouges.  Note that the 438 synthetic 

data consist of 224 and 214 data points corresponding to dents introduced under non-zero and zero 

internal pressures, respectively such that M contains equal number of data points (i.e. 250) in these 

two categories.  The predictive accuracy of the trained ML models is then validated using the 

independent validation dataset, i.e. R2.  To demonstrate the advantages and effectiveness of using 

combined real and synthetic datasets to train ML models, we also train ML models by using the 

real dataset only (i.e. R1) and compare the predictive accuracies of ML models trained using M 

and R1, respectively, based on the validation dataset R2. The predictive accuracy of a given ML 

model is quantified using the root mean square error (RMSE) and coefficient of determination (R2) 

defined as follows.  
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RMSE = √
1

𝑁
∑ (𝑃𝑡𝑒𝑠𝑡,𝑖 − 𝑃𝑝𝑟𝑒𝑑,𝑖)2
𝑁
𝑖=1   (5.2) 

𝑅2 = 1 −
∑ (𝑃𝑡𝑒𝑠𝑡,𝑖−𝑃𝑝𝑟𝑒𝑑,𝑖)

2𝑁
𝑖=1

∑ (𝑃𝑡𝑒𝑠𝑡,𝑖−�̅�𝑡𝑒𝑠𝑡)
2𝑁

𝑖=1

  (5.3) 

where Ptest,i and Ppred,i are the test and predicted burst capacities of the ith (i = 1, 2, …, N) data point 

in a given dataset with a total of N data points, and �̅�𝑡𝑒𝑠𝑡 is the average value of the test burst 

capacities corresponding to the N data points.   

The k-fold cross-validation method (Feurer and Hutter 2019) is employed to tune the hyper-

parameters of the RF and ET models.  This involves evenly dividing the training dataset (i.e. M or 

R1) into k subsets.  For a given set of hyper-parameters of the RF (or ET) model, k-1 subsets are 

used to train the model, and the predictive accuracy of the trained model is then evaluated using 

the remaining subset.  This process is repeated until each of the k subsets has been used exactly 

once for the evaluation of the model accuracy.  The average predictive accuracy corresponding to 

the k subsets quantifies the effectiveness of the given set of hyper-parameters.  Through iterations, 

the set of hyper-parameters that result in a satisfactory average predictive accuracy is then accepted 

as the final (tuned) hyper-parameters.  In this study, k is selected to equal five.  The tuned hyper-

parameters are applied to the training dataset to develop a trained model.  On the other hand, the 

hyper-parameters of GPR are evaluated using the maximum likelihood method (Rasmussen and 

Williams 2006) based on the training dataset.  The exponential kernel combined with the linear 

prior mean function is adopted in GPR.  Each input variable in the exponential kernel is associated 

with a parameter referred to as the length scale.  The magnitude of the length scale reflects the 

importance of the corresponding input variable in GPR: the smaller is the length scale, the more 

important is the input variable.  The tuned hyper-parameters of RF and ET, and hyper-parameters 

of GPR evaluated from the maximum likelihood method are summarized in Appendix I.   

Table 5.3 summarizes the values of RMSE and R2 for the RF, ET and GPR models that are trained 

using M and applied to the independent validation dataset R2.  For GPR, the posterior mean is 

employed as the model prediction.  For comparison, the table also includes the values of RMSE 

and R2 for the RF, ET and GPR models that are trained using R1 and applied to R2.  The results 

shown in Table 5.3 indicate that the predictive accuracy of the models trained using M is higher 
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than that of the models trained using R1.  This suggests that the training based on the combined 

synthetic and real datasets is more effective than that based on the real dataset only.  This is 

expected as the dataset M (500 data points) is about eight times the size of R1 (62 data points).  

Table 5.3 suggests that the GPR model trained using M has a slightly higher predictive accuracy 

than the RF and ET models trained using M.  By changing the training dataset from R1 to M, the 

predictive accuracy of the GPR model increases the most, followed by that of the RF model, 

whereas the accuracy of the ET model improves marginally.  The values of Ptest and predicted burst 

capacities (Ppred) for the R2 dataset corresponding to RF, ET and GPR models trained using M and 

R1 datasets are depicted in Fig. 5.6.   

Table 5.3 Predictive accuracy of ML models applied to the R2 dataset 

 Trained using M Trained using R1 

 RF ET GPR RF ET GPR 

RMSE 1.19 1.12 1.01 1.45 1.27 1.48 

R2 0.92 0.93 0.94 0.88 0.91 0.87 

 

  

                                                (a) ML models trained using M dataset 
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                                                (b) ML models trained using R1 dataset 

Figure 5.6 Comparison of Ptest and Ppred values for the R2 dataset with Ppred given by ML 

models trained using M and R1 datasets 

Table 5.4 summarizes the means and coefficients of variation (COV) of the test-to-predicted ratios 

corresponding to the three ML models (trained using M) applied to R2.  For comparison, the same 

statistics are also evaluated for the semi-empirical C&H model applied to R2.  To further illustrate 

the accuracy of the considered models, R2 is divided into two subsets: subsets #1 and #2 for cases 

with dents introduced under zero and non-zero internal pressures, respectively.  The results in 

Table 5.4 indicate that the three ML models are markedly more accurate than the C&H model.  

Furthermore, the accuracy of the ML models is generally consistent for subsets #1 and #2, whereas 

the C&H model becomes on average highly conservative for subsets #2 (i.e. dents introduced at 

non-zero internal pressure).  If the COV of the test-to-predicted ratios is used as a metric, then the 

RF model has slightly more accurate predictions than the ET and GPR models for subset #2, 

whereas the ET model results in the highest predictive accuracy for subset #1.  For the entire R2 

dataset, the GPR model leads to more accurate predictions than the RF and ET models.   

Table 5.4 Mean and COV of the test-to-predicted ratios corresponding to three ML models 

and C&H model applied to R2 

Trained model 
Internal pressure at the 

introduction of dent 

# of applicable test 

data 

Test-to-predicted ratios 

Mean COV (%) 
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RF 

Zero (subset #1) 15 1.06 15.7 

Non-zero (subset #2) 11 1.04 12.2 

All 26 1.05 14.1 

ET 

Zero (subset #1) 15 0.98 12.0 

Non-zero (subset #2) 11 1.03 13.5 

All 26 1.00 12.7 

GPR 

Zero (subset #1) 15 0.99 12.5 

Non-zero (subset #2) 11 1.00 12.8 

All 26 1.00 12.4 

C&H 

Zero (subset #1) 15 1.14 45.8 

Non-zero (subset #2) 11 1.78 37.5 

All 26 1.41 46.7 

5.5.3 Importance of input variables 

It is valuable to understand to what extent each input variable affects the performance of the ML 

model.  For the GPR model, the magnitude of the length scale in the exponential kernel reflects 

the relative importance of the corresponding input variable as discussed in Section 5.5.2.  Because 

the ranges of values of different input variables vary markedly (e.g. D varying roughly between 

200 and 1000 mm whereas wt between 5 and 20 mm), the length scale is normalized by the sample 

standard deviation of the input variable in the training set to eliminate the influence of the range 

of the variable (Chalupka et al. 2013).  For the RF and ET models, the importance of the input 

variable is quantified using the permutation importance method (Joharestani et al. 2019).  To apply 

this method, one randomly shuffles values of an input variable (i.e. one column) in a dataset while 

leaving the orders of values in the other columns of the table unchanged.  The shuffled dataset is 

then used to train the RF and ET models.  The accuracy of shuffled model is evaluated by R2 on 

the training dataset.  The performance deterioration defined by the relative reduction of R2, denoted 

by Re2, corresponding to the RF and ET models trained using the shuffled dataset therefore 

measures the importance of the shuffled variable.  Such a process is then repeated for the next 

input variable.  An input variable is considered highly important if its corresponding value of Re2 

is close to unity, and unimportant if the corresponding value of Re2 is closed to zero.  To reduce 

the randomness during the permutation importance calculation, the shuffling process is repeated 

100 times for each input variable, and the average value of Re2 over the 100 repetitions is recorded. 

Table 5.5 summarizes the normalized length scales of GPR.  The mean values of Re2 corresponding 

to each input variables in the RF and ET models are depicted in Fig. 5.7.  The results shown in 
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Table 5.5 suggest that Cv23 is the most important input variable with the smallest normalized length 

scale, followed by dg and then H0.  The normalized length scales for D and ξ are markedly greater 

than those for the other variables, suggesting that these two input variables have the least impact 

on the prediction of the GPR model.  Figure 5.7 indicates that both RF and ET recognize Cv23 as 

the most important variable, followed by H0 and dg.  This result is generally consistent with the 

observation for the GPR model.  It is further noted that the relative importance of the other 

variables, i.e. D, lg, σy and ξ, varies depending on the specific ML model. 

Table 5.5 Normalized length scales of eight input variables in the exponential kernel of the 

GPR model 

Input random variable Normalized length scale 

D 2677.3  

wt 4.6  

H0 2.7  

dg 1.5  

lg 6.5  

σy 5.7  

Cv23 1.2  

ξ 23.9  

 

    

                                     (a) RF                                                                   (b) ET 

Figure 5.7 Feature importance for eight input variables in RF and ET-based dent-gouge 

burst capacity models 



112 
 

 

5.6 Conclusions 

This study employs TGAN to generate synthetic full-scale test data that are combined with real 

full-scale test data to develop three ML models based on RF, ET and GPR, respectively, to predict 

the burst capacity of steel pipelines containing dent-gouges.  A database containing 88 full-scale 

burst test data collected in the open literature is first established.  The database is then randomly 

separated into a training dataset and a validation dataset.  The former is incorporated in TGAN to 

generate synthetic test data, whereas the latter is used to validate the accuracy of the trained ML 

models.  The credibility of the synthetic data is validated by comparing the marginal distributions 

and correlation coefficients corresponding to the synthetic and real datasets.  

The results indicate that the ML models trained using the combined synthetic and real test data 

have higher predictive accuracy than the models trained using the real test data only.  This 

demonstrates the advantage of generating the synthetic data to enlarge the dataset for training ML 

models.  Among the three ML models considered, the predictive accuracy of the GPR model 

increases the most as more data points are employed in the training through the inclusion of the 

synthetic data, followed by the RF model.  The predictive accuracy of the trained ML models is 

shown to be markedly higher than that of the semi-empirical burst capacity commonly employed 

in the pipeline industry.  The feature importance evaluation suggests that the Charpy impact 

energy, gouge depth and dent depth are the most important input variables in the three ML models, 

although the order of importance of the three variables may vary depending on the specific ML 

model.  The present study demonstrates the viability of using TGAN to generate credible synthetic 

test data to improve the fitness-for-service assessment of oil and gas pipelines with respect to 

different threats.   
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6 Summary, Conclusions and Recommendations for Future 
Study 

6.1 General 

This research employs machine learning (e.g. Gaussian process regression) and deep learning (i.e. 

tabular generative adversarial network) tools to address four major issues to improve the fitness-

for-service (FFS) assessment of integrity management of steel pipelines containing dent-gouges 

and corrosions.  The concluding remarks drawn from this thesis with the recommendations for 

future study are given as follows. 

6.2 Improvement of Burst Capacity Model for Pipelines 
Containing Dent-gouges Using Gaussian Process Regression 

In Chapter 2, the machine learning (ML) tool Gaussian process regression (GPR) is employed to 

improve the accuracy of the dent-gouge fracture model adopted by European Pipeline Research 

Group (EPRG), i.e. the EPRG model, based on 190 full-scale burst test data of pipelines containing 

dent-gouges.  The test data are first employed to evaluate the accuracy of the EPRG model and 

compare with two other variants of the EPRG model, i.e. the B&S model and the PIPIN model.  

The analysis results suggest that none of the variants offers significant improvement to the EPRG 

model.  The results further suggest that the accuracy of the EPRG model is significantly affected 

by the internal pressure loading condition for which dents introduced under zero or non-zero 

pressure.  The EPRG model is therefore selected as the basis for improvement by adding a 

correction term which is a function of six non-dimensional random variables. 

The dataset is randomly separated into training and regression sets containing 152 and 38 data 

points, respectively, based on the typical 80 and 20% stratified sampling method.  The hyper-

parameter tuning of the GPR is carried out by maximizing the log-likelihood function and the 

combined linear prior mean function and squared exponential kernel is adopted to quantify the 

correction term.  The accuracy of the improved EPRG model, i.e. EPRG-C model, compared with 

the EPRG model is then investigated by comparing the means and coefficient of variations (COV) 

of Ptest/PEPRG and Ptest/PEPRG-C corresponding to the entire test dataset, training set and regression 

set.  It is observed that the predictive accuracy of the EPRG-C model is markedly higher than that 

of the original EPRG model, which demonstrates the high effectiveness of GPR to evaluate the 
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correction term.  The comparison between the employment of the prior and posterior mean 

functions is further carried out to illustrate the importance of the observation-based updating.  The 

results suggest that the high accuracy of the EPRG-C model is primarily attributed to the updating 

process in GPR.  The relative importance of six random variables in developing the EPRG-C model 

is conducted as well.  This research will improve the fitness-for-service assessment of pipelines 

containing dent-gouges. 

6.3 Limit State-based Fitness-for-service Assessment of Steel 
Pipelines Containing Dent-gouges 

Chapter 3 presents a framework for the limit state-based assessment (LSBA) of steel pipelines 

containing damages in the form of dent-gouges to identify and mitigate critical defects identified 

by the in-line (ILI) inspection tool.  The LSBA is formulated using the EPRG-C model proposed 

in Chapter 2 for dent-gouges with partial safety factors (PSFs) assigned to key input variables and 

pipeline internal pressure.  If the factored burst capacity computed by LSBA is less than the 

factored internal pressure, the rehabilitation is initiated; otherwise, the pipe segment is considered 

fit for service.  A novel methodology is developed to calibrate the PSFs by making the outcomes 

of LSBA consistent with those of the reliability-based assessment (RBA) for a set of assessment 

cases representative of in-service pipelines.  The first-order reliability method (FORM) is 

employed to evaluate the failure probabilities of the assessment cases by taking into account the 

uncertainties involved in the pipe and material properties, sizes of dent-gouges and the model error 

associated with the EPRG-C model.  The assessment cases enclosing the pre-selected failure 

probabilities are deemed critical and used to calibrate PSFs.  The adequacy of the set of PSFs can 

then be quantified by the common performance indices true repair rate (TRR) or sensitivity, true 

non-repair rate (TNR) or specificity, and overall accuracy (ACC).  The calibration is carried out 

by maximizing the objective function and the validity of the calibrated PSFs is demonstrated based 

on a large set of assessment cases that are independent of those employed in the calibration process 

and two hypothetical examples.  The advantages of LSBA over the deterministic FFS assessment 

are further illustrated.  The proposed framework for LSBA can be applied to pipelines containing 

other types of damages such as corrosion and cracks, and will facilitate the performance-based 

pipeline integrity management practice.   



118 
 

 

6.4 Generation of Synthetic Full-scale Burst Test Data for 
Corroded Pipelines Using the Tabular Generative Adversarial 
Network 

Chapter 4 develops a framework to generate synthetic full-scale burst tests of corroded pipelines 

using a deep learning algorithm tabular generative adversarial network (TGAN) by capturing the 

joint probability distribution of five dimensionless random variables based on 258 real full-scale 

burst test data collected in the literature.  A simple criterion is proposed to identify outliers of the 

synthetic data that the burst capacity of a corroded pipeline is required to be less than that of the 

corresponding pristine pipe.  The ML tools random forest (RF) and extra tree (ET) are used to tune 

the hyper-parameters of TGAN and validate the credibility of the synthetic data.  The RF and ET 

models are developed by separating the real dataset into two subsets R1 and R2 containing 206 and 

52 data points, respectively.  The suitable hyper-parameters of RF and ET are tuned based on the 

five-fold cross validation method.  The selection of the TGAN hyper-parameters is carried out by 

ensuring that the accuracy of the RF and ET models applied to the real data, i.e. TR1-AR2 scenario, 

is consistent with that applied to the synthesized dataset containing 400 data points, i.e. TR1-AS 

scenario.  The credibility of the synthetic data is first demonstrated by comparing the probabilistic 

characteristics, marginal distributions and correlation matrices with the real data.  The credibility 

is further evaluated by comparing the accuracy of the ML-based models trained using real data 

only, synthetic data only and combined real and synthetic data, i.e. TR1-AR2, TS-AR2 and TM-

AR2 scenarios, respectively.  This study provides an effective mean to generate a large number of 

high-quality synthetic full-scale test data to facilitate the development and validation of 

engineering critical assessment models for pipelines. 

6.5 Development of Machine Learning-based Burst Capacity 
Models for Pipelines Containing Dent-gouges with Synthetic Full-
scale Burst Test Data Generated Using Tabular Generative 
Adversarial Network 

Chapter 5 proposes ML-based burst capacity models for pipelines containing dent-gouges based 

on the combined real and TGAN-generated synthetic full-scale burst tests.  To this end, a total of 

88 real full-scale burst test data are collected from the literature.  The test burst capacity is 

characterized by eight random variables including the internal pressure under which the dent is 
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introduced on the pipe specimen. Three ML tools, namely RF, ET and GPR, are employed to 

develop ML-based burst capacity models.  The real dataset is randomly divided into a training set 

R1 and a validation set R2 containing 70 and 30% data points (i.e. 62 and 26 data points), 

respectively.  The dataset R1 is used to tune the hyper-parameter of TGAN using the C&H model 

by ensuring that the probabilistic characteristics of Ptest/PC&H corresponding to the synthetic test 

dataset denoted by S containing 600 data points are very similar to those of Ptest/PC&H 

corresponding to the R1 dataset based on the Kolmogorov-Smirnov (KS) test.  The credibility of 

synthetic data is validated by comparing probabilistic characteristics of R1 and S datasets and 438 

data points are randomly selected from S and combined with R1 to form a new dataset denoted by 

M to train the ML-based models to predict the burst capacity of dent-gouges.  The hyper-

parameters of the RF and ET models are selected based on the five-fold cross validation method, 

while the GPR model is tuned using the maximum likelihood method.  The accuracy of proposed 

models is validated based on the independent validation dataset R2.  The analysis results suggest 

that models trained using M result in higher predictive accuracy than that of the models trained 

using R1 only.  Results further indicate that trained models using M are more accurate than the 

semi-empirical burst capacity model widely employed in the pipeline industry.  The relative 

feature importance evaluation of variables in developing ML-based burst capacity models suggest 

that the Charpy impact energy, gouge depth and dent depth are the most important input variables 

in the ML models.  This study demonstrates the viability of using TGAN-generated credible 

synthetic data combined with real burst test data to improve the FFS assessment of oil and gas 

pipelines containing dent-gouges.   

6.6 Recommendations for Future Study 

The recommendations for future study are summarized as follows. 

1. The EPRG-C model is demonstrated to be more accurate than the EPRG model based on 190 

full-scale burst tests.  However, the model is proposed with dent-gouges idealized as 

longitudinally-oriented defects at the same location, which may not be adequately suitable for the 

development of a realistic-based dent-gouge model.  It would be valuable to apply the framework 

to naturally-occurring dent-gouge defects to further propose a more practical improved EPRG 

model. 
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2. The application of TGAN framework to generate synthetic full-scale burst tests has been 

demonstrated in this thesis to address the limited number of experimental data reported in the 

literature on corroded and dent-gouged pipelines.  It would be a good topic to apply this mean to 

other threats to improve the fitness-for-service assessment of oil and gas pipelines. 

3. The framework of applying TGAN in Chapter 4 is predicted on the regression task but TGAN 

can be equally applied to the classification task as well.  Further investigations are recommended 

to understand the applicability and validity of TGAN framework associated with the classification 

problem, e.g. the failure mode of leak or rupture of steel oil and gas cracked pipelines.  The 

combined real and synthetic failure mode data can be further employed to develop ML-based 

models to accurately identify the failure modes such that the pipeline integrity management 

practice can be improved. 
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Appendices  

Appendix A. Calculation of F, Q and Z factors in the B&S model 

The parameter Q is given by, 

𝑄 = 1 + 1.464 (
2𝑑𝑔

𝑙𝑔
)
1.65

2𝑑𝑔

𝑙𝑔
≤ 1  (A.1) 

The parameter F is given by, 

𝐹 = [𝑀1 +𝑀2 (
𝑑𝑔

𝑤𝑡
)
2

+𝑀3 (
𝑑𝑔

𝑤𝑡
)
4

] 𝑓𝜃𝑔𝑓𝑤  (A.2) 

𝑀1 = 1.13 − 0.09(
2𝑑𝑔

𝑙𝑔
)  (A.3) 

𝑀2 = −0.54 +
0.89

0.2+
2𝑑𝑔

𝑙𝑔

  (A.4) 

𝑀3 = 0.5 −
1.0

0.65+
2𝑑𝑔

𝑙𝑔

+ 14 (1 −
2𝑑𝑔

𝑙𝑔
)
24

  (A.5) 

𝑓𝜃 = [(
2𝑑𝑔

𝑙𝑔
)
2

(cos 𝜃)2+(sin 𝜃)2]0.25   (A.6) 

𝑔 = 1 + [0.1 + 0.35 (
𝑑𝑔

𝑤𝑡
)
2

] (1 − sin 𝜃)2  (A.7) 

𝑓𝑤 = √sec (
𝜋𝑙𝑔

4𝑏
√
𝑑𝑔

𝑤𝑡
)  (A.8) 

The calculation of parameter Z is shown below. 

𝑍 = 𝑍1 + (𝑍2 − 𝑍1) (sin 𝜃)
𝑝  (A.9) 

𝑝 = 0.2 +
2𝑑𝑔

𝑙𝑔
+
0.6𝑑𝑔

𝑤𝑡
  (A.10) 
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𝑍1 = 1 −
0.34𝑑𝑔

𝑤𝑡
−
0.22𝑑𝑔

2

𝑤𝑡𝑙𝑔
  (A.11) 

𝑍2 = 1 + 𝐺1 (
𝑑𝑔

𝑤𝑡
) + 𝐺2 (

𝑑𝑔

𝑤𝑡
)
2

  (A.12) 

𝐺1 = −1.22 −
0.24𝑑𝑔

𝑙𝑔
 (A.13) 

𝐺2 = 0.55 − 1.05 (
2𝑑𝑔

𝑙𝑔
)
0.75

+ 0.47 (
2𝑑𝑔

𝑙𝑔
)
1.5

 (A.14) 

The value of θ in Eqs. (A.6), (A.7) and (A.9) is set to π/2, corresponding to the center point of the 

crack front. 
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Appendix B. Calculations of am, Y3, Y4 and  in the PIPIN model 

The value of am is estimated using the following regression equation developed based on 29 full-

scale pipe specimens containing dent-gouges covering typical ranges of D, wt, steel grades and 

operating pressures (Linkens et al. 1998).  

𝑎𝑚 =
𝜎𝑃𝐼𝑃𝐻0+14806.4

85470
  (B.1) 

where the units of am, PIP and H0 are mm, MPa and mm, respectively.   

The values of Y3 and Y4 are estimated as follows (Chaplin 2015). 

𝑌3 = 1.12 − 0.23 (
𝑎𝑚

𝑤𝑡
) + 10.6 (

𝑎𝑚

𝑤𝑡
)
2

− 21.7 (
𝑎𝑚

𝑤𝑡
)
3

+ 30.4 (
𝑎𝑚

𝑤𝑡
)
4

  (B.2) 

𝑌4 = 1.12 − 1.39 (
𝑎𝑚

𝑤𝑡
) + 7.32 (

𝑎𝑚

𝑤𝑡
)
2

− 13.1 (
𝑎𝑚

𝑤𝑡
)
3

+ 14.0 (
𝑎𝑚

𝑤𝑡
)
4

  (B.3) 

The plasticity correction factor  is calculated as (Chaplin 2015), 

𝜌 = {

𝜌1                                          𝐿𝑟 ≤ 0.8  

4𝜌1(1.05 − 𝐿𝑟)     0.8 < 𝐿𝑟 < 1.05
0                                            𝐿𝑟 ≥ 1.05

  (B.4) 

𝜌1 = {
0.1𝑧0.714 − 0.007𝑧2 + 0.00003𝑧5  𝑧 ≤ 4
0.188                                                       𝑧 > 4

  (B.5) 

𝑧 =
𝐾𝑠𝐿𝑟

𝐾𝑝
  (B.6) 
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Appendix C. Details of 190 full-scale burst tests of pipe specimens containing 

dent-gouges 

Table C.1 Details of 190 full-scale burst tests of pipe specimens containing dent-gouges 

No.  D (mm) wt (mm) H0 (mm) dg (mm) lg (mm) σy (MPa) Cv23 (J) Ptest (MPa) T/R 

1 761.2 12.6 23.3 2.8 - 414.0 21.1 3.2 Training 

2 760.4 12.6 35.7 2.8 - 414.0 21.1 1.3 Training 

3 764.2 12.6 9.0 2.8 - 414.0 21.1 5.9 Training 

4 762.0 12.6 13.3 2.8 - 414.0 21.1 4.2 Training 

5 762.7 12.7 27.8 3.4 - 414.0 23.1 2.3 Training 

6 761.6 12.7 45.8 3.4 - 414.0 23.1 1.1 Training 

7 762.0 12.7 24.8 3.4 - 414.0 23.1 2.6 Training 

8 760.8 12.7 15.7 3.4 - 414.0 23.1 5.4 Training 

9 761.6 12.7 53.2 3.4 - 414.0 23.1 1.0 Training 

10 762.0 12.7 9.5 3.4 - 414.0 23.1 5.1 Training 

11 763.5 12.8 12.8 2.9 - 414.0 20.4 3.9 Training 

12 763.4 12.8 13.7 2.9 - 414.0 20.4 3.4 Training 

13 760.4 12.8 12.4 2.9 - 414.0 20.4 4.2 Training 

14 762.0 12.8 11.3 2.9 - 414.0 20.4 4.4 Training 

15 762.0 12.8 14.2 2.9 - 414.0 20.4 2.6 Training 

16 760.0 12.7 9.7 4.4 - 414.0 54.4 7.9 Training 

17 760.4 12.7 12.4 4.4 - 414.0 54.4 7.1 Regression 

18 762.0 12.7 14.5 4.4 - 414.0 54.4 6.4 Training 

19 762.0 12.7 10.7 4.4 - 414.0 54.4 8.2 Training 

20 763.6 12.7 12.2 4.4 - 414.0 54.4 7.4 Training 

21 763.0 13.2 18.5 0.7 - 414.0 31.3 20.7 Training 

22 763.3 12.7 15.5 1.0 - 414.0 31.3 15.4 Training 

23 763.1 12.7 18.2 1.1 - 414.0 31.3 14.0 Training 

24 762.0 13.0 19.1 1.0 - 414.0 31.3 14.1 Training 

25 761.0 12.7 18.4 1.1 - 414.0 31.3 13.4 Regression 

26 761.0 12.7 18.4 1.3 - 414.0 31.3 13.0 Training 

27 761.0 12.7 19.2 1.2 - 414.0 31.3 13.0 Training 

28 761.1 12.7 20.6 2.5 - 414.0 31.3 4.6 Training 

29 762.0 12.7 52.6 1.1 - 414.0 31.3 3.5 Training 

30 761.6 12.7 53.1 0.5 - 414.0 31.3 6.5 Training 

31 761.6 12.7 53.1 2.4 - 414.0 31.3 2.4 Training 

32 761.7 12.7 58.0 0.3 - 414.0 31.3 9.1 Regression 

33 761.7 12.7 58.4 0.3 - 414.0 31.3 9.7 Training 

34 761.7 12.7 67.2 0.2 - 414.0 31.3 8.4 Training 

35 745.1 12.4 11.2 3.0 - 358.0 63.9 13.1 Training 

36 774.7 11.4 15.5 3.0 - 358.0 63.9 11.3 Regression 

37 762.0 11.4 18.3 3.0 - 358.0 63.9 11.0 Training 

38 752.2 11.4 19.6 3.0 - 358.0 63.9 11.0 Training 

39 754.3 12.4 24.9 3.0 - 358.0 63.9 10.0 Training 

40 760.5 13.5 12.7 3.0 - 358.0 70.7 13.2 Training 

41 762.0 12.4 20.6 3.0 - 358.0 70.7 10.2 Regression 

42 762.0 11.9 16.8 3.0 - 358.0 70.7 9.4 Regression 
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43 762.0 12.4 18.3 3.0 - 358.0 70.7 9.6 Training 

44 762.0 12.9 19.8 3.0 - 358.0 70.7 9.7 Training 

45 762.0 11.9 23.6 3.0 - 358.0 70.7 8.7 Regression 

46 762.7 11.9 26.9 3.0 - 358.0 70.7 8.2 Training 

47 763.7 12.4 11.7 3.0 - 358.0 31.3 9.6 Regression 

48 763.3 12.9 15.5 3.0 - 358.0 31.3 9.1 Training 

49 763.8 12.4 10.9 3.0 - 358.0 31.3 8.6 Training 

50 763.3 12.4 14.7 3.0 - 358.0 31.3 8.4 Training 

51 761.0 12.9 18.8 3.0 - 358.0 31.3 7.7 Regression 

52 762.9 12.4 21.6 3.0 - 358.0 31.3 7.6 Training 

53 761.4 12.4 31.0 3.0 - 358.0 31.3 6.5 Regression 

54 762.0 12.9 25.1 3.0 - 358.0 31.3 6.4 Regression 

55 761.4 12.9 30.2 3.0 - 358.0 31.3 6.2 Regression 

56 761.4 11.9 34.0 3.0 - 358.0 31.3 4.7 Regression 

57 761.5 12.9 40.9 3.0 - 358.0 31.3 4.3 Training 

58 317.5 6.6 6.4 0.7 - 392.7 20.0 17.0 Regression 

59 323.3 6.9 7.1 0.8 - 392.7 20.0 16.6 Training 

60 324.6 7.4 5.8 1.0 - 392.7 20.0 18.3 Regression 

61 321.4 7.5 15.7 1.5 - 392.7 20.0 4.6 Training 

62 326.6 7.5 16.0 1.5 - 392.7 20.0 3.7 Training 

63 324.6 7.8 17.5 1.2 - 392.7 20.0 5.5 Training 

64 323.3 7.7 24.9 2.3 - 392.7 20.0 2.1 Training 

65 323.9 7.6 25.9 2.1 - 392.7 20.0 2.3 Training 

66 323.6 6.9 23.6 2.3 - 392.7 20.0 2.6 Training 

67 431.8 8.2 4.3 2.8 - 347.9 27.2 9.4 Training 

68 476.3 8.0 1.9 2.8 - 347.9 27.2 9.0 Training 

69 431.8 8.2 2.2 2.8 - 347.9 27.2 11.6 Training 

70 469.9 8.1 9.4 1.3 - 347.9 27.2 12.9 Training 

71 457.2 8.0 9.1 1.2 - 347.9 27.2 12.9 Training 

72 447.5 8.0 9.4 1.2 - 347.9 27.2 13.1 Training 

73 457.2 8.1 27.4 0.9 - 347.9 27.2 11.0 Regression 

74 457.2 7.6 27.4 0.8 - 347.9 27.2 11.8 Training 

75 457.2 7.9 27.4 0.7 - 347.9 27.2 12.8 Training 

76 609.6 12.2 42.7 1.8 - 317.0 20.4 1.8 Training 

77 608.9 12.1 44.5 1.6 - 317.0 20.4 2.1 Training 

78 608.1 12.3 40.1 1.7 - 317.0 20.4 2.7 Training 

79 608.1 11.7 40.1 1.9 - 317.0 20.4 4.2 Training 

80 611.0 12.5 45.2 2.6 - 317.0 20.4 2.3 Training 

81 607.4 11.8 27.9 1.3 - 317.0 20.4 7.1 Training 

82 610.7 11.7 28.7 1.5 - 317.0 20.4 3.4 Training 

83 607.4 12.0 27.9 1.3 - 317.0 20.4 4.4 Training 

84 609.6 11.7 30.5 1.2 - 317.0 20.4 8.7 Training 

85 607.6 12.4 31.0 1.2 - 317.0 20.4 9.3 Training 

86 609.6 12.1 15.2 3.4 - 317.0 20.4 7.3 Training 

87 607.8 12.1 17.0 4.5 - 317.0 20.4 4.9 Training 

88 605.7 12.2 15.7 3.4 - 317.0 20.4 4.4 Training 

89 607.4 12.2 14.0 3.2 - 317.0 20.4 8.0 Training 

90 762.0 11.9 28.2 2.1 - 358.0 27.2 3.6 Training 

91 762.0 11.9 26.7 2.3 - 358.0 27.2 3.6 Regression 



126 
 

 

92 762.0 11.9 25.9 2.5 - 358.0 27.2 5.0 Regression 

93 762.0 11.9 23.6 2.5 - 358.0 27.2 5.3 Training 

94 1063.6 14.5 51.1 3.0 - 414.0 46.2 4.4 Regression 

95 1055.5 15.0 47.5 3.3 - 414.0 46.2 4.8 Training 

96 1059.2 14.7 49.8 2.9 - 414.0 46.2 4.7 Training 

97 1065.4 15.0 76.7 1.7 - 414.0 46.2 3.8 Training 

98 1064.7 14.5 77.7 1.6 - 414.0 46.2 4.7 Regression 

99 763.8 12.7 10.9 3.6 - 413.4 16.3 3.7 Training 

100 762.0 12.7 16.8 3.6 - 413.4 16.3 4.4 Training 

101 762.7 12.5 26.8 2.6 - 429.9 20.4 5.3 Training 

102 761.3 12.7 26.9 2.4 - 429.9 20.4 4.8 Training 

103 760.1 12.4 10.3 3.1 381.0 358.0 63.9 14.5 Regression 

104 764.0 12.4 9.9 3.1 381.0 358.0 63.9 14.8 Training 

105 760.1 12.7 10.1 3.2 381.0 358.0 63.9 15.2 Regression 

106 761.0 13.1 19.3 3.3 381.0 358.0 70.7 12.7 Regression 

107 762.0 13.1 19.9 3.3 381.0 358.0 70.7 11.9 Regression 

108 761.1 12.5 21.0 3.1 381.0 358.0 63.9 10.7 Regression 

109 762.0 13.2 22.7 3.3 381.0 358.0 70.7 10.7 Training 

110 762.7 13.0 27.7 3.3 381.0 358.0 70.7 8.1 Training 

111 762.0 12.5 30.4 3.1 381.0 358.0 31.3 4.7 Training 

112 762.0 11.9 14.5 3.0 381.0 358.0 63.9 12.2 Regression 

113 763.2 18.0 16.3 4.5 381.0 358.0 63.9 16.7 Training 

114 769.9 11.9 24.6 3.0 381.0 358.0 70.7 9.6 Training 

115 760.1 11.9 10.4 3.0 381.0 358.0 31.3 8.6 Training 

116 762.0 11.9 19.8 3.0 381.0 358.0 31.3 4.5 Training 

117 762.0 11.9 7.6 3.0 381.0 358.0 35.4 11.9 Training 

118 730.4 11.9 17.0 3.0 381.0 358.0 35.4 8.1 Training 

119 763.5 11.9 13.2 3.0 381.0 358.0 35.4 6.9 Training 

120 751.8 11.9 18.8 3.0 381.0 358.0 35.4 6.6 Regression 

121 762.0 11.9 27.4 3.0 381.0 358.0 35.4 4.8 Training 

122 763.7 12.7 11.7 6.1 508.0 429.9 20.4 4.6 Training 

123 762.8 12.5 24.8 3.5 508.0 429.9 20.4 2.6 Training 

124 406.4 6.4 33.0 2.2 304.8 330.7 40.1 7.5 Training 

125 406.4 6.4 35.8 2.4 304.8 330.7 40.1 5.9 Training 

126 406.4 6.4 30.5 2.3 304.8 330.7 40.1 9.9 Training 

127 219.1 6.4 20.8 2.3 304.8 351.4 27.3 17.6 Training 

128 219.1 6.4 27.9 2.3 304.8 351.4 27.3 15.8 Training 

129 219.1 6.4 25.4 2.3 304.8 351.4 27.3 17.2 Training 

130 219.1 6.4 25.4 3.8 304.8 372.1 39.9 5.0 Training 

131 219.1 6.4 19.1 3.3 304.8 372.1 39.9 5.2 Training 

132 219.1 6.4 25.4 2.5 304.8 372.1 39.9 5.6 Training 

133 406.4 6.4 50.8 2.4 304.8 330.7 40.1 3.3 Training 

134 219.1 6.4 25.4 2.5 304.8 372.1 39.9 5.6 Training 

135 219.1 6.4 12.7 2.5 304.8 372.1 39.9 6.9 Training 

136 219.1 6.4 50.8 2.5 304.8 372.1 39.9 2.1 Training 

137 406.4 6.4 50.8 2.5 304.8 330.7 40.1 3.3 Training 

138 406.4 6.4 25.4 2.5 304.8 330.7 40.1 5.6 Training 

139 406.4 6.4 33.0 2.5 304.8 330.7 40.1 3.8 Training 

140 406.4 6.4 25.4 2.5 304.8 330.7 40.1 6.5 Training 
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141 406.4 6.4 31.8 3.3 304.8 451.3 136.0 5.2 Training 

142 406.4 6.4 31.8 3.4 304.8 451.3 136.0 6.1 Training 

143 406.4 6.4 31.8 3.3 304.8 451.3 136.0 6.8 Regression 

144 323.9 4.8 16.2 0.2 304.8 369.3 46.5 14.9 Regression 

145 323.9 4.8 16.2 0.5 304.8 369.3 46.5 13.7 Training 

146 323.9 4.9 32.4 0.5 304.8 369.3 46.5 10.2 Training 

147 323.9 4.9 38.9 0.5 304.8 369.3 46.5 10.5 Regression 

148 323.9 4.9 32.4 0.2 152.4 374.1 35.5 9.3 Regression 

149 323.9 5.0 32.4 0.2 152.4 442.3 57.4 13.9 Training 

150 323.9 6.0 48.6 0.3 152.4 496.1 82.0 17.8 Training 

151 323.9 4.9 48.6 0.2 152.4 371.4 42.8 13.2 Training 

152 323.9 4.9 48.6 0.2 152.4 371.4 42.8 10.2 Training 

153 323.9 5.0 48.6 0.5 152.4 365.2 37.4 7.2 Training 

154 609.6 6.4 61.0 0.3 152.4 416.2 71.1 9.4 Regression 

155 609.6 6.5 79.2 0.3 152.4 416.2 71.1 7.3 Regression 

156 323.9 5.7 48.6 0.6 152.4 496.1 82.0 16.1 Training 

157 609.6 6.6 91.4 0.7 279.4 468.5 80.2 11.2 Training 

158 323.9 4.9 32.4 0.9 50.8 365.2 37.4 6.7 Regression 

159 609.6 6.7 61.0 1.2 127.0 416.2 71.1 6.2 Regression 

160 812.8 7.3 81.28 0.7 254.0 392.0 36.4 3.3 Training 

161 609.6 7.9 9.8 0.5 150.0 437.0 160.5 13.3 Training 

162 609.6 7.9 15.8 2.7 115.0 437.0 160.5 11.0 Training 

163 609.6 7.9 36.0 2.3 375.0 437.0 160.5 13.1 Training 

164 609.6 8.9 9.8 1.7 200.0 506.0 87.3 18.5 Training 

165 609.6 8.9 31.7 1.5 353.0 506.0 87.3 19.4 Training 

166 609.6 9.5 18.5 3.8 66.0 372.7 34.0 9.6 Training 

167 609.6 9.5 20.6 4.8 68.6 372.7 34.0 8.8 Training 

168 609.6 9.5 19.8 4.8 68.6 422.4 31.3 9.3 Training 

169 762.0 9.7 20.3 4.8 83.8 386.5 39.4 6.8 Training 

170 762.0 9.7 20.3 4.9 83.8 386.5 39.4 6.4 Regression 

171 762.0 9.8 20.3 2.4 50.8 370.7 51.7 9.8 Training 

172 762.0 9.7 20.3 2.4 50.8 370.7 51.7 9.2 Training 

173 762.0 9.6 20.3 2.4 101.6 370.7 51.7 6.9 Training 

174 762.0 8.4 24.1 0.8 254.0 449.9 27.2 2.5 Training 

175 762.0 8.4 9.9 0.8 254.0 449.9 27.2 9.5 Training 

176 762.0 8.4 9.9 4.3 254.0 449.9 27.2 1.4 Training 

177 762.0 8.4 14.2 0.8 254.0 490.6 29.9 5.0 Training 

178 762.0 8.4 9.9 1.7 254.0 490.6 29.9 6.2 Training 

179 558.8 9.0 21.1 0.8 127.0 279.0 42.2 9.6 Regression 

180 558.8 9.0 21.1 0.9 254.0 279.0 42.2 6.1 Training 

181 558.8 8.9 21.8 0.9 127.0 279.0 42.2 9.8 Regression 

182 762.0 8.5 30.5 0.9 254.0 508.5 78.9 11.2 Training 

183 406.4 6.8 20.6 0.7 127.0 400.3 24.5 5.1 Training 

184 1066.8 10.2 46.2 1.0 254.0 542.9 46.2 7.2 Training 

185 1066.8 10.2 20.6 1.0 254.0 542.9 46.2 9.1 Training 

186 1066.8 10.0 20.6 1.0 254.0 522.3 28.6 4.1 Training 

187 406.4 6.8 23.1 0.8 127.0 400.3 24.5 5.4 Training 

188 406.4 6.8 20.6 0.7 127.0 400.3 24.5 5.8 Training 

189 1066.8 10.2 22.1 0.5 254.0 522.3 28.6 10.4 Training 
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190 1066.8 9.9 20.8 2.1 254.0 522.3 28.6 2.5 Training 

Note: Tests #1-123 are from Jones (1982); #124-143 are from Farrag and Francini (2011); #144-

160 are from Kiefner et al. (1996); #161-165 are from Zarea et al. (2012), and #166-190 are from 

Maxey (1986). 
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Appendix D. Details of 258 full-scale burst tests of corroded pipe specimens 

Table D.1 Details of 258 full-scale burst tests of corroded pipe specimens 

Case No. Test ID D/wt d/wt l/(Dwt)0.5 σy/σu ptest/py Subset  

1 Case 1 78.53 0.38 0.74 0.77 1.09 R2 

2 Case 2 78.53 0.38 0.66 0.77 1.08 R2 

3 Case 3 78.53 0.41 1.26 0.77 1.14 R2 

4 Case 4 80.00 0.64 1.64 0.79 1.05 R1 

5 Case 5 78.95 0.55 1.41 0.78 1.02 R2 

6 Case 6 63.66 0.72 1.00 0.61 0.87 R1 

7 Case 7 63.66 0.67 1.58 0.61 0.92 R1 

8 Case 8 63.66 0.67 1.75 0.61 0.96 R2 

9 Case 9 64.86 0.71 0.59 0.63 0.81 R1 

10 Case 10 64.00 0.75 1.42 0.63 0.89 R1 

11 Case 11 65.75 0.72 0.68 0.63 0.80 R1 

12 Case 12 65.75 0.60 0.76 0.63 0.96 R1 

13 Case 13 65.75 0.63 0.84 0.63 1.04 R1 

14 Case 14 65.75 0.72 0.93 0.63 1.04 R1 

15 Case 15 63.16 0.66 1.24 0.63 1.01 R1 

16 Case 16 64.86 0.51 0.67 0.63 1.05 R1 

17 Case 17 64.86 0.65 1.01 0.63 1.07 R1 

18 Case 18 64.00 0.64 1.25 0.63 1.10 R2 

19 Case 19 65.75 0.72 0.59 0.63 1.14 R1 

20 Case 20 64.00 0.67 0.75 0.63 0.92 R2 

21 Case 21 64.00 0.78 0.75 0.63 1.14 R1 

22 Case 22 64.00 0.58 0.83 0.63 1.16 R1 

23 Case 23 64.00 0.50 0.67 0.63 1.16 R1 

24 Case 24 64.00 0.47 0.75 0.63 1.16 R1 

25 Case 25 64.00 0.72 1.67 0.63 1.16 R1 

26 Case 27 80.00 0.39 1.64 0.79 1.23 R1 

27 Case 28 80.00 0.31 1.34 0.79 1.25 R2 

28 Case 29 80.00 0.61 1.19 0.79 1.10 R1 

29 Case 30 80.00 0.56 0.48 0.79 1.24 R1 

30 Case 31 80.00 0.56 0.60 0.79 1.23 R1 

31 Case 32 61.54 0.64 2.26 0.68 0.86 R1 

32 Case 33 61.54 0.67 2.55 0.68 1.27 R1 

33 Case 34 51.61 0.74 2.02 0.60 0.99 R1 

34 Case 35 51.61 0.77 2.25 0.60 1.15 R1 

35 Case 38 51.61 0.64 2.81 0.71 1.17 R1 

36 Case 39 57.55 0.70 4.11 0.64 0.80 R1 

37 Case 42 54.05 0.50 2.53 0.64 1.02 R1 

38 Case 43 65.57 0.75 5.06 0.58 0.90 R2 

39 Case 44 65.93 0.70 4.40 0.58 0.80 R1 

40 Case 46 75.24 0.68 1.99 0.58 1.37 R2 

41 Case 47 72.29 0.66 1.59 0.58 1.41 R1 

42 Case 48 64.00 0.79 5.33 0.78 0.44 R1 

43 Case 51 65.57 0.69 4.25 0.73 0.70 R1 
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44 Case 53 66.48 0.79 4.25 0.61 1.19 R1 

45 Case 54 67.61 0.68 2.91 0.79 1.17 R1 

46 Case 55 64.69 0.74 3.52 0.69 0.98 R1 

47 Case 56 64.69 0.78 3.52 0.69 0.98 R1 

48 Case 57 64.52 0.76 7.36 0.76 1.07 R1 

49 Case 58 65.93 0.62 2.88 0.78 1.13 R2 

50 Case 59 65.57 0.66 4.22 0.73 1.38 R1 

51 Case 60 65.57 0.52 1.35 0.74 1.01 R1 

52 Case 61 65.22 0.78 9.42 0.71 1.05 R1 

53 Case 63 72.99 0.47 5.13 0.63 1.57 R1 

54 Case 64 64.31 0.77 3.41 0.62 1.54 R1 

55 Case 65 64.31 0.34 4.41 0.62 1.54 R1 

56 Case 66 75.19 0.54 6.72 0.66 1.41 R1 

57 Case 67 64.72 0.71 4.83 0.65 1.40 R1 

58 Case 68 80.65 0.35 10.78 0.79 1.25 R1 

59 Case 69 79.79 0.61 3.57 0.79 1.12 R1 

60 Case 70 80.00 0.37 3.58 0.79 1.23 R1 

61 Case 71 78.53 0.38 5.91 0.79 1.20 R1 

62 Case 72 79.79 0.35 5.95 0.79 1.27 R2 

63 Case 73 79.37 0.29 9.80 0.79 1.19 R1 

64 Case 74 79.16 0.45 4.15 0.79 1.10 R1 

65 Case 75 78.74 0.79 3.55 0.79 0.85 R1 

66 Case 76 79.37 0.45 2.38 0.79 1.14 R1 

67 Case 77 79.58 0.42 3.57 0.79 1.18 R1 

68 Case 78 80.43 0.29 2.69 0.79 1.26 R1 

69 Case 80 82.19 0.63 4.84 0.78 0.69 R1 

70 Case 81 80.00 0.65 8.05 0.82 0.58 R1 

71 Case 82 80.00 0.40 2.24 0.69 1.22 R2 

72 Case 84 109.09 0.66 4.64 0.84 0.58 R1 

73 Case 86 111.11 0.75 2.87 0.79 0.75 R2 

74 Case 87 94.49 0.73 0.73 0.84 1.12 R1 

75 Case 88 82.64 0.33 2.36 0.77 1.14 R1 

76 Case 89 88.89 0.74 1.45 0.82 1.00 R2 

77 Case 90 90.00 0.68 0.42 0.77 1.06 R1 

78 Case 91 91.60 0.79 0.37 0.80 1.15 R1 

79 Case 92 75.24 0.28 6.87 0.75 1.24 R1 

80 Case 97 76.63 0.39 6.57 0.74 0.97 R2 

81 Case 98 76.34 0.39 17.47 0.71 1.03 R1 

82 Case 119 79.37 0.53 17.37 0.80 0.74 R1 

83 Case 120 79.37 0.35 17.82 0.80 1.09 R1 

84 Case 123 79.37 0.53 3.59 0.80 0.78 R1 

85 Case 124 79.37 0.50 17.54 0.80 0.77 R1 

86 Case 153 49.38 0.45 1.76 0.79 1.08 R1 

87 Case 198 61.54 0.76 0.98 0.79 0.74 R1 

88 Case 199 61.54 0.52 1.14 0.79 0.79 R2 

89 Case 202 64.86 0.70 1.01 0.79 0.84 R2 

90 Case 203 71.64 0.64 1.06 0.79 0.77 R1 

91 Case 204 64.86 0.59 4.70 0.79 0.89 R1 

92 Case 205 72.73 0.73 1.21 0.79 0.72 R1 
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93 Case 206 72.73 0.64 2.84 0.79 0.75 R1 

94 Case 207 72.73 0.70 0.92 0.79 0.84 R1 

95 Case 208 72.73 0.73 1.07 0.79 0.86 R2 

96 Case 209 72.73 0.73 1.60 0.79 0.87 R1 

97 Case 210 72.73 0.61 1.67 0.79 0.92 R1 

98 Case 211 72.73 0.70 0.64 0.79 1.02 R1 

99 Case 212 64.72 0.66 2.10 0.79 0.92 R2 

100 Case 213 64.72 0.56 9.46 0.79 1.00 R2 

101 Case 214 40.57 0.75 5.18 0.73 0.71 R1 

102 Case 215 92.53 0.64 7.03 0.79 0.58 R1 

103 F1 54.64 0.79 1.07 0.82 0.97 R1 

104 F4 53.38 0.66 1.33 0.81 1.00 R1 

105 F5 55.48 0.67 0.76 0.77 1.18 R1 

106 F7 54.09 0.78 0.59 0.68 1.18 R2 

107 F14 54.00 0.73 0.66 0.79 1.08 R1 

108 F17 53.38 0.48 0.92 0.85 1.07 R1 

109 F18 58.06 0.79 0.82 0.78 1.09 R1 

110 F20 52.77 0.39 0.65 0.84 1.11 R2 

111 F25 52.60 0.73 0.83 0.80 1.06 R1 

112 F29 54.45 0.70 0.89 0.79 1.19 R1 

113 F32 53.82 0.33 1.13 0.75 1.21 R1 

114 S1cc 52.60 0.61 0.45 0.79 1.39 R1 

115 S1co 50.63 0.50 0.44 0.77 1.10 R1 

116 S1lo 50.39 0.47 0.45 0.79 1.07 R1 

117 TS 5.1 33.05 0.68 4.54 0.83 0.53 R2 

118 TS 1.2 33.53 0.68 5.46 0.83 0.52 R1 

119 TS 2.2 33.36 0.67 6.24 0.83 0.50 R2 

120 TS 2.1 33.36 0.69 7.03 0.83 0.47 R1 

121 TS 3.1 32.68 0.70 7.65 0.83 0.44 R1 

122 TS 1.1 33.25 0.68 8.31 0.83 0.44 R2 

123 TS 3.2 33.08 0.70 8.68 0.83 0.44 R1 

124 TS 4.1 33.08 0.69 8.88 0.83 0.44 R1 

125 TS 4.2 33.25 0.69 9.40 0.83 0.42 R1 

126 TS 02 75.90 0.46 18.84 0.61 1.43 R1 

127 TS 04 73.47 0.52 18.54 0.66 1.25 R1 

128 TS 05 75.78 0.45 18.83 0.67 1.35 R1 

129 TS 06 69.59 0.51 18.09 0.78 1.01 R2 

130 TS 10 75.06 0.46 18.76 0.65 1.31 R2 

131 IDTS2 56.64 0.67 0.65 0.88 1.07 R1 

132 IDTS8 57.43 0.47 0.66 0.81 1.18 R1 

133 ET 4.1 33.09 0.71 8.88 0.83 0.44 R2 

134 ET 4.2 33.26 0.73 9.40 0.83 0.42 R1 

135 ET 5.1 33.13 0.72 4.55 0.83 0.53 R1 

136 ET 1.2 33.54 0.70 5.47 0.83 0.52 R1 

137 ET 2.2 33.37 0.71 6.24 0.83 0.50 R1 

138 ET 2.1 33.37 0.71 7.04 0.83 0.47 R1 

139 ET 3.1 32.69 0.74 7.64 0.83 0.44 R1 

140 ET 1.1 32.60 0.73 8.23 0.83 0.43 R1 

141 ET 3.2 33.09 0.71 8.59 0.83 0.44 R1 



132 
 

 

142 CP E2 35.52 0.72 5.87 0.80 0.50 R2 

143 CPI 34.32 0.66 5.77 0.80 0.57 R1 

144 CP E1 34.79 0.71 5.81 0.80 0.53 R1 

145 1DI 38.10 0.70 6.08 0.85 0.46 R2 

146 2DI 37.35 0.71 6.02 0.84 0.39 R1 

147 SOL-2 37.44 0.25 1.20 0.76 1.28 R1 

148 SOL-4 37.63 0.35 3.86 0.76 1.22 R1 

149 SOL-6 37.41 0.31 1.15 0.76 1.32 R1 

150 SOL-10 37.58 0.38 2.74 0.76 1.26 R1 

151 SOL-11 37.47 0.31 2.40 0.76 1.14 R1 

152 SOL-12 37.86 0.26 0.97 0.76 1.15 R1 

153 NOR-1 52.18 0.35 10.82 0.77 1.12 R1 

154 NOR-2 51.93 0.33 3.69 0.77 1.21 R1 

155 TNG-01 33.08 0.48 5.08 0.85 0.86 R1 

156 RLK-1 93.29 0.50 14.25 0.75 1.09 R1 

157 RLK-2 95.32 0.55 22.83 0.75 0.93 R1 

158 RLK-3 95.54 0.40 21.92 0.75 1.16 R1 

159 BCG-1 55.18 0.67 4.97 0.77 1.08 R1 

160 BCG-2 58.41 0.56 1.35 0.77 1.15 R1 

161 BCG-3 57.28 0.34 0.84 0.77 1.12 R1 

162 BCG-4 56.00 0.45 2.78 0.77 1.21 R1 

163 BCG-5 55.58 0.32 1.24 0.77 1.19 R1 

164 BCG-6 54.79 0.43 3.36 0.77 1.04 R1 

165 BCG-7 60.03 0.60 1.86 0.77 1.08 R1 

166 BCG-8 55.06 0.55 1.03 0.77 1.16 R1 

167 BCG-9 56.88 0.44 4.33 0.77 1.02 R1 

168 ESS-01 63.75 0.72 2.44 0.79 0.83 R1 

169 NOV01 88.27 0.53 2.45 0.79 1.02 R1 

170 NOV02-2 89.15 0.57 8.64 0.79 0.78 R1 

171 NOV03-2 89.29 0.66 11.53 0.79 0.83 R1 

172 NOV04 88.50 0.67 9.88 0.79 0.95 R1 

173 NOV04-2 88.50 0.53 7.71 0.79 1.04 R1 

174 NOV05 90.54 0.60 11.18 0.79 0.79 R1 

175 NOV06 90.09 0.44 3.18 0.79 1.12 R2 

176 TCP01 89.71 0.38 2.34 0.79 1.21 R1 

177 TCP02 91.15 0.32 2.05 0.79 1.20 R1 

178 TCP03 92.14 0.49 1.02 0.79 1.06 R1 

179 DA 43.54 0.25 1.73 0.88 1.06 R1 

180 DB 43.54 0.50 1.73 0.88 0.96 R1 

181 DC 43.54 0.75 1.73 0.88 0.75 R2 

182 LA 43.54 0.50 0.87 0.88 1.07 R1 

183 LC 43.54 0.50 2.60 0.88 0.87 R1 

184 CB 43.54 0.50 1.73 0.88 1.03 R1 

185 CC 43.54 0.50 1.73 0.88 1.00 R1 

186 LA 43.54 0.50 0.43 0.88 1.21 R2 

187 LB 43.54 0.50 0.87 0.88 1.07 R1 

188 LE 43.54 0.50 5.20 0.88 0.73 R1 

189 LF 43.54 0.50 7.79 0.88 0.66 R2 

190 1 31.46 0.50 4.21 0.74 0.96 R1 
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191 8 31.46 0.50 4.21 0.74 0.91 R1 

192 T1 25.21 0.37 3.66 0.77 1.00 R1 

193 T3 22.63 0.50 3.47 0.75 0.83 R2 

194 16-1 65.84 0.33 16.78 0.68 1.30 R1 

195 16-2 65.76 0.47 23.07 0.68 1.19 R1 

196 16-3 65.76 0.43 6.56 0.68 1.20 R2 

197 16-6 69.05 0.57 7.02 0.71 1.08 R2 

198 24-1 89.78 0.30 23.34 0.81 1.15 R1 

199 24-2 91.12 0.39 6.69 0.81 1.18 R1 

200 30-1 90.86 0.68 54.03 0.82 1.04 R1 

201 30-2 89.81 0.48 5.34 0.82 1.18 R1 

202 30-3 90.86 0.73 7.62 0.82 1.18 R1 

203 30-4 89.85 0.78 8.81 0.93 1.00 R2 

204 30-5 90.82 0.59 9.74 0.83 1.02 R1 

205 30-6 90.96 0.75 18.10 0.82 1.14 R1 

206 1 57.21 0.50 0.52 0.75 1.17 R2 

207 2 57.21 0.50 0.51 0.75 1.20 R1 

208 11 47.92 0.50 0.51 0.75 1.12 R1 

209 18 52.37 0.50 0.51 0.61 1.38 R2 

210 GL-TV006 42.60 0.70 1.63 0.80 0.90 R1 

211 GL-TV008 41.20 0.68 4.81 0.80 0.54 R1 

212 GL-TV010 41.70 0.69 3.23 0.80 0.57 R1 

213 GL-TV011 40.90 0.67 3.20 0.80 0.58 R1 

214 GL-TV016 40.70 0.70 3.19 0.81 0.62 R1 

215 GL-TV017 41.20 0.76 4.82 0.81 0.37 R1 

216 GL-TV018 40.90 0.74 3.84 0.80 0.54 R1 

217 GL-TV019 40.70 0.74 6.38 0.80 0.47 R1 

218 GL-TV022 40.30 0.75 3.17 0.80 0.51 R1 

219 GL-TV027 40.70 0.72 4.78 0.81 0.49 R1 

220 GL-TV028 44.00 0.74 4.97 0.81 0.41 R2 

221 GL-TV031 44.00 0.55 4.97 0.81 0.69 R1 

222 GL-TV032 40.50 0.48 4.77 0.81 0.66 R1 

223 GL-TV045 48.10 0.73 1.74 0.72 0.84 R1 

224 GL-TV046 49.20 0.56 1.76 0.72 1.07 R1 

225 GL-TV047 48.10 0.74 5.21 0.72 0.46 R2 

226 GL-TV048 49.50 0.55 5.28 0.72 0.88 R1 

227 GL-TV049 29.50 0.70 1.36 0.85 0.90 R1 

228 GL-TV050 29.10 0.73 1.35 0.85 0.87 R1 

229 GL-TV051 29.50 0.57 1.36 0.85 0.94 R2 

230 GL-TV052 28.80 0.69 4.03 0.85 0.51 R2 

231 GL-TV053 29.30 0.52 4.07 0.85 0.76 R2 

232 GL-TV056 45.20 0.72 1.69 0.73 0.85 R2 

233 GL-TV057 46.90 0.58 1.73 0.73 1.03 R1 

234 GL-TV058 46.50 0.77 5.15 0.73 0.41 R1 

235 GL-TV059 45.20 0.59 5.07 0.73 0.81 R1 

236 GL-TV060 31.60 0.73 1.41 0.83 0.89 R1 

237 GL-TV061 29.70 0.54 1.37 0.83 1.07 R1 

238 GL-TV062 30.80 0.73 4.19 0.83 0.50 R1 

239 GL-TV063 31.60 0.53 4.24 0.83 0.78 R1 
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240 GL-TV065 32.40 0.62 1.43 0.73 1.14 R1 

241 GL-TV067 32.30 0.63 4.29 0.73 0.78 R1 

242 GL-TV072 46.90 0.70 1.72 0.81 0.80 R1 

243 GL-TV073 47.10 0.72 5.17 0.81 0.43 R1 

244 GL V1 77.20 0.80 0.23 0.70 1.14 R2 

245 GL V2 77.20 0.80 0.91 0.70 0.80 R1 

246 GL P1V1A 60.10 0.78 3.89 0.81 0.39 R1 

247 GL P1V1B 60.10 0.21 3.88 0.81 1.09 R1 

248 GL P1V2A 60.10 0.37 3.89 0.81 0.90 R1 

249 GL P1V2B 60.10 0.09 3.90 0.81 1.18 R1 

250 GL P2V1A 81.80 0.78 4.54 0.80 0.33 R1 

251 GL P2V1B 81.80 0.17 4.45 0.80 1.09 R1 

252 GL P2V2A 81.80 0.40 4.55 0.80 0.83 R1 

253 GL P2V2B 81.80 0.11 4.52 0.80 1.11 R2 

254 GL HKL V01 57.90 0.50 3.50 0.98 0.67 R2 

255 GL HKK V01 57.90 0.50 6.38 0.98 0.57 R2 

256 GL HKL V02 57.90 0.50 2.96 0.98 0.66 R2 

257 GL HKK V02 57.80 0.50 5.83 0.98 0.55 R1 

258 NAT GAS PCA V1 76.80 0.52 1.28 0.66 0.75 R1 

Note: Cases #1-102 are from Kiefner et al. (1996); #103-116 are from Chouchaoui (1993); #117-

125 are from Benjamin et al. (2000); #126-130 are from Souza et al. (2007); #131-132 are from 

Benjamin et al. (2007); #133-146 are from Freire et al. (2006); #147-178 are from Cronin (2000); 

#179-185 are from Oh et al. (2007); #186-189 are from Kim et al. (2004); #190-191 are from 

Bjornoy et al. (2000); #192-193 are from Belachew et al. (2016); #194-205 are from Zhang et al. 

(2018); #206-209 are from Al-Owasis et al. (2018), and #210-258 are from Chauhan and Brister 

(2009). 
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Appendix E. Summary of tuned hyper-parameters for the RF and ET models 

and TGAN 

Table E.1 summarizes values of the six hyper-parameters of ET and RF tuned based on the TR1-

AR2 scenario.  Table E.2 summarizes values of tuned hyper-parameters of TGAN.   

Table E.1 Values of tuned hyper-parameters of the RF and ET models 

Hyper-parameter Description 
Value 

RF ET 

n_estimators 
the number of generated decision 

trees 
111 75 

max_features 
the number of features that is 

randomly selected in each split 
4 4 

max_depth 

the maximum depth (i.e. from the 

root node to the furthest leaf 

node) of a decision tree 

36 46 

min_samples_split 

minimum number of data points 

required within a decision node 

for further splitting 

2 3 

min_samples_leaf 
minimum number of data points 

required to stay within a leaf node 
1 1 

Bootstrap 
the bagging algorithm is 

employed if “True” 
True False 

 

Table E.2 Tuned hyper-parameters of TGAN  

Hyper-parameter Description Value 

max_epoch 
maximum number of epochs used to improve 

the performance of generator and discriminator 
20 

steps_per_epoch 
the number of steps to run in each epoch to 

train the discriminator 
7000 

learning_rate 
the learning rate for the Adam optimizer used 

in generator 
0.00045 

nb 

See Section 4.3.1 

150 

nh 400 

l 3 

nDI 100 

nz 100 
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Appendix F. Details of 88 full-scale burst test data of specimens containing 

dent-gouges 

Table F.1 Details of 88 full-scale burst test data of specimens containing dent-gouges 

Case D (mm) wt (mm) H0 (mm) dg (mm) lg (mm) σy (MPa) Cv23 (J) ζ Ptest (MPa) Subset 

1 760.12 12.40 10.26 3.10 381.00 358.00 63.92 0 14.49 R1 

2 763.97 12.40 9.86 3.10 381.00 358.00 63.92 0 14.83 R1 

3 760.09 12.70 10.11 3.18 381.00 358.00 63.92 0 15.15 R1 

4 761.00 13.11 19.25 3.28 381.00 358.00 70.72 0 12.67 R1 

5 762.00 13.11 19.89 3.28 381.00 358.00 70.72 0 11.85 R2 

6 761.08 12.50 21.01 3.12 381.00 358.00 63.92 0 10.70 R1 

7 762.00 13.21 22.71 3.30 381.00 358.00 70.72 0 10.70 R1 

8 762.70 13.00 27.69 3.25 381.00 358.00 70.72 0 8.06 R1 

9 762.00 12.50 30.40 3.12 381.00 358.00 31.28 0 4.72 R2 

10 762.00 11.89 14.48 2.97 381.00 358.00 63.92 0 12.21 R1 

11 763.19 17.98 16.26 4.50 381.00 358.00 63.92 0 16.72 R1 

12 769.94 11.89 24.64 2.97 381.00 358.00 70.72 0 9.57 R2 

13 760.15 11.89 10.41 2.97 381.00 358.00 31.28 0 8.64 R1 

14 762.00 11.89 19.81 2.97 381.00 358.00 31.28 0 4.49 R1 

15 762.00 11.89 7.62 2.97 381.00 358.00 35.36 0 11.87 R1 

16 730.39 11.89 17.02 2.97 381.00 358.00 35.36 0 8.05 R1 

17 763.47 11.89 13.21 2.97 381.00 358.00 35.36 0 6.87 R2 

18 751.84 11.89 18.80 2.97 381.00 358.00 35.36 0 6.58 R2 

19 762.00 11.89 27.43 2.97 381.00 358.00 35.36 0 4.79 R2 

20 763.66 12.70 11.68 6.10 508.00 429.94 20.40 0 4.58 R1 

21 762.78 12.52 24.79 3.51 508.00 429.94 20.40 0 2.65 R1 

22 406.40 6.35 33.02 2.16 304.80 330.72 40.09 1 7.46 R1 

23 406.40 6.35 35.81 2.41 304.80 330.72 40.09 1 5.88 R1 

24 406.40 6.35 30.48 2.29 304.80 330.72 40.09 1 9.92 R1 

25 219.08 6.35 20.83 2.29 304.80 351.39 27.34 1 17.57 R1 

26 219.08 6.35 27.94 2.31 304.80 351.39 27.34 1 15.85 R2 

27 219.08 6.35 25.40 2.26 304.80 351.39 27.34 1 17.23 R1 

28 219.08 6.35 25.40 3.81 304.80 372.06 39.91 1 4.96 R1 

29 219.08 6.35 19.05 3.30 304.80 372.06 39.91 1 5.17 R2 

30 219.08 6.35 25.40 2.54 304.80 372.06 39.91 1 5.65 R1 

31 406.40 6.35 50.80 2.41 304.80 330.72 40.09 1 3.27 R1 

32 219.08 6.35 25.40 2.54 304.80 372.06 39.91 1 5.65 R1 

33 219.08 6.35 12.70 2.54 304.80 372.06 39.91 1 6.89 R1 

34 219.08 6.35 50.80 2.54 304.80 372.06 39.91 1 2.07 R1 

35 406.40 6.35 50.80 2.54 304.80 330.72 40.09 1 3.27 R2 

36 406.40 6.35 25.40 2.54 304.80 330.72 40.09 1 5.62 R1 

37 406.40 6.35 33.02 2.54 304.80 330.72 40.09 1 3.79 R1 

38 406.40 6.35 25.40 2.54 304.80 330.72 40.09 1 6.48 R2 

39 406.40 6.35 31.75 3.30 304.80 451.30 136.04 1 5.17 R1 

40 406.40 6.35 31.75 3.43 304.80 451.30 136.04 1 6.13 R1 

41 406.40 6.35 31.75 3.30 304.80 451.30 136.04 1 6.75 R1 

42 323.85 4.78 16.19 0.24 304.80 369.30 46.47 1 14.92 R2 

43 323.85 4.78 16.19 0.48 304.80 369.30 46.47 1 13.68 R1 

44 323.85 4.88 32.39 0.49 304.80 369.30 46.47 1 10.19 R1 

45 323.85 4.88 38.86 0.49 304.80 369.30 46.47 1 10.52 R1 

46 323.85 4.93 32.39 0.25 152.40 374.13 35.54 1 9.33 R2 
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47 323.85 4.95 32.39 0.25 152.40 442.34 57.41 1 13.92 R2 

48 323.85 5.99 48.58 0.30 152.40 496.08 82.01 1 17.85 R2 

49 323.85 4.93 48.58 0.25 152.40 371.37 42.83 1 13.21 R1 

50 323.85 4.93 48.58 0.25 152.40 371.37 42.83 1 10.18 R2 

51 323.85 5.03 48.58 0.50 152.40 365.17 37.36 1 7.23 R1 

52 609.60 6.43 60.96 0.32 152.40 416.16 71.07 1 9.37 R2 

53 609.60 6.45 79.25 0.32 152.40 416.16 71.07 1 7.28 R1 

54 323.85 5.72 48.58 0.57 152.40 496.08 82.01 1 16.14 R1 

55 609.60 6.60 91.44 0.66 279.40 468.52 80.19 1 11.20 R1 

56 323.85 4.85 32.39 0.87 50.80 365.17 37.36 1 6.71 R1 

57 609.60 6.71 60.96 1.21 127.00 416.16 71.07 1 6.21 R2 

58 812.80 7.34 81.28 0.73 254.00 392.04 36.45 1 3.33 R1 

59 609.60 7.90 9.75 0.50 150.00 437.00 160.47 0 13.30 R1 

60 609.60 7.90 15.85 2.70 115.00 437.00 160.47 0 11.03 R1 

61 609.60 7.90 35.97 2.30 375.00 437.00 160.47 0 13.09 R1 

62 609.60 8.89 9.75 1.68 200.00 506.00 87.26 0 18.51 R2 

63 609.60 8.89 31.70 1.48 353.00 506.00 87.26 0 19.35 R1 

64 609.60 9.53 18.54 3.81 66.04 372.75 34.00 0 9.65 R1 

65 609.60 9.52 20.57 4.78 68.58 372.75 34.00 0 8.82 R2 

66 609.60 9.53 19.81 4.78 68.58 422.36 31.28 0 9.30 R1 

67 762.00 9.75 20.32 4.83 83.82 386.53 39.44 0 6.75 R1 

68 762.00 9.73 20.32 4.88 83.82 386.53 39.44 0 6.41 R1 

69 762.00 9.78 20.32 2.44 50.80 370.68 51.68 0 9.82 R2 

70 762.00 9.69 20.32 2.41 50.80 370.68 51.68 0 9.23 R1 

71 762.00 9.62 20.32 2.41 101.60 370.68 51.68 0 6.92 R1 

72 762.00 8.41 24.13 0.84 254.00 449.92 27.20 0 2.48 R1 

73 762.00 8.40 9.91 0.84 254.00 449.92 27.20 0 9.47 R1 

74 762.00 8.42 9.91 4.29 254.00 449.92 27.20 0 1.45 R1 

75 762.00 8.37 14.22 0.84 254.00 490.57 29.92 0 5.00 R1 

76 762.00 8.40 9.91 1.68 254.00 490.57 29.92 0 6.17 R2 

77 558.80 8.99 21.08 0.81 127.00 279.05 42.16 0 9.58 R2 

78 558.80 9.01 21.08 0.89 254.00 279.05 42.16 0 6.06 R1 

79 558.80 8.94 21.84 0.89 127.00 279.05 42.16 0 9.78 R1 

80 762.00 8.54 30.48 0.86 254.00 508.48 78.88 0 11.20 R1 

81 406.40 6.76 20.57 0.69 127.00 400.31 24.48 0 5.13 R1 

82 1066.80 10.23 46.23 1.02 254.00 542.93 46.24 0 7.17 R1 

83 1066.80 10.19 20.57 1.02 254.00 542.93 46.24 0 9.09 R2 

84 1066.80 10.02 20.57 1.02 254.00 522.26 28.56 0 4.07 R2 

85 406.40 6.80 23.11 0.76 127.00 400.31 24.48 0 5.37 R2 

86 406.40 6.77 20.57 0.69 127.00 400.31 24.48 0 5.79 R2 

87 1066.80 10.16 22.10 0.51 254.00 522.26 28.56 0 10.37 R1 

88 1066.80 9.93 20.83 2.08 254.00 522.26 28.56 0 2.51 R1 

Note: Cases #1-21 are from Jones (1982); #22-41 are from Farrag and Francini (2011); #42-58 are 

from Kiefner et al. (1996); #59-63 are from Zarea et al. (2012), and #64-88 are from Maxey (1986). 
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Appendix G. The C&H model for dent-gouge 

The burst capacity of a dent-gouge, PC&H, is calculated using the C&H model as follows. 

𝑃𝐶&𝐻 =
4𝑤𝑡�̅�

𝜋𝐷
cos−1 [exp− {113

1.5𝜋𝐸

�̅�2𝐴23𝑑𝑔
(𝑌1 (1 − 1.8

𝐻0

𝐷
) +

𝑌2 (5.1
𝐷

𝑤𝑡

𝐻0

𝐷
))

−2

exp [
ln(0.738𝐶𝑣23)−1.9

0.57
]}]  (G.1) 

𝜎 = 1.15𝜎𝑦 (1 −
𝑑𝑔

𝑤𝑡
) (1 −

𝑑𝑔

𝑀𝑤𝑡
)
−1

 (G.2) 

𝑀 = √1 + 0.52
𝑙𝑔
2

𝐷𝑤𝑡
  (G.3) 

𝑌1 = 1.12 − 0.23 (
𝑑𝑔

𝑤𝑡
) + 10.6 (

𝑑𝑔

𝑤𝑡
)
2

− 21.7 (
𝑑𝑔

𝑤𝑡
)
3

+ 30.4 (
𝑑𝑔

𝑤𝑡
)
4

  (G.4) 

𝑌2 = 1.12 − 1.39 (
𝑑𝑔

𝑤𝑡
) + 7.32 (

𝑑𝑔

𝑤𝑡
)
2

− 13.1 (
𝑑𝑔

𝑤𝑡
)
3

+ 14.0 (
𝑑𝑔

𝑤𝑡
)
4

  (B.5) 

where 𝜎 is the so-called flow stress; E is the Young’s modulus, and A23 is the fracture area of the 

2/3-size CVN pipe specimen.  The units of 𝜎, E and A23 are MPa, MPa and mm2, respectively.   

 

 

 

 

 

 

 



139 
 

 

Appendix H. Summary of tuned hyper-parameters for TGAN 

Table H.1 Tuned hyper-parameters of TGAN  

Hyper-parameter Descriptions Value 

max_epoch 
maximum number of epochs to use during 

training 
20 

steps_per_epoch the number of steps to run in each epoch 6000 

learning_rate the learning rate for the generator 0.0004 

nb 
the size of the batch used to feed the model at 

each step 
53 

nh the number of neurons per cell in the generator 200 

l 
number of fully connected layers in the 

discriminator 
3 

nDI 
the number of neurons per layer in the 

discriminator 
100 

nz 
the number of dimensions in the noise input for 

the generator 
100 
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Appendix I. Summary of tuned hyper-parameters of ET, RF and GPR models 

trained using R1 and M datasets 

Table I.1 summarizes values of the six tuned hyper-parameters of ET and RF based on the models 

trained using R1 and M datasets.  Table I.2 summarizes values of hyper-parameters of GPR 

evaluated based on the R1 and M datasets.  Assume xi = {xi,1, xi,2, …, xi,8} and xj = {xj,1, xj,2, …, 

xj,8} (i, j = 1, 2, …, Nr) denote two sets of input variables.  The expressions of the exponential 

kernel, kE(xi, xj), and linear prior mean function, i, adopted in this study are given by, 

𝑘𝐸(𝐱𝑖, 𝐱𝑗) = 𝜂𝑝
2 exp (−√∑

(𝑥𝑖,𝑞−𝑥𝑗,𝑞)
2

𝑙𝑞
2

8
𝑞=1 ) (I.1) 

𝜇𝑖 = 𝑏0 + ∑ 𝑏𝑞
8
𝑞=1 𝑥𝑖,𝑞 (I.2) 

where p
 denotes the standard deviation of the Gaussian random variable; lq (q = 1, 2, …, 8) denotes 

the length scale corresponding to the qth input variable, and b0, and bq are parameters of the (prior) 

mean function.  The noises associated with the burst capacities observed in the test are assumed to 

be independent identically Gaussian distributed with a zero mean and a standard deviation (n) 

that is also a hyper-parameter of GPR.   

Table I.1 Values of tuned hyper-parameters of the RF and ET models 

Hyper-parameter Descriptions 
Trained using R1 Trained using M 

RF ET RF ET 

n_estimators the number of trees in the forest 37 32 116 63 

max_features 
the maximum number of features 

considered for splitting a node 
8 8 8 8 

max_depth the maximum level in each tree 81 84 55 97 

min_samples_split 
the minimum number of data points 

placed in a node before splitting 
3 2 3 3 

min_samples_leaf 
the minimum number of data points 

allowed in a leaf node 
1 1 2 1 

Bootstrap 
method for sampling data points 

using bagging 
True False True False 
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Table I.2 Values of tuned hyper-parameters of the GPR models 

Description Symbol Trained using R1 Trained using M 
Input 

variable 

Std. dev. of Ptest p 3.89 3.76 - 

Std. dev. of noise  n 0.59 0.18 - 

Length scales in the 

exponential kernel 

in Eq. (I.1) 

l1 1.1E+06 6.1E+05 D 

l2 2.2E+06 1.3E+01 wt 

l3 9.5E+01 4.2E+01 H0 

l4 2.0E+00 1.9E+00 dg 

l5 2.9E+02 6.8E+02 lg 

l6 1.1E+11 3.4E+02 σy 

l7 6.3E+00 4.2E+01 Cv23 

l8 6.0E-04 1.2E+01 ζ 

Coefficients in the 

linear mean 

function in Eq. (I.2) 

b0 0.79 12.50 - 

b1 0.00 -0.01 D 

b2 1.37 0.66 wt 

b3 -0.17 -0.08 H0 

b4 -1.92 -1.77 dg 

b5 0.00 0.00 lg 

b6 0.01 0.00 σy 

b7 0.04 0.03 Cv23 

b8 0.79 -0.76 ζ 
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