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Abstract 

Sustainable building design requires a clear understanding and realistic modelling of the 

complex interaction between climate and built environment to create safe and comfortable 

outdoor and indoor spaces. This necessitates unprecedented urban climate modelling at high 

temporal and spatial resolution. The interaction between complex urban geometries and the 

microclimate is characterized by complex transport mechanisms. The challenge to generate 

geometric and physics boundary conditions in an automated manner is hindering the progress 

of computational methods in urban design. Thus, the challenge of modelling realistic and 

pragmatic numerical urban micro-climate for wind engineering, environmental, and building 

energy simulation applications should address the complexity of the geometry and the 

variability of surface types involved in urban exposures. The original contribution to 

knowledge in this research is the proposed end-to-end workflow that employs a cutting-edge 

deep learning model for image segmentation to generate building footprint polygons 

autonomously and combining those polygons with LiDAR data to generate level of detail three 

(LOD3) 3D building models to tackle the geometry modelling issue in climate modelling and 

solar power potential assessment. Urban and topography geometric modelling is a challenging 

task when undertaking climate model assessment. This thesis describes a deep learning 

technique that is based on U-Net architecture to automate 3D building model generation by 

combining satellite imagery with LiDAR data. The deep learning model registered an overall 

accuracy of 98%. The extracted building polygons were extruded using height information 

from corresponding LiDAR data. The building roof structures were also modelled from the 

same point cloud data. The method used has the potential to automate the task of generating 

urban scale 3D building models and can be used for city-wide applications. The advantage of 
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applying a deep learning model in an image processing task is that it can be applied to a new 

set of input image data to extract building footprint polygons for autonomous application once 

it has been trained. In addition, the model can be improved over time with minimum 

adjustments when an improved quality dataset is available, and the trained parameters can be 

improved further building on previously learned features. Application examples for pedestrian 

level wind in urban geometry and solar energy availability assessment as well as modelling 

wind flow over complex terrain are presented.  

 

 

Keywords: Autonomous, Deep learning, LiDAR, Building footprint, Urban geometry, 

Complex terrain, satellite image, pedestrian level wind, solar energy, speed-up 
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Summary for Lay Audience 

The three-dimensional (3D) geometry modelling process of cities and landscape is one of the 

major challenges in micro-climate studies. This research developed an autonomous workflow 

that can create 3D models using data collected satellite and laser devices. The workflow applied 

artificial intelligence principles and has shown a potential to shorten redundant tasks. The 

resulting models were used for solar power potential assessment in residential buildings, 

pedestrian level comfort assessment in urban area and for complex terrain analysis. 

Autonomous 3D building modelling is a technology that uses computers and advanced 

algorithms to create digital 3D models of buildings automatically, without human intervention. 

This thesis used a deep learning model in the workflow to achieve autonomous 3D modelling. 

Traditionally, architects and engineers would create these 3D models manually, which can be 

time-consuming and expensive. With autonomous 3D building modelling, computers can use 

data from a variety of sources, such as satellite imagery, LiDAR (laser-based) scans, and 

photographs, to automatically generate highly detailed 3D models of buildings.  

To estimate the solar power potential of a residential building, several factors are considered. 

One of the most important factors is the location of the building. Different regions receive 

different amounts of sunlight, which affects the amount of energy that can be generated from 

solar panels. Other factors that are considered include the orientation and tilt of the roof, the 

shading from trees or other buildings, and the size of the roof area that can be used for solar 

panels. All of these factors are taken into account to determine the optimal placement and 

number of solar panels that can be installed on the building.  

Pedestrian level wind comfort assessment using Computational Fluid Dynamics (CFD) is a 

technique that is used to determine how comfortable or uncomfortable it is for people to walk 
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or stand in a particular outdoor space, based on the flow of air around them. CFD is a computer 

simulation technique that uses complex mathematical equations to model and analyze the flow 

of fluids.  
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Chapter 1 

Introduction 

1.1 Background and Motivation 

With approximately 70% of the world’s population expected to live in urban areas by 2050, 

and cities being one of the largest energy consumer groups and emitters of greenhouse gases, 

urban areas offer a large potential for energy efficiency improvement (Sola et al., 2020). 

Embracing sustainability and maintaining the resiliency of Canada’s built environment against 

natural hazards is necessary to sustain the wellbeing and prosperity of our communities. 

Sustainable building design in Canada, the second-largest country in the world with diverse 

geography characterized by climate extremes, mostly revolves around energy efficiency and 

resiliency (i.e. ability to withstand the climate loads and re-bounce quickly from extreme 

climate interruptions). Recent changes in ecosystems have had a negative impact on the 

liveability of outdoor built environments. The collective effects of these changes in urban 

outdoor spaces challenge effective urban planning which aims to create successful and usable 

outdoor spaces and affect efficacy of indoor spaces. Among the determinants of outdoor 

environment quality, a high priority is given to wind and thermal environment (Shooshtarian 

et al., 2020). 

For example, buildings in Canada consume 30% of the total energy and 50% of the electricity 

on an annual basis. Through optimal resilient and sustainable design, however, there is an 

opportunity to reduce a building’s energy consumption as high as 80%. Sustainable design 

entails consideration and integration of climate responsiveness and resilient design/retrofit of 

building(s). Therefore, a clear understanding and realistic modelling of the complex interaction 
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between the climate and the built environment is a prerequisite. This necessitates 

unprecedented urban microclimate modelling at high temporal and spatial resolution. Transient 

climate parameters are required at a particular building location, ventilation inlet, window/door 

opening, or a street level over a long duration. Outdoor thermal comfort could significantly 

affect the usage and success of urban places. Accordingly, it is recommended to be considered 

in both urban design and planning projects. Urbanisation has been recognised as a major factor 

in elevated daily temperature values in cities (Shooshtarian et al., 2020). 

One of the major challenges in realistic and pragmatic numerical urban micro-climate 

modelling for wind engineering, environmental, and building energy simulation applications is 

the complexity of the geometry (topology) and the variability of surface types involved in urban 

exposures. Each building form and surface classification is individually and manually entered 

into a Computer Aided Design (CAD) model through on-site-observations and publicly 

available information, which are often very time consuming and less precise. If the study site 

is in complex terrain, the modelling of the terrain also present additional challenge. Accurate 

site and building-specific information are required to assess climate stressors such as wind, for 

example, during structural or environmental design.  

The main motivation of this study is, therefore, developing a computational workflow with an 

automated, site-specific 3D urban topology and accurate terrain orography for micro-climate 

modelling. The microclimate modelling includes various climate parameters such wind, 

temperature, solar, humidity etc. Here we will focus on wind flow modelling and solar 

resources. Workflows were developed to model wind flows in urban topology (e.g. pedestrian 

level wind assessment) and complex terrains, the use of the automated urban building footprint 
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polygons generation for solar energy resource assessment in residential neighborhoods will 

also investigated.   

One of the deciding parameters for city design is a pedestrian assessment of discomfort due to 

accelerated wind or lack of wind caused by local climate interaction with features like terrain, 

buildings, and vegetation (Chen and Mak, 2021). Surface roughness is a critical parameter for 

determining these aerodynamic impacts on people and buildings (Fan et al., 2022). 

Conveniently, remote sensing technology allows an effective way to estimate the surface 

roughness for a large area (Mosadegh and Nolin, 2022). Two types of remote sensing data can 

be used. The satellite images and Light Detection and Ranging (LiDAR) data. LiDAR remote 

sensing method provides direct measurements of the horizontal coordinates and vertical 

elevations of the objects on the surface of the Earth (Bui et al., 2022). It measures distances 

(ranges) based on the time between transmitting and receiving laser signals (Rutzinger, 2009). 

A LiDAR dataset includes measurements for all earth surface features scanned by a laser 

sensor. 

A typical airborne LiDAR system is composed of a laser scanner; a ranging unit; control, 

monitoring, and recording units; a differential global positioning system (DGPS); and an 

inertial measurement unit (IMU) (Roriz et al., 2021). An integrated DGPS/IMU system is also 

called a position and orientation system that generates accurate position (longitude, latitude, 

and altitude) and orientation (roll, pitch, and heading) information. The collected LiDAR data 

is originally in LASer (LAS) format which is an industry-standard binary format for storing 

airborne LiDAR data. LiDAR has the following unique advantages that make it suitable for 

generating urban topology or complex terrain: LiDAR provides an efficient and reliable way 

to survey large-scale urban scenes (Li et al., 2019), its measurements are not influenced by sun 
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shadow and relief displacement (Lee et al., 2006), and it provides georeferenced data that can 

be applied directly for most applications. LiDAR has also the following limitations: A basic 

characteristic of aerial LiDAR data is that information on roof structures of buildings is present 

in the data, but wall information is incomplete or missing, and Airborne LiDAR usually 

exhibits noise as well as non-uniform point densities (Espineira et al., 2021). 

 

Figure 1. 1 LiDAR data visualizations 

LiDAR data is a collection of points in three-dimensional space. The red points in Figure 1.1 

show higher elevation points, mostly buildings while the yellowish-coloured points show 

medium-height buildings and trees, and the green-coloured points indicate ground points.  

The LiDAR’s laser pulses can be measured by radar(range) equation (Wu et al., 2021). 

𝑷𝒓 =
𝑷𝑬𝑮

𝟒𝝅𝑹𝟐

𝝈

𝟒𝝅𝑹𝟐

𝝅𝑫𝟐

𝟒
𝜼𝒔𝒚𝒔𝜼𝒂𝒕𝒎                                   Eq.1.1 

where 𝑃𝑟  is the received laser energy, 𝑃𝐸 is the transmitted laser energy, 𝐺 is the gain factor of 

the antenna, 𝑅 is the range between target and sensor, 𝜎 is the effective target cross-section, 𝐷 
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is the receiver aperture diameter, 𝜂𝑠𝑦𝑠 is the system transmission factor, and 𝜂𝑎𝑡𝑚 is the 

atmospheric transmission factor. 

Based on the American Society for Photogrammetry and Remote Sensing (ASPRS), LiDAR 

data is commonly used as a LASer (LAS) file format. So far, the previous paragraphs explained 

what LiDAR is and what it can be used for. The point cloud data is used with images to generate 

3D building models and complex terrain in this thesis. Then, used to define a Computational 

Fluid Dynamics (CFD) domain for Pedestrian Level Wind (PLW) assessment or wind flow 

over a complex terrain. The roof geometry was also used to assess solar energy resources 

assessments in residential neighborhoods.   

1.2 Research Gap 

Climate studies in general and aerodynamic studies in particular depend on the wind climate, 

upstream terrain, study building shape among parameters. These varies from one study and to 

another and from one wind direction to another. Assessment methods such as wind tunnel or 

CFD that utilize specific exposure and study building shape are suitable to capture the effect 

all these geometric (roughness or aerodynamics). However, producing detail geometrical 

building of a study site in specific manner are challenging and engineering time intensive. 

These coupled with the challenges associated with turbulence modelling makes computational 

approaches challenging (Dagnew and Bitsuamlak, 2014). Realistic 3D building models 

required for CFD studies are not always readily available (Wang et al., 2018). Manual CAD 

modelling approach may achieve the required level of accuracy but it is an engineering time-

consuming procedure (Dawes et al., 2001). The time-consuming process escalates when the 

study area is large. Even for a single-building model, the work may be tedious due to the 

complexity of building geometry. Importing and fixing CAD models to make them watertight 



6 
 

takes a longer time and guaranteeing surface integrity during mesh generation is difficult 

(Dawes et al., 2001). Also, the difficulty in generating an optimal grid around a complex 

geometry hinders the practical use of the CFD in engineering analysis and design (Nakahashi 

et al., 2003). In turbulent flows budgeting the grids is of paramount consideration (Tsinuel and 

Bitsuamlak, 2022). 

In methodologies that use satellite imagery, the most obvious shortcoming of this method is 

that the image only displays the top part of buildings and some critical side details including 

height information are usually missing (Sowmya and Trinder, 2000). Additionally, the 

resolution may not be satisfactory for specific purposes that require higher-resolution data. 

Unlike LiDAR, which directly collects an accurately georeferenced set of dense point clouds 

that can be immediately applied to basic operations, traditional photogrammetric methods do 

not offer this option (Chen et al., 2004).  

The airborne LiDAR methodology approach gives a more precise representation of building 

side structures compared to any other input data. However, if the height position from which 

the point cloud data obtained is limited, building details will be missing in parts where a higher 

resolution is required (Holmgren et al., 2003). LiDAR data may incur horizontal errors, where 

points may be recorded off their original location due to Global Positioning System (GPS) and 

navigation unit operation anomalies (Park and Guldmann, 2019). Airborne LiDAR data is also 

more prone to suffer from missing data due to the absorption or reflection of laser energy 

(Minato et al., 1998). The interaction between complex urban geometries and the microclimate 

is characterized by complex transport mechanisms. The difficulty to generate geometric and 

physics boundary conditions in an automated manner is hindering the progress of 

computational methods in urban design. LiDAR may contain: noise that will affect the final 
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output classification feature extraction phase (Gao et al., 2013) and usually operate at a 

monochromatic wavelength measuring the range and the strength of the reflected energy 

(intensity) from objects limiting the recording of a diversity of spectral reflectance (Morsy et 

al., 2017). In addition, using unclassified point clouds with building footprints to estimate 

building heights may yield erroneous results due to potential errors and anomalies in both 

datasets and their integration. Some of the points within footprints may often reflect irrelevant 

objects other than roofs, leading to biases in height estimation, and few studies have developed 

systematic methods to filter them out (Park and Guldmann, 2019). In consultation, there seem 

to be shortcomings in automated workflows for urban topology and complex terrain geometric 

modelling suitable for microclimate modelling.  The use of numerical micro-climate studies in 

practice is limited. Many of the urban flow and complex terrain flows are done on 

oversimplified geometries and by using over simplified numerical turbulence models. (Abdi 

Bitsuamlak, 2019, Bitsuamlak et al. 2004). 

1.3 Objectives 

The short-term main objective of this research is to develop automated site-specific 3D urban 

and complex terrain topology and micro-climate modelling for wind engineering and building 

science applications. 

1.3.1 Specific Objectives 

To achieve the main objective the following specific objectives are identified: 

• Automate two dimensional (2D) building footprint polygons generation process by 

utilizing deep learning methods 
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• Automate urban-scale 3D building model and complex terrain generation process based 

on data obtained from LiDAR data and digital images (airborne and satellite) 

• Novel methods for residential buildings solar power potential estimation 

• Novel high performance computing (HPC) based multi-scale urban climate model 

development to assess pedestrian wind level assessment 

•  Novel HPC based multi-scale wind flow model for complex terrain  

1.3.2 Significance of the Study 

Improved 3D building model generation method: This research provides an alternative low-

cost method to generate 3D building models. Traditionally, the most direct route to obtain 3D 

building models relies on manual land surveying. Manual delineation of a city-scale scene is a 

labour-intensive and time-consuming task, and it is thus expensive for large-scale modelling. 

Improved PLW comfort assessment process: The comfort and safety of pedestrians is 

increasingly being affected by wind due to the rise of super-tall buildings in cities, which in 

turn is the result of increasing population size. Thus, this research addresses the wind impact 

on pedestrians because of the interactions between buildings and the environment. The 3D 

building models will help to demonstrate how tall buildings can alter wind flow through 

automated CFD models. The 3D visualization meshed with the computational means will point 

out the relationship between wind, built environment and pedestrians while enabling 

stakeholders to make sustainable building designs in the process. 

Improved wind flow over complex terrain: This research enables modelling of wind flow over 

complex flows for cases that are not covered in building codes and standards. By accurately 

modelling the terrain geometry through the state-of-the-art LiDAR cloud data, complex flows 

such as funneling, 3D dimensional and steep slope effects are assessed. 
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LiDAR technology provides many advantages over satellite images that can justify its use even 

though it is more expensive. Here are a few reasons why: 

Higher resolution and accuracy: LiDAR produces highly accurate and detailed 3D point cloud 

data that can capture features as small as a few centimeters. In contrast, satellite images have 

limitations in terms of their spatial resolution, which can be affected by cloud cover and 

atmospheric conditions. Therefore, LiDAR can provide more precise information about the 

terrain, structures, and other objects. 

Ability to penetrate through vegetation and structures: LiDAR can penetrate through vegetation 

and structures to provide accurate data about the ground surface and underlying features. In 

contrast, satellite images may be obstructed by vegetation or buildings, making it difficult to 

see the underlying features. 

Flexibility in data acquisition: LiDAR can be mounted on various platforms such as aircraft, 

drones, and ground vehicles to collect data in different environments and terrain types. This 

flexibility in data acquisition allows for tailored data collection and the ability to collect data 

in areas that may be difficult to access with satellites. 

Wide range of applications: LiDAR data can be used for a wide range of applications, such as 

topographic mapping, floodplain modelling, forest inventory, urban planning, and 

infrastructure assessment. The high resolution and accuracy of LiDAR data can provide critical 

information for decision-making processes in these fields. 

In summary, while LiDAR technology may be more expensive than satellite images, its 

advantages in terms of resolution, accuracy, ability to penetrate through vegetation and 
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structures, flexibility in data acquisition, and range of applications can justify its use in certain 

scenarios where high-quality data is required. 

Additional contributions: This proposed research is beneficial for solar power potential 

assessment, air pollution dispersion studies, viewshed assessment, building 

inventory/population distribution development, and point cloud documentation for smart city 

applications. Furthermore, stakeholders can use this research to predict optimized building 

model shapes that can be obtained from the geometry generation algorithm for the construction 

of future buildings.  

1.4 Organization of thesis 

The major contribution to knowledge of this thesis is an autonomous workflow that employs a 

cutting-edge deep learning model for image segmentation to generate building footprint 

polygons autonomously and combining those polygons with LiDAR data to generate level of 

detail three (LOD3) 3D building models to tackle the geometry modelling issue in climate 

modelling and solar power potential assessment has been developed. Also a novel residential 

buildings solar power potential estimation method has been developed. In addition, accurate 

CFD models were generated by using high resolution LiDAR data and publicly available 

Shuttle Radar Topography Mission (SRTM) data in Geographic Tagged Image File Format 

(GEOTIFF) format for wind flow over complex terrain analysis. 

This thesis is prepared based on the “Integrated-Article” format. The thesis contains a 

compilation of papers under review or published in peer-reviewed journals. Each paper 

addresses one of the research objectives identified in the previous section. The research is 

pursued in three prominent themes. 
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1.4.1 A deep learning model-based building footprint polygon extraction for a GIS-based 

Solar power potential estimation 

Chapter 2: This part of the research explains how the deep learning model was utilized to 

extract building footprint polygons from satellite imagery. These building footprints were 

combined with LiDAR data to generate elevation models for solar power potential estimation. 

1.4.2 Autonomous urban topology generation for urban flow modelling 

Chapter 3: In this part of the research, the deep learning model is applied to generate urban 

building footprint polygons. Then, those footprints and corresponding LiDAR data were used 

to generate 3D models of buildings that defined the computational domain for computational 

fluid dynamics analysis of pedestrian level wind. 

1.4.3 Modelling wind flow over complex terrain generated by using LiDAR and SRTM  

Chapter 4: In this study accurate CFD models by using high resolution LiDAR data and 

publicly available SRTM data is developed. Impact of geometric modelling accuracy is 

discussed. Wind speed up values are estimated for complex terrain cases that are not covered 

in building codes and standards. 

Chapter 5: Here summary, conclusion and future studies are discussed.  

Guiding framework 

This research used LiDAR and satellite images as an input for achieving the objectives of the 

study (Fig. 1.2). Morphological filter was initially used on LiDAR data to extract features. 

Machine learning and deep learning techniques were also tested for building footprint feature 

extraction. The deep learning model was considered for further analysis due to its high 
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efficiency. The resulting building footprint polygons were used to generate digital elevation 

model by combining them with point cloud data for solar power potential assessment. LiDAR 

was also combined with 2D polygons to create 3D building models for PLW CFD analysis. 

Also, a comparison of a satellite image-based model and LiDAR based complex terrain analysis 

was carried out. 

 

Figure 1. 2 General guiding framework of the research
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Chapter 2 

A deep learning algorithm building footprint polygon extraction for a GIS-based Solar 

power potential estimation 

Abstract 

Solar power is a renewable energy alternative that can be used to convert energy consuming 

buildings into energy producers. Solar power potential estimation for residential buildings 

focusses on assessing the incoming solar energy at the rooftops. In this study, a Light Detection 

and Ranging (LiDAR) data and residential building footprint polygons are used to identify the 

exposed rooftops. Novel footprint polygons extraction technique using a deep learning model 

trained on residential building rooftops has been developed and used for estimating the solar 

power generation potential. Compared to other traditional morphological filtering and machine 

learning algorithms, the deep learning using U-Net architecture has produced more accurate 

building footprint polygons. The LiDAR is used to generate a Digital Surface Model (DSM), 

which contains height information of the buildings, ground surface and trees in the vicinity 

area. A series of Geographical Information Systems (GIS) methodologies were employed to 

calculate solar power potential for the buildings. Solar energy availability is carried out for all 

seasonal changes including both during winter months when the trees shade their leaves, and 

in summertime when there is a considerable tree shading. This new methodology has been 

applied and illustrated for selected residential buildings in the city of London, Ontario.  

Keywords: Deep Learning, Machine learning, LiDAR, U-Net, Satellite imagery, Autonomous, 

3D models, Building, DSM, Solar power, rooftops, renewable energy, GIS 
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2.1 Solar power potential  

Climate change and global warming are aggravated by the increasing world energy 

consumption from non renewable sources that produce significant CO2 emissions. As a result, 

renewable energy developments are becoming the alternatives (Ordóñez et al., 2010). Studies 

have shown that conventional energy resources are limited and there exhaustive exploitation is 

causing a progressive deterioration of the environment (Jefferson, 2006, Jahangiri et al., 2021). 

Urban and residential buildings consume a bulk of a city’s energy demand. Residential 

buildings represent around 25% of global energy consumption and 17% of global CO2 

emissions (Seddiki and Bennadji, 2019). Thus, renewable energy solutions for residential 

energy sector will have an impact on environmental pollution and global warming (Pablo-

Romero et al., 2017). One of the ways to limit high energy consumption by buildings is to 

transform buildings into energy producers by using building-integrated solar energy 

technologies (Li et al., 2015)(Corcelli et al., 2019)(Chen et al., 2022). Particularly, the 

traditional functionalities of the building enclosure (roofs, walls) that are typically limited into 

control, support and distribute functions can be expanded into energy generation (Mora et al., 

2011) by integrating for example solar thermal or photovoltaic (PV) systems to roofs of 

residential buildings. The first step in these sustainable efforts is to assess the availability of 

the solar energy at the building enclosure. 

There have been various studies on estimating rooftop solar photovoltaic power. (Singh and 

Banerjee, 2015) used PVSyst simulations to estimate photovoltaic-available roof area. 

(Jakubiec and Reinhart, 2012) used LiDAR measurements and Geographic Information System 

(GIS) data for estimation of urban rooftop photovoltaic potential. (Izquierdo et al., 2008)   

carried out estimation of the technical potential of roof-integrated photovoltaic systems. The 
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method was based on easily accessible data such as land use and population and building 

densities.  (Bergamasco and Asinari, 2011) calculated the roof area suitable for solar 

applications through analysis of available GIS data and solar radiation maps. (Ordóñez et al., 

2010) analyzed grid-connected solar photovoltaic capacity of residential rooftops using 

available data source showing gross roof surface area for each building type. (Wiginton et al., 

2010) used geographic information systems and image recognition to determine the available 

rooftop area for PV deployment for a large-scale region in Ontario. 

 Solar energy systems, mostly in the form of solar thermal and photovoltaic systems, are 

currently widely being adopted out of the various energy systems that can be installed in the 

building sector in order to cover energy requirements (Tsalikis and Martinopoulos, 

2015)(Huide et al., 2017)(Good et al., 2015). Most countries have started implementing the 

production of solar energy by means of building-integrated PV systems that are connected to 

the grid (Celik, 2006)(Bojić and Blagojević, 2006). (Castro et al., 2005) stressed that the roof 

area estimation is a fundamental input for the knowledge of the solar thermal potential in 

residential buildings. The solar power estimation involves various parameters like building 

type, orientation, roof tilt angle and shadow effect to name a few (Izquierdo et al., 2008). The 

quantification of the shadowing effects among buildings can be done with a digital 3D model 

of buildings for calculating suitable roof area (Robinson, 2006). Previous works on building 

integrated photovoltaic system installations assumed the available roof surface area as an input 

(Sørensen, 2001). 

Urban and residential areas have a massive potential for energy efficiency improvement since 

these areas are the largest energy consumer groups (Sola et al., 2020)(Dwijendra et al., 2022). 

The complex urban environment, with varying building block densities and even more so 
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building elevations, combined with limited available construction data about the existing 

building stock, are the main reasons for the difficulties emerging in the effort to assess solar 

potential (Karteris et al., 2013)(Jing et al., 2022). Geographic Information Systems (GIS) have 

proved to be a useful tool for regional renewable energy potential estimation and effective 

support for decision-making in energy planning at the urban scale (Groppi et al., 

2018)(Voinontas, 1998)(Wong et al., 2016). Precise site and building-specific information are 

necessary to evaluate climate loads during environmental design (Zhai, 2006). The traditional 

way of manually classifying and entering building forms in CAD model are often a time-

consuming process (Lach et al., 2006). Solar energy is critical for emerging and developing 

countries as well, as they may encounter the largest challenges in the energy transition ahead 

as their energy demand is growing fast and much of their energy production is still based on 

fossil fuels (Wegertseder et al., 2016). The use of solar energy in urban environments requires 

knowing the geographical distribution and characteristics of the best places to implement solar 

systems (Santos et al., 2014). Solar radiation from the sun is the primary energy source for the 

earth’s physical and biological processes. Solar radiation is affected by atmosphere, topography 

and surface features. This thesis aims to contribute to automated residential neighborhood 

topology generation for solar energy potential estimation. Exposed residential building 

footprint polygons are used to estimate solar power potential. A deep learning model is trained 

on a collected training set of residential buildings for summer and winter conditions. Coupling 

with solar geometry, it is then used to estimate the solar power potential. Thus, this contributes 

to sustainable building design methods.  
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Figure 2.1 Solar geometry parameters 

 

The total amount of radiation calculated for a specific area is given as global radiation (Maleki 

et al., 2017). The total solar radiation or global solar radiation is the sum of direct and diffuse 

solar radiation (Kodysh et al., 2013). The direct solar radiation from a sun is described with a 

centroid at zenith angle and azimuth angle as shown in Fig. 2.1 (Kodysh et al., 2013): 

𝐃𝐢𝐫𝐞𝐜𝐭 𝐫𝐚𝐝𝐢𝐚𝐭𝐢𝐨𝐧 =  ∑ 𝐃𝐢𝐫𝐞𝐜𝐭 𝐫𝐚𝐝𝐢𝐚𝐭𝐢𝐨𝐧Ɵ,𝜶                    Eq.2.1 

𝑫𝒊𝒓𝒆𝒄𝒕 𝒓𝒂𝒅Ɵ,𝜶 =  𝑺𝒄𝒐𝒏𝒔𝒕 ∗ 𝜷𝒎(Ɵ)  ∗ 𝑺𝒖𝒏𝑫𝒖𝒓Ɵ,𝜶 ∗ 𝑺𝒖𝒏𝑮𝒂𝒑Ɵ,𝜶  ∗ 𝐜𝐨𝐬 (𝑨𝒏𝒈𝑰𝒏Ɵ,𝜶)  Eq.2.2 
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where 𝑆𝑐𝑜𝑛𝑠𝑡 is the solar flux outside the atmosphere at the mean earth distance is known as the 

solar constant; β is the transmissivity of the atmosphere for the shortest path; m(Ɵ) is the 

relative optical path length, measured as a proportion relative to the zenith path length; 

𝑆𝑢𝑛𝐷𝑢𝑟Ɵ,𝛼 is the time duration represented by the sky sector; 𝑆𝑢𝑛𝐺𝑎𝑝Ɵ,𝛼  is the gap fraction 

for the sun map sector; 𝐴𝑛𝑔𝐼𝑛Ɵ,𝛼 is the angle of incidence between the centroid of the sky 

sector and the axis normal to the surface. Relative optical length, m(Ɵ), is determined by the 

solar zenith angle and elevation above sea level. For zenith angles less than 80˚, it can be 

calculated using the following equation:  

𝒎(Ɵ) = 𝑬𝒙𝒑(−𝟎. 𝟎𝟎𝟎𝟏𝟏𝟖 ∗ 𝑬𝒍𝒆𝒗 − 𝟏. 𝟔𝟑𝟖 ∗ 𝟏𝟎−𝟗  ∗ 𝑬𝒍𝒆𝒗𝟐  )/𝐜𝐨𝐬 (Ɵ)      Eq.2.3 

where Ɵ the solar zenith angle and Elev is the elevation above sea level in meters. The effect 

of surface orientation is taken into account by multiplying by the cosine of the angle of 

incidence. The angle of incidence between the intercepting surface and a given sky sector with 

a centroid at the zenith angle and azimuth angle is calculated using the following equation: 

𝑨𝒏𝒈𝑰𝒏Ɵ,𝜶 = 𝐚𝐜𝐨𝐬 (𝐜𝐨𝐬(Ɵ) ∗ 𝐜𝐨𝐬(𝑮𝒛) + 𝐬𝐢𝐧(Ɵ) ∗ 𝐬𝐢𝐧(𝑮𝒛) ∗ 𝐜𝐨𝐬(𝜶 − 𝑮𝒂)) Eq.2.4 

where 𝐺𝑧 is the surface zenith angle and 𝐺𝑎 is the surface azimuth angle. For each sky sector, 

the diffuse radiation at its centroid is calculated, integrated over the time interval, and corrected 

by the gap fraction and angle of incidence using the following equation (Kodysh et al., 2013): 

𝑫𝒊𝒇Ɵ,𝜶  = 𝑹𝒈𝒍𝒃 ∗ 𝑷𝒅𝒊𝒇 ∗ 𝑫𝒖𝒓 ∗ 𝑺𝒌𝒚𝑮𝒂𝒑Ɵ,𝜶 ∗ 𝑾𝒆𝒊𝒈𝒉𝒕Ɵ,𝜶 ∗ 𝐜𝐨𝐬 (𝑨𝒏𝒈𝑰𝒏Ɵ,𝜶)   Eq.2.5 

where 𝑅𝑔𝑙𝑏 is the global normal radiation; 𝑃𝑑𝑖𝑓 is the proportion of global normal radiation flux 

that is diffused; 𝐷𝑢𝑟 is the time interval for analysis; 𝑆𝑘𝑦𝐺𝑎𝑝Ɵ,𝛼 is the gap fraction for the sky 

sector; 𝑊𝑒𝑖𝑔ℎ𝑡Ɵ,𝛼 is the proportion of diffuse radiation originating in a given sky sector relative 

to all sectors; 𝐴𝑛𝑔𝐼𝑛Ɵ,𝛼 is the angle of incidence between the centroid of the sky sector and the 
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intercepting surface. The global normal radiation can be calculated by summing the direct 

radiation from every sector without correction for the angle of incidence, then correcting for 

the proportion of direct radiation: 

𝐑𝐠𝐥𝐛 =
(𝐒𝐜𝐨𝐧𝐬𝐭 ∑(𝛃𝐦(Ɵ)))

(𝟏−𝐏𝐝𝐢𝐟)
                      Eq.2.6                                            

The uniform sky diffuse model is calculated as: 

𝐖𝐞𝐢𝐠𝐡𝐭Ɵ,𝜶 =
(𝐜𝐨𝐬Ɵ𝟐−𝐜𝐨𝐬Ɵ𝟏)

𝐃𝐢𝐯𝐚𝐳𝐢
                  Eq.2.7                                            

where Ɵ1 and Ɵ2  are the bounding zenith angles of the sky sector; 𝐷𝑖𝑣𝑎𝑧𝑖 is the number of 

azimuthal divisions in the sky map. The standard overcast sky model is calculated as: 

𝐖𝐞𝐢𝐠𝐡𝐭Ɵ,𝜶 =
(𝟐𝐜𝐨𝐬Ɵ𝟐+𝐜𝐨𝐬𝟐Ɵ𝟐−𝟐𝐜𝐨𝐬Ɵ𝟏−𝐜𝐨𝐬𝟐Ɵ𝟏)

𝟒∗𝐃𝐢𝐯𝐚𝐳𝐢
       Eq.2.8                                        

The total diffuse solar radiation for the location is calculated as the sum of the diffuse solar 

radiation from all the sky map sectors: 

𝐃𝐢𝐟𝐭𝐨𝐭 = ∑ 𝐃𝐢𝐟Ɵ,𝜶                  Eq.2.9                                                                      

The second data required for solar power estimation is LiDAR data. The area of interest is 

represented by point cloud data. The point cloud is converted to Digital Surface Model (DSM) 

so that it will be useful for solar energy estimation. 

2.2. Automated building footprint polygon generation 

Building footprint polygons are one of the input parameters to estimate solar power potential 

and simulate other micro-climate parameters in suburban and urban areas. For micro-climate 

studies the multifaceted relationship between the environment and the built structures needs to 

be accurately modelled, this will require accurate urban geometric modelling. The accessibility 

of free geospatial data like those obtained from satellites and 3D point cloud LiDAR are 

offering prospects to produce urban-scale city models in three-dimensional format at a low rate 
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(Park and Guldmann, 2019) as modern deep learning methods have increasingly extended into 

photogrammetry, remote sensing, and machine learning (Park and Guldmann, 2019). Building 

footprint polygons can be extracted from an image representing a building as seen from the top 

(Vallet et al., 2011)(Gavankar and Ghosh, 2018)(Shackelford et al., 2004) which is the focus 

of this thesis. Different types of data and methods were explored by different researchers in an 

attempt to obtain building footprint polygons (Rutzinger et al., 2009)(Tomljenovic et al., 

2015)(Milosavljević, 2020). In a specific study, a region growing method was tested to classify 

raw LiDAR data into coarse regions, a Triangulated Irregular Network (TIN) based roof 

primitive detection model was used to create the roof structure, and a contour vertex refinement 

algorithm was applied to regularize the edges of the roof (Li et al., 2019). A filtering algorithm 

in (Lach et al., 2006) was used to filter ground points from raw airborne point cloud 

measurements and generated an estimated digital terrain model (DTM). The algorithm utilized 

planar surface features and connectivity with locally lowest points to improve the extraction of 

ground points. A slope parameter used in the algorithm was updated after an initial estimation 

of the DTM, and thus local terrain information could be included. The algorithm extracted 

ground points from areas where different degrees of slope variation were interspersed. 

Specifically, along roads and streets, ground points were extracted from urban areas, from hilly 

areas such as forests, and from flat area such as riverbanks. However, most building polygon 

extraction models based on LiDAR failed to produce accurate roof shape representation and 

proved time consuming when applied to large scale projects due to their large file size and high 

computational demand. In addition, LiDAR data can be noisy, with points not always 

accurately reflecting the shape of the building. This can lead to errors in the extracted polygons, 

particularly when it comes to more complex roof shapes. LiDAR data are usually large file 

sizes, which can be time-consuming to process and analyze. This can be especially problematic 
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when dealing with large-scale projects that require the processing of vast amounts of data. The 

high computational demand of LiDAR-based building polygon extraction models can also 

contribute to their time-consuming nature. These models require significant computing 

resources to process and analyze the data, which can slow down the process, particularly when 

working with large data sets. 

Digital images and remote sensing image models that are applied to generate urban-scale 3D 

modelling are restricted by the time-consuming conventional processes (He et al., 2022). The 

manual conventional processes are arduous tasks that require attributing 3D and spatial data 

manually (Goldberg et al., 2018)(Das and Chand, 2021)(Li et al., 2021). The first initiative to 

bring autonomous workflow was presented by (Lach et al., 2006) to reduce the dependency on 

manual effort. Satellite imagery’s resolution is critical for specific purposes that require higher-

resolution data (Richner, 2011). Unlike high-resolution imagery which provides dense pixels, 

traditional photogrammetric methods do not offer this option (Chen et al., 2004).  

Methods that employ point cloud data may suffer due to the elevation from which the point 

cloud data is recorded (Estornell et al., 2011). In such cases, some data may be missing in areas 

where a higher resolution is required (Holmgren et al., 2003). LiDAR data may also incur 

horizontal errors, where points may be recorded off their original location due to GPS and 

navigation unit operation anomalies (Park and Guldmann, 2019)(Liu, 2008)(Meng et al., 2010). 

Airborne LiDAR data is also more prone to suffer from missing data due to the absorption or 

reflection of laser energy (Minato et al., 1998)(Hodgson and Bresnahan, 2013)(Csanyi and 

Toth, 2007). LiDAR may contain noise that will affect the final output classification feature 

extraction phase (Gao et al., 2013)(Fang and Huang, 2004) and usually operate at a 

monochromatic wavelength measuring the range and the strength of the reflected energy 
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(intensity) from objects limiting recording of a diversity of spectral reflectance (Morsy et al., 

2017). After considering various methodologies, this thesis selected few techniques, and a test 

was carried out to choose the best method for building polygon extraction. 

2.3 Methodology 

The overall workflow in this chapter is summarized in Fig 2.2. First, a deep learning model 

was trained using images representing residential buildings. Then the trained model was used 

to predict residential building footprint polygons. Finally, the solar power potential for a 

selected neighborhood area was estimated using the extracted polygons as an input parameter. 

This thesis explored various ways to develop an autonomous site-specific building footprint 

polygon extraction. For this purpose, various machine learning techniques were tested to 

extract building footprint polygons.  

 

 

 

 

 

 



26 
 

 

(a) 

 

(b) 

Figure 2. 2 (a) General workflow (b) Building footprint polygon extraction methods 

evaluation 



27 
 

This section tested several algorithms before selecting the optimum method for building 

footprint polygon extraction (Fig. 2.2). Satellite images and LiDAR data were used to test 

morphological filtering and machine learning techniques. After evaluating the classification 

results, the best method for building footprint polygon extraction was selected. Finally, an 

accuracy assessment for the selected method is analysed and discussed. 

The satellite images used are obtained from Google Earth. Google Earth combines satellite 

imagery, aerial photography, and other geographic data to provide a detailed, three-

dimensional view of the Earth's surface. The satellite images used by Google Earth are captured 

by various satellites, including those operated by NASA, the European Space Agency (ESA), 

and other organizations. Google Earth primarily uses multiple satellite image data with varying 

resolutions merged together that are captured by various satellites in orbit around the Earth. 

These satellites capture high-resolution imagery using sensors that detect electromagnetic 

radiation in various wavelengths, such as visible light, infrared, and microwave. The LiDAR 

data is computationally demanding to process and analyze. Therefore, image data was used for 

the initial phase of building footprint polygon extraction process. Then those polygons were 

used to filter building points from the LiDAR data for the 3D modelling phase. 

LiDAR stands for Light Detection and Ranging, and it is a remote sensing technology that uses 

laser light to measure distances and create three-dimensional representations of the Earth's 

surface. The basic concept of LiDAR involves emitting a laser beam from a sensor towards the 

ground or other objects, such as buildings or vegetation. The laser beam reflects off the object 

and returns to the sensor, where it is detected and measured. By measuring the time it takes for 

the laser beam to travel to the object and back, the distance between the sensor and the object 

can be calculated. LiDAR sensors emit thousands of laser pulses per second, creating a dense 
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point cloud of 3D data that represents the surface of the Earth or other objects. The point cloud 

consists of x,y,z coordinates that represent the location of each point in three-dimensional space, 

along with intensity values that reflect the amount of laser light reflected by each point. The x 

and y coordinates of each point in the LiDAR point cloud are determined by the position of the 

LiDAR sensor and the direction and angle of the laser beam when it was emitted. The z 

coordinate of each point is determined by the time it takes for the laser beam to travel to the 

object and back, and the speed of light. 

2.3.1 Morphological filter 

In the case of LiDAR, since point clouds cover various surfaces (e.g. top of buildings, trees, 

vehicles, infrastructure, and terrain), the first step is to classify these points into distinct groups 

(Park and Guldmann, 2019).  

The point cloud data used for the morphological filter in this thesis was obtained from Land 

Information Ontario (LIO) office. This LiDAR data is used throughout the thesis. The Ontario 

Point Cloud (Lidar-Derived) consists of points containing elevation and intensity information 

derived from returns collected by an airborne topographic lidar sensor. The point cloud is 

structured into non-overlapping 1 km by 1 km tiles in LAZ format. The following classification 

codes are applied to the data: unclassified, ground, water, high noise and low noise. This dataset 

is a compilation of lidar data from multiple acquisition projects, so specifications, parameters, 

accuracy and sensors may vary by project. This data is for geospatial tech specialists, and is 

used by government, municipalities, conservation authorities and the private sector for land use 

planning and environmental analysis. The LiDAR data of the London downtown area was 

extracted from the larger LiDAR data covering Ontario province. 
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The first methodology pursued, based on an extensive literature review, was the morphological 

filter method. A progressive morphological filter can be used to separate the ground and non-

ground points from LiDAR data. The method uses a structuring element (which is a small pixel 

template), that is applied to a set of pixels to help produce a new image from an old one on 

rasterized LiDAR data. Using the structuring element, erosion and dilation operations are 

applied to separate parts of an image or to join them. The usage of these erosion and dilation 

operations will result in the opening which is erosion followed by dilation to break narrow 

bridges or eliminate thin structures, and closing which is dilation followed by erosion to fuse 

narrow breaks and eliminate small holes. 

Dilation is defined as 

                                       dp = 𝒎𝒂𝒙
(𝒙𝒑,𝒚𝒑)∈𝒘

(𝒛𝑷)                              Eq.2.10 

 

where points p is a LiDAR point in consideration, (xp,yp,zp) represent p’s neighbouring points 

within a window, w. The dilation output is the maximum elevation value in the neighbourhood 

of p. Erosion is a counterpart of dilation and is defined as 

                                

    ep = 𝒎𝒊𝒏
(𝒙𝒑,𝒚𝒑)∈𝒘

(𝒛𝑷)                               Eq.2.11 

 

Erosion operation with a smaller window size removes tree objects of sizes smaller than the 

window size, while dilation restores the shapes of large building objects. 
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The first step is to load the (x,y,z) LiDAR measurements. Then, a surface grid is constructed, 

and point coordinates are stored in each grid cell. If a cell contains no measurements, it is 

assigned the value of the nearest point measurements (Zhang et al., 2003). 

In Fig. 2.3 (Zhang et al., 2003), the variable dhp,1 represents the height difference between an 

original LiDAR measurement and a filtered surface in an initial iteration at any given point p 

and dhT,1 represents the elevation difference threshold. Point p is classified as a ground 

measurement if dhp,1 ≤ dhT,1 and as a nonground measurement if dhp,1 ≥ dhT,1. 

The threshold value of dhT,1 is typically determined empirically through trial and error. In 

other words, different values of dhT,1 are tested and evaluated to find the value that produces 

the most accurate classification of ground and non-ground points. One common approach is to 

first set a relatively large value for dhT,1 to capture all ground points, then iteratively decrease 

its value until the classification accuracy is optimized. Other factors that can influence the 

choice of dhT,1 include the terrain slope and vegetation cover, as well as the density and quality 

of the LiDAR data. In some cases, a multi-scale approach may be used where different values 

of dhT,1 are applied at different resolutions to account for variations in terrain complexity. 

In general, the elevation difference threshold dhT,k is set to be the minimum height value of 

the building objects in an analyzed area at iteration k. Taking dhT,k as the threshold, for any 

given point p at kth opening operation, p is marked as a ground measurement if dhp,k ≤  dhT,k, 

and as a nonground measurement otherwise. In this way, the measurements for buildings with 

various sizes can be identified by gradually increasing the window sizes and applying an 

opening operation repeatedly until a window size is greater than the size of the largest building. 

Since there is also an abrupt elevation change from trees to the adjacent ground, the above 
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building filtering procedure can be applied to the removal of tree measurements as well. This 

way, the point measurements can be classified as ground and non-ground measurements.   

 

 

 

2.3.2 Morphological filter results 

The morphological filter concept was tested for building footprint polygons extraction. 

Initially, the input LiDAR data was converted into grid form after rasterization. Then the 

morphological principles were applied to extract building polygons (Fig. 2.4). 

 

Figure 2. 3 Process of the progressive morphological filter to identify building 

measurements 
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Figure 2. 4 Morphological filter results for extracting building footprints  

 

 

Import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

img = cv2.imread('png.png', cv2.IMREAD_GRAYSCALE) 

_, mask = cv2.threshold(img, 100, 200, cv2.THRESH_BINARY_INV) 

 

The binary masks were applied using the code above. The code applies a binary threshold to 

the input image 'img' using a lower threshold value of 100 and an upper threshold value of 200. 

It then creates a binary mask using the thresholded image, where the foreground pixels are set 
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to 0 and the background pixels are set to 1. The mask is inverted, so the foreground pixels are 

represented by 1 and the background pixels by 0, due to the use of the 

'cv2.THRESH_BINARY_INV' flag. 

This algorithm attempted to identify building shapes from a LiDAR-derived grayscale image 

based on a morphological filter. Once the building shapes are identified, the polygons are 

merged with the collected LiDAR data to classify building points in the point cloud data. Before 

that, the image must be georeferenced to match the projection coordinate system of the LiDAR 

data. The projection of the LiDAR data is Transverse Mercator. And 

North_American_1983_CSRS_UTM_Zone_17N projected coordinate system and NAD 1983 

(CSRS) geographic coordinate system were used for the data. 

The algorithm was able to identify high-rise building points (Fig. 2.5). However, the algorithm 

needs to be improved further to efficiently identify lower and medium-height buildings. The 

same method was applied to satellite images, but the output suffered due to shadow effects 

giving errors in classification (Fig. 2.6). 
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Figure 2. 5 3D view of the morphological filter result 

Figure 2. 6 Morphological filter applied to satellite imagery 
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The morphological filter showed limitations in identifying lower and medium height 

buildings. The method wrongly classified trees and other objects as buildings. The method 

didn’t improve for various iterations. Therefore, other methods like machine learning 

techniques and deep learning were explored to address these issues. 

 

2.3.3 Machine learning approach 

Artificial Intelligence (AI) refers to the development of computer systems that can perform 

tasks that typically require human intelligence, such as visual perception, speech recognition, 

decision-making, and language translation. AI is based on the idea that machines can learn 

from data, identify patterns, and make decisions with minimal human intervention. AI 

encompasses a wide range of techniques and approaches, including machine learning, deep 

learning, neural networks, natural language processing, and computer vision. These techniques 

enable machines to learn from data and improve their performance over time, without being 

explicitly programmed for each specific task. 

Machine learning (ML) is a subset of artificial intelligence that involves the development of 

algorithms and models that can learn from data and make predictions or decisions without being 

explicitly programmed. It enables machines to automatically improve their performance on a 

given task as they are exposed to more data. The process of machine learning typically involves 

the following steps: 

Data collection: Gathering and preparing a dataset that will be used to train the machine 

learning model. 

Data preprocessing: Cleaning and transforming the data to ensure that it is ready for use by the 

machine learning algorithms. 
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Feature engineering: Selecting and extracting the relevant features or variables from the data 

that will be used to train the model. 

Model training: Feeding the preprocessed data into the machine learning algorithm to train a 

model that can make predictions or decisions. 

Model evaluation: Testing the trained model on a separate dataset to measure its performance 

and identify areas for improvement. 

Model deployment: Integrating the trained model into a real-world system or application to 

automate a task or process. 

There are different types of machine learning, including supervised learning, unsupervised 

learning, and reinforcement learning. Supervised learning involves training a model on labeled 

data, where the desired output is already known. Unsupervised learning involves training a 

model on unlabeled data, where the desired output is unknown. Reinforcement learning 

involves training a model to make decisions in an environment based on feedback in the form 

of rewards or punishments. 

In line with the objective of this thesis, several machine learning algorithms were tested and 

compared for image classification purposes. After testing the morphological filter technique on 

the LiDAR dataset, the imagery data approach was tested to extract building footprint 

polygons. After analyzing the current trends in computer vision, the support vector machine, 

random trees and maximum likelihood were selected for testing. The machine learning tools 

were tested on imagery representing downtown area of London, Ontario (Fig. 2.7). The image 

in the figure is a satellite data used for a testing area for the image segmentation task. The 

satellite image is obtained from Google Earth and is captured by various satellites, including 



37 
 

those operated by NASA, the European Space Agency (ESA), and other organizations. The use 

of Google Earth images is subject to the terms of service of Google, which state the images can 

be used for personal, non-commercial and research purposes. However, for commercial 

purposes, permission from Google or the owner of the imagery needs to be obtained. The 

training images were collected in the year 2022 over a course of a week. 

Training data was prepared for each method based on a supervised classification approach to 

determine which classes exist in the image and assign each pixel or object to one of these 

classes.  
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Figure 2. 7 The testing area in downtown London, Ontario 
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I. Support Vector Machine classifier 

Support Vector Machines (SVM) can be used as a machine learning algorithm to separate an 

image into multiple regions or segments based on the visual characteristics of the image. To 

use SVM for image segmentation, the first step is to extract features from the image, such as 

texture, color, shape, and other relevant information. These features are then used to train an 

SVM model to recognize and classify different segments of the image. During the training 

process, the SVM algorithm tries to find the hyperplane that best separates the different 

segments of the image based on the extracted features. The hyperplane is designed to maximize 

the margin between the different segments, ensuring that the segments are well-separated and 

distinct from each other. 

Once the SVM model is trained, it can be used to segment new images by predicting the class 

or segment of each pixel based on its features. The SVM algorithm assigns each pixel to the 

segment that it is most likely to belong to based on the visual characteristics of the image. SVM 

has been used in various image segmentation applications, including medical image analysis, 

object recognition, and computer vision. SVM is particularly useful in cases where the image 

has complex or non-linear features that cannot be easily segmented using traditional image 

processing techniques. SVM can help to improve the accuracy and efficiency of image 

segmentation tasks, especially when used in conjunction with other machine learning 

algorithms and techniques. 

While Support Vector Machines (SVM) can be a powerful algorithm for image segmentation, 

there are some limitations to its use: 
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Computationally expensive: SVM is a computationally intensive algorithm, especially when 

dealing with large datasets or complex features. This can make it difficult to apply SVM to 

real-time image segmentation applications, where fast processing is required. 

High-dimensional feature space: In order to use SVM for image segmentation, it is often 

necessary to transform the original image data into a high-dimensional feature space. This can 

result in a large number of features, which can be difficult to handle and may require additional 

preprocessing or feature selection. 

Sensitivity to hyperparameters: SVM requires the selection of several hyperparameters, such 

as the kernel function, regularization parameter, and margin parameter. The performance of the 

SVM algorithm can be highly sensitive to the choice of these parameters, and selecting optimal 

hyperparameters can be a challenging task. 

Limited ability to handle noise and outliers: SVM works best when the data is well-separated 

and the different segments of the image are clearly defined. However, in cases where there is 

a lot of noise or outliers in the data, SVM may struggle to correctly classify these regions. 

Limited ability to handle multiple classes: SVM is typically used in binary classification 

problems, which may limit its ability to handle more complex segmentation tasks that involve 

multiple classes or labels. 

Overall, while SVM can be a useful algorithm for image segmentation, its limitations need to 

be carefully considered and addressed in order to ensure optimal performance. 
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II. Random Trees 

Random Trees (RT) is a machine learning algorithm that can be used for image segmentation. 

In this context, the algorithm works by classifying each pixel in an image into one of several 

predefined classes, based on the features extracted from the image. RT is an ensemble learning 

algorithm that combines the predictions of multiple decision trees, each of which is trained on 

a random subset of the training data. The algorithm works by recursively partitioning the 

feature space into smaller regions, using a set of if-then rules derived from the training data. 

In image segmentation, RT can be used to partition the feature space into regions that 

correspond to different segments of the image. For example, the algorithm might use color, 

texture, and shape features to distinguish between different regions of an image. During 

training, the algorithm builds a forest of decision trees, each of which is trained on a different 

subset of the training data. The decision trees are constructed by recursively partitioning the 

feature space into smaller regions, using a random subset of the features at each step. The 

algorithm chooses the best split at each node based on the information gain, which measures 

how much the split improves the classification accuracy. 

Once the forest of decision trees has been trained, it can be used to segment new images by 

predicting the class or segment of each pixel based on its features. The algorithm assigns each 

pixel to the segment that it is most likely to belong to based on the visual characteristics of the 

image. 

While Random Trees (RT) can be a powerful algorithm for image segmentation, there are some 

limitations to its use: 
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Sensitivity to hyperparameters: RT requires the selection of several hyperparameters, such as 

the number of trees, the maximum depth of each tree, and the number of features used at each 

split. The performance of the RT algorithm can be highly sensitive to the choice of these 

parameters, and selecting optimal hyperparameters can be a challenging task. 

Limited ability to handle complex features: RT works best when the features used to segment 

the image are relatively simple and easy to distinguish. In cases where the features are more 

complex or difficult to separate, RT may not be as accurate as other machine learning 

algorithms. 

Limited ability to handle class imbalance: In cases where one class of pixels is much more 

common than the others, RT may have difficulty accurately segmenting the less common 

classes. This can be mitigated through techniques such as class weighting or oversampling of 

the minority classes. 

Limited ability to handle long-range dependencies: RT is a local algorithm, meaning that it 

only considers a small region of the image at each decision node. This can make it difficult to 

accurately segment images where long-range dependencies between pixels are important. 

Limited ability to handle temporal data: RT is a static algorithm and does not take into account 

the temporal dynamics of an image sequence.  

Overall, while RT can be a useful algorithm for image segmentation, its limitations need to be 

carefully considered and addressed in order to ensure optimal performance. 

III. Maximumlikelihood 

 Maximum likelihood (ML) is a statistical algorithm that can be used for image segmentation. 

The ML algorithm works by finding the optimal set of parameters that maximize the likelihood 
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of observing the image given the underlying model of the data. In image segmentation, ML can 

be used to estimate the parameters of a statistical model that captures the properties of the 

image. For example, the algorithm might assume that each pixel in the image is generated from 

a Gaussian distribution with a mean and variance that depends on the segment it belongs to. 

During training, the algorithm estimates the parameters of the model by finding the maximum 

likelihood estimate that maximizes the probability of observing the training data. This involves 

calculating the likelihood of observing the training data given the model parameters and 

adjusting the parameters to maximize this likelihood. Once the model parameters have been 

estimated, the algorithm can be used to segment new images by assigning each pixel to the 

segment that is most likely to generate that pixel. The algorithm computes the likelihood of 

each segment generating the pixel and assigns the pixel to the segment with the highest 

likelihood. 

While Maximum Likelihood (ML) algorithm can be a powerful algorithm for image 

segmentation, there are some limitations to its use: 

Sensitivity to model assumptions: ML requires assumptions to be made about the underlying 

statistical model that generates the image data. If the assumptions made by the model are 

incorrect, or if the model does not capture all relevant features of the image, then the 

segmentation results may be inaccurate. 

Limited ability to handle complex features: ML works best when the features used to segment 

the image are relatively simple and easy to distinguish. In cases where the features are more 

complex or difficult to separate, ML may not be as accurate as other machine learning 

algorithms. 
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Limited ability to handle class imbalance: In cases where one class of pixels is much more 

common than the others, ML may have difficulty accurately segmenting the less common 

classes. This can be mitigated through techniques such as class weighting or oversampling of 

the minority classes. 

Limited ability to handle long-range dependencies: ML is a local algorithm, meaning that it 

only considers a small region of the image at each decision node. This can make it difficult to 

accurately segment images where long-range dependencies between pixels are important. 

Computationally expensive: ML can be computationally expensive, especially for high-

dimensional feature spaces or large datasets, which may limit its practical use in some 

applications. 

Limited ability to handle noise and outliers: ML assumes that the image data is generated from 

a known statistical model, which may not be the case for all types of images. Additionally, ML 

can be sensitive to outliers and may not perform as well in cases where the image contains 

significant amounts of noise or outliers. 

Overall, while ML can be a useful algorithm for image segmentation, its limitations need to be 

carefully considered and addressed in order to ensure optimal performance. 

2.3.4 Machine learning results 

The results for the three methods are shown below (Fig. 2.8). The figure shows image 

segmentation results from the machine learning algorithms of SVM, maximum likelihood and 

random trees. The algorithms were trained on labelled images representing buildings, streets, 

vegetation etc. The machine learning methods didn’t achieve a satisfactory result. The random 
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trees technique registered relatively better result than the other two. By contrast, the maximum 

likelihood method showed the lowest potential for classifying buildings. 

 

 

Figure 2. 8 SVM, random trees and Maximum likelihood segmentation results 

 

2.3.5 Autonomous Extraction of Building Footprint polygons from high-resolution 

Satellite Image Data using U-Net based deep learning model 

Convolutional Neural Networks (CNN) is a logistic type of algorithm where learning arises by 

adjusting the weight in the node using the recursive method and the error is backpropagated 

through the network to minimize the difference between output node activation and output 

(Misra et al., 2020). The obtained building footprint may contain noise details with irregular 

boundaries. The extracted building footprint polygons from CNN technique were simplified 

using the Douglas-Peucker algorithm (Lee et al., 2006).  

The building footprint polygon extraction process started with collecting and processing 

training images (Fig. 2.9). The deep learning model took the input images and predicted 
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building shapes after it was trained on image data. An accuracy assessment was done to check 

the network efficiency. Finally, the model extracted building footprint polygons from new 

satellite images. 

 

 

Figure 2. 9 (a) The building classification workflow, (b) Deep learning model 

architecture 
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building tops
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The deep learning algorithm that was modelled based on U-Net (Weng and Zhu, 2021) like 

architecture registered an accuracy of 98%. In line with this thesis’s purpose to address the 

building recognition problem in an urban and residential setting, the model achieved a higher 

accuracy level compared to other methods. The model was trained on building samples that 

were representative of the building construction style in the vicinity of London city. A thousand 

training images were collected which is a common minimum requirement for a deep learning 

model. As in any deep learning model, the training data should be relatable to the data that will 

be predicted post-training. The deep learning model was trained one thousand images. 10% of 

this data was used as a validation data during training the neural network to improve efficiency. 

A residential neighborhood area in London, Ontario was used as a testing ground to evaluate 

the accuracy of the deep learning model. 

2.3.6 Deep learning model architecture 

A deep learning technique was implemented to extract residential building footprint polygons 

from satellite imagery. Semantic segmentation associates each pixel of an image with a class 

label of either a residential building or background. The deep learning algorithm was tested in 

London, Ontario, Canada. The training and validation datasets used for the deep learning 

models were residential building satellite images collected from Kitchener in Ontario, Canada. 

A thousand training data were collected; out of which, 10% of the data was used for validation. 

The deep learning algorithm was modelled based on U-Net (Weng and Zhu, 2021) like 

architecture. The model was trained on residential building samples that were representative of 

the residential building construction style in the vicinity of London city. A thousand training 

images were collected which is a common minimum requirement for a deep learning model. 
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As in any deep learning model, the training data should be relatable to the data that will be 

predicted post-training.  

The first layer of the deep learning neural network is set to accept an image size of grayscale. 

Grayscale images are more convenient to process and make the training phase faster. The input 

image is specified as a row vector of integers. The image size [256 256 1] corresponds to [h w 

c], where h is the height of the image, w is the width of the image, and c is the number of 

channels. In this case, channel C 1 indicates it’s a grayscale image. For RGB images, the 

channel value will be 3, representing red, green and blue colours. If needed, the layer can be 

converted to accept RGB images. At this layer, the input image is processed so that the mean 

of the image lies at zero. This normalization helps to convert the image into a range of pixel 

values that are more familiar. 

A convolutional layer in the neural network uses convolutional filters on an image. The filters 

move along the input image vertically and horizontally. This phase computes the dot product 

of weights and input and adds a bias term. There are 64 filters used in this stage with each of 

them of size 3 by 3 pixels. The stride describes the rate of movement for the filter. In this case, 

the first value 1 indicates a stride of one pixel in the vertical direction. The second value of 1 

represents a horizontal movement of the filter.  

The Rectified Linear Unit (ReLU) layer performs an operation on each element of input and 

sets any value less than zero to zero. 

The maximum pooling layer down samples an incoming image by dividing the input into 

pooling regions and computes the maximum value of each region.  
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Image segmentation partitions an image into distinct parts based on the characteristics of the 

pixels in the image. Three types of error optimization algorithms were tested as part of the deep 

learning workflow to train a segmentation model. 

a) Stochastic Gradient Descent with Momentum 

The basic gradient descent algorithm updates the network parameters (weights and biases) to 

minimize the loss function by taking small steps at each iteration in the direction of the negative 

gradient of the loss as shown in Equation 2.12. 

𝜽𝓵+𝟏 =  𝜽𝓵 −  𝜶𝜵𝑬(𝜽𝓵)                                                Eq.2.12 

where ℓ is the iteration number, 𝛼 > 0 is the learning rate, 𝜃 is the parameter vector, and 𝐸(𝜃) 

is the loss function. In the standard gradient descent algorithm, the gradient of the loss function, 

∇𝐸(𝜃), is evaluated using the entire training set, and the standard gradient descent algorithm 

uses the entire data set at once. By contrast, at each iteration, the stochastic gradient descent 

algorithm evaluates the gradient and updates the parameters using a subset of the training data. 

A different subset, called a mini-batch, is used at each iteration (Matlab, 2020). For this thesis, 

a mini-batch size of 4 was used. The size of the mini-batch size depends on the size of the 

training data and the computational power of a computer used. 

The full pass of the training algorithm over the entire training set using mini batches is one 

epoch. Stochastic gradient descent is stochastic because the parameter updates computed using 

a mini batch are a noisy estimate of the parameter update that would result from using the full 

data set. The mini batch size and the maximum number of epochs were specified by using 

MiniBatchSize and MaxEpochs arguments respectively. 

The stochastic gradient descent algorithm can oscillate along the path of steepest descent 
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towards the optimum momentum term to the parameter update is one way to reduce this 

oscillation. 

𝜽𝓵+𝟏 = 𝜽𝓵 − 𝜶𝛁𝑬(𝜽𝓵) + 𝜸(𝜽𝓵 − 𝜽𝓵−𝟏)               Eq.2.13 

where 𝛾 determines the contribution of the previous gradient step to the current iteration. 

b) RMSProp 

Stochastic gradient descent with momentum uses a single learning rate for all the parameters. 

Other optimization algorithms seek to improve network training by using learning rates that 

differ by parameter and can automatically adapt to the loss function being optimized. RMSProp 

(root mean square propagation) is one such algorithm. It keeps a moving average of the 

element-wise squares of the parameter gradients 

                𝒗𝓵 = 𝜷𝟐𝒗𝓵−𝟏 + (𝟏 − 𝜷𝟐)[𝛁𝑬(𝜽𝓵)]𝟐                   Eq.2.14   

𝛽2 is the decay rate of the moving average. The RMSProp algorithm uses this moving average 

to normalize the updates of each parameter individually 

𝜽𝓵+𝟏 = 𝜽𝓵 −
𝜶𝛁𝑬(𝜽𝓵)

√𝒗𝓵+𝝐
                            Eq.2.15                                  

where the division is performed element-wise. Using RMSProp effectively decreases the 

learning rates of parameters with large gradients and increases the learning rates of parameters 

with small gradients.  

c) Adam 

Adam (derived from adaptive moment estimation) (Kingma and Ba, 2015) uses a parameter 

update that is similar to RMSProp, but with an added momentum term. It keeps an element-

wise moving average of both the parameter gradients and their squared values, 

       𝒎𝓵 = 𝜷𝟏𝒎𝓵−𝟏 + (𝟏 − 𝜷𝟏)𝛁𝑬(𝜽𝓵)                      Eq.2.16 
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𝒗𝓵 = 𝜷𝟐𝒗𝓵−𝟏 + (𝟏 − 𝜷𝟏)[𝛁𝑬(𝜽𝓵)]𝟐                   Eq.2.17 

Adam uses the moving averages to update the network parameters as 

𝜽𝓵+𝟏 = 𝜽𝓵 −
𝜶𝒎𝒍

√𝒗𝒍+𝝐
                             Eq.2.18                          

If gradients over many iterations are similar, then using a moving average of the gradient 

enables the parameter updates to pick up momentum in a certain direction. If the gradients 

contain mostly noise, then the moving average of the gradient becomes smaller, and so the 

parameter updates become smaller too. The full Adam update also includes a mechanism to 

correct a bias that appears at the beginning of training. 

2.3.7 Training data preparation and analysis 

A deep learning neural network process starts with collecting the required data for training a 

segmentation model. The data was collected from publicly available sources. Then the data 

was organized in a way for an image to represent a single residential building so that it would 

be convenient for labeling it as a training set. Once the image data are collected and organized 

the next task is to label each individual image. There are various image labelling applications 

out there both open-source and commercial ones. The VGG Image Annotator (VIA) open-

source application was used to label the images. Then the training images were loaded into the 

VIA application and labelled using polygons to mark the boundary of the residential buildings 

in the image. The area enclosed by the yellow polygon will be registered as a residential 

building (Fig. 2.10). This way all the thousand images were labelled. After labelling, the 

labelled images were exported in JavaScript Object Notation (JSON) format. This helps to store 

data structures and objects in a standard data interchange format. 
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Figure 2. 10 Training image labelling 

 

In order for the deep learning model to train using the training data, these JSON files need to 

be converted into image masks. The JSON files were converted to image masks using a python 

script.  

 

Figure 2. 11 Training data masks 
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At this stage, the collected original images are labelled and exported in JSON format and then 

corresponding masks are created (Fig. 2.11). Next, further pre-processing steps were applied 

to the images to make them more suitable for the neural network to absorb them. As a common 

rule in machine learning applications, images should be converted into grayscale images so as 

to simplify the dense data that comes with RGB images (Kanan and Cottrell, 2012). This makes 

the files smaller, demanding less computational power and the model doesn’t have to waste 

time learning irrelevant information. Colour may introduce unnecessary information which 

increases the amount of training data required to achieve good performance. Then the images 

are processed to a size of 256-pixel length by 256-pixel width which is usually the rule of 

thumb in deep learning. MATLAB was used as a host for the algorithm code that runs the 

model. Deep learning models are known to achieve better accuracy when the training size 

increases. To address this, a data augmentation operation was applied. The original data was 

replicated four times to increase data size and then random scaling, horizontal reflection and 

rotation processes of augmentation were applied to further upsurge training data. Data 

augmentation is also critical to create images with new features that the model can learn from. 

After the data was split between training and validation, the model was trained on the 

augmented data. 

Data augmentation is a technique used in deep learning to artificially increase the size of a 

training dataset by creating new examples through various transformations of the existing data. 

It involves applying a set of operations to an image or data sample, such as rotating, flipping, 

cropping, or changing the brightness, to create variations of the original sample. 
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The need for data augmentation in deep learning image segmentation context is because the 

success of deep learning models for image segmentation is highly dependent on the amount 

and quality of the training data available. Collecting and labeling large amounts of data for 

segmentation can be time-consuming and expensive. Additionally, the real-world variations 

and challenges encountered in the test data may not be fully represented in the training dataset, 

leading to overfitting or poor generalization performance. 

Data augmentation helps address these challenges by generating new training data from the 

existing data, increasing the diversity and quantity of the dataset. This allows the model to learn 

more robust features and better generalize to new, unseen data. In the context of image 

segmentation, data augmentation techniques such as flipping, rotating, and resizing the images 

can help create additional training examples with different orientations and scales, which can 

improve the model's ability to segment objects accurately under different viewing conditions. 

The image data were partitioned into training and validation data. The validation data is 

required to prevent the model from overfitting. The validation data is used during training in 

parallel with the training data. When writing the training code, two values were assigned to 

represent the residential buildings and background. The residential buildings were assigned a 

value of 255 and a 0 value was assigned for the background. Based on these values, the model 

assigned 255 values for pixels predicted as residential buildings. And the model assigned a 0 

value for pixels predicted as background. 

An image datastore was created to simplify data management. Image datastore enabled the 

deep learning model to import data in batches from image collections that are too large to fit in 

memory. A datastore makes it convenient to call images into training workflow without the 

need to store the data in a workstation which would otherwise be computationally demanding. 
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This way the code is allowed to read and analyze data from image folders in smaller portions 

that fit the available memory. The images are stored as PNG files in the datastore. For each 

training and validation image, a corresponding image mask is stored in a separate datastore 

ready to be called anytime the code runs. Basically, the datastore for the image mask is known 

as a pixel-label datastore since it contains images segmented at a pixel level. 

The image datastore and its corresponding label datastore were combined into a single datastore 

so that it would be convenient for data augmentation. Then the labelled pixels are overlayed on 

the original image. This way the pixels representing the residential buildings will align exactly 

with the residential building boundaries. 

Deep learning models register better performance when trained on larger datasets. Thus, data 

augmentation is required to increase the amount of training data. Data augmentation also 

applies different transformations to the training data which helps the model learn new features 

during training. For instance, augmentation applies randomized rotations to input images so 

that the model would be familiar with the presence of rotation in input images (Fig. 2.12).  

 

Figure 2. 12 Data augmentation sample results 
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2.3.8 Results for the U-Net-based model 

The training progress was monitored by using validation data set as a control mechanism. The 

validation data is a set of data separate from training data. It is used during training process to 

check for overfitting and to test the network on new data that it has not seen. This process will 

improve the accuracy of the model. The training data is used during training of network to 

update the layer weights via backpropagation. The training data is fed to the network every 

iteration, the loss is calculated, and the layer weights are updated via backpropagation to reduce 

the loss for the iteration. The model can achieve higher accuracy through continuous training 

and saving the learned parameters and resuming training until there’s no change in the loss 

value. 

This model showed improved results compared with other methods. The model was able to 

identify building outlines with considerable accuracy. The buildings labelled as ground truth 

are the prepared masks to evaluate the accuracy of the model’s prediction. The predicted 

building raster image layer is post processed to obtain final result. The layer is georeferenced 

and aligned with LiDAR data to extract the 3D point clouds representing a building. 

Regularization is also applied to refine the edges of the building outline (Fig 2.13).  The figure 

shows how the predicted building polygons are matched to LiDAR data in a case where the 

polygons are extracted from images that are not georeferenced. The polygons are assigned the 

coordinate of the LiDAR and the building perimeter polygons are kept for the 3D modelling 

process. The final building footprint polygons extracted at the end of the process are shown in 

Fig. 2.14. 
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Figure 2. 13 (a) Neural network training (b) Final accuracy (c) Polygons extraction 
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The deep learning model is trained to identify only building tops using the label on each image 

marking the building surface area. The image masks generated from the training images help 

the model to clearly identify the building perimeter. Other details like streets, trees, cars etc are 

considered as background information by the neural network and are removed. 

In order to achieve an efficient model, the network has to be trained extensively. The training 

progress was monitored by using validation data set as a control mechanism. The model can 

achieve higher accuracy through continuous training and saving the learned parameters and 

resuming training until there’s no change in the loss value. This model showed improved results 

when data augmentation and validation data were applied.  

 

Figure 2. 14 Residential building footprints extracted by deep learning model 
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2.3.9 Validation model 

The percentage of correctly identified pixels of each class is indicated by accuracy. This is 

important to know how well the residential building class pixels are identified. For the 

residential building class, the accuracy is the ratio of correctly classified pixels to the total 

number of actual pixels based on ground truth.  

       Accuracy score = TP/(TP+FN)                              Eq.2.19 

The segmentation model was tested on selected residential buildings in London, Ontario.  

       metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth);     Eq.2.20 

The above equation computes various metrics to evaluate the quality of the semantic 

segmentation results which are predicted pixel labels (pxdsResults) against the ground truth 

segmentation which are ground truth pixel labels (pxdsTruth).  

 pxdsResults = semanticseg(imds,net,"WriteLocation",'data\single_output')      Eq.2.21 

   pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs);         Eq.2.22 

Table 2. 1 Accuracy of the segmentation results 

GlobalAccuracy MeanAccuracy MeanIoU WeightedIoU MeanBFScore 

91% 95% 62% 88% 41% 

    Global accuracy is the ratio of correctly classified pixels, all classes, to the total number of 

pixels. The mean accuracy is the average accuracy of all classes in an image. The intersection 
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over union (IoU) is the ratio of correctly classified pixels to the total number of ground truth 

and predicted pixels in the building class. The mean BF score indicates how well the predicted 

boundary of each building class aligns with the true boundary of the building. 

       IoU score = TP/(TP+FP+FN)                              Eq.2.23 

2.4. Solar power potential analysis for residential building  

The workflow developed for solar power potential analysis for residential buildings is 

illustrated in Fig. 2.15. A solar radiation raster is generated from a DSM layer and residential 

footprint polygons that were generated from the previous step using the deep learning model. 

Then based on the rooftop aspect, slope and amount of solar radiation reaching its surface, 

suitable surfaces are selected. Rooftops with suitable area of 30 square meters or greater are 

generally selected for solar panel installations. The building’s suitable area and its average solar 

radiation per square meter gives solar power potential estimates. 

 

Figure 2. 15 Workflow of the rooftop solar power estimation 

 

Solar energy 
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LiDAR data is extracted from a larger dataset that represented London, Ontario as a collection 

of 3D points (Fig. 2.16a). The LiDAR is converted to Digital Surface Model (DSM) that 

represents the area of interest. The DSM represents the elevation of the ground and features on 

the surface, such as trees and buildings. The DSM is a raster layer that shows data in a grid 

where each cell contains a numeric value. It is symbolized so that darker gray cells have lower 

elevations and the lighter gray and white cells have higher elevations (Fig. 2.16b). Each of the 

cells in the raster represent a surface of 0.5 by 0.5 meters resolution. For better visualization of 

the buildings and vegetation the DSM raster represents, a 3D visualization process is applied 

(Fig. 2.16c). The solar radiation is calculated using ArcGIS tool and taking the DSM and 

residential buildings footprint polygons as input. The tool calculated radiation by considering 

the position of the sun throughout the year and at different times of day, obstacles that may 

block sunlight such as nearby trees or buildings, and the slope and orientation of the surface 

(Fig. 2.16d). The DSM provides the required information on obstacles, orientation and slope. 

The output is a raster layer where each cell value is the amount of solar radiation in watt-hours 

per square meter at that location. 

Once a solar radiation raster layer is created, the next step is to identify suitable rooftops. There 

are three criteria to consider when identifying suitable rooftops. First, suitable rooftops should 

have a slope of 45 degrees or less, as steep slopes tend to receive less sunlight. Second, suitable 

rooftops should receive at least 800 kWh/m2 of solar radiation. Third, suitable rooftops should 

not face north, as north facing rooftops in the northern hemisphere receive less sunlight. A 

slope raster layer is generated from the DSM raster (Fig. 2.17a). The cells in the layer contain 

a slope value ranging from 0 to 90 degrees. The lighter colors represent steeper slopes while 

darker colors represent milder slopes. An aspect raster layer is also generated from the DSM 
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raster (Fig. 2.17b). The cells in the layer contain a value expressing orientation in degrees, with 

0 representing absolute north and 180 representing absolute south. If a cell has a slope steeper 

than 45 degrees, its value will be changed to NoData in the output layer (Fig. 2.17c). In the 

northern hemisphere, rooftops facing north are likely to receive less solar radiation than 

surfaces facing other directions. The aspect raster layer is used to remove slopes that face north 

having a value less than 22.5 degrees or more than 337.5 degrees (Fig. 2.17d). Since slopes of 

10 degrees or less are more or less flat, such surfaces are kept regardless of their aspect. Rooftop 

surfaces receiving less than 800 kWh/m2 solar radiation are also removed (Fig. 2.17d). After 

all the criteria are met, the resulting rooftop surface suitable for solar panel installation is 

mapped (Fig. 2.18a). Finally, the solar radiation each suitable raster cell receives is aggregated 

to determine how much solar radiation each building receives in a year. Then, the solar 

radiation is converted to electric power production potential (Fig. 2.18b).  

A Digital Surface Model (DSM) is a digital representation of the Earth's surface or any other 

topographic surface, such as buildings, trees, and other above-ground objects. It is a 3D model 

that represents the elevation of the Earth's surface or objects on it, using a grid of elevation 

points. DSMs are typically created from remote sensing data, such as satellite or aerial imagery, 

or in this case LiDAR data, which uses lasers to measure the distance between the sensor and 

the Earth's surface.  

A Digital Terrain Model (DTM) is a digital representation of the bare ground surface, which 

removes the impact of above-ground features such as trees, buildings, and other objects. It is a 

3D model that represents the elevation of the Earth's terrain using a grid of elevation points. A 

DTM is created by filtering the elevation data from sources such as satellite or aerial imagery 
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or LiDAR data, to remove the above-ground objects' elevation. The resulting model represents 

the Earth's terrain, free from any other features. 

A Normalized Digital Surface Model (nDSM) is a digital model that represents the elevation 

of above-ground features such as buildings, trees, and other objects, relative to the Earth's bare 

ground surface. It is a 3D model that shows the height of the objects above the ground surface, 

which can be used to estimate the object's size, shape, and location accurately. The nDSM is 

created by subtracting the bare earth elevation model (such as a DTM) from the digital surface 

model (DSM), which includes the above-ground features. The resulting model represents only 

the above-ground features' height, which is normalized to the bare earth surface. 

In Chapter 2, only the DSM layer was used for the solar power potential estimation. The DSM, 

DTM and nDSM layers together were used in Chapter 3 for the 3D building modelling process. 

The DSM represents elevation information of topography and structures above ground. It is 

useful to obtain building height that is used to analyze solar potential. Based on the DSM, solar 

radiation is calculated for each roof surface. The solar radiation is in kilowatt-hours per square 

meter(kWh/m2). An average Canadian household consumes 6.9 MWh of electricity per year.  

When estimating solar radiation received using a DSM layer, the shadow effect from trees and 

adjacent buildings is taken into consideration by incorporating a shadowing model. The 

shadowing model is used to simulate the effect of objects casting shadows on the ground 

surface, which alters the amount of solar radiation that reaches the surface. A sky view factor 

(SVF) analysis measures the percentage of visible sky from a point on the ground surface. The 

SVF is calculated by analyzing the geometry of the surrounding objects, such as buildings and 



64 
 

trees, and the sky dome's orientation. The resulting model can be used to estimate the amount 

of solar radiation that reaches the ground surface, taking into account the shadowing effect. 

Roofs that are steeper than 45 degrees are typically removed from solar power potential 

estimation because they are not suitable for traditional solar panel installations. Solar panels 

are typically installed on roofs that have a pitch (angle) between 15 and 40 degrees. Roofs that 

are steeper than 45 degrees may not provide a stable surface for mounting solar panels, and the 

panels may not receive optimal sunlight exposure. In addition, the installation of solar panels 

on steep roofs can be challenging, as it may require specialized equipment and safety 

precautions. Furthermore, the energy output from solar panels decreases as the angle of the 

panel increases relative to the sun's position. For roofs that are steeper than 45 degrees, the 

angle may be too steep for the solar panels to receive optimal sunlight, resulting in a reduced 

energy output. Therefore, when estimating solar power potential, roofs that are steeper than 45 

degrees are usually removed from consideration, as they are not ideal for solar panel 

installations and may not provide significant energy output. 

Roofs that face the north direction in the northern hemisphere are typically removed from solar 

power potential estimation because they receive limited sunlight throughout the year. In the 

northern hemisphere, the sun is primarily located in the southern part of the sky. Therefore, 

roofs that face south or southwest receive the most sunlight throughout the day, making them 

the most suitable for solar panel installations. Roofs that face north or northeast receive little 

to no direct sunlight, which significantly reduces the energy output from solar panels. 

Furthermore, even if solar panels were installed on north-facing roofs, they would not receive 

optimal sunlight exposure, resulting in a reduced energy output. Therefore, when estimating 

solar power potential, roofs that face north or northeast in the northern hemisphere are typically 
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removed from consideration, as they are not ideal for solar panel installations and may not 

provide significant energy output. 

 
 

(a) LiDAR data analysis of the area where 

the residential buildings are located 

(b) DSM generation of the location where 

the residential buildings are located 
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(c) DSM with 3D visualization of the lower 

height buildings 

(d) Estimation of solar radiation that 

reaches the rooftops of the residential 

houses 

Figure 2. 16 Solar energy mapping  

 

 

(a) Slope estimation of the roofs 

between 0 and 90 degrees 

(b) Aspect estimation of the roofs 

showing whether the roofs face 

north or south 

  



67 
 

(c) Rooftop cells that are steeper than 45 

degrees are removed 

 

(d) Rooftop cells steeper than 45 

degrees and receiving less than 

800kWh/m2 are removed 

Figure 2. 17 Rooftop suitability identification  

  

(a) The final roof surfaces that are 

suitable for solar panel installation 

(b) Electric production in MWh of each 

building suitable for solar panel 

installation 

Figure 2. 18 Solar power calculation 

 

2.5 Conclusion 

In this thesis, autonomous building footprint polygon extraction method was successfully 

developed. The deep learning technique achieved an improved result over traditional machine 

learning algorithms such as random trees, SVM object-based classification, maximum 

likelihood. The advantage of the deep learning model is that it can be applied to a new set of 
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input image data to extract building footprint polygons for autonomous applications once it’s 

trained. In addition, the model can be improved over time with minimum adjustments when 

quality data is available. Although it is recommended to deep learning and provides a higher 

accuracy result over machine learning techniques, it still requires upgrading and to 

continuously learn with new data to predict unique building forms that are unusual. In addition, 

when the number of buildings being projected at a single moment surge, the model struggles 

to capture specifics. This is mainly due to the limitation of the training set and computational 

requirements and hence it will perform better with more training data. 

By combining the extracted residential building footprint polygons with LiDAR generated 

DSM, it was possible to automate the calculation of household solar panel estimation.  

Constraints such as removing rooftops with a slope of more than 45˚, north-facing buildings 

were implemented.  The solar power potential estimation can be scaled to include entire 

neighborhoods as long as high-density LiDAR data is available. But most importantly, the 

application of machine learning to extract the residential house’s polygon area used for the 

solar panel calculation paved the way for a more robust and automated workflow. 
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Chapter 3 

Autonomous urban topology generation for urban flow modelling 

Abstract 

One of the challenges in realistic numerical urban micro-climate modelling for wind, heat 

transfer, and building energy simulation applications is the complexity of urban topology and 

complex building geometries. My original contribution in this thesis presents a deep learning 

modelling for building footprint polygon extraction from satellite imagery that is integrated 

with Light Detection and Ranging (LiDAR) data to generate 3D building models. The deep 

learning model registered an overall accuracy of 98%. The trained deep learning model can 

then be applied to a new set of input image data to extract building footprint polygons for 

autonomous application, and it can also be incrementally retrained with good quality data when 

it becomes available. A framework is developed that integrates the autonomous urban topology 

generator with urban flow modelling. The modelling steps are explained through an application 

example of urban flow modelling encountered during a pedestrian-level wind assessment for 

the city of London, Ontario. 

Keywords: 

Deep Learning, Satellite Image, LiDAR, Building footprints, Urban topology, CFD, Pedestrian 

level wind 
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3.1 Introduction 

With approximately 70% of the world’s population expected to live in urban areas by 2050, 

and cities being one of the largest energy consumers and emitters of greenhouse gases, urban 

areas offer a large potential for energy efficiency improvement (Sola et al., 2020). While 

embracing sustainability, maintaining the resiliency of the built environment against climate 

stressors is also critical. Recent changes in urban ecosystems have had a negative impact on 

the liveability of outdoor built environments (Cureau et al., 2022). The collective effects of 

these changes in urban outdoor spaces challenge effective urban planning which aims to create 

successful and usable outdoor spaces. Among the determinants of outdoor environment quality, 

a high priority is given to wind and thermal environments (Shooshtarian et al., 2020). 

Therefore, a clear understanding and realistic modelling of the complex interaction between 

the climate and the built environment, characterized by complex transport mechanisms, is 

essential. This necessitates urban climate modelling (wind speed, pressure, humidity, 

temperature, etc.) at high temporal and spatial resolution. 

One of the major challenges in realistic and pragmatic numerical urban micro-climate 

modelling for wind engineering, environmental, and building energy simulation applications is 

the complexity of the geometry (topology) of the computational domain and the variability of 

surface types involved in urban exposures (Liu et al., 2018, Tominaga et  al.,  2008,  Liu  et  

al.,  2017).  Accurate site and building-specific information are required to assess climate loads 

such as wind, for example, during environmental design (Zhai, 2006). Traditionally, building 

forms and surface classification are individually and manually entered into a CAD model 

through information collected from designers, on-site-observations and publicly available 

information, which are often time-consuming and cause delays as the area covered by a project 
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in- crease (Lach et al., 2006). Hence, the generation of the geometry of complex urban topology 

and the associated grid used for numerical modelling represents one of the most engineering 

time intensive and costly processes in the computational process. The challenges to generating 

geometric and physics boundary conditions in an automated manner are either hindering the 

progress of computational methods in urban design or resulting in an oversimplified geometry 

that does not accurately represent the urban topology (Shirinyan and Petrova-Antonova, 2022). 

The latter is one of the main contributors to the sustainability performance gap seen in the 

industry. In building aerodynamics, generating accurate geometry both for a study building and 

its sur- rounding are the most important elements (links 2 and 3) of the Alan Davenport wind 

load chain (Fig. 3.1), which explains the linked steps to assess wind effects. Aerodynamics in 

fact means the study of the effect of shape. Similar linked steps are followed for the design of 

other climate stressors as well. 

In recent years, however, the availability of open geospatial data, such as satellite imagery, 

building footprint vector data and LiDAR point clouds is creating opportunities to generate 

large-scale 3D city models at low   cost   as   new   machine   learning   techniques   have   

significantly 
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Figure 3. 1 The Alan G. Davenport wind loading chain (Isyumov, 2012). 

 

 

 

 

 

 

Figure 3. 3 Sample of training images used to train the deep learning network. 

 

Figure 3. 2 Workflow for 3D modelling of buildings. 
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Figure 3. 5 Sample training image with its corresponding mask. 

 

expanded in photogrammetry, remote sensing, and machine vision (Park and Guldmann, 2019). 

The present study focuses on developing a framework that combines automated urban topology 

generation and numerical modelling. In autonomous urban 3D modelling topology generation, 

the first and critical part is building footprint polygon extraction from a given input image data. 

Various researchers have attempted to extract building footprint polygons from different types 

 

Figure 3. 4 Training image labelling. 
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of data by employing various techniques such as region growing method (Li et al., 2019), a 

filtering algorithm (Susaki, 2012) that was used to filter ground points (GPs) from raw airborne 

point cloud measurements and generate an estimated digital terrain model (DTM). 

The extensive time required to create city-scale digital mapping has limited the application of 

digital images and remote-sensing image models (Guler and Yomralioglu, 2022). To date, 

scene generation for urban physics applications is a laborious, time-intensive process, as the 

building polygons, the terrain model, CAD objects and background maps must be created and 

 

Figure 3. 6 Data augmentation sample results. 

 

 

 

Figure 3. 7 RGB and grayscale images with their respective dimensions. 
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attributed manually. To shorten the time required for this process, (Lach et al., 2006) initiated 

an effort that aimed to reduce the man-in-the-loop requirements for several aspects of synthetic 

hyperspectral scene construction. Satellite imagery may be used for specific purposes if 

effective algorithms are used to obtain the required information (Richner, 2011). However, 

traditional photogrammetric methods do not offer this option (Chen et al., 2004). Thus, this 

thesis proposes a cutting-edge deep learning modelling approach trained on satellite imagery 

which can identify buildings from new sets of image data and combine it with LiDAR data to 

generate the 3D models. 

 

 

Figure 3. 8 U-Net-based deep learning model architecture. 
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Figure 3. 9 3D LiDAR data used for model generation. 

 

 

Figure 3. 10 Point clouds on the tallest building can help to filter out outliers and the 

lowest points are found on rivers usually. 

 

It is recognized that methods that employ LiDAR point cloud data may suffer (a) vertically if 

the height position from which the point cloud data obtained is limited and useful data may be 

missing in areas where a higher resolution is required (Holmgren et al., 2003), (b) horizontally, 

where points may be recorded off their original location due to GPS and navigation unit 

operation anomalies (Park and Guldmann, 2019), and (c) overall, from missing data due to 

absorption or reflection of laser energy (Minato et al., 1998) and it may contain noise that will 

affect the final output classification feature extraction phase (Gao et al., 2013) as LiDAR 

usually operates at a monochromatic wavelength measuring the range and the strength of the 
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reflected energy (intensity) from objects limiting recording of a diversity of spectral reflectance 

(Morsy et al., 2017). The proposed deep learning model to extract building footprints from 

imagery data by justifying its validity will also help address some of these shortcomings. 

As we live in a 3D world, the recognition and analysis of 3D geometric models is an inevitable 

problem. With the emergence of large 3D repositories in the last several years, classification, 

retrieval, and semantic labelling of 3D objects is becoming possible, and these areas have 

drawn great attention from researchers.

Realistic building models required in computational fluid dynamics (CFD) studies are not 

always readily available for engineers carrying out a study in a specific project spot (Lee et al., 

2006). The manual computer-aided design (CAD) modelling approach may achieve the 

 

Figure 3. 11 (a) normalized Digital Surface Model (nDSM), (b) Digital Surface Model 

(DSM) and (c) Digital Terrain Model (DTM) values of the LiDAR data. 

(a) 

(b) 

(c) 
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required level of accuracy, but it is a time-consuming procedure, and it takes the most valuable 

engineering and CAD technician time. This time-consuming process gets even more 

problematic when the study area is large and the building form is more elaborate and complex, 

a common case in modern architecture. Furthermore, importing, and fixing CAD models to 

make them air/watertight for CFD analysis takes longer time and guaranteeing surface integrity 

during mesh generation is difficult. If the 3D model generated has intersecting faces, it may 

cause difficulty in generating a grid around a complex geometry which hinders the efficient 

use of the CFD in engineering analysis and design. Thus, this will cause the surface grid-

generating process to be a time-consuming procedure. The proposed workflow in this thesis is 

aimed at alleviating some of these issues. 

When zooming in on the construction of 3D building models from building footprint polygons, 

there are studies that used hierarchical Euclidean clustering (Li et al., 2019) and graph cut 

algorithm (Lee et al., 2006) but with limited success. Convolutional neural networks (CNNs) 

are showing promising results in the 2D pattern recognition field (Weng and Zhu, 2021, He et 

al., 2020) and 3D object classification (Wang et al., 2019). A study from Hong Kong 

Polytechnic University explored and attempted to provide a solution to the problems of 

developing a methodology to fuse terrestrial laser scanner-generated 3D point cloud data and 

high-resolution digital images. Four phases of the methodology that have been investigated 

were reported in the study (i) data pre-processing (fusion of data from the two sensors), (ii) 

automatic measurements (feature detection and correspondence matching), (iii) mapping 

(creation of point cloud visual index), and (iv) orientation (calculation of exterior orientation 

parameters) (Telkamp, 1981). Although the researchers were able to obtain compact 3D 

models, artifacts were observed whenever there is raw data that has a lower resolution, missing 
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data due to absorption or reflection of laser energy, a gap because of a small alley between 

buildings and curved structures were not accurately represented. An urban geometry 

reconstruction technique paper for real-life urban geometries reproduced roof shapes and for 

ground profiles it presented digital geographic information approach (Oshima et al., 2014). The 

types of the geographic dataset used for the 

 

 

Figure 3. 12 Summary of workflow for urban geometry generation and climate 

modelling. 
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Table 3. 1 Inlet boundary conditions (Richards and Hoxey, 1993, Richards and Norris, 

2011). 

Velocity profile Turbulence intensity profile Integral length 

u(z)  = (u*/ k) ln((z + z0 ) /z0 

) 

Iu(z)  = 1/ln((z + z0) /z0) Lu(z) = 12z0.6 

 Iv (z) = 0.75Iu (z) Lv (z) = 0.25Lu (z) 

 Iw (z) = 0.5Iu (z) Lw (z) = 0.5ILu (z)    

   

reconstructions were a digital surface model and a two-dimensional building outline map. But 

this method will only be valid if there are up-to-date building outline polygons. In workflows 

that use only satellite imagery analysis methodology, the most obvious shortcoming is that the 

image only displays the top part of buildings and height information is missing (Sowmya and 

Trinder, 2000). That is why the point cloud data should be combined with the image data to 

give an overall representative 3D model of a building. The attempts of the above methods to 

generate 3D building models gave rise to a consensus that combining image and point cloud 

data will generate a better outcome. In line with this, the research by (Kwak et al., 2012) 

automatically generated building models using the Minimum Bounding Rectangle algorithm 

and sequentially adjusted them with LiDAR datasets to generate better results. After weighing 

the pros and cons of different approaches and acknowledging the capability of deep learning, 

this thesis proposes a deep learning-based image segmentation combined with point cloud data 

to generate 3D building models.  
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The present study by combining the proposed deep learning-based building footprint extraction 

and LiDAR informed 3D building construction with computational modelling, will present a 

novel workflow for autonomous urban topology generation and urban flow modelling.  

The developed method will be illustrated through a pedestrian-level wind assessment (PLW) 

application for the downtown region of the City of London, ON, Canada. One of a city’s 

environmental design parameters is pedestrian assessment issues related to the accelerated 

wind (comfort and safety), or lack of wind (ventilation) caused by local climate inter- action 

with local terrain, buildings, and vegetation.  

Taller buildings block the wind and redirect it to the low-velocity region near the ground or 

accelerate it to the sides of the building causing a higher wind speed at the pedestrian level. 

City corridors also create a venturi effect resulting in increased wind speed.  

The wind speed could increase to three or four times more than commonly experienced in 

towns (Adamek et al., 2017, van Druenen et al., 2019). PLW speed can lead to uncomfortable 

and even dangerous conditions for pedestrians.  

Untenanted shops because of a windy environment and the death of two elderly people due to 

a fall caused by high wind speeds at the base of a high-rise building were observed (van 

Druenen et al., 2019).  

The opposite phenomenon happens when the city grid prevents having sufficient airflow to 

clean pollutants from city corridors or causing low flow regions where snow drifts and 

excessively accumulate at entrances or pathways (Sowmya andTrinder, 2000, Phillips et al., 

2019) (similar problem is also observed in dry regions with sand drifts). 
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Figure 3. 13 Computational domain that used the automated urban topology. 
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Figure 3. 14 Prediction results from the deep learning model training. 

 

 

 

Figure 3. 15 The predicted building footprints of downtown area in London, ON. 
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In spite of the increasing awareness of the importance of wind comfort and wind safety, the 

relation between urban geometry and PLW comfort is often unclear for designers (van Druenen 

et al., 2019). Alterations or additions in favour of PLW comfort and wind safety are sometimes 

found to be visually displeasing, impractical, and expensive, and their effects are rarely 

investigated and often appear disproportionately small (van Druenen et al., 2019). 

Computational fluid dynamics (CFD) PLW simulations can provide near-optimal solutions 

through iterative simulations that involve the key stakeholders. 

In order to determine PLW comfort, statistical meteorological data of nearby weather stations, 

aerodynamic information of the area and mechanical wind comfort criteria are combined; these 

represent the first three links in the Alan G. Davenport wind loading chain Fig. 3.1 (Isyumov, 

2012). The aerodynamic information is needed to transform the statistical meteorological data 

from the weather station to the location of interest at the building site, after which it is combined 

with a comfort criterion to judge local wind comfort (Janssen et al., 2013). The aero-dynamic 

information usually consists of two parts: the terrain-related contribution and the design-related 

contribution. The terrain-related contribution represents the change in wind statistics from the 

meteorological site to a reference location near the building site (Tong et al., 2005). The design-

related contribution represents the change in wind statistics due to the local urban design, i.e. 

the configurations of buildings (Janssen et al., 2013). The latter is the focus of the present study.  

The 3D building models generated are used as an input to determine aerodynamic information 

of the area of interest using CFD simulation. CFD simulations are routinely performed by the 

relatively low-cost steady Reynolds-Averaged Navier Stokes (RANS) approach (Tominaga 

and Stathopoulos, 2010) due to the high Reynolds number flow problems that render Large 
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Eddy Simulation (LES) based simulations too costly for project-by-project simulation. As a 

result, RANS is one of the widely used approaches for PLW studies (Phillips et al., 2019), and 

is likewise popular in research areas such as near-field pollutant dispersion in urban areas with 

high plan area density, urban thermal environment, natural ventilation of buildings and indoor 

airflow (Blocken, 2018). The output from the current study can also be used for other types of 

CFD applications such as wind loading evaluation that require unsteady simulations, 

simulation of flows over terrain with topographical or orographic features, complements 

experimental data on flow generation (Bitsuamlak et al., 2010), assessment of the true potential 

for energy savings in a city (Sola et al., 2020) and improvement of the accuracy of CFD 

modelling for a 3D urban model that is generated by the combination of LiDAR data with 

remote sensing images (Su et al., 2014). 

3.2 Methodology 

The overall steps of the 3D building modelling are described in Fig. 3.16. Training images of 

building tops are initially collected to train a neural network. The network is then evaluated for 

accuracy based on its predicted building footprint polygons. Finally, the vector polygon and 

the LiDAR point cloud data are combined to generate 3D building surface mesh using the 2.5D 

approach. The details are discussed in the following sections. 
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Figure 3. 16 A series of images showing the 3D model generation workflow 

transformations. 
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Table 3. 2 Accuracies of the segmentation results. 

Global 

Accuracy 

 

Mean 

Accuracy 

Mean IoU Weighted 

IoU 

 

Mean BF Score 

98% 98% 97% 97% 92% 

3.3 Deep learning model for building footprint extraction 

3.3.1 Training Data Preparation 

A deep learning process starts with collecting the required data for training a segmentation 

model. The data is collected from publicly available sources and local government offices (in 

the present case City of London, On). The data is organized in a way for an image to represent 

a single building so that it would be convenient for labeling it as a training set. The model is 

trained on building samples that are representative of the building construction style in the 

vicinity of the city and comprises images from cities which are found near London i.e., 

Hamilton, Kitchener, Mississauga and Guelph, ON (Fig. 3.3). A thousand training images are 

collected inline with the typical minimum requirement for a deep learning model. As in any 

deep learning model, the training data should be relatable to the data that will be predicted post-

training. 

Once the image data are collected and organized the next task is to label each individual image. 

There are various image labelling applications out there both open-source and commercial 

ones. In this study, VGG Image Annotator (VIA) open-source application is used to label the 
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Figure 3. 17 3D building models generated using Deep learning technique. 
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images. The training images are loaded into the VIA application and labelled using polygons 

to mark the boundary of the buildings in the image. Fig. 3.4 shows a labelled image with the 

building outline marked by yellow lines. The area enclosed by the yellow polygon will be 

registered as a building. This way all the thousand images are labelled. The labelled images are 

then exported in JavaScript Object Notation (JSON) format. This helps to store data structures 

and objects in a standard data interchange format. 

In order for the deep learning model to train using the labelled images efficiently, these JSON 

files need to be converted to image masks. The JSON files are converted to image masks using 

a python script. Sample images with their corresponding masks are shown in Fig. 3.5. Next, 

further pre-processing steps are applied to the images to make them more suitable for neural 

 

Figure 3. 18 Grid discretization of the 3D building models 
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network training. As a common rule in machine learning applications, images are converted 

into grayscale images so as to simplify the dense data that comes with RGB images. Grayscale 

representations are often used for extracting shapes instead of colour images since grayscale 

simplifies the algorithm and reduces computational requirements (Kanan and Cottrell, 2012). 

Then the images are cropped to a size of 256-pixel length by 256-pixel width which is usually 

the rule of thumb in deep learning. 

At this stage, the data is partitioned into training and validation data. A 10% validation data is 

used by taking the training size into account so that the model avoids overfitting. During writing 

the training code, two values are assigned to represent the buildings and background. The 

buildings are assigned a value of 255, and the background is assigned a value of zero to perform 

semantic segmentation. 

Further, an image datastore is created to simplify data management. Image datastore enables 

the deep learning model to import data in batches from image collections that are too large to 

fit in memory. A datastore makes it convenient to call images into training workflow without 

the need to store the data in a workstation which would otherwise be computationally 

demanding. This way the code is allowed to read and analyze data from image folders in 

smaller portions that fit the available memory. The images are stored as PNG files in the data- 

store. For each training and validation image, a corresponding image mask is stored in a 

separate datastore ready to be called anytime the code runs. Basically, the datastore for the 

image mask is known as a pixel-label datastore since it contains images segmented at a pixel 

level. 

The image datastore and its corresponding label datastore are combined into a single datastore 

so that it would be convenient for data augmentation. Then the labelled pixels are overlayed on 
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the original image. This way the pixels representing the buildings align exactly with the 

building boundaries. Deep learning models register better performance when trained on a larger 

dataset. Thus, data augmentation is required to increase the amount of training data. Data 

augmentation also applies different transformations to the training data which helps the model 

learn new features during training. For instance, augmentation applies randomized rotations 

and resizing to input images so that the model would be familiar with the presence of rotation 

and sizing in an input image (Fig. 3.6). 

3.3.2 Deep learning model architecture 

The deep learning model's first layer is set to accept an image size of grayscale. As mentioned 

earlier, grayscale images are more convenient to process and make the training phase faster. 

The input image is specified as a row vector of integers. The image size [256 256 1] 

corresponds to [h w c], where h is the height of the image, w is the width of the image, and c 

is the number of channels. A channel value of 1 indicates it’s a grayscale image. For RGB 

images, the channel value will be 3, representing red, green, and blue colours, respectively (Fig. 

3.7). If needed, the layer can be converted to accept RGB images. At this layer, the input image 

is processed so that the mean of the image lies at zero. This normalization helps to convert the 

image into a range of pixel values that have similar data distribution. This helps the network to 

converge faster during training. 

The deep learning approach implemented is an algorithm that used the U-Net architecture 

(Weng and Zhu, 2021) as a backbone to execute semantic segmentation of building footprint 

(Fig. 3.8). The encoder part applies convolution blocks followed by a maximum pooling down 

sampling to encode the input image into feature representations at multiple different levels. 

The decoder part semantically projects the lower resolution features learnt by the encoder onto 
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pixel space (higher resolution) to get a dense classification. A convolutional layer uses 

convolutional filters on an image. The filters move along the input image vertically and 

horizontally. This phase computes the dot product of the filter (kernel) and input image pixels 

and adds a bias term. There are 64 filters used in this stage with each of them of size 3 by 3 

pixels. The stride describes the rate of movement for the filter. In this case, the first value 1 

indicates a stride of one pixel in the vertical direction. The second value of 1 represents a 

horizontal movement of the filter. Padding is applied to keep the size of the output image the 

same as the input image. Padding helps to achieve a more accurate analysis of images by adding 

an outer frame on an image to allow for more space for the filter to cover an image. The general 

expression of a convolution kernel filter is defined by the expression in equation 3.1. 

     𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] = ∑  𝑗 ∑ ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘]
 

𝑘
                               Eq.3.1 

               

The input image is denoted by f and the filter kernel by h. The resulting matrix or the filtered 

image is marked by G m, n and j and k represent every element of the filter kernel. 

The Rectified Linear Unit (ReLU) layer performs an operation on each element of input and 

sets any value less than zero to zero for better computation performance (equation 3.2). The 

maximum pooling step-down samples of an incoming image by dividing the input into pooling 

regions and computing the maximum value of each region. 
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Figure 3. 19 RANS CFD simulation at 0- and 45-degree wind angle of attacks. 
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Table 3. 3 Pedestrian wind comfort criteria (Adamek et al., 2017). 

Comfort category 

 

Gust Equivalent Mean 

Speed* m/s (km/h) 

 

Description 

 

Sitting ≤ 2.7 (10) Calm or light breezes are 

desired for outdoor 

restaurants and seating areas 

where one can read a paper 

without it blowing away 

Standing 

 

≤3.8 (14) Gentle breezes suitable for 

main building entrances and 

bus stops 

Strolling ≤4.7 (17) Moderate winds that would 

be appropriate for window 

shopping and strolling along 

a downtown street, plaza, or 

park 

Walking 

 

≤5.5 (20) Relatively high speeds can 

be tolerated if one’s 

objective is to walk, run or 

cycle without lingering 

Uncomfortable >5.5 (20) Strong winds of this 

magnitude are 
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considered a nuisance for 

most activities, and wind 

mitigation is typically 

recommended 

Exceeded 

 

> 25 (90) 

 

Excessive gust speeds can 

adversely affect a 

pedestrian’s balance and 

footing. Wind mitigation is 

typically required. 

*  GEM is defined as the maximum mean wind speed or gust speed divided by 1.85 (whichever 

is larger). 

𝑓(𝑥) = {0,    𝑥<0
𝑥,    𝑥≥0                                                            Eq. 3.2 

where x is the maximum value selected from a region of pixels. If x has a negative value, then 

a 0 value is assigned. The maximum pooling reduces the number of parameters to learn, and 

the amount of computation performed in the network. 

After testing three types of optimizing algorithms (stochastic gradient descent with momentum, 

RMSProp and Adam), the Adam (derived from adaptive moment estimation) optimizer 

provided a better performance compared with the other methods during training. Hence, Adam 

is used to training the neural network. The Adam algorithm is used for the deep learning 

workflow to train a segmentation model. Adam (Kingma and Ba, 2015) uses a parameter update 

that is similar to RMSProp, but with an added momentum term. It keeps an element-wise 

moving average of both the parameter gradients and their squared values, 
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𝑚ℓ = 𝛽1𝑚ℓ−1 + (1 − 𝛽1)∇𝐸(𝜃ℓ)                                         Eq.3.3 

  

where 𝑚ℓ is a moving average, ℓ  is the iteration number, β1 is the gradient decay rate, θ is the 

parameter vector, 𝐸(𝜃ℓ)  is the loss function, ∇𝐸(𝜃ℓ) is the gradient of the loss function 

 𝑣ℓ = 𝛽2𝑣ℓ−1 + (1 − 𝛽1)[∇𝐸(𝜃ℓ)]2                                      Eq.3.4 

    

where 𝑣ℓ is a moving average, β2 is the squared gradient decay rate. Adam uses the moving 

averages to update the network parameters as 

𝜃ℓ+1 = 𝜃ℓ −
𝛼𝑚𝑙

√𝑣𝑙+𝜖
                                                             Eq.3.5 

                                                                                         

where α > 0 is the learning rate, ϵ is a small constant added to avoid division by zero. 

If gradients over many iterations are similar, then using a moving average of the gradient 

enables the parameter updates to pick up momentum in a certain direction. If the gradients 

contain mostly noise, then the moving average of the gradient becomes smaller, and so the 

parameter updates become smaller too. The full Adam update also includes a mechanism to 

correct a bias that appears at the beginning of training. 

3.4 3D building model generation by integrating building footprint and 3D Lidar point 

cloud data 

This thesis tested the deep learning model in London, Ontario downtown area. A smaller 

portion area of downtown is selected for the test. The area is shown in Fig. 3.9 represented by 

the LiDAR data. One of the requirements to model a 3D building is to identify its height. That 
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information is obtained from LiDAR data. The data has 13M LiDAR points. The LiDAR point 

density is 26 points/m2. The advantage of using LiDAR data is that it comes with data that is 

already georeferenced. This makes it easy to integrate with existing data as shown in Figure 

3.9. Thus, the time it takes to geo-reference data is saved. 

First, a check for outliers which are point cloud points that may have different values is done. 

Outliers may be birds, planes or any other object that may have been picked up during data 

collection. It is important to remove outliers so that they won’t undermine the overall output 

result. The outliers are filtered out by setting a maximum height and the minimum height that 

can be used in the test. In the raw LiDAR data, the maximum elevation observed is 371.4 

meters and the minimum elevation is 150 meters (Fig. 3.10). Using such measurements directly 

in the workflow may cause the 3D models to be distorted. Thus, a reasonable height range of 

the study area should be specified. The observed elevation of the tallest building in the data is 

368 meters and the lower elevation on the riverside is 230 meters. Therefore, these values are 

set as the new minimum and maximum values and any values below or above the specified 

figures are considered outliers. The tallest building in London is the One London Place building 

which is a 24-storey, 113.4 meters in height. The ArcGIS platform is used to merge the LiDAR 

data and the building footprints. 

The elevation of buildings is extracted from the LiDAR dataset by converting the point cloud 

data into a raster format. The rasterization process resulted in a digital terrain model (DTM), 

which shows only the elevation of the ground, without buildings or other features. Secondly, 

the digital surface model (DSM) which shows the elevation of the ground and features on the 

ground is generated. Finally, normalized DSM (nDSM) which shows the height of features 
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— 

above ground (the normalized elevation) is generated during rasterization (Fig. 3.11). All three- 

elevation data are used in the workflow to calculate buildings’ height. 

Once the building outline is obtained, the next step is to georeference the image with data that 

is already georeferenced. The LiDAR data can be used as a georeferencing image since it comes 

already georeferenced. Using control points, in this case building corner points, a correlation 

is created between the building polygon image and its corresponding pattern in the LiDAR 

data. 

The raster image is converted into polygon shapes so that the building polygon can be extracted 

in the next phase. Once the polygons are created, the building polygon needs to be further 

refined to remove the extra layers that are part of the raster image. Finally, the building footprint 

boundary has been successfully extracted from the raster image. But still, the building lines 

may appear slightly irregular at this phase. So, applying regularization gives a well-defined 

edge to the building sides in this step. This thesis is able to achieve a level of detail 3 (LOD3), 

which includes the building boundary defined by the building footprints extracted earlier and 

the height and roof structure details defined using the LiDAR data. 

3.5 Pedestrian Level Wind Assessment on Autonomously Generated 3D Building Models 

3.5.1 Governing equations and boundary conditions 

In this study, a high-resolution, Reynolds-Averaged Navier-Stokes (RANS) CFD steady 

simulations using Shear Stress Transport (SST) k-ω is used (Fig. 3.12). The inlet boundary 

conditions specify the velocity, turbulence intensity and integral length profiles as given in 

Table 3.1. respectively. Symmetry boundary conditions on the side walls and ceiling of the 

computational domain are used. A pressure outlet is used on the downstream outlet. The flow 

file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark11
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark12
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark13


104 
 

=
 
= 

parameters and initial conditions used for simulation are mass density of the air, ρ = 1.29 kg/m3, 

static pressure of air p   =   101.3 KPa, ground roughness length (Z0)   =  1m for an area in 

which at least 15% of the surface is covered with buildings and their 
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Figure 3. 20 RANS CFD simulation at 90- and 135-degrees wind angle of attacks. 
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Figure 3. 21 RANS CFD simulation 180- and 225-degrees wind angle of attacks. 
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Figure 3. 22 RANS CFD simulation at 270- and 315-degrees wind angle of attacks. 
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Figure 3. 23 Turbulent kinetic energy simulation at 0- and 45-degree wind angle of 

attacks. 
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Figure 3. 24 Turbulent kinetic energy simulation at 90- and 135-degrees wind angle of 

attacks. 
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Figure 3. 25 Turbulent kinetic energy simulation 180- and 225-degrees wind angle of 

attacks. 
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Figure 3. 26 Turbulent kinetic energy simulation at 270- and 315-degrees wind angle 

of attacks. 
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Figure 3. 27 Comparison of 3D models 

 

 

average height exceeds 15m, where z is the height above the ground surface in meters. The 

building surfaces are assumed to a smooth walls. A commercial CFD solver (CD-adapco, 2018) 

has been used in the present study. 

A RANS CFD simulation is performed with an arbitrary U10 (10 m/s) velocity at the inlet. U10 

is a wind speed measured at a height of 10m above the ground. z0 is the roughness length with 

a value of 0.05m. The simulation gives the building-induced velocity alteration factor Fs,B. This 

is taken as the maximum of the two ratios of the mean velocity and gust speed on the PLW 

plane at the downstream location of interest at the same elevation at the inlet. Where gust 

speeds are approximated from the mean wind speed and kinetic energy as follows vgust = v(1 
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+g √2k/v), where v is the local mean wind velocity, k is the local kinetic energy, and g is the 

normalized peak factor, g = 3.5 assuming a normal distribution. The terrain-related alteration 

factor (Fs,T) can be found from (1zg.5)αs where zg is gradient height, and αs the aerodynamic 

exponent for the terrain upstream of the domain inlet velocity at the location of interest based 

on gradient velocity becomes, vN = Fs, B Fs,T vg. 

3.5.2 Computational domain 

The 3D model generated in the first section of the thesis is used to set up the computational 

model. The study domain shown in Fig. 3.13 is defined using StarCCM, a commercially 

available CFD solver. The tallest building height H is used as a reference to design the domain 

based on (Tominaga et al., 2008). The computational domain is set following the standard 

guidelines described in Dagnew and Bitsuamlak (Dagnew and Bitsuamlak, 2013) where 5H 

upstream, 5H distance on the sides and 15H downstream and 5H height above the tallest 

building (Franke et al., 2007). Neighbourhood scales use a modified computation domain to 

accommodate the increased domain due to consideration of the neighbourhood as discussed in 

(Oshima et al., 2014, van Druenen et al., 2019) to limit blockage issues. 

3.6 Results and discussion 

3.6.1 Building Footprint extraction result 

To achieve an effective model, the network must be trained extensively. The training progress 

is monitored by using the validation data set as a control mechanism. The model can achieve 

higher accuracy through continuous training and saving the learned parameters and resuming 

training with additional information until there’s no change in the loss value. For example, the 

model showed improved results when data augmentation is applied. The model is able to 

file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark14
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark36
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark73
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark73
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark74
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark74
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark55
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark59


114 
 

 

identify building outlines with considerable accuracy as shown in Fig. 3.14. The buildings 

indicated as ground truth are the manually prepared masks to evaluate the accuracy of the 

model’s prediction. In this manner building, footprints shown in Fig. 3.15 are produced. 

Model validation 

The percentage of correctly identified pixels of each class is indicated by accuracy. This is 

important to know how well the building class pixels are identified. For building class, the 

accuracy is the ratio of correctly classified pixels to the total number of actual pixels based on 

ground truth as shown in Equation 3.6. 

Accuracy score = TP/(TP + FN)                                  Eq.3.6 

The accuracy score is a ratio of the number of true positives (TP) that are correctly classified 

pixels to the total number of pixels (TP +  FN), where FN is the number of false negatives. 

The segmentation model is tested on selected buildings in London, Ontario (Fig. 3.16). 

metrics = evaluateSemanticSegmentation(pxdsResults, pxdsTruth);            Eq.3.7 

Equation 3.7 computes various metrics to evaluate the quality of the semantic segmentation 

results which are predicted pixel labels (pxdsResults) against the ground truth segmentation 

which are ground truth pixel labels (pxdsTruth). The ‘evalauteSemanticSegmentation’ is a 

MATLAB function that computes all available metrics, including the confusion matrix, 

normalized confusion matrix, data set metrics, class metrics, and image metrics. 

In MATLAB, the performance of a semantic segmentation algorithm can be evaluated using 

the "evaluateSemanticSegmentation" function. This function compares the predicted labels 

from the deep learning algorithm with the ground truth labels for a set of images, and computes 
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several metrics to evaluate the accuracy of the algorithm. Here's an example of how to use the 

function: 

% Load the ground truth labels and predicted labels 

groundTruth = imageDatastore('path/to/ground/truth/labels'); 

predictedLabels = imageDatastore('path/to/predicted/labels'); 

% Create a metrics object and evaluate the performance 

metrics = evaluateSemanticSegmentation(predictedLabels, groundTruth); 

% Display the results 

disp(metrics) 

The "imageDatastore" function is used to create a datastore for the ground truth labels and 

predicted labels. This function loads the image files and organizes them into a format that can 

be easily processed by MATLAB. The "evaluateSemanticSegmentation" function takes these 

datastores as input, and computes several metrics, including the overall accuracy and mean 

intersection over union (IoU). These metrics can be accessed using the fields of the output 

"metrics" object. The ground truth labels and predicted labels must have the same size and 

format. The ground truth labels should be grayscale images, where each pixel is labeled with 

an integer value representing the class label. The predicted labels should have the same format 

as the ground truth labels, with each pixel labeled with an integer value representing the 

predicted class label. 

Global accuracy calculates the percentage of correctly classified pixels over all pixels in the 

image. It is the most basic metric and provides an overall measure of the model's performance. 
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) 

Mean accuracy calculates the average percentage of correctly classified pixels across all 

classes. Mean Intersection over Union (IoU) measures the degree of overlap between the 

predicted and ground truth segmentation masks. Weighted IoU is calculated as a weighted 

average of the IoU scores for each class, where the weight is the proportion of pixels belonging 

to that class in the ground truth labels. Mean BF score is a combination of precision and recall, 

and it measures the balance between them. It is calculated as the harmonic mean of precision 

and recall, where precision is the fraction of true positives among all predicted positives, and 

recall is the fraction of true positives among all ground truth positives. BF score takes into 

account both false positives and false negatives. Overall the global accuracy is used for 

evaluating the overall performance of the deep learning model accuracy since the class 

distribution in the data is balanced. Therefore the overall accuracy of the model is 98%. 

pxdsResults = semanticseg imds, net,′′WriteLocation′′,′ source path′  ;          Eq.3.8 

The ‘semanticseg’ in Equation 3.8 is a function that returns a semantic segmentation of the 

input images using a deep learning model, in this case, represented by a variable ‘net’. The 

‘imds’ is a variable that represents the collection of building image data to be classified. The 

‘WriteLocation’ is the path where the predicted images will be stored while ‘source_path’ is 

the location where the images to be predicted are located. 

pxdsTruth = pixelLabelDatastore(testLabelsDir, classNames, labelIDs);        Eq.3.9 

The ‘pixelLabelDatastore’ function creates datastore for ground truth pixel labels (ground truth 

labelled images). The ‘testLabelsDir’ variable represents image files. The ‘classNames’ 

represents the building and background classes. The ‘labelIDs’ represent identification 

numbers to relate pixel labels to class names. 

file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark31
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark31
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark31


117 
 

+  
+ 

= 

In Table 3.2, the global accuracy is the ratio of correctly classified pixels, all classes, to the 

total number of pixels. The mean accuracy is the average accuracy of all classes in an image. 

The intersection over union (IoU) is the ratio of correctly classified pixels to the total number 

of ground truth and predicted pixels in the building class. i.e. IoU score TP/(TP FP FN). The 

mean BF score indicates how well the predicted boundary of each building class aligns with 

the true boundary of the building. 

3.6.2 3D building model generation result 

The 3D model generation workflow steps, where an input image goes through transformations 

before it is converted into a three-dimensional object are shown in Fig. 3.16. The 3D models 

and mesh for the downtown core of London, Ontario generated for CFD simulation are shown 

in Figs. 3.17 and 3.18, respectively. The grid resolution of the 3D building models is 1.5m. 

file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark18
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark19
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark20
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark20


118 
 

Overall, the computational domain has 2.2 million polyhedrane cells and it was generated 

following the guideline (Franke et al., 2007). The mesh of the buildings is reduced to H/50 to 

capture important details of flow based on (Adamek et al., 2017) where H is the height of the 

tallest building. 

 

Figure 3. 28 Comparison of velocity contour generated using predicted and actual 

models. 
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3.6.3 CFD modelling results 

The CFD simulation in this thesis is performed by the relatively computational cost-effective 

RANS approach for PLW applications and conclusions are made based on various pedestrian 

wind comfort criteria from Table  3.3 which shows wind speed in Guest equivalent mean 

(GEM). GEM is defined as the maximum mean wind speed or gust speed divided by 1.85 

(whichever is larger). Since steady simulation is conducted in the present study, the gust speed 

can be approximated from the mean wind speed and kinetic energy as follows vgust = v(1  + 

𝑔 √2𝑘/𝑣2
, where v is the local mean wind velocity, k is the local kinetic energy, and g is the 

normalized peak factor, g 3.5 assuming a normal distribution (as discussed in Section 3.5.1). 

The pedestrian wind speeds are calculated at 1.5m in height from the ground. The velocity 

contours for eight wind directions are shown in Figs. 3.20–3.22, for U10 of 10 m/s. The 

turbulence kinetic energy contour plots are shown in Figs. 3.23–3.26. Wind speeds observed 

between the building spaces are higher than in the surrounding area. Wind speeds observed 

around some buildings may be a reason for concern for pedestrians using these streets. Some 

of the wind speeds observed on the buildings’ sides may result in some degree of discomfort 

for pedestrians as shown in Table 3.3. 

3.6.4 Validation 

For the tallest building, a comparison analysis is done between the actual model and the 

predicted model (see Fig. 3.27). The comparison is done by carrying out a pedestrian-level 

wind velocity assessment in a CFD setting. The actual model is done by simulating a flight 

path of a drone on a computer. The simulated drone captured video footage of the building’s 

file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark23
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark25
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark26
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark27
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark23
file:///D:/All/phd_research/PAPER/thesis/January_defence/CHAPTER4.docx%23_bookmark28


120 
 

google earth 3D representation. The video is then used as input for a software application to 

convert the video into a set of discrete images. Then those images are used to generate a 3D 

model of the building. Due to the complex number of steps and the large file size that demands 

huge computational power, the drone flight simulation method can only be used for validation 

purposes. 

Overall, the predicted and actual models have similar CFD results in terms of wind velocity 

magnitude anticipated for a pedestrian-level comfort study (see Fig. 3.28). The simulation is 

carried out for wind in the x- direction (i.e., from left to right). In both models, increased wind 

speeds were observed on the east side of the buildings due to venturi and downwash effects. 

The north side of the predicted model misses a façade on the edge and that resulted in lower 

wind speed observation, in the middle of the north surface. But in reality, there is a slightly 

higher wind speed on the northern edge of the building as shown by the actual model. On the 

east side of the predicted model, a façade is also missing which resulted in a different wind 

speed than the actual. All these shortcomings are expected to improve when the good quality 

of images, LiDAR data and grid resolution are coupled with the use of a high-end advanced 

research computing facility following the workflow developed in this study. 

Conclusion 

A new framework is developed that integrates the autonomous urban topology generator with 

urban flow modelling. A new deep learning model for building footprints extraction from 

satellite imagery is developed and used to generate 3D building models by integrating it with 

Light Detection and Ranging (LiDAR) data to generate 3D building models. The 3D models 

are meshed and used in the CFD modelling modules. The entire process is explained through 
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an application example of urban flow modelling encountered during a pedestrian-level wind 

assessment. 

The U-Net-based deep learning algorithm achieved satisfactory accuracy. The model has also 

achieved a 3D building model with a LOD3 value. The advantage of the deep learning model 

is that it can be applied to a new set of input data to extract building footprints for autonomous 

applications. In addition, the model can be improved over time with minimum adjustments 

when more quality data is available. The deep learning method is promising because the model 

keeps improving over time when more data is available for training. 

The image segmentation part of the building 3D modelling workflow is critical to the 

autonomous concept since the deep learning model can be reused to predict a new set of images. 

The model can be adapted to image samples that are significantly different from the images on 

which it was trained with minimum training samples. The combination uses of images and 

point cloud data addressed the issues of roof structure modelling and most of the building 

facades are also captured with the workflow used. Since the buildings are classified one at a 

time, it would be more convenient if the collected testing images are georeferenced beforehand 

to make the workflow quicker. The resolution of the LiDAR data should always be of higher 

quality, as lower quality will cause some structures to not be complete. Especially, the roof 

structures are more affected by lower-quality point cloud resolution. The predicted building 

outline polygons can further be processed to achieve more refined edges. But this will be 

limited to the type of application that these polygons will be used as in some cases the extra 

processing seems to chop off critical details from the polygons. 

Although the model can accurately identify different building shapes, it still requires 

improvement to predict unique building shapes that are uncommon. The model needs 
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additional training to make a more accurate prediction of buildings which have various extra 

details placed on them. Also, when the number of buildings being predicted at a single moment 

increases, the model struggles to capture more details. This is mainly due to the limitation of 

the training set and computational requirements. But the workflow described in this thesis can 

be considered as a starting point for accurate and improved building model predictions at a city 

scale when quality training set is provided along with sufficient computational resources.  The 

accuracy of the final 3D model outcome of the buildings is also affected by the density of the 

LiDAR data. The absence of dense point cloud data has affected some details of the building 

models generated in this thesis. 

The autonomously generated 3D models are seamlessly integrated with the physics modelling 

to simulate turbulence flow in urban areas that are used among other applications for 

pedestrian-level wind assessment, thus, reducing the Engineering and Tech time-intensive 

manual computational model generation process. Similar approaches can be used for other 

urban flow and heat transfer modelling. 
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Chapter 4 

Simulating wind flow over complex terrain created by using LiDAR and SRTM  

Abstract 

Design wind loads on structures and wind power generation depend, among other factors, on 

the velocity profile and turbulence characteristics of the upcoming wind. These, in turn, depend 

on the roughness and general configuration of the upstream topography. It has been reported 

that wind speeds could double in hilly areas  at 10 m height above ground. A few national (such 

as US, Canada, Australia/New Zealand’s (AS/NZ)) codes take topography complexities into 

account to some extent. These codes of practice typically assume simplified upstream 

topography conditions of a homogeneous roughness or provide explicit corrections in the form 

of speed-up only for a limited number of specific topographies such as a single hill, valley, or 

escarpment. In this study accurate CFD models by using high resolution LiDAR data and 

publicly available Shuttle Radar Topography Mission (SRTM) in Geographic Tagged Image 

File Format (GeoTIFF) data is developed. Impact of geometric modelling accuracy is 

discussed. Speed-up factors for cases that are not covered in building codes and standards, such 

as complex terrain, are generated via a Computational Fluid Dynamics (CFD).  

Keywords: Wind speed-up, CFD, LiDAR, SRTM, complex terrain 
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4.1 Introduction  

Modelling wind flow over complex terrain is an integral part of wind energy resource 

assessment and wind load evaluation for structures. The modifications in wind flow due to 

topography are usually reported in a factor called “speed-up”, which represents the relative 

increase/decrease in wind speed (mean) in comparison with the incoming wind speed (mean) 

that is not affected by the terrain, measured at a similar height from the ground. There are 

several parameters that affect speed-up including geometric parameters such as slope, height, 

distance from the crest (or bottom), three or two dimensionality, number of hills/valleys; and 

ground roughness usually presented as roughness length (z0). Wind flows over hills, for 

example, are significantly accelerated even when the maximum slopes are quite small as shear 

in the approaching wind amplifies the wind speed (Jackson and Hunt, 1975). For example, a 

20% hill slope could result in a 1.5 speed-up (Belcher and Hunt, 1998). The other parameter 

that needs to be looked at is the turbulence, which is significantly affected by the terrain, 

especially in flow separation zones such as at the edges of the mountains and in the wake 

regions. (Wood, 1995) reported that for two-dimensional hills, 0.31 can be assumed to be the 

critical slope for flow separation and 0.63 in the three-dimensional case.  Such changes in the 

mean wind speed (i.e. speed-up) and turbulence characteristics must be quantified as accurately 

as possible for design wind loading calculations in order to design the most economic and safe 

structures. There have been efforts by several researchers to study the wind flow over hills and 

complex terrain using theoretical models, wind tunnel studies and more recently on 

computational fluid dynamics (CFD) models.  

Theoretical Models: (Jackson and Hunt, 1975) presented an analytical solution for the flow of 

a turbulent boundary layer on a uniformly rough surface over a two-dimensional hump with 

low curvature, e.g. a low hill. (Mason and Sykes, 1979) expanded the two-dimensional theory 

of (Jackson and Hunt, 1975) for turbulent flow over a shallow ridge to three-dimensional 
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topography. (Walmsley et al., 1980) presented MS3DJH - a computer model for the study of 

neutrally stratified boundary-layer flow over isolated hills of moderate slope. (Walmsley et al., 

1982) studied the effects of small-scale topographic features on their theoretical model 

prediction. (Taylor et al., 1983) developed the MS3DJH to allow for the use of terrain-

dependent length and velocity scales and solutions for the velocity perturbation field. (Taylor 

et al., 1987) developed guidelines based on linear models which have been adopted by the 

AS/NZ code. These guidelines were modified by (Weng et al., 2000) to incorporate the effects 

of surface roughness and non-linearity on speed-up. (Taylor et al., 1986) presented a review of 

boundary-layer flow over low hills in an attempt to summarize some of the experiments that 

have been conducted over such terrain. (Lemelin et al., 1988) presented simple empirical 

approximations for speed-up over hills by using the computer models presented by (Taylor et 

al., 1986) and augmenting them with wind tunnel data for steep slope cases. These established 

empirical formulae were the basis of the provisions of the National Building Code of Canada 

(NBCC, 1995). It should be noted that these provisions have also been used by the American 

Wind Loading Standard (ASCE 7 – 2002) in all its recent editions (ASCE 7- 2022). In a review 

of the mechanisms that control neutrally stable turbulent boundary-layer flow over hills and 

waves, (Belcher and Hunt, 1998) compared calculations based on various analytical and 

computational models with each other and with relevant experimental data. (Pinard and 

Wilson, 1999) presented a computer model for wind flow over mesoscale mountainous terrain 

applied to the yukon. While Microscale models are steady state and are built for small domain 

sizes, i.e. less than 10 km, mesoscale models are fully time-dependent and are for domains of 

the order 10 to 2000 km. 

Building codes and standards: Wind standards and codes of practice (e.g., ASCE for the US 

and NBC of Canada) provide very useful explicit corrections in the form of speed-up for only 

a limited number of specific topographies, such as single hills, valleys or escarpments. There 
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are no provisions for complex terrain modifications or speed-up factors. For more complex 

situations, the practitioner is referred to physical simulations in a BLWT. These codes do not 

include topographically generated features such as: (a) funneling effects in valleys or in 

between hills, (b) corner effects along the foot of mountains and hills, (c) vortex formation 

behind steep terrain, and (d) other effects such as wind speed-up above short buildings and 

wind speed-up between tall buildings.   

Wind tunnel and field measurement: (Miller and Davenport, 1998) provided guidelines for the 

wind speed-up evaluation over complex two dimensional surfaces based on a wind tunnel 

study. (Ishihara, 1999) presented the results of measurements of wind speed over a circular hill 

with a maximum slope of about 62.5%. (Cao and Tamura, 2007) studied the roughness blocks 

effect on the atmospheric boundary layer flow over a two dimensional low hill with and without 

a sudden roughness change. The effects of the roughness blocks were clarified by comparing 

the flow characteristics over hill models, with emphasis on wind speed-up and turbulence 

structure. Adding or removing roughness blocks on the hill surface or inflow area changes the 

velocity deficit and creates a completely different turbulence structure in the wake. (Lubitz and 

White, 2007) presented a wind tunnel and field investigation of the effect of local wind 

direction on speed-up over hills. Other wind tunnel investigations include: (Armitt et al., 1975), 

(Arya et al., 1987), (Finnigan et al., 1990), (Gong and Ibbetson, 1989), (Snyder and Britter, 

1987), (Ferreira et al., 1995), (Carpenter, 1999), (Athanassiadou and Castro, 2001), (Ayotte 

and Hughes, 2004). Some of the field experiments include (Coppin et al., 1994) and (Castro et 

al., 2003). (Savory et al., 2008) presented a comparison between field results and a design code 

for wind-induced transmission tower foundation loads.  

Computational fluid dynamics: Recently, numerical models based on (CFD) principles have 

been used to evaluate speed-ups for those cases that are not covered by wind design standards 

and codes of practice. (Bitsuamlak et al., 2004) performed a comparative study of NBCC code, 
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analytical, numerical and experimental (both wind tunnel and field approaches). Analytical 

models based on linear models were agreeing well with experimental data for shallow hills but 

deviate for steep hills. Numerical work based on k-epsilon establishing the modifications of 

wind flow over isolated hills, escarpments, valleys and complex terrains showed good 

agreement on upstream side, but on the leeward side may lead to problematic predictions 

(Bitsuamlak et al., 2004). (Bitsuamlak et al., 2006) adopted a CFD based method to evaluate  

speed-up for various hill and valley, and multiple hill configurations including ground 

roughness effects, their results comparing well with boundary layer wind tunnel (BLWT) data. 

(Bitsuamlak et al., 2007) then presented a combined numerical–neural network (NN) approach 

to provide speed-up ratios for a wide range of topographic features such as single and multiple 

hills, escarpments, and valleys. The combined approach was able to produce speed-up values 

were consistent with detail CFD model results, but responsive to simple geometrical inputs and 

roughness length provided by the user. These studies were limited to evaluating the mean wind 

speed characteristics (i.e. speed-up). In the proposed study turbulence characteristics will be 

addressed. A workflow for numerically assessing wind flow over a complex terrain will be 

developed and the effect of the local geometry modelled both through high resolution LiDAR 

measurements and publicly available GoeTiff data will be investigated in this study. 
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Figure 4. 1  Wind flow over simple and complex terrains 
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4.2 Wind speed-up factors 

 

The National Building Code of Canada (NBCC, 2005) defines the speed-up factors in terms 

of speed-up ratio 𝛥𝑆  as follows: 

 𝜟𝑺 =
𝑽(𝒛)−𝑽𝟎(𝒛)

𝑽𝟎(𝒛)
                  Eq.4.1 

where V(z) is the velocity at height z above the local hill surface and V0(z) is the upstream 

reference velocity at same height z as explained in (Fig. 4.2). The following speed-up 

expression is given in the (NBCC, 2005) 

𝛥𝑆 =  𝛥𝑆𝑚𝑎𝑥(1-
/𝑥/

𝑘𝐿
)𝑒(−

𝛼𝑧

𝐿
)
  Eq.4.2 

in which ΔSmax is the maximum speed-up ratio (at the crest near the surface), x is the horizontal 

distance between the position of the consideration and the crest of the hill as shown in (Fig.4.2), 

k is a constant given in (Table 4.1).  L is the horizontal distance upwind between the crest of 

the hill and a position where the ground elevation is half the height of the hill (H), α is a decay 

coefficient representing the decrease in the speed-up with height. The values of ΔSmax and α 

depend on the shape of the hill (escarpment) and steepness of the topography. 

 

It is worthy to note that the (NBCC, 2005) has no provisions for complex terrain modifications 

or speed-up factors. While the National Building Code of Canada (NBCC) 2010 and NBCC 

2020 provide guidance on a wide range of topographic and geographic conditions, it is true that 

there may be complex terrain situations that are not specifically addressed by the code. 

However, the codes do provide guidance on appropriate design approaches and considerations 

for these situations. 
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However, it is important to note that building codes and standards are not intended to cover 

every possible scenario, and site-specific conditions may require additional design 

considerations. Architects, engineers, and builders must use their professional judgment and 

consider site-specific factors when designing and constructing buildings in complex terrain. 

This may involve conducting site-specific assessments and simulations to ensure that buildings 

are designed to withstand the expected wind loads and other natural hazards associated with 

complex terrain. The code provisions are for simple terrain, e.g., simple hills, ridges or 

escarpments. For more complex situations, the practitioner is referred to physical simulations 

in a boundary-layer wind tunnel. The standard does not include wind speed effects in rapidly 

varying terrain where roughness characteristics change significantly over short distances in 

comparison to typical overhead transmission line spans. This code does not include 

topographically generated features such as: (1) funnelling effects in valleys or in between hills, 

(2) corner effects along the foot of mountains and hills, (3) vortex formation behind steep 

terrain, and (4) other effects, such as, wind speed-up above short buildings and wind speed-up 

between tall buildings. 

 

Table 4. 1 Parameters for maximum speed-up over hills and escarpments (NBCC, 2005) 

shape of hill or escarpment  DSmax
 (*) α 

k 

x<0 x>0 

2-dimensional ridges (over valleys with negative H) 2.2 H/L 3 1.5 1.5 

2-dimensional escarpments 1.3 H/L 2.5 1.5 4 

3-dimensional axi-symmetrical hills 1.6 H/L 4 1.5 1.5 
(*) For H/L > 0.5, assume that H/L = 0.5 and substitute 2H for L  
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Figure 4. 2 Wind speed-up over hills and escarpments (NBCC, 2005) 

 

 

 

The objective of this project has been to develop an application guideline for evaluating wind 

speed-up due to various types of topographic changes and their effect on transmission line and 

tower and provide application examples. The guideline is developed based on speed-up 

information assembled from (i) building codes and standards (including but not limited to 

ASCE 7-2010, NBCC 2005, AS/NZ, 2002), (ii) published peer reviewed journal papers, (iii) 

new CFD simulations that are carried out as part of the present study. The guideline includes 

detailed code application examples on the wind speed-up factors for transmission line and 

tower configurations specified by WISMIG participant utilities to provide an understanding of 

the correct usage of the equations, charts, and tables. The application has been developed to 

cover overarching problems in topography effects such: (a) funneling effects in valleys or in 
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between hills, (b) corner effects along the foot of mountains and hills, (c) vortex formation 

behind steep terrain, and (d) other 3D effects. 

LiDAR: Accuracy of geometric modelling is important to reasonably model the flow by using 

CFD. To this effect, utilities have started collecting their own 3D maps by deploying the optical 

remote-sensing method known as LiDAR (light detection and ranging) uses laser energy to 

intensively sample the earth's topography and generate precise x, y, and z measurements 

(Wichmann et al., 2015). LiDAR, which is largely utilized in aerial laser plotting applications, 

is starting to gain popularity as a more affordable option to more established surveying methods 

like photogrammetry (Curcio et al., 2022). Software like ArcGIS can be used to organize, view, 

analyze, and distribute large point cloud collections produced by LiDAR. A data collection 

machine (such as an aeroplane, drone, car, or tripod), a laser scanning system, and GPS (Global 

Positioning System), are among the main hardware elements of a LiDAR system (inertial 

navigation system). LiDAR inertial system measures the roll, pitch, and direction of the LiDAR 

system. LiDAR is an active visual beam that moves along predetermined study paths while 

transmitting laser rays to a target (Wang et al., 2021). The LiDAR devices pick up and evaluate 

the beam bouncing from an object. To determine the distance between the device and the 

intended object, these devices keep an accurate time log from when the beam pulse left the 

system until it returned (Wang et al., 2022). The measurements of the range are converted into 

readings of the real three-dimensional points of the reflected object when united with the spatial 

data GPS. After the point cloud data collecting survey, the LiDAR data is further processed 

into extremely precise georeferenced 3D coordinates by looking at the beam time distance, 

beam angle, and GPS location. Point cloud systems' beam pulses bounce off of target bodies 

on and above the ground, including plants, structures, and other things (Means et al., 2000). 

There could be one or more returns from a single beam pulse that can be detected by the LiDAR 

device (Torre-Tojal et al., 2022). Any produced beam pulse that goes to a surface and contacts 
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various bouncing objects is scattered into as many returns as there are reflective surfaces. The 

most crucial return is the initial beam pulse, which will be connected to the highest point in the 

topography, such as the top of trees or buildings. Typically, for a ground surface, there will be 

one return registered by the LiDAR system. In addition to the x, y, and z spatial values, each 

point cloud contains intensity, a number of returns, return number, point classification values, 

GPS time, RGB (red, green and blue) values, scan direction and angle. Intensity is the return 

signal of the beam pulse that produced the point cloud (Song et al., 2002). The return number 

indicates the number of beam pulses reflected from various surfaces. It’s common to have up 

to five returns received depending on the reflective surface and the capacity of the beam-

scanning device to register such data. After the LiDAR data is post-processed, integer numbers 

are used to represent the point classification category of a specific point. The numbers can 

represent which class values like ground, vegetation, water and buildings the point belongs. If 

imagery data is collected during the point cloud survey, RGB data can be embedded in the 

point as an additional attribute. 

The Shuttle Radar Topography Mission (SRTM) data is a type of satellite data that was 

collected by a radar instrument aboard the Space Shuttle Endeavour in February 2000. The 

SRTM data consists of digital elevation models (DEMs) that cover almost all of the Earth's 

land surface, making it a valuable resource for a wide range of applications, including 

cartography, geology, hydrology, and environmental monitoring. The SRTM data is available 

for download from the USGS EarthExplorer website in GeoTIFF format, which is a file format 

that can store both image data and geospatial metadata. The SRTM GeoTIFF files contain 

elevation data rather than traditional optical or multispectral satellite imagery, which makes it 

a valuable resource for generating digital elevation models or other topographic products. 

GeoTIFF data: GeoTIFF (Geographic Tagged Image File Format) is an interchange format for 

extension of the TIFF(Tagged Image File Format) format, to support raster data georeferencing 
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capability (Ritter and Ruth, 1997). The TIFF imagery file format is used to store and transfer 

digital satellite imagery, scanned aerial images, elevation models, and scanned maps. A TIFF 

file embedding geographic information (latitude, longitude, map projection etc.) is called 

GeoTIFF (Mahammad and Ramakrishnan, 2003). GeoTIFF is in wide use in NASA earth 

science data systems. The geographic content supported in the GeoTIFF tag structure includes 

its cartographic projection, datum, and ground pixel dimension. Raster data users can save time 

and effort by using GeoTIFF format due to its platform-interoperability. Data providers benefit 

from the ease of generating GeoTIFF format imagery products at lower cost. 

The GeoTIFF in this research represented the SRTM data which contains elevation data. The 

United States Geological Survey (USGS) uses GeoTIFF data for satellite images. GeoTIFF is 

a file format that contains georeferencing information, which allows for the geographic 

positioning of the image data. This is important for satellite imagery, which is typically 

collected over large areas and needs to be precisely located in geographic space. The USGS 

maintains an extensive archive of satellite imagery in GeoTIFF format, which is used for a 

variety of purposes including land use and land cover mapping, environmental monitoring, and 

natural resource management. The GeoTIFF format is designed to store both image data and 

metadata that provides information about the geographic location and projection of the image. 

The metadata in a GeoTIFF file includes information such as the image's coordinate system, 

map projection, and spatial resolution. 

 

4.3 Numerical simulation methodology 

The following workflow is developed to simulate the wind flow over complex terrain as shown 

in Fig. 4.3. The overall workflow starts by collecting the necessary LiDAR and SRTM data. 

Then after creating the geometrical model that is used to define the computational model, 

proper boundary conditions are applied, and the Navier stokes equations are solved. Finally, 
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the wind flow simulation results are analyzed to generate for example speed-up values. Details 

of the workflow are discussed in this section further. 

 

Figure 4. 3 The overall workflow 

4.3.1 Topography CAD modelling 

The topographic information for the numerical simulation was extracted from satellite imagery 

and Shuttle Radar Topography Mission (SRTM) elevation data at 30-meter resolution from 

SRTM and LiDAR. The CAD models are the same size around 50 square KM. The 

computational domain is divided into millions of polyhedral grids at which the flow equations 

are solved. Different grid refinement stages were used to maintain computational efficiency 

while attaining acceptable numerical accuracy. To reduce the computational cost associated 

with the modelling of such a large domain, different control volumes were used. Northing and 

easting values are used to represent a location on the Earth's surface (Figure 4.4). Northing and 

easting values are typically expressed in meters, but they can be converted to kilometers by 

dividing by 1000.  The overall dimensions of the CD are 25 km streamwise, 15 km lateral, and 

6 km vertical. 

LiDAR & SRTM data 
collection

Create geometrical 
model

Wind flow 
simulation
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Figure 4. 4 Elevation contours used to generate the computational domain for the 

CFD simulation. 

 

 

Figure 4. 5 Computational domain with high-resolution grid on the bottom surface of 

Area 1-LiDAR. 
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Figure 4. 6 Computational domain with high-resolution grid on the bottom surface of 

Area 1-SRTM. 

 

 

Figure 4. 7 Computational domain with high-resolution grid on the bottom surface of 

Area 2-LiDAR. 
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Figure 4. 8 Computational domain with high-resolution grid on the bottom surface of 

Area 2-SRTM. 

 

4.3.2 Grid sensitivity analysis 

The grid sensitivity analysis was performed considering three different mesh grids, G1 

(12,639,907 cells), G2(19,339,060), and G3(24,739,056 cells) created for the East (900) wind 

direction. Around the target hill, fine grids were deployed with a resolution of 20 prism layers 

at a prism stretch of 1.3 and a total thickness set to 60m. The grid refinement ratio between G1 

and G2 was 1.53 and between G2 and G3 was 1.25. The grid refinement values are higher than 

the minimum recommended values (Boache, 1994). A wind velocity magnitude at the high hill 

of the topography from the ground surface to a height of 10m was chosen as comparing 

parameter. The relative difference between G1 and G2 is 11.8% and the relative difference 

between G2 and G3 is 0.91%, thus, G3 is chosen as the final grid solution. In the present 

simulation, the grid resolution in the vertical direction is 2.5 m for the first 10 m and increases 

gradually with height above 10m till 60m. To reduce the computational cost, associated with 

modelling such as a large domain, the horizontal resolution is set to 10 m. 
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Figure 4. 9 Empty computational domain 

4.3.3 Boundary conditions 

In this study, the terrain upwind of the target terrain; along with the wind direction, is 

categorized as flat terrain. The atmospheric boundary layer velocity and turbulence profile 

based on the Engineering Sciences Data Unit (ESDU) is implemented for the oncoming wind 

at the inlet corresponding to the wind speed of 10 m/s at 10 m above ground. The two lateral 

sides and the top surfaces of the computational domain are assigned symmetry conditions. The 

outlet has zero static pressure boundary and the ground plane as a no-slip rough wall is 

assigned.  

Atmospheric boundary layer (ABL) flow is imposed at the inlet of the domain where the 

velocity profile is described by the logarithmic law, which constitutes a vertical profile of the 

mean horizontal wind speed, turbulent kinetic energy K (m2/s2) and turbulence dissipation rate 

ε (m2/s3) (Richards and Norris, 2019) as shown the equations. 

 

𝒖(𝒛) =
𝒖∗

𝒌
𝒍𝒏 (

𝒛+𝒛𝟎

𝒛𝟎
)                                                 Eq.4.3                                                                       

𝑲 =
𝒖∗

𝟐

√𝑪𝝁
                                                        Eq.4.4                                                                                  
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  𝜺 =
𝒖∗

𝟑

𝒌(𝒛+𝒛𝟎)
                                                     Eq.4.5                                                                        

 

where the constants k=0.42 and 𝐶𝜇=0.09.  

4.3.4 Solver setup 

High-resolution, steady Reynolds-Averaged Navier-Stokes (RANS) governing equations with 

the Shear Stress Transport (SST) k- ω Low Reynolds Number Modelling (LRNM) (Menter, 

1994) turbulence closure is deployed to resolve the near-ground airflow. SST k-ω turbulence 

model has been widely used for flow near-wall resolution, adverse pressure gradient, and large 

flow separations (Kahsay et al., 2019), (Jubayer and Hangan, 2018). 2nd order discretization 

scheme was chosen for the convection terms. The Gauss-Siedel relaxation scheme was chosen 

for pressure, velocity, and k-ω turbulence parameters. The simulation was carried out at a full-

scale 1:1 ratio. The simulations were run using StarCCM+ v13.06.012 commercial package.  

4.3.5 Assessing ABL homogeneity in an empty Computational Domain (CD) 

This study involves a simulation of an empty CD in order to quantify the extent of ABL 

homogeneity at the inlet and near the study area where a velocity magnitude and turbulence 

intensity profiles computed between inlet, 5KM, 10KM, and 15KM as shown in Fig. 4.10. 
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Figure 4. 10 Empty computational domain 

 

4.4 Results and discussion 

The speed-up ratio is defined as (Ut(z)- U0(z))/U0(z)) where Ut(z) is the velocity at the 

topography at z height above the local ground and U0(z) is the velocity at the inlet (open profile) 

at z height above the local ground. Different simulations were performed to investigate the 

effect of a digital resolution of a CAD model extracted from LiDAR and SRTM. Two wind 

directions across (00) Northly wind and along (900) Easterly wind are chosen as comparison 

wind directions as shown in Fig. 4.11 and 4.15. The wind velocity magnitude at 10 m from the 

ground at the selected target area was chosen as a parameter for the comparison of the speedup 

and turbulent intensity as the wind speed at 10 m is widely used for designing structures.  

Fig. 4.11 and 4.12 show the velocity contour for the selected Area 1 for a wind direction of 00. 

In these contours the LiDAR image due to its high resolution to capture the high hills detail, 

higher velocities are observed in the target place, and down the hill of the target area, a large 

cavity wake is observed. 

The selected hill location is presented in topographic speedup contour as shown in Fig. 4.13.  
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Figure 4. 11 Area1 velocity contour of LiDAR image for a wind direction of 00 

 

The airflow velocity pattern near the ground varies between the LiDAR and SRTM images, 

this is mainly due to the resolution of the image captured and more roughness observed in the 

LiDAR image as illustrated in Fig. 4.11 and 4.12. Detail roughness near the surface topography 

affects the wind speed near the ground, which will have an effect on the boundary layer velocity 

profile. Thus, a higher speedup is observed as shown in Fig. 4.14. 
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Figure 4. 12 Area1 velocity contour of SRTM image for a wind direction of 00 

 

 

 

Figure 4. 13 Area1 speedup contour at 30 m from the ground for a wind direction of 

00 

 

 

a) Lidar DSM b) SRTM DSM 
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Figure 4. 14 Area1 speedup and turbulence intensity comparison between LiDAR and 

SRTM for wind direction of 00 

 

Speedup comparison at 10 m above the ground on the selected Area1 between LiDAR and 

SRTM data, the LiDAR shows an increment of 13% as shown in Fig. 4.14. However, the 

turbulence intensity of the LiDAR shows a decrement of 5%.  

LiDAR revealed more topographic details than SRTM. Considering the wind direction of 900 

towards the upstream a high hill is observed as the selected target hill as shown in Fig. 4.15. 

However, considering the SRTM data at the same location relatively a flattened hill is observed 

as shown in Fig. 4.16. Accordingly, a speedup comparison is performed at the selected hills as 

shown in Fig. 4.17 a topographic speedup contour. 
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Figure 4. 15 Area1 velocity contour of LiDAR image for a wind direction of 900 

 

 

Figure 4. 16 Area1 velocity contour of SRTM image for a wind direction of 900 
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Figure 4. 17 Area1 speedup contour at 30 m from the ground for a wind direction of 900 

For speedup comparison at 10 m above the ground on the selected Area1 between LiDAR and 

SRTM data, the LiDAR shows an increment of 14% but the turbulence intensity remains the 

same as shown in Fig. 4.18. Higher speedup is observed near the ground and decreases 

gradually to a height of 60 m above the ground. However, the turbulence intensity of the 

LiDAR and the SRTM almost shows the same. 

 

Figure 4. 18 Area1 speedup and turbulent intensity comparison between LiDAR and 

SRTM for wind direction of 900 

a) Lidar 
b) SRTM 
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In the upstream of the selected area, as shown in the velocity contour of Fig. 4.19, 4.20, 4.23 

and 4.24, the LiDAR image shows a rougher surface than the SRTM image as shown also in 

the topographic speedup contour of Fig. 4.21 and 4.25. 

 

Figure 4. 19 Area2 velocity contour of LiDAR image for a wind direction of 00 
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Figure 4. 20 Area2 velocity contour of SRTM image for a wind direction of 00 

 

 

Figure 4. 21 Area2 speedup contour at 30 m from ground for a wind direction of 00 

 

a) Lidar b) SRTM 
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Speedup comparison at 10 m above the ground on the selected Area2 between LiDAR and 

SRTM data, the LiDAR shows an increment of 12% as shown in Fig. 4.22. However, the 

turbulence intensity of the LiDAR shows a decrement of 4%. 

 

Figure 4. 22 Area2 speedup and turbulent intensity comparison between LiDAR and 

SRTM for wind direction of 00 

 

The topographic speedup contour of Fig. 4.25 shows that upstream of the selected target hill, 

the LiDAR image reveals rougher ground than the SRTM image, thus having an impact on the 

speedup of the selected target hill.  

 

Figure 4. 23 Area2 velocity contour of LiDAR image for a wind direction of 900 
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Figure 4. 24 Area2 velocity contour of SRTM image for a wind direction of 900 

 

 

  

Figure 4. 25 Area2 speedup contour at 30 m from the ground for a wind direction of 

900 

 

a) Lidar b) SRTM 
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Speedup comparison at 10 m above the ground on the selected Area2 between LiDAR and 

SRTM data, the LiDAR shows an increment of 14% as shown in Fig. 4.26. However, the 

turbulence intensity of the LiDAR shows a decrement of 10%. 

 

Figure 4. 26 Area2 speedup and turbulence intensity comparison between LiDAR and 

SRTM for wind direction of 900 

 

Conclusion 

A workflow for assessing wind flow over a complex terrain that uses advanced geometrical 

modelling has been developed. Particularly, this study provides a novel investigation of the 

image accuracy of LiDAR and SRTM to evaluate the speedup ratio. Thus, a detailed CFD 

simulation has been performed on selected two topographic areas. Considering the size of the 

topography, a grid sensitivity analysis and ABL flow homogeneity is done. A wind flow across 

and along the selected target hill is simulated and for all cases, a speedup ratio and turbulent 

intensity at 10 m from the ground are computed. Therefore, near the ground, the LiDAR 

topographical image shows a higher speedup ratio than the SRTM image, thus emphasizing the 

need for the use of more accurate geometrical modelling for assessing flows over complex 

terrain. Further, the developed 3D complex terrain flow application is useful to address 

overarching problems in topography effect studies such: (a) funneling effects in valleys or in 



157 
 

between hills, (b) corner effects along the foot of mountains and hills, (c) vortex formation 

behind steep terrain, and (d) other 3D effects. The developed workflows together with the 

provisions in Codes and Standards are expected to assist engineers/scientists while assessing 

wind loads and wind energy resource availability.   
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Chapter 5  

Conclusions and Recommendations 

5.1 Overview 

In this chapter, the main contributions, findings, and limitations of the research work are 

summarized. This research presented three studies that contribute to the autonomous geometry 

modelling and its application for micro-climate simulations. The main objective of this research 

is to develop automated site-specific 3D urban and complex terrain topology and micro-climate 

modelling for wind engineering and building science applications. The thesis explored different 

methods before eventually choosing the optimum technique for remote sensing data analysis. 

Machine learning and deep learning techniques were tested for building footprint feature 

extraction. The deep learning model was selected for further analysis due to its high efficiency. 

The resulting building footprint polygons were used to generate digital elevation model by 

integration with point cloud data for solar power potential assessment. LiDAR was also 

combined with 2D polygons to create 3D building models for PLW CFD analysis. Also, a 

comparison of a satellite image-based model and LiDAR based complex terrain wind flow 

analysis was carried out. 

5.2 Chapter 2: A deep learning model-based building footprint polygon extraction for a 

GIS-based Solar power potential estimation 

In this chapter of the research, autonomous building footprint polygon extraction method was 

successfully developed. The deep learning technique achieved an improved result over 

traditional machine learning algorithms such as random trees, SVM object-based classification, 

maximum likelihood. The advantage of the deep learning model is that it can be applied to a 

new set of input image data to extract building footprint polygons for autonomous applications 

once it’s trained. In addition, the model can be improved over time with minimum adjustments 
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when quality data is available. Although it is recommended to deep learning and provides a 

higher accuracy result over machine learning techniques, it still requires upgrading and to 

continuously learn with new data to predict unique building forms that are unusual. In addition, 

when the number of buildings being predicted at a single moment surge, the model struggles 

to capture specifics. This is mainly due to the limitation of the training set and computational 

requirements and hence it will perform better with more training data. 

By combining the extracted residential building footprint polygons with LiDAR generated 

DSM, it was possible to automate the calculation of household solar panel estimation.  

Constraints such as removing rooftops with a slope of more than 45˚, north-facing buildings 

were implemented.  The solar power potential estimation can be scaled to include entire 

neighborhoods as long as high-density LiDAR data is available. But most importantly, the 

application of machine learning to extract the residential house’s polygon area used for the 

solar panel calculation paved the way for a more robust and automated workflow. 

 

5.3 Chapter 3: Autonomous urban topology generation for urban flow modelling 

In this part, a new framework is developed that integrates the autonomous urban topology 

generator with urban flow modelling. A deep learning model for building footprints extraction 

from satellite imagery is developed and used to generate 3D building models by integrating it 

with Light Detection and Ranging (LiDAR) data to generate 3D building models. The 3D 

models are meshed and used in the CFD modelling modules. The entire process is explained 

through an application example of urban flow modelling encountered during a pedestrian-level 

wind assessment. The U-Net-based deep learning algorithm achieved a 3D building model with 

a LOD3 value. The image segmentation part of the building 3D modelling workflow is critical 

to the autonomous concept since the deep learning model can be reused to predict a new set of 
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images. The model can be adapted to image samples that are significantly different from the 

images on which it was trained with minimum training samples. The combination uses of 

images and point cloud data addressed the issues of roof structure modelling and most of the 

building facades are also captured with the workflow used.  

Since the buildings are classified one at a time, it would be more convenient if the collected 

testing images are georeferenced beforehand to make the workflow quicker. The resolution of 

the LiDAR data should always be of higher quality, as lower quality will cause some structures 

to not be complete. Especially, the roof structures are more affected by lower-quality point 

cloud resolution. The predicted building outline polygons can further be processed to achieve 

more refined edges. But this will be limited to the type of application that these polygons will 

be used as in some cases the extra processing seems to chop off critical details from the 

polygons. Although the model can accurately identify different building shapes, it still requires 

improvement to predict unique building shapes that are uncommon. The model needs 

additional training to make a more accurate prediction of buildings which have various extra 

details placed on them. The accuracy of the final 3D model outcome of the buildings is also 

affected by the density of the LiDAR data. The absence of dense point cloud data has affected 

some details of the building models generated in this thesis. The autonomously generated 3D 

models are seamlessly integrated with the physics modelling to simulate turbulence flow in 

urban areas that are used among other applications for pedestrian-level wind assessment, thus, 

reducing the Engineering and Tech time-intensive manual computational model generation 

process.  

In chapter 2, the deep learning model was trained on satellite images that represent the top view 

of residential buildings. The parameters used for the neural network training were adjusted and 

fine tuned based on the type of buildings that are predicted. A separate deep learning model 

was used in Chapter 3 that was trained on satellite images of high rise buildings in a downtown 
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urban setting. The model underwent various modifications through various parameter tuning 

procedures to fit the type of input data. While the 2D polygons from the deep learning model 

in Chapter 2 were used for the solar power potential estimation, the model from Chapter 3 was 

used to generate 3D building models as part of an autonomous workflow for pedestrian level 

wind assessment. 

5.4 Chapter 4: Modelling wind flow over complex terrain generated by using LiDAR and 

SRTM  

In this section, a workflow for assessing wind flow over a complex terrain that uses advanced 

geometrical modelling has been developed. The chapter investigated the data accuracy of 

LiDAR and SRTM to evaluate the speedup ratio. A CFD simulation has been performed on 

selected two topographic areas. A grid sensitivity analysis and ABL flow homogeneity is also 

done. A wind flow across and along the selected target hill is simulated and for all cases, a 

speedup ratio and turbulent intensity at 10 m from the ground are computed.  

The LiDAR topographical image shows a higher speedup ratio than the SRTM image near the 

ground. This emphasized the need for the use of more accurate geometrical modelling for 

assessing flows over complex terrain. The developed 3D complex terrain flow application is 

useful to address funneling effects in valleys or in between hills, corner effects along the foot 

of mountains and hills, vortex formation behind steep terrain, and other 3D effects.  

5.5 Limitations of the thesis 

Although the deep learning model can accurately identify different building shapes, it still 

requires improvement to predict unique building shapes that are uncommon. The model needs 

additional training to make a more accurate prediction of buildings which have various extra 

details placed on them. Also, when the number of buildings being predicted at a single moment 

increases, the model struggles to capture more details. This is mainly due to the limitation of 

the training set and computational capacity requirements. But the workflow described in this 
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thesis can be considered as a starting point for accurate and improved building model 

predictions at a city scale when quality training set is provided along with sufficient 

computational resources. The accuracy of the final 3D model outcome of the buildings is also 

affected by the density of the LiDAR data. The absence of dense point cloud data has affected 

some details of the building models generated in this thesis. Overall, computational capacity 

limitation was one of the main challenges throughout the thesis. 

5.6 Future Research Directions 

• The deep learning approach has the potential to be applied to different data types in 

addition to urban geometric information, such as material types to include modelling of 

energy and thermal performance of buildings and neighbourhood.  

Deep learning can be applied for modelling the energy and thermal performance of 

buildings in several ways.  

Predicting energy consumption: Deep learning can be used to predict the energy 

consumption of a building by analyzing historical energy consumption data and other 

relevant parameters such as outdoor temperature, occupancy, and building 

characteristics. This can help building managers optimize energy usage and reduce 

costs. 

Fault detection and diagnosis: Deep learning can be used to detect and diagnose faults 

in building systems, such as HVAC systems, by analyzing sensor data from the 

building. This can help identify inefficiencies and prevent energy waste. 

Building envelope optimization: Deep learning can be used to optimize the design of 

building envelopes, such as walls, roofs, and windows, for thermal performance. This 

can help reduce energy consumption and improve indoor comfort. 

Indoor air quality prediction: Deep learning can be used to predict indoor air quality 

based on various parameters such as occupancy, outdoor air quality, and ventilation 
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rates. This can help building managers optimize ventilation rates and maintain a healthy 

indoor environment. 

• Similar approaches like autonomously generated 3D models integrated with more 

complex transient  physics modelling to simulate turbulence effects in urban areas and 

for handling urban heat transfer modelling. 

Autonomously generated 3D building models can be used for complex transient physics 

modelling to simulate turbulence effects in urban areas and for handling urban heat 

transfer modelling in the following ways: 

Creating accurate geometry: Autonomously generated 3D building models can provide 

accurate representations of the geometry of urban areas, including building heights, 

shapes, and orientations. This information is critical for modelling complex transient 

physics such as turbulence effects and urban heat transfer. 

Generating meshes: The 3D building models can be used to generate meshes for 

numerical simulations, which are essential for solving the equations that govern fluid 

flow and heat transfer. The meshes can be generated automatically, reducing the time 

and effort required for meshing. 

Simulating turbulence effects: The 3D building models can be used to simulate 

turbulence effects in urban areas. This includes modelling the interactions between the 

airflow and the buildings, which can have a significant impact on the urban heat transfer 

and energy consumption. 

Handling urban heat transfer modelling: The 3D building models can be used to model 

the heat transfer in urban areas, including radiation, conduction, and convection. This 

allows for the analysis of urban heat island effects and the development of strategies to 

mitigate them. 

• Interior scans can also be developed for natural ventilation applications. 
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Assessing natural ventilation potential: Interior scans can provide detailed information 

about the layout and features of a building, such as the location and size of windows, 

doors, and vents. This information can be used to assess the potential for natural 

ventilation, by simulating airflows and identifying areas with the best potential for air 

movement. 

Optimizing ventilation strategies: Interior scans can also be used to optimize natural 

ventilation strategies. For example, by simulating airflows in a building, it is possible 

to determine the most effective locations for vents and windows to maximize air 

movement and ventilation efficiency. 

Designing HVAC systems: Interior scans can be used to design HVAC systems that 

complement natural ventilation strategies. By simulating airflows and analyzing 

ventilation patterns, it is possible to design HVAC systems that provide additional air 

movement where natural ventilation is insufficient, or to optimize the use of HVAC 

systems to work in conjunction with natural ventilation. 

Predicting indoor air quality: Interior scans can also be used to predict indoor air quality 

based on natural ventilation strategies. By simulating airflows and analyzing the 

movement of pollutants, it is possible to predict the impact of natural ventilation on 

indoor air quality and identify areas that may require additional ventilation or air 

purification measures. 
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Appendix 

Appendix A: LiDAR and image processing 

A1: Morphological filter algorithm (Phyton Scripts) 

Import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

img = cv2.imread('png.png', cv2.IMREAD_GRAYSCALE) 

_, mask = cv2.threshold(img, 100, 200, cv2.THRESH_BINARY_INV) 

kernel = np.ones((2,2), np.uint8) 

erosion = cv2.erode(mask, kernel, iterations=1) 

dilation = cv2.dilate(mask, kernel, iterations=20) 

titles = ['image', 'mask', 'erosion', 'dilation'] 

images = [img, mask, erosion, dilation] 

for i in range(4): 

    plt.subplot(2, 2, i+1), plt.imshow(images[i], 'gray') 

    plt.title(titles[i]) 

    plt.xticks([]), plt.yticks([]) 

plt.show() 

A2: The clip LiDAR to polygon algorithm 

import os 

from WBT.whitebox_tools import WhiteboxTools 

wbt = WhiteboxTools() 

wbt.work_dir = os.path.dirname(os.path.abspath(__file__)) 

wbt.clip_lidar_to_polygon ( i="TD2.las",  polygons="TD.shp", 

    output="buildings.las", ) 

A3: Point cloud ground filtering algorithm 

Python function: 

wbt.lidar_ground_point_filter( 

    i,  
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    output,  

    radius=2.0,  

    min_neighbours=0,  

    slope_threshold=45.0,  

    height_threshold=1.0,  

    classify=True,  

    slope_norm=True,  

    height_above_ground=False,  

    callback=default_callback 

) 

Command-line interface: 

>>./whitebox_tools -r=LidarGroundPointFilter -v ^ 

--wd="/path/to/data/" -i="input.las" -o="output.las" ^ 

--radius=10.0 --min_neighbours=10 --slope_threshold=30.0 ^ 

--height_threshold=0.5 --classify --slope_norm 

A4: Software used 

OSS – Open Source Software 

OAS – Open Access Software 

whitebox-1.3.0 version tool package is installed on Python 3.8 

Scholars GeoPortal: is a search and discovery tool for extracting geospatial data. Ontario 

University students, faculty, and researchers can easily search, discover, map, share, and 

download geospatial data. 

A5: VGG Image Annotator(VIA) 

VGG Image Annotator is a simple and standalone manual annotation tool for images, audio 

and video. This is a light weight, standalone and offline software package that does not require 

any installation or setup and runs solely in a web browser. The VIA software allows human 

annotators to define and describe spatial regions in images or video frames, and temporal 

segments in audio or video. These manual annotations can be exported to plain text data formats 
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such as JSON and CSV and therefore are amenable to further processing by other software 

tools. VIA also supports collaborative annotation of a large dataset by a group of human 

annotators. The BSD open source license of this software allows it to be used in any academic 

project or commercial application. 

A6: Code for converting JSON files into image masks 

Import  json 

import os 

import numpy as np 

import PIL.Image 

import cv2 

import matplotlib.pyplot as plt 

with open("eight.json", "r") as read_file: 

    data = json.load(read_file) 

all_file_names=list(data.keys()) 

Files_in_directory = [] 

for root, dirs, files in os.walk("eight"): 

    for filename in files: 

        Files_in_directory.append(filename)    

for j in range(len(all_file_names)):  

    image_name=data[all_file_names[j]]['filename'] 

    if image_name in Files_in_directory:  

         img = np.asarray(PIL.Image.open('eight/'+image_name)) 

    else: 

        continue 

    if data[all_file_names[j]]['regions'] != {}: 

        #cv2.imwrite('images/%05.0f' % j +'.jpg',img) 

        print(j) 

        try:  

             shape1_x=data[all_file_names[j]]['regions']['0']['shape_attributes']['all_points_x'] 

             shape1_y=data[all_file_names[j]]['regions']['0']['shape_attributes']['all_points_y'] 

        except :  

             shape1_x=data[all_file_names[j]]['regions'][0]['shape_attributes']['all_points_x'] 

             shape1_y=data[all_file_names[j]]['regions'][0]['shape_attributes']['all_points_y'] 

        fig = plt.figure() 

        plt.imshow(img.astype(np.uint8))  

        plt.scatter(shape1_x,shape1_y,zorder=2,color='red',marker = '.', s= 55) 

        ab=np.stack((shape1_x, shape1_y), axis=1) 

        img2=cv2.drawContours(img, [ab], -1, (255,255,255), -1) 

        mask = np.zeros((img.shape[0],img.shape[1])) 

        img3=cv2.drawContours(mask, [ab], -1, 255, -1) 

        cv2.imwrite('eightmask/%05.0f' % j +'.png',mask.astype(np.uint8)) 

import os 

path = os.chdir("D:\\All\\phd research\\THESIS\\thesis 

2\\binary_mask_from_json\\eightmask") 
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i = 13 

for file in os.listdir(path): 

    new_file_name = "{}.png".format(i) 

    os.rename(file, new_file_name) 

    i=i+1 

import PIL 

import os 

from PIL import Image 

f = r"D:\\All\\phd research\\THESIS\\thesis 2\\binary_mask_from_json\\eightmask" 

os.listdir(f) 

for file in os.listdir(f): 

    f_img = f+"/"+file 

    img = Image.open(f_img) 

    img = img.resize((256,256)) 

    img.save(f_img) 

f = r"D:\\All\\phd research\\THESIS\\thesis 2\\binary_mask_from_json\\eight" 

os.listdir(f) 

for file in os.listdir(f): 

    f_img = f+"/"+file 

    img = Image.open(f_img) 

    img = img.resize((256,256)) 

    img.save(f_img) 

A7: RGB to grayscale 

OutputFolder='D:\All\phdresearch\THESIS\thesis2\matlab_deep 

learning\wall_segmentation\data\traingray';  % Set as needed [EDITED] 

dinfo = dir('*.png');% image extension 

for K = 1 : length(dinfo) 

  thisimage = dinfo(K).name; 

  Img   = imread(thisimage); 

  Y     = imshow(Img); 

  Gray  = rgb2gray(Img); 

  imwrite(Gray, fullfile(OutputFolder, thisimage));  % [EDITED] 

end 

A8: Deep learning image segmentation code 

dataFolder  = fullfile('data'); 

imageDir = fullfile(dataFolder,'traingray'); 

labelDir = fullfile(dataFolder,'masks'); 
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numObservations = 4; 

trainImages = repelem({imageDir},numObservations,1); 

trainLabels = repelem({labelDir},numObservations,1); 

classNames = ["building","background"]; 

labelIDs   = [255 0]; 

imds = imageDatastore(trainImages); 

pxds = pixelLabelDatastore(trainLabels,classNames,labelIDs); 

trainingData = combine(imds,pxds); 

data = read(trainingData); 

I = data{1}; 

C = data{2}; 

B = labeloverlay(I,C); 

imshow(B) 

augmentedTrainingData = transform(trainingData,@jitterImageColorAndWarp); 

size(alldata) 

data = readall(augmentedTrainingData); 

rgb = cell(numObservations,1); 

for k = 1:numObservations 

    I = data{k,1}; 

    C = data{k,2}; 

    rgb{k} = labeloverlay(I,C); 

end 

montage(rgb) 

imageSize = [256 256]; 

numClasses = 2; 

lgraph = unetLayers(imageSize, numClasses) 

lgraph.Layers 
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targetSize= [144 144]; 

preprocessedTrainingData = transform(augmentedTrainingData,... 

    @(data)centerCropImageAndLabel(data,targetSize)); 

data=readall(preprocessedTrainingData); 

rgb = cell(numObservations,1); 

for k = 1:numObservations 

    I = data{k,1}; 

    C = data{k,2}; 

    rgb{k} = labeloverlay(I,C); 

end 

montage(rgb) 

alldata=combine(trainingData,augmentedTrainingData); 

val_img="data\valimggray"; 

val_mask="data\val_masks"; 

valimgids=imageDatastore(val_img); 

valclassNames = ["building","background"]; 

vallabelIDs   = [255 0]; 

valpxds = pixelLabelDatastore(val_mask,valclassNames,vallabelIDs); 

valData = combine(valimgids,valpxds); 

checkpointPath = pwd; 

options = trainingOptions('adam', ... 

    'InitialLearnRate',1e-3, ... 

    'MaxEpochs',30, ... 

    'Shuffle','every-epoch', ... 

    'MiniBatchSize',4, ... 

    'VerboseFrequency',50, ... 

    'Plots','training-progress', ... 
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    'ValidationData',valData, ... 

    'CheckpointPath',checkpointPath); 

 

net = trainNetwork(alldata,lgraph,options) 

alldata9694=net 

save alldata9694 

netaugment = trainNetwork(augmentedTrainingData,lgraph,options) 

netaugment_30e_3lr_adam=netaugment 

save netaugment_30e_3lr_adam   

netaugmented2 = trainNetwork(preprocessedTrainingData,lgraph,options) 

net.Layers 

a=dir(["data\traingray\*.png"]) 

out=size(a,1) 

load('net_checkpoint__2700__2021_09_20__22_17_01.mat','net') 

checkpointPath = pwd; 

options = trainingOptions('adam', ... 

    'InitialLearnRate',1e-3, ... 

    'MaxEpochs',1, ... 

    'Shuffle','every-epoch', ... 

    'MiniBatchSize',4, ... 

    'VerboseFrequency',1, ... 

    'Plots','training-progress', ... 

    'ValidationData',valData, ... 

    'CheckpointPath',checkpointPath); 

net1 = trainNetwork(trainingData,layerGraph(net),options) 

Burbax=net; 

save Burbax 
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testImage=imread('18_gs.jpg'); 

 

testImage=imresize(testImage,[256 256]) 

imwrite(testImage,'wow.png') 

testImage=imread('wow.PNG'); 

imshow(testImage) 

C=semanticseg(testImage,net); 

B=labeloverlay(testImage,C); 

imshow(B) 

testImage=imread('predictbuilding.PNG'); 

testImage=imresize(testImage,[256 256]) 

imwrite(testImage,'wow1.png') 

testImage=imread('wow1.PNG'); 

imshow(testImage) 

C=semanticseg(testImage,net); 

B=labeloverlay(testImage,C); 

imshow(B) 

 

A9: Testing results for the deep learning model 

cd'D:\All\phdresearch\THESIS\thesis2\matlab_deeplearning\wall_segmentation\data\single_

color' 

OutputFolder='D:\All\phdresearch\THESIS\thesis2\matlab_deeplearning\wall_segmentation

\data\singletest';   

dinfo = dir('*.png');% image extension 

for K = 1 : length(dinfo) 

  thisimage = dinfo(K).name; 

  Img   = imread(thisimage); 

  Y     = imshow(Img); 
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  Gray  = rgb2gray(Img); 

  imwrite(Gray, fullfile(OutputFolder, thisimage));   

end 

cd 'D:\All\phd research\THESIS\thesis 2\matlab_deep learning\wall_segmentation' 

dataFolder  = fullfile('data'); 

testImagesDir = fullfile(dataFolder,'singletest'); 

testLabelsDir = fullfile(dataFolder,'singlemask'); 

imds = imageDatastore(testImagesDir); 

classNames = ["building","background"]; 

labelIDs   = [255 0]; 

pxdsTruth = pixelLabelDatastore(testLabelsDir,classNames,labelIDs); 

net = load('Burbax9688.mat'); 

net = net.net; 

pxdsResults = semanticseg(imds,net,"WriteLocation",'data\single_output') 

Running semantic segmentation network 

------------------------------------- 

* Processed 10 images. 

pxdsResults =  

  PixelLabelDatastore with properties: 

 

                       Files: {10×1 cell} 

                  ClassNames: {2×1 cell} 

                    ReadSize: 1 

                     ReadFcn: @readDatastoreImage 

    AlternateFileSystemRoots: {} 

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth); 

Evaluating semantic segmentation results 

---------------------------------------- 

* Selected metrics: global accuracy, class accuracy, IoU, weighted IoU, BF score. 

*Processed 10 images. 

*Finalizing... Done. 

*Data set metrics: 

 

    GlobalAccuracy    MeanAccuracy    MeanIoU    WeightedIoU    MeanBFScore 
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    ______________    ____________    _______    ___________    ___________ 

 

       0.98838                          0.98069             0.97053               0.97699        0.92372   

A10: Prediction results samples 

load Burbax9688.mat 

testImage=imread('data\single_color\4.PNG'); 

imshow(testImage) 

C=semanticseg(testImage,Burbax9688); 

B=labeloverlay(testImage,C); 

imshow(B) 

BW = C == 'building'; 

figure 

imshow(BW) 

testImage=imread('data\single_color\5.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,Burbax9688); 

B=labeloverlay(testImage,C); 

imshow(B) 

BW = C == 'building'; 

figure 

imshow(BW) 

testImage=imread('data\single_color\6.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,Burbax9688); 

B=labeloverlay(testImage,C); 

imshow(B) 
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BW = C == 'building'; 

figure 

imshow(BW) 

testImage=imread('data\single_color\7.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,Burbax9688); 

B=labeloverlay(testImage,C); 

imshow(B) 

BW = C == 'building'; 

figure 

imshow(BW) 

testImage=imread('data\single_color\8.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,Burbax9688); 

B=labeloverlay(testImage,C); 

imshow(B) 

BW = C == 'building'; 

figure 

imshow(BW) 

testImage=imread('data\single_color\9.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,Burbax9688); 

B=labeloverlay(testImage,C); 

imshow(B) 
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BW = C == 'building'; 

figure 

imshow(BW) 

testImage=imread('data\single_color\10.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,Burbax9688); 

B=labeloverlay(testImage,C); 

imshow(B) 

BW = C == 'building'; 

figure 

imshow(BW) 

testImage=imread('data\single_color\11.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,Burbax9688); 

B=labeloverlay(testImage,C); 

imshow(B) 

BW = C == 'building'; 

figure 

imshow(BW) 

testImage=imread('data\single_color\12.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,Burbax9688); 

B=labeloverlay(testImage,C); 

imshow(B) 
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BW = C == 'building'; 

figure 

imshow(BW) 

testImage=imread('data\single_color\13.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,Burbax9688); 

B=labeloverlay(testImage,C); 

imshow(B) 

BW = C == 'building'; 

figure 

imshow(BW) 

A11: Binary mask extraction code for lower height buildings 

import json 

import os 

import numpy as np 

import PIL.Image 

import cv2 

import matplotlib.pyplot as plt 

with open("homeval.json", "r") as read_file: 

    data = json.load(read_file) 

all_file_names=list(data.keys()) 

Files_in_directory = [] 

for root, dirs, files in os.walk("valimggray"): 

    for filename in files: 

        Files_in_directory.append(filename) 

for j in range(len(all_file_names)):  



183 
 

    image_name=data[all_file_names[j]]['filename'] 

    if image_name in Files_in_directory:  

         img = np.asarray(PIL.Image.open('valimggray/'+image_name)) 

    else: 

        continue 

    if data[all_file_names[j]]['regions'] != {}: 

        #cv2.imwrite('images/%05.0f' % j +'.jpg',img) 

        print(j) 

        try:  

             shape1_x=data[all_file_names[j]]['regions']['0']['shape_attributes']['all_points_x'] 

             shape1_y=data[all_file_names[j]]['regions']['0']['shape_attributes']['all_points_y'] 

        except :  

             shape1_x=data[all_file_names[j]]['regions'][0]['shape_attributes']['all_points_x'] 

             shape1_y=data[all_file_names[j]]['regions'][0]['shape_attributes']['all_points_y'] 

        fig = plt.figure() 

        plt.imshow(img.astype(np.uint8))  

        plt.scatter(shape1_x,shape1_y,zorder=2,color='red',marker = '.', s= 55) 

        ab=np.stack((shape1_x, shape1_y), axis=1) 

        img2=cv2.drawContours(img, [ab], -1, (255,255,255), -1) 

        mask = np.zeros((img.shape[0],img.shape[1])) 

        img3=cv2.drawContours(mask, [ab], -1, 255, -1) 

        cv2.imwrite('valimggraymask/%05.0f' % j +'.png',mask.astype(np.uint8)) 

import os 

path = 

os.chdir("D:\\All\\phd_research\\THESIS\\thesis2\\binary_mask_from_json\\valimggraymask

") 

i = 13 

for file in os.listdir(path): 
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    new_file_name = "{}.png".format(i) 

    os.rename(file, new_file_name) 

    i=i+1 

import PIL 

import os 

from PIL import Image 

f = r"D:\\All\\phd_research\\THESIS\\thesis2\\binary_mask_from_json\\valimggraymask" 

os.listdir(f) 

for file in os.listdir(f): 

    f_img = f+"/"+file 

    img = Image.open(f_img) 

    img = img.resize((256,256)) 

    img.save(f_img) 

A12: Resizing images to fit the neural network 

import PIL 

import os 

from PIL import Image 

f = r"D:\\All\\phd_research\\THESIS\\thesis2\\binary_mask_from_json\\valimggray" 

os.listdir(f) 

for file in os.listdir(f): 

    f_img = f+"/"+file 

    img = Image.open(f_img) 

    img = img.resize((256,256)) 

    img.save(f_img) 

A13: Renaming image files to make them manageable in code lines 

import os 
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path = 

os.chdir("D:\\All\\phd_research\\THESIS\\thesis2\\binary_mask_from_json\\valimggraymask

") 

i = 1 

for file in os.listdir(path): 

    new_file_name = "{}.png".format(i) 

    os.rename(file, new_file_name) 

    i=i+1 
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APPENDIX B: Machine learning accuracy results 

 

Table B. 1 Accuracy assessment of the SVM method 

OBJECTID ClassValue C_0 C_1 Total U_Accuracy Kappa 

1 C_0 15 0 15 1 0 

2 C_1 24 11 35 0.314286 0 

3 Total 39 11 50 0 0 

4 P_Accuracy 0.384615 1 0 0.52 0 

5 Kappa 0 0 0 0 0.215686 

 

Table B. 2 Accuracy assessment of the random trees method 

OBJECTID ClassValue C_0 C_1 Total U_Accuracy Kappa 

1 C_0 20 2 22 0.909091 0 

2 C_1 17 11 28 0.392857 0 

3 Total 37 13 50 0 0 

4 P_Accuracy 0.540541 0.846154 0 0.62 0 

5 Kappa 0 0 0 0 0.281392 

 

 

Table B. 3 Accuracy assessment of the maximum likelihood method 
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OBJECTID ClassValue C_0 C_1 Total U_Accuracy Kappa 

1 C_0 10 0 10 1 0 

2 C_1 30 10 40 0.25 0 

3 Total 40 10 50 0 0 

4 P_Accuracy 0.25 1 0 0.4 0 

5 Kappa 0 0 0 0 0.117647 
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APPENDIX C: Deep learning algorithm and solar potential analysis miscellaneous 

details 

 

C1: Training data preparation and data augmentation for lower height buildings 
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C2: Training workflow for a deep learning model on lower height buildings 

% when executing a section code always make sure you are in the correct 

% directory that the code is trying to execute 

OutputFolder = 'D:\All\phd research\THESIS\thesis 2\matlab_deep 

learning\home_segmentation\data\traingray';  % Set as needed [EDITED] 

dinfo = dir('*.png');% image extension 

for K = 1 : length(dinfo) 

  thisimage = dinfo(K).name; 

  Img   = imread(thisimage); 

  Y     = imshow(Img); 

  Gray  = rgb2gray(Img); 

  imwrite(Gray, fullfile(OutputFolder, thisimage));  % [EDITED] 
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end 

OutputFolder = 'D:\All\phd research\THESIS\thesis 2\matlab_deep 

learning\home_segmentation\data\valimggray';  % Set as needed [EDITED] 

dinfo = dir('*.png');% image extension 

for K = 1 : length(dinfo) 

  thisimage = dinfo(K).name; 

  Img   = imread(thisimage); 

  Y     = imshow(Img); 

  Gray  = rgb2gray(Img); 

  imwrite(Gray, fullfile(OutputFolder, thisimage));  % [EDITED] 

end 

dataFolder  = fullfile('data'); 

imageDir = fullfile(dataFolder,'traingray'); 

labelDir = fullfile(dataFolder,'train_masks'); 

numObservations = 4; 

trainImages = repelem({imageDir},numObservations,1); 

trainLabels = repelem({labelDir},numObservations,1); 

classNames = ["building","background"]; 

labelIDs   = [255 0]; 

imds = imageDatastore(trainImages); 

pxds = pixelLabelDatastore(trainLabels,classNames,labelIDs); 

trainingData = combine(imds,pxds); 

data = read(trainingData); 

I = data{1}; 

C = data{2}; 

B = labeloverlay(I,C); 

imshow(B) 
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augmentedTrainingData = transform(trainingData,@jitterImageColorAndWarp); 

data = readall(augmentedTrainingData); 

rgb = cell(numObservations,1); 

for k = 1:numObservations 

    I = data{k,1}; 

    C = data{k,2}; 

    rgb{k} = labeloverlay(I,C); 

end 

montage(rgb) 

imageSize = [256 256]; 

numClasses = 2; 

lgraph = unetLayers(imageSize, numClasses) 

lgraph.Layers 

targetSize= [144 144]; 

preprocessedTrainingData = transform(augmentedTrainingData,... 

    @(data)centerCropImageAndLabel(data,targetSize)); 

data=readall(preprocessedTrainingData); 

rgb = cell(numObservations,1); 

for k = 1:numObservations 

    I = data{k,1}; 

    C = data{k,2}; 

    rgb{k} = labeloverlay(I,C); 

end 

montage(rgb) 

alldata=combine(trainingData,augmentedTrainingData); 

val_img="data\valimggray"; 

val_mask="data\val_masks"; 
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valimgids=imageDatastore(val_img); 

valclassNames = ["building","background"]; 

vallabelIDs   = [255 0]; 

valpxds = pixelLabelDatastore(val_mask,valclassNames,vallabelIDs); 

valData = combine(valimgids,valpxds); 

checkpointPath = pwd; 

options = trainingOptions('adam', ... 

    'InitialLearnRate',1e-3, ... 

    'MaxEpochs',30, ... 

    'Shuffle','every-epoch', ... 

    'MiniBatchSize',4, ... 

    'VerboseFrequency',50, ... 

    'Plots','training-progress', ... 

    'ValidationData',valData, ... 

    'CheckpointPath',checkpointPath); 

net = trainNetwork(alldata,lgraph,options)  

 

C3: Testing results for sample lower height buildings 

load house.mat 

testImage=imread('data\single_color\1.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,house); 

B=labeloverlay(testImage,C); 

imshow(B) 

BW = C == 'building'; 
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figure 

imshow(BW) 

testImage=imread('data\single_color\2.PNG'); 

testImage=imresize(testImage,[256 256]); 

imshow(testImage) 

C=semanticseg(testImage,house); 

B=labeloverlay(testImage,C); 

imshow(B) 

BW = C == 'building'; 

figure 

imshow(BW) 
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C4: Residential houses footprint deep learning prediction results sampled 
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C5: Solar radiation mean of the residential houses 

BUILDING_ID COUNT AREA(m2) 
MEAN 

(kWh/m2) 

1 266 66.5 988.8369909 

2 333 83.25 1056.711608 

3 332 83 936.5872871 

4 348 87 957.9884345 

5 372 93 962.2721126 

6 296 74 1042.54831 

7 304 76 995.4115508 

8 327 81.75 981.9803405 

9 326 81.5 952.9742458 

10 282 70.5 1062.344189 

11 334 83.5 999.5745477 

12 340 85 972.8445828 

13 302 75.5 1003.151627 

14 339 84.75 976.1442025 

15 261 65.25 1026.033071 

16 397 99.25 1000.459264 

17 264 66 1027.970638 

18 365 91.25 979.8183973 

19 6 1.5 967.7018433 

20 302 75.5 1013.077562 

21 252 63 1052.572982 

22 309 77.25 1025.647193 

23 361 90.25 1037.211949 

24 388 97 1010.631286 

25 371 92.75 978.789964 

26 375 93.75 996.0474754 

27 348 87 1077.878938 

28 374 93.5 1009.786548 

29 311 77.75 1013.584016 

30 348 87 1026.308742 

31 344 86 1040.859261 

32 400 100 1015.52737 

33 306 76.5 1007.152456 

34 357 89.25 1034.993336 

35 258 64.5 1012.449771 

36 301 75.25 1025.155251 

37 342 85.5 1017.833461 

38 389 97.25 1023.477873 

39 352 88 1011.754621 

40 10 2.5 1043.687122 

41 327 81.75 986.6344584 

42 144 36 959.1864772 

43 333 83.25 1012.21599 

44 273 68.25 1043.983437 

45 320 80 1024.306415 

46 1 0.25 1158.915649 

47 222 55.5 996.5717806 

48 6 1.5 865.3701681 

49 255 63.75 941.6319532 

50 234 58.5 986.0729641 

51 236 59 986.7512414 
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52 80 20 949.279628 

53 251 62.75 959.0423051 

54 293 73.25 1056.779065 

55 279 69.75 995.1344701 

56 4 1 842.4700317 

57 156 39 956.7949622 

58 403 100.75 957.8380559 

59 51 12.75 910.0591897 

60 285 71.25 1073.400558 

61 382 95.5 954.7063557 

62 241 60.25 955.9124057 

63 368 92 1055.080315 

64 43 10.75 882.6895468 

65 320 80 1006.742312 

66 298 74.5 981.2009185 

67 151 37.75 999.5060085 

68 345 86.25 968.5060869 

69 79 19.75 981.3067944 

70 91 22.75 986.2216354 

71 9 2.25 914.1350505 

72 439 109.75 912.2813929 

73 108 27 980.3053905 

74 247 61.75 1060.924001 

75 312 78 943.2689238 

76 299 74.75 1023.421744 

77 278 69.5 1010.332966 

78 239 59.75 1054.122962 

79 344 86 1002.849332 

80 4 1 942.9744415 

81 323 80.75 1003.971871 

82 209 52.25 1033.088993 

83 333 83.25 943.5936109 

84 33 8.25 898.5093735 

85 157 39.25 1055.452286 

86 303 75.75 1000.448003 

87 152 38 926.6145064 

88 2 0.5 829.006012 

89 169 42.25 1004.646621 

90 288 72 1013.349299 

91 372 93 1020.290147 

92 76 19 934.6854842 

93 558 139.5 1056.123254 

94 13 3.25 907.9842999 

95 13 3.25 1082.355952 

96 7 1.75 988.3387102 

97 81 20.25 935.5186963 

98 516 129 1027.106713 

99 1 0.25 846.2277222 

100 2 0.5 886.6378784 

101 1 0.25 1075.067505 

102 366 91.5 1058.682854 

103 198 49.5 953.6445655 

104 324 81 963.5123809 

105 164 41 1023.186926 



199 
 

106 57 14.25 885.8026637 

107 703 175.75 1038.960867 

108 616 154 1026.252602 

109 279 69.75 1010.609367 

110 5 1.25 970.4407471 

111 7 1.75 933.6768101 

112 6 1.5 996.659729 

113 2 0.5 926.555542 

114 249 62.25 1032.243668 

115 1 0.25 826.8411255 

116 267 66.75 972.4266504 

117 550 137.5 1024.554231 

118 222 55.5 946.017089 

119 3 0.75 1056.70933 

120 230 57.5 1006.089633 

121 13 3.25 855.0880925 

122 52 13 1026.906413 

123 201 50.25 1035.841791 

124 111 27.75 934.2385259 

125 193 48.25 966.4478216 

126 14 3.5 927.5419399 

127 17 4.25 942.364624 

128 98 24.5 893.3508182 

129 212 53 915.7102627 

130 238 59.5 1007.090441 

131 5 1.25 1130.16615 

132 182 45.5 955.2526815 

133 116 29 973.2285567 

134 5 1.25 914.3980469 

135 20 5 1027.827664 

136 3 0.75 968.8831991 

137 377 94.25 1033.507919 

138 272 68 977.2423477 

139 29 7.25 884.5816377 

140 17 4.25 996.020971 

141 5 1.25 990.1759033 

142 12 3 899.9884338 

143 10 2.5 1042.437872 

144 213 53.25 1031.194427 

145 3 0.75 1007.688619 

146 13 3.25 992.7176326 

147 44 11 862.8684845 

148 358 89.5 994.78858 

149 177 44.25 996.6053474 

150 129 32.25 1046.684374 

151 5 1.25 862.6032104 

152 195 48.75 1025.795829 

153 211 52.75 957.5626429 

154 84 21 939.2804493 

155 26 6.5 884.1019804 

156 1 0.25 972.9595337 

157 130 32.5 912.9184519 

158 164 41 987.7323642 

159 129 32.25 1042.636638 



200 
 

160 192 48 994.1622483 

161 146 36.5 1004.062704 

162 2 0.5 1077.397308 

163 137 34.25 944.3491697 

164 68 17 1001.426736 

165 95 23.75 1113.841627 

166 1 0.25 966.9815674 

167 161 40.25 1062.08104 

168 177 44.25 979.5981997 

169 3 0.75 878.0691325 

170 125 31.25 982.2826777 

171 1 0.25 840.0734253 

172 82 20.5 1010.213207 

173 84 21 949.1892133 

174 415 103.75 1002.996472 

175 425 106.25 1001.306811 

176 305 76.25 1009.428563 

177 149 37.25 1013.134115 

178 352 88 1015.590036 

179 322 80.5 1020.649554 

180 350 87.5 988.1620785 

181 126 31.5 1001.108539 

182 9 2.25 998.0908 

183 217 54.25 992.5074044 

184 430 107.5 1023.022682 

185 170 42.5 954.3976756 

186 9 2.25 934.9113702 

187 241 60.25 1003.627402 

188 197 49.25 971.3191203 

189 333 83.25 1024.185583 

190 372 93 963.5298564 

191 96 24 962.0187225 

192 495 123.75 985.7198386 

193 127 31.75 1036.438488 

194 269 67.25 1074.069491 

195 400 100 989.6771736 

196 336 84 1023.695968 

197 468 117 1005.955873 

198 331 82.75 1032.372832 

199 232 58 1028.373936 

200 308 77 1006.175679 

201 9 2.25 956.6376885 

202 261 65.25 928.5789301 

203 258 64.5 1010.483595 

204 321 80.25 988.8846816 

205 96 24 1071.673859 

206 314 78.5 1012.624152 

207 351 87.75 1010.19283 

208 317 79.25 964.4030563 

209 1 0.25 922.9816284 

210 632 158 1048.072157 

211 4 1 825.6678314 

212 157 39.25 1010.190968 

213 347 86.75 1070.550078 



201 
 

214 357 89.25 968.2890316 

215 278 69.5 970.4394621 

216 276 69 935.0516077 

217 216 54 968.4878331 

218 323 80.75 1082.675257 

219 423 105.75 1058.726439 

220 3 0.75 1100.092407 

221 388 97 1039.658036 

222 276 69 980.8422321 

223 269 67.25 1026.07255 

224 402 100.5 1059.223017 

225 4 1 916.616272 

226 259 64.75 1028.137894 

227 307 76.75 1084.754839 

228 108 27 964.7623285 

229 12 3 953.4170481 

230 217 54.25 950.4575749 

231 172 43 946.1943743 

232 259 64.75 1040.316811 

233 273 68.25 1054.302935 

234 12 3 1074.232183 

235 9 2.25 985.4574653 

236 311 77.75 1056.89311 

237 273 68.25 1020.034446 

238 268 67 1050.439585 

239 338 84.5 981.0788861 

240 3 0.75 1108.588867 

241 352 88 1028.933488 

242 14 3.5 1019.880253 

243 4 1 968.2856445 

244 225 56.25 980.2949368 

245 307 76.75 1041.274696 

246 274 68.5 1037.618757 

247 345 86.25 978.2957371 

248 206 51.5 976.1482215 

249 7 1.75 931.1154349 

250 1 0.25 841.4387207 

251 15 3.75 917.9375936 

252 2 0.5 1076.01178 

253 114 28.5 920.5690902 

254 249 62.25 1078.244036 

255 8 2 915.8704224 

256 7 1.75 886.2780762 

257 4 1 933.4315033 

258 37 9.25 886.4593753 

259 297 74.25 992.1429053 

260 287 71.75 970.42896 

261 172 43 976.9168424 

262 125 31.25 982.5156553 

263 389 97.25 996.8104372 

264 42 10.5 1029.248324 

265 1 0.25 857.9434814 

266 4 1 916.0022278 

267 272 68 987.9665453 



202 
 

268 287 71.75 1027.774037 

269 1 0.25 865.6409912 

270 312 78 1020.644312 

271 294 73.5 1017.365283 

272 77 19.25 985.3631719 

273 2 0.5 871.5733337 

274 6 1.5 997.3743083 

275 250 62.5 1080.220816 

276 174 43.5 974.3534307 

277 218 54.5 1030.441443 

278 45 11.25 917.7486152 

279 1 0.25 901.1488647 

280 351 87.75 1064.265117 

281 22 5.5 927.2997825 

282 262 65.5 989.4158139 

283 197 49.25 1044.722153 

284 263 65.75 981.2891247 

285 85 21.25 920.3993193 

286 8 2 928.1192017 

287 387 96.75 1038.825817 

288 207 51.75 1032.77275 

289 142 35.5 1036.19313 

290 219 54.75 1010.080933 

291 265 66.25 996.004974 

292 213 53.25 1024.971029 

293 231 57.75 1053.652138 

294 11 2.75 1003.702354 

295 252 63 1032.533827 

296 37 9.25 939.7830464 

297 4 1 920.1133575 

298 593 148.25 1037.505736 

299 5 1.25 897.2580322 

300 236 59 1033.97086 

301 181 45.25 976.4362169 

302 118 29.5 1048.216091 
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