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Abstract

The way in which research articles are cited reflects how previous work is utilized by other
researchers or stakeholders and can indicate the impact of that work on subsequent experi-
ments. Based on human intuition, citations can be perceived as positive, negative, or neutral.
While current citation indexing systems provide information on the author and publication
name of the cited article, as well as the citation count, they do not indicate the polarity of the
citation. This study aims to identify the polarity of citations in scientific research articles using
pre-trained language models like BERT, ELECTRA, RoBERTa, Bio-RoBERTa, SPECTER,
ERNIE, LongFormer, BigBird, and deep-learning methods. Most citations have a neutral po-
larity, resulting in imbalanced datasets for training deep-learning models. To address this issue,
a class balancing technique is proposed and applied to all datasets to improve consistency and
results. Pre-trained language models are used to generate optimal features, and ensemble tech-
niques are utilized to combine all model predictions to produce the highest precision, recall,
and F1-scores for all three labels.

Keywords: Citation polarity, BERT, ELECTRA, RoBERTa, Bio-RoBERTa, SPECTRE,
ERNIE, LongFormer, BigBird, Ensemble .
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Lay Abstract

While writing one research article, citations are used very often to mention the prominent
works from earlier periods of time that have motivated the current work or showed very good
performance while tackling the same problem that the current paper is trying to solve. The
intention of using the citation can be positive, negative, or neutral. Sometimes the readers need
to read the referenced research work to grasp the ideas presented in the current paper. Knowing
the citation intention will be very helpful for the readers as well before going through the
referenced articles. The current citation indexing system provides a lot of information about
the referenced article like names of the authors, publications, paper names, etc. However, the
intention of using the citation is not possible to retrieve from this citation indexing system.
That’s why in this work I tried to develop a system that can capture the polarity of the citation
used in the ongoing papers.
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Chapter 1

Introduction

Citation polarity is described as the point of view that is presented in the citation text toward
the cited material. This point of view can be either positive, neutral, or negative. Citation
polarity analysis is one of the emerging research areas in the world of Natural Language Pro-
cessing. (e.g., [2], [15], [30], [32]). The motivation behind introducing this task is to evaluate a
research’s impact, effectiveness, and contribution to that field. A citation basically reflects how
other researchers or applied stakeholders use a previous research work in their new work and
provide information on how the previous work has affected the current experiments [14]. As
a result, citations can easily be polarised by human intuition whether they are positive, nega-
tive, or neutral. However, this became a complicated task even for advanced machine learning
models since regular sentences and cited sentences carry different structures, and determining
polarity is more complex in citation sentences. Citation indexing first showed that citations
could help new research works and since then there has been a boon in this field [11]. Later
on, Garzone and Mercer introduced a novel way to identify the internal meaning of a particular
citation [12]. All these techniques paved the way for modern-day techniques that are being
used in citation polarity.

In the past, the significance or influence of a research paper was evaluated by the numeric
value of how many times it had been cited, so early citation analysis focused more on frequency
rather than the impact of that work on the new research areas [34]. However, considering the
modern-day scenario, this approach is never efficient since the number of research papers is
increasing exponentially with time. Frequency can no longer be the only parameter to analyze
a research work anymore. This problem led to the idea of detecting the polarity of citations as
a means to evaluate citations. A research paper should be evaluated according to its impact on
new research, i.e., whether the works agree, disagree, or acknowledge the previous work. A
research paper can be labeled as impactful if it has a high correlation with other works done in
the same field as well.

1



Chapter 1. Introduction 2

Biomedical journals have a significant impact on society since they directly work with
the well being of a living creature. Quality and authenticity are very important factors in these
research works. So, citation polarity can contribute to properly analyzing a biomedical research
paper. The impact of work can never be analyzed solely on the frequency of citations. Using
the polarity analysis can help determine which papers are more useful for the advancement
of research. For example, biomedical papers suggest many different testing mechanisms on
humans and other animals. These tests are expensive and sometimes hazardous. So, depending
on the authenticity of a work we can assess whether this kind of test is even necessary or
not. When a paper is cited with a positive sentiment in several other new novel works, it
demonstrates the authenticity of the previous work and can be trusted.

However among regular research works, biomedical research papers belong to a niche area,
and assessing the polarity of citations mentioned in the bio-medical journals is significantly
different compared to other generic research papers. The first reason behind this is that these
cited sentences consist of several medical-related terminologies like (α, β, etc.). As a result,
using a general training corpus is never enough to train a model to predict the polarity of
explicitly biomedical citations. This issue was resolved by Meng Jia [15]in her work where
she prepared a stand-alone dataset only consisting of biomedical citations and annotated them
so that supervising learning techniques can be used to predict the citation polarity of biomedical
journals. The dataset was created from PubMed data and the extracted citations were manually
annotated so that a gold standard corpus can be created. Her dataset was experimented with
using techniques like SVM classifier with POS tags + (1-3) grams along with dependencies
unigram.

The purpose of this thesis work is to propose a better model that produces better results
compared to previous works and show how effectively citation polarity can be assessed for
biomedical papers. Deep learning is extremely powerful when dealing with unstructured data
due to its ability to process large numbers of features. The previous works used traditional clas-
sification models that cannot produce sufficient feature sets from the input of citation instances.
In my work, I considered the shortcomings of the ongoing approach for citation polarity by
class-balancing all the datasets. In order to prevent the models from becoming biased towards
one class, balancing is required to train the models. In other words, even though it has more
data, the model will no longer prioritize the majority class. Then I used BERT-based language
models to produce better embeddings and fed all the features from the pre-trained models to
the classification model. Using state-of-the-art word and sentence embeddings for every single
dataset had better accuracy on test data. Afterward, ensembling techniques are also used to
show how a voting mechanism can incorporate results from several models and work more
effectively. Also, the thesis results show that the possibility of transfer learning so that the final
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Table 1.1: Examples of the citation instances and corresponding labels from different datasets.

Dataset Examples Labels
Fortunately, there is no straightforward generalization of the method
of Smith and Smith (2007) to the two edge marginal problem.

Negative

Athar
[2]

BLEU For all translation tasks, we report caseinsensitive NIST BLEU
scores (Papineni et al., 2002) using 4 references per sentence.

Neutral

A number of part-of-speech taggers are readily available and widely
used, all trained and retrainable on text corpora (Church 1988; Cutting
et al. 1992; Brill 1992; Weischedel et al. 1993).

Positive

However , the determination of the solution structure of the ChBD-
chiA1 by Ikegami et al. [ CIT ] identified only Trp687 as a putative
chitin binding residue , in addition to His681 , Thr682 , Pro689 , and
Pro693 .

Negative

Jia [15]
It was also suggested by the same authors that the carboxylate oxygen
of the residue might be involved in the coordination of a Mg2+ ion
shown to be important for the enzyme function [ CIT ] .

Neutral

This deduced scenario is similar to the previously hypothesized sce-
nario by van der Ven and Ober regarding HLA-G allogenic response
[CIT].

Positive

However, in contrast to the results of a previous study (18), we found
that HCoV-HKU1 was detected as frequently in patients with LRTI
as in those with URTI, and there was a lack of association between
HCoV-229E infection and respiratory symptoms in otherwise healthy
individuals.

Negative

CORD-
19

[35]

CDV M proteins display only 3% amino acid variability, and the OS
vaccine and 5804P wild-type strains differ at six positions (Fig. 1A),
none of which is close to a putative late domain (amino acids [aa] 20
to 23, 23 to 26, 52 to 55, 311 to 314, and 332 to 335 [25]); to other
functional motifs identified in closely related M proteins (V 101 VRT
[24]); or to residues 64 and 89, which differ between MeV vaccine and
wild-type strains (28).

Neutral

The concept that overcoming apoptosis is of critical importance for the
life cycle of JUNV would appear consistent with recent studies of
JUNV infection that examined host cell interactions and revealed a
positive modulation of cell viability upon infection (43).

Positive

models can perform well on any biomedical citation-related dataset in the future.

The corpora that have been used in this thesis are segmented into three class labels: Pos-
itive, Negative, and Neutral. Table 1.1 shows a few examples of the citation instances and
corresponding labels.

The above-mentioned examples belong to three datasets. The first one is prepared by Awais
Athar [2] who created the gold standard annotated dataset from the ACL anthology citation
repository, the second one, also a gold standard annotated dataset is explicitly prepared by



Chapter 1. Introduction 4

Meng Jia [15] based on PubMed Central [28] which consists of full-text biomedical articles
and the third one is the COVID-based dataset called CORD-19 [35] which is a silver standard
annotated dataset compiled by the Allen Institute for AI.

The later chapters of the thesis work are constructed as follows: Chapter 2 describes sev-
eral related research works: Word embedding, Sentence embedding, Attention mechanism,
Pre-trained language model, Text level classification, Sentence Classification, Citation intent
classification, and Multi-label text classification. After that, Chapter 3 demonstrates the entire
methodology that involves data extraction, data cleaning, class/label balancing, data prepro-
cessing, embedding techniques, and proposed Transformer architecture with ensembling tech-
niques. The preliminary experimental results are presented showing the effectiveness of deep
learning and transfer learning in Chapter 4. In the end, the last chapter provides a general sum-
mary of the entire research work along with the shortcomings and possible future work that
can contribute to the development of this research attempt.

In summary, my contributions to this research work are as follows:

• Several pre-trained language models have been used here to prepare the features and
they have then been forwarded to the proposed artificial neural network model to classify
correct polarity labels of citation instances.

• We propose different class balancing techniques that are applied to the datasets to main-
tain consistency and produce better results.

• A merged dataset has been proposed combining Jia’s [15] and Athar’s [2] augmented
datasets to train all the models and test Jia’s actual work.

• We have also explored transfer learning to improve future models for assessing citation
polarity in biomedical research.

• A new dataset has been prepared to consist of the paragraphs that belong to each citation
entry from Jia’s [15] work.

• Ensembling techniques have been implemented to combine all the results from different
models and create a voting system to choose the most appropriate polarity of a given
citation instance.



Chapter 2

Literature Review

This research highlights the use of word embeddings to convert words into numerical vectors,
allowing for input into artificial neural networks using libraries such as Word2Vec [23] and
FastText [5], amongst others. Document-level embedding using libraries such as Sent2Vec
[26] is also discussed. Attention-based models are examined, as well as the Transformer Model
[33] and its self-attention mechanism. The study concludes that pre-trained language models
like BERT [10] can benefit transfer learning and unsupervised learning, but adjustments are
needed for optimal results. The research aims to provide an accurate representation of the
text-processing workflow and the application of various models to real-world tasks.

2.1 Word Embedding

Deep learning models excel at figuring out the underlying structures of the data and drawing
conclusions about the task at hand from the data. However, these models need inputs in nu-
merical form rather than raw string data because they can’t be used with that. The process
of mapping each word in the lexicon to a mathematical representation—more particularly, a
particular vector representation—is known as word embedding. It makes the following models
that use any large vocabulary more computationally demanding. Few techniques have been put
out recently to create a vocabulary that is size-independent, preserves semantic information,
and has a fixed-sized vector representation. Word embedding generation methods are covered
in this section.

2.1.1 Efficient Estimation of Word Representations in Vector Space

In order to compute continuous vector representations of words from extremely huge datasets,
Mikolov et al. [23] suggested two unique model designs. Researchers noticed a striking im-

5



Chapter 2. Literature Review 6

Figure 2.1: Word2Vec: Continuous Bag of Words Model [23]

provement in accuracy at substantially lower computational costs; for example, learning high-
quality word vectors from 1.6 billion-word data set only requires one day. This study also
showed that these vectors provide better performance for determining syntactic and semantic
word similarity on the test set. Word2Vec’s efficacy comes from its capacity to put together vec-
tors of related word relationships. When provided with a sizable enough dataset, Word2Vec
can make precise predictions about a word’s meaning based on its usage in the text. These
estimates result in word associations with other terms in the corpus. For instance, the represen-
tations of the words“King” and “Queen” are very close to each other since they both belong to
royalty.

This model has two training methods. The first one is CBOW (Continuous Bag of Words).
This design resembles a feed-forward neural network very much. With this model architecture,
a target word is essentially predicted from a list of context terms. The idea behind this model
is pretty straightforward: given the phrase “Hope you have a nice day,” they select “a” as the
target word, and the terms “hope,” “you,”,“have,”, “nice,” and, “day” as our context words.
Using the distributed representations of the context words, this model will try to forecast the
target word.

Secondly, in its most basic form, the skip-gram neural network model is actually fairly
straightforward. Although the model can be trained as a straightforward neural network with
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Figure 2.2: Word2Vec: Skip Gram Model [23]

a single hidden layer to carry out a certain task, the authors use it with a different purpose in
their research. The actual objective is to simply learn the hidden layer’s weights; as we will see
all these weights correspond to the focused “word vectors”. When given a word in the midst
of a sentence, consider the words around it and pick one at random. The chance of each word
in our vocabulary being the “nearby term” we selected will be provided to us by the network.

These models, which are founded on the Autoencoder principle, aim to preserve semantic
information while mapping the vocabulary size-dependent one-hot encoding of words to a
fixed-sized lower-dimensional vector representation. Because floating point numbers handle
precision better, each element of this vector is a float value to guarantee precision. The word
representation produced by this shallow model, which was trained on a corpus of 1.6 billion
token words, gets more semantic and syntactic information than earlier models. Additionally,
this model could bring words that are similar to one another closer together as well as multiple
levels of similarity between words. To guarantee consistency for all the words in the input
layer, this model accepts all the words as one-hot encodings. A one-hot form that can be used
to calculate a chance distribution over each word in the corpus is also present in the output
layer. For a given particular word or group of specific words, the model seeks to maximize
the log probability of the output word in both cases. In order to calculate this probability
distribution, they use a softmax layer at the output.
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J = max(
C∑

t=1

n∑
k=−n,k,0

log P(wt|wt+k)) (2.1)

p(wt+k|wt) =
ev′wt

T vwt+k∑
w∈V ev′Twt vwt+k

(2.2)

The hidden-output layer component of these two Word2Vec models can be removed after
training, allowing the model to produce low-dimensional vector representations of the words.
This vector notation for CBOW pertains to context words, whereas for the SG model, it pertains
to target words. Both of these models have higher accuracy with a larger context window size,
while the computational time is reduced.

2.1.2 Enriching Word Vectors with Subword Information

FastText embeddings [5] create word embeddings using subword data. Words are expressed as
the sum of the character-gram vectors, which are learned representations of character-grams.
The word2vec type models gain subword information as a result. This makes it easier for the
embeddings to understand ends and prefixes. After a word has been character-gram, a skiagram
model is taught to discover its embeddings. FastText follows the same architecture and philos-
ophy as the skip-gram Word2Vec model, with a few small differences. Unlike skip-gram, this
model adds n-grams of subwords rather than vocabulary words. For example, the tokens gen-
erated for the word “eating′′ are < ea, eat, ati, tin, ng >, apple. Because each word is broken
down into a group of character n-grams, the vocabulary sizes increase and a separate dictionary
function must be maintained to identify each character n-gram, reducing the accuracy of the
model even though it improves precision and gives a better semantic and syntactic representa-
tion of the words. The aim function of the skip-gram model is also modified to take subword
usage into consideration. The word and subword vector representations’ combined sum is what
the FastText objective function tries to maximize.

j =
C∑

t=1

n∑
k=−n

∑
w∈Gwt

log p(wt+k|w) (2.3)

Because this model also contains vector representations for subwords, FastText not only
improves the quality of word representations but also has the potential to create vector rep-
resentations for words that are not in the lexicon. In the case that any vocabulary words run
out, this model constructs the vector representation by adding the vector representations of all
possible subwords.
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2.1.3 BioWordVec

Distributed word representations are now necessary for information search, text mining, and
biomedical natural language processing (BioNLP). A large corpus of unlabeled text is typically
used to calculate word embeddings at the word level, ignoring any information that may be
present in ontologies or domain-specific structured resources that contain information about the
internal structure of words. Such information has the potential to greatly improve the quality
of word representation, according to some recent research in the field. BioWordVec [38] com-
bines subword data from unlabeled biomedical text with a widely-used biomedical restricted
vocabulary known as Medical Subject Headings to create an open collection of biomedical
word vectors and embeddings (MeSH). For a number of biomedical NLP tasks, experts as-
sessed the reliability and applicability of the created word embeddings. Their benchmarking
findings show that for these challenging tasks, the word embeddings can perform noticeably
better than the previous approaches.

The BioWordVec method first starts by creating a MeSH term graph from the MeSH RDF
data in order to achieve this goal. A method of random sampling is used to create a number
of MeSH term sequences. Then, by using the FastText model and training it on this data,
they taught the FastText model text sequences as well as MeSH word sequences. The training
process for BioWordVec is broken down here in detail in Figure 2.3.

Prior to sampling MeSH term sequences, relations in the MeSH term graph are used to
create an ordered sequence of the heading nodes. To learn the word embedding for biomedical
concepts, PubMed sentence sequences are merged with MeSH heading sequences. They ap-
plied a random walk method named node2vec [13] for selecting major heading nodes’ MeSH
term sequences from the MeSH term graph. Suppose, E, N and G denote the edge set, node-
set, and graph respectively. If πvx [equ. 2.5] is the transition probability from v to x and

Figure 2.3: Schematic of learning word embedding based on PubMed literature and MeSH
[38]
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dtx ∈ {0, 1, 2} denotes the shortest path between two nodes x and t then the probability distribu-
tion of ci is:

P(ci = x|ci−1 = v) =

πvx i f (v, x) ∈ E

0 otherwise
(2.4)

πvx = α(t, x) =


1
p i f dtx = 0

1 i f dtx = 1
1
q i f dtx = 2

(2.5)

Unlike the traditional FastText [5] which works with only text sentences, BioWordVec
incorporates the MeSH and segments of text from PubMed. For the PubMed data, the objective
function si same as the traditional FastText model [equ. 2.3]. For the MeSH term portion, they
defined the objective function as: The ultimate objective function of the model is a linear
mixture of both of these objective functions.[equ. 2.6].

J = JPubMed + JMeS H (2.6)

2.2 Sentence Embedding

By allowing the encoding of text as fixed-sized vectors, embeddings have significantly altered
the field of natural language processing (NLP) in recent years. The development of a num-
ber of techniques for producing sentence embeddings often referred to as sentence vectors are
one of the most recent innovations to result from this novel manner of encoding textual data.
Longer texts can now be represented numerically as vectors that computer algorithms, such
as machine learning (ML) models, can process easily, thanks to these embeddings. The main
concepts underlying this technique will be covered in this section, along with a list of some
of its potential uses and an overview of some of the most cutting-edge sentence embedding
techniques now being used in NLP research and the language industry. For extracting and
modifying the meaning of the segments they represent, embeddings are fixed-length, multi-
dimensional vectors. One method is to determine how semantically similar two sentences are
to one another. A sentence’s concepts over the context must also be understood in order to
comprehend it properly. A few sentence embedding approaches have recently been presented
with this concept in mind. Furthermore, deep learning models can only deal with data of a
constant length due to the changing nature of phrase length. This section investigates vari-
ous unsupervised sentence embedding methods aimed at producing fixed-length vectors for
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sentences containing contextual information.

2.2.1 Sent2Vec

Sent2Vec [26] has been proposed by researchers as part of this body of work. It is a simple
unsupervised model that allows for the composition of sentence embeddings by combining
n-gram embeddings and word vectors, all the while training both composing and the embed-
ding vectors themselves. The computational expense of our embeddings is low both during
inference and training of the sentence embeddings which is simply O(1) vector operations per
word-processed. This holds true regardless of whether the embeddings are being trained or
inferred. This allows this model to learn from extremely large datasets in a streaming manner,
which is a major advantage in an environment where there is no human supervision. This is in
stark contrast to all methods that are built on neural networks. The ability to draw conclusions
quickly is a significant advantage in downstream activities and industry applications. This
method shows notable performance benefits over the most cutting-edge unsupervised and even
semi-supervised models currently available. When translated to a diverse collection of predic-
tion benchmarks, the general-purpose embeddings that were produced as a result demonstrate
high levels of robustness. This paradigm can be thought of as an optimization issue similar to:

min
U,V

∑
S∈C

fS (UVιS ) (2.7)

where,V is the vocabulary, U ∈ RV×h and V ∈ Rh×|V| are the two parameter matrices. Columns
in matrix V and U show the vector representation of the context words and target words respec-
tively.

The complete formula for the sentence embedding for any sentence S is defined as:

νS =
1
|R(S )|

VιR(S ) =
1
|R(S )|

∑
w∈R(S )

νw (2.8)

where R(S ) denotes the set of all possible n-grams as well as the uni-grams for any sentence S .

The final function according to this research work has been proposed as:

min
U,V

∑
S∈C

∑
wt∈S

(qp(wt)ℓ(uT
wt
νS \{wt})) + |Nwt |

∑
w′∈Nwt

qn(w′)ℓ(−uT
w′t
νS \{wt}) (2.9)

This model not only offers cutting-edge speed but is also very straightforward and inexpensive
to compute. Once the model is trained, for any sentence S , it requires only |R(S ) × h| floating
point operations for the n-gram. The computational complexity of this model is O(1) vector op-
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eration per word only. Furthermore, it allows parallel training using parallel stochastic gradient
descent due to its simplicity.

To conclude, in this paper [26] they presented an original unsupervised approach that is
computationally efficient and can be used to train and infer language embeddings. This tech-
nique, on average, delivers greater performance than all other unsupervised competitors, with
the exception of the SkipThought vectors, when supervised evaluations are used to judge it.

2.3 Attention in Natural Language Processing

The attention mechanism, one of Deep Learning’s most recent innovations, was created es-
pecially for natural languages processing tasks like machine translation, picture captioning,
dialogue creation, and other similar tasks. Encoder decoder (seq2seq) RNN models can ben-
efit from this method, which was created to improve their overall performance. The model
searches for a set of locations in the source phrase where the most important information is
concentrated when trying to predict the next word in attention. The model then predicts the
next word based on all of the previously generated target words as well as the context vectors
related to the source locations in question. Rather than putting the input sequence into a single
fixed context vector, the attention model generates a context vector that is specifically filtered
for each output time step. This allows the model to produce more accurate results. [3]

2.3.1 Hierarchical Attention Networks for Document Classification

Yang et al. [36] suggested a hierarchical attention network for categorizing documents. This
model has two standout features: 1) A hierarchical structure that mimics the hierarchical struc-
ture of documents, and 2) two levels of attention mechanisms applied at the word- and sentence
level that allow the model to pay differential attention to more and less important content when
building the document representation. Experiments on six large-scale text categorization prob-
lems show that the suggested architecture performs significantly better than earlier approaches.
The attention layer visualization shows how the model chooses highly informative words and
sentences.

In this work, they have concentrated on document-level classification. Considering a text
with L consisting of s sentences s, each of which has T words. The words in the ith phrase
are represented by wit with t [1, T]. With the help of the suggested model, they can convert a
raw document into a vector representation on which we may base a classifier to do document
classification. The process of gradually constructing the document-level vector from word
vectors utilizing a hierarchical structure.
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Figure 2.4: The Architecture of Hierarchical Attention Network [36]

ūit = tanh(Whit + bw) (2.10)

αi =
eūitT uw∑

i eūitT uw
(2.11)

s =
∑

t

αithit (2.12)

The attention-weighted word representation of the sentence’s words is added to produce the
sentence vector representation. The sentence vectors are handled by Bi-GRU in the following
section of the model in a manner similar to how the word embeddings were handled, and a
sentence-level annotation is generated. The attention mechanism is then used to create the
vector by applying it to these sentence annotations, as was previously indicated.

Whatever the data size, the improvement is still prominent. The proposed model here
improved the previous best baseline methods by 3.1% and 4.1%, respectively, for smaller data
sets like Yelp 2013 and IMDB. This result holds true when compared to other, larger data
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sets. This also exceeded the prior best models on Yelp 2014, Yelp 2015, Yahoo Answers,
and Amazon Reviews by 3.2%, 3.4%, 4.6%, and 6.0%. Additionally, the increase happened
irrespective of the task: sentiment classification, which incorporates Yelp 2013–2014, IMDB,
and Amazon Reviews.

The attention mechanism is as follows:

M = tanh(WyY +WhRmean ⊗ eL) (2.13)

α = so f tmax(wT M) (2.14)

Rattention = YαT (2.15)

Here, Y is the matrix comprising of the Bi-LSTM output vectors, Rmean denotes the output of
the mean-pooling layer, Rattention represents the attention (α) weighted vector representation of
the sentence.

In the end, researchers show that by using their proposed model with much fewer param-
eters they got better accuracy of 85.0 on test data compared to other sentence encoding and
neural network models on the SNLI tasks.

2.3.2 Transformer

Encoders and decoders are components of the large neural networks that underpin the majority
of sequence-transduction models. These networks can be convolutional or recurrent. The
models with the best overall results link the encoder and the decoder through an attention
mechanism. Researchers here proposed a new, straightforward network design that we call
the Transformer [33]. It is purely predicated on attention processes and does not make use of
recurrence or convolutions in any way. Experiments conducted on two different tasks involving
machine translation demonstrate that these models have higher quality, are more parallelizable,
and need a much shorter amount of time to train. It is demonstrated that the Transformer
is applicable to a wide variety of additional tasks by effectively applying it to the parsing
of English constituency data, both with a huge amount of training data and with a restricted
amount.

The encoder is shown on the left side, which converts the input sequence (x1, ..., xn) into
a sequence of continuous representations z = (1, ..., zn), and the decoder is shown on the right
side, which decodes the output of the encoder combined with the output (embeddings) to pro-
duce the output sequence The decoder operates in an auto-regressive fashion, meaning that for
each output, the model takes in as new input all of the symbols that were generated before it.
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Figure 2.5: The Transformer - model architecture [33]

Figure 2.5 clearly demonstrates that the architecture of the transformer is made up of encoder
and decoder blocks, and these blocks can be layered (Nx) onto one another to produce a model
that is ever more complicated.

The encoder blocks in the vanilla transformer architecture have N=6 blocks where every
block has 2 sub-layers, a position-wise completely connected feed-forward network, and a
multi-head self-attention mechanism. A residual connection is used at the boundary of each
sublayer. After that, layer normalization is performed. LayerNorm(x + Sublayer(x)) is the final
result of each sub-layer. The model’s outputs have a dimension of 512 and this holds true for
all embedding layers and sub-layers.

The decoder follows a format that is analogous to that of the encoder. The decoder makes
use of an additional multi-head attention layer, which operates on the output of an encoder
block, which is the primary distinction between the two. Once more, residual connections are
used all the way around each sub-layer, and then layer normalization comes after that. The
multi-head attention that operates on output embeddings masks all subsequent positions for
every position, which means that a prediction for step i is solely dependent on positions that
have been observed previously.

At the beginning of the attention section of the study, a concise description of what attention
is and how it functions in deep learning is provided. This explanation of attention maps a
query and many key-value combinations to an output, which is the weighted sum of the values.
Computed as the compatibility function between the query and the value’s key, the weight of a
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value is determined in this manner.

There are two methods that the transformer architecture uses attention: the first is scaled
dot-product attention, and the second is multi-head attention, which uses scaled dot-product
attention internally. While considering one word, the transformer calculates a score for every
word in the sequence against that corresponding word. This score depicts the level of focus
that the considered word should give on the other words. The final output of the self-attention
layer is computed by:

Attention(Q,K,V) = softmax(
QKT

√
d

)V (2.16)

Multiple queries q (keys k, values v) have been stacked to form a matrix here, denoted by
the notation Q (K, V). These matrices are the result of multiplying the input matrix X by a set
of previously learned matrices called WQ, WK , and WV . As a consequence of this, each and
every one of Q, K, and V is a weighted representation of the input X. By multiplying them,
attention ensures that all of the components x of the input X are evaluated against one another
and that it is possible to identify pairings of components that are coherent with one another.
This eliminates the need for sequential calculation and offers a better understanding of the links
that exist between the various components of the input.

Control can be exerted on the dimensions of Q, K, and V by manipulating the dimensions of
WQ, WK , and WV respectively. This makes it possible to create representations of varying de-
grees of complexity, according to the requirements and available resources. The same operation
repeats for all the encoders in the stack. The decoder that occurred before an encoder-decoder
block provides the queries, denoted by q, while the encoder’s output provides the keys and
values. Since the decoders take the keys and values from the encoder rather than the previous
decoder, they can access the information included in the input embeddings as opposed to only
depending on the information present in the output embeddings. The output of the encoder that
came before it is used as a source for the queries, keys, and values that are generated by an
encoder. This indicates that an encoder has access to all positions and representations stored in
the memory of the encoder that came before it.

In order to evaluate the model’s success in two different facets of machine translation,
both the English-German and English-French datasets were used. The Transformer model
outperformed all other earlier models in both datasets, and also lowered the amount of time
required for training by approximately a quarter of what it was initially.
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2.3.3 Structural Scaffolds for Citation Intent Classification in Scientific
Publications

Understanding the function of a citation in scientific papers is crucial for automated analysis
of the body of scientific literature and machine reading of specific publications. For instance,
background data, methodology used, and outcome comparison. Cohan et al. [8] suggested
structural scaffolds, a multitasking method that incorporates structural data from scientific pa-
pers into citations, in order to effectively classify citation intents. This model outperforms
the state-of-the-art on an existing ACL anthology dataset (ACL-ARC) without using hand-
engineered features or external linguistic resources, as done by other methods, with a 13.3%
absolute increase in F1 score. Additionally, they debuted SciCite, a brand-new dataset of cita-
tion intents that is five times larger than earlier datasets and covers a broader variety of scientific
fields.

Citations can take various forms. While some citations just serve to acknowledge ear-
lier work, others reflect actual method application. As a result, understanding the purpose of
citations is crucial for enhancing automated analysis of scholarly literature and scientific in-
fluence measurement. Existing feature-based models for this issue analyze the citation context
in relation to a collection of manually created features (like linguistic patterns or cue phrases),
disregarding additional signals that might enhance prediction. In order to avoid the issues
related to external features, the researchers claimed in this article that better representations
can be obtained straight from data. They consequently suggested a neural multitask learning
framework for knowledge incorporation into scientific paper citations based on their structure.

Predicting the section title and determining whether a sentence requires a citation are the
two scaffolds, and predicting the citation intent is the main task (top left) (citation worthiness).
This work proposes a neural multitask learning framework for the classification of citation
intents. They introduced and used two structural scaffolds in particular, which are support
activities linked to the format of scientific papers. Although the auxiliary tasks may not be
interesting in and of themselves, they provide information for the primary task. This structural
data from scientific papers are incorporated into the citation intents of our model using a sizable
auxiliary dataset. Figure 2.6 depicts this model’s overall layout.

The first scaffold task that they took into consideration is a sentence’s “citation worthiness,”
which determines whether a sentence requires a citation. Knowing that the language used in
citation sentences varies from normal sentences in scientific writing might be useful for more
precise language modeling of the citation contexts. In a publication, researchers label the
sentences that contain citations, and the negative samples are the phrases that lack citation
markers. The model’s objective in this job is to forecast whether a given sentence calls for a
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Figure 2.6: Architecture of the Scaffold model [8]

citation.

The second scaffold job is to predict the section title in which a citation appears. Scientific
papers frequently adhere to a standard format in which the authors present the issue, explain
the methodology, present the results, discuss the findings, and finally, draw a conclusion. The
goal of a citation might be pertinent to the paragraph in which it appears in the paper. Citations
pertaining to techniques, for instance, are more likely to be found there. As a consequence,
they constructed a scaffold for predicting citation intents using section title prediction. It’s
crucial to understand that this scaffold job is distinct from merely including a section title as an
extra feature in the input. Using section titles from a bigger set of data than the training set for
the primary task, the model is learning linguistic patterns that are helpful for citation intents.
For this scaffold job, a large number of scientific papers have been used, for which it is known
that the section information for each citation automatically generates large amounts of training
data.

Multitask learning is an inductive transfer learning approach that improves generalization
by using domain information contained in training signals from related tasks as an inductive
bias. It is necessary for the model to have at least some parameters that can be shared between
tasks. As illustrated in Figure 2.6, each scaffold task will have task-specific parameters for ef-
fective classification, while the parameters for the network’s lower layers will be shared across
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tasks. For each task, they used a Multi-Layer Perceptron (MLP) and then a softmax layer to
calculate prediction probabilities.

y(i) = softmax(MLP(i)(z)) (2.17)

The researchers found that their scaffold-enhanced models outperform the most recent
method on this test by a wide margin. Adding the first scaffold job from “BiLSTM-Attn +
section title scaffold” raised the macro F1 score from the initial “BiLSTM-Attn” baseline of
51.8 to 56.9 (= 5.1). Similar benefits are also seen when the second scaffold in “BiLSTM-
Attn + citation worthiness scaffold” is added: 56.3 (=4.5). The F1 score increases to 63.1
(= 11.3) when both scaffolds are utilized concurrently in “BiLSTM-Attn + both scaffolds,”
indicating that the two tasks offer to complement signal that is helpful for citation intent pre-
diction. Results from the SciCite dataset, where we find comparable patterns. Model perfor-
mance is improved by each scaffolding task. Further advancements emerge from combining
the two scaffolds. Additionally, employing ELMo[29] representation in addition to both scaf-
folds yields the greatest results. Given that this dataset is more than five times larger than the
ACL-ARC, the performance figures are generally higher and the F1 improvements are typi-
cally smaller. This is because it is easier for the models to acquire optimal parameters using
the larger annotated data. The best baseline on this dataset gets an F1 score of 82.6 with the
neural baseline plus ELMo contextual vectors. Given that neural models frequently produce
greater gains with more training data, this was anticipated.



Chapter 3

Methodology

This chapter discusses how my work has been executed to produce the results in Chapter 4.
It begins with a description of three sentence-based datasets, which includes any necessary
dataset preprocessing, cleaning of the dataset, and class balancing. Following this, the deep
learning language models that are used are introduced. Then, the proposed transformer archi-
tecture is trained to classify sentences into one of three citation polarities. Next, the ensembling
techniques are detailed. Finally, the creation of a paragraph-based dataset is outlined.

3.1 Description of the Datasets

3.1.1 Meng Jia’s Sentence-based Dataset

Meng Jia in her MSc thesis work [15] created a dataset consisting of 778 sentences contain-
ing citations. These sentences were obtained from an XML dataset that was available from
PubMed Central [6], a source for full-text biomedical research articles.

Each sample in the dataset consists of the polarity label, the citation sentence itself, and a
parse of the sentence. She was interested not only in the three citation polarities, Neutral, Posi-
tive, and Negative but also subcategories of them. Neutral consists of Perfunctory/Background,
Statement, General comparison, and Multi-comparison subcategories. Then Confirmation and
Being-confirmed subcategories make the Positive main group. Finally, Negative includes Con-
trast/Conflict and Unsolved subcategories. The dataset was labeled with eight subcategories.
So, some pre-processing of the dataset was done: the labels were changed to the three main
polarities and the parsed sentence was removed.

Annotating a citation dataset is comparatively difficult since it involves consideration of
authors’ intentions and sentiments [32]. The dataset was annotated by Meng Jia. She was the
only annotator so she reported the Cohen κ using the intra-annotator agreement approach from

20
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Athar’s research [1]. The annotation has a κ score of 0.71 which means that the annotation
has a substantial agreement and provides validation to the fact that the annotated corpus is
reliable [19]. This is the only human-annotated dataset with citation sentences drawn from the
biomedical literature that I am aware of.

Citation datasets are highly skewed towards the Neutral category and the Negative sample
count is negligible. This dataset is no exception. The distribution is highly imbalanced: 69.9%
of entries belong to Neutral, 22.9% to Positive, and the remaining 7.2% to Negative. Balancing
of the classes is described in Section 3.2.

The goal of this thesis is to provide a deep learning model that performs well on the citation
polarity task for citations found in the biomedical literature. So, I have used this dataset as a
base of my work to evaluate the performance of the proposed models.

3.1.2 Awais Athar’s Sentence-based Dataset

Awais Athar in his work [2] created a citation corpus based on the ACL anthology dataset.
A new corpus was annotated under this work with more than 8,736 citation sentences labeled
as positive, negative, and neutral/objective. Under this work best micro-F score of 0.760 was
reported using a combination of n-grams of length and dependency relations. Like the dataset
of Meng Jia, this dataset is also highly skewed towards objective/neutral sentiment. Among
8,736 sentences, 7627 are objective. The remaining consists of 829 positive and only 280
negative entries. This annotated dataset has κ = 0.89 (N = 8736; k = 1; n = 3). Here N is the
total number of annotations, n is the number of classes and k is the number of annotators. This
score showing the intra-annotator agreement validates that it is a stable annotation according to
Krippendorff (1980) [17]. This dataset has been used to train models dedicates to this corpus
as well as for transfer learning. The κ score and other validating grounds make this a gold
standard dataset for citation polarity detection.

3.1.3 CORD-19: The COVID-19 Open Research Dataset

In my thesis work, I have also incorporated this dataset consisting of citations of research pa-
pers solely dedicated to COVID-19 and related historical coronavirus research works. CORD-
19 gained significant popularity and this dataset has been downloaded over 75k times showing
the legitimacy and acceptance of this corpus for different tasks [35].

This dataset has over 52K papers with over 41K full texts. It also includes papers published
in more than 3200 journals. The citations mentioned in this dataset belong to three main labels:
Supporting, Contradicting, and Mentioning. These labels can also be interpreted as Positive,
Negative, and Neutral like the other datasets used in my research work. The majority portion
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Table 3.1: Distribution of labels in CORD-19 Datase.

Label Name Number of Samples
Mentioning 348,438
Supportive 14,053
Contradicting 1,705

of this corpus is collected from PubMed Central (PMC). Besides PMC, bioRxiv, and medRxiv
are also significant sources behind the creation of this dataset.

From Table 3.1 above, there are 364,196 citations in this corpus. Among this, 348,438
entries are labeled as mentioning (Neutral), 14,053 as supportive (positive), and the remain-
ing 1,705 as contradicting (Negative). There are diverse sub-fields incorporated in this dataset
which makes it more versatile. These subfields are Virology, Immunology, Molecular biol-
ogy, Genetics, Intensive care medicine, and others. This dataset has been used for multiple
competition-level tasks like text mining competition by Kaggle, TREC-COVID shared task,
etc. This dataset is also highly imbalanced like the above-mentioned datasets. In order to solve
this situation, the downsampling method has been used. Contradicting has the lowest number
of entries. So, using 1705 as the reference value both mentioning and supportive categories
have been downsampled. After creating the class-balanced dataset it was split into train and
test sets to maintain the consistency of the ratio of the labels. The main motive behind using
this work under my thesis is to contribute to the ongoing pandemic situation and experiment
with transfer learning so that the proposed model architectures can be immune to any new
dataset.

3.1.4 Proposed Paragraph-based Dataset Converted from Jia’s Sentence
Dataset

Based on the same dataset from Meng Jia[15], I prepared a new dataset with the same number
of citation entries but rather than having a single sentence it now has a paragraph corresponding
to a polarity label. Most of the citation datasets only consist of a single sentence. However,
often using single sentences causes ignorance of multiple important phenomena. Single-line
citations are over-simplistic at times and it becomes difficult to identify the sentiment properly.
Research papers seldom have rich discussions of cited work in multiple sentences and they can
share multiple intents or emotions simultaneously. In order to address this issue a new dataset
has been proposed called MULTICITE [20].

This dataset contains multiple sentences for every single entry in the dataset with multi-
label context. To incorporate this idea in my thesis work I prepared a version of the MULTI-



Chapter 3. Methodology 23

Table 3.2: Examples of the citation instances and corresponding paragraphs.

Citation Instance Corresponding Paragraph

In continental Europe , sev-
eral large surveys on the
throat bot flies on roe deer
have been performed ( e.g.
[ CIT ] ) , but only C. stim-
ulator has been reported

The only published reports we can find where C. ulrichii has
attacked other species than moose, are a case in which first
instar larvae were found in the conjunctival sac in the eye of
a human [19], and another case where 39 young larvae were
deposited by a female C. ulrichii on the upper lip of a human
[1]. In continental Europe, several large surveys on the throat
bot flies on roe deer have been performed (e.g. [20]), but only
C. stimulator has been reported. Reindeer throat bot fly larvae
have been found in the nasal cavities of dogs in Sweden [21].

The survival percentage of
63 for all colic cases in
the present study is on
the same level as reported
from other studies on hos-
pitalised colic cases [ CIT
].

The survival percentage of 63 for all colic cases in the present
study is on the same level as reported from other studies on
hospitalised colic cases [2,15]. The probabilities of survival
in surgically and medically colic cases (48 and 78%, respec-
tively) also correspond to previous studies [15,16].

There were found no
discrepancies between
the phenotypic character
demonstrated for present
isolates and the ones
outlined for the different
Mannheimia species by
Angen et al. [ CIT ] .

There were found no discrepancies between the phenotypic
character demonstrated for present isolates and the ones out-
lined for the different Mannheimia species by Angen et al.
[1]. However, given the considerable genetic diversity among
the isolates classifying with M. ruminalis will be referred
too, as M. ruminalis-like organisms. Interestingly, all iso-
lates classified with M. ruminalis were β − haemolytic on
ovine blood, although this species generally is regarded as
non-haemolytic. The M. ruminalis-like organisms were the
most prevalent Mannheimia species present in all four flocks.

The usefulness in using
β − glucuronidase activ-
ity for the identification of
E.coli has been confirmed
by Schraft and coworkers
who reported almost identi-
cal colony counts based on
β − glucuronidase activity
and on classical biochemi-
cal reactions [ CIT ].

Typical E. coli on SEC plates appear as blue-green colonies
as it has been found that about 97% of E.coli produce β −
glucuronidase which reacts with an indicator dye in the plate
media to produce dark green to blue-green colonies. Colonies
other than E.coli are not conspicuous because they are color-
less or have a light grey-beige color. The usefulness in us-
ing β − glucuronidase activity for identification of E.coli has
been confirmed by Schraft and coworkers who reported al-
most identical colony counts based on β − glucuronidase ac-
tivity and on classical biochemical reactions[6].

CITE dataset [20] dedicated to only biomedical research papers. Following the work by Meng
Jia [15], I traversed back to the original full article repository of PubMed from where the cita-
tions were initially retrieved and annotated into multiple labels. I extracted the entire paragraph
from those single-line citations and appended them to the dataset. So this new dataset has both
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Figure 3.1: Application of Transformer (T5) model [27]

single-line citation sentences along with their corresponding paragraphs. The full articles were
in XML format so I first converted them into a python data frame and using advanced query
extracted the paragraph that belonged to each individual single-sentence citation. I kept the
sentiment polarity the same for the paragraphs since all of the individual citations belong to
each paragraph. This new dataset was cleaned, which is described later in this chapter.

Table 3.2 shows sentences belonging to the corresponding paragraphs.

3.2 Data Augmentation

All three above-mentioned datasets are class imbalanced. The common factor is that most of
the citation sentences belong to the Neutral category. As a result, the models tend to predict
every test example as neutral. Even though apparently these distribution produces decent ac-
curacy, the f1 score, precision, and recall for other labels were significantly poor. To solve,
this issue I needed to augment the datasets. There were two viable options available. The first
one is duplicating the citation entries. The second option was paraphrasing the classes that had
fewer entries. Duplication sometimes creates extra redundancy and the model does not get new
features to learn for these values. However, paraphrasing produces different sentences keeping
the sentiment the same as the original sentence. So, I opted for the paraphrasing option, and
upon test results, this produced better accuracy as well.

The method that has been used here uses a fine-tuned Text-To-Text Transformer (T5)
model. T5 is a transformer-based architecture and the main principle of this model is based
on a text-to-text approach. There are some significant differences between this T5 model and
conventional BERT.

For my setup to perform data augmentation, I used the TextGenie library. It first does para-
phrasing using the above-mentioned T5 model then uses BERT mask filling to find keywords
and replace them with a mask that is being fed to the BERT model to predict another similar
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Paraphrased samples from Jia’s Dataset [15]

Sentence from Jia’s Dataset Paraphrased version
In the present study, the survival percentage
of 63 was on the same level as reported from
other studies on hospitalised colic cases

The survival percentage of 63 for all colic
cases in the present study is on the same level
as reported from other studies on hospital-
ized colic case

There is a survival percentage of 63 for all
colic cases in present study. This is the
same as reported from other studies on hos-
pitalised colic cases
The survival percentage of 63 is the same as
reported from other studies on hospitalised
colic cases.

Table 3.4: Paraphrased samples from Athar’s Dataset [2]

Sentence from Athar’s Dataset Paraphrased version
In this way, there is no straightforward gen-
eralization of the method of Smith and Smith
(2007) to the two-edge marginal problem.

Fortunately, there is no straightforward gen-
eralization of the method of Smith and Smith
(2007) to the two edge marginal problem.

Here, at least, there is no straightfor-
ward generalization of the method of Smith
(2007) to the two-edge marginal problem.
After Smith and Smith (2007), luckily here
is no direct generalization of the two edge
marginal problem.

word to put in the masked word. Finally, this library considers the voice of a sentence. If a
sentence is fed in a passive voice, it transforms into an active voice.

In addition, to initialize this library a spaCy model name is also mandatory. The default
model “en” has been used. The parameters for this setup are: sent ( the given sentence ), prefix
( it is for the T5 model input ), n_predictions ( this determines how many augmentations the
function should return), top_k ( maximum number of predictions ), and max_length (maximum
length of a sentence that can be given the model, the default value is set to 256.

Tables 3.3 and 3.4 show examples of citation sentences respectively from Jia’s and Athar’s
work. Using the above mentioned library, I produced three paraphrases for each sentence.
Since the quantity of neutral labeled sentences is significantly higher, paraphrasing has been
done only on positive and negative labeled sentences. After that, an equal number of sam-
ples from each class has been sampled to make a proper class-balanced dataset. These new
augmented results are the final version of datasets that are used to train the models.



Chapter 3. Methodology 26

3.3 Data Cleaning

Data cleaning has been an important factor in this research. Two datasets needed the use of
several data-cleaning techniques. The paragraph dataset has been extracted directly from the
PubMed repository. These files are only available in XML format. XML files come with
different types of tags. For example: <italic>, <xref>, <href> etc. These tags don’t have sig-
nificant value when the work is based on creating a feature set from the given sentences and
later passed to the model. They affect the accuracy of the models and having more unneces-
sary words means more usage of time and space complexity. The paragraph dataset here is
significantly bigger than the other ones mentioned in the above part of the discussion. Medi-
cal journals contain a lot of characters that are not used in regular research work. Like: α,β,
γ, etc. These characters are also expressed using special tags in XML documents. Like tags
they cannot be just removed because these characters have significant importance to the senti-
ment. After this, the CORD-19 dataset has similar characteristics. When initially released this
dataset had all the XML tags and the dataset was not cleaned that can directly be forwarded to
the models. As a result data cleaning has been a major part of this research work.

For cleaning, the Regex library has been used most in this research work. A particular
Regex command has been proposed that removes all the typical XML tags from the sen-
tences. However, after removing it also keeps the generic representation of the tags. Even
if <xref>, </xref> tags have been removed, they still will have the citation information in-
side them. For example, “<xref ref-type="bibr" rid="B8">8</xref>,<xref ref-type="bibr"
rid="B9">9</xref>” gets converted into “ [8,9] ”. This shows that the citation reference is
maintained even though the tags were removed.

As a result of this process, shown is Table 3.5 the datasets became more interpretable, and
the length of the sentences got reduced which improved efficiency and most importantly better
overall accuracy was achieved.

3.4 Data Pre-Processing

3.4.1 Label Encoding

All the datasets used here have been converted into three labels: Neutral, Positive, and Nega-
tive. Rather than using strings as the labels as strings in this research work, all these labels were
encoded into numeric values. The purpose is to normalize the labels that contain values only
between 0 and n_classes-1. As a result, there was no ambiguity in labels across all the datasets.
LabelEncoder library from Sklearn has been used here. Most deep learning techniques involv-
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Table 3.5: Examples from cleaned Dataset

Citations with XML tags Cleaned version
[<xref ref-type="bibr" rid="B17">17</xref>]
found that a temperature deviation from
38&#x000b0;C was a significant variable in
the multivariable logistic regression model ex-
pressing the outcome of a colic case. In the present
study we did not find such a relationship when
temperature deviation from 38&#x000b0;C was
included in the model.</p>

[17] found that a temperature devia-
tion from 38°C was a significant vari-
able in the multivariable logistic re-
gression model expressing the out-
come of a colic case. In the present
study we did not find such a relation-
ship when temperature deviation from
38°C was included in the model.

The <italic>rpt6-1 </italic>mutant arrests
cell division within one cycle at the re-
strictive temperature [<xref ref-type="bibr"
rid="B13">13</xref>] and under normal growth
conditions, we found changes in the &#x003b1;1-
and &#x003b1;7-subunits of the 20S proteasome
in the <italic>rpt6-1 </italic>mutant. One ques-
tion that remains to be clarified is whether the
observed changes are affected at the restrictive
temperature. The data presented in figure <xref
ref-type="fig" rid="F9">9</xref> indicate that
the change in &#x003b1;7 in the <italic>rpt6-1
</italic>mutant grown at 25&#x000b0;C dis-
appeared during the response to cell stress.
Interestingly, in parallel with the disappearance,
normalization of LLVY-hydrolyzing activity was
observed in the absence of SDS (Table <xref
ref-type="table" rid="T2">2</xref>). </p>

The rpt6-1 mutant arrests cell divi-
sion within one cycle at the restrictive
temperature [13] and under normal
growth conditions, we found changes
in the α1- and α7-subunits of the 20S
proteasome in the rpt6-1 mutant. One
question that remains to be clarified
is whether the observed changes are
affected at the restrictive temperature.
The data presented in figure 9 indi-
cate that the change in α7 in the rpt6-
1 mutant grown at 25°C disappeared
during the response to cell stress. In-
terestingly, in parallel with the dis-
appearance, normalization of LLVY-
hydrolyzing activity was observed in
the absence of SDS (Table 2).

&#x003b1;-Sarcin has been shown to kill cells
by apoptotic induction [<xref ref-type="bibr"
rid="B5">5</xref>]. To determine whether the
cell death we observed by direct expression was
due to apoptosis, we measured apoptosis in cells
transfected with &#x003b1;-sarcin or each of the
mutants. As expected, wild type &#x003b1;-
sarcin and both of the mutants induced apopto-
sis 24 hours after transfection (Figure <xref ref-
type="fig" rid="F4">4c</xref>). We did not de-
tect any difference in necrosis between pcDNA3
controls and wild-type &#x003b1;-sarcin or either
of the mutants (data not shown).</p>

α-Sarcin has been shown to kill cells
by apoptotic induction [5]. To deter-
mine whether the cell death we ob-
served by direct expression was due
to apoptosis, we measured apoptosis
in cells transfected with α-sarcin or
each of the mutants. As expected,
wild type α-sarcin and both of the mu-
tants induced apoptosis 24 hours af-
ter transfection (Figure 4c). We did
not detect any difference in necrosis
between pcDNA3 controls and wild-
type α-sarcin or either of the mutants
(data not shown).



Chapter 3. Methodology 28

Table 3.6: Encoded Labels

Original Label Encoded Label
Negative 0
Neutral 1
Positive 2

ing artificial neural network models intuitively expect data to be numerical. This improves the
performance of these models in terms of accuracy and other evaluative metrics that have been
used to assess how the proposed architecture is compared to other research results. One another
approach to address this task could be One-Hot Encoding. Both of these approaches serve the
same purpose but there are some key differences. One-Hot Encoding creates a dummy variable
for each category and adds an extra column which sometimes creates a form of redundancy
to the dataset. This also leans towards another problem known as multicollinearity. If there
is a relationship between independent variables then this technique can hamper the model’s
capability of predicting a particular label with a higher confidence value. So, the use of the
LabelEncoder library seemed more viable for this research work. This library takes the label
column from the dataset and uses it as a parameter of the provided fit() function. This function
returns the encoded value of the labels. The Negative category got labeled as 0, Neutral as 1,
and Positive as 2. It has been made sure that encoded labels are consistent among all of them.
Having uniform encoded labels is also very important for transfer learning as well. All the
trained models under this work have been used to test how they perform to an entirely different
and unseen dataset but from the same genre. To deal with the issue of redundancy the ordinal
label column has been replaced with the new encoded values.

Table 3.6 shows the new encoded values across all the datasets.

After performing label-encoding in all the datasets they were sampled in such a way they
have an equal number of samples from each encoded category. With the class-balanced datasets,
they have been split into train and test sets. Having the train test separation from a data frame
is crucial for any neural network model. The ratio that has been maintained is 80:20 where
80 belongs to training data. The datasets were shuffled so that the models don’t tend to find a
pattern based on the order of the training samples. This process has been repeated five times
for each dataset with a different random state value. This gave me the opportunity to assess the
average performance of each model. Stratify has not been used here because all the datasets
have an equal number of samples under each category.

A separate class file has been created called as SentimentData for preparing the dataset
into a format that can be forwarded to the Transformer architecture-based models directly.
This class takes three parameters. They are data frame, tokenizer, and max_length. The data
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Table 3.7: Pre-trained Tokenizers corresponding to the Models

Model Name Tokenizer
BERT bert-base-cased

Bio-BERT dmis-lab/biobert-v1.1
RoBERTa roberta-base

Bio-RoBERTa roberta-base
ELECTRA google/electra-large-discriminator
ALBERT albert-base-v2
SPECTER allenai/specter

Table 3.8: Pre-trained Tokenizers corresponding to the Models used for paragraphs

Model Name Tokenizer
Longformer allenai/longformer-base-4096

Ernie-2.0 nghuyong/ernie-2.0-base-en
BigBird google/bigbird-roberta-large

frames consist of two columns: Text and Sentiment. After taking the entire data frame text and
sentiment are separated and stored separately into two different variables. Every individual
word gets split from the provided text sentences and passed to the tokenizer to create a new
representation of those words. There are several techniques of tokenization. For this research
work, BERT-based tokenizers have been used. BERT-based tokenizers are a combination of
token embedding, segment embedding, and positional embedding. This approach is much
more complex and carries a lot more information about the input compared to regular LSTM.
Tables 3.7 and 3.8 show a list of tokenizers corresponding to each individual model that has
been used in this work.

Embeddings play a significant role in NLP-based tasks. Words cannot be directly for-
warded to a model and make the model extract features and learn from it. A neural network
can only work with numerical figures and so every word needs to be represented in a numeri-
cal arrangement. Word embeddings come into the role to address this situation. Embeddings
are d-dimensional vectors that represent every unique index. There are many embedding li-
braries available like Word2Vec and Glove which return different dimensional vectors given a
word. Figure 3.2 shows a simple example of indexing and embedding vectors given a sample
sentence.

Every single word here is represented with a particular index value and a corresponding
d-dimensional vector. BERT [10] uses a word-piece tokenizer concept that puts into account
token, segment, and position embedding altogether. The default library of BERT does not
mention positional embedding separately because the model learns the positional embedding
by itself during the training phase. Under this approach, some words get divided into subwords
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Figure 3.2: BERT Input Embedding [10]

and this helps to enrich the vocabulary because at times some unknown words can be broken
down into sub-groups and these subgroups may belong to a known word for the model. As
a result, the BERT tokenizer performs really well compared to other tokenization and embed-
ding techniques. Figure 3.2 shows that all three different embeddings are part of the BERT
embedding mechanism.

The third parameter is max_length. This value basically shows the longest sequence in
a batch. All the inputs under one batch need to be the same. In order to ensure this con-
sistency within a batch padding is mandatory. Not necessarily all sentences will have the
same length. So the tokenizers add extra tokens according to necessity. Unless all the in-
puts are of the same length, BERT cannot be used to extract features that can be passed to an
artificial neural network model to train on. The SentimentData class ensures this by setting
pad_to_max_length=True. Padding can be applied in both possible directions, either at the of
the sentence sequence or at the end. This process is applied to all the datasets. Figure 3.3
shows how padding is applied through the BERT_tokenizer to make sure all inputs are of the
right format.

Now from the given texts using the BERT-tokenizer, the object of SentimentData class re-
turns input_ids, attention_mask, token_type_ids, and targets as tensors. Before feeding these
as inputs to the models some training and testing parameters are needed to be defined such as
batch_size, shuffle, num_workers, etc. These parameters are incorporated with the object of
SentimentData class using the PyTorch DataLoader library. In order to use these two abstract
methods are mandatory: __getitem__ & __len__. SentimentData class already has these meth-
ods implemented so they can be inherited now in the DataLoader. This gives the opportunity
to iterate through prepared data and initialize the above-mentioned parameters. This is the last
step of pre-processing the data and now it is forwarded to the model architecture.
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Figure 3.3: BERT Padding Format [10]

3.5 BERT Based Models

Deep learning models (such as transformers) are examples of pre-trained models (PTMs) for
natural language processing. These models are trained on a huge dataset to carry out cer-
tain NLP tasks. PTMs, when trained on a large corpus, have the ability to acquire universal
language representations. This has the potential to be useful for subsequent NLP tasks and
eliminates the need to build a new model from the ground up. Pre-trained models can thus
be referred to as reusable NLP models, which NLP developers can employ to rapidly build
an NLP application using. Transformers offer a collection of deep learning NLP models that
have already been pre-trained to perform a variety of NLP tasks, including text classification,
question answering, machine translation, and others.

The most recent PTM, also known as the 2nd generation, has been trained to learn con-
textual word embeddings. This chapter demonstrates how transfer learning and unsupervised
learning can benefit from pre-trained language models like BERT [10]. The goal of this study
is to portray the workflow of how from the very beginning stage a text is processed and later
different models can be trained on them for applying to real-life applications.

3.5.1 BERT

BERT [10] has been proposed to join conditioning from the left and right contexts in all the
layers to pre-train deep bidirectional representations. This pre-trained model can easily be
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fine-tuned to produce better results for various tasks.

BERT counters the main limitation of the standard language models being unidirectional
which restricts the choice of the architectures that can be accessed during pre-training. This
has been possible to implement in this work by using a masked language model that randomly
masks some of the tokens and the goal is to predict the original vocabulary id of the masked
word depending only on its context. Alongside this BERT also uses the “next sentence predic-
tion” task that combined pre-trains text-pair representations. Pre-training and fine-tuning are
the two steps that define the framework of BERT. While the model is in the pre-training phase
it gets trained on unlabeled over several pre-training tasks. After that in the fine-tuning phase,
the model gets initialized with the same pre-trained parameters along with all of the parameters
that are fine-tuned using labeled data from downstream tasks. The pre-training corpus that has
been used here is a combination of BookCorpus and English Wikipedia.

The deep bidirectional architecture that has been proposed here revolutionized the way of
tackling NLP tasks. Transfer learning with language models has shown the fact that meaningful
unsupervised pre-training is an inseparable part of language understanding systems. BERT
using this idea performed significantly better on almost every single standard NLP task.

3.5.2 Bio-BERT

Bio-BERT is a dedicated model in natural language processing (NLP) for biomedical and
clinical applications. It achieves this by addressing the challenges of applying NLP to these
domains, including the complexity of biomedical terminology, the need for domain-specific
knowledge, and the need for large amounts of annotated data. Several popular PLMs, includ-
ing BERT, BioBERT, and ClinicalBERT can be adapted and fine-tuned for use in biomedical
and clinical NLP. Bio-BERT has been trained on PubMed data and, optionally, MIMIC-III.

3.5.3 RoBERTa

This research work is similar to the study of BERT [10] pretraining given emphasis on the
impact of several key hyperparameters and training data size. Claiming that BERT is signifi-
cantly undertrained this model showed improved results on regular NLP tasks. This work also
pointed out the previously overlooked design choices and the source of recently reported im-
provements. The proposed model name is RoBERTa [21] which is a robust and more optimized
version of BERT.

Researchers here presented an evaluation of the impact of hyperparameters and training
set size. This model is called RoBERTa and this matched or outperformed all post-BERT
models. This process involved training the model longer over more data with a bigger batch
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size, removing the Next Sentence Prediction (NSP) objective, training longer sequences, and
dynamically changing the masking pattern applied to the training data. To ensure better control
over the effects of training size researchers collected a new dataset called CC-News which is
of comparable size to other similar datasets.

RoBERTa is trained based on five English-Language corpora of different domains and sizes.
These corpora are BOOKCORPUS, CC-NEWS, OPENWEBTEXT, and STORIES.

3.5.4 Bio-RoBERTa

Bio-RoBERTa is a domain-specific model that involves fine-tuning the pre-trained RoBERTa
model on the 2.68 million scientific articles from the Semantic Scholar database (the S2ORC
dataset maintained by AllenAI) focusing on biomedical papers. For this model complete texts
of the articles have been used rather than just abstracts from PubMed, so this dataset contains
papers that are not publicly available due to copyright restrictions. This dataset has a total of
7.55 billion tokens and 47 gigabytes of information.

3.5.5 ALBERT

The paper introduces ALBERT [18] (A Lite BERT), a self-supervised language representation
learning model that significantly reduces the number of parameters in the original BERT model
while maintaining comparable or better performance on various NLP tasks. ALBERT achieves
this by using three novel techniques: (1) factorized embedding parameterization, which reduces
the size of the embedding matrix by factorizing it into two smaller matrices, (2) cross-layer
parameter sharing, which reduces the number of parameters by allowing the parameters of all
layers to be shared, and (3) Inter-sentence coherence loss, which mainly focuses modeling of
inter-sentence coherence avoiding the topic prediction.

3.5.6 Longformer

Due to the quadratic scaling of self-attention with sequence length, transformer-based models
struggle to process long sequences. To overcome this limitation, the Longformer model [4]
has been developed with an attention mechanism that scales linearly with sequence length, en-
abling the processing of documents with thousands of tokens or more. Longformer’s attention
mechanism combines local windowed attention with task-motivated global attention and can
be used as a drop-in replacement for standard self-attention.

The key innovation of Longformer is the use of a sliding window attention mechanism
that only attends to a subset of the input tokens at any given time. This approach avoids the
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quadratic complexity of traditional self-attention mechanisms while maintaining long-range
dependencies across the entire sequence.

The authors also demonstrate the scalability of Longformer by training models on up to
8,000 tokens using a single GPU, a significant improvement over traditional Transformer mod-
els which can only handle inputs of 512 as token length.

Overall, Longformer represents a promising approach to handling long documents in nat-
ural language processing tasks, with potential applications in areas such as scientific research,
legal documents, and financial reports.

3.5.7 Big Bird

This is a research paper that presents a new transformer-based model called Big Bird [37] that
is designed to handle longer sequences than previous transformer models. The authors note
that traditional transformer models such as BERT are limited in their ability to process long
sequences due to their quadratic complexity in both the sequence length and the hidden size of
the model.

To address this limitation, the authors introduce two key innovations in the Big Bird model.
First, they propose a new sparse attention mechanism that enables the model to attend to only
a subset of the sequence, rather than the entire sequence. This mechanism is based on a hier-
archical structure that partitions the sequence into segments and applies attention only to the
relevant segments. The authors show that this sparse attention mechanism reduces the compu-
tational cost of the model from quadratic to linear in the sequence length.

Second, the authors introduce a novel way of initializing the model that is based on a
combination of pretraining and random initialization. The model is pre-trained on a smaller
subset of the sequence, which allows it to capture global patterns in the data, and then randomly
initialized on the remaining portion of the sequence. This approach allows the model to capture
both local and global patterns in the data, which the authors argue is necessary for handling
longer sequences.

3.6 Other Pre-trained Language Models

3.6.1 ELECTRA

Pre-training methods for masked language modeling (MLM), such as BERT, corrupt the input
by replacing some tokens with [MASK] and then train a model to reconstruct the original
tokens. While they produce good results when applied to downstream NLP tasks, they typically
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Figure 3.4: A high-level overview of replaced token detection under ELECTRA [7]

require a lot of computing power to be effective. As an alternative, researchers here proposed a
replaced token detection system, a more sample-efficient pre-training task named as ELECTRA
[7]. Rather than masking the input, they altered it by replacing some tokens with plausible
alternatives drawn from a small generator network. Then, rather than training a model to
predict the original identities of the corrupted tokens, they trained a discriminative model to
predict whether or not each token in the corrupted input was replaced by a generator sample.

3.6.2 SPECTER

To counter the limitation of BERT-based models to address the information based on inter-
document relatedness, authors have proposed a novel model named SPECTER [9]. SPECTER
in a novel method to produce document-level embedding specializing in scientific documents
based on pretraining a Transformer language model on powerful information of document-
level relatedness. BERT is powerful but it only emphasizes token and sentence-level training
goals. On the contrary, this new SPECTER model considers the document-level representation
and can easily be applied to downstream tasks without any task-specific fine-tuning.

The researchers have particularly used citations as a naturally occurring, inter-document
incidental signal showing which documents are most related and structured the signal into a
triple loss pretraining objective. This model does not require any citation information during
the inference.

The choice of negative paper is highly significant in terms of training this model. In order
to give a more nuanced training signal they augmented the randomly drawn negatives and
prepared a set called “hard negative”. Hard negatives are the papers that are not cited by the
query paper but are cited by a paper cited by the query paper. Their experiments show that
involving hard negatives results in more accurate embeddings. During the time of inference,
a paper P is given to the model and it produces output as SPECTER’s Transformer pooled
output activation. SPECTER only requires the title and abstract and does not need any citation
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Figure 3.5: Structure of Ernie2.0 model [31]

information. This means that these embeddings can work on new papers that are yet to be
cited.

The results are really promising after all the experiments done on the above-mentioned
tasks. Overall, this paper has shown that average performance of 80.00 across all metrics on all
tasks which is significantly better compared to the next best baseline. SGC only outperforms
SPECTER on the Cite task’s MAP and nDCG score.

3.6.3 Ernie 2.0

ERNIE 2.0 is a continuous pre-training framework that supports customized training tasks and
continuous multi-task learning in an incremental manner. Researchers here have created three
different unsupervised language processing tasks to assess the performance of the proposed
model. The ongoing multi-task learning approach efficiently trains the newly introduced tasks
alongside the old tasks when one or more new tasks are offered, without discarding previously
learned information. On the basis of the previously trained parameters that it understood, the
new framework may then incrementally train the distributed representations. The same encod-
ing across all the tasks enables the encoding of lexical, syntactic, and semantic information and
evaluation of them.

The above-mentioned architecture is built on two stages. The first is the pre-training phase
and the second is the fine-tuning. The difference here compared to other pretraining processes
is that it is continual. Instead of just training with a small number of pre-training objectives. To
enable the model effectively learn the lexical, syntactic, and semantic representations, it might
continuously introduce a wide variety of pretraining challenges. Three types of pretraining
tasks have been mentioned in this research work for pre-training. They are word-aware tasks,
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structure-aware tasks, and finally semantic-aware tasks.

3.7 Model Architecture

The model architecture starts with tokenizing the citation instances. Every pre-trained language
model provides their own tokenizer. The tokenized inputs are then forwarded to the model
which is a set of encoders. The number of encoders in the model stack also varies from model
to model. These encoders, in the end, return the value of the hidden state. Hidden state values
are then passed to a dense layer which has been named a pre-classifier. The output from the pre-
classifier is used to pass through an activation function. For my work, I have used ReLU as the
activation function. ReLU stands for Rectified Linear Unit. Under this activation function, the
neurons perform a linear transformation on this input using the weights and biases. In the end,
the output from the activation function is sent to the subsequent hidden layer, where the process
starts all over again. The term “forward propagation” refers to the transfer of information in
a forward direction. In most cases, the value that is actually being used is very different from
the output that is being generated. The error is estimated by making use of the output from
the forward propagation. Updates are made to the weights and biases of the neurons whenever
this error value is calculated and used. Backpropagation is the name given to this particular
mechanism. Before, performing the final linear transformation I have one dropout layer. The
fact that the dropout layer stops all neurons in a layer from improving their weights at the same
time simultaneously is the primary benefit of using this strategy. This adaptation, which is
carried out in random groups, prevents all of the neurons from converging to the same goal,
and as a result, the weights are decorrelated. Finally, after the dropout, the neurons go through
the final linear layer with an output dimension of 3. The reason behind having 3 as the final
output of the linear layer is because in all the datasets in this work have three labels. The goal
is to predict the correct label from a given citation instance.

Each model has been trained on 40 epochs. Under this, I have used cross-entropy as the
loss function. The concept of cross-entropy originates in the discipline of information theory.
It is a measure that expands upon the concept of entropy and, in general, calculates the dif-
ference between two probability distributions. Cross-entropy can be thought of as calculating
the total entropy between the distributions, in contrast to KL divergence, which calculates the
relative entropy between two probability distributions. Cross-entropy is closely related to but
distinct from KL divergence, which calculates the relative entropy between two probability
distributions. Cross-entropy and its close relative, logistic loss, sometimes known as log loss,
are two concepts that are frequently mistaken for one another. When employed as loss func-
tions for classification models, both measures calculate the same quantity and can be utilized
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Figure 3.6: Proposed Model Architecture

interchangeably, despite the fact that the two measures are derived from separate sources [24].
Besides this, I have used Adam as the optimizer. The Adam optimizer is superior to all other
optimization algorithms in several ways, including the fact that it has a shorter learning curve,
a shorter calculation time, and fewer tuning parameters. Because of all of these factors, Adam
is the optimizer that is advised to be used by the majority of the applications and also used for
training the proposed model here in this work. [16]
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Figure 3.7: Ensemble architecture in this thesis

3.8 Ensembling

The process of combining multiple models into a single, comprehensive, and trustworthy pre-
dictive model is referred to as “ensembling”. A powerful deep learning model that may be
utilized in a variety of contexts is known as a convolutional neural network. On the other hand,
using an ensemble of the same deep learning model produces results that are more accurate
and more robust when applied to different datasets. When compared to the fundamental deep
learning models, ensemble models are characterized by greater reliability and robustness. Ad-
ditional comparisons can be made between the two models by applying them to larger datasets.
There are more deep learning models that, in order to perform classifications, can be ensembled
with either the same or distinct models.

There are several ensembling techniques. In Figure 3.7, the meta learner can be designed
in multiple ways following the ensembling techniques. For this work, I have used Max-voting
and Winner-take-all.

Max-voting: One of the most used and convenient methods for combining the predictions
produced by different machine learning algorithms is called max-voting. This method is typ-
ically applied when dealing with classification issues. In all the datasets here there are three
labels (Positive, Negative, and Neutral). So, this method has been implemented initially for
this task. During the process of max-voting, every base model generates a forecast and casts
a vote for each sample. Only the sample class that received the most votes is considered for
inclusion in the final predictive class. For illustration’s sake, let’s imagine that we have one
citation from a biomedical journal that can be predicted into three distinct labels. We are able
to make the reasonable assumption that some models will give a label value of positive while
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others may choose from negative and neutral. When determining the final label or class, if the
majority of models, or more than half of them, provide a rating of a particular label, then that
is the label that is returned and checked for validation.

Winner-take-all: Winner-take-all networks are an example of competitive learning in recur-
rent neural networks, which is a concept that is central to the theory underlying artificial neural
networks. The network’s output nodes mutually inhibit one another while at the same time ac-
tivating themselves through reflexive connections. After a certain amount of time has passed,
there will be only one active node in the output layer, and that node will be the one that corre-
sponds to the input that is the strongest. Therefore, the network employs nonlinear inhibition
in order to select the most significant input from among a group of candidates. Winner-take-all
is a universal computational primitive that can be implemented using several kinds of neural
networks, such as continuous-time networks, as well as spiking networks [22, 25]. In computer
models of the brain, winner-take-all networks are frequently employed, notably for distributed
decision-making or action selection in the cortex. In this work, I have used the output predic-
tion of different models replacing the idea of neurons with them. I have used several language
models to predict correct labels on all the datasets. Every single model predicted a particular
label for a given citation example with a different probability value also can be called confi-
dence. In contrast to the max voting approach, I didn’t consider the max number of votes for
a prediction but gave emphasis to the model which identified a label with more confidence.
Several models can predict something the same with less confidence but a single model might
predict a different label with much more confidence and that can match the target efficiently
resulting in better performance.
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Experimental Setup and Results Analysis

This chapter outlines the experiments that I conducted for my thesis project. The two previous
works that researched citation polarity using gold standard datasets looked at two text genres:
biomedical text [15] and computational linguistic text [2]. Both of these works used traditional
machine-learning techniques. My motivation was to investigate deep learning techniques for
citation polarity using these two gold-standard datasets. In addition, I was interested in working
with the CORD-19 silver standard corpus.

4.1 Description of Experiments

As a part of our research work, we opted for several experiment setups and used various tech-
niques for initializing and using the models. The experiments are described as below:

• Experiment 1: We trained all the models based on Jia’s dataset and Athar’s dataset and
tested on the unseen samples from the original datasets, respectively. The motivation be-
hind this setup is to see how pre-trained language models perform on the original datasets
and compare them to the results mentioned in the actual papers. All the parameters dur-
ing the training were the same so that the results remain consistent.

• Experiment 2: Under this setup, we used the augmented datasets which were created
using paraphrasing, downsampling, and class-balancing techniques. This time the mod-
els were trained using these new proposed datasets but were tested on the same unseen
sample from Experiment 1. The goal is to evaluate if having a class-balanced dataset
contributes to the accuracy of the models or not.

• Experiment 3: A merged dataset combining the augmented datasets of Jia and Athar has
been used here for training the models. Previously, the experiments were done on an

41
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individual dataset but this time the approach is to see if merging data from two different
sources belonging to different genres improve the prediction capability of the models or
not. This time the models were tested on Jia’s original dataset.

• Experiment 4: We used the new paragraph dataset which we created from Jia’s work to
train the models that work well with long sequences of sentences. The incentive behind
this is to see if having neighboring sentences merged into a paragraph contains more
information about the polarity of a citation rather than just a single sentence.

• Experiment 5: This time we used one dataset to train the models and tested it on an en-
tirely different dataset to explore the potential of transfer learning. For all three datasets,
we did this experiment to show how well they perform on each other and used the same
models for training so that the new results can be compared to the experiments mentioned
earlier.

4.2 Parameters and Resources

I have used multiple tokenizers to create the word embeddings. Table 3.7 in Chapter 3 shows all
the pre-trained models and their corresponding tokenizers that have been used. The maximum
length of a sentence here has been set to 512 for all the models since this is a limitation of all
BERT-like models. The batch size is fixed to 4 for both the training and validation datasets.
The learning rate is a crucial factor in optimizing a neural network. It dictates the momentum
and helps the optimizer to perform efficiently. The learning rate has been set to 1e-05 for all
the experiments. All models have been trained for 40 epochs using the NVIDIA RTX A6000
GPU having 48 gb ram available.

4.3 Results and Evaluation

4.3.1 Sentence-based Datasets

After training the models separately on Jia’s [15] dataset, Athar’s [2] dataset, a merged dataset
composed of Jia’s and Athar’s dataset, and the CORD-19 [35] dataset I have obtained the
following results.

First, Table 4.1 shows the results based on the initial dataset proposed by Jia [15]. SPECTER
and both of the ensembling methods produce an accuracy of 0.86. However, in this work, I have
focused on precision, recall, and F1-scores as well. This is where this initially proposed dataset
lacks since it’s highly class-imbalanced. In case of BERT and ELECTRA we observe that these
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Table 4.1: Result of training and testing on Jia’s Original dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.00 0.00 0.00

0.691 0.87 0.76 0.81
2 0.35 0.66 0.46

Bio-BERT
0 1.00 0.10 0.18

0.821 0.88 0.91 0.89
2 0.57 0.69 0.62

RoBERTa
0 0.57 0.80 0.67

0.831 0.92 0.84 0.88
2 0.64 0.79 0.71

Bio-RoBERTa
0 0.67 0.60 0.63

0.841 0.93 0.86 0.89
2 0.63 0.83 0.72

ELECTRA
0 0.00 0.00 0.00

0.751 0.75 1.00 0.86
2 0.00 0.00 0.00

ALBERT
0 0.20 0.30 0.24

0.741 0.83 0.91 0.87
2 0.85 0.38 0.52

SPECTER
0 0.55 0.60 0.57

0.851 0.94 0.88 0.91
2 0.69 0.83 0.75

Max Voting
0 0.83 0.50 0.62

0.861 0.89 0.93 0.91
2 0.71 0.69 0.70

Winner Takes All
0 0.80 0.40 0.53

0.861 0.89 0.95 0.92
2 0.77 0.69 0.73

models could not detect negative label as the precision, recall and F1-score value is 0.00. Both
Bio-BERT and Bio-RoBERTa outperfom their base models in terms of all the matrices.

Table 4.2 shows the result where the model was trained on class-balanced Jia’s dataset and
it was also tested on the same dataset as Table 4.1 but with unseen citation instances. From the
pre-trained models, SPECTER showed the highest overall accuracy of 0.9225. In terms of the
F1-score, for label 0, BERT performs the best with a score of 0.95 and SPECTER produces the
best score for labels 1 and 2. In this scenario BERT outperforms Bio-Bert but Bio-RoBERTa
performed significantly well compared to base RoBERTa. One interesting finding for ELEC-
TRA under this setup is that the accuracy went down compared to Table 4.1 whereas precision,
recall and F1-score for all three labels improved. This shows that class-balancing helps the
models to learn all three labels better and produce better polarity detection. The ensembling
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Table 4.2: Result of training on Jia’s Class-balanced dataset and testing on Jia’s Test dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.91 1.00 0.95

0.91611 0.95 0.94 0.94
2 0.79 0.79 0.79

Bio-BERT
0 0.67 1.00 0.80

0.90961 0.96 0.92 0.94
2 0.86 0.83 0.84

RoBERTa
0 0.77 1.00 0.87

0.8561 0.94 0.93 0.94
2 0.81 0.76 0.79

Bio-RoBERTa
0 0.71 1.00 0.83

0.90321 0.93 0.94 0.94
2 0.88 0.72 0.79

ELECTRA
0 0.10 0.50 0.17

0.53541 0.75 0.66 0.70
2 0.25 0.03 0.06

ALBERT
0 0.67 1.00 0.80

0.85161 0.91 0.90 0.90
2 0.69 0.62 0.65

SPECTER
0 0.71 1.00 0.83

0.92251 0.95 0.95 0.95
2 0.92 0.79 0.85

Max Voting
0 0.83 1.00 0.91

0.91611 0.93 0.96 0.94
2 0.88 0.72 0.79

Winner Takes All
0 0.83 1.00 0.91

0.92251 0.94 0.96 0.95
2 0.88 0.76 0.81

techniques even push the performance of these models. Using the Winner-Takes-All mecha-
nism the highest average accuracy of 0.9225 has been achieved as well as this technique has
the most impactful F1, precision, and recall value for all three labels compared to the other
models.

After that, Table 4.3 shows the result where we trained the model on Athar’s original dataset
and also tested the model on the unseen test data from the same corpus. RoBERTa and Bio-
RoBERTa both produce the max accuracy of 0.89 but the F1-score for each label here is not
satisfactory. The main reason behind this is that the dataset is hugely class imbalanced. ELEC-
TRA gave an accuracy of 0.88 which is pretty well but it is only detecting one label and that is
neutral. If we look at the F1-score, for labels 0 and 2 the value is 0.00. This means the model is
labeling everything as neutral and since the dataset is skewed toward neutral labels we got such
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Table 4.3: Result of training and testing on Athar’s Original dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.38 0.09 0.14

0.871 0.95 0.92 0.94
2 0.39 0.63 0.48

Bio-BERT
0 0.46 0.32 0.38

0.891 0.94 0.95 0.95
2 0.52 0.49 0.51

RoBERTa
0 0.53 0.38 0.44

0.8911 0.95 0.94 0.94
2 0.48 0.62 0.55

Bio-RoBERTa
0 0.44 0.39 0.42

0.8941 0.95 0.94 0.95
2 0.51 0.61 0.56

ELECTRA
0 0.00 0.00 0.00

0.881 0.89 1.00 0.94
2 0.00 0.00 0.00

ALBERT
0 0.22 0.39 0.28

0.8751 0.94 0.94 0.94
2 0.58 0.37 0.45

SPECTER
0 0.38 0.48 0.43

0.881 0.96 0.93 0.94
2 0.50 0.60 0.55

Max Voting
0 0.50 0.38 0.43

0.9071 0.95 0.96 0.95
2 0.58 0.54 0.56

Winner Takes All
0 0.48 0.21 0.30

0.9061 0.94 0.97 0.95
2 0.58 0.51 0.54

high accuracy which actually does not contribute to the quality of polarity detection. Just like
Jia’s original dataset both Bio-BERT and Bio-RoBERTa outperform their base models in terms
of all the matrices. We found a pattern that for augmented datasets the base models perform
better than the bio-based ones and vice-versa. Max voting ensembling technique produced the
best result with an accuracy of 0.907 but still, it was lacking in terms of precision, recall, and
F1-score for negative and positive labels.

Then, we have included Table 4.4 where we trained the models on Athar’s class-balanced
dataset with paraphrases and tested on the same dataset as used in Table 4.3. This table shows
that even though the highest accuracy is 0.821 from the Max Voting technique, the F1-scores
for each label have improved significantly. RoBERTa and Bio-RoBERTa performed really
well as stand-alone models with an accuracy of 0.816 and 0.814 respectively. Even though
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Table 4.4: Result of training on Athar’s Class-Balanced dataset and testing on Athar’s Test
dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.78 0.82 0.80

0.7541 0.81 0.78 0.80
2 0.67 0.67 0.67

Bio-BERT
0 0.76 0.78 0.77

0.7371 0.82 0.76 0.79
2 0.64 0.67 0.66

RoBERTa
0 0.76 0.89 0.82

0.8161 0.88 0.83 0.85
2 0.84 0.73 0.78

Bio-RoBERTa
0 0.79 0.86 0.82

0.8141 0.97 0.77 0.86
2 0.73 0.81 0.77

ELECTRA
0 0.36 0.36 0.36

0.3561 0.35 0.56 0.43
2 0.39 0.15 0.22

ALBERT
0 0.83 0.67 0.74

0.741 0.73 0.81 0.77
2 0.68 0.74 0.71

SPECTER
0 0.74 0.88 0.80

0.7721 0.86 0.73 0.79
2 0.73 0.71 0.72

Max Voting
0 0.78 0.88 0.83

0.8211 0.90 0.84 0.87
2 0.79 0.74 0.76

Winner Takes All
0 0.78 0.81 0.79

0.7921 0.87 0.84 0.86
2 0.73 0.72 0.72

ELECTRA still is unable to predict the labels correctly, the performance improved after class-
balancing the dataset and we see almost similar F1-score values for all three labels. The goal of
this research work is to propose a mechanism that can detect each label with almost the same
accuracy. In the original work, Athar [2] showed that by using dependencies and negation he
received the highest average macro-F1 value of 0.764. According to my approach using the
max voting ensembling technique, I got the macro-F1 value of 0.82 which is 5.6 percentage
points higher than the original reported result.

Results mentioned in Table 4.5 show that the highest average accuracy on the down-sampled
yet class-balanced COVID dataset has been achieved with the Max-voting ensembling tech-
nique with a value of 0.9521. Even though Max-voting produces the overall best precision,
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Table 4.5: Result of training on the Class-balanced CORD-19 dataset and testing on the Origi-
nal CORD-19 Test dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.92 0.96 0.94

0.9341 0.97 0.93 0.95
2 0.92 0.91 0.91

Bio-BERT
0 0.93 0.97 0.95

0.9451 0.98 0.92 0.95
2 0.92 0.95 0.93

RoBERTa
0 0.91 0.97 0.94

0.9291 0.97 0.88 0.93
2 0.91 0.94 0.92

Bio-RoBERTa
0 0.94 0.98 0.96

0.9471 0.98 0.92 0.95
2 0.92 0.95 0.94

ELECTRA
0 0.53 0.39 0.45

0.41 0.38 0.78 0.51
2 0.28 0.21 0.13

ALBERT
0 0.93 0.93 0.93

0.9111 0.89 0.94 0.91
2 0.91 0.86 0.89

SPECTER
0 0.93 0.98 0.96

0.9461 0.98 0.92 0.95
2 0.92 0.94 0.93

Max Voting
0 0.94 0.98 0.96

0.95211 0.98 0.93 0.96
2 0.93 0.95 0.94

Winner Takes All
0 0.95 0.97 0.96

0.9481 0.98 0.93 0.95
2 0.92 0.94 0.93

recall, and F1-scores other models like Bio-RoBERTa , Bio-BERT and SPECTER performed
comparatively well, too. This time both the training and test dataset had equal number of
samples from all the labels.

After this, Table 4.6 shows the result of the above-mentioned Experiment 3. We used
the merged dataset to train all the models and then tested on Jia’s original dataset. From
the single models, RoBERTa showed the best accuracy of 0.941 as well as for the precision,
recall and F1-score values. If we compare this result with Tables 4.1 and 4.2 it shows that all
the models perform better when these two datasets were merged. Even though they belong
to two different genres they are contributing to understanding the polarity better. Two other
interesting results are: 1) for BERT, Bio-BERT, RoBERTa, Bio-RoBERTa, and SPECTER,
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Table 4.6: Result of training on a Merged dataset (Athar and Jia) and testing on Jia’s Test
dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.77 1.00 0.87

0.91611 0.96 0.92 0.94
2 0.81 0.86 0.83

Bio-BERT
0 0.83 1.00 0.91

0.9351 0.97 0.94 0.96
2 0.84 0.90 0.87

RoBERTa
0 0.83 1.00 0.91

0.9411 0.97 0.95 0.96
2 0.87 0.90 0.88

Bio-RoBERTa
0 0.91 1.00 0.95

0.93541 0.96 0.96 0.96
2 0.86 0.83 0.84

ELECTRA
0 0.11 0.90 0.19

0.36121 0.75 0.41 0.53
2 0.00 0.00 0.00

ALBERT
0 0.83 0.67 0.74

0.741 0.73 0.81 0.77
2 0.68 0.74 0.71

SPECTER
0 0.71 1.00 0.83

0.90321 0.95 0.92 0.93
2 0.82 0.79 0.81

Max Voting
0 0.77 1.00 0.87

0.93541 0.96 0.96 0.96
2 0.92 0.83 0.87

Winner Takes All
0 0.77 1.00 0.87

0.92901 0.96 0.95 0.95
2 0.89 0.83 0.86

all negative labeled sentences were found with reasonable precision, and 2) for all models
(except ALBERT) the positive citations were the most difficult to classify. One may speculate
that negative citations have a few linguistic styles that are easy to detect, whereas positive
citations have less discernible or many more types of features. The results from Table 4.5
would suggest that the latter may be the case since with many more positive class training
examples in the class-balanced CORD-19 dataset, the positive class was easier to classify. The
results for ELECTRA show that this time it failed to detect positive labels entirely. The training
process of ELECTRA is fundamentally different from the other models since it uses a method
to corrupt the input while training instead of concealing it by swapping out some input tokens
for believable substitutes drawn from an SGN. This contributed to producing embeddings that
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Table 4.7: Result of Transfer Learning: Training on Athar’s dataset and Testing on Jia’s dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.71 0.39 0.51

0.5121 0.45 0.78 0.57
2 0.51 0.39 0.44

Bio-BERT
0 0.58 0.61 0.60

0.4871 0.41 0.42 0.42
2 0.46 0.44 0.45

RoBERTa
0 0.56 0.27 0.37

0.451 0.43 1.00 0.60
2 0.42 0.14 0.21

Bio-RoBERTa
0 0.73 0.37 0.49

0.4751 0.40 0.74 0.52
2 0.48 0.34 0.40

ELECTRA
0 0.53 0.39 0.45

0.41 0.38 0.78 0.51
2 0.28 0.08 0.13

ALBERT
0 0.50 0.08 0.14

0.41 0.37 1.00 0.54
2 0.56 0.17 0.26

SPECTER
0 0.64 0.80 0.71

0.6311 0.61 0.62 0.61
2 0.64 0.49 0.56

Max Voting
0 0.75 0.47 0.58

0.5311 0.44 0.94 0.60
2 0.64 0.24 0.35

Winner Takes All
0 0.70 0.41 0.52

0.5061 0.43 0.90 0.58
2 0.58 0.25 0.35

do not perform well for this particular task.

Then, we wanted to explore transfer learning from the above-trained models. Table 4.7
shows that using Athar’s dataset highest accuracy of 0.631 has been achieved by SPECTER.
Compared to all the models this model produced comparatively better results. Unlike the
previous results, ensemble techniques don’t give the best results. Ensembling techniques show
relatively poor results compared to SPECTER. The possible explanation for this scenario is that
even though SPECTER is predicting more correct labels but it is doing with less confidence
and other models are choosing the wrong label with a higher probability value. As a result,
the proposed max voting and winner takes all approach cannot contribute much. The same
scenario has been observed in Table 4.8 and Table 4.10. Here, RoBERTa performed better on
the test dataset compared to the other models whereas ELECTRA surprisingly underperformed
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Table 4.8: Result of Transfer Learning: Training on CORD-19 dataset and Testing on Jia’s
dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.83 0.37 0.51

0.5371 0.40 0.78 0.53
2 0.70 0.47 0.57

Bio-BERT
0 0.86 0.35 0.50

0.5621 0.42 0.84 0.56
2 0.77 0.51 0.61

RoBERTa
0 0.85 0.43 0.57

0.61 0.45 0.84 0.59
2 0.78 0.54 0.64

Bio-RoBERTa
0 0.82 0.35 0.49

0.5681 0.42 0.82 0.56
2 0.78 0.54 0.64

ELECTRA
0 0.00 0.00 0.00

0.36251 0.00 0.00 0.00
2 0.38 0.98 0.55

ALBERT
0 0.85 0.22 0.34

0.5121 0.39 0.88 0.54
2 0.77 0.46 0.57

SPECTER
0 0.86 0.35 0.50

0.5621 0.42 0.82 0.56
2 0.74 0.53 0.61

Max Voting
0 0.85 0.33 0.48

0.5681 0.42 0.82 0.56
2 0.77 0.56 0.65

Winner Takes All
0 0.85 0.33 0.48

0.5561 0.41 0.82 0.55
2 0.76 0.53 0.62

for the neutral label as well as for negative labels having F1-score, precision, and recall of 0.00.

When we used the trained models based on Jia’s dataset and tested on Athar’s and COVID
dataset, we see in Table 4.11 and Table 4.12 that the accuracy and other metrics are not sat-
isfying. SPECTER showed the highest value of accuracy of 0.7309 whereas other models
even including ensemble methods significantly underperformed. Meng Jia’s dataset consists of
around seven hundred entries and has information about citations only from biomedical jour-
nals. Whereas, Athar’s dataset has information about multiple genres and this might be a reason
why only training on Jia’s data does not perform well on the other two datasets. Table 4.12 also
shows that this time models except SPECTER struggled to predict the neutral label since label
1 has the lowest F1-score for all the models even the ensemble methods. When we merged the
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Table 4.9: Result of Transfer Learning: Training on Athar’s dataset and Testing on the CORD-
19 dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.57 0.34 0.43

0.4151 0.43 0.50 0.46
2 0.33 0.40 0.36

Bio-BERT
0 0.55 0.64 0.60

0.4101 0.29 0.14 0.19
2 0.33 0.46 0.39

RoBERTa
0 0.57 0.69 0.62

0.4991 0.46 0.54 0.50
2 0.44 0.26 0.33

Bio-RoBERTa
0 0.61 0.76 0.68

0.5371 0.60 0.17 0.26
2 0.46 0.69 0.55

ELECTRA
0 0.31 0.42 0.36

0.3291 0.35 0.55 0.42
2 0.18 0.01 0.02

ALBERT
0 0.59 0.41 0.49

0.4391 0.39 0.40 0.39
2 0.39 0.51 0.44

SPECTER
0 0.57 0.77 0.65

0.5141 0.50 0.45 0.47
2 0.43 0.33 0.37

Max Voting
0 0.58 0.74 0.65

0.4961 0.45 0.41 0.43
2 0.41 0.34 0.37

Winner Takes All
0 0.62 0.64 0.63

0.4751 0.43 0.43 0.43
2 0.37 0.36 0.37

augmented datasets of Jia and Athar we saw the better performance on Jia’s original dataset
because they complemented each other and thus the models could perform well. However,
in transfer learning, we observed poor results because of the lack of similar genre samples in
the datasets. Athar’s dataset contains annotations from conference and journal papers in nat-
ural language processing and computational linguistics. The CORD-19 dataset is all clinical
sentences related to a specific disease (COVID-19) and scenarios regarding it taken from ar-
ticles from Virology, Immunology, Molecular biology, Genetics, and Intensive care medicine
journals. Jia’s dataset is drawn from three biomedical journals, Acta Veterinaria Scandinavica,
AIDS Research and Therapy, and BMC Biochemistry. Exploring transfer learning gave us the
opportunity to explore this insight that in which scenario approach works the best.
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Table 4.10: Result of Transfer Learning: Training on the CORD-19 dataset and Testing on
Athar’s dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.93 0.10 0.19

0.3631 0.35 0.93 0.51
2 0.28 0.05 0.09

Bio-BERT
0 0.82 0.07 0.12

0.3561 0.35 0.96 0.51
2 0.25 0.04 0.07

RoBERTa
0 0.75 0.13 0.23

0.3611 0.35 0.93 0.51
2 0.12 0.02 0.03

Bio-RoBERTa
0 0.84 0.12 0.21

0.3681 0.35 0.96 0.51
2 0.27 0.03 0.05

ELECTRA
0 0.00 0.00 0.00

0.3631 0.47 0.21 0.29
2 0.35 0.89 0.50

ALBERT
0 0.86 0.04 0.08

0.3311 0.33 0.94 0.49
2 0.07 0.01 0.01

SPECTER
0 0.89 0.12 0.21

0.3761 0.35 0.98 0.52
2 0.33 0.03 0.06

Max Voting
0 0.87 0.10 0.17

0.3581 0.34 0.96 0.51
2 0.20 0.02 0.04

Winner Takes All
0 0.85 0.08 0.15

0.3611 0.35 0.96 0.51
2 0.29 0.04 0.07

The poor transfer performance strongly indicates that different genres have different citation
styles, and interestingly, biomedicine may not be a homogeneous genre from the citation style
point of view. However, merging genres, as suggested by the results shown in Table 4.6 may
have positive performance outcomes.

There have been some observations that were present during most of the experiments. Reg-
ular non-bio models like RoBERTa, ALBERT, and SPECTER perform well compared to the
bio-models, Bio-RoBERTa, and Bio-BERT because the datasets that have been used here be-
long to many categories. For example, Athar’s dataset contains annotations from conference
and journal papers in natural language processing and computational linguistics. The CORD-
19 dataset is all clinical sentences related to a specific disease and scenarios regarding it. As
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Table 4.11: Result of Transfer Learning: Training on Jia’s dataset and Testing on Athar’s
dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.15 0.29 0.19

0.1701 0.88 0.11 0.19
2 0.08 0.80 0.14

Bio-BERT
0 0.12 0.64 0.20

0.1111 0.84 0.03 0.07
2 0.08 0.74 0.14

RoBERTa
0 0.16 0.59 0.26

0.09441 1.00 0.00 0.00
2 0.08 0.90 0.15

Bio-RoBERTa
0 0.11 0.50 0.18

0.0891 0.89 0.01 0.01
2 0.08 0.84 0.15

ELECTRA
0 0.04 0.54 0.07

0.47331 0.89 0.52 0.65
2 0.00 0.00 0.00

ALBERT
0 0.46 0.38 0.41

0.38111 0.40 0.01 0.03
2 0.35 0.76 0.48

SPECTER
0 0.17 0.52 0.26

0.73091 0.90 0.80 0.85
2 0.05 0.07 0.06

Max Voting
0 0.24 0.11 0.15

0.3111 0.25 0.03 0.05
2 0.33 0.80 0.47

Winner Takes All
0 0.27 0.10 0.15

0.33411 0.36 0.36 0.36
2 0.33 0.55 0.41

a result, generic models generate better embeddings context-wise and it reflects in the result
tables mentioned in this chapter. After that, we observed ELECTRA performed significantly
poorly across all the experiments. The training of ELECTRA is different from the other BERT-
based models. In BERT, some tokens are substituted for the input using [MASK], and a model
is trained to recreate the original tokens. In ELECTRA, the method corrupts the input instead
of concealing it by swapping out some input tokens for believable substitutes drawn from an
SGN. This non-identical training reflects in the results and we come to the conclusion that
ELECTRA does not perform well for these kinds of datasets and tasks.

Returning to my interest in the improved performance of the deep neural net models on
Jia’s gold standard annotated dataset, I have made a comparison with Jia’s reported results
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Table 4.12: Result of Transfer Learning: Training on Jia’s dataset and Testing on the CORD-19
dataset

Model Name Label Precision Recall F1-score Accuracy

BERT
0 0.68 0.54 0.60

0.46671 0.87 0.08 0.14
2 0.37 0.81 0.51

Bio-BERT
0 0.65 0.87 0.74

0.5561 0.00 0.00 0.00
2 0.49 0.83 0.61

RoBERTa
0 0.70 0.79 0.74

0.5631 1.00 0.00 0.01
2 0.48 0.93 0.63

Bio-RoBERTa
0 0.68 0.83 0.75

0.56691 1.00 0.02 0.03
2 0.49 0.88 0.63

ELECTRA
0 0.33 0.98 0.50

0.3371 0.54 0.04 0.07
2 0.00 0.00 0.00

ALBERT
0 0.42 0.73 0.53

0.4111 0.40 0.01 0.01
2 0.41 0.52 0.46

SPECTER
0 0.71 0.67 0.69

0.6481 0.73 0.50 0.59
2 0.57 0.79 0.66

Max Voting
0 0.64 0.88 0.74

0.57571 1.00 0.01 0.02
2 0.52 0.87 0.65

Winner Takes All
0 0.68 0.80 0.73

0.59431 0.87 0.15 0.26
2 0.51 0.86 0.64

from her MSc thesis using an SVM classifier and summarized it here. Table 4.13 shows that
we have achieved a better F1-score for all three labels compared to Jia’s reported results. The
ensemble model trained on the class-balanced dataset produces a 14.1% better macro average
F1-score. The recall for label 0 is much higher than Jia’s result. The perfect recall with good
precision means the model can correctly identify this label as belonging to the proper class of
interest with few false positives. Using the merged dataset we observed that the F1-score got
another boost due to more label 2 examples being correctly identified, this time by the model
using the RoBERTa embeddings. The performance improvement has been a 15.38% increase
in the macro average F1-score.
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Table 4.13: Comparison between Jia’s SVM Classifier and Two Best-performing Proposed
Deep Neural Net Models Tested on Jia’s Test Set

Models Labels Precision Recall F1
0 0.959 0.66 0.782

SVM Classifier [15] 1 0.806 0.9311 0.838
2 0.825 0.630 0.714

Proposed Ensemble Model
(Trained on Class-balanced Jia’s Dataset)

0 0.83 1.00 0.91
1 0.94 0.96 0.95
2 0.88 0.76 0.81

Best Performing Model
(Trained on the Merged Dataset)

0 0.83 1.00 0.91
1 0.97 0.95 0.96
2 0.87 0.90 0.88

Table 4.14: Result of training and testing on the Paragraph dataset

Model Name Label Precision Recall F1-score Accuracy

ERNIE-2.0
0 0.51 0.97 0.67

0.5951 0.75 0.88 0.81
2 0.00 0.00 0.00

LongFormer
0 0.51 0.96 0.67

0.6011 0.75 0.91 0.82
2 0.00 0.00 0.00

BigBird
0 0.50 0.96 0.65

0.5891 0.74 0.90 0.80
2 0.00 0.00 0.00

Max Voting
0 0.51 0.97 0.67

0.5951 0.75 0.89 0.81
2 0.00 0.00 0.00

Winner Takes All
0 0.51 0.97 0.67

0.60181 0.75 0.90 0.82
2 0.00 0.00 0.00

4.3.2 Paragraph-based Dataset

Finally, Table 4.14 shows the results when we used the newly created dataset for training the
models. Among the models that work well with long sequences of sentences, LongFormer
performed comparatively better than the others with an accuracy of 0.601. Even though this
model can predict neutral labels with an F1-score of 0.82, it performs significantly poorly for
positive labels. For all the models we have seen positive label has a very poor precision, recall,
and F1-score. A probable reason behind this might be that when we are making paragraphs
and multiple sentences are involved, it becomes ambiguous between neutral and positive. As a
result, models put the positives into the other two labels and thus we have observed such poor
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results. In the future, if this paragraph dataset is properly annotated once again only having
relevant sentences of a citation entry then we might observe better results.



Chapter 5

Conclusions and Future Work

Citations connect research articles to form a network. A citation in the context of scientific re-
search articles refers to the source of the idea stated in the citing sentence. This thesis presented
a citation polarity classification method. Citations carry a lot of value in terms of assessing
the contribution of research, its effectiveness, and mostly the impact. The previous chapters
demonstrate the workflow and inspiration behind this work. This final chapter summarises the
thesis’ contributions, identifies the study’s shortcomings, and provides recommendations for
future research.

5.1 Conclusions

We have worked with three different datasets that consist of citations belonging to different
research areas. These datasets have been annotated and labeled into three unique classes. The
main motivation has been to surpass the accuracy metrics for all these datasets using proper
word embedding, pre-trained language models, and incorporating ensemble techniques. Using
the data processing methods and methodology the results that have been generated reflect the
fact that, the proposed models here outperform previous results from the original papers in
precision, recall, and F1-score. Our proposed models have shown better results than what Jia
(15.38% increase in macro-average F1-score), and Athar (5.6% increase in macro-average
F1-score) mentioned in their work. We have also obtained good performance with the CORD-
19 dataset. We also experimented with merging datasets and how they perform. In addition,
transfer learning also showed results that justify the fact of whether learning from one corpus
can carry information if tested on an entirely new dataset or not.

To conclude, the key contributions of this work are as follows:

• We have used several data augmentation techniques like paraphrasing, and downsam-
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pling to keep the datasets consistent, and class-balanced, and generate improved out-
comes.

• Here, the features have been prepared using a number of pre-trained language models
before being sent to the suggested artificial neural network model to categorize the proper
polarity labels of citation occurrences.

• To train all the models and evaluate them against Jia’s real work, a merged dataset has
been created that combines Jia’s and Athar’s augmented datasets.

• We created a new dataset that includes the paragraphs from each reference item in Jia’s
original work and showed the results using pre-trained long-sequence models.

• Along with transfer learning, ensemble techniques were used to combine the results from
different models and create a voting system to select the most appropriate polarity of a
given citation instance.

5.2 Future Work

First of all, the paragraph dataset that has been used here can be annotated in a better way.
Meng Jia [15] only worked with citation sentences and for this work, the entire paragraph that
belonged to the citation sentence was extracted. However, a single paragraph can have multi-
ple citation instances. As a result, the current dataset has many duplicates and not every single
sentence in the paragraph is needed to express the polarity of a citation. So, a second layer
of annotation can be done to this dataset and that will generate a smaller and more meaning-
ful paragraph corpus. Secondly, more pre-trained language models like OpenAI’s GPT-3 and
others can be used to assess their performance. Finally, the CORD-19 dataset was initially an-
notated by machine-learning models. It has a mixture of sentences and paragraphs as citations.
So, a further annotated version of this dataset or other COVID-based datasets can be used to
train the proposed models and observe the impact on the performance of transfer learning.
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