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Abstract
Unsupervised domain adaptation (UDA) is crucial in medical image analysis where only

the source domain data is labeled. There is a lot of emphasis on the closed-set paradigm in
UDA, where the label space is assumed to be the same in all domains. However, medical
imaging often has an open-world scenario where the source domain has a limited number of
disease categories and the target domain has unknown distinct classes. Also, maintaining the
privacy of patients is a crucial aspect of medical research and practice. In this work, we shed
light on the Open-Set Domain Adaptation (OSDA) setting on fundus image analysis while
preserving the privacy concern. In particular, we step towards a source-free open-set domain
adaptation where, without source data, the source model is utilized to facilitate adaptation to
open-set unlabeled data by delving into channel-wise and local features for fundus disease
recognition. In particular, considering the nature of the fundus images, we present a novel
objective way in the adaptation phase to utilize spatial and channel-wise information to select
the best source model for a target domain, even by considering the small inter-class variation
between samples. Our approach has achieved state-of-the-art performance compared to other
methods.

Keywords: Domain Adaptation, Fundus Images Analysis, Open-Set Domain Adaptation,
Source-Free Domain Adaptation
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Summary for Lay Audience
Medical researchers often want to use data from one group of patients (source domain) to un-
derstand diseases in another group of patients (target domain). However, this can be difficult
when the data from the target domain doesn’t have labels that tell us what the diseases are. In
the past, researchers have tried to use labels from the source domain to understand the target
domain, but this only works if the diseases in both groups are the same. But sometimes the
diseases in the target domain are different from those in the source domain. To solve this prob-
lem, researchers have developed a method called open-set domain adaptation. This method
allows them to use data from the source domain to understand the target domain without ac-
tually looking at the data from the source domain. This is important because it helps protect
the privacy of patients. In this study, we apply source-free domain adaptation to understand
various types of eye diseases.
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Chapter 1

Introduction

1.1 Motivation

According to the latest World Health Organization (WHO) report on vision, there are 2.2 bil-
lion visually impaired people worldwide, and at least 1 billion cases could have been prevented
or can still be addressed [4]. Moreover, according to Fighting Blindness Canada (FBC), ap-
proximately 8 million Canadians are at risk of losing their vision because of eye diseases [1].
Given the scale of the problem, it is clear that developing accurate and efficient methods for
analyzing medical images, such as fundus images, is of great importance. However, one of
the major challenges in medical image analysis is the limited availability of annotated datasets,
which is often due to concerns about patient privacy.

In such cases, Source-Free Domain Adaptation (SFDA) can be a good choice for fundus
image analysis. SFDA involves adapting a model that has been trained on one domain (e.g. a
dataset of fundus images) to a new domain (e.g. a different dataset of fundus images) without
using any labeled data from the target domain. This is particularly useful in situations where it
is difficult or impossible to obtain a large annotated dataset for the target domain, as is often the
case in medical image analysis. Another advantage of SFDA is that it allows for the sharing of
pre-trained models between different domains. This can be particularly useful in the medical
field, where it may be possible to share a pre-trained model across different hospitals or clinics,
even if it is not possible to share the underlying data. One variant of domain adaptation is
open-set domain adaptation, which involves adapting a model to a target domain where the
distribution of the classes in the target domain is not known in advance. This is a common
scenario in medical image analysis, where the types of diseases or abnormalities that may be
present in the target domain may not be known beforehand.

In summary, the motivation for studying open-set source-free domain adaptation for fundus
image analysis is twofold. First, it allows for the adaptation of a model to a new domain without
access to labeled data from the target domain, which is often a challenge in medical image
analysis due to concerns about patient privacy. Second, it allows for the sharing of pre-trained
models between different domains, which can be useful in the medical field where it may not
always be possible to share the underlying data. These reasons motivate us to choose this topic
as an important and timely research direction.

1



2 Chapter 1. Introduction

1.2 Clinical Problem Statement

1.2.1 Retinal Fundus Images

In the human body, vision is arguably the most important sense. The majority of information
we receive about the world comes from our eyes, so much so that a significant portion of the
brain is completely dedicated to visual processing. Due to the way the eye processes light and
converts it into information, it is often compared to a camera. Both have lenses to focus the
incoming light. Cameras create images using film, whereas the eye produces images using a
layer of specialized cells called the retina. This is where the similarity ends. The eye’s ability
to focus on a wide range of objects of different sizes, luminosity and contrast at high speed is
more potent than current cameras.

Eye’s Anatomy

An image is formed by filtering and directing light through the cornea. The pupil adjusts in
response to changes in light intensity by means of the iris muscles. In order to focus the light
onto the retina, the lens stretches or compresses. Fundus is the inner surface opposite lens,
completing the eye’s interior structure [15].

The back of the eye hosts the retina, a sensory tissue composed of multiple layers. As
light beams pass through the retina, they are converted to electrical signals, which travel along
the optic nerve and, finally, to images in the brain. Rods and cones are the two types of
photoreceptors in the retina. Even in low light conditions, rod cells can detect changes in
contrast and detect motion, but not color. Their main role is to facilitate scotopic vision (night
vision). On the other hand, cones are precise cells that detect color. They are primarily found
in the macula, which provides photopic vision (day vision) [35].

Retinal Fundus Photography

The retina is the eye’s light-sensitive layer covering the eyeball’s inner surface. It is responsible
for translating the image projected by the lens on its surface into an electrical signal which is
then transferred to the brain via nerve fibers.

If we look at the retina’s surface through the pupil, the optic disc can be viewed as a bright
oval where the veins and arteries extend from its center. It is also possible to see a darker part
of the retina, called the macula. This area of the retina is responsible for central vision. There
is a dense concentration of cones in the fovea at the center of the macula, but there are no rods
there. Seeing through the fovea is made possible by the dense concentration of cones, which is
why we move our eyes constantly to bring the target to the center. The foveal avascular zone
(FAZ) is the region around the fovea where no vessels cover the retina. The main anatomical
parts of the retina that can be observed in this modality are the macula, the fovea, the optic disc,
the peripapillary area, and the retinal vasculature. Light passes through a series of lenses and
reaches the retina through the pupil. The light reflected from the retina then passes through the
pupil again and is collected and guided via lenses and mirrors to form the image of the retina.
These cameras are described by their angle of view, usually ranging between 20◦ to 140◦. A
camera with a broader angle of view captures a wider image of the retina. On the other hand,
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by narrowing the angle of view, the resulting image becomes more magnified. To enhance the
clarity of photographs, ophthalmologists dilate the pupil before retinal imaging.

Fundus imaging is used to diagnose and monitor various retinal diseases or abnormalities,
including diabetic retinopathy, glaucoma, and eye cancer. The availability of fundus photogra-
phy and the fact that it is noninvasive make it an ideal method of taking multiple images of the
retina and assessing any changes that may occur over time [15].

Ocular Diseases

In brief, the followings are a few examples of diseases/abnormalities and their significant vi-
sual characteristics.
Diabetic Retinopathy (DR): is one of the most common complications of diabetes, particu-
larly for people with uncontrolled blood sugar levels. When blood glucose levels are high, tiny
blood vessels supplying the retina are damaged and leak fluid and blood. A buildup of fluid
in the retina can cause it to swell, resulting in vision loss. Preventing the development and
progression of DR and preserving vision depends on early detection, proper glycemic control,
and timely treatment [31].
Pathological Myopia (PM): Degenerative myopia, or pathological myopia, is a severe type
of nearsightedness that causes structural changes to the eye. Pathological myopia can cause
retinal tears because of the thinning of the retina caused by the elongation of the eyeball [31].
It is possible for these complications to cause severe vision loss and, in some cases, even lead
to blindness.
Central Retinal Vein Occlusion (CRVO): is a blockage of the central retinal vein, which is
responsible for draining blood from the retina. It is common for one eye to suffer a sudden
and significant reduction in vision due to obstructions. Hypertension and age-related vascular
changes are often associated with CRVO [31].
Branch Retinal Vein Occlusion (BRVO): is a vascular disorder that occurs when a branch
of the retinal vein becomes blocked, leading to impaired blood flow and tissue damage in the
retina [31]. Older individuals are more likely to suffer from the condition, which is often ac-
companied by medical conditions such as hypertension, atherosclerosis, and diabetes. Sudden
loss of vision or blurry vision are common symptoms of BRVO. Depending on how severe the
blockage is and where it is located, vision loss varies. We classify central and branch retinal
vein occlusion as Retinal Vein Occlusion (RVO).
Glaucoma: is an eye disease caused by high pressure in the eye that damages the optic nerve.
Blindness can result if it is left untreated. In order to prevent permanent damage to the optic
nerve, early detection through regular eye exams is crucial [31]. Treatment options include eye
drops, medication, and surgery.
Age-Related Macular Degeneration (ARMD): is a common eye condition that affects older
adults, especially those over the age of 60. The macula, the part of the retina that provides
sharp, central vision, gradually deteriorates, resulting in blurred or distorted vision in the cen-
ter of the field. Two types of ARMD exist: dry and wet, with the latter being more severe.
ARMD cannot be cured, but medication, laser therapy, and photodynamic therapy can help
slow its progression and preserve vision [31].



4 Chapter 1. Introduction

(a) Original Image (b) Red Channel

(c) Green Channel (d) Blue Channel

Figure 1.1: Different channels of a fundus image. The Green channel has more invaluable
information.

1.2.2 Fundus Images Characteristics

Natural images are photographs of the real world and can include a wide variety of subjects,
such as landscapes, people, and objects. In contrast, fundus images are photographs of the
interior surface of the eye, including the retina, optic disc, and blood vessels. They are typically
taken using specialized cameras that can capture detailed images of the fundus.

One key difference between fundus images and natural images is the level of detail that is
important. In fundus images, it is crucial to be able to see small structures and details within the
eye, such as the blood vessels and the optic disc. This is because these structures can provide
important information about the health of the eye and the presence of certain conditions, such
as diabetes or hypertension. In contrast, natural images may not require such a high level of
detail and may be more focused on the overall shape and composition of the image.

Another difference between fundus images and natural images is the importance of the
color channels. In natural images, all three color channels (red, green, and blue) are typically
important for creating a full and accurate representation of the scene. In fundus images, how-
ever, the green channel is often more important and contains more valuable data (see Figure
1.1). This is because the blood vessels and other structures within the eye tend to be more
visible in the green channel, making it easier to identify and analyze these structures [38]. As
a result, many fundus image analysis algorithms place a greater emphasis on the green channel
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when processing and interpreting the images.

1.2.3 Clinical Challenges
One major challenge in data gathering for fundus image studies is the limited availability of
annotated images. Fundus images are often collected as part of routine medical exams and are
not always labeled with relevant clinical information. This can make it difficult to obtain large,
representative datasets for training and evaluating machine learning models.

Another challenge is the variability in the appearance of fundus images, which can be
affected by factors such as the patient’s age, the type and severity of the condition being imaged,
and the imaging device used. This variability can make it difficult to develop machine learning
models that are able to accurately classify the images, particularly if the training data is not
representative of the full range of variation in the images.

Finally, data privacy is a major concern in the context of fundus image studies. Fundus im-
ages often contain sensitive personal information and medical history, which must be protected
in accordance with relevant laws and regulations. This can make it difficult to share and use
fundus image datasets for research and development and can limit the availability of data for
training and evaluating machine learning models.

1.3 Our Solution
One of the most powerful machine learning models is Deep Neural Networks (DNNs). They
are capable of recognizing visual objects and faces, segmenting images, and processing natural
language. These models have become ubiquitous in various fields of study, including medical
imaging, due to their exceptional performance. One advantage of using pre-trained deep learn-
ing networks for solving the challenges of data gathering and data privacy in fundus image
studies is the transferability of these networks. Transferability means the ability to acquire and
reuse knowledge. Deep neural networks are able to learn complex, high-level representations
of the data, which can be transferred to different tasks and domains.

This means that a pre-trained network trained on a large, diverse dataset of images can
be used as a starting point for developing a machine-learning model for fundus image classi-
fication. The model can then be fine-tuned on a smaller dataset of fundus images, allowing
it to adapt to the specific characteristics of the task at hand. Using pre-trained deep learning
networks in this way can provide several benefits. First, it can reduce the amount of data and
labeling effort required, as the model can be trained on a small dataset of fundus images and
fine-tuned using the pre-trained network. Second, it can improve the performance of the model,
as the pre-trained network provides a strong foundation of knowledge that can be leveraged to
solve the specific task at hand. Finally, it can improve the generalizability of the model, as it
can be trained on a wide range of data and then fine-tuned to adapt to the specific characteristics
of the fundus images.

The usage of pre-trained deep learning networks can provide a valuable solution to the
challenges of data gathering and data privacy in fundus image studies. By leveraging the
transferability of these networks, we can develop machine learning models that are accurate,
reliable, and generalizable without requiring access to large, labeled datasets of fundus images.
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1.3.1 Unsupervised Domain Adaptation

To improve the effectiveness of machine learning models, annotated data is essential. How-
ever, the absence of labeled data poses a significant challenge in many real-world scenarios
for training these models. The amount of labeled training data available directly affects the
performance of machine learning models. The issue is made worse by the time-consuming and
expensive process of manual data annotation. One potential solution is transferring knowledge
from a labeled domain to a similar but different domain with limited or no labels. Nonetheless,
data bias or domain shift can make this approach challenging, as machine learning models
often struggle to generalize from an existing domain to an unlabeled domain [54].

Typically, conventional machine learning techniques assume that training and test data
come from identical distributions and that models are optimized using training data before
being applied to test data. As a result, any differences between training and test data are ig-
nored. Nevertheless, it is a typical scenario that there exist disparities between the source and
target domains, and the conventional methodology underperforms in the presence of a domain
shift complication. Domain shift occurs when there is a discrepancy between the training and
testing data distributions.

By utilizing the knowledge gained from a labeled source domain, domain adaptation (DA)
aims to create reliable predictors for a target domain with limited or no labeled data, while
addressing domain shift issues.. A DA can be supervised, semi-supervised, or unsupervised,
depending on the number of labels in the target domain. Supervised DA provides all target
data labels, whereas semi-supervised DA provides only some labels. There are no labels on the
target data in unsupervised domain adaptation (UDA). UDA, also known as closed-set domain
adaptation, involves an equal number of categories in the source and target domains [54].

The UDA task is the main focus of this study. The extracting of features from raw images
was a key component of earlier DA methods. In recent years, researchers have been using high-
performance deep neural network features like AlexNet [22], ResNet50 [17], and Xception [9]
instead of low-level SURF [5] features.
Source-Free Domain Adaptation. is a specific type of unsupervised domain adaptation where
the model is not provided with any information about the source domain, where the training
data comes from. This is in contrast to traditional unsupervised domain adaptation, where the
model is provided with some information about the source domain, such as the distribution of
the data or the features used to represent the data. One advantage of source-free unsupervised
domain adaptation is that it allows the model to adapt to a new domain without any assumptions
about the source domain. This can be useful in situations where the source and target domains
are very different or where the information about the source domain is not reliable or not
available.

1.3.2 Open-Set Recognition

Open-Set Recognition (OSR) is a type of machine learning algorithm that is able to recognize
and classify items in a dataset that it has been trained on, as well as identify items that it has
not seen before. This is in contrast to closed-set recognition, where the algorithm can only
classify items within a predefined set of classes. Open-set recognition is useful in situations
where there may be new or unexpected items that need to be classified and is often used in
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applications such as security and fraud detection.
One of the key challenges in OSR is to determine whether a given item belongs to a known

class or is a new, unknown item. To do this, the algorithm must have some way of measuring
the degree of similarity between an input item and the items in its training dataset. This can
be done using various techniques, such as comparing the feature vectors of the input item to
the feature vectors of the known items, or using a generative model to estimate the likelihood
that the input item belongs to a known class. Once the algorithm has determined that an item
is unknown, it can either reject it outright or attempt to classify it into a new, unknown class.

One of the main advantages of open-set recognition is that it allows the algorithm to adapt
to new, previously unseen items. This can be especially useful in dynamic environments where
the classes and characteristics of items may change over time. For example, in a security
application, open-set recognition can help the algorithm identify and classify new types of
fraudulent activity that it has not seen before. Another advantage of OSR is that it can help
to reduce the risk of misclassification. In a closed-set system, an item that does not belong to
any of the predefined classes may be misclassified into one of the known classes, leading to
incorrect or misleading results. In an open-set system, the algorithm can explicitly reject items
that do not belong to any of the known classes, reducing the likelihood of misclassification.
Briefly, OSR is an important advance in the field of machine learning and is an active area of
research. It has the potential to improve the performance and flexibility of machine learning
algorithms, and to enable them to adapt and learn in real-world environments.

Open-set recognition is particularly important for fundus image classification because it
can help to improve the performance of the model on new and unseen data. Fundus images can
vary greatly in appearance, and can be affected by factors such as the patient’s age, the type
and severity of the condition being imaged, and the imaging device used. This variability can
make it difficult for a machine learning model to accurately classify the images, particularly if
it has not seen examples of the novel classes before. By using open-set recognition, the model
can learn to identify and classify novel classes of disease, which can help to improve its overall
performance on the fundus images.

1.3.3 Open-Set Domain Adaptation
Open-Set Domain Adaptation (OSDA) is a type of machine learning algorithm that is designed
to adapt a model trained on one set of data to a different set of data, where the data in the new
domain may contain classes that are not present in the original training data. This is in contrast
to traditional domain adaptation algorithms, which assume that the classes in the new domain
are a subset of the classes in the original training data.

One key challenge in OSDA is that the model must be able to identify classes in the new
data that it has not seen before and must be able to adapt to them without being able to access
any additional training data. This requires techniques such as novelty detection and one-class
classification, which can help the model identify and classify novel classes in the new data.
Another challenge in OSDA is that the model must be able to adapt accurately to the new data
while still maintaining the ability to classify the original classes with high accuracy. This can
be difficult because the model may be biased towards the original training data and may not
be able to generalize well to the new data. To address this issue, researchers have proposed
various approaches, including adversarial domain training, which uses an adversarial network
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to help the model learn domain-invariant features, and multi-task learning, which trains the
model on multiple tasks simultaneously to improve its ability to adapt to new data.

Adapting to new data without additional training data is important for fundus image clas-
sification, as it enables machine learning models to learn from new data. This is particularly
important in the context of medical applications, where data privacy concerns may prevent the
use of large, publicly available datasets for training and evaluation.

OSDA can help address these concerns by enabling smaller, private datasets for training
and evaluation while still allowing the model to adapt to new data. As a result, the model can
generalize well to new images and conditions while protecting the privacy of patients whose
images are used for training and evaluation. Furthermore, OSDA can prevent machine learning
models from overfitting to specific datasets or conditions, which can be a major concern in
medical applications. By allowing the model to adapt to new data without access to additional
training data, OSDA can help to improve the model’s ability to classify images from a wide
range of patients and imaging devices, which can be critical for ensuring the accuracy and
reliability of the model in real-world settings.

1.4 Contributions
Our main contributions to open-set source free domain adaptation of fundus images are sum-
marized as follows:

• To better capture the fine-grained details of fundus images, an integrated module of
spatial attention and channel attention is utilized. This module extracts both local and
channel-wise features, taking into account the unique characteristics of fundus images.

• During the adaptation phase, we introduce a new objective measure for selecting the
optimal source model by utilizing spatial and channel-wise information. This approach
can effectively handle interclass variations between samples in the target domain.

• Through extensive experiments, we utilized explainable AI to demonstrate our proposed
method’s effectiveness. As far as we know, this is the first attempt to address open-set
domain adaptation of fundus images using a source-free approach.

1.5 Thesis Outline
This thesis outline is organized as follows.

• Chapter 2 introduces the background of unsupervised domain adaptation. A discussion
of some existing models for treating inter-domain differences is presented. In chapter
2, we talk about different source-free and open-set domain adaptation solutions in the
literature. In addition, we explore the development of deep learning methods for fundus
image classification

• Chapter 3 describes the structure of our proposed model in detail. We analyze all parts
in detail as well. As part of this chapter, we will explain the reasoning behind the most
significant parts of our proposed model.
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• Chapter 4 discusses performance evaluation results.

• Chapter 5 summarizes this thesis and discusses possible research directions in the future.



Chapter 2

Background and Literature Review

This chapter presents relevant studies from various areas of study. In section 2.1, we intro-
duce the basic knowledge of unsupervised domain adaptation (UDA). Furthermore, we discuss
source-free domain adaptation in section 2.2. Then, in Section 2.3, we describe the open-set
domain adaptation (OSDA) methods. Next, we discuss the clinical side of our research on
fundus image definition and different methods for fundus image classification in 2.4. Finally,
section 2.5 reviews the literature on attentions in deep neural networks.

2.1 Domain Adaptation

Currently, most machine learning models require a large amount of labeled training data in
order to be highly effective. Real-world applications cannot satisfy such a requirement. Data
annotation is time-consuming and costly due to the limited number of labels. Labeling un-
labeled data manually becomes very tedious and a bottleneck in the development of a new
domain. In many cases, knowledge must be transferred from one labeled domain to another.
As a result, the model performance degrades due to domain shift (differences between domains)
[11]. Figure 2.1 shows the domain adaptation when there is a domain shift between source and
target distribution.

Domain in machine learning refers to a distribution of data characterized by the joint prob-
ability distribution of input features and output labels. Domains are sets of data samples that
share similar statistical properties. These properties may include the range and distribution
of the feature values, the distribution of the label values, and the relationships between the
features and labels. Domain adaptation involves adapting a model trained on one domain (the
source domain) to perform well on another domain (the target domain), where the two domains
may have different statistical properties. By leveraging the knowledge gained from the source
domain, the model is expected to perform better on the target domain. This can be useful, for
example, when the target domain has limited labeled data, but a large amount of labeled data
is available in the source domain.
An example of a domain in the context of image classification would be images taken un-
der different lighting conditions or images captured from different perspectives. Domains can
represent different types of text, such as news articles, social media posts, and scientific publi-
cations in natural language processing. Images acquired with different retinal imaging devices

10
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are an example of a domain in fundus image analysis. Various fundus cameras use different
illumination, lens, and sensor configurations, resulting in varying images. The variations can
affect the appearance of retinal structures such as blood vessels, optic discs, and maculas. In
Unsupervised Domain Adaptation (UDA), source domains are labeled, and target domains are
unlabeled. In UDA, the primary goal is to decrease domain discrepancies between labeled
source data and unlabeled target data while learning representations that are domain indepen-
dent.

Source Target

Domain 

Shift

Domain 

Adaptation

Figure 2.1: Domain adaptation in the presence of domain shift.

Notation. A “domain” consists of a set of features X; for instance, a collection of images,
X = {X j}nj=1. A more complicated kind of domain also includes a set of labels, Y; for instance,
some information attached to each member of a subset of X, say Y = {Yk}ck=1 where c is the
number of different classes in the source domain. In Unsupervised Domain Adaptation (UDA),
a “target domain” is an example of a minimal domain: it consists only of a set of images with-
out identifying information about their labels. We useDT = {X1

t , . . . , X
nt
t } to represent a target

domain. By contrast, a “source domain” contains much more information: it consists of a set
of images, each of which has its own label. We use DS = ({X1

S
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S
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S
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generalize a model (source model) well to new, unseen data in the target domain, unsupervised
domain adaptation transfers knowledge from the source domain to the target domain. The
model is trained on labeled data in the source domain and then adapted to unlabeled data in
the target domain. A good feature representation is learned from the source domain, which is
needed to capture underlying patterns in the data, whereas adapting the model to new, unseen
data is a challenge faced in the target domain. Despite the lack of labeled data in the target
domain, the model can generalize well to it based on the similarities between the source and
target domains. The source samples XS and target samples XT follow the marginal distribu-
tion of P (XS) and P (XT ), respectively. The conditional distributions of the two domains are
represented by P (XS | YS) and P (XT | YT ), respectively. As the distributions are assumed to
be different between the two domains, i.e., P (XS) , P (XT ) and P (XS | YS) , P (XT | YT ),
UDA is intended to reduce the gap between domains and train a classifier that exhibits lower
generalization error in the target domain.

The literature on domain adaptation categorizes the different types of shifts that can oc-
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cur between the source and target domains into four main classes: covariate shift, label shift,
concept shift, and conditional shift [54]. Covariate Shift: In this class, the source and target
domains have the same class labels, but the distribution of input features (covariates) differs
between the two domains (P(XS) , P(XT )). In adaptation, the input features are mapped to
the target distribution by learning a mapping from the source to the target. Label Shift: In this
class, the source and target domains have different class label distributions (P(YS) , P(YT )),
which can lead to biased training. The goal of adaptation is to correct this bias by reweighting
the source data or by selecting a subset of the source data that is representative of the target do-
main. Conditional Shift: In this class, the conditional distribution of the output given the input
is different between the source and target domains (P (XS | YS) , P (XT | YT )). The goal of
adaptation is to learn a model that can adjust the conditional distribution to match the target
domain. Concept Shift: In this class, the underlying concepts or relationships between the
input and output differ between the source and target domains (P (YS | XS) , P (YT | XT )).
In adaptation, the goal is to learn a model that captures the relevant concepts in the target field.

In spite of several successes of the existing DA models, it remains challenging to minimize
domain differences. This section reviews recent domain adaptation papers and introduces a
taxonomy based on methods published on UDA.

2.1.1 Domain Adversarial Training of Neural Network
The first adversarial-based DA method is the Domain Adversarial Neural Network (DANN)
[12]. In DANN, a gradient reversal layer is integrated with a minimax loss to enhance discrim-
ination between source and target domains. Gradient reversal, which multiplies the gradient
by a particular negative constant during backpropagation-based training, prevents the distribu-
tion of features across domains from being distinguished. DANN uses a feed-forward neural
network to extract features and classify labels. A domain discriminator is added via a gradient
reverse layer after feature extraction. As the network trains, a label predictor is minimized
for labeled data from the source domain. The network continuously minimizes the domain
classifier’s loss across all data. There are two weighted components in the optimized objective
function of DANN: classifier loss in the source domain and discriminator loss in the target
domain.

One way to implement domain adversarial training is through the use of Generative Ad-
versarial Networks (GANs), as proposed by Goodfellow et al. in 2014 [16]. In a GAN, the
model generates synthetic data similar to the target domain, while the discriminator is trained
to distinguish between real and synthetic data. By training the model to generate data that the
discriminator cannot distinguish from the real data, the model learns to generalize to the target
domain.

Several unsupervised domain adaptation methods use the GAN structure to solve the prob-
lem. Cycle-consistent adversarial domain adaptation [18], which uses a GAN to transfer the
style of the source domain data to the target domain data. This is done by training the GAN to
generate synthetic data that is both similar to the source domain and consistent with the target
domain. The model is then trained using both the real and synthetic data, allowing it to adapt to
the target domain. Another approach is Multi-adversarial domain adaptation [33], which uses
multiple GANs to learn multiple transformations between the source and target domains. This
allows the model to learn a more comprehensive representation of the target domain, leading
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to improved performance.

2.1.2 Pseudo-labeling in Domain Adaptation

Pseudo-labeling involves generating pseudo-labels based on predicted class probabilities. Clas-
sifiers generate pseudo labels for a target domain based on data from a source domain [53].
Pseudo-labels can be used as real labels after they are generated. Utilizing the pseudo-labeling,
Saito et al. [36] proposed the asymmetric tri-training structure. In this structure, two classifiers
are trained using labeled data from the source domain. Data in the target domain is labeled
using the trained classifier in the source domain. Labeling is considered reliable only when
both models predict the same label or if at least one classifier predicts a result that is greater
than a predefined threshold. Using the pseudo-labeled target domain data, a new classifier is
trained to represent the target discriminatively.

Using pseudo-labeling at the batch level is another method of utilizing pseudo-labeling.
Chang et al. [8], propose a method for unsupervised domain adaptation that combines pseudo-
labeling with domain-specific batch normalization (DSBN) to improve the model’s perfor-
mance on the target domain. Pseudo-labeling is used in the self-training stage of the DSBN
method. The model is first trained on the source domain data in this stage using a supervised
learning approach. The model is then applied to the target domain data, and its predictions are
used as pseudo-labels to retrain the model. This allows the model to adapt to the target domain
using its own predictions, leading to improved performance on the task.

2.1.3 Universal Domain Adaptation

Universal Domain Adaptation is a form of domain adaptation that does not demand prior
knowledge of label sets [49]. The source label set and target label set may have a shared label
set as well as unique label sets, which creates an additional category gap. In Universal Domain
Adaptation, the model must either (1) correctly classify the target sample if it corresponds to a
label in the shared label set or (2) designate it as ”unknown” otherwise. As the word “univer-
sal” implies, universal domain adaptation does not impose any prior knowledge on label sets.
Domain adaptation models in the wild face two major technical challenges due to universal
domain adaptation. (1) Determining which parts of the source domain are compatible with
which parts of the target domain is impossible due to the lack of knowledge about the target
label set. Naively matching an entire source domain with an entire target domain will lead to a
model weakened by the mismatch between label sets. (2) In cases where the target samples do
not belong to any class in the label set, the model must designate them as ”unknown.” Without
labeled training data, the classifier cannot determine its specific category. Any approach for
universal domain adaptation must have a mechanism for identifying the shared label set.

In the context of universal domain adaptation, You et al. propose [49] Universal Adaptation
Network (UAN). UAN has a feature extractor, an adversarial domain discriminator, a non-
adversarial domain discriminator and a label classifier. The feature extractor receives input
from either domain and extracts the relevant features, which are then passed on to the label
classifier to generate the probability of the input belonging to the source classes. Meanwhile,
the non-adversarial domain discriminator evaluates the input’s domain similarity, measuring
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its likeness to the source domain. The goal of the domain discriminator is to align source and
target feature distributions through an adversarial approach.

2.2 Source-Free Domain Adaptation
To align source features with target features, unsupervised domain adaptation methods need to
access the source data. It is possible, however, that raw source data may not be available in
many cases, such as medical records, due to the privacy policy. Source-Free Domain Adap-
tation (SFDA) attempts to overcome this challenge by using trained models rather than raw
data from the source domain as supervision and obtains surprisingly effective results. Our next
section discusses source-free solutions for unsupervised domain adaptation.

2.2.1 Entropy Minimization and Self-Supervised Learning
Entropy minimization is a method used in self-supervised learning to improve the ability of a
model to adapt to new data. This is typically done by training the model on many unlabeled
data from the source domain and then using the learned representations to adapt the model to
the target domain. The entropy of a model’s predictions is a measure of their uncertainty. By
minimizing the entropy of the model’s predictions, it becomes more certain of its predictions,
which can help improve its performance on the target domain. This approach has been shown
to be effective in a number of studies and is a good solution for SFDA because it allows the
model to learn generalizable representations from the source domain that can be applied to the
target domain. This approach has been shown to be effective in a number of studies, and is a
promising solution for SFDA. Here we explain how entropy minimization works in the litera-
ture and how self-supervised learning can improve results.
SHOT. In Source Hypothesis Transfer (SHOT) [26], the domain adaptation problem is con-
sidered as a source-free problem for the first time. The previous UDA methods needed access
to the source data when learning to adapt the models. Using both information maximization
and self-supervised pseudo-labeling, SHOT learns a target-specific feature extraction module
implicitly. To this end SHOT aligns representatives from the target domain to the source hy-
pothesis by freezing the source model’s classifier module. This approach assumes that the same
deep neural network model is used across domains and consists of a feature encoding module
and a classifier module (hypothesis). The SHOT approach involves developing a feature en-
coding module that is specific to the target domain. This module generates representations of
target data that are closely aligned with the representations of the source data, without requiring
access to either the source data or the target labels. The fundamental principle behind SHOT is
that to achieve source-like representations for target data, the output of the source classifier for
the target data should resemble that of the source data, indicating a high degree of similarity,
and approaching one-hot encoding.

The SHOT approach involves freezing the source hypothesis and fine-tuning the source
encoding module by maximizing mutual information between intermediate feature represen-
tations and classifier outputs. This process encourages the network to encode target features
with one-hot encodings that are diverse and disparate. However, even with information maxi-
mization, there is still a possibility that target feature representations may align with the wrong
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source hypothesis. To prevent this, Liang et al. [26] proposed a self-supervised pseudo-labeling
technique that augments the target representation learning. This involves generating interme-
diate class-wise prototypes for the target domain and supervising these prototypes to obtain
cleaner pseudo-labels. This approach is used to guide the mapping module learning, as the
pseudo-labels generated by a source classifier can be noisy and inaccurate for target data.

In the first stage of training on the labeled source domain, SHOT minimizes the cross-
entropy loss with the label smoothing technique. In the second stage of training on the target
domain, SHOT utilizes information maximization loss based on the intuition that target features
are aligned to source features when their classification results from the source classifier are
similar. Then there exists a diversity prompting loss for avoiding the trivial solution that all
samples being pushed to a few classes; also, there is a self-training, which uses pseudo-labels
to supervise the information maximization process.

SHOT++. There are two major extensions to SHOT in SHOT++ [27]. A further self-
supervision objective is proposed for SHOT to predict the relative rotation, which helps the
model to learn semantically meaningful representations. Furthermore, the authors suggested
a labeling transfer strategy, which only requires labeling predictions in the domain of the tar-
get. To learn semantically meaningful representations, rotation prediction is added as a self-
supervised task. For an image in the target domain, randomly sample an integral number that
corresponds to the rotation degree pool [0◦, 90◦, 180◦, 270◦].
Labeling transfer. According to the authors, when examining the confidence scores of SHOT
predictions using an entropy function (H(p) =

∑
i pi log pi), some less confident (high-entropy)

predictions may be inaccurate. In addition, by using valid labeling details from high-confidence
predictions, a less-confident prediction can be improved. Through a two-step process, SHOT++
passes information from low-entropy predictions to high-entropy predictions. The target do-
main is divided into two splits, one labeled subset, and one unlabeled subset, based on the
confidence scores. As a next step, SHOT++ employs MixMatch ([6]) to learn improved pre-
dictions for the unlabeled set.

2.2.2 Generative Adversarial Network domain Domain Adaptation
In the context of SFDA, GANs can be used to learn generalizable representations from the
source domain that can be applied to the target domain. This is typically done by training
the generator on a large amount of unlabeled data from the source domain, and then using
the learned representations to adapt the model to the target domain. The classification task
in a convolutional neural network (CNN) involves predicting a class label for an input image.
Convolutions and pooling operations are layered into multiple layers before one or more fully
connected layers perform classification. Training involves updating the weights of the network
during backpropagation to minimize the difference between predicted and true class labels so
the network learns to map input images to corresponding class labels.
CNN discriminators, however, are types of neural networks used in generative adversarial net-
works (GANs). Based on an input image, the discriminator predicts whether it belongs to the
real or fake data distribution. In other words, it is trained to differentiate between real images
and synthetic images generated by a generator network. During training, the generator network
produces realistic images to fool the discriminator into believing they are real.
The pretrained model in a GAN style can adapt to new data without needing labeled data from
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the target domain by learning generalizable representations from the source domain. This ap-
proach has been shown to be effective in a number of studies and is a promising solution for
SFDA. We explore GAN-based methods for SFDA in the following sections.

Universal Source-Free Domain Adaptation

We discussed universal domain adaptation in part 2.1.3. Source-free universal domain adapta-
tion avoids using source samples in the adaptation process. To deal with this issue, universal
source-free domain adaptation [23] proposes a two-stage approach. In the first stage (Procure-
ment), assuming no prior knowledge of changing categories and domains, the model will be
prepared for future source-free deployment. A generative classifier framework improves the
rejection of out-of-source distribution samples. In the second phase (Deployment), the goal is
to develop an adaptive algorithm that can be used without access to previous sample data.

In the procurement stage, they propose combining the source images to synthesize hypo-
thetical negative classes using an image composition method that generates new negative sam-
ples by combining the positive samples, which can serve to represent unforeseen categories.
Synthetic samples are more representative of the expected characteristics in the deployed envi-
ronment than samples from unrelated datasets. In the development stage, they define the source
similarity metric to determine how similar the target samples are to the source samples. The
metric’s higher value signifies a greater similarity towards the positive source categories and
is specifically inclined toward the common label space. Conversely, a lower value indicates a
similarity towards the negative source categories. Using the development output, we are able
to distinguish between target samples belonging to the shared label set and those belonging to
the private label set.
In order to perform domain adaptation, the objective function moves the target samples with
higher source similarity metrics in the direction of the positive source collections (from the
procurement stage) and vice-versa. They also use entropy minimization (H(p) =

∑
i pi log pi)

to move the target samples toward highly confident areas within the classifier’s feature space.

2.3 Open-Set Domain Adaptation
As we discussed in section 2.1, domain adaptation aims to train a classifier in a label-rich
domain (source domain) and apply it to a label-scarce domain (target domain). A classifier
trained in a different domain performs less accurately on samples from different domains due
to their distinct characteristics. However, most domain adaptation approaches assume a closed-
set assumption, where targets belong to the same classes as sources. This assumption is not
always realistic, especially in unsupervised domain adaptation, where only unlabeled target
samples are available. Without labels, it is impossible to determine whether the target samples
belong to the source domain class. Hence, open-set recognition algorithms are necessary for
domain adaptation. Open-set domain adaptation deals with this problem, in which samples in
the target domain don’t belong to the source domain’s class. As shown in Figure 2.2 in open-
set domain adaptation, unknown target samples should be classified as “unknown”, and known
target samples should be classified into their correct categories. As part of open-set domain
adaptation, we avoid negative transfer, which means we should not transfer open-set samples
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between source and target domains.

Figure 2.2: Domain adaptation settings based on source and target label sets (Shared labels are
indicated by colored rectangles). The image is redrawn from [49]. Copyright© 2019, IEEE.

The first problem in this situation is that we don’t know which samples are unknown.
Therefore, drawing a boundary between known and unknown classes seems difficult. Do-
main differences are the second problem. To reduce this domain difference, we must align
target samples with source samples. However, unknown target samples cannot be aligned be-
cause there are no unknown samples in the source domain. The following section reviews the
literature for proposed solutions to open-set domain adaptation.

2.3.1 Instance-Level Approaches

Instance-level approaches align the distributions at the instance level by using techniques such
as re-weighting or matching-based methods. These approaches typically aim to identify cor-
responding instances in the source and target domains and use these correspondences to align
the distributions. These approaches can be effective when the source and target domains have
a similar structure but may not be as effective when the domains are significantly different.

Backpropagation-based

Dealing with open-set domain adaptation problems, Open-Set Domain Adaptation by Back-
propagation (OSBP) [37] proposes a method for facilitating the rejection of unknown target
samples and the alignment of known target samples with known source samples. The classifier
and the feature generator are two key players in this method. Features are generated from in-
puts using the feature generator, while the classifier uses these features to produce a probability
output of K + 1 dimensions, where K represents the number of known classes. The probability
of the unknown class is represented by the (K + 1)th dimension of the output. Feature gen-
erators are trained to distance target samples from decision boundaries, while classifiers are
trained to distinguish between source and target samples. In particular, the classifier is trained
to output a probability of t for the unknown class, where 0 < t < 1.
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Suppose we have a classifier that is poorly trained and requires improvement to construct
an effective decision boundary for unknown samples. In this scenario, the feature generator
has two viable options to manipulate the classifier output probabilities. The first option is to
align the unknown samples with the source domain, while the second option is to reject them
as unknown altogether. By training the classifier and generator on a cross-entropy loss, we
can accurately categorize the source samples and improve their performance. A binary cross
entropy loss can be used to train a classifier for making boundaries for unknown samples.

Multiple Classifiers

Shermin et al. [40] extend the adversarial model from OSBP and propose an adversarial domain
adaptation model with multiple auxiliary classifiers. As part of the proposed multi-classifier
structure, a weighting module evaluates distinctive domain characteristics to assign weights
to target samples that are more representative of whether they belong to known or unknown
classes. It simultaneously encourages positive (shared classes between source and target) trans-
fers during adversarial training and reduces the gap between source and target domain classes
while at the same time reducing the domain gap between them. To avoid negative transfers,
the authors analyze the discriminative domain information of known and unknown target sam-
ples and allocate weights to them based on their similarities with the source domain. For this
purpose, they introduce a weighting module that assesses each target sample and generates a
weight that represents the underlying discriminative domain information. The module assigns
distinct weights to known and unknown target samples by comparing their similarity with the
source domain, aiding the generator in determining whether to decrease or increase the proba-
bility of the ”unknown” class and align the target samples with known or ”unknown” classes.

Progressive Separation

The Separate to Adapt algorithm (STA) [29] gradually separates samples of known and un-
known classes while simultaneously weighing the alignment between each class and the feature
distribution. STA focuses on considering the effect of negative sampling, which means aligning
the entire distribution of source and target domains would be risky since unknown classes in the
target domain can further lower the domain adaptation model’s performance than a model with-
out adaptation. This requires accurate identification of the boundary between known and un-
known classes, even without knowing anything about the unknown classes. Adaptation should
also be applied to the known classes in both domains.

2.3.2 Hybrid Approaches

Hybrid approaches combine multiple methods to achieve domain adaptation. Diverse meth-
ods can be more flexible and effective than traditional approaches when the source and target
domains differ significantly.
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Self-Supervision Using Roatation

Rotation-based Open-Set (ROS) [7] is a two-stage approach. In the initial phase, ROS dis-
tinguishes between the known and unknown target samples by building a model that predicts
the degree of rotation between a reference image and its rotated version. In order to minimize
the discrepancy between the source domain and the known target domain, the authors repeat
the rotation task once more. The last step is to obtain a classifier capable of categorizing each
target sample into a known class or disregarding it as an unknown sample.

Clustering-Based

Based on global image features, Domain Consensus Clustering (DCC) [25] proposes a method
for performing category-level clustering for OSDA. DCC proposes cycle-consistent matching
to associate common cluster centers (i.e. common classes) across domains. The pair of clus-
ters that are the nearest centers to each other in different domains is considered a common
cluster, whereas the unmatched clusters are rejected as unknown outliers. Further, it opti-
mizes the number of clusters searched by computing the sample-level consensus and promotes
the effectiveness of cycle-consistent matching. Specifically, they draw the domain consensus
knowledge from two aspects to facilitate clustering and the discovery of private classes, which
include a domain-level understanding that recognizes common clusters as the common classes
and a sample-level consensus that determines clusters and private classes using cross-domain
classification agreements.
Another clustering method proposed Pan et al. [32]. They first apply clustering to the source
domain to identify category-agnostic clusters. These clusters are then used to weight the con-
tributions of different domain adaptation techniques. The resulting domain-adapted model is
then applied to the target domain and is able to handle the presence of new categories by as-
signing them to the appropriate category-agnostic cluster. The main idea behind this approach
is to use clustering to identify corresponding instances in the source and target domains, but
rather than assuming that these clusters correspond to specific categories, the approach allows
for the possibility of new categories in the target domain. One advantage of this approach is
that it allows for the possibility of new categories in the target domain, while still making use
of the structure in the source domain to guide the domain adaptation process. This makes it
more flexible than approaches that assume that the categories in the target domain are a subset
of the categories in the source domain.

Source-Free Open-set Domain Adaptation

Authors in [24] present a method called Inheritable Models for Open-Set Domain Adaptation
(IMOSDA) for addressing the problem of open-set and source-free domain adaptation. In this
problem, the target domain includes both seen and unseen classes, and the goal is to adapt a
model trained on a source domain to perform well on the target domain. IMOSDA addresses
this problem by introducing a transferability score that measures how well a model can adapt
to the target domain. This score is calculated using a transferability network, which is trained
to predict the transferability of each feature in the source model to the target domain. The
transferability score is used to guide the adaptation process and ensure that the adapted model
is able to recognize both seen and unseen classes in the target domain. To encourage the model
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to learn transferable features that are shared between the source and target domains, IMOSDA
introduces an objective called the inheritability loss. This loss encourages the model to learn
features that are not only discriminative for the seen classes in the target domain, but also
transferable to the unseen classes.

2.4 Fundus Image Analysis
We will discuss the clinical components of our research in the following section. Also, we will
explore the use of various deep learning-based models for the classification of fundus images.
Deep learning has recently gained significant attention in the field of medical image analysis
due to its ability to learn complex patterns and features directly from data. We will investigate
the performance of different deep learning architectures on fundus image classification tasks in
the next section.

2.4.1 Deep Learning Ensemble Approach
Diabetes Retinopathy (DR) damages the retinal blood vessels. Without early diagnosis, DR
can lead to blindness and impaired vision. DR can be five stages or classes: normal, mild,
moderate, severe, and PDR (Proliferative Diabetic Retinopathy)[14]. Highly trained profes-
sionals examine colored fundus images to diagnose this fatal disease. In this case, clinicians
have to make a manual diagnosis that is time-consuming and error-prone. The detection of
DR from retinal images has therefore been proposed using a variety of computer vision-based
techniques. However, it is important to note that these methods cannot encode the complex
underpinnings of DR, meaning they can only classify the various stages of DR with a very low
degree of accuracy, particularly in the early stages. Qummar et al. [34], train an ensemble
of five deep Convolution Neural Network (CNN) models (Resnet50 [17], Inceptionv3 [41],
Xception [9], Dense121 [20], Dense169 [20]) capturing rich features and improving classifi-
cation through DR. Furthermore, light networks have been studied for their ability to reduce
convolutional network complexity. Gayathree et al. [13] present a convolutional neural net-
work architecture to extract features from retinal fundus images to classify DR in binary and
multiclass manners. The proposed method reduces complexity while improving classification
accuracy. CNN extracts symbolic information from the input data and makes layer-by-layer ab-
straction possible through the layer-by-layer stacking of convolution, pooling, and non-linear
activation function mapping. Their major contribution is significantly reducing the CNN model
parameters to enable real-time deployment while improving classification accuracy.

Furthermore, another ensemble network is proposed in [45]. There are two parts to the
model: the first is a feature extractor, which includes a transfer learning-based model that
consists of a pre-trained model with no top layer. A multi-label classifier based on the above
features makes predictions in the second part. Combining two weak classification models
creates a more robust classification model. As part of the integration strategy, the original and
grayscale images are first equalized by histograms. Two identical training data sets are used for
the operation. Both sets of similar data sets are independently trained using the EfficientNet
[42] model. Finally, both models are averaged based on their sigmoid output probabilities.
The authors opted for EfficientNet because it achieved superior accuracy compared to other
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models while utilizing significantly fewer parameters and floating-point operations per second
(FLOPS) on both ImageNet [10] and five widely used transfer learning datasets.

2.4.2 Transformers for Fundus Image Classification

Multiple Instance Learning Enhanced Vision Transformer (MIL-VT) [50] uses an extensive
fundus image database to train the vision transformer model and then refine downstream tasks
for retinal disease classification. The authors suggest utilizing a ”MIL head” based on mul-
tiple instance learning (MIL) that can be easily added to the vision transformer to improve
the performance of downstream fundus image classification models. The proposed framework
outperforms CNN models when trained and tested under the same conditions, as demonstrated
using two publicly available datasets. In MIL, an image is regarded as a bag containing pix-
els or image patches, which is similar to the relationship between image patches and the vi-
sion transformer in the paper. To fully utilize the features of individual patches, the authors
employ multi-instance learning to the vision transformer structures. This involves creating
low-dimensional embeddings for ViT features from individual patches, using an aggregation
function to obtain the bag representation, and applying a bag-level classifier to obtain the final
bag-level probabilities.

2.4.3 Graph Neural Network for Fundus Image Classification

Lin et al. [28] propose two novel multi-label classification networks to classify fundus im-
ages; Multi Classification Network based on Graph convolutional networks (MCG-Net) uti-
lizes graph convolutional networks, while Multi Classification Network based on Graph con-
volutional networks and Self-supervised learning (MCGS-Net) incorporates both graph convo-
lutional networks and self-supervised learning. The graph convolutional network is designed
to extract the relevant information from multi-label fundus images, and self-supervised learn-
ing is employed to improve the network’s generalization capability. In order to better capture
the correlation between fundus images, they construct MCG-Net using a graph convolutional
network (GCN) instead of a fully connected layer as a classifier. By adding a module for
self-supervised learning (SSL) to MCG-Net, they built MCGS-Net, that improved MCS-Net’s
generalization ability. MCGS-Net improves classification performance by learning more unan-
notated fundus images using the generalization enhancement module. MCGS-Net consists of
three components: the backbone module, CGCN module (GCN for Classification), and GS S L

module (SSL for Generalization). The backbone module is used for sharing feature extraction.
The CGCN module is used for multi-label classification. The GS S L module is designed for the
generalization enhancement of MCGS-Net. For the SSL part, the network learns image feature
information by predicting the transformation type of the fundus image. As well as this, the
authors define two types of geometric transformation classification based on rotations of 0 or
90 degrees. SSL usually employs unannotated data and a pretext task for training and then uses
the target dataset for fine-tuning.
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2.4.4 Domain Adaptation for Fundus Images

The open-set domain adaptation of fundus images is addressed for the first time in [56]. Zhou
et al. present a Collaborative Regional Clustering and Alignment (CRCA) method for iden-
tifying category-agnostic local feature clusters. By using a cluster-based method they match
common local regions rather than identifying common classes, which is more fine-grained for
learning domain-invariant features. They also use informative region selection that utilizes
Class Activation Map (CAM) [55] to compute the importance weight map of each class. By
applying CAM to dense local features, computational complexity is reduced. A cluster-aware
contrastive adaptation method is proposed to retain the local features of aligned clusters across
domains while pushing those of misaligned clusters far away. The framework explores local
features to learn domain-invariant representations to guide distribution adaptation. In addition,
they propose a benchmark and dataset for OSDA on fundus images.

2.5 Attention

Attention mechanisms in computer vision have their roots in research on human vision and
cognitive science. It has been observed that humans only notice a portion of all visible infor-
mation due to limitations in information processing. Researchers have attempted to model this
selective attention process in order to understand how humans distribute their attention when
observing images, videos, and other visual stimuli, and to apply this understanding to various
fields. In recent years, significant progress has been made in using attention mechanisms for
image and natural language processing. It has been shown that attention mechanisms can im-
prove model performance and are also consistent with the perceptual mechanisms of the human
brain and eyes. In the field of computer vision, much research on combining deep learning and
attention mechanisms focuses on the use of masks, which identify key features in image data
through a layer with new weights. Through training, deep neural networks can learn to pay
attention to specific areas of each new image, resulting in attention. This idea has evolved into
two types of attention: soft attention, which is differentiable and continuous and is realized
through gradient descent, and hard attention, which is not differentiable and is often achieved
through reinforced learning with a reward function that encourages the model to pay more at-
tention to certain details. As attention mechanisms in computer vision have evolved, different
models have emerged that pay attention to different feature domains. This section will provide
examples of some of these models.

2.5.1 Soft attention

The differentiability of soft attention has made it a popular tool in various computer vision ap-
plications, including but not limited to classification, detection, segmentation, model genera-
tion, and video processing. Soft attention mechanisms can be classified into several categories,
including spatial attention, channel attention, mixed attention, and self-attention [50].
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Spatial attention

Convolutional neural networks (CNNs) can exhibit translation and implicit rotation invariance
in their learning. However, an explicit processing module may be more effective for handling
these transformations compared to networks that learn them implicitly. Consequently, Deep-
Mind designed Spatial Transformer Layer (STL) to realize spatial invariance [21].

The localization network initially computes a θ value for the input image U. The grid
generator then utilizes this value along with the coordinates of the output image to calculate
the corresponding coordinates of the input image. Finally, the sampler fills in the output image
V based on predefined rules of filling (usually bilinear interpolation is employed). By utilizing
these steps, the input image can be rectified into the desired image through spatial transformer
learning.

Channel attention

In a convolutional neural network, an image is initially represented by three channels (red,
green, and blue). After being processed by different convolution kernels, each channel gener-
ates new channels that contain different information. If weights are assigned to each channel
to reflect their relevance to key information, a higher weight indicates higher relevancy and the
corresponding channel should receive more attention.

SENet, the winner of the ImageNet [10] Classification Contest in 2017, is essentially a
channel-based attention model [19]. It models the importance of each feature channel and then
enhances or suppresses it in different tasks. After the normal convolution, a bypass branch is
applied, which involves squeezing the spatial dimension features, resulting in each 2D feature
map being compressed to a single real number. The subsequent step involves excitation, where
a weight ”w” is generated for each feature channel to explicitly model the relevance. Once
the weight of each feature channel is determined, it is applied to each original feature channel,
enabling the learning of the significance of different channels based on specific tasks. By
adding a relatively small amount of computations, the channel attention mechanism can lead
to notable enhancements in performance across various benchmark models. Moreover, this
mechanism has broad applicability, as it can be integrated into many existing networks. For
example, SKNet incorporates channel weighting into the multi-branch network structure of
inception to achieve improved results. Essentially, the channel attention mechanism can model
the significance of different features and customize the weights accordingly to suit the specific
task. This approach is straightforward yet impactful.

Self attention

In a convolutional neural network, the size of the convolution kernel limits its ability to access
local information for calculating the target pixel, which can result in errors due to the lack of
global context. By treating each pixel in the feature map as a random variable and calculat-
ing the pairwise covariances, the value of each predicted pixel can be adjusted based on its
similarity to other pixels in the image. This process of using similar pixels in training and
prediction and ignoring dissimilar pixels is known as the self-attention mechanism. In order
to achieve global reference for each pixel-level prediction, a non-local Neural Network using
self-attention in CNN was proposed by [46]. Their method considers each pixel as a random
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variable based on the predicted covariance between pixels. The participating target pixels are
then obtained by taking the weighted sum of all pixel values, where each pixel’s weight is
determined by its correlation with the target pixel. By utilizing the self-attention mechanism,
the model can achieve global reference during both training and prediction, resulting in a more
reasonable bias-variance weight.

2.5.2 Hard attention
The soft attention mechanism has been widely and successfully applied in the field of com-
puter vision. In contrast, research on the hard attention mechanism in computer vision tasks
is more limited. Hard attention is seen as a more efficient and direct approach because it can
select important features from input information. While the role of constraints such as sparsity
in shaping the learning ability of agents has been explored, AttentionAgent took a different
approach and was inspired by concepts related to inattentional blindness, which is the phe-
nomenon of the brain focusing most attention on elements related to a task and temporarily
ignoring other signals while engaged in a task requiring effort.

2.6 Summary
This chapter provided a comprehensive overview of various techniques for domain adaptation,
namely unsupervised domain adaptation, source-free domain adaptation, and open-set domain
adaptation. Additionally, we delved into the use of deep learning techniques for fundus image
classification. Moreover, attention mechanisms in deep networks were discussed, highlighting
their crucial role in boosting the performance of neural networks. Understanding these topics
is fundamental to grasp the current scenario of domain adaptation and fundus image classi-
fication, as well as the significance of incorporating attention mechanisms in deep learning
models.
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Methodology

In this chapter, we will focus on our source-free Open-Set Domain Adaptation (OSDA) where,
in the absence of the source dataset, the source model is utilized to facilitate adaptation to
open-set unlabeled data by delving into channel-wise and local features for fundus disease
recognition. In particular, considering the nature of the fundus images, we present a novel
objective way in the adaptation phase to utilize spatial and channel-wise information to enable
the selection of the most suitable source model for a given target domain, even by considering
the small inter-class variation between samples.

3.1 Problem Formulation
Suppose nS labeled imagesDS = ({X1

S
, . . . , Xns

S
}, {Y1

S
, . . . ,Yns

S
}) are drawn from a source density

P (XS,YS) and nT unlabeled images DT =
(
xTi
)nT

i=1
. CS indicates the set of the source classes,

CT shows that of the target, and CT /CS denotes the implicit classes in the target domain. In
OSDA, due to CT /CS , ∅, we are required to classify target samples of |CS| known classes
correctly (|A| indicates the number of members in A) and concurrently drop the unknown target
samples belonging to CT /CS. In the OSDA setting, additional unknown classes Cunk only exist
in the target domain label space (CT = CS ∪Cunk), and make up of (N + 1) classes in total. The
objective is to label each instance in the target set by assigning a class for the shared classes CS
and an unknown label for the unshared classes (Cunk). The model trained on the source domain
is denoted as Ms, while the model adapted to the target domain is denoted as Mt.

3.2 Method Overview
As shown in Figure 3.1, the architecture of OSDA includes two phases: (1) training the source
model Ms on the source dataset DS in an open-set setting as shown in the top of the figure.
(2) adapting the target model Mt to the target dataset DT given by the trained source model
Ms as illustrated in the bottom of the figure. During phase 1, we synthesized negative samples
as unknown classes and trained the source model on a combined dataset from source dataset
DS and the unknown classes. In phase 2, we employ the inherit-tune paradigm mentioned
in chapter 2 as the main flow of adaptation and plug our proposed Spatial and Channel-wise
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Figure 3.1: Overview of our method.

Adaptation (SCA) component into it to take full advantage of the fundus images’ nature. In
Section 3.3, we describe the process of the source model training in an open-set setting. In
Section 3.4, we will focus on the target model adaptation which includes the process of Inherit,
Tune, and our SCA respectively.

3.3 Source model training

We apply negative sample generation to train the source model in an open-set setting. In par-
ticular, we adopt the background-class-based modeling approach to solve the problem of un-
known samples in neural networks by adding new classes as representative of unknown samples
during training. Despite the fact that there are a number of works investigating the generation
of negative samples, for simplicity, In order to swap out the top-d percentile activations of a
specific feature layer with the corresponding activations from an instance of a different class,
we utilize the feature-splicing technique[43, 24, 54] as equation 3.1.

un = ϕd

(
uci
S
, uc j

S

)
for ci, c j ∈ CS, ci , c j (3.1)
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Figure 3.2: We apply feature-splicing by eliminating the class-discriminative characteristics,
which involves replacing the activations in the top-(1/3) percentile (d1). The image is redrawn
from [24]. Copyright© 2020, IEEE.

In this context, uci
S
= Ms

(
xci
S

)
is obtained by applying the function Ms to the source image xci

S

, which belongs to class ci in the source data. The feature-splicing operator ϕd is then used
to replace the top-d percentile activations in the feature uci

S
with the corresponding activations

from uc j

S
, where c j is a different class, as illustrated in Figure 3.2. This results in a feature that

lacks class-specific characteristics but is close to its source distribution. To classify these neg-
ative samples, we utilize K-means clustering and give each cluster a unique label, as described
in [43, 24]. We refer to the unknown samples as U = {(un, yn)}. Additionally, in the next
chapter, we will present an ablation study where we examine other methods we investigated
for generating negative samples.

To train the source model, we first pre-train using source data S by taking the standard
cross-entropy loss as below:

Lpre = LCE (σ (Cl fS (Ms (xS))) , yS) (3.2)

The term Cl fS refers to the classification layer in the source model, as depicted in Figure 3.1.
In addition, σ denotes the softmax activation function. Afterward, we train the source model
using a combined dataset from S andU as follows:

Ls = LCE (ŷS, yS) +LCE (ŷU, yU) (3.3)

where ŷS comes from nodes belonging to source classes in the classification layer Cl fS and ŷU
denote nodes belonging to unknown classes in the classification layer Cl funk.

In this case, using ŷS model can extract the class-separability knowledge and ŷU can be
used to construct an understanding of negative samples.



28 Chapter 3. Methodology

3.4 Target model adaptation
To adapt the target dataset using the unlabeled target dataset, we begin by initializing the target
model with the trained source model. Adaptation involves three processes, namely Inherit,
Tune, and Spatial and Channel-wise Adaptation (SCA), where the first two are based on the
basic inherit-tune paradigm [24] and the third process is our novel adaptation objective. We
first review the structure of Inherit and Tune and then deep dive into spatial and channel-wise
adaptation processes.

3.4.1 Inherit
The Inherit process is intuitively intended to facilitate class separation. In particular, we can
use the source model’s uncertainty for an input sample to find out how inheritable the model
is. In detail, the classification confidence obtained from the softmax layer of the source model
Ms can measure inheritability as follows:

w(x) = max
ci∈Cs

[
σ (Cl fs (Ms(x)))

]
ci

(3.4)

The softmax activation function σ is applied to the entire output of Cl f . However, it is impor-
tant to note that the maximum value is computed only over the classes learned from the source
dataset, and not the unknown classes. To enable the model to inherit the characteristics of the
entire target datasetDT , additional steps are required. we can define model inheritability I as
follows:

I (Ms,S,T ) =
meanxT ∈T w (xT )
meanxS∈S w (xS)

(3.5)

For a given triplet {Ms,S,T }, a constant I is assigned, with higher values indicating smaller
domain-shift and an increased ability to inherit knowledge. This results in a class separation
in the open-set domain adaptations. To ensure that the Inherit process is equipped with class-
separability knowledge, we select the top-k percentile target instances based on their w (xT )
value, and designate them as samples with pseudo-labels, which we refer to as P = {(xP, yP)}.
Note that we consider both Cl fS and Cl funk when calculating w (xT ). However, we assign each
percentile that comes from the unknown classes to the same label as N + 1. Intuitively, these
top-k percentile target instances are those target samples that the model strongly believes that
they belong to source classes. Thus we collect them as samples with pseudo-labels and use
them in the Inherit process.

To inherit the knowledge of class separation, we utilize the cross-entropy loss to ensure that
the target predictions align with the pseudo-labels, as demonstrated below:

LInherit = LCE (σ (Cl fT (Mt (xP))) , yP) (3.6)

3.4.2 Tune
The tuning process is intuitively intended to minimize the effect of negative transfer. Many
studies have investigated entropy minimization as a means of guiding the features of unlabeled
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instances toward high-confidence regions when label information is unavailable. However, like
[24], we utilize a loss formulation that involves soft instance weights. Consequently, target
instances with higher values of w are directed towards the feature space of the source data,
whereas those with lower values of w are pushed towards the feature space of negative samples.
Thus, by using the target classifier, we can estimate how likely an instance is to belong to a
shared class as below:

Ŝ =
∑
ci∈S

[
σ (Cl fT (Mt (xT )))

]
ci

(3.7)

By optimizing the loss function below, we encourage the separation of both shared classes and
unknown classes.

Lt1 = −w (xT ) log(ŝ) − (1 − w (xt)) log(1 − ŝ) (3.8)

We also calculate probability vectors separately for shared classes as psh
t = σ (Cl fS (Mt (xT )))

and unknown classes punk
t = σ (Cl fU (Mt (xT ))) and minimize the following loss.

Lt2 = w (xT ) H
(
psh

t

)
+ (1 − w (xT )) H

(
punk

t

)
(3.9)

The symbol H represents Shannon’s entropy, given by the expression H = −
∑

p(x) log p(x).
The total loss LTune = Lt1 + Lt2 matches shared classes in a selective manner, while also
avoiding negative transfer.

3.4.3 Spatial and Channel-wise Adaptation (SCA)
The utilized Spatial and Channel-wise Adaptation (SCA) process [44] is intuitively constructed
to take advantage of fundus images’ channel- and spatial-wise characteristics to maximize the
adaptation as a complementary step to the Tune process. SCA utilizes channel and spatial
attention to concentrate on critical information and its location in the fundus image, facilitating
the differentiation of shared and unknown classes. The Channel and Spatial Attention Module
is described in detail, followed by an explanation of its integration in the adaptation process.

Integrated Spatial Attention and Channel Attention Module (ISCA)

To account for the unique qualities of fundus images, a Spatial Attention (SA) and Channel
Attention (CA) module was developed and illustrated in Figure 3.5. In this module, SA is
employed alongside ResNeSt’s channel-wise attention to emphasize the important information
and location of feature maps. Additionally, the module utilizes max pooling to capture the
global characteristics of fundus images.

ResNet

To address the problem of vanishing gradients in very deep networks, residual networks (ResNets)
[17] were introduced. To link one layer’s input to another layer’s output, ResNets use skip
connections, also called identity mappings. As a result, gradients can propagate more easily
through the network and vanishing gradients can be prevented in deep networks.
Using skip connections, ResNets can learn residual functions, which capture the difference be-
tween layers’ outputs and inputs. Instead of simply passing the input through a sequence of
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Figure 3.3: (a) ResNeSt represents the height, width, and number of channels of the feature
map with h, w, and c. In addition, each cardinal group is divided into r splits.(b) The ResNeSt
architecture incorporates a split attention module. Image reprinted from [44]. Licensed under
a Creative Commons Attribution (CC BY 4.0), Frontiers, 2022.

nonlinear transformations, the output of a layer is added to the input. By combining lower-level
features from earlier layers, skip connections allow the network to learn higher-level features,
which can help improve the network’s accuracy.
ResNets were developed as a solution to the problem of vanishing gradients, which can oc-
cur in very deep neural networks. The training process may become very slow or even cease
when gradients become so small that updating the weights becomes impossible. Through skip
connections, ResNets solve this problem by allowing gradients to flow more easily through the
network, even in very deep architectures. The skip connections enable the network to learn
residual functions, which can capture the difference between the output of a layer and its input.

ResNeXt

As an extension of the ResNet architecture, ResNeXt [48] addresses the issue of overfitting in
deep convolutional neural networks and the lack of generalization. Essentially, ResNeXt uses
a grouped convolution operation, which divides input channels into groups and applies a sepa-
rate convolution operation to each group before concatenating the outputs. With this method,
the network can learn representations of features that are more diverse and powerful than with
standard convolutional neural networks. ResNeXt has an advantage over ResNet in that it can
learn more diverse and powerful feature representations, which can improve accuracy and re-
duce overfitting.
ResNeXt defines cardinality as the number of parallel pathways or groups within a grouped
convolution process. By determining the cardinality parameter, we can divide our input chan-
nels into groups and apply convolution operations to each group. Increased cardinality allows
the network to learn more diverse and powerful feature representations but at the cost of in-
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Figure 3.4: An overview of our integrated channel attention and spatial attention module. (The
image is reprinted from [44]. Licensed under a Creative Commons Attribution (CC BY 4.0),
Frontiers, 2022.)

creased computational complexity.

ResNeSt

ResNeSt [52] is a variation of ResNet [17] that features a split-attention block. While retaining
the original ResNet framework, ResNeSt incorporates group convolution from ResNeXt [48]
and a channel-wise attention mechanism, facilitating the exchange of information among cross-
feature map groups and acquiring feature information from different processing regions [44].
A diagram of the ResNeSt block is provided in Figure 3.3.

Channel Attention Module

The utilized CA module is based on the split attention module employed in ResNeSt, illustrated
in Figure 3.5.(b). The variety of texture information present in fundus images makes it possi-
ble to simplify feature complexity by eliminating redundant and unimportant texture features
before calculating weights. To obtain more precise channel-wise attention, a max-pooling op-
eration is employed according to [47]. In the original ResNeSt, global pooling was combined
with local pooling to extract contextual information, eliminate noise, and extract texture infor-
mation more effectively. It can be written as M(F) = maxPool(F), where F is the input feature
map.
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produced from [44]. Licensed under a Creative Commons Attribution (CC BY 4.0), Frontiers,
2022.)

Spatial Attention Module

The relevance of information varies across different positions of fundus images. For instance,
retinal blood vessel information in the optic disc tends to be more critical than that in other
locations. Thus, it is essential to reinforce such vital information through the use of Spatial At-
tention(SA). ResNeSt’s split attention module utilizes channel-wise attention only to determine
feature relationships and importance within channels. Using an integrated attention module, a
SA module is incorporated following a Channel Attention(CA) to generate a two-dimensional
SA map [44]. By focusing more on spatial positions, SA complements and expands channel-
wise attention. By assigning weights to each spatial position, it is possible to identify the most
important information about that position while inhibiting extraneous features from being ex-
tracted. In order to optimize spatial information, a weight-shared SA block is utilized following
channel-wise attention. Figure 3.5.(a) depicts the structure of the SA module.

To consolidate channel information from the feature map, the SA module employs a combi-
nation of average-pooling and max-pooling approaches. Following the average and maximum
pooling, the output is concatenated and passed through a fully connected layer to generate an
attention map. According to this attention map, each channel is assigned a weight based on
how relevant it is to the task at hand. Following that, the attention map is used to reweight the
feature map, giving more weight to channels that provide more information while suppressing
those that don’t.
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M1(F) = [maxPool(F) ⊙ avgPool(F)] (3.10)

In the above equation, F represents the input feature map, and the symbol ⊙ denotes the con-
catenation operation.

Subsequently, the receptive field of the feature map is broadened suitably via three 3 × 3
convolution operations. Based on the feature map, a sigmoid function is applied to generate a
two-dimensional SA map. In addition, the CA module integrates this information with global
information. The calculation can be expressed as follows:

M2(F) = σ
(

f 3×3
(

f 3×3
(

f 3×3(F)
)))

(3.11)

Here, the symbol σ represents the sigmoid function, and f 3×3 denotes a 3 × 3 convolution
operation.

Finally, the weights from the final SA module are applied to the original feature map using
a weighting operation, expressed as:

M3(F) = W × F (3.12)

where W represents the weight obtained from SA module [44].
This network architecture can enhance the expressive power of the original image and im-

prove classification accuracy by considering both local and global information.

Spatial and Channel-wise objective

As explained in the Tune process, we desire target instances with higher w points toward the
source data feature space, while those with lower w push into the negative sample feature
space. In this regard, we employed top-k percentile target instances based on their w in the
Tune process as the model strongly believes they belong to the source classes. In the SCA,
we argue that the second top-k percentile comes from those samples belonging to the source
classes while having some minor variation in details. In this case, we propose that instead
of expecting the model to have the same output for them, have intermediary features near to
source classes features in the feature space. Thus, we collect the second top-k percentile named
auxiliary data and obtain their intermediary features as A = {(xA, fA, yA)}. In order to obtain
the labels yA for these samples, we use the first top-kP as a reference. In particular, for xA ∈ A
we find the nearest intermediary feature in the corresponding features ofP and assign that label
to the sample.

It is important to note that the intermediary features are derived from our proposed Inte-
grated Spatial- and Channel-wise Attention Module. Consequently, the attended features pro-
vide practical details and contextual information. By defining a new objective on the spatial-
and channel-wise attended parts, we encourage a separation of shared classes and unknown
classes while taking into account the nature of fundus images. To fit our adaptation problem in
fundus images, we boost the Tune process by optimizing the subsequent loss.

LS CA = LCE

(
σ (Cl fT (Mt (xA))) , ŷl

A

)
(3.13)



34 Chapter 3. Methodology

where l is a hyperparameter that selects the layer number of the network from which we get the
spatial- and channel-wise attended features. Generally, the early layers of the network model
provide fundamental information, whereas the later layers provide more abstract information.

Thus, the final adaptation loss is a summation of the losses obtained by Inherit, Tune, and
SCA process as below:

Lwhole = LInherit +LTune +LS CA (3.14)

3.4.4 Summary
This chapter concludes by demonstrating that spatial channelwise attention can be used to solve
the open-set domain adaptation problem. Using average-pooling and max-pooling, an attention
map is generated that assigns weights to each channel based on how relevant it is to the task
at hand. Using the proposed spatial channelwise attention-based solution, we can extend the
concept to source-free domain adaptation. An adaptation in which the source domain is not
available during training is known as source-free domain adaptation, which is more challenging
than traditional domain adaptation. As a result, the model must learn to generalize to the target
domain without labeled data from the source domain.



Chapter 4

Experimental Analysis

In this chapter, we will present the results obtained from experimenting with various parame-
ter settings. Our model’s superior performance compared to other models was demonstrated
through analyzing fundus images in an OSDA scenario. Section 4.1 will provide informa-
tion about the experimental parameters and settings. Additionally, in Section 4.1.2, we will
introduce the two datasets we used. The test results of our model will be described in detail
in Section 4.2. Finally, we will investigate the reasoning behind the proposed model through
explainable methods in Section 4.3.

4.1 Experimental Settings

4.1.1 Implementation Details

Following [24], we implemented our model using PyTorch 1.8 and the proposed structure from
the previous chapter was used as the backbone model. During the training of the source model,
we used a batch size of 32, with 16 source and 16 negative instances. For the target model, a
batch size of 32 was used. All experiments were conducted on a machine with the following
hardware specifications: NVIDIA GeForce GTX 1080 GPU with CUDA v11.7. Image aug-
mentations such as horizontal-flip, random rotations, and color jitter were applied during the
training process. In the source training phase, the Adam optimizer was used with a learning
rate of 1e-4. The training was done for 4000 mini-batches, and the best model was saved based
on validation data. A validation set of 15% of the data was used. For the adaptation phase, the
Adam optimizer was used with a learning rate of 1e-5. The adaptation was carried out for 15000
mini-batches. For more detailed information about the structure of networks, kernel sizes, and
datasets used, please refer to https://github.com/masoudpz/os-sf-da-on-fundus-images.

4.1.2 Datasets

In order to evaluate OSDA methods for fundus disease recognition, we used three datasets
(TAOP [3], ODIR [2], and RFMiD [31]) to build two source and target domain pairs. The
source domain data is TAOP, contains 3,297 images of five retinal diseases. ODIR and RFMiD,
each containing 6,576 and 2,451 images covering more disease categories (covering five classes
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in the source), are set as target domain data. We call these two open-set fundus image bench-
marks OSF-T2O and OSF-T2R. Due to the fact that three datasets were collected from different
hospitals and whose images were captured by different fundus cameras, noticeable shifts be-
tween domains are apparent. In our analysis, we use 5 classes (Diabetic Retinopathy, Retinal
Vein Occlusion, Pathological Myopia, Age-related Macular degeneration, and Glaucoma) as
our source data, and other classes as our target data.

ODIR: The ODIR dataset [2] was created for the ”International Competition on Ocular
Disease Intelligent Recognition”. This database contains information about 3500 patients, in-
cluding age and color fundus photographs of both eyes, as well as doctors’ diagnostic key-
words. The resolution of the fundus images can vary depending on the camera used, such as
Canon, Zeiss, and Kowa. The patients are categorized into eight groups based on the pro-
vided data, as shown in Figure 4.1, which include normal (N), diabetic retinopathy (D), glau-
coma (G), cataract (C), age-related macular degeneration (A), hypertensive retinopathy, and
myopia.(H), myopia (M), and other conditions.

Figure 4.1: ODIR dataset samples and different classes [2].

RFMiD: The Retinal Fundus Multi-Disease Image Dataset (RFMiD) [31] provides an op-
portunity to detect multiple diseases and develop automated methods to classify frequent and
rare eye conditions. Two retinal experts have annotated 46 conditions based on 3200 fundus
images captured with three different cameras. RFMiD is categorized based on annotations
into two groups: 1) screening for normal and abnormal retinal images, and 2) classification
of retinal images into 45 different categories. Samples from various categories in RFMiD are
depicted in Figure 4.2.

TAOP: The ophthalmology department of Beijing Tongren Hospital provides clinical sam-
ples in the TAOP dataset [3]. This collection comprises 3297 images classified into five cate-
gories, which include glaucoma, age-related macular degeneration, diabetic retinopathy, patho-
logical myopia, and retinal vein occlusion. As the source data, we use this dataset in combina-
tion with two additional datasets as the target data. Several samples from the TAOP dataset are
illustrated in Figure 4.3.
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Figure 4.2: RFMiD dataset samples and classes [31].

Figure 4.3: TAOP dataset samples and classes [31].

4.1.3 Metrics
Following [56], we evaluate the OSDA performance based on four metrics, i.e. OS*, OS, UNK,
and harmonic mean (HM) accuracy. OS* and OS represent the mean accuracy over common
classes and the mean accuracy over all classes, respectively. UNK is a measure of accuracy in
recognizing unknown classes, and HM is a harmonic mean accuracy as below:

HM = 2 × OS∗ × Unk/ (OS∗ + Unk) (4.1)

where HM is a balanced evaluation metric that correctly assesses the performance of the meth-
ods on both known and unknown class samples.

4.2 Results

4.2.1 Comparison Methods
DANN [12]. The key component of this method is the use of a gradient reverse layer, which
is a type of layer that multiplies the incoming gradient by a negative constant during training.
This has the effect of reversing the gradient and allowing the main network to learn features
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that are invariant to the domain. The gradient reverse layer is used in combination with a do-
main classification loss term in the overall loss function, which encourages the main network
to be domain-invariant while still accurately classifying the examples in the training set.
OSBP [37]. The main part of this method involves training a model on the source domain
using backpropagation and then adapting it to the target domain using a combination of back-
propagation and an additional loss term that encourages the model to forget the source domain
classes that are not present in the target domain. By using this approach, the model can be
adapted to the target domain while still being able to classify examples accurately from the
target domain classes.
ROS [7]. The main idea investigates the use of image rotation as a way of augmenting the
training data for the model in the target domain and shows that this can improve the model’s
performance when adapting to the target domain. The novelty of the ROS lies in its focus on
the use of image rotation as a means of improving open-set domain adaptation.
DAMC [40]. The main is to propose a method for open-set domain adaptation that involves us-
ing an adversarial network with multiple classifiers. This method is an extension of the OSBP
method, with the addition of multiple classifiers and a new weighting method.
UAN [49]. This model works based on quantifying sample-level transferability to discover the
common label set, and the label sets private to each domain. This allows the model to adapt
effectively to the automatically discovered common label set while also being able to recognize
unknown samples successfully. The method involves using domain-agnostic features, which
are designed to be robust to domain shift, and a universal model that can adapt to any target
domain.
DCC [25]. The key novelty of the DCC method lies in its use of consensus clustering, which
involves training multiple clustering models on the source domain data and then combining the
cluster assignments produced by these models to obtain a consensus clustering. This allows
the DCC method to learn more robust cluster assignments that are less sensitive to the spe-
cific choice of clustering model. The DCC method also involves the use of domain adaptation
constraints, which are used to align the feature spaces of the source and target domains, and
domain adaptation regularization, which helps to prevent overfitting to the source domain.
CRCA [56]. The main idea of the CRCA method is to identify common local feature patterns
that are category-agnostic and then use these patterns to adapt the distributions of the source
and target domains. A key component of the CRCA method is the use of a cluster-aware con-
trastive adaptation loss, which is introduced to adapt the distributions based on the common
local features. The contrastive adaptation loss helps to improve the performance of the adapted
model by aligning the distributions of the source and target domains in a way that is based on
the common local feature patterns.

4.2.2 Quantitative Results
We compare our work to recent methods presented in Table. 4.1. As shown in the table, our
model consistently outperforms other methods by clearing gaps in both benchmarks, showing
satisfactory improvements. DANN [12], which is a classic closed-set DA method that aligns
distributions across domains without trying to separate classes. A simple design makes it ideal
for medical images with small inter-class discrepancies. As compared to DANN, OSBP [37]
achieves an increase in HM of more than 2%. However, for recent OSDA methods, ROS [7]



4.2. Results 39

Datasets OSF-T2O OSF-T2R
Methods OS* OS UNK HM OS* OS UNK HM

DANN[12] 46.859 48.702 57.918 51.805 53.057 53.403 55.132 54.075
OSBP[37] 48.276 50.482 61.510 54.095 52.566 54.519 64.286 57.838

ROS[7] 38.558 40.874 52.456 44.445 41.150 39.196 29.426 34.149
DAMC [40] 45.269 45.256 45.192 45.231 43.067 43.131 43.454 43.259
UAN [49] 47.805 47.923 48.513 48.156 48.846 50.037 55.993 52.176
DCC[25] 38.704 40.289 48.215 42.939 45.244 46.093 50.338 47.656

CRCA [56] 52.538 54.891 65.945 58.483 55.004 57.391 69.874 61.554
Ours 56.482 58.835 70.6 62.75 59.057 60.641 68.651 63.484

Table 4.1: Result comparison (%) of state-of-the-art OSDA methods

utilizes self-supervision through image rotation to train a binary classifier to identify unknown
samples, and DAMC [40] proposes a non-adversarial domain discriminator. There are clear
gaps between different classes of natural vision benchmarks, so these methods work well on
them. However, performance decreased noticeably for medical images due to the small inter-
class discrepancy in global feature spaces. A significant performance drop is experienced by
the DCC method [25] due to its poor image-level clustering that focuses on training category-
level clusters and separating unknown samples simultaneously. Despite DCC, CRCA [56]
proposes a method to separate images of common classes from private classes by clustering
and aligning common local features.

4.2.3 Ablation Study
Negative Sample Generation

In Section 3.3, it was stated that an open-set model can address the overconfidence issue when
utilized for open-set DA. To achieve this and following the literature in [24], we trained a
negative sample classifier Cl funk. Various techniques were considered to generate negative
samples. As stated earlier, the feature-splicing technique proved effective in training an inher-
itable open-set DA model. The adaptation performance of inheritable models, trained using
different negative sample generation techniques, on OSF-T2O is reported in Table 4.2. Here,
we will discuss another strategy we examined.
Linear interpolation between classes. To obtain a negative feature, we adopt the approach of
randomly selecting a pair of source instances that correspond to different classes and then per-
forming linear interpolation between their features. The interpolation is carried out as proposed
in [43]. The idea behind this technique is inspired by mixup [43], which interpolates latent fea-
tures to generate less confident predictions. However, in our experiments (reported in Table
4.2), linear interpolation didn’t generate negative samples as effectively as feature-splicing did.
The reason for this is that linear interpolation produces features only from a limited range of
the source classes, as explained in Section 3.3.
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Datasets OSF-T2O
Methods OS* OS UNK HM

Interpolation 48.012 47.517 45.042 46.479
Feature Splicing 56.482 58.835 70.6 62.75

Table 4.2: Adaptation performance (%) of different negative sample generation strategies. OS*
and OS represent the mean accuracy over common classes and the mean accuracy over all
classes, respectively. UNK is a measure of accuracy in recognizing unknown classes, and HM
is a harmonic mean accuracy.The results indicate that feature splicing is more effective than
interpolation in generating negative samples.

OSF-T2O
Baseline Network OS* OS UNK HM

ResNet-50 54.646 56.117 63.472 58.72
ResNeSt-50 55.026 57.671 69.726 61.509

ResNeSt-50 + ICSA 56.482 58.835 70.6 62.75

Table 4.3: Adaptation performance (%) of different backbones and the effect of proposed ISCA
module.

Effect of ISCA Module

Table 4.3 shows the performance of three different backbones: ResNet-50, ResNeSt-50, and
ResNeSt-50 + ICSA module. The results show that the third backbone, ResNeSt-50 + ICSA,
has the best performance. This indicates that the combination of the ResNeSt-50 architecture
with the ICSA module is effective at improving the model’s ability to extract fine-grained
features and details from the dataset, leading to better overall performance. These findings
highlight the importance of selecting a backbone architecture that is able to effectively extract
the relevant features and details, especially for fundus images, as this can significantly impact
the model’s performance. It can be concluded that the more the model can extract fine-grained
features and details, the better the result is likely to be.

4.3 Model Interpretation
Since deep learning networks are composed of multiple layers and a large number of param-
eters, they are initially perceived as black boxes. This has led to the development of a field
of study called ”deep learning interpretability” to explain and interpret these models. We can
use interpretation techniques to diagnose network flaws that lead to incorrect predictions when
models perform worse than humans. The results can then be used to improve the network and
enhance performance by fixing those problems. We must determine which visual features each
neuron in a CNN responds to. Several studies have attempted to visualize the type of informa-
tion coded in each layer of the network and the preferred stimuli of neurons. Initially, these
efforts were limited to the first layer and its neurons since it is the layer right after the input
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Figure 4.4: Saliency map results of fundus images. From left to right, the normal fundus im-
age, the fundus image with red abnormal hemorrhage, the Grad-CAM, and the Guided back-
propagation output. The results obtained from both GradCAM and guided backpropagation
demonstrate the excellent ability of the model to locate the place of abnormalities or diseases
accurately.

image where inverse projection to pixel space can be made. According to previous studies, the
first layer filters are mostly sensitive to basic visual features like edges and colors. A more
complex mapping to pixel space is required for higher layers, which cannot be achieved with
straightforward mapping. Because the image or feature maps pass through convolutional fil-
ters, sampling modules (max pooling), and non-linear activation functions at every layer, the
inverse path is challenging since some are irreversible. To visualize higher layers and their
neurons, researchers had to develop more complex and creative methods [30].

4.3.1 Saliency Map

To understand why the model predicts a particular label, it is best to determine which parts
of the input image played a role. For example, the areas of the image that guide the model’s
prediction can provide insight into how the model works when used in a clinical application that
predicts or diagnoses a disease. Such information can be obtained from saliency maps, called
pixel attribution maps or attention maps. Saliency maps are basically images with the same size
as the input image, in which each pixel represents how the input image’s corresponding pixel
contributed to the predicted label. Analyzing the saliency map for multiple dataset instances
can reveal what features guide the model’s predictions. In addition, incorrectly labeled images
can be detected, so the model can’t make the correct predictions due to the misleading parts.
To this end we investigate our model using two explainable methods.

Guided Backpropagation.

Using deconvolutional networks [51], we can backpropogate the activation of neurons in higher
layers to the input space. By inversely implementing each CNN layer, the activation of the de-
sired layer can be used to project the information back to the input space. To see what feature
in the image that particular neuron is sensitive to, we can also use one particular filter in that
layer instead of using the entire layer and setting the activation of other neurons to zero. Due
to the sampling layers, the inverse network itself cannot be reversed in this approach, so we
need to start with an input image to be able to use it. Therefore, we need to feed the original
CNN with an arbitrary input image (usually a sample from the training set). During the for-
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ward path, pixels sampled in max-pooling layers are indexed. During the backward path of the
deconvolutional neural network, this information is used to reconstruct the input image. Us-
ing the reconstructed image, we can determine what features of the input image were preserved.

Gradient-weighted Class Activation Map (Grad-CAM).

Grad-CAM [39] is another method of interpreting CNN networks based on gradients. How-
ever, the gradient does not backpropagate from the label of interest back to the input image.
Instead, the gradient is calculated until the last convolutional layer before the first fully con-
nected layer. This gradient represents the contribution of each filter to the classification label
of interest in the last convolutional layer. The average of the feature maps is then calculated
and weighted by the gradient values. To represent the importance of each region in the input
image for the final prediction, this average map should be upsampled to the same size as the
input image.
Figs. 4.4 illustrate saliency map results for different samples in the RFMid dataset. The left
panel shows the original fundus image, while the middle and right panels display the output of
the Grad-CAM algorithm and guided backpropagation, respectively. The model’s attention is
primarily focused on the optic disc, retinal vasculature, and fovea, as indicated by these visu-
alizations. We can see from Figure 4.4 that the pattern of attention is not uniformly distributed
across the entire image. Also, we can see how our model focuses on specific details of each
part of the image to detect the type of disease. The proposed network is more effective at diag-
nosing different fundus diseases due to its ability to focus on details rather than whole shapes.
Also, Figure 4.5 shows the effectiveness of the attention module when it comes to detecting
different classes. By adding attention, the model could locate more specific features related to
the disease. The output of gradcam algorithm is shown in this figure.

Figure 4.5: Comparing the performance of Resnet and ResNeSt plus attention module on de-
tecting local features. from left to right, the normal fundus image, the fundus image with red
abnormal hemorrhage, grad-cam output for Resnet and grad-cam output for the ResNeSt with
attention module. ResNeSt, equipped with the proposed module, outperforms the ResNet net-
work in terms of localization of features on fundus images.

4.4 Summary
This chapter provided a detailed account of the implementation process and experiments con-
ducted in our research. We also conducted an ablation study to assess the impact of each
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component on the overall performance. Additionally, we employed explainable AI techniques
to gain insights into the reasons behind our results. Together, this chapter offers a comprehen-
sive summary of the experimental procedure and provides crucial information for replicating
and furthering our work.
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Conclusion and Future Directions

5.1 Conclusion

In this thesis, we presented a novel approach for open-set source-free domain adaptation in
fundus image analysis. By using convolutional neural networks with spatial and channel-wise
attention, we were able to achieve state-of-the-art performance in this field, even outperforming
non-source-free methods. Our proposed method is designed specifically for the analysis of
fundus images, which can be challenging due to the low inter-class variation between classes.
While different classes in general images may have distinct characteristics, in fundus images,
classes are often very similar except for small details. Our method addresses this issue and is
able to effectively classify and analyze fundus images despite the low inter-class variation.

The process we proposed in this study involves training a source model that is able to
generate and identify negative samples and then adapting the target model to the source model
using pseudo-labeling and entropy minimization. This approach allows us to effectively adapt
to novel domains without access to source data, which is crucial in the open-set context where
the number and nature of the target domains are unknown.

In this work, we introduced a novel approach for source-free domain adaptation of fundus
images. Our solution to the challenge of capturing fine-grained details combines spatial and
channel attention mechanisms to extract both local and channel-wise features. As part of the
adaptation phase, we proposed a new objective measure based on spatial and channel-wise
information.

One key feature of our proposed method is the use of explainable AI techniques to pro-
vide insights into the decision-making process of the model. By using these techniques, we
are able to better understand the features and patterns that the model is using to make predic-
tions, which can be especially useful for fundus image analysis where the differences between
classes may be subtle. By providing these explanations, we can gain a deeper understanding of
the performance of the model and identify areas where it may be possible to improve its accu-
racy. In addition, the use of explainable AI methods can help to increase the transparency and
accountability of the model, which can be critical in the healthcare context where an accurate
and reliable diagnosis is critical.

The results of our experiments demonstrate the effectiveness of our method in improving
the performance of fundus image analysis tasks in unseen domains. The use of attention mech-
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anisms in our model allows for the preservation of important details in the images, which is
critical for the accurate analysis of fundus images. This work makes a valuable contribution to
the field of domain adaptation and has the potential to impact a wide range of applications in
medical image analysis and beyond. There is still much to be explored and improved in this
area, and we hope that our work will inspire future research in open-set source-free domain
adaptation.

5.2 Future Directions
The topic of open-set source-free domain adaptation in fundus image analysis is a highly rele-
vant and interesting area of research, and there is much potential for further work in this field.
Some possible directions for future research in this area include:

• Improved domain adaptation techniques: There are many existing techniques for domain
adaptation, but they may not always be effective in the open-set source-free scenario.
There is a need for new methods that can effectively adapt to novel domains without
access to source data.

• Extension to other medical imaging modalities: The techniques developed in this work
can potentially be extended to other medical imaging modalities such as CT and MRI.
This would allow the use of these methods in a wider range of medical applications.

• Incorporation of additional data sources: While this work focused on adapting to a new
domain using only the target data, it may be possible to incorporate other data sources
(such as unannotated data or auxiliary tasks) to improve performance.

• Evaluation on larger and more diverse datasets: The datasets used in this work were
relatively small and may not fully represent the variability in real-world fundus images.
Future work should evaluate these techniques on larger and more diverse datasets to
better understand their generalizability.

• Integration with other tasks: Domain adaptation techniques can be used in combination
with other tasks such as segmentation or diagnosis. Future work could explore the in-
tegration of these methods with other tasks to improve the overall performance of the
system.

In general, there is much potential for further research in the area of open-set source-free
domain adaptation in fundus image analysis. These directions represent only a few of the
many possibilities for future work, and there is much room for innovation and exploration in
this field.
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