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Numerical solution of the two-layer shallow water equations
with bottom topography

by Rick Salmon1

ABSTRACT
We present a simple, robust numerical method for solving the two-layer shallow water equations

with arbitrarybottom topography.Using the techniqueof operator splitting,we write the equationsas
a pair of hyperbolic systems with readily computed characteristics, and apply third-order-upwind
differences to the resulting wave equations. To prevent the thickness of either layer from vanishing,
we modify the dynamics, inserting an arti� cial form of potential energy that becomes very large as
the layer becomes very thin. Compared to high-order Riemann schemes with � ux or slope limiters,
our method is formally more accurate, probably less dissipative, and certainly more ef� cient.
However, because we do not exactly conserve momentum and mass, bores move at the wrong speed
unless we add explicit, momentum-conserving viscosity. Numerical solutions demonstrate the
accuracy and stability of the method. Solutions corresponding to two-layer, wind-driven ocean � ow
require no explicit viscosity or hyperviscosity of any kind; the implicit hyperdiffusion associated
with third-order-upwinddifferencing effectively absorbs the enstrophycascade to small scales.

1. Introduction

This paper offers a simple, robust, numerical method for solving the two-layer shallow
water equations with arbitrary bottom topography. Either layer thickness, and hence the
total � uid depth, may be arbitrarily small. Our strategy is to use the technique of operator
splitting to rewrite the two-layer equations as a pair of hyperbolic systems. In characteristic
form, each equation describes propagation at a unique velocity. We solve these equations
by the method of third-order-upwind differences, with the upwind direction based upon the
unique propagation direction in each equation.

Like the shallow water equations themselves, these � nite-difference equations become
unstable if either layer thickness vanishes. To prevent this, we modify the dynamics,
inserting an arti� cial form of potential energy that becomes very large as the layer becomes
very thin. This modi� cation prevents the layer thicknesses from falling below an arbitrarily
small (and therefore dynamically insigni� cant) lower bound. Thus, in the case of no
forcing, the two-layer model relaxes to a state of rest in which the interface between the

1. Scripps Institution of Oceanography, University of California, 9500 Gilman Drive, La Jolla, California,
92093-0213,U.S.A. email: rsalmon@ucsd.edu
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layers is � at, except in shallow regions, where the lower layer is present as a thin � lm
beneath an upper layer of much greater thickness.

The most sophisticated numerical methods for solving systems of equations like the
shallow water equations are based upon high-order, conservative, Riemann solvers.2

Unfortunately, these methods place a very high demand on computing resources. The
methods presented here arose in the search for an ef� cient, two-layer, numerical ocean
circulation model that could be integrated for the decades of simulated time required to
reach equilibrium, despite the short time steps imposed by the presence of fast external
gravity waves. Such simulations require millions of time steps, and ef� ciency therefore
demands a simple algorithm. However, the algorithm must accommodate the vanishing of
either layer thickness, and it must not require an excessive friction or eddy dissipation for
stability. The satisfaction of all these requirements poses a considerable challenge.

Although the ideas involved are quite simple, they are most easily explained by
considering progressively more complicated cases. Section 2 explains the upwind-
differencing method by applying it to the one-layer shallow water equations without
bottom topography.Section 3 uses the technique of operator splitting to extend the method
to the two-layer case. In Section 4 we add bottom topography to the one-layer model,
employing the arti� cial potential to prevent the layer thickness from vanishing. Section 5
derives the complete two-layer model with topography. Section 6 presents some numerical
solutions that demonstrate the accuracy and stability of the method. We � nd that solutions
corresponding to two-layer, wind-driven ocean � ow require no explicit viscosity or
hyperviscosity of any kind; the implicit hyperdiffusion associated with third-order-upwind
differencing is by itself suf� cient to prevent enstrophy from accumulating at the smallest
resolved scales. Section 7 summarizes the paper.

2. The one-layer case

First consider the one-layer shallow water equations without bottom topography. In one
space dimension, these equations may be written in the form

]

]t
~u 1 2c! 1 ~u 1 c!

]

]x
~u 1 2c! 5 0 (2.1a)

and

]

]t
~u 2 2c! 1 ~u 2 c!

]

]x
~u 2 2c! 5 0 (2.1b)

Here u( x, t) is the velocity at location x and time t of the � uid layer with thickness h( x, t),
g is the gravity constant, and c [ =gh. The quantities u 6 2c are Riemann invariants.
Each of (2.1) takes the form

2. For an excellent introduction to these methods, see LeVeque (1992) or Godlewski and Raviart (1996). For a
more basic but more speci� c survey of numerical methods applied to the shallow water equations, see
Vreugdenhil (1994).
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]u

]t
1 U

]u

]x
5 0 (2.2)

of a one-dimensional advection equation. To solve (2.2) we replace the x-derivative by the
third-order-upwind approximation,

U
]u

]x
5 5

U

6D
~u i22 2 6u i21 1 3u i 1 2u i11! ; UuW x, U . 0

U

6D
~22ui21 2 3ui 1 6ui11 2 ui12! ; UuQx, U , 0

(2.3)

In (2.3) D is the grid spacing, and ui is the value of u at the i-th gridpoint.Both uW x and uQ x are
logical � nite-difference approximations to ]u/] x. The arrows connote the direction of U.
By the usual Taylor-series expansions, (2.2) with (2.3) implies

]u

]t
1 U

]u

]x
5 2

u U u
12

D3uxxxx 1 O~D4!. (2.4)

Thus the truncation error of scheme (2.3) takes the form of hyper-diffusion, with diffusion
coef� cient u U u D3/12. Assuming u u u , c, the corresponding approximations to (2.1) are
equivalent to

u t 1 uux 1 ghx 5 2
D3

12
@cuxxxx 1 2ucxxxx# (2.5a)

and

h t 1 ~hu!x 5 2
D3

12 F hu

c
uxxxx 1 2hcxxxx G (2.5b)

in which the truncation error corresponds to hyperdiffusion of mass as well as momentum;
neither is exactly conserved. In addition (2.5) contain cross-diffusion terms—the cxxxx-
term in (2.5a) and the uxxxx-term in (2.5b)—but these are relatively small if u u u ! c [
=gh. Neither the cross-diffusion terms nor, probably, the hyperdiffusion of mass would
occur in the more typical scheme in which an explicit biharmonic eddy diffusivity is
intentionally put into the equations.

The case for third-order upwinding has been made by Leonard (1984); see also Leonard
(1979, 1991). Brie� y, even-order-accurate approximations to ]u/] x correspond to oscilla-
tory truncation error that causes grid-mode oscillations—wiggles—in numerical solutions.
On the other hand, odd-order schemes are either absolutely stable (upwind schemes) or
absolutely unstable (downwind schemes). The best known method for solving (2.1)—
Godunov’s method—is based upon the � rst-order-upwind approximation to U]u/] x.
However, Godunov’s method is notoriously diffusive; the analogue of (2.4) contains
normal diffusion with a coef� cient of order u U u D. The signi� cant advantage of (2.3) is its
higher-order (i.e. more scale-selective) diffusion. Third-order upwinding seems especially
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appealingbecause its truncation error corresponds to biharmonic diffusion of the type often
inserted explicitly, at an additional cost in computations. In a study of passive tracer
advection, Hecht et al. (1995) have shown that third-order upwinding compares favorably
to other popular sub-gridscale dissipation schemes.

Note that we postpone replacing ]/]t by a � nite-difference approximation; the semi-
discrete equations (2.4) and (2.5) retain analytic time derivatives. The resulting freedom to
choose the time step independently from the space discretization will prove to be
important. Moreover, Kurganov and Tadmor (2000) show that schemes that mix the space-
and time-discretization, including some schemes widely used for hyperbolic systems, have
a truncation error that blows up as the time step is decreased.

In two dimensions, the one-layer shallow water equations,

]u

]t
1 u

]u

]x
1 v

]u

]y
5 22c

]c

]x
(2.6a)

]v

]t
1 u

]v

]x
1 v

]v

]y
5 22c

]c

]y
(2.6b)

]c

]t
1 u

]c

]x
1 v

]c

]y
5 2

1

2
cX ]u

]x
1

]v

]y D (2.6c)

cannot be written in a form analogous to (2.2). Instead, we use (2.6a) and (2.6c) to write

]

]t
~u 1 2c! 1 ~u 1 c!

]

]x
~u 1 2c! 1 v

]

]y
~u 1 2c! 1 c

]v

]y
5 0 (2.7a)

and

]

]t
~u 2 2c! 1 ~u 2 c!

]

]x
~u 2 2c! 1 v

]

]y
~u 2 2c! 2 c

]v

]y
5 0 (2.7b)

The equations (2.7) � t the two-dimensional advection form,

]u

]t
1 U

]u

]x
1 V

]u

]y
5 0 (2.8)

with u 5 u 6 2c, U 5 u 6 c, and V 5 v, except for the 6c]v/] y-terms at the end of each
equation. However, we shall use (2.7) only to compute ]u/]t and the contribution to ]c/]t
from the x-derivative terms in (2.6c). (We obtain ]v/]t and the contribution of the
y-derivative terms to ]c/]t by the analogous treatment of (2.6b) and (2.6c).) ]u/]t is
obtained by adding (2.7a) and (2.7b), but the 6c]v/] y-terms then cancel. ]c/]t is obtained
by subtracting (2.7b) from (2.7a), but the 6c]v/] y-terms do not contribute to the
sought-for x-derivative-terms. Thus we may proceed by ignoring the last terms in (2.7),
and by treating the remaining terms as we did in the case of (2.2–3). That is, we
approximate
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A 5 2~u 1 c!~u 1 2c!x

B 5 2~u 2 c!~u 2 2c!x

C 5 2v~u 1 2c!y

D 5 2v~u 2 2c!y
(2.9)

using the obvious generalization of (2.3). For example,

C 5 H 2vuWy, v . 0
2vuQy, v , 0 with u 5 u 1 2c, (2.10)

while the formula for B depends upon the sign of u 2 c. Here, as in (2.3),

uW y ;
1

6D
~u i, j22 2 6u i, j21 1 3u i, j 1 2u i, j11! (2.11)

denotes the third-order-upwind estimate of ]u/] y, with the “wind” blowing toward
positive y. Similarly,

uQ y ;
1

6D
~22ui, j21 2 3ui , j 1 6ui, j11 2 ui, j12!. (2.12)

Then, solving (2.7) for the time-derivative terms, we obtain

]u

]t
5

1

2
~A 1 B 1 C 1 D! (2.13)

and

]

]t
Î gh 5

1

4
~A 2 B! 1 · · · (2.14)

In (2.14) we omit the terms proportional to C and D. These terms—and the already
ignored 6c]v/] y-terms in (2.7)— contribute to the y-derivative terms in the continuity
equation, but for the moment we only want the x-derivative terms. That is, (2.13) and the
terms explicitly appearing in (2.14) are logical � nite-difference approximations to (2.6a)
and

]h

]t
5 2

]~hu!

]x
, (2.15)

respectively.
We obtain the analogous expression for ]v/]t and the additional term needed in (2.14)

by repeating the entire procedure in the y-direction, that is, by manipulating (2.6b) and
(2.6c) in a manner analogous to the manipulations just performed on (2.6a) and (2.6c). The
results analogous to (2.13) and (2.14) are

]v

]t
5

1

2
~E 1 F 1 G 1 J! (2.16)

and
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]

]t
Î gh 5

1

4
~E 2 F! 1 · · · (2.17)

where

E 5 2~v 1 c!~v 1 2c!y

F 5 2~v 2 c!~v 2 2c!y

G 5 2u~v 1 2c!x

J 5 2u~v 2 2c!x
(2.18)

are the analogues of (2.9). As in (2.9), we replace the derivatives in (2.18) by third-order-
upwind approximations in the manner illustrated by (2.10–12). In this case, the terms
appearing explicitly in (2.17) correspond to the y-derivative terms in the continuity
equation. Then, combining (2.14) and (2.17), we obtain the � nite-difference analogue,

]

]t
Î gh 5

1

4
~A 2 B 1 E 2 F!, (2.19)

of (2.6c).
In overall summary, our � nite-difference approximation to (2.6) is (2.13), (2.16), and

(2.19) with the expressions (2.9) and (2.18) replaced by third-order-upwind approxima-
tions. Once again, these equationsare semi-discrete; we discuss the method for discretizing
]/]t in Section 5. We incorporate forcing terms not involving spatial derivatives by simply
adding them to the right-hand sides of (2.13) or (2.16). For example, to add the Coriolis
force, we append 1fv to (2.13) and 2fu to (2.16) (where f is the Coriolis parameter) with
no change in the method used to calculate (2.9) and (2.18).

3. The two-layer case

Next we consider the two-layer shallow water equations,

]u1

]t
1 u1 · ¹u1 5 2g¹~h1 1 h2! (3.1a)

]u2

]t
1 u2 · ¹u2 5 2g~1 2 e!¹h1 2 g¹h2 (3.1b)

]h1

]t
1 ¹ · ~h1u1! 5 0 (3.1c)

]h2

]t
1 ¹ · ~h2u2! 5 0. (3.1d)

Here h1 and u1 5 (u1, v1) are the thickness and velocity of the upper layer; h2 and u2 are
the corresponding variables in the lower layer; ¹ [ (]x, ]y); and e is the relative density
difference between the layers. Thus ge is the reduced gravity.
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Quasi-linear systems like (3.1) with three or more independent variables are rarely
hyperbolic.3 However, if the one-dimensional form

]u1

]t
1 u1

]u1

]x
1 g

]h1

]x
1 g

]h2

]x
5 0

]u2

]t
1 u2

]u2

]x
1 g~1 2 e!

]h1

]x
1 g

]h2

]x
5 0

(3.2)
]h1

]t
1 u1

]h1

]x
1 h1

]u1

]x
5 0

]h2

]t
1 u2

]h2

]x
1 h2

]u2

]x
5 0

of (3.1) were hyperbolic, then we could apply our strategy separately in each direction, and
combine the results, as we have done in Section 2.

We begin by recalling the de� nition of a hyperbolic system. (See, for example, LeVeque
(1992).) The quasi-linear system

]u i

]t
1 A ij

]u j

]x
5 0 (3.3)

is hyperbolic if all the eigenvaluesof matrix A are real, and all the left eigenvectorsof A are
distinct. Here, repeated subscripts are summed from 1 to n, the number of independent
variables. That is, if

a i
kAij 5 ckaj

k, (3.4)

where ck, satisfying

det @A 2 cI# 5 0, (3.5)

is the k-th eigenvalue of A and ai
k is the i-th component of the corresponding left

eigenvector, then (3.3) may be written as n equations of the form

a i
kX ]u i

]t
1 ck

]u i

]x D 5 0, (3.6)

in which all the dependent variables are advected with the same velocity ck. For special ai
k

it may be possible to write (3.6) in the form (2.2). That is, Riemann invariants may exist.
However, the general form (3.6) is all that is required to apply the third-order-upwind
method.

Eq. (3.2) � ts the form of (3.3) with n 5 4 and (u1, u2, u3, u4) 5 (u1, u2, h1, h2).
Lawrence (1990) gives explicit formulae for the corresponding eigenvalues. As expected,

3. For a discussion of this point, see Whitham (1974), pp. 139–141.
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these eigenvalues correspond to the phase speeds of external and internal gravity waves.
However, if the internal Froude number

~u1 2 u2!
2

eg~h1 1 h2!
(3.7)

exceeds a critical value (approximately equal to unity in the Boussinesq case, e ! 1), then
the phase speed corresponding to internal gravity waves becomes imaginary, and the
system ceases to be hyperbolic. Even if this never occurs, the calculation described by
Lawrence, which amounts to � nding the roots of a quartic polynomial that does not
factorize, requires too much computation to be practical.

We overcome this dif� culty by splitting (3.1) into two parts. The � rst part,

]u1

]t
1 u1 · ¹u1 5 0,

]u2

]t
1 u2 · ¹u2 5 0

]h1

]t
1 u1 · ¹h1 5 0,

]h2

]t
1 u2 · ¹h2 5 0

(3.8)

contains only the advection terms in (3.1). The second part,

]u1

]t
1 g¹~h1 1 h2! 5 0,

]u2

]t
1 g~1 2 e!¹h1 1 g¹h2 5 0

]h1

]t
1 h1¹ · u1 5 0,

]h2

]t
1 h2¹ · u2 5 0

(3.9)

contains everything else. Both parts may be rewritten in a form analogous to (3.6), and
hence we may use third-order-upwind differences on both parts. Indeed, each of (3.8)
already takes the form (2.8), to which we can apply the obvious generalization of (2.3). On
the other hand, (3.9) requires the one-direction-at-a-time strategy of Section 2, and the
general method outlined in (3.3–6). On physical grounds it is obvious that the one-
dimensional form of (3.9), namely,

]u1

]t
1 g

]h1

]x
1 g

]h2

]x
5 0 (3.10a)

]u2

]t
1 g~1 2 e!

]h1

]x
1 g

]h2

]x
5 0 (3.10b)

]h1

]t
1 h1

]u1

]x
5 0 (3.10c)

]h2

]t
1 h2

]u2

]x
5 0 (3.10d)
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is hyperbolic; since (3.10) corresponds to linearization of the dynamics about a state of
rest, the corresponding wave speeds must be real.

Once the form (3.6) of (3.10) has been found, we solve (3.1) by alternately time-stepping
(3.8) and (3.9). That is, each timestep of (3.8) is followed by a timestep of (3.9). This
technique, called operator splitting, can be problematic when the physics involves a
balance between terms occurring in different parts of the split. However, operator splitting
succeeds for (3.8–9). Stone and Norman (1992) describe a similar splitting of advection
from everything else in a two-dimensional magneto-hydrodynamics code.

For the two-layer system (3.10), the requirement (3.5) leads to

c 5 6ce, 6ci (3.11)

where ce and ci, given by

ce
2, c i

2 5
1

2
~gh1 1 gh2! 6

1

2
$~gh1 1 gh2!

2 2 4egh1gh2%
1/2, (3.12)

are the external- and internal-gravity-wave speeds, respectively. For each c given by
(3.11–12), we take a1 5 h1 and solve (3.4) for

a2 5
gh1h2

c2 2 gh2
, a3 5 c, a4 5

gh1c

c2 2 gh2
. (3.13)

Thus the analogue of (3.6) corresponding to c 5 1ce, is

h1Lu1 1
gh1

ce
2 2 gh2

h2Lu2 1 ceLh1 1
gh1

ce
2 2 gh2

ceLh2 5 0, (3.14)

where

Lu ;
]u

]t
1 ce

]u

]x
(3.15)

and ce is given by (3.12). In (3.14–15) all the dependent variables are advected with speed
ce toward positive x. The analogue of (3.6) corresponding to c 5 2ce is obtained by
reversing the sign of ce in (3.14) and (3.15); then all the variables are advected toward
negative x. Finally, the two equations corresponding to internal gravity waves are obtained
by replacing ce in (3.14–15) by 6ci. The four equations thus obtained are equivalent to the
set (3.10), but unlike (3.10) each of these four equations involves propagation at a single
speed.

Our numerical approximation consists of replacing the x-derivatives in each equation
like (3.14) by the third-order-upwind formula corresponding to the unique propagation
direction in that equation, and then solving the equations for the time-derivatives of the
four independent variables. For example, in (3.14), corresponding to c 5 1ce, (3.15) is
replaced by
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Lu 5
]u

]t
1 ceuW x (3.16)

while in the analogue of (3.14) corresponding to c 5 2ci we take

Lu 5
]u

]t
2 c iuQ x. (3.17)

The algebra proves somewhat tedious, but the � nal result assumes a revealing form if,
taking the Boussinesq limit of small density difference between the layers, we expand the
c’s and ai’s in powers of e. Then, omitting terms of order e2 and eD4, we obtain

]u1

]t
1 gdx~h1 1 h2! 5

2 Î g

h1 1 h2
~h1Dxu1 1 h2Dxu2! 1 Î ge

h1
1/2h2

3/2

~h1 1 h2!
3/2 Dx~u2 2 u1!

(3.18a)

and three analogous equations for the time derivatives of u2, h1, and h2. Here dx and Dx

are � nite-difference operators de� ned by

dxu ;
1

2
~uW x 1 uQ x! and Dxu ;

1

2
~uWx 2 uQx!. (3.19)

Using Taylor-series expansions of gridded variables in the de� nitions (2.11–12), we � nd
that

dxu 5
]u

]x
1 O~D4! and Dxu 5

D3

12

]4u

]x4 1 O~D4!, (3.20)

where D is the grid-spacing. Thus, as expected, (3.18a) is a logical � nite-difference
approximation to (3.10a). The stabilizing hyperdiffusion terms in (3.18a)—the terms on
the right-hand side of (3.18a)—represent the leading-order truncation error, and are
analogous to the hyperdiffusion in (2.4–5).

As in Section 2, we obtain the y-direction analogues of these equations by carrying out
this entire procedure in the y-direction, that is, by considering (3.10) with u1 and u2

replaced by v1 and v2, and with the x-derivatives replaced by y-derivatives. Then we
collect results to obtain the � nite-difference analogues of (3.9). In ready-to-code form, the
full set of � nite-difference equations for the non-advective part, (3.9), of the dynamics
comprises (3.18a), the three equations

]u2

]t
1 gdx~~1 2 e!h1 1 h2! 5 2 Î g

h1 1 h2
~h1Dxu1 1 h2Dxu2!

1 Î ge
h1

3/2h2
1/2

~h1 1 h2!
3/2 Dx~u1 2 u2!

(3.18b)
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]h1

]t
5 2h1~dxu1 1 dyv1! 2 Î g

h1

~h1 1 h2!
1/2 ~Dx 1 Dy!~h1 1 h2!

1
Î geh1h2

~h1 1 h2!
3/2 ~h1~Dx 1 Dy!h2 2 h2~Dx 1 Dy!h1!

(3.18c)

]h2

]t
5 2h2~dxu2 1 dyv2! 2 Î g

h2

~h1 1 h2!
1/2 ~Dx 1 Dy!~h1 1 h2!

1
Î geh1h2

~h1 1 h2!
3/2 ~h2~Dx 1 Dy!h1 2 h1~Dx 1 Dy!h2!

(3.18d)

and two additional equations obtained by replacing u by v, dx by dy, and Dx by Dy in
(3.18a) and (3.18b). We refer to this complete set of 6 equations as (3.18). Once again, we
may add forces not involving the derivatives of dependent variables by simply adding them
to the right-hand sides of (3.18). As in (2.5) the hyperdiffusion terms in (3.18) are
anisotropic. However, unlike (2.5) there are no cross-diffusion terms in (3.18) or, for that
matter, in the corresponding equations for (3.8).

4. One layer model with bottom topography

Returning to the single-layer case, we note that the presence of a rigid bottom boundary
at vertical location z 5 2H( x, y) generalizes the one-layer shallow-water equations to

]u
]t

1 u · ¹u 5 2g¹h 1 g¹H (4.1)

and

]h

]t
1 ¹ · ~hu! 5 0. (4.2)

The term arising from the bottom topography enters (4.1) as a prescribed force, suggesting
that this term might simply be added to the right-hand side of the one-layer analogue of
(3.18). However, this “bottom force” is also a potential force which would, in the presence
of frictional dissipation, eventually lead to state of rest in which the � uid layer forms a
“puddle” of depth h 5 H( x, y) 2 C in the region H( x, y) . C, where the constant C is
determined by the total volume of � uid present. Unless the numerics are carefully designed
to be compatible with this state of rest, the bottom topography generates large, unphysical
persistent � ows, even in the presence of dissipation.

To clarify these points we consider the one-dimensional, one-layer analogue of the
� nite-difference equations derived in Section 3, namely

]u

]t
5 2gdxh 2 Î ghDxu (4.3)
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and

]h

]t
5 2hdxu 2 Î ghDxh (4.4)

These are obtained by setting h1 5 e 5 0 in (3.18), and by throwing away the equations
for the upper layer. Eqs. (4.3–4) are � nite-difference approximations to the one-layer
analogues of (3.10). The naive procedure of simply adding the term 1gdxH to the
right-hand side of (4.3) produces � nite-difference equations that include bottom topogra-
phy with the same O(D4) accuracy as (4.3–4). However, the equations thus obtained are
incompatiblewith the state of rest; the tendency of the Dxh-term in (4.4) to make h uniform
can only be balanced by a persistent u that turns out to be of signi� cant size in the
oceanographic applications we have in mind. The better strategy is to replace (4.3) and
(4.4) by

]u

]t
5 2gdx~h 2 H! 2 Î ghDxu (4.5)

and

]h

]t
5 2hdxu 2 Î ghDx~h 2 H!. (4.6)

in which H( x, y) also appears in the hyper-diffusion term of (4.6). Eqs. (4.5–6) have the
same accuracy as (4.3–4), correctly incorporate the bottom force, and are exactly
compatible with the state of rest u 5 0, h 5 H 2 C. A similar trick may be applied in the
two-layer case.

Both (4.5–6) and its two-layer analogue work quite well provided that neither � uid layer
approaches zero thickness. However, this is an unacceptable restriction on the two-layer
case. In the state of rest, the lower layer of a two-layer ocean has vanishing thickness in
shallow coastal regions, where the upper layer completely � lls the water column.
Unfortunately, states with vanishing layer thicknesses seem incompatiblewith the methods
proposed in Sections 2 and 3, because the equations lose their hyperbolic character as h ®
0. Moreover, ad hoc methods of preventing h 5 0 (such as simply resetting h if it falls
below a prescribed lower bound, or adding a bottom drag which becomes very large when
the layer thickness becomes small) seem to destabilize the method. The better strategy is to
modify the physics in such a way as to make the state of rest correspond to a state in which
regions of vanishing layer thickness become regions of very small thickness instead.

We continue to consider the one-layer case, but, with the two-layer case as our goal, we
regard the one-layer equations as the equations for the lower layer of a two-layer ocean,
with the upper layer at rest. Thus the g in (4.1) is reduced gravity. Omitting the advection
terms (which occur in their own separate split), (4.1) may be written as
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]u
]t

5 2¹ X dV

dh D (4.7)

where dV/dh is the functional derivative of the potential energy

V 5 E E dx dy H gh X 2H 1
1

2
h D J . (4.8)

Inserting a term that becomes large as h becomes small, we de� ne the modi� ed potential
energy,

Vm 5 E E dx dy H gh X 2H 1
1

2
h D 1 gP~h!J . (4.9)

where P(h) is an arbitrary function with the properties that P(h) is negligible when h @ h0,
where h0 is a small positive constant, and P(h) ® ` as h ® 0. The modi� ed dynamics

]u
]t

5 2¹X dVm

dh D 5 2g¹~h 2 H 1 P9~h!! 5 2g~1 1 P ~h!!¹h 1 g¹H (4.10)

has a state of rest corresponding to

h 2 H 1 P9~h! 5 const. (4.11)

Suppose, for example, that

P ~h! 5 X h0

h D n

(4.12)

where h0 is a positive constant, and n is a positive integer greater than 1. Then the rest state
(4.11) corresponds to

h 2
1

n 2 1

h0
n

hn21 5 H~x, y! 1 C (4.13)

where the constant C is determined by the total volume of � uid. Suppose this volume is
such that h 5 Hmax/2 at H 5 Hmax, where Hmax is the maximum of H . This corresponds to
a puddle with its surface a vertical distance Hmax/2 below the highest elevation attained by
the rigid lower boundary at, say, H 5 0. Refer to Figure 1. Then, assuming h0 ! Hmax,
C . 2Hmax/2, and (4.13) becomes

h 2
1

n 2 1

h0
n

hn21 5 H~x, y! 2
1

2
Hmax (4.14)

Within the puddle, the second term in (4.14) is negligible, and we obtain the rest state h 5
H 2 Hmax/2 corresponding to the unmodi� ed dynamics. Above the puddle, the � uid
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adheres to the solid bottom in a thin layer. In this region, the � rst term in (4.14) is
negligible, and we obtain

h 5 F h0
n

~n 2 1!~1
2

Hmax 2 H! G 1/~n21!

(4.15)

for the thickness of the thin layer. This layer thickness decreases with decreasing H to the
minimum layer thickness,

h

Hmax
5 X 2

n 2 1 D 1/~n21! X h0

Hmax
D n/~n21!

(4.16)

at H 5 0. The relation (4.16) guides the choice of h0. According to (4.16), h ® h0 as
n ® `.

For general P(h), the modi� ed dynamics

]u

]t
1 g~1 1 P ~h!!

]h

]x
2 g

]H

]x
5 0 (4.17)

and

]h

]t
1 h

]u

]x
5 0 (4.18)

may be written in form (3.6) as

X ]

]t
1 c

]

]x D u 1
c

h X ]

]t
1 c

]

]x D h 2 g
]H

]x
5 0 (4.19a)

and

Figure 1. The state of rest (4.13) of a one-layer � uid in a deep container. In the “puddle region” the
� uid surface is � at at the level correspondingto half the maximum container depth. Higher up, the
� uid adheres to the boundary in a thin layer.
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X ]

]t
2 c

]

]x D u 2
c

h X ]

]t
2 c

]

]x D h 2 g
]H

]x
5 0, (4.19b)

where

c 5 Î gh~1 1 P ~h!! (4.20)

is the phase speed corresponding to the modi� ed dynamics. When h @ h0, c2 ’ gh as in
the unmodi� ed case. However, when h ! h0, c2 ’ gh(h0/h)n. At the minimum thickness
predicted by (4.16)

c2 5
~n 2 1!

2
gHmax. (4.21)

Thus for large n the phase speed of waves on the thin � lm of � uid adhering to the bottom
exceeds the maximum phase speed of ordinary gravity waves, requiring the time step to be
shorter than in unmodi� ed dynamics. This is the “stiffness penalty” for an excessively
“hard” P(h). However, numerical experiments show that the modi� ed dynamics work
quite well with relatively small n—we shall mainly use n 5 4—requiring little or no
shortening of the time step. For n 5 4, c exceeds =gHmax by a factor of only 1.22.

Unfortunately, the equations

X ]u

]t
1 cuW xD 1

c

h X ]h

]t
1 chW xD 2 gHW x 5 0 (4.22a)

and

X ]u

]t
2 cuQ xD 2

c

h X ]h

]t
2 chQ xD 2 gHQ x 5 0 (4.22b)

obtained by replacing the spatial derivatives in (4.19) by third-order-upwind differences
are not compatible with the state of rest (4.11), because differences— unlike deriva-
tives— do not obey the chain rule

c2

h

]h

]x
5

]

]x
~gh 1 gP9~h!!. (4.23)

Therefore we must use the differential relation (4.23) before replacing the derivatives by
� nite differences. That is, instead of (4.22) we use

]u

]t
1 cuW x 1

1
c X ]f

]t
1 cfW xD 5 0 (4.24a)

and

]u

]t
2 cuQ x 2

1
c X ]f

]t
2 cfQ xD 5 0, (4.24b)
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where

f ; g~h 2 H 1 P9~h!!. (4.25)

By summing and differencing (4.24), we obtain the equation for ]u/]t and the x-derivative
contribution to the equation for ]f/]t. Then, carrying out the same procedure in the
y-direction, and using (4.25) to eliminate ]f/]t in favor of ]h/]t, we � nally obtain

]u

]t
5 2dxf 2 cDxu

]v

]t
5 2dyf 2 cDyv (4.26)

]h

]t
5 2h~dxu 1 dyv! 2

h

c
~Dx 1 Dy!f

where, once again, the � nite-difference operators are de� ned by (3.19). Our numerical
approximation consists of alternate time steps of (4.26) and the third-order-upwind
approximation to

]u
]t

5 2u
]u
]x

2 v
]u
]y

(4.27)
]h

]t
5 2u

]h

]x
2 v

]h

]y

These � nite-difference equations are compatible with the state of rest, because the state of
rest corresponds to u 5 v 5 0 and f 5 const. Note that, although the introduction of the
arti� cial potential P(h) alters the energy of the system, it has no effect on potential
vorticity conservation, because the curl of ¹f vanishes whether P(h) is present or not.

5. Two-layer model with bottom topography

Now, using all our tricks, we derive � nite-difference analogues of the two-layer shallow
water equations with bottom topography. To add the topography, and to prevent either
layer thickness from vanishing, we introduce the modi� ed potential energy

Vm 5 g E E dx dy$r1h1~2H 1 h2 1 1
2
h1!

1 r2h2~2H 1 1
2
h2! 1 r1P~h1! 1 r2P~h2!%

(5.1)

The corresponding dynamics is
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]u i

]t
1 ui · ¹ui 5 2¹fi (5.2a)

and

]h i

]t
1 ¹ · ~h iu i! 5 0, (5.2b)

where

f1 ;
1
r1

dVm

dh1
5 g~h1 1 h2 2 H 1 P9~h1!! (5.3a)

and

f2 ;
1
r2

dVm

dh2
5 g~~1 2 e!h1 1 ~h2 2 H! 1 P9~h2!!. (5.3b)

As before, i 5 1 (2) refers to the top (bottom) layer, and e 5 (r2 2 r1)/r2 is the relative
density difference between the layers. As in Section 3, we solve (5.2) by the method of
operator splitting. In the � rst split, we step (3.8) forward one time-step using third-order-
upwind differences based on the direction of the � uid velocity, u1 or u2. In the second split
we step

]u i

]t
5 2¹fi (5.4)

and

]h i

]t
5 2hi¹ · ui. (5.5)

in the forms

]f1

]t
5 2c1

2¹ · u1 2 gh2¹ · u2 (5.6a)

and

]f2

]t
5 2c2

2¹ · u2 2 ~1 2 e!gh1¹ · u1, (5.6b)

where

c1
2 ; gh1~1 1 P ~h1!! and c2

2 ; gh2~1 1 P ~h2!!. (5.7)

Our use of the variables f1 and f2 in place of h1 and h2 anticipates the requirement that the
� nite-difference equations be compatible with the state of rest.
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Again we proceed by rewriting the one-dimensional form of (5.4) and (5.6) in the
general form (3.6). This leads to

a1Lu1 1 a2Lu2 1 a3Lf1 1 a4Lf2 5 0 (5.8)

where

L 5 X ]

]t
1 c

]

]x D (5.9)

and

a1 5 ~1 2 e!gh1, a2 5 c2 2 c1
2, a3 5 ~1 2 e!gh1/c, a4 5 ~c2 2 c1

2!/c. (5.10)

The wave speed c takes the four values c 5 6ce, 6ci, where

ce
2, ci

2 5
c1

2 1 c2
2

2
6

1

2
$~c1

2 2 c2
2!2 1 4~1 2 e!gh1gh2%

1/2 (5.11)

and ce (ci), corresponding to the plus (minus) sign in (5.11), is the speed of external
(internal) waves in the modi� ed dynamics. Thus (5.8) represents four equations. Once
again, we obtain � nite-difference equations by replacing the x-derivative in (5.9) by a
third-order-upwind difference. That is,

Lu 5 X ]u

]t
1 cuW xD (5.12)

when c 5 1ce or c 5 1ci, and

Lu 5 X ]u

]t
1 cuQ xD (5.13)

when c 5 2ce or c 5 2ci. We solve the four equations represented by (5.8) for the
time-derivatives of u1, u2, f1, and f2, obtaining the � nite-difference analogues of (5.4),
and of (5.6) without the y-derivative terms. Then we repeat the whole procedure in the
y-direction, obtaining the time-derivatives of v1 and v2 and the y-derivative terms in (5.6).
Finally, we convert the time-derivatives of f1 and f2 into time-derivatives of h1 and h2,
using the de� nitions (5.3). The resulting equations represent the generalization of the
equations derived in Section 3 to include nonuniform � uid depth H( x, y) and the effects of
P(h1) and P(h2). When H is constant, P(h) [ 0, and e is small, these equations reduce to
(3.18). By construction, these � nite-difference equations are consistent with the state of
rest, in which f1 and f2 are uniform.

In the next section we present numerical solutions that demonstrate the accuracy and
stability of our algorithms. First we give the few remaining numerical details. The use of
operator-splitting demands that the time-stepping algorithm be “self-contained,” that is,
that it not refer to conditions before the alternate step. A simple method having this
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property is second-order Runge-Kutta, also called the “mid-point method.” If the equation
is d y/dt 5 F( y), the algorithm is

yn11/2 5 yn 1 1
2

DtF~yn!
(5.14)

yn11 5 yn 1 DtF~yn11/2!

where Dt is the time step, and yn the value of y at t 5 nDt. All the solutions described in
Section 6 use (5.14) for both members of the split.

Except where noted, our solutions use no-normal-� ow at solid boundaries as the only
boundary condition. Near the boundaries, third-order upwind formulae like (2.11–12) may
require modi� cation. For example, at � rst interior gridpoints, we replace third-order
upwind differences by � rst-order upwind differences where needed. This replacement
slightly reduces the accuracy of the resulting � nite-difference equations near the bound-
aries, but we observe no spurious behavior near boundaries in any of our solutions.

6. Numerical examples

The best test of any numerical algorithm is comparison with exact analytical solutions.
Unfortunately, most nontrivial exact solutions of the shallow water equations are one-
dimensional.However, one of these provides an excellent test of our method for preventing
negative layer thickness. Carrier and Greenspan (1958) give an exact solution of the
one-layer shallow-water equations corresponding to a standing wave on a uniformly
sloping beach. With g 5 1 and H 5 x, their solution of (4.1–2) is given implicitly by

u 5 2
A

4 Î h
J1~4 Î h! cos ~2u 2 2t! (6.1)

and

x 5
1

2
u2 1 h 1

A

4
J0~4 Î h! sin ~2u 2 2t! (6.2)

where J0 and J1 are Bessel functions. Given any h $ 0 and t, (6.1) uniquely determines u
provided that u A u , 1. Then x is given by (6.2). In this way we determine u( x, t) and h( x,
t). As x ® ` (6.1–2) approach the solution

u < 2
A

4 Î x
J1~4 Î x! cos ~2t! (6.3a)

and

h ; h 2 x <
A

4
J0~4 Î x! sin ~2t! (6.3b)
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of the linearized equations, where h is the surface elevation above its rest state. Thus
(6.1–2) correspond to a wavetrain re� ected from a sloping beach. When u A u . 1, the wave
forms a bore, and the solution of (6.1–2) is multi-valued.

Figure 2 shows the analytical solution (6.1–2) for the maximum amplitude A 5 1, and
the corresponding numerical solution of (4.26–27) at three times in the wave cycle. The
numerical solution includes the arti� cial potential P(h) with h0 5 0.01 and n 5 4. The
numerical solution also includes a small explicit viscosity of the momentum-conserving
form

]u

]t
1 · · · 5

n

h

]

]x X h
]u

]x D (6.4)

with viscosity coef� cient n 5 D where D is the grid-spacing. (About 500 grid spaces cover
the � uid domain in Fig. 2.) The smallness of this explicit viscosity can be gauged by the
good agreement between the analytical and numerical solutions; the analytical solution is
for inviscid � ow.

Figure 3 compares the same analytical solution to the numerical solution with no explicit
viscosity (n 5 0). In this case, the only stabilizing diffusion is that provided by the implicit
hyperdiffusive truncation error associated with third-order upwinding. When n 5 0, the
numerical solution contains small, spurious pulses generated at the beach as the wave
recedes from its maximum incursion; four of these pulses can be seen in Figure 3. The

Figure 2. Dashed curve: the wave height in the analytical solution (6.1–2) corresponding to an
inviscid, shallow-water, standing wave with amplitude A 5 1 on a sloping beach, at three times in
the wave cycle. Solid curve: the correspondingnumerical solution with the small explicit viscosity
n 5 D. The straight line, representing the solid bottom, has a 45-degree slope.
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pulses, which exit the computational domain on the right side of the � gure,4 evidently arise
from an interaction between the wave and the thin � lm of water clinging to the beach. This
� lm is invisible on the scale of Figure 3. The pulses represent errors in the numerical
solution, but their smallness, and the fact that they disappear with the addition of a small
explicit viscosity, suggest that this error is insigni� cant. In fact, the generally good
behavior of the numerical model in the limit of no explicit viscosity suggests that our
algorithm is robust.

The numerical solutions seem relatively insensitive to the choice of exponent n in the
de� nition (4.12) of the arti� cial potential. I found no signi� cant difference in the solutions
corresponding to n 5 4 and n 5 10. However, the coef� cient h0, which controls the depth
of the � uid � lm, cannot be too small for the chosen spatial resolution. The criterion seems
to be that, in the equation (4.13) for the state of rest, the balance of terms cannot change
over a distance much smaller than the grid distance D. Let x 5 0 correspond to the
transition point. Then in the vicinity of x 5 0, (4.13) takes the form

y 2
1

~n 2 1!
y12n 5

sx

h0
, (6.5)

where y [ h/h0 and s is the bottom slope. From (6.5) it is clear that the criterion referred to
above requires h0 . sD. With the current values s 5 1 and D 5 0.01, this corresponds to
h0 . 0.009. Figure 4 shows the state of rest computed from (4.13) using Newton’s method
and the value h0 5 0.01 used in the numerical solutions of Figures 2 and 3. The putative

4. As the boundary condition on the numerical solution, we prescribe the velocity u predicted by the solution
(6.3) of the linearized equations.

Figure 3. The same as Figure 2, except that the numerical solutions contains no viscosity or explicit
dissipationof any kind. Four spurious pulses are visible in the numerical solution.
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stability criterion is clearly being approached. Solutions with h0 5 1023 show signi� cant
numerical noise, and when h0 5 102 4 the state of rest is itself unstable.

Other solutions, especially those containing bores, require an explicit viscosity. One of
these corresponds to the removal of a dam separating quiescent reservoirs with different
surface heights. The “weak” form of the analytical solution is given by Stoker (1957, pp.
333–37). It consists of a fan moving into the deeper reservoir and a bore propagating in the
opposite direction. Again we set g 5 1. The initial conditions are h 5 1 to the left ( x , 0)
of the dam at x 5 0, and h 5 hR on x . 0. Figure 5 shows the analytical and numerical
solutions for the case hR 5 0.5 at a sequence of times after the dam disappears. Once
again, the analytical solution corresponds to inviscid � ow, while the numerical solution
contains a small explicit viscosity with n 5 0.1D. The two solutions agree closely.

Figure 6 compares the same analytical solution to the numerical solution with no explicit
viscosity (n 5 0). In this case, the numerical solution contains large, spurious spikes at the
location of the bore, and it underestimates the speed of the bore. These defects are even
more evident in the case hR 5 0.1 (not shown), in which the bore is stronger. The error in
the bore speed is clearly associated with the fact that our implicit hyperdiffusion—the Dx

and Dy terms in (4.26)—manifestly violates momentum conservation, whereas classical
shock-� tting theory reminds us that the correct bore speed depends upon conservation
laws. If strong bores are present in the solution, then we must, as in Figure 5, include an
explicit, momentum-conserving viscosity, but it is reassuring to note that, even without
such a viscosity, our algorithm is stable and in qualitative agreement with the exact
solution.

The question of whether to include explicit dissipation in numerical algorithms—and
what kind of dissipation to choose—is actually quite subtle. Phenomena like bores or the

Figure 4. A close-up view of the “shoreline” in the state of rest corresponding to Figures 2 and 3.
With h0 5 0.01 and a beach slope of s 5 1, the transition between deep water and the � uid � lm
adhering to the beach occurs over a distance comparable to the grid-spacing.
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use of no-slip boundary conditions clearly demand an explicit viscosity, but one strongly
suspects that unnecessarily large viscosities are often introduced to stabilize poorly
designed algorithms. In large-scale geophysical � uid dynamics strong bores are rare, the

Figure 5. The analytical and numerical solutions for surface height h( x, t) at a sequence of times
after the breakage of a dam separating a reservoir with h 5 1 on x , 0 from a reservoir with h 5
0.5 on x . 0. The analytical solution is the “weak solution” (with viscous regionsunresolved)and
therefore has discontinuous derivatives. The numerical solution contains an explicit viscosity of
form (6.4) with n 5 0.1D, where D is the grid-spacing.

Figure 6. The same as Figure 5 except that the numerical solution has no explicit viscosity (n 5 0).
The numerical solution contains spurious spikes at the location of the bore, and it underestimates
the speed of the bore.
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need for no-slip boundary conditions is debatable, and the primary role of dissipation—
explicit or implicit—is to remove the enstrophy that would otherwise pile up at the shortest
resolved lengthscale. For this the hyperdiffusive truncation error associated with third-
order upwinding seems ideal and may be suf� cient by itself to absorb the enstrophy
cascade. After all, despite their being anisotropic, the implicit hyperdiffusion terms in
(3.18) resemble the explicit biharmonic diffusion commonly used in “large-eddy simula-
tions.” Grif� es and Hallberg (2000) advocate the use of a biharmonic dissipation with a
coef� cient proportional to the local strain rate, in somewhat the same way that the
coef� cients of the D-terms in (3.18) depend on the local values of h1 and h2. Thus we may
regard (3.18) as an algorithm with fourth-order-accurate differences, and a sub-grid-scale
viscosity that just happens to take the form of the D-terms in (3.18), or as an algorithm with
third-order-accurate differences, in which the D-terms represent the leading-order trunca-
tion error.

I greatly prefer the latter viewpoint. No matter what difference scheme one chooses,
truncation error will be present. If this truncation error can serve as an effective
sub-gridscale viscosity, then so much the better. Numerical experiments suggest that the
truncation error associated with third-order upwinding is often suf� cient by itself to
prevent the accumulation of enstrophy on the grid-scale. For example, the numerical
simulations of geostrophic turbulence depicted in Salmon (1998) use no sub-grid-scale
dissipation except that implicit in the third-order upwinding of potential-vorticity advec-
tion.5

Now we turn to two-dimensional solutions of the one- and two-layer equations in a
4000 3 8000 km ocean with its southern boundary at the equator. The ocean is driven by a
2-gyre wind stress, of maximum amplitude 2 dyn cm22, with westerlies and trade winds,
as shown on the left of Figure 7. In the one-layer case (Fig. 7, right), the g in (3.18) is
reduced gravity, g 5 0.002gt, where gt [ 9.8 m sec22, and the equations represent a
single layer of moving � uid above a deeper layer that remains everywhere at rest, even
where it lies exposed to the wind. In the 2-layer case (Figs. 8–12), the reduced gravity is
eg 5 0.002gt, while the external gravity g 5 0.05gt is taken to be 20 times smaller than
its true value gt. This permits the time step to be about 4.5 times larger than if g 5 gt.
Variations in the free surface elevation are then 20 times larger than those observed, but
they are smaller than the variations in the depth of the interface between layers by the
factor e 5 0.04. In all solutions, each moving layer absorbs a fraction of the wind
momentum equal to the fraction, occupied by that layer, of the upper 100 m of the water
column. Thus, in water less than 100 m deep, a portion of the wind stress is transmitted
directly to the solid bottom. In this way we account for vertical momentum transport by
small-scale processes not contained in the model, and we prevent the huge accelerations
that could develop when a � nite momentum � ux acts on a region of in� nitesimal depth. For
the arti� cial potential we use n 5 4 and h0 5 20 m. With this value of h0, the minimum

5. See Figures 4.9, 6.2 and 6.3 in Salmon (1998).
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layer thickness is about 10 m. Much smaller h0 (and smaller minimum thickness) is
possible, but only if the spatial resolution is increased beyond the 100 3 200 gridpoints
used in most of our solutions.

None of our two-dimensional solutions uses an explicit sub-gridscale viscosity. In fact,
the only explicit dissipation is Rayleigh friction of the form

Figure 7. Left: the eastward wind stress, of maximum amplitude 2 dyn cm22 , used in all solutions.
Westerlies occur over the northernmost 2/3 of a 4000 3 8000 km ocean. The southern boundary
coincides with the equator. Right: the layer thickness (contours) and transport hu (arrows) in the
single-layer (reduced-gravity)solution. The lower layer is assumed to be at rest, even in the large
subpolar region in which it outcrops at the ocean surface. Darker contours correspond to larger
values. Maximum layer thickness, 435 m. Arrows are proportional to the square root of the
transport. Maximum velocity, 163.6 km day2 1 . Rms velocity, 14.2 km day2 1 .
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]u
]t

5 · · · 2 lu. (6.6)

In all of our solutions, the decay coef� cient l corresponds to a Stommel boundary layer
thickness =l/b of 60.6 km. In the cases with 100 3 200 resolution, this represents a
boundary layer only 1.5 grid distances thick. All the solutions were integrated at least
18 years from an initial state of rest. To set the initial condition, we use Newton’s method
to obtain accurate solutions of (4.13) and the analogous two-layer equations, f1 5 C1,
f2 5 C2, for the initial layer thicknesses. This is necessary because f1, f2 depend very
sensitively on the layer thicknesses when the latter are small. However, after the initial
time we use the chain rule to convert time-derivatives of f1, f2 to time-derivatives of h1,
h2, and there is thus no further need to solve transcendental equations.

The 1-layer (reduced-gravity) solution of Figure 7 resembles the planetary geostrophic
(i.e. non-inertial), analytical solutions of Parsons (1969) and Veronis (1973), except for the
meanders in the separated western boundary current. These meanders clearly result from
the presence of inertia in shallow-water dynamics.

Figure 8 shows the corresponding two-layer solution in an ocean with a � at bottom at a
depth of 4 km. The volume of upper-layer water is about the same as in the one-layer
solution of Figure 7. The two-layer solution resembles the � at-bottom, planetary geostro-
phic, analytical solution of Kamenkovich and Reznik (1972). Because the lower layer is
everywhere much thicker than the upper layer, the upper-layer circulation in Figure 8
closely resembles that in Figure 7. To the extent that inertia is negligible, the vertically
integrated transport in a � at-bottom ocean must agree with Stommel’s classic theory. In
particular, the separated western boundary current must be cancelled by an eastward
current directly beneath it. The lower-layer � ow in Figure 8 does contain such a
countercurrent, but the cancellation is inexact; the total transport of both layers (Fig. 11,
left) shows a large, inertial correction to Sverdrup � ow near the location of the separated
boundary current. Because the two-layer model admits baroclinic instability, the meanders
in this current are much larger than those in Figure 7.

Figure 9 shows a two-layer solution with bottom topography. This solution differs from
the solution in Figure 8 only in the presence of continental shelves and slopes along the
western, northern, and eastern boundary. The shapes and widths of these slopes can be
gauged from Figure 12.6 The presence of coastal topography signi� cantly changes the
circulation of both layers. In the upper layer (Fig. 9, left) the Gulf Stream follows the
coastline to the latitude of zero wind-stress. There it detaches from the coastline, but it does
not move far offshore. Instead the current follows the isobaths along the continental slope
before smoothly heading out to sea at the mid-latitude. Everywhere north of the initial
separation, the � ow along the coastline itself is southward. This contrasts sharply with the
single-layer and � at-bottom cases of Figures 7 and 8, where the � ow along the coastline is

6. The equatorial boundary remains a vertical wall, corresponding to mirror symmetry of the � ow across the
equator. Recall that our only boundary condition is no-normal-� ow.
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northward until well past the latitude of Gulf Stream separation, which itself appears to be
delayed. That is, in Figures 7 and 8, the Gulf Stream overshoots its latitude of separation.
However, it is the lower-layer � ow that differs most dramatically between Figures 8 and 9.
In the solution with topography, the meanders beneath the separated western boundary
current are much stronger, and there is a huge, deep southward � ow at the foot of the
western continental slope. This southward � ow is distinct from that which occurs beneath
the northward upper-layer � ow nearer the coast at low latitudes. The latter � ow is present
in both Figures 8 and 9. Figures 9 and 10 do not depict the � ow in the physically
insigni� cant regions with layer depths less than h0, but the � ow in these regions seems
smooth and well-behaved.

Both bottom topography and inertia cause the vertically integrated � ow to depart from
Sverdrup � ow. Thus it is not surprising that the vertically integrated transport in the
solution with topography (Fig. 11, right) differs even more than the transport in the
� at-bottom solution (Fig. 11, left) from classical theory.

Figure 8. The circulation in a two-layer ocean with a uniformdepth of 4 km and the same wind stress
as in Figure 7. Left: the upper-layer thickness (contours) and transport (arrows). Right: the
lower-layer dynamic topography (contours) and transport (arrows). Maximum upper-layer thick-
ness, 442 m. Maximum (rms) upper-layer velocity, 169.9 (15.5) km day2 1 . Lower layer,
9.55 (0.72) km day2 1 .
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The lower-layer � ow in Figure 9 resembles previous analytical and numerical studies of
homogeneous (i.e. one-layer) � ow over western continental slopes. See, for example,
Salmon (1992), Becker and Salmon (1997), and references therein. For example, the
de� ection of lower-layer � ow features in Figure 9 toward the southwest corner of the ocean
is clearly associated with the convergence of f/H-lines at that point. Unfortunately, despite
the remarkable contribution of Ford (2000), who considered a piecewise homogeneous
ocean with horizontal density jumps, we seem to be rather far from a complete theory of
strati� ed western boundary currents over coastal topography.

Figures 8 and 9 show a notable lack of eddy activity in regions far from the separated
boundary currents. Figure 10 shows the circulation 3.5 years after doubling the resolution
in the solution shown in Figure 9. The smaller grid spacing of 20 km better resolves the
internal deformation radius, and it means that the implicit biharmonic diffusion is 8 times
smaller than in Figure 9. (Recall that the diffusion coef� cient varies as D3.) The current

Figure 9. The circulation in a two-layer ocean with a maximum depth of 4 km and continental
shelves and slopes at the western, northern and eastern boundaries. The scale of the slopes can be
gauged from Figure 12. Left: the upper-layer thickness (maximum 467 m) and transport.
Maximum (rms) velocity, 304.5 (19.9) km day21 . Right: the lower-layer dynamic topographyand
transport. Maximum (rms) velocity, 29.3 (2.07) km day21 . Regions with layer thickness less than
h0 are not depicted.
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meanders are stronger in the better resolved solution, and a close inspection of Figure 10
reveals a higher level of eddy activity in the deep subtropical ocean.

Finally, Figure 12 shows three sections across the high-resolution solution of Figure 10.
These sections show again how the method represents surface- and bottom outcrops with
thin layers. At the latitude of Figure 12a, the Gulf Stream, judged by its transport, has
already separated from the coastline, but the upper layer still has its maximum depth on the
continental slope. At the latitude of Figure 12b, the wind stress curl is positive. Hence the
upper layer shoals to the west, and the separated western boundary current is rather diffuse.
Figure 12c is a north-south section along the base of the western continental slope. It shows
the Gulf Stream wall and the much more diffuse eastward current along the northern
boundary.

7. Discussion

We solve the two-layer shallow water equations by transforming the equations into
characteristic form and by applying third-order-upwind differences to each equation. A

Figure 10. The same as Figure 9, but 3.5 years after doubling the resolution from 100 3 200 to
200 3 400. The lower-layer maximum (rms) velocity increases to 34.0 (2.47) km day21 as the
deep meanders in the separated western boundary current increase in amplitude. The upper-layer
velocity increases by a smaller proportion, to 325.7 (maximum) and 20.4 km day21 (rms).

2002] 633Salmon: Two-layer shallow water equations



complete set of characteristics exists only if the equations are hyperbolic. However, the
shallow water equations are hyperbolic only in the one-dimensional case, and then only if
neither layer depth vanishes. Even in one space dimension, the characteristics of the
two-layer system require extensive computations.

To circumvent these dif� culties, we divide the time step into two parts: a strictly
advective part, and a part consisting of everything else. Each of these parts is further
divided into its two directional components. Each directional component represents a
hyperbolic system provided we introduce an arti� cial potential to prevent the layer
thicknesses from vanishing. Separating each hyperbolic system into its individual wave
components, we apply the third-order-upwind method, with the upwind direction based on
the direction of wave propagation. Third-order upwind is almost the simplest non-
oscillatory scheme that might have been used—only � rst-order upwind is simpler, and it is
much too dissipative to be practical— but this simplicity is virtually indispensable in
oceanographic applications requiring millions of time steps. Although I have not seen this
particular combination of techniques applied to the shallow water equations, the arti� cial

Figure 11. The total transport of both layers in the two-layer solutions with a � at bottom (left), and
with continental shelves and slopes (right). The transport on the left differs from classical
(Sverdrup-Stommel) theory only because inertia is present. The transport on the right differs from
classical theory because of both inertia and bottom topography.
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potential is the only really novel component of our method. Compared to high-order
Riemann schemes with � ux or slope limiters, our method is formally more accurate,
probably less dissipative, and certainly more ef� cient. However, because we do not exactly
conserve momentum and mass, bores move at the wrong speed unless we add explicit,
momentum-conserving viscosity. For oceanographic applications, our scheme is an alter-
native to the method developed by Hallberg and Rhines (1996).

All of the calculations described in Section 6 use the full strategy summarized in the
preceding paragraph. As explained in Section 2, the one-layer equations do not require
operator-splitting into advective and non-advective parts. However, numerical experi-
ments showed no signi� cant difference between one-layer solutions computed with the
operator-splittingalgorithm and solutions computed with the algorithm of Section 2.

Figure 12. Sections at (a) y 5 3000 km, across the subtropical gyre; (b) y 5 6000 km, across the
subpolar gyre; and (c) x 5 1000 km, along the foot of the western continental slope, in the
high-resolutionexperiment depicted in Figure 10.
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Our method easily generalizes to an arbitrary number of � uid layers. However, the
calculation of the wave speeds becomes more costly as the number of layers increases. For
example, a 3-layer model requires the solution of a cubic polynomial for c2 at every
gridpoint and time.

For oceanographic applications, our scheme does not require the use of an explicit,
sub-gridscale viscosity. The implicit hyperdiffusion associated with third-order upwind
effectively absorbs the enstrophy cascade to small scales. This raises the question of
whether our algorithm is really superior to a centered, fourth-order difference scheme with
an arbitrary explicit biharmonic momentum diffusion. That is, in (say) the one-layer case,
does the form of the dissipation terms on the right-hand sides of (3.18) have special
signi� cance? To partly answer this question, I compared solutions of (3.18) with and
without the D-terms in the continuity equations (3.18c) and (3.18d). The motivation for
this is that, in arbitrarily prescribing an eddy viscosity, one would not normally think of
adding hyperdiffusion terms to the shallow-water continuity equations. In both one- and
two-layer cases, it was found that solutions without the D-terms in the continuity equations
gradually developed grid-scale oscillations that eventually ruined the solutions. These
oscillationshad large divergence (compared to, say, their vorticity). A similar, divergence-
mode noise occurred in a series of two-layer shallow-water models constructed by the
author over the past two years, using algorithms based upon the lattice Boltzmann method
as well as more conventional methods using � nite differences and � nite elements. In all
cases except those reported in this paper, it was found that the divergence-mode noise
could only be controlled by adding a dissipation so large that interesting physical features
disappeared.

Bühler (1998) attributes this misbehavior of the shallow water equations to the tendency
of the equations to form bores. To avoid it, he proposes replacing the pressure gradient
force ¹h by a force proportional to h23¹h, which uniquely averts bore formation.
Bühler’s suggestion is practical for cases of nearly uniform h, but it is inapplicable to
oceanic studies in which h ® 0.

An alternative strategy, also brie� y entertained by Bühler, is to introduce nonhydrostatic
(i.e. Boussinesq) corrections to shallow-water physics. Nonhydrostatic effects introduce
wave dispersion, which interferes with the formation of bores. Coriolis force also causes
dispersion, but Coriolis effects are often insigni� cant at the smallest resolved lengthscales.
The typically coarse spatial resolution of oceanographic models renders nonhydrostatic
effects similarly unimportant. However, numerous investigations suggest that the deliber-
ate exaggeration of nonhydrostatic effects by, for example, inserting a coef� cient greater
than unity— but not so great as to upset leading-order hydrostatic balance—in front of the
Dw/Dt-term in the vertical-momentum equation, leads to better-behaved numerics. See,
for example, Browning et al. (1990), Mahadevan et al. (1996), Huck et al. (1999), and
Salmon (1999). The nonhydrostatic equations are also nonhyperbolic, so the methods of
this paper would not apply; on the other hand, they might not then be needed. This
alternative strategy deserves further investigation.
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This paper is dedicated to the memory of my friend and colleague Rupert Ford, who
attacked the problem of western boundary currents over topography with inspirational
skill, tenacity, and cheerfulness.
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