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On turbulence and normal modes in a basin

by J. H. LaCasce'

ABSTRACT

The problem of forced, geostrophicturbulencein a basin is revisited. The primary focus is the time
dependent field, which is shown to be approximately isotropic (in contrast to the strongly zonally
anisotropic fields seen in periodic domains). It is also approximately homogeneous, away from the
boundaries. Phenomenologicalarguments suggest the isotropy occurs because the inverse cascade of
energy is arrested by basin normal modes rather than by free Rossby waves. Peaks in the velocity
spectra at modal frequencies are consistent with basin modes, as has been noted previously. We
discuss which modes would be excited and whether dissipation or the mean flow would be expected
to alter the modes and their frequencies.

A relatively novel feature is the use of Eulerian velocity statistics to quantify the wave and
turbulence characteristics. These measures are more suitable to this environment than measures like
wavenumber spectra, given the inhomogeneities associated with the boundaries.

With regards to the mean, we observe a linear {(¢) — () relation in the region of the mean gyres
(at the northern and southern boundaries), consistent with previous theories. This is of interest
because our numerical advection scheme has implicit rather than explicit small scale dissipation, and
requires no boundary conditions on the vorticity. The gyre structure is however somewhat different
than in an (inviscid) Fofonoff-type solution, suggesting dissipation cannot be neglected.

1. Introduction

Random forcing at small scales can drive a large-scale response in nondivergent,
two-dimensional flows (Onsager, 1949; Fjgrtoft, 1953; Batchelor, 1953; Kraichnan, 1967).
This “inverse cascade” of energy owes its existence to the joint conservation of energy and
enstrophy in the absence of dissipation. It is significantly affected by the B-effect, slowing
greatly or “arresting” at a scale at which Rossby waves are dynamically competitive with
advective processes (Rhines, 1975; Holloway and Hendershott, 1977). Reviews of these
processes and related topics can be found in Kraichnan and Montgomery (1980), Rhines
(1979) and Holloway (1986).

Commonly observed in arrested 2-D B-turbulence are zonally anisotropic structures or
“jets” (Rhines, 1994). These are long-lived features which can span the domain and have a
meridional scale that varies with . They occur because the arrest to Rossby waves is
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inherently anisotropic; this is clearly illustrated in a phenomenological argument due to
Vallis and Maltrud (1993), as follows.
The vorticity of a barotropic fluid on the 3-plane evolves according to:

d d
SV u V() + B =F 9 (1)

where U is the velocity streamfunction (u = & X Vi) and & and 9 the forcing and
dissipation. Solutions to (1) without forcing, dissipation or nonlinearity can be expressed as
a superposition of Rossby waves with dispersion relation:
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where k, [ and k are the zonal, meridional and total wavenumbers, respectively.

With forcing and nonlinearity, it is possible to achieve a statistical steady state in which
energy injected at small scales cascades to larger scales and is dissipated. Rossby waves
hinder this process by slowing the cascade; then energy accumulates at the “Rhines scale”
where the time scale of the turbulence and the waves are comparable. In the energy inertial
range, assuming a constant rate of energy transfer, €, the turbulence time scale is
proportional to € "2k~ %3,
arrest wavenumber:

equating this and the wave period yields an estimate for the

g3\

K = C( ?) cos®” (), 3)
where 0 is the angle between the wave vector and the k-axis and C is an order unity
constant.”

Relation (3) defines a transition curve which effectively separates “turbulent” and
“wave-like” wavenumbers. It is anisotropic because Kg = C(B3/e) 5if 9 = 0, but kg =0
if 8 = w/2. The latter corresponds to k = 0, i.e. zonally invariant modes. In physical terms,
Rossby waves are unable to prevent a cascade to the k = 0 modes because waves with k =
0 have zero frequency.

The occurrence of zonal jets in turbulence simulations has been well documented, in
doubly periodic domains (e.g. Rhines, 1979; Panetta, 1993), in re-entrant channels
(McWilliams et al., 1978; Treguier and McWilliams, 1990) and on the sphere (Williams,
1978; Cho and Polvani, 1996; Nozawa and Yoden, 1997; Huang and Robinson, 1998). Jets
in other words have been found in any domain which is zonally re-entrant. They have been
invoked to explain similar structures in the Jovian atmosphere, in the earth’s atmosphere
and in the ocean.

Most ocean basins of course are not zonally reentrant, and meridional boundaries are

2. An alternate expression, like that of Rhines (1975), is obtained if one uses the rms velocity to estimate the
turbulence time scale; then kg (B/U)”2, i.e. the inverse inertial boundary layer width.
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likely to affect jets in the least by preventing their reconnection. But boundaries can also

hinder the energy cascade by breaking the conservation of enstrophy (Rhines, 1975). The
equation for the domain-integrated enstrophy, obtained from (1) without forcing or

w2 o ] -
>3 (Vlb)dxdy—i vidy — vidy |, 4)

west east

dissipation, is:

where v is the meridional velocity (assuming the boundaries run north-south and there is no
normal flow at the walls). Eq. (4) implies the western boundary is a source of enstrophy and
the eastern boundary a sink, and it is the generation of small-scale structure in the west
which could hinder a cascade to large scales.

Two dimensional turbulence in basins has been examined extensively, both without and
with forcing. Veronis (1970) considered how time-dependent forcing altered the mean
flows he obtained earlier in simulations with steady forcing (Veronis, 1966). Later,
Bretherton and Haidvogel (1976) and Salmon et al. (1976) used the calculus of variations
and statistical mechanics, respectively, to reach the same conclusion: that turbulence in a
basin should drive a rectified flow like Fofonoff’s (1954) free mode solution; the Fofonoff
mode is a state of minimum enstrophy in the first case, and of maximum entropy in the
second.” The rectified mean is characterized by an anticyclonic gyre at the northern
boundary and a cyclonic gyre at the southern; i.e., like the gyres described by Veronis
(1966). The relative strengths of the gyres can vary; in the symmetric case, the mean has
zero integrated vorticity.

The rectified mean was examined subsequently by several authors (Griffa and Salmon,
1989; Griffa and Castellari, 1991; Cummins, 1992; Wang and Vallis, 1994; Dukowicz and
Greatbatch, 1999; Greatbatch and Nadiga, 2000). In general, the resemblance to a Fofonoff
mode varies, depending on the forcing and damping as well as on the boundary conditions.
But it is a nearly ubiquitous feature in turbulent basins, with 3.

Some of these authors also examined the time-dependent flow in the basin interior. This
is the primary focus of the present work and we will consider several aspects. The first is
the inverse cascade of energy; that such a cascade proceeds unambiguously with small-
scale forcing (despite enstrophy production in the west) has been indicated previously
(Griffa and Castellari, 1991; Seidov and Marushkevich, 1992), but further quantitative
evidence will be presented here.

The second concerns isotropy in the interior. The evidence from previous works on this
point is not conclusive. The instantaneous streamfunction fields of Griffa and Salmon (1989)
appear nearly isotropic, but Seidov and Marushkevich (1992) display zonally anisotropic
features. The laboratory experiments of Colin de Verdiere (1980) in a square basin yielded

3. That the two approaches produce the same result in the limit of infinite resolution, i.e. when the smallest
resolved scale vanishes, was demonstrated by Carnevale and Fredericksen (1987).
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approximately isotropic features, as did the numerical experiments of Spall (2000). In the
least, there are several indications that the arrest in the basin may be different than in a
zonally periodic domain.

Why might this be so? There is evidence that the cascade in a basin is halted not by free
Rossby waves but by basin normal modes (Griffa and Castellari, 1991). If so, the arrest
might be very different because basin modes have a different dispersion relation:

_ )
nm 2’rr(n2/L§ + m2/L§)|/2, (5)

w

where n and m are zonal and meridional (integral) wavenumbers. Unlike (2), (5) is
symmetric in the wavenumbers, assuming L, =~ L. Using (5) we obtain an estimate for the
(quantized) arrest wavenumber:

K - CB3/5€*I/5’ (6)

where K,,,, = 2frr(n2/L)% + mZ/Li) 172 Unlike (3), relation (6) is isotropic. If basin modes
are important, the basin arrest might also be isotropic.

Hereafter we examine these issues via forced numerical simulations in a square basin;
results from a periodic model will be used for comparison. A point which distinguishes this
study from similar 2-D turbulence studies is the means of measurement: rather than using
wavenumber spectra (as is common with periodic fields, but problematic with inhomogene-
ities), we will use Eulerian velocity statistics. These are well suited for this environment
(and could conceivably be used with oceanographic data).

2. Models

The numerical model solves Eq. (1). The code uses finite differences to calculate spatial
derivatives and sine transforms to invert the Poisson equation relating the vorticity, VA,
and the streamfunction. Time stepping is third-order Adams-Bashforth. The forcing was a
white-in-time stochastic function applied over a specified range of wavenumbers (a
random field was generated in wavenumber space and converted to real space via the
inverse sine transform).

The forcing was applied at large wavenumbers, from k = 30 to 35, so that the inverse
cascade span a range of scales. Zonal and meridional wavenumbers were excited equally
(the forcing was isotropic). Dissipation was by a linear drag, to simulate a bottom Ekman
layer, and the basin was taken to be square. The rigid lid approximation implies that =
const. on the boundaries, and this constant can be taken to be zero without loss of
generality.

A somewhat unusual feature is the model’s advection scheme. This is a 2-D version of
the QUICK scheme of Leonard (1979), a third-order, upwind scheme. Because it upwinds,
it is more stable to small-scale oscillations than center-difference schemes, and because it
is third-order, it is more accurate than second order schemes. However, it does have an
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associated diffusion which acts at small scales (e.g. Ferziger and Peric, 1999). This
diffusion is implicit and fourth-order, equivalent to biharmonic diffusion.

An important advantage of this implicit diffusion, compared with explicitly imposed
dissipation, is that no additional boundary conditions need be specified (e.g. Becker and
Salmon, 1997). In addition, the effective viscosity is proportional to the local velocity
which means that the dissipation at the boundaries is along rather than perpendicular to the
boundary. These aspects will turn out to be important with regards to the mean flow. There
are of course other finite difference advection schemes available (e.g. Lele, 1992;
Shchepetkin and McWilliams, 1998), some with higher order accuracy than the QUICK
scheme. The present results were in any case checked at low and higher resolution and
those phenomena discussed hereafter are robust.

The spectral model, used for comparisons, was written by G. Flierl. It also solves Eq. (1)
with periodic boundary conditions in x and y. Advection follows Patterson and Orszag
(1971), but without dealiassing; the latter produced nearly negligible changes in the results
but required significantly longer computations. This model also employs third-order AB
time stepping.

For the basin experiments, we used 5127 grid points. Experiments with coarser
resolution (256> grid points) were made to define parameter ranges. With the periodic
model we used 256 Fourier modes (and thus 2567 grid points). Spectral models are more
accurate for spatial differencing than finite element models, and comparing the 2567 mode
periodic experiments with the 512 grid basin runs appeared to be reasonable.

Both model domains had a dimensionless width of 7 (so distances are directly
comparable between the two). The (3 and dissipation parameters given hereafter are scaled
appropriately, assuming velocities are order one. For reference, a value of 3 = 100 yields
an inertial boundary layer width, 8, which is about one tenth the basin width, and a
Stommel boundary layer width, 8 ¢, comparable to the grid spacing; ¢ is thus two orders of
magnitude smaller than 3,. With regards to dimensional values, the basin has a width of
1000L =~ 3000 km if = 100 and U ~ 20 cm/sec.

3. Mean flow

The model was run to a statistical steady state and then onwards for roughly a hundred
eddy turnover times. As in the aforementioned studies, mean flows develop. There are
several points here which are worth discussing before proceeding to the time dependent
fields.

Representative examples of the mean streamfunction and relative vorticity are shown in
the upper panels of Figure 1. As expected, the mean has a dual gyre structure, anticyclonic
at the northern boundary and cyclonic at the southern. The gyres are nearly zonally
symmetric and of a meridional extent comparable to the inertial boundary layer width. The
gyre vorticity associated is strongly boundary-trapped, negative in the north and positive in
the south.

Statistical mechanics predicts a linear relation between the mean potential vorticity and
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Figure 1. The mean fields. The mean streamfunction and relative vorticity for the B = 200

experimentare in the upper panels. The contour values are [—.6 —.4 .. . .4 .6] for the streamfunc-

tion and =[150 100 50 10]. The ¢ — s scatter plots for the means from experiments with § = 100
and 400 are shown in the lower panels.

the mean streamfunction (Salmon et al., 1976); the slope moreover should be positive (in
which case the mean is also nonlinearly stable; Carnevale and Fredericksen, 1987). Scatter
plots of {(g) — () are shown in the lower panels and in the gyre regions, there is a nearly
linear dependence between (g) and (), with a positive slope; outside the gyres, the
streamfunction is essentially zero.

First, we note that the linear (g) — () relation obtains with our advection scheme.
Previous works (Cummins, 1992; Wang and Vallis, 1994; Dukowicz and Greatbatch,
1999) suggest the (g) — () relation depends on the boundary conditions. With no slip or
free slip boundary conditions, the linear relation does not obtain; the gyres rather have
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Figure 2. The mean potential vorticity as a function of latitude for 3 = 200 at the basin midline. Note
the lack of plateaus, as would be expected if the gyres were homogenized. The profiles at other
values of x are nearly identical (exceptin the western boundary layer).

homogenized PV; only with “super-slip” boundary conditions (in which the gradient of the
vorticity vanishes at the boundary rather than the vorticity, Marshall, 1984) is the linear
relation recovered. In all the cited works, the small-scale dissipation was explicit, either
Laplacian or biharmonic diffusion.

Our small-scale dissipation in contrast is implicit, with no boundary conditions on the
vorticity imposed. Perhaps more importantly though, the viscosity acts parallel to the local
velocity (Sec. 2). As such, numerical diffusion across the mean contours should be greatly
reduced, provided the mean accounts for a substantial fraction of the instantaneous
velocity. We find no evidence of homogenization. Shown in Figure 2 is a slice in y of the
PV from the run with § = 200; no plateau is seen. The linear (¢g) — ({s) relation holds in
the gyres.

This result suggests that the previously documented homogenization might be related to
explicit small-scale dissipation. Diffusion across mean contours is the means by which PV
is homogenized (Rhines and Young, 1982), and it is plausible that small-scale diffusion
could accomplish this, given the steep mean vorticity gradients (Fig. 1). Consistent with
this notion, Wang and Vallis (1994) found increased homogenization with decreasing
Reynold’s number. Perhaps also consistent is that Griffa and Salmon (1989), who used the
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“anticipated vorticity method” (Sadourny and Basdevant, 1985) to dissipate small-scale
variance, did not observe homogenization.

But the situation may indeed be more complicated. Greatbatch and Nadiga (2000) used
Laplacian diffusion of vorticity in their experiments but found it was insignificant to the
vorticity balance integrated over a region bounded by a mean streamline; rather, the forcing
was balanced by the Reynolds flux of vorticity, which evidently acted like down gradient
diffusion. The authors used steady forcing (in contrast to the present stochastic forcing with
zero mean curl). But Griffa and Salmon also used steady forcing and found {(g) — ()
relations like those in Figure 1. Clearly further work is required, but explicit dissipation
could be behind the documented homogenization, at least in part.

The second point concerns how the gyres compare to a Fofonoff-type solution. The
gyres are localized in that they do not extend to the domain equator (see also Griffa and
Castellari, 1991; Cummins, 1992 and Wang and Vallis, 1994), but a solution with similar
structure can be constructed. Consider the northern boundary. Given the small variationsin
x, particularly at the domain center, the linear {(g) — (s) relation reduces approximately to
an ODE:

lbyy + By = Azdj + By07 (7)

where A? is the slope of the (¢} — (i) relation and y, is a reference latitude. We will
impose Y = 0 at the northern wall, y = yp, and at the southern extent of the gyre,y = yg. If
the reference latitude is taken to be the southern edge of the gyre, the relative vorticity
vanishes there. Then the solution is:

_ BAysinh (Ay—y5) B
b=- A? sinh (AAy) + A? b =), ®)

where Ay = y, — yg is the meridional extent of the gyre and y, is the latitude of the
northern wall. The solution’s relative vorticity is negative at y,, and if one matches its
value to that observed in the numerical experiment, say r», one obtains the gyre width:
|r Nl

Y=g 9
(Scaling this relation, with r,, « U/Ay, shows Ay « (U/B) 172 the inertial boundary layer
width.) From the experiment with 3 = 200 we have r,~ —130, which yields a gyre width
Ay =~ 0.65, areasonable estimate (Fig. 1).

However, the predicted and observed mean zonal velocities are intriguingly different.
Examples of the zonal velocity from the Fofonoff solution (8), evaluated using parameters
A and r, from the simulations, are plotted against latitude in Figure 3. The velocity is
eastward at the boundary but asymptotes to a constant westward value near the southern
part of the gyre. The velocity is discontinuous here, dropping abruptly to zero to the south
(the discontinuity is unavoidable with the present solution).

The computed means (the dotted lines in the figure) are likewise eastward at the
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Figure 3. The mean velocities from the basin midpoint to the northern wall along the basin midline,
for two values of 3. The observed velocity (solid) and that predicted from a local Fofonoff solution
(dashed) are shown. The meridional velocity is not different from zero in either case.

boundary, but the westward flow is more jet-like. With larger values of  (e.g. the right
panel) one even finds flow reversals, that is, additional eastward and westward jets. The
velocity decays smoothly to zero in the south, yielding no discontinuity.

Because the oscillatory decay is absent in the inviscid solution, it is probably related to
the linear drag. To demonstrate that conclusively however would require solving the
nonlinear steady problem with dissipation, for instance using Newton’s method (e.g. Cessi
et al., 1987); this is beyond the present scope.

How does the gyre localization fit in with statistical mechanics? The latter predicts a
Boltzmann-like probability distribution under the assumption of ergodicity in phase space;
the {(g) — () relation follows (Salmon et al., 1976). We know however that 8 can prevent
ergodicity, by inhibiting the meridional excursion of fluid parcels (Shepherd, 1987). With
increasing 3, ergodicity evidently only holds near the boundaries, where the accumulated
vorticity is great enough to overwhelm the (3-effect.

In any event, the present means are largely in accord with those found previously, so we
will move on to the time-dependent fields. But we will return to the mean later, to see how
it affects the basin modes.

4. Cascades

Several features of the time-dependent field can be seen clearly in snapshots of the
streamfunction; examples for two values of 3 are shown in Figure 4. In both cases, we see
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Figure 4. Snapshots of the streamfunctions from experiments with 3 = 100 and 400. The contour
ranges are indicated.

the mean gyres discussed above, as well as eddies. The means and eddies are comparably
strong, and the eddies are as large as the gyres are wide.
The eddies moreover are larger than the forcing scales, the largest of which is /30 ~
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0.1; this is consistent with an inverse cascade. The eddies with B = 100 are larger than
those with B = 400, consistent with an arrest due to 3. That the eddies are as big as the
gyres are wide means the eddies scale with the inertial boundary layer width, and therefore
with the arrest scale (Sec. 1). Lastly, the eddies are largely isotropic in the interior; no jets
are observed there.

The corresponding vorticity fields (not shown) exhibit more small-scale structure, as is
usual. Besides the negative and positive vorticity at the northern and southern walls, there
is also a western boundary region, with a width comparable to the northern and southern
boundary layers. There one finds vortices of both signs.

So the instantaneous fields are consistent with an inverse cascade and with § limiting
that cascade. But how do we quantify these observations? The most common approach is
with wavenumber spectra but such a measure, which involves spatial averages, is
problematic due to the inhomogeneities associated with the western, northern and southern
boundaries.

Consider for example the time averaged, two-dimensional wavenumber spectrum of the
enstrophy from a run with 3 = 100 (Fig. 5). The spectrum represents the mean square
amplitudes from the 2-D sine transform of the relative vorticity. It exhibits several peaks
with a zonal wavenumber of 1, from which we would infer a strongly zonally anisotropic
field.

However, these peaks merely reflect the pools of vorticity at the northern and southern
boundaries; indeed, the mean vorticity has practically the same spectrum. This is why the
peaks have only even values of n,, since those modes are asymmetric about the basin
equator. Little can be learned about the basin interior from this spectrum.

The instantaneousfields however suggest the interior is approximately homogeneous, so
we might proceed instead by calculating statistics there. Hereafter, various turbulence
characteristics will be obtained solely from velocity records from the interior.

Velocities were saved at a number of grid points, mostly along the zonal and meridional
center lines although other locations were also sampled. The temporal sampling rate was
chosen in order to resolve in detail the dominant frequencies (Sec. 6).

We begin with the energy and enstrophy cascades, and velocity structure functions. The
latter are moments of velocity differences between separated points and are familiar in 3-D
turbulence studies (e.g. Batchelor, 1953; Frisch, 1995). Structure functions have been used
to study the 3-D energy inertial range in the atmospheric boundary layer (Van Atta and
Chen, 1970) and in the marine boundary layer (Van Atta and Park, 1980). They have also
been examined in the context of 2-D cascades in the upper troposphere/lower stratosphere
(Lindborg, 1999). Structure functions offer several advantages over wavenumber spectra,
for instance by obviating the need to break the data into bins and remove individual mean
velocities. And the connection between flow statistics and separation distance is more
direct than with wavenumber spectra.

The variation of the n-order structure function with separation for 2-D turbulence can be
deduced by dimensional analysis, although an exact relation can be derived for the third
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20 7

Figure 5. The squared amplitudes of the Fourier sine transform elements for the vorticity for the
experiment with 3 = 100. The amplitudes have been normalized by the total enstrophy and thus
the contours have dimensionless values (and so are not shown). Note the apparent zonal
anisotropy, and that the peaks occur at even valuesof n,..

order function (Lindborg, 1999).* Consider the second order functions first. Assuming a
constant rate of energy transfer, €, across the inertial range, dimensional arguments yield:

((3v)%) =((v(x + {) = v(x))*) = Co. 0", (10)

where C,, is a constant and  the separation between observations. Relation (10) applies to
both longitudinal and transverse velocity differences (i.e. parallel and perpendicular to the
line connecting the observers), albeit with different C,. Relation (10) can be shown to be
consistent with a k~>’> wavenumber spectrum.

In the enstrophy inertial range, we have:

<(8V)2> = C2nnl/3€27 (]1)

where m is the enstrophy dissipation rate and C,, another constant.> Relation (11)
corresponds to a k> energy wavenumber spectrum.

4. The corresponding result in 3-D turbulence is Kolmogorov’s (1941) well-known “4/5 Law.”
5. A logarithmic correction has been suggested by Lindborg (1999).



2002] LaCasce: Turbulence & normal modes in a basin 443

Second order structure functions
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Figure 6. The second-order longitudinal and transverse structure functions from a run with B = 0;
also shown is the longitudinal function from a run with B = 200. The curves were obtained by
averaging the corresponding curves in the zonal and meridional directions relative to the basin
center. The power laws indicate dependences expected in enstrophy and energy inertial ranges.

Second-order structure functions at the basin center are shown in Figure 6 for runs with
B = 0and = 200. The curves were obtained by averaging from the zonal and meridional
grid lines the corresponding curves (which were themselves nearly identical). The results
with 3 = 0 are consistent with an enstrophy cascade at separations below about { = 0.1 and
an energy cascade from scales of roughly { = 0.1 to about { = 0.8 (a quarter of the
domain). Recall the forcing scales range from 6x = w/35 — w/30 or from roughly 8x =
0.09 — 0.1. The agreement with the predicted power laws is reasonable, although the
slopes are more variable the energy range (reflecting perhaps the slower statistical
convergence at larger scales). The transverse and longitudinal curves exhibit the same
power laws.

With B = 200, the longitudinal structure function is very similar to that with § = 0
except that it falls off faster at larger separations, consistent with an arrest. On the other
hand, the curves are nearly identical in the putative enstrophy cascade range.

Higher order structure functions were also calculated. The third order moments were
noisy, but exhibited the expected cubic growth with distance in the enstrophy range (e.g.
Lindborg, 1999). The linear increase expected in the energy range on the other hand could
not be confirmed. Indeed, the dependence at larger separations varied from run to run,
suggesting poor statistical convergence.

The normalized fourth order moment (the kurtosis) was Gaussian at most separations



444 Journal of Marine Research [60, 3

and for all B, but was weakly non-Gaussian in the enstrophy range with 3 = 0 (but again
Gaussian with non-zero (3). This would be expected with small-scale intermittency, for
instance vortices, which tends to be suppressed by the B-effect (e.g. McWilliams, 1984).
Such intermittency need not however alter the {* dependence of the second order moment
in the enstrophy range (Babiano et al., 1985), hence the agreement between the 3 = 0 and
3 = 100 curves in Figure 6.

In any case, the velocity structure functions support a cascade from the forcing scales to
smaller scales for enstrophy, and to larger scales for energy, with the enstrophy range
better resolved than the energy range.

5. Arrest and isotropy

One can gauge the arrest of the inverse cascade using two-point velocity correlations
(closely related to the second order structure function). Two-dimensional correlations in
particular permit a simultaneous assessment of the dominant length scale and the degree of
anisotropy.

The measure to be used is a 2-D correlation “ellipse,” constructed as follows: normal-
ized, zero (time) lag, longitudinal and transverse velocity correlations were calculated
along the zonal and meridional lines extending from the basin center. These correlations
decreased with distance, as is common, and the distances at which each correlation fell
below certain values were determined. Those distances were then used to draw ellipses in x
and y. Values of 0.8, 0.6 and 0.4 were used for the longitudinal correlation and 0.5 and 0.0
for the transverse (the transverse correlation decreases more rapidly than the longitudinal,
and the latter need not cross zero; Batchelor, 1953). The ellipses from the basin center with
four values of 3 are shown in the upper panels of Figure 7.

The ellipses shrink as  is increased, as expected, and the contraction compares
favorably with that predicted from relation (6), as indicated by the lines next to the ellipses.
To calculate the latter, we need €, which can be estimated from the total energy. The energy
equation is derived from (1) by multiplying by —{s and averaging over the domain:

d
EK—e—ZrK, (12)

where K is the total kinetic energy. We assume all energy supplied by the forcing is
transferred upscale, that is, that none is lost to small-scale dissipation. At statistical
equilibrium then:

e~ 2rk, (13)
so that the arrest scale, from (6), is

Ly =2mwCB *(2rK)"". (14)
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Figure 7. Correlation ellipses for runs with various values of B. The longitudinal ellipses are
indicated by solid curves, and represent correlations of [.8 .6 .4]; the transverse correlationsare the
dashed curves for values of [.5 0]. The ratios of the zonal to meridional axes for the 0.6
longitudinalellipse and the 0.0 transverse ellipse are given in the lower left corner. The error-type
bars havelength 2L, where L is givenin (14). The two lower panels show ellipses obtained away
from the basin center for 3 = 200.




446 Journal of Marine Research [60, 3

=100, periodic B=400
06 ..... - .............. \ .......... ...... 06 ..... \ AAAAAAAAAAAAAA \ .............. \ .....

04} - e e Lo 04t - L e e

-0.6 * : : -0.6 ;

-0.5 0 0.5 -0.5 0 0.5

Figure 8. Correlation ellipses for runs with the doubly periodic model with § = 100 and 400. The
format is the same as in Figure 7, except that the .4 longitudinal ellipse has not be drawn.

Note if € is decreased by small-scale dissipation, the term 2rK would be decreased by a
corresponding fraction. But the resulting change in Lg would be small however because of
the 1/5 exponent. The lines in Figure 7 were calculated with C = 1, and extend to * L.

The decrease in the arrest scale agrees approximately with the decrease in the correlation
ellipses, though the former shrink somewhat faster. With B = 600, the correlation scales
are near the forcing scales, indicating the cascade has been largely defeated.

The ellipses are also essentially isotropic. The numbers at lower left in each panel are the
ratio of the zonal to meridional major axes, for the longitudinal and transverse ellipses
respectively, and these are nearly always one. The meridional decay scales are thus
comparable to the zonal decay scales, regardless of .

How do the ellipses vary with position? The ellipses from (x, y) = (w/4, 0) and at (x,
y) = (3m/4, 0) with B = 200 (lower two panels of Fig. 7) are nearly the same as at the
basin center (top right panel). The longitudinal ellipses imply meridional anisotropy,
reflecting most likely the influence of the eastern and western walls, but only a weak
anisotropy. The results at other locations, except very near the walls (see below) are
likewise similar. So besides being isotropic, the interior is also approximately homoge-
neous.

The situation is quite different with periodic boundary conditions. Representative
ellipses are shown in Figure 8 for two values of 3, again with vertical lines indicating the
arrest scales. While the transverse correlation ellipses are again nearly isotropic, the
longitudinal ellipses are zonally elongated, at both values of 3. Both ellipses shrink in y as
[ is increased, though the change is more pronounced for the transverse correlation. And
the estimated arrest scale contracts at a comparable rate, although again somewhat faster
than the ellipses.

In this case, the correlations reflect variations in the zonal jets. The transverse
correlations in the meridional direction have large negative lobes, due to the alternating
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eastward and westward flow; these correlations thus indicate jet width. The longitudinal
correlations in the zonal direction gauge the spatial coherence of the jets and in the
meridional direction, the north-south jet perturbations. The transverse correlation is thus a
better measure of the arrest scale.

Returning to the basin, we can make a further test for isotropy. The longitudinal and
transverse correlations are functionally related for isotropic flows; in two dimensions one
can show (Batchelor, 1953; Freeland et al., 1975):

d
g() = e (LAD)), 15)

where { is the separation between points and f and g are the longitudinal and transverse
correlations.

For all experiments, relation (15) was evaluated by fitting a seventh-order polynomial to
the longitudinal correlation, differentiating its product with { and then comparing the result
to the transverse correlation; two examples are shown in Figure 9. The predicted curve
correctly captures the zero crossings and most of the first negative lobes. Discrepancies
occur at larger separations, but these are not statistically significant. Similar results obtain
with the other tested values of 3.

So the interior fields in the basin are approximately isotropic and homogeneous for the
range of values of  tested. If the arguments of Section 1 are correct, the isotropy is related
to a spectral arrest to basin modes. In the following section, we seek further evidence of
basin modes.

6. Spectra

More can be gleaned from velocity power spectra. These were calculated using a
multitaper power spectral density estimation routine (Percival and Walden, 1993), avail-
able in the MATLAB software package.

Frequency spectra are used less frequently than wavenumber spectra in the turbulence
context. However if the flow is arrested, we might expect the energy to be greatest near:

wB — CBME'/S, (]6)

from dimensional considerations and (6). This can be evaluated using (13) if we again
neglect energy lost to small scale dissipation.

Consider first the periodic case. Energy spectra in variance preserving form are shown in
Figure 10 for two values of B. In these and in the basin spectra, the peak predicted from
(16) is also indicated, using an empirically chosen (but fixed) value of C = (2.5) " I

With B = 100, the meridional energy is peaked near wg; the zonal energy is peaked at
somewhat lower frequencies. With B = 400, the meridional energy is also confined to a
band of frequencies near wg, but the zonal energy is much greater and at lower frequencies.
The velocities thus exhibit a zonal anisotropy which increases with . The “arrest” is
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Figure 9. The basin longitudinal (dots) and transverse (triangles) velocity correlations with the
transverse correlation predicted from the isotropic relation (15) (solid), at two different values
of B.
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Figure 10. Variance-preserving spectra of the zonal (solid) and meridional (dashed) velocities at the
center grid point with the doubly periodic model. Note the abscissais cycles/unit time, or w/(2).

clearer in the meridional spectra rather than the zonal (see also Rhines, 1975; Vallis and
Maltrud, 1993).

With the basin spectra (upper and middle panels of Fig. 11), the meridional energy is
likewise peaked near wg. But now the zonal energy is confined to approximately the same
frequency band. The basin interior is more isotropic from the spectral perspective as well.

In addition, the basin spectra exhibit definite peaks. These are seen in both the
meridional and zonal spectra, but are often clearer in the former. They occur at frequencies
which correspond to barotropic basin modes, as calculated from (5) (dashed lines). The
excited modes have larger wavenumbers with larger values 3 and in addition have unequal
zonal and meridional wavenumbers (the zonal wavenumber has been taken to be the
smaller, for reasons described later). Griffa and Castellari (1991) documented similar
spectral peaks and likewise attributed them to basin modes.

The spectra at other locations are very similar, although the peak amplitudes vary.
Where they do differ is near the boundaries; two examples, near the eastern and northern
boundary with B = 200, are shown in the lower panels of Figure 11. Not surprisingly, the
zonal variance is greatly suppressed near the eastern wall and the meridional variance
suppressed near the northern wall. The eastern wall spectrum still exhibits a mode (1, 3)
peak, but no peaks are evident at the northern wall. Of interest is that the spectra at (x, y) =
(3.0, 1.57) and (x, y) = (1.57, 3.0) are nearly the same as at the basin center.

The spectra thus also support an approximately isotropic and homogeneous interior, and
exhibit peaks consistent with basin modes. Before considering the latter in more detail, we
examine one more aspect of the arrested wave field.
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Figure 11. Variance-preservingspectra of the meridional velocities in the basin for four values of B
(upper panels). Superimposed are lines indicating the frequencies of certain basin normal modes.
The lower panels show spectra obtained near the eastern and western walls with f = 200.
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Figure 12. Examples of the meridional velocity time series obtained at two separate points on the
zonal line with B = 100 and 400. Note the eastern time series (solid) lag the western (dashed) ones
and that the lag does not change appreciably with 3 (though the dominant frequency does).

7. Phase propagation

If the interior is wave-like, we should see westward phase propagation; this applies to
basin modes as well (see 18). The observed phase speed moreover should not vary with B
but rather with the rms velocity.

Time-longitude (Hovmuller) plots constructed from the streamfunction fields indicate
westward phase propagation (not shown). This is clearer with the smaller values of 3 than
with the larger values, but in all cases, the inferred phase speed is approximately ¢, =
—4.0, or roughly 2-2.5 times the rms velocity (given below).

More robust phase speed estimates can be obtained from the velocity records along the
basin equator. Portions of the meridional velocity time series from two locations closely
spaced on the line are shown in Figure 12 and the phase lag at the western-most observer is
clear with both smaller and larger values of . The phase shift moreover is approximately
the same for both values of B (despite the higher dominant frequency in the latter case).

Phase speeds can be calculated from spatially-lagged cross correlations, by dividing the
spacing between observations by the time lag. The results for a lag of 28¢ (where 8¢ was the
temporal resolution of the record) from the basin center are shown in Table 1. We note the
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Table 1. Phase velocities determined from cross correlations of the velocity records along the zonal
central line. The separations are in terms of 8x = w/512. The correlation is shown in the
penultimate column, and the implied phase speed in the last.

B Vel. Rms Sep. (Xdx) Corr. c,
100 u 1.77 29 0.65 3.56
100 v 2.03 19 0.62 2.33
200 u 1.55 30 0.63 3.68
200 v 2.03 23 0.61 2.82
400 u 1.63 32 0.59 3.93
400 v 1.93 27 0.52 3.31
600 u 1.56 32 0.44 3.93
600 v 1.76 28 0.42 3.44

correlations were typically higher (near 0.8) at a lag of 8¢, and lower (near 0.4) at a lag of
351.

The dominant phase speed does not vary greatly with (3 and is generally 1.5-2 times the
rms velocity. There is an increase in the phase speeds which is not mirrored in the rms
velocities, but this is small and within the errors. There is also a slight decrease in
correlation with B, due presumedly to the increase in higher frequency variability. The
phase speeds inferred from the meridional velocities are smaller than those from the zonal
velocities, and it is not immediately apparent why (though as noted in Section 6, the
meridional spectra exhibit clearer peaks than the zonal spectra). We observe no variation of
phase speed along the zonal line, e.g. the results relative to the records at x = 2.80 are
identical within error to those relativetox = 1.57.

We can compare the phase speeds with those of the basin modes indicated in the
frequency spectra (Fig. 11). The basin mode phase speed (see below) is:

2w?
c,= — B a7
For B = 100, the phase speed of mode (2, 3) is —3.85; for B = 400, ¢,(1, 7) = —4.0.
These are roughly consistent with Table 1 and with those inferred from time-longitude
plots.

8. Basin modes

The results suggest an arrest occurs to basin modes whose dominant phase speeds are
proportional to the rms velocity. However, several questions arise regarding this interpreta-
tion. First, why do the excited modes have unequal zonal and meridional wavenumbers
(Fig. 11)? Second, can the modes be expected to exist with the bottom drag? And third,
why are their frequencies unaltered by the mean flow?

First, basin modes with n << m are more nearly isotropic than those with n =~ m or with
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n >=> m. Basin modes have a dual structure, part standing wave and part propagating wave
(e.g. Longuet-Higgins, 1964):

U« cos (2 B x— w,,mt) sin (nx) sin (my), (18)

nm

where we have taken L, = L, = w; w,,, is given in (5). The mode has a meridional

y
wavelength of m/m, but the zonal wavelength is not simply m/n because the propagating

portion has a wavelength:

2Tw I

nm

B & (> + m)"?

19)

This means that the more isotropic basin modes have small n. Two such modes (whose
frequencies match peaks in Figure 11) are contoured in the middle and lower right panels
of Figure 13.°

The second question concerns the bottom drag, which can severely degrade basin
modes. A basin mode can be written as the sum of four free Rossby waves, two with a
westward group velocity and two with an eastward velocity (Longuet-Higgins, 1964). The
eastward waves are generally the slower and hence more susceptible to dissipation. The
four free waves have wavenumbers:

(k, 1) = ( - 2(5) +m, =n| = ((m* + n»)"* £ m, +n), (20)
from which we derive the group velocities:
(=1 m(m = (m*> + n?H)'?)
c,= B = i 21)

¢ (KP4 B2 2m?+ n® £ m(m* + n»)'?)*

For the (1, 3) mode with B = 100 (Fig. 11), the group velocities are 1.2 and —2.3.
Multiplying these by the e-folding time of the damping, 1/r = 10, yields distances much
greater than the basin width, L = m, implying the eastward waves could easily transit the
basin with the given dissipation. Hence basin modes are plausible. The velocities for the (1,
5) mode with 3 = 400 are 1.3 and — 1.9, so the conclusion is the same.

The last question is whether the mean flow alters the modal frequencies. As noted in
Section 3, the mean flows have velocities comparable to the observed phase speeds (Sec.
7), suggesting the mean could have a large impact. But the mean gyres are strongly trapped
at the northern and southern boundaries and so may have little effect in the interior.

6. An alternate method exists for identifying basin modes in a given streamfunction field, and even whether
n < m orn > m. Because the set of basin modes comprises a complete, orthogonal basis, one can use them to
decompose a given streamfunction (Pedlosky, 1987). The decomposition was applied to several of the present
streamfunction fields and the results generally supported those from the frequency spectra (Fig. 11) for the smaller
values of 3. The results however were less satisfactory with the larger B. The latter discrepancy stemmed from the
western boundary layer, which projected onto basin modes with short zonal scales (the western layer is relatively
less prominent at smaller 3). The implied strong meridional anisotropy was of course not observed in the interior.
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Figure 13. Numerical basin mode solutions from the generalized eigenvalue problem with the mean
flow obtained in the basin with B = 200. The modal frequenciesare shown in the upper panel, with
those expected with zero mean. The middle and lower left panels show two eigenvectors obtained,
and the middle and lower right panels their zero mean counterparts.
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To address the mean-induced alterations, we resort to a linear calculation. The basin
modes in the presence of a mean like that in the experiments can be obtained by solving the
generalized eigenvalue problem:

ioAy = B, (22)

where A = VZand B = Ba, + U(x, y)a,V? + V(x, y)ayVZ. This was done numerically,
using the mean velocities interpolated from the model fields and using center differences
for the derivatives. For the calculation, time was rescaled by B~ ! so that the mean velocity
was also divided by B. The MATLAB shifted Arnoldi routine for sparse matrices was used
to obtain the eigenvalues and eigenvectors and a 50 by 50 grid was used (although the
results for the gravest modes are quantitatively similar with fewer grid points).

The results for the case with § = 200 are shown in Figure 13. Shown in the upper panel
are the frequencies for the first 15 basin modes, with and without the mean flow; in the
middle and lower left panels are two sample eigenvectors and in the adjacent right panels
the corresponding zero-mean modes. Note the gravest (zero mean) basin mode has a scaled
frequency of w = — eV2)~ .

From the upper panel, we see the mean flow alters the gravest mode frequencies very
little. The dominant modes in Figure 11 would see their frequencies change by at best a few
percent. From the lower panels, we see the mean likewise alters the modal structures
minimally. The (1, 3) mode is nearly unchanged; the (1, 4) mode is distorted somewhat
near the northern and southern boundaries, but the overall structure is largely the same.
One finds greater changes in modes with larger meridional wavenumbers but the modes
corresponding to the peaks in Figure 11 are relatively unaffected.

The mean has relatively little impact because it is confined. For modes of large
meridional extent, the gyres merely tilt the streamfunction in their vicinity; only when a
mode’s meridional wavelength is much smaller than the gyre width is the mode more
profoundly altered. But because the dominant modes at arrest have a meridional scale
which is comparable to that of the gyres (Fig. 4), those modes are not greatly affected.

With a smaller value of 3, the (scaled) mean is stronger, but at the same time the excited
modes are larger in scale. Conversely, if (3 is larger, higher modes are excited but the scaled
mean is weaker. In neither case does the mean greatly alter the arrested modes.

The modes with small scales are strongly affected, and many become trapped in the gyre
regions. These modes represent oscillations in the gyres themselves and have frequencies
comparable to the graver zero-mean modes (their frequencies were excluded in the upper
panel). But because they do not extend into the interior, they have minimal effect on the
variability there.

9. Summary and discussion

We have revisited geostrophic turbulence forced at small scales in a square basin with 3.
The inverse cascade is not halted by enstrophy production at the western wall, consistent
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with previous indications. The cascade “arrests” due to competition from Rossby waves, as
in a periodic domain. But basin modes rather than free waves evidently brake the cascade.
The indirect evidence for modes is that the arrested interior is approximately isotropic; the
direct evidence is that there are peaks in the Eulerian spectra at frequencies matching
modal frequencies. The basin interior is also approximately homogeneous, and one sees no
zonal jets there (in stark contrast to periodic domains).

The rectified mean flow in these experiments is in line with theoretical expectations
(Salmon et al., 1976; Bretherton and Haidvogel, 1976) and with previous numerical
experiments. The observed (g) — () relation is linear with a positive slope in the region
of the gyres; ({) is approximately zero outsize the gyres. Of interest is that with the present
model has implicit small scale damping, with a viscosity parallel to the local velocity and
with no boundary conditionsimposed on the vorticity. No vorticity homogenization occurs
in the mean gyres, in contrast to previous studies where explicit diffusion or hyperdiffusion
was used.

The bottom drag and the rectified mean could conceivably have altered or even
suppressed basin modes. However, we showed that the excited modes had free wave
components which were too fast to be appreciably damped, and that the means were too
weak and spatially confined to alter the modes (Sec. 8). Presumedly if the drag is small
enough to permit a cascade in the first place, the modes will be similarly unaffected.

In Section 1 we suggested the arrest to basin modes might be isotropic because the
modal dispersion relation is symmetric in # and m. But the excited modes must also have n
<< m to be symmetric! This curious discrepancy suggests that while the phenomenologi-
cal argument, which considers only time scales, is correct in essence, the actual situation is
more subtle. A more complete theory is clearly required, for instance a disequilibrium
statistical mechanics treatment (Holloway, 1986).

Turbulent velocity fields are typically characterized in terms of wavenumber spectra, but
the boundary-trapped vorticity anomalies adversely affect the spatial averages required for
such spectra. Fortunately one can capture the various turbulence characteristics using only
Eulerian velocity statistics, such as structure functions, power spectra, and velocity
correlations. It should be emphasized that the two approaches are complimentary; for
example the second order structure function is directly related to the energy spectrum (e.g.
Babiano et al., 1985). Similar velocity statistics might also be used to advantage in the
subsurface ocean.

We have emphasized the isotropy of the interior fields, but our forcing was isotropic and
the basin square. Anisotropic forcing and (possibly) a rectangular basin could conceivably
produce anisotropy. Seidov and Marushkevich (1992) for example describe zonally
elongated eddies in simulations conducted in a meridionally-elongated basin. Having
unequal zonal and meridional basin widths would break the symmetry between meridional
and zonal wavenumbers in the basin mode dispersion relation, perhaps favoring anisotropy
in one direction or the other. The arrest could likewise be changed if the basin modes were
altered, for example by large scale topography (e.g. Anderson et al., 1979).
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The present results also stem in part from the choice of homogeneous forcing. Spatially
isolated forcing can generate zonally-elongated structures (Haidvogel and Rhines, 1983);
indeed, if the forcing region is small and far from the boundaries, the situation must be like
that on an infinite plane, with free Rossby waves rather than basin modes countering the
(local) cascade. With the forcing applied over the whole domain, the boundaries are
evidently important at all times (i.e. there was no indication of even transient zonal
anisotropy).

Are the present findings at all relevant to the ocean? There is a recent set of observations
which show some encouraging similarities. Warren ef al. (2002) examined a (zonal) line of
current meters in the Mascarene basin of the Indian Ocean, and these records were
dominated by a barotropic fluctuation with a 59 day period whose phase propagated
westward. Of interest is that: (1) the wave phase speed was comparable to the peak to peak
velocity, (2) the wave speed and frequency (from spectra) matched the second basin mode
and (3) the current meter spectra exhibited a dominant peak. All three aspects are in accord
with the present results. Warren ef al. wondered why mode 1 was absent, but this could be
explained if a cascade were arrested at the second mode. Of course there are discrepancies,
for instance the Mascarene wave had much greater meridional than zonal velocities (which
may be related to the basin’s shape). Likewise, our spectra suggest multiple modes at
arrest, but this too might stem from differences in forcing, basin geometry and/or
dissipation.

We have framed the present discussion in terms of an arrested cascade, but at least one
alternate interpretation is possible. Manfroi and Young (1999) have recently shown that
zonal jets in a periodic domain can be generated by a large scale shear instability with small
scale, stationary forcing; such an instability can be seen as a highly nonlocal inverse
cascade. In their case the jet scale depends on bottom friction but not on the Rhines scale. It
is intriguing to wonder whether and how such an instability might operate in the closed
domain. Our results do suggest a dependence on the Rhines scale, so the basin might prove
an interesting test for their proposition. This is WHOI contribution number 10470.
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