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Linear planetary wave dynamics in a 2.5-layer ventilated
thermocline model

by Atsushi Kubokawa1 and Maki Nagakura1,2

ABSTRACT
Linear planetary wave dynamics in a 2.5-layer ventilated thermocline model is investigated by a

local eigenvalue analysis and simple numerical computations. It is known that there are two types of
waves in this system; we refer to one of them as the N-mode (Non-Doppler shift mode), which
propagates almost westward, and the other as the A-mode (Advection mode), which propagates
almost along the second layer basic current. First, we study the local longwave dynamics, assuming
that the wavelength is much longer than the deformation radius and shorter than the gyre scale. It is
shown that the N-mode and the A-mode cannot neatly be separated in the ventilated zone, and even in
the Rhines and Young pool, a compact A-mode disturbance cannot exist by itself. When anomalous
Ekman pumping is applied in the ventilated zone, the N-mode is generated in the forcing region, and
the A-mode is generated at the wave front of the N-mode. For diabatic forcing, a similar phenomenon
occurs. It is also found that the shadow zone is unstable to longwave disturbances. Secondly, the
wave behavior in the linear planetary geostrophic model is numerically investigated. The main
features can be interpreted by the local wave dynamics, and the disturbances around the maximum
amplitudes are dominated by the waves whose wavenumber vectors are perpendicular to the second
layer potential vorticity contours. The amplitude changes during the wave propagation are also
discussed.Finally, the effects of the � nite wavelength are studied. The N-mode is strongly dispersive
at the scale of the Rossby deformation radius, while the A-mode is weakly dispersive.It is also shown
that the ventilated zone is unstable to shortwave disturbances, although it is stable to longwave
disturbances.
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1. Introduction

Our understanding of the oceanic thermocline structure has made great progress during
recent decades since the advent of the ventilated thermocline theory (Luyten et al., 1983)
and the potential vorticity homogenization theory (Rhines and Young, 1982; Young and
Rhines, 1982). According to these theories, the potential vorticity distribution in the
thermocline is distorted very much from zonal uniformity because of the Lagrangian
conservative nature of the potential vorticity. This distorted potential vorticity distribution
and advection make the planetary wave dynamics very different from that in a resting
ocean.

Dynamics of the planetary waves in the oceanic gyre have recently been investigated
extensively. Those studies seem to be motivated by recent observations. Chelton and
Schlax (1996) and Polito and Cornillon (1997) showed from satellite observations of the
sea surface height (SSH) anomaly that the � rst baroclinic Rossby wave propagates at a
phase speed higher than that expected from the local strati� cation. On this problem,
Killworth et al. (1997) showed that the longwave phase speed of the gravest baroclinic
mode in an oceanic gyre (baroclinic shear � ow) is enhanced, and the estimated phase
speeds agree well with observed ones in almost all regions. Liu (1999a) and deSzoeke and
Chelton (1999) discussed the enhancement of the phase speed analytically, showing that
the uniformity of subsurface potential vorticity is crucial for this enhancement of the wave
speed.

The effects of the vertical structure of the oceanic gyre on higher baroclinic modes are
much more signi� cant than that on the gravest mode because their phase speeds are
comparable with, or smaller than, the advection velocity. Using a 2.5-layer quasi-
geostrophic model, Liu (1999a,b) showed that the second mode tends to propagate along
the mean current in the second layer, and argued that this nature explains the southward
spreading of the subsurface temperature anomaly associated with the interdecadal variabil-
ity of the sea surface temperature reported by, for example, Deser et al. (1996) and by
Yasuda and Hanawa (1997). Liu (1999b) carried out several numerical experiments, to
show that similar thermocline responses to those expected from the linear theory occur in
the numerical models.

Very recently, Dewar and Huang (2001) and Stephens et al. (2001) treated similar
problems. Dewar and Huang discussed the wave dynamics in a multi-layer quasi-
geostrophic model based on the characteristic theory. On the other hand, Stephans et al.
solved a 2-layer planetary geostrophic model and discussed the wave property of the
second mode. Both papers compared the analytical results with more sophisticated
numerical models.

Although the above works have outlined the wave dynamics and their gyre-scale
propagations very well, it seems to the authors that some uncertainties still remain. For
example, the full dispersion relation of waves and its relation to wave propagation in the
oceanic gyre have not been reported. In the present paper, adopting a 2.5-layer version of
the LPS model (Luyten et al., 1983) as the basic state, we attempt to clarify the linear wave
dynamics in the thermocline, focusing on (1) local longwave properties and their relation to
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wave propagation in the oceanic gyre, (2) stability, (3) adjustment process of the
thermocline to anomalous atmospheric forcing, and (4) dependence on the wavelength.

In a system in which the direction of the potential vorticity gradient depends on depth as
in the ventilated thermocline, the vertical structure and the group velocity of a longwave
disturbance depend on the direction of the wavenumber vector in general. Combination of
the local eigenvalue analysis and simple numerical computation of the temporal evolution
will help us to image the wave behavior in such a system. The stability of the ventilated
thermocline should also be addressed, because the potential vorticity distribution in the
ventilated thermocline satis� es a necessary condition for baroclinic instability (see, e.g.,
Chapter 7.13 in Pedlosky, 1987). The adjustment process of the ventilated thermocline is
an important problem to understand ocean climate variability.This process must be related
to the dispersive nature, as well. Steady responses of the LPS model to atmospheric
anomalous forcing have been studied by Huang and Pedlosky (1999). In the present work,
temporal evolution of the linear disturbance after the forcing is turned on will be discussed.
The relative vorticity term, which has been neglected in the gyre scale dynamics, may also
be important to stability and wave propagation. Although the 2.5-layer ventilated thermo-
cline model may be too simple to be directly applied to the real ocean, it is meaningful to
investigate the wave dynamics in detail, since the model can be regarded as one of the
standard models widely used to discuss basic ocean dynamics.

After formulating the problem in Section 2, the local dynamics of linear longwaves are
investigated mainly by eigenvalue analysis in Section 3. In this section, the stability of the
ventilated thermocline to a longwave disturbance is also examined, and several numerical
examples of free wave propagation and forced wave responses are presented. Section 4
discusses the gyre-scale propagation referring to results obtained by local eigenvalue
analysis. In Section 5, we brie� y discuss the dependence of local eigenvalue solutions on
the wavelength including the relative vorticity term. The results are summarized in Sec-
tion 6.

2. Formulation of the problem

A 2.5-layer planetary geostrophic model is used in the main part of the present study.
The set of model equations is

2fvj 5 2
1

a cos u

]pj

]l
, fuj 5 2

1
a

]pj

]u
(2.1)

]h j

]t
1

1
a cos u H ]

]l
hjuj 1

]

]u
hjvjcos u J 5 2~2 2 j!we 2 ~21!jwd (2.2)

p2 5 g2~h1 1 h2!, p1 5 p2 1 g1h1 (2.3)

where the subscript j (51, 2) denotes the layer number, a is the radius of the earth, l and u

are the longitude and latitude respectively, uj and vj are the eastward and northward
components of the velocity, hj is the layer thickness, f is the Coriolis parameter, gj is the
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reduced gravity (5g(rj11 2 rj)/r0), we is the Ekman pumping velocity, and wd is
a diabatic forcing, which is thought to represent surface cooling (wd . 0) or warming
(wd , 0).

Since we study the wave dynamics in the oceanic gyre, we divide the variables into two
parts, the basic state and wave � eld;

u j 5 U j~l, u! 1 u9j~l, u, t!, vj 5 Vj~l, u! 1 v9j~l, u, t!, p j 5 Pj~l, u! 1 p9j~l , u, t!

h1 5 H1~l, u! 1 h1~l , u, t!, h2 5 H2~l, u! 1 h2~l, u, t! 2 h1~l, u, t!

we 5 We~u! 1 w9e~l, u, t!, wd 5 w9d~l , u, t!

where Uj, Vj, Pj and Hj represent the basic state which is forced by the Ekman pumping
We. We assume that the second layer outcrops at f 5 f1, where f1 is a constant. In this case,
the solution for the basic state is the 2.5-layer version of the LPS model, and the explicit
form of the solution is shown in Appendix A. The model domain and parameters used in
this study are as follows: The latitude of the northern boundary of the subtropical gyre, uN,
is 40N, that of the southern boundary, uS, is 15N, the outcrop latitude, u1, is 36N, and the
longitudinal extent of the ocean, le, is 60°. The reduced gravities are g1 5 g2 5 0.8 3

1022 m/s2, and the thermocline depth at the eastern boundary, H0 5 H2(le, u ), is 500 m.
The Ekman pumping, We, is assumed to be

We 5 21026 sin
p~u 2 uN!

uS 2 uN
@m/s#.

Figure 1 depicts the pressure, Pj, and the potential thickness, Hj/f, (reciprocal of the
potential vorticity) for both layers of the basic state (the solution of the LPS model). The
domain is divided into three zones: the eastern shadow zone (dark shade in Fig. 1), the
ventilated zone and the western pool zone (light shade). In the western pool zone, the

Figure 1. The solution of the ventilated thermocline model used as the basic state of the present
study: (a) upper layer, and (b) second layer. Solid lines denote the pressure (contour interval is
0.5 3 103 Kg m2 1 s2 2) and dashed lines denote the potential thickness (contour interval is 7.5 3
103 m s). Heavy shade denotes the shadow zone where the second layer is at rest, and light shade
denotes the RY pool where the second layer potential vorticity is homogenized. The letters A, B
and C denote locations where local eigenvaluesare calculated.
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potential vorticity in the second layer is assumed to be homogenized; this region is referred
to as the Rhines and Young pool (RY pool) hereafter. The waves have different natures in
the different zones.

The equation for the linear wave � eld can be written in terms of h1 and h2 after some
manipulation as

]

]t X h1

h2
D 1

1
a cos u

A
]

]l
X h1

h2
D 1

1
a

B
]

]u
X h1

h2
D 1 C X h1

h2
D 5 W (2.4)

where A, B and C are 2 3 2 matrices and W is a vector:

A 5 1 U2 2
b

f 2 g1H1 g2 X H1

f D
y

2
b

f 2 g1H1 2
b

f 2 g2H
2 , B 5 X V2 2

g2

f
H1x

0 0
D , (2.5)

C 5 1 2
b

f
V1 0

2
b

f 2 g1H1x 2
b

f 2 g2Hx
2 , W 5 X 2we1wd

2we
D . (2.6)

Here, b 5 a21df/du and subscripts, x and y, denote the zonal derivative and meridional
derivative, e.g.,

H1x 5
1

a cos u

]H1

]l
, H1y 5

1
a

]H1

]u
.

The quantity Hj/f is referred to as the potential thickness in this paper and is used instead of
the potential vorticity f/Hj, since Hj/f is somewhat more convenient than the potential
vorticity in the formulation of the present planetary geostrophic model.

The existence of terms proportional to h1 and h2 in (2.4) means that disturbances in h1

and h2 do not simply propagate as waves but can change locally even when the initial
values of h1 and h2 are spatially constant and W 5 0. If we change the dependent variables
by using a matrix G as,

X z1

z2
D 5 G21 X h1

h2
D , (2.7)

and G satis� es

G21 X 1
a cos u

A
]G
]l

1
1
a

B
]G
]u

1 CG D 5 0, (2.8)

we can eliminate the term proportional to the wave amplitude, and (2.4) can be rewritten as

]

]t X z1

z2
D 1

1
a cos u

A9
]

]l
X z1

z2
D 1

1
a

B9
]

]u
X z1

z2
D 5 W9, (2.9)
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where

A9 5 G21AG, B9 5 G21BG, W9 5 G21W

In this case, constant z1 and z2 give a steady solution if W 5 0. The matrix G satisfying
(2.8) in each zone can be found as,

for the Rhines and Young pool, G 5 1
g2 f

P1

0

g2 f

P1

f

H
2 ,

for the ventilated zone, G 5 1
f

H
0

0
f

H1

2 ,

and for the shadow zone G 5 1
f1

H1

0

0
f1

H0

2 .

3. Local dynamics

a. Outline of the eigenvalue problem

In this section we assume that the horizontal scale of the disturbance is much smaller
than the gyre scale. Under this assumption, A and B in (2.4) become constant matrices and
C vanishes. The resulting equation is the same as that obtained under the quasi-geostrophic
(QG) approximation neglecting relative vorticity. The solution of the full equation (2.4)
will be discussed in Section 4, and the effect of the relative vorticity under the QG
approximation will be addressed in Section 5.

Introducing the local Cartesian coordinates whose origin is at (l0, u0), we obtain

]

]t X h1

h2
D 1 A

]

]x X h1

h2
D 1 B

]

]y X h1

h2
D 5 W, (3.1)

where

x 5 a cos u0~l 2 l0!, y 5 a~u 2 u0!.

Since this equation does not depend on the horizontal scale, the dispersive nature of waves
comes only from the direction of the wavenumber vector. If we consider a disturbance
whose amplitude varies only in one direction, (3.1) becomes

]

]t X h1

h2
D 1 D

]

]s X h1

h2
D 5 W, (3.2)
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where s is the distance in the direction of the wave propagation. If we write this direction in
terms of the angle w measured from the east in the counterclockwisedirection, the variable
s becomes

s 5
x

cos w
5

y

sin w

and

D 5 A cos w 1 B sin w.

The eigenvalue of the matrix D gives the phase speed in the direction of w, and the
eigenvectorgives the vertical structure of the wave. The eigenvaluesof the matrix D are the
same as those of D9 5 A9 cos w 1 B9 sin w in (2.9).

The eigenvalues of the matrix D can be written as

c6 5
1

2
$~d11 1 d22! 6 Î ~d11 2 d22!

2 1 4d12d21%, (3.3)

where dij is the ij-component of D. The explicit form of the eigenvalue is shown in
Appendix B. The double sign in (3.3) denotes that there are two vertical modes. Since
d11 1 d22 } sin(w 1 w0) where w0 is a constant and =(d11 2 d22)2 1 4d12d21 is a
periodic function of w with period p, we can easily demonstrate that

c6~w! 5 2c7~w 1 p! 5 2c7~w 2 p!. (3.4)

Therefore, one of c1 (w) or c2(w) for 0 # w , 2p gives the complete set of eigenvalues.
When (d11 2 d22)2 1 4d12d21 , 0, the eigenvalue has an imaginary part, that is, the

ventilated thermocline is unstable. After some manipulation, (d11 2 d22)2 1 4d12d21 can
be written as

F 2
bg1

f 2 H1cos w 1 g2ẑ z ~K 3 ¹~~H1 2 H2!/f !! G 2

1 4g2
2~K 3 ¹~H1/f !! z ~K 3 ¹~H2/f !!,

(3.5)

where K 5 (cos w, sin w) and ẑ is the unit vector positive upward. This equation means that
the second term of (3.5) must be negative and the � rst term must be small for c to have an
imaginary part. The � rst condition is the well known necessary condition for baroclinic
instability, that is, for baroclinic instability to occur, the potential vorticity gradient,
¹( f/Hj), along the perturbation trajectory must be positive in one layer and negative in the
other (see, e.g., Pedlosky, 1987). The second condition is that the phase speeds of the two
modes are close to each other (see, e.g., Craik, 1985).

The group velocity, cg 5 (cgx, cgy), is obtained by

cgx 5
]c

]~cos w!
, cgy 5

]c

]~sin w!
. (3.6)
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If c(w) has the form

c~w! 5 a cos w 1 b sin w, (3.7)

the wave is nondispersive, and the curve given by the terminal point of the phase velocity
vector, c(w)K 5 (c(w)cos w, c(w)sin w), becomes a circle, i.e.,

X c~w!cos w 2
a

2 D 2

1 X c~w!sin w 2
b

2 D 2

5
1

4
~a2 1 b2!. (3.8)

In this case, the group velocity does not depend on the direction and is the same as the
maximum phase velocity. This type of solution can be obtained in the RY pool where the
potential vorticity in the second layer is assumed to be homogenized (see next subsection).
In general, the solution has a more complex form. However, it can easily be shown that the
group velocity of the wave having the maximum phase speed coincides with its phase
velocity if c is real. To show this, let us introduce new Cartesian coordinates ( x9, y9),
where the x9 axis is taken in the direction of the wavenumber vector of the maximum phase
speed. Writing the wavenumber vector in this coordinate system as (k, l ), the group
velocity can be written as

cgx9 5
]kc

]k
U

l50

, cgy9 5
]kc

]l
U

l50

. (3.9)

Since c does not depend on k and (]/]l )c must vanish at l 5 0, we obtain

cgx9 5 c, cgy9 5 0, (3.10)

for the wave with the maximum phase velocity. For the steady solution whose c is zero,
taking the x9 axis in the direction of the wavenumber vector of the stationary wave, we � nd
that the group velocity is perpendicular to the wavenumber vector, because c 5 0 but
(]/]l )c u l5 0 Þ 0 in this case. To give a more detailed discussion, we need to consider the
explicit form of the matrix D.

b. P.V. homogenized pool

In the Rhines and Young pool, the solution is very simple, because the potential vorticity
in the second layer is uniform. Since the second term in the square root in (B.2) or that in
(3.5) vanishes, the eigenvalue c can be written as

c 5
1

2 H 2
b

f 2 P1cos w 1 U2 z K 1 U b
f 2 P1cos w 1 U2 z K U J , (3.11)

where we have taken only the solution with a plus sign in (3.3) since c2 (w) 5 c1(w 1 p)
as mentioned in the preceding subsection. This equation means that the eigenvalue can be
divided into
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c 5 5 2
b

f 2 P1cos w for
b

f 2 P1cos w 1 U2 z K # 0

U2 z K for
b

f 2 P1cos w 1 U2 z K . 0 .
(3.12)

As noted in the preceding section, the curves consisting of the terminal points of the phase
velocity vectors, cK 5 (c(w)cos w, c(w) sin w), are circles (see Fig. 2a). The group
velocity of each mode becomes a constant vector:

cg 5 5 X 2
b

f 2 P1, 0D for
b

f 2 P1cos w 1 U2 z K # 0

U2 for
b

f 2 P1cos w 1 U2 z K . 0 .
(3.13)

Therefore, the former mode propagates westward independent of the mean � ow direction,
which is always higher than the � rst mode phase speed in the resting ocean with the same
density structure:

Figure 2. Eigenvalue solution in the RY pool (location A in Fig. 1: longitude 5 15°, latitude 5 30°)
as a function of the direction of wavenumber vector: (a) two-dimensional diagram of the phase
velocity vector, (c(w)cos w, c(w)sin w), (b) eigenvectors (vertical structure) and (c) group
velocities. In panel (a), the solid curve corresponds to the N-mode, the dashed curve to the
A-mode. The westward longer arrow (solid) is the maximum phase velocity vector of the N-mode
which is identical to the group velocity; the westward shorter arrow (dotted) is the group velocity
without the basic � ow. The southwestward arrow denotes the basic current velocity in the second
layer. In panel (b), the solid line and the dashed line denote h1 and h2 , respectively, and their
amplitudes are normalized as satisfying=h1

2 1 h2
2 5 1. In panel (c), the solid line and the dashed

lines denote cg x and cg y , respectively.The vertical dotted lines and dash-dotted lines in panel (b)
and (c) denote the wave directions where the N-mode and the A-mode are separated, and those
where the solutions are stationary (c 5 0), respectively.
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c1 5 2
1

2
bf 22$P1 1 ~P1

2 2 4g1g2H1H2!
1/2%, (3.14)

(see also deSzoeke and Chelton, 1999), and the latter mode is purely advective by the
second layer mean � ow (see also Fig. 2c). After Liu (1999b), we refer to these waves as the
N-mode (non-Doppler-shift mode) and the A-mode (advection mode), respectively, and we
represent these modes by subscripts, N and A, hereafter. The angles of the wavenumber
vector, w, dividing the two modes are given by

w 5 tan21 F ]P2/]y 2 bP1/f
]P2/]x G (3.15)

and the angles at location A in Figure 1 (30° longitude, 15° latitude) are 78 degrees and
258 degrees (see Fig. 2c).

The corresponding eigenvectors, RN and RA, which represent the relation between h1

and h2, are given by

RN 5 X 1
1 D , RA 5 X ẑ z ~K 3 ¹~H1/f !!

b

f 2 g1H1cos2 w D . (3.16)

Figure 2b shows R(w). Since h2 2 h1 is zero, the N-mode has no potential vorticity
anomaly in the second layer. On the other hand, the A-mode appears mainly in h1 and is
characterized by the second layer potential vorticity anomaly. The fact that the potential
vorticity in the second-layer in the basic state is homogeneous in the RY pool gives the
reason why the propagation speed of the A-mode coincideswith the second layer advection
velocity. Although the group velocities of both modes are independent of the wavenumber
vector, the vertical structure of the A-mode depends on it. In Figure 2b, we can see that hj

(w 5 0) 5 2hj (w 5 2p). This means that the A-mode cannot have a closed contour by
itself.

The wavenumber vector directions giving stationary solutions are meridional for the
N-mode, and are perpendicular to the basic � ow in the second layer for the A-mode. The
vertical dash-dotted lines in Figure 2b and c denote these angles. The directions of the
group velocities are perpendicular to these wavenumber vectors as mentioned in the
preceding subsection.

Figure 3 shows the temporal evolution of an initial Gaussian-shape disturbance given
only in h1. The temporal evolution is obtained by numerical computation of (3.1). The
variables are nondimensionalized by the horizontal scale L, the initial amplitude in h1 and
the time scale L/ u c1u , where c1 is given by (3.14). The initial axisymmetric disturbance
separates into the N-mode and A-mode; the N-mode propagates westward at the speed
bP1/f 2, and the A-mode propagates at the speed U2. However, this separation is not
complete, and a thin bridge connecting these disturbances remains. Since the potential
thickness anomaly, (h2 2 h1)/f, in the second layer is just advected by U2, we can see that
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this bridge consists of the N-mode. This means that the A-mode or the second layer
potential thickness anomaly always generates the N-mode as the A-mode propagates. This
corresponds to the fact that the A-mode does not have a closed contour of hj by itself. If the
initial disturbance has no potential vorticity anomaly in the second layer, i.e., h1 5 h2, the
disturbance propagates as N-mode keeping the axisymmetric shape and there is no A-mode
wave generation.

c. Ventilated zone

i. Free wave propagation. The eigenvalue, c(w), the eigenvector, (h1, h2), and the group
velocity, cg(w), at location B in Figure 1 are shown in Figure 4. In the present case, the
waves cannot be strictly separated into the two modes. We refer, however, to the wave
mode with cgx # c#gx as the N-mode and the wave mode with cgx . c#gx as the A-mode just
for convenience, where c#gx is the zonal component of the averaged group velocity, c#gx 5

Figure 3. Temporal evolution of an initial disturbance in the RY pool at location A in Figure 1: h1

(left column), h2 (middle column) and h2 2 h1 (right column). The initial disturbance is given by
h1 5 exp{(x2 1 y2 )/(2L)2 }, h2 5 0, and the horizontal coordinates are normalized by L and
time by L/ u c1 u where L is an arbitrary length scale and c1 is given by (3.14). The contour intervals
are denoted below each panel. The slanted straight lines are the stream lines of the second-layer
basic � ow.
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*0
2p cgx(w)dw. The directions, w, separating these modes are denoted by the vertical dotted

lines in Figs. 4b and c.
The wavenumber vector of the N-mode stationary wave (c 5 0) is directed meridionally

and that of the A-mode is perpendicular to the second layer basic current. This is
demonstrated in Appendix B. The maximum phase speeds, however, are not perpendicular
to these wavenumber vectors; the direction of the maximum phase speed of the N-mode is
sifted slightly leftward from the west, and that of the A-mode slightly rightward from the
second layer current velocity (Appendix B). The westward phase speed of the N-mode is
always higher than that in the resting ocean with the same density strati� cation, while the
A-mode phase speed along the basic current is always smaller than the second layer current
velocity.These differences from the waves in the P.V. homogenizedpool are caused by the
potential vorticity distribution in the second layer; the second layer P.V. distribution tends
to force the A-mode to propagate upstream relative to the basic current, and the southward
advection of second layer potential vorticity anomaly affects the N-mode propagation.

Since the wave properties depend on the wave direction, it is not easy to compare the
numerical results to the eigenvalue solutions. So, we de� ne a typical N-mode and A-mode
using the central direction of each mode, i.e.,

w 5
wAN 1 wNA

2
for typical N-node

w 5
wAN 1 wNA

2
1 p for typical A-node

where wAN and wNA are the wave directions separating the two modes (denoted by the
vertical dotted lines in Figs. 4b and c). The group velocities of these typical modes are

Figure 4. Same as Figure 2 but for the ventilated zone (location B in Figure 1: longitude 5 30°,
latitude 5 30°). In panel (a), the westward and southwestward solid arrows denote the typical
group velocity vectors of the N-mode and the A-mode, respectively,and the southwestwarddotted
arrow denotes the basic � ow velocity in the second layer.
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shown by arrows in Figure 4a. The gyre-scale distributions of the group velocities and
vertical structures of the typical modes will be discussed in Section 4.

The temporal evolutionsof initial axisymmetric disturbances are shown in Figures 5 and
6. In these � gures, the variables are nondimensionalized by L and c1 as in Figure 3. When
the initial disturbance is given only in h1 (Fig. 5), the solution is similar to that shown in
Figure 3, in which the disturbance separates into two modes. The second layer thickness
anomaly, (h2 2 h1), however, disperses as well. The propagation velocities of the
maximum h1 and of the maximum h2 agree well with the typical A-mode group velocity
and the typical N-mode group velocity de� ned above, respectively; the locations of the
maximum h1 and maximum h2 at t 5 4 are (20.90, 20.91) and (24.65, 20.2), and those
calculated from the typical group velocities are (20.88, 20.89) and (24.62, 20.17). The
vertical structures, h2/h1, at these locations also coincide with the typical ones; those
values at the locations of the maximum h1 and maximum h2 at t 5 4 are 20.18 and 0.84,
and those of the typical modes are 20.18 and 0.84.

The N-mode wave front does not appear in the second layer thickness anomaly, h2 2 h1,
because h2/h1 . 1 there, and only the A-mode and the bridge connecting the A-mode peak
and the N-mode peak can be seen. The bridge part is barotropic (i.e., h1h2 . 0) and
h2(h2 2 h1) is negative, suggesting that this part consists mainly of waves around w .
240–270 degrees in Figure 4b.

Figure 5. Same as Figure 3 but for the ventilated zone (location B in Fig. 1).
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Figure 6 depicts the evolutionwhen the initial disturbance is given only in h2. The initial
disturbance separates into two modes, and the part of the bridge connecting the two mode
centers has baroclinic structure (i.e., h1h2 , 0) with positive h2(h2 2 h1), which suggests
that this part consists mainly of waves around w . 60–90 degrees in Figure 4b. From these
� gures, we speculate that this part is barotropic when the A-mode disturbance is dominant
but baroclinic when the N-mode disturbance is dominant. The bridge always has a
barotropic structure in the RY pool, because the potential thickness anomaly does not
disperse in that region. Temporal evolution of the axisymmetric initial disturbance with
arbitrary vertical structure can be constructed from these two cases.

ii. Stability.The waves described in the preceding subsection were stable, but this does not
necessarily mean that the ventilated zone is stable to longwave disturbances everywhere.
Liu (1999b) reported that the ray path of the A-mode could not be calculated in the
southwestern region of the gyre because the longwave is unstable there. As noted above,
however, the waves in the ventilatedzone are unlikely to propagate into the shadow zone in
which the longwaves are unstable as will be shown in Section 4d, so that this seems to
suggest that the southwestern region of the ventilatedzone could be unstable. It should also
be noted that the potential vorticity gradients in the upper and the second layers are

Figure 6. Same as Figure 5 but for the initial disturbancegiven only in h2 .
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opposite to each other in the southern half of the ventilated zone. Therefore, it is important
to study the stability of the ventilated zone in the present model.

Since the wave is unstable when (d11 2 d22)2 1 4d12d21 in (3.3) is negative, we check
if there is w satisfying

~d11 2 d22!
2 1 4d12d21 5 0. (3.17)

If there is no w satisfying this equation, waves with any w will be stable at that location,
since there are always stable solutions. Eq. (3.17) can be rewritten as

@~a11 2 a22!
2 1 4a12a21#k

2 1 2@~a11 2 a22!~b11 2 b22!

1 2~a12b21 1 a21b12!#k 1 @~b11 2 b22!
2 1 4b12b21# 5 0, (3.18)

where k 5 tan w and aij and bij are (i, j)-components of matrices A and B. Therefore, if

J 5 @~a11 2 a22!~b11 2 b22! 1 2~a12b21 1 a21b12!#
2

2 @~a11 2 a22!
2 1 4a12a21#@~b11 2 b22!

2 1 4b12b21# , 0, (3.19)

there is no real k satisfying (3.19), and hence the waves are stable. Using (A.3), (A.4) and
(2.5) in (3.19), we obtain

J 5 2
4b2g1g2

2

f1f
2 X 1

f
2

1
f1
D H g1 X 1

f
2

1
f1
D 2

1
g2

f 2 J H2 X ]H

]x D 2

, (3.20)

after tedious manipulation. Since f , f1, J is negative everywhere, and hence the
ventilated zone in the 2.5-layer model is stable to longwaves at least when the outcrop line
is zonal. The result obtained here contrasts with that in a two layer model in which any
vertical shear � ow is unstable to a longwave disturbance (see, Pedlosky, 1987). The
stability to shortwave disturbances will be addressed in Section 5.

d. Shadow zone

The most important result for the shadow zone is that the shadow zone is unstable to
longwave disturbances. Substituting H 5 H0 (5 constant) into (3.5), we obtain

~d11 2 d22!
2 1 4d12d21 5

b

f 2 cos wH b

f 2 P1
2cos w 1 4g1g2H1ẑ z ~K 3 ¹~H2/f !! J (3.21)

If (]/] x)(H2/f ) Þ 0, this term changes sign at w 5 p/2 and 3p/2. In the shadow zone,
(]/] x)(H2/f ) 5 2f 2 1(]/] x) H1 is positive, so that the instability occurs on the side of w

smaller than p/2 (or 3p/2). An example of the dispersion relation is shown in Figure 7 (at
location C in Fig. 1). The instability is caused by coupling of two modes (Fig. 7a), and the
phase shift between h1 and h2 is seen (Fig. 7c). The dependence on wavelength of this
instability and the maximum growth rate will be addressed in Section 5.
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e. Forced waves

In the present system, the two wave modes cannot completely be separated. This
suggests that the forced wave response will be different from that in the resting ocean, in
which the vertical wave modes are independentof each other. In this section, we study how
the waves respond to we- and wd-forcings.

As discussed in Appendix B, steady we-forcing generates only the stationary N-mode
whose crest extends westward, while steady wd-forcing forces only the stationary A-mode,
whose crest extends southward along the second layer basic � ow. This result is consistent
with that expected from the steady ventilated thermocline model (see Huang and Pedlosky,
1999; and see also Appendix C). In addition, the stationary N-mode in the ventilated zone
appears mainly in h2 and has a barotropic structure, i.e., h1/h2 5 H1/H, while the
stationary A-mode appears mainly in h1 and has a baroclinic structure, i.e., h1/h2 5

2H/H1 (Fig. 4b and Appendix B).
Figure 8 depicts the temporal evolution of h1 and h2 when the steady we-forcing with the

following form is applied for t $ 0:

we 5 2
u c1 u ĥ

L
exp$2~x2 1 y2!/r0

2%, (3.22)

Figure 7. Eigenvalue solution in the shadow zone (location C in Fig. 1: longitude 5 58°, latitude 5
25°) as a function of the direction of the wavenumber vector: (a) two-dimensional diagram of
phase velocity vector, (b) eigenvaluec(w) and (c) eigenvectors (vertical structure). In panel (a), at
the portion denoted by the dash-dotted line, the eigenvalue c is complex. The westward dotted
arrow is the group velocity without the basic � ow. In panel (b), the dotted line denotes the
imaginary part of c. In panel (c), the solid, dashed, and dotted lines denote h1 , the real part of h2

and the imaginary part of h2 , respectively,where h1 is assumed to be real and their amplitudes are
normalized as satisfying =u h1 u 2 1 u h2 u 2 5 1.
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where ĥ is the scale of the magnitude of h1 and h2, c1 is the speed of the � rst baroclinic
mode de� ned by (3.14), L is the horizontal length scale and r0 5 2.5L . The time, t, is
normalized by L/ u c1u as well. The initial condition is h1 5 h2 5 0.

Since the steady state is reached soon in the forcing region, the stationary N-mode,
which mainly appears in h2, extends westward directly from the forcing region (see the
middle column in Fig. 8). We can, however, see a large amplitude disturbance in h1 as well
(see the left column in Fig. 8). This disturbance does not extend from the forcing region but
from the western edge of the disturbance mainly seen in h2 (N-mode). Whereas the
N-mode has a barotropic structure (h1h2 . 0), the disturbance mainly seen in h1 has a
baroclinic structure (h1h2 , 0).

The reason why the A-mode is generated at the western edge of the N-mode is illustrated
in Figure 9. Since negative we-forcing corresponds to water supply only to the upper layer,
the upper layer mass increases while the second layer mass is conserved (see the left graph
in Fig. 9a). In the stationary N-mode generated directly by we, however, h1 is much smaller
than h2 (see Fig. 4b), so that only the vertical structure of the stationary N-mode (the
middle graph in Fig. 9a) cannot satisfy the total mass budget, and the A-mode must be

Figure 8. Temporal evolution of disturbance generated by we -forcing which is turned on at t 5 0 in
the ventilated zone (location B in Fig. 1): h1 (left column), h2 (middle column) and h2 2 h1 (right
column). The amplitude is normalized by ĥ in (3.22), and contour intervals are denotedbelow each
panel.
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generated (the right graph). The water supplied by we � ows westward, and the westward
� ow converges at the N-mode wave front. The westward mass � ux, * wedx, however, is
much larger than the propagation speed of the N-mode front multiplied by the amplitude,
cgNh1, because of small h1. In the second layer, large water convergence is necessary at
the N-mode wave front since h2 @ h1. These mass imbalances at the N-mode wave front
excite an A-mode which has large positive h1 and small negative h2. Therefore, when
we-forcing is applied, a large temperature anomaly in the upper thermocline inevitably
occurs south of the forcing latitude, while the large temperature anomaly in the lower
ventilated thermocline is limited only to the forcing latitude. This result contrasts with that
in a resting ocean; when the ocean is at rest, the effect of the we-forcing can be seen only
within the forcing latitude, even in the transient stage.

When wd-forcing with the same spatial distribution as in (3.22) is applied, a similar
phenomenon occurs (see Fig. 10). The negative wd-forcing transfers the water mass from
the upper layer to the second layer, and total mass is conserved. In the forcing region, the
stationary A-mode responds. Although u h1u @ u h2u for the stationary A-mode, h2 is not
negligible and is positive when wd is negative. This means that the total mass cannot be
conserved only by the stationary A-mode. Therefore, the N-mode is generated at the
southwestern edge of the A-mode, although its signal is weak.

Figure 9. Schematic diagram for explaining the reason of A-mode generation at the western edge
(wave front) of the forced N-mode: (a) side view, and (b) plane view. The solid arrows denote the
upper layer mass � ux, the symbols J and R in (a) denote the mass � ux from the N-mode to the
A-mode and the A-mode to the N-mode respectively, and the open arrow in (b) denotes the
direction of the second layer mass � ux.
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In the RY pool, the characteristics of steady response are similar to those in the
ventilated zone; only the N-mode responds to a steady we-forcing, and only the A-mode
responds to a steady wd-forcing. However, in the RY pool, we-forcing only generates the
N-mode, even in the transient stage (not shown), since the N-mode satis� es the relation
h1 5 h2. On the other hand, the response to wd-forcing is similar to that in the ventilated
zone (not shown); a weak N-mode is radiated at the southwestern edge of the A-mode
signal.

4. Propagation in an oceanic gyre

So far, we have studied the wave dynamics based on the local eigenvalue solution and
numerical computations with constant coef� cients A and B. In the present section, we
discuss the gyre-scale wave dynamics.

a. Wave properties and steady solutions

We have de� ned the typical group velocity and the typical vertical structure of each
mode in Section 3c, and shown that they agree well with the propagation speeds of the

Figure 10. Same as Figure 8 but for wd -forcing.
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locations of maximum h2 and maximum h1 and the vertical structures. We examine the
gyre scale distributions of these properties before discussing the wave propagation.

Figures 11(a) and (b) depict the distributions of the N-mode typical group velocity
vectors. The contours in Panel (a) denote the ratio of the absolute value of the N-mode
typical group velocity, u cgNu , to that of the � rst baroclinic mode in the resting ocean, c1,
de� ned by (3.14). In the RY pool, the ratio cgN/c1 is unity for H1 5 0 and takes a
maximum for H1/H2 5 0.5 when g1 5 g2 (compare (3.14) with (3.13)). This tendency
holds in the ventilatedzone as well. Since H1/H2 increases southward in the present model,
cgN/c1 increases southward. Around 23N, H1/H2 becomes 0.5, so the maximum occurs
there. Furthermore, in the ventilated zone, advection by the second layer current is also
important (see Appendix B). Killworth et al. (1997) showed that the ratio is smaller in the
lower latitude, based on the observed ocean density � eld. The difference from their result
must come from the difference between the density structures in the 2.5-layer ventilated
thermocline model and in the real ocean. The potential vorticity distribution in unventilated
layers may also be important for the wave propagation in the real ocean. On the other hand,
the vectors in panel (b) imply that the A-mode typical group velocity is almost along the

Figure 11. Gyre scale distribution of wave properties: (a) typical group velocity of the N-mode, (b)
typical group velocity of the A-mode, (c) typical vertical structure, h2 /h1 , of the N-mode, and
typical vertical structure of the A-mode. Solid contours in (a) and (b) are the ratios of the group
velocities to c1 and the second layer advection speed, respectively.The dashed contours in (b) are
the second layer stream lines, P2 .
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second layer pressure contours (dashed lines), but it is smaller than the advection velocity:
only 70% in the southwestern region (the solid contours represents the ratio of the A-mode
typical group velocity to the advection velocity).

The gyre scale distribution of the typical vertical structure, h2/h1, is depicted in Fig-
ures 11(c) and (d). For the N-mode, h2/h1 is almost unity in the central to the southern
region, and is unity in the RY pool as demonstrated in Section 3b. This means that the
typical N-mode wave has only a small potential vorticity anomaly in the second layer even
in the ventilated zone. On the other hand, h2/h1 of the A-mode is almost zero near the
outcrop latitude, while its magnitude is nearly unity in the southwestern region.

Since we will discuss the response to atmospheric forcing in Section 4c, we outline the
steady solutions as well (for details, see Appendix C). The following summary is only for
the RY pool and the ventilated zone, because the shadow zone is unstable as mentioned in
Section 3d.

1. The amplitudes, u h1u and u h2u , of the N-mode decrease westward because of the
increases of H1 and H2.

2. The amplitude, u h1u , of the A-mode decreases southward, while u h2u is almost
unchanged and increases slightly north of a certain latitude. The increase of u h2u
means that the difference between the perturbed stream lines and the basic stream
lines increases southward in the second layer.

3. The potential thickness anomaly in the second layer, (h2 2 h1)/f, is not conserved
along the basic state stream lines in the ventilated zone. This is because the path of a
� uid particle changes; the path shifts eastward for positive potential thickness
anomaly and westward for negative potential thickness anomaly.

4. The N-mode solution is discontinuousat the internal boundary between the ventilated
zone and the RY pool, since the vertical structure of the stationary N-mode is
different in these two zones. This discontinuity is signi� cant in h1 because H @ H1,
and is canceled by the change in the position of the internal boundary.

b. Free wave propagation

Figure 12 shows the temporal evolution of an initial disturbance given by

h1 5 h0exp$2@~x 2 x0!
2 1 ~y 2 y0!

2#/r0
2%, h2 5 0 (4.1)

where ( x0, y0) is set to be longitude45° and latitude 30°, ( x, y) 5 (al sin u, au ) and r0 5

250 km. The initial disturbance disperses into two parts, one of which resembles the
N-mode and the other the A-mode. The bridges connecting these parts are also seen. Fig-
ure 13(a) shows the trajectories of the maximum h1 and the maximum h2 (h1max and h2max,
hereafter) with the trajectories calculated by the N-mode and A-mode typical group
velocities, and those calculated by c1 and the group velocity of the stationary A-mode. The
trajectory calculated from the N-mode typical group velocity ( h ) does not start at the
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center of the initial disturbance but was chosen as the N-mode trajectory � ts the h2max

trajectory. The h2max trajectory (1) agrees well with that calculated from the N-mode
typical group velocity ( h ). The propagation velocity has a southward component in the
ventilated zone and is purely westward in the RY pool, and is larger than c1({). The

Figure 12. Gyre-scale evolution of an initial disturbance given only in h1 : h1 (left column) and h2

(right column). The amplitude is normalizedby that of the initial disturbance,and contour intervals
are denoted below each panel.
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trajectory of h1max (3) also agrees well with that calculated from the A-mode typical group
velocity (E), although the A-mode typical trajectory is slightly displaced from that of
h1max; the trajectory of h1max is rather strictly along the P2 contour as is the trajectory
calculated from the group velocity of the stationary A-mode (‚).

Figure 13. Wave properties obtained by the numerical computation shown in Figure 12: (a)
trajectoriesof h1m a x (3) and h2 m ax (1), (b) h1 and h2 at h1 m ax (3, ‚) and at h2 m a x (1, E), and (c)
vertical structures, h2 /h1 at h1m a x (3) and h2m a x (1). In panel (a), trajectories calculated by the
typical A-mode group velocity (E), the typical N-mode group velocity (h ), the stationary A-mode
group velocity (‚) and c1 ({) are also plotted, and the shade denotes the RY pool. The dashed
lines in panel (b) are amplitudes calculated by (C.12) using f at the location of h1m a x; the dotted
line is proportional to 1/H in the ventilated zone and to 1/P1 in the RY pool calculated by H and
P1 at the location of h2m a x . In panel (c), h2 /h1 of the typical A-mode (E) and the stationary
A-mode (‚) at the location of h1 m a x and that of typical N-mode ( h ) at the location of h2m a x are
also plotted.
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Figure 13(b) shows h1 and h2 at the locations of h1max and h2max. At the location of
h1max, h1 (3) is positive and h2 (‚) is negative, and the amplitude of h1 rapidly decays as
it propagates, while that of h2 is almost constant. This behavior is similar to the latitudinal
dependence of the amplitude in the stationary A-mode (dashed line in Fig. 13b), although
the change in h1 is much larger than that of the stationary A-mode. The vertical structure,
h2/h1, shows similar behavior of the stationary A-mode (‚ in Fig. 13c) as well, but not the
typical A-mode (E).

On the other hand, at the location of h2max, h1 and h2 (1 and E in Fig. 13b) almost
coincide with each other. Therefore, the vertical structure, h2/h1, (symbol, 1, in Fig. 13c)
slightly differs from that of the typical mode whose h2/h1 is less than unity in the ventilated
zone ( h in Fig. 13c). The amplitude decays gradually as it propagates westward (Fig. 13b).
This amplitude decay must have been caused by the fourth term of (2.4), since the vertical
structure (eigenvector) is almost unchanged. This suggests that each of (z1, z2) in (2.9) will
be constant along the h2max trajectory, since (2.9) does not have a term directly propor-
tional to the amplitude of (z1, z2). The relation between (h1, h2) and (z1, z2) in the
ventilated zone is

X h1

h2
D 5 1

f

H
z1

f

H1
z2

2 5 1
f

H
z1

ff1

~f1 2 f !H
z2

2 ,

where (A.3) has been used. In the RY pool, since h2/h1 5 1 for the N-mode, z2 must
vanish. Therefore,

X h1

h2
D 5 1

g2 f

P1
z1

g2 f

P1
z1

2 .

If we assume that (z1, z2) are kept constant in each zone, hjs will be proportional to 1/H in
the ventilated zone, but to 1/P1 in the RY-pool, since f is almost constant. The dotted line
in Figure 13(b) shows that the amplitude change calculated here agrees well with the
temporal evolution of the N-mode amplitude.

The cause of the differences between the typical wave properties and the numerical
results could be interpreted by the horizontal structures of the disturbances (Fig. 12). Both
the disturbances of h1max and h2max are elongated along the potential vorticity contours in
the second layer. This suggests that the disturbances are dominated by the modes whose
wavenumber is directed parallel to ¹(H2/f ). If we set K 3 ¹(H2/f ) 5 0 in (B.2), we can
easily � nd that h2/h1 becomes unity for the N-mode, and the A-mode becomes the
stationary A-mode. The group velocity of the stationary A-mode is along the P2 contour
and its vertical structure agrees well with that at the location of h1max. The elongationof the
disturbances is perhaps caused by the dependence of the group velocities on the latitude.
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The magnitudes of the group velocities of both modes tend to increase southward (see Fig.
11), so that the N-mode crest inclines northeastward and the A-mode crest is stretched
along the P2 contour. The decay rate of h1 at the location of h1max is larger than that
expected from the latitudinal dependence of the amplitude of the stationary A-mode as
mentioned above. This could be caused by dispersion along the P2 contour.

c. Forced wave responses

Figure 14 shows the temporal evolution when an anomalous Ekman pumping whose
lateral distribution is the same as that in (4.1) is applied for t . 0. In this � gure, the
magnitude of anomalous Ekman pumping velocity is set to be 21.0 3 1026 m/s. The
N-mode disturbance which appears mainly in h2 is generated in the forcing region and
propagates westward. The A-mode is continuously generated at the wave front of the
N-mode unless the N-mode wave front propagates into the RY pool. In the RY pool,
because of zero potential thickness anomaly, further generation of the A-mode at the
N-mode wave front does not occur. The stationary N-mode experiences a signi� cant
change at the internal boundary between the ventilated zone and the RY pool because the
vertical structure in the RY pool is different from that in the ventilated zone. Since the
potential thickness anomaly in the second layer in the RY pool is zero, the amplitude in h1

increases at the internal boundary, and discontinuities in h1 and h2 occur. This discontinu-
ity is canceled by the eastward shift of the internal boundary (see Appendix C).

As mentioned in Section 3e, although the steady response to the anomalous Ekman
pumping is limited to the latitude band in which the forcing is applied, the A-mode signal
appears in the southwestern region in the transient stage, causing a temperature anomaly in
the upper thermocline there. The amplitude in h1 of the A-mode signal decreases as it
propagates southward, mainly because f decreases, but the signal will persist about ten
years.

For wd-forcing with the same lateral distribution, the solution is qualitativelythe same as
that in the local case in Section 3e, except for the latitudinal dependence of the amplitude
(Fig. 15). The A-mode signal extends southwestward along the second layer stream lines of
the basic state. The amplitude in h1 decreases southward signi� cantly, while that in h2 is
almost constant and slightly increases near the forcing region as mentioned in Appendix C.
Although the N-mode is generated at the wave front of the A-mode, its amplitude is small.

5. Dependence on the wavelength

So far, only the longwave disturbances have been discussed. In this section, we study the
dependence of the local wave properties on the wavelength. As mentioned in Section 3a,
the treatment in Section 3 is the same as the longwave approximation in the quasi-
geostrophic model, and the inclusion of the relative vorticity is a rather easy task. The
linearized quasi-geostrophic equations can be written as

]q j

]t
1 U j

]q j

]x
1 V j

]q j

]y
1 u j

]

]x

H j

f
1 vj

]

]y

H j

f
5 0, (5.1)
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Figure 14. Gyre-scale evolution of disturbances generated by we -forcing which is turned on at t 5
0: h1 (left column), h2 (right column). The forcing has the same lateral structure as the initial
disturbance in Figure 11, and the magnitude of the forcing is 1026 m s21 . The contour intervals
[unit is m] are denoted below each panel.
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where j 5 1, 2 and

q1 5
1
f H h1 2

H1

f 2 @g1¹
2h1 1 g2¹

2~h1 1 h2!# J , (5.2)

q2 5
1
f H h2 2 h1 2

H2

f 2 g2¹
2h2 J , (5.3)

Figure 15. Same as Figure 14 but for wd -forcing.
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are the quasi-geostrophic potential vorticities multiplied by 2Hj/f
2 (potential thicknesses)

in which f and Hj are treated as constants, and the other variables and parameters are the
same as in previous sections. Considering the plane wave solution, (h1, h2) 5 (ĥ1,
ĥ2)exp{i(kx 1 ly 2 st)}, (5.1) can be rewritten in a matrix form:

2sM X ĥ1

ĥ2
D 1 DK X ĥ1

ĥ2
D 5 0. (5.4)

where

M 5 1 11
H1

f 2 g1 u K u 2
H1

f 2 g2 u K u 2

21 11
H2

f 2 g2 u K u 2 2 , (5.5)

DK 5 1 ~kU1 1 lV1!m11 1 g1ẑ · X K 3 ¹ X H1

f D D ~kU1 1 lV1!m12 1 g2ẑ · X K 3 ¹ X H1

f D D
~kU2 1 lV2!m21 ~kU2 1 lV2!m22 1 g2ẑ · X K 3 ¹ X H2

f D D 2 .

(5.6)

Here K 5 (k, l ) and mij is the (i, j)-component of M. The eigenvalue of the matrix M21DK

gives the frequencies, s, as functions of k and l. Although one set of (k, l ) gives two
frequencies, s1 and s2, we only consider one of them, because s1(k, l ) 5 2s2(2k, 2l )
as noted in Section 3a. The phase speed (the real part of s/=k2 1 l2), group velocity and
the growth rate (imaginary part of s) are shown in Fig. 16 for each location A, B and C
denoted in Figure 1.

In the RY pool (location A), the A-mode is nondispersive and its group velocity always
coincides with the second layer advection velocity (shaded region in Fig. 16a), while the
N-mode phase speed decreases with the wavenumber. The phase speeds of these modes
coincide with each other around the wavelength of 100 km, but no instability occurs
because of zero potential vorticity gradient in the second layer.

As proved in Section 3c, the ventilated zone is stable to longwave disturbances, but not
to disturbances with � nite wavelength. The A-mode in the ventilated zone is weakly
dispersive, while the N-mode phase speed decreases with wavenumber as in the RY pool.
The phase speed of the westward propagating N-mode with wavelength of 628 km is 91%
of that of the N-mode longwave at location B. As the wavenumber increases, the phase
speeds of the two modes become closer to each other, and instability occurs around the
wavelength of 200 km. This instability is of course a baroclinic instability. The e-holding
time scale of maximum unstable growth is 120 days and its wavelength is 110 km.

In the shadow zone, longwaves are unstable as proven in Section 3c. The growth rate
increases with wavenumber. The wavelength giving the maximum growth rate at location
C is about 130 km, and its e-holding time scale is 40 days.

The gyre scale distributions of wave properties are depicted in Figure 17. It can be seen
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Figure 16. Phase speeds, group velocities [m s2 1] and growth rate [s21 ] in the (k, l ) plane at
locations A (RY pool), B (ventilated zone) and C (shadow zone) in Figure 1b: (a) phase speed
(contour) and group velocity (arrow) at location A where the waves are stable, (b) phase speed
(contour) and group velocity (arrow) at location B, (c) growth rate at location B, (d) phase speed
(contour) and group velocity (arrow) at location C, (e) growth rate at location C. Shade in (a)
denotes the region where the wave is non-dispersive (group velocity coincides with the second
layer current velocity), and the shade in the other panels denotes the unstable region.
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in panels (a) and (b) that the instability in the shadow zone is much stronger than that in the
ventilated zone, and the wavelength of the most unstable wave in the ventilated zone is
much shorter (around 100 km) than that in the shadow zone (around 200 km). In the
shadow zone, the growth rate is large near the eastern and southern boundaries, while that
in the ventilatedzone is large in the center of the gyre. The dispersive nature of the N-mode
reduces the westward phase speed even in waves with the wavelength of several hundred
km, e.g., k 5 1/100 km (wavelength is 628 km) as discussed above. In the southern
subtropical gyre, however, the westward phase speed is still higher than c1, as shown in
panel (c).

6. Summary

In the present article, we have investigated the linear planetary wave dynamics in a
2.5-layer version of the LPS model. First, we have considered longwave disturbance under
the assumption that the horizontal scale is much shorter than the gyre scale. Second, the
gyre scale propagation of disturbances has been considered, and � nally, we have brie� y

Figure 17. Gyre-scale distributionsof wave properties with � nite wavelength: (a) maximum growth
rate [s21 ], (b) wavelength of the most unstable wave [km], and (c) westward phase speed of the
N-mode with 628 km wavelength relative to c1 .
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discussed the effects of � nite wavelength on the local wave properties. The main results are
summarized as follows:

1. The shadow zone is baroclinically unstable while the ventilated zone is stable to
long-wave disturbances, at least when the outcrop line is zonal.

2. Local eigenvalue analysis has con� rmed that there are two modes as discussed by Liu
(1999a,b); one of them (the N-mode) has a barotropic structure and has strong
westward propagation tendency, and the other (the A-mode) mainly has a baroclinic
structure and tends to propagate along the second layer basic � ow.

3. In the ventilated zone, the N-mode and the A-mode are dispersive, and the vertical
structure depends on the wave direction. We introduce a typical group velocity and
typical vertical structure for each mode. The typical group velocity of the N-mode is
directed almost westward, but slightly southward, and its magnitude is larger than the
group velocity of the � rst baroclinic mode in a resting ocean. The typical group
velocity of the A-mode is directed almost along the second layer current and its
magnitude is smaller than the advection velocity. These typical wave properties can
interpret well the propagation of an initially compact disturbance in the local model.

4. When we-forcing is applied, the N-mode is generated. In the ventilated zone,
although steady we-forcing only generates the stationary N-mode which extends
westward, the wave front of the N-mode generates the A-mode which yields a
signi� cant anomaly in the upper layer depth south of the N-mode crest. For
wd-forcing, the A-mode is generated in the forcing region, and propagates southward
along the second layer pressure contour, generating the N-mode at the wave front
similar to the we-forcing case.

5. Free waves in a linearized planetary geostrophic model behave similarly to those in
the local model. A detailed examination, however, shows some differences from the
local case. In the planetary geostrophic case, both the disturbances appearing in
mainly h1 and in h2 tend to be dominated by wave modes whose wavenumber vector
is parallel to the second-layer potential vorticity gradient. The amplitude decay of the
N-mode is proportional to 1/H in the ventilated zone and to 1/P1 in the RY-pool.
When we-forcing is applied in the ventilated zone, the N-mode crosses the internal
boundary between the ventilated zone and the RY pool, and jumps in the interfacial
depths occur there because the second layer potential vorticity anomaly cannot enter
the RY pool.

6. Dependences of the local wave properties on the wavelength have also been
examined. The N-mode westward phase speed decreases with wavenumber. The
A-mode is weakly dispersive in the ventilated zone, but non-dispersive in the
RY-pool. In the RY pool, the two modes do not interact with each other and there is
no instability. In the ventilatedzone, the two modes interact and instabilityoccurs at a
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� nite wavelength. The instability in the ventilated zone is much weaker than that in
the shadow zone where the longwave disturbance is also unstable.

The existence of rather strong instability in the shadow zone suggests that the second
layer in the shadow zone might have a mean motion in a time-dependent nonlinear model
because the second layer potential vorticity would be mixed by unstable waves. The
instability in the ventilated zone is weak and is limited to shortwaves, so that it will not be
very signi� cant in the gyre-scale dynamics. In regard to the application to ocean climate,
item 4 is important, because the A-mode generated at the N-mode wave front can cause
signi� cant warming/cooling south of the forcing latitude, and the A-mode signals would
persist in the subtropical gyre within ten years or more.
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APPENDICES

A. Basic state

The basic state used in this paper is a 2.5-layer version of the LPS model (Luyten et al.,
1983). The domain is divided into three zones, and the solution in each zone can be written
in terms of the Coriolis parameter, f, the Sverdrup function, D0

2(l , u ):

D0
2~l , u! 5

2f 2

bg2
E

le

l

We~l, u!a cos udl, (A.1)

and the given parameters: H0 5 H(le), f1 5 f(u1), and g1 and g2.

Rhines and Young pool

In this zone, the potential thickness in the second layer is � xed at the value of that at the
intersection of the western boundary and the outcrop line.

H2 5
f

f1
@H0

2 1 D0
2~lw, u1!#

1/2,

H1 5
g2

g1 1 g2
F 2H2 1 H X g1

g2
1 1D ~H0

2 1 D0
2! 2

g1

g2
H2

2 J 1/2 G , (A.2)

where lw is the longitude at the western boundary.

Ventilated zone

In this zone, the potential thickness in the second layer is determined at the outcrop
latitude and is conserved along constant H .

H1 5 X 1 2
f

f1
D H, H2 5

f

f1
H, (A.3)
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where

H 5 H1 1 H2 5 5 g2~H0
2 1 D0

2!

g1 X 1 2
f

f1
D 2

1 g2 6
1/2

. (A.4)

Shadow zone

In this zone, the H 5 H1 1 H2 is � xed at the constant value H0, since the second layer is
at rest.

H1 5 X g2

g1
D0

2 D 1/2

, H2 5 H0 2 H1. (A.5)

B. Some details of the eigenvalue solutions

Using (2.5), the eigenvalue of matrix D can be written as,

c 5
1

2 H 2
b

f 2 P1cos w 1 U2 · K

1 Î X b

f 2 P1cos w 1 U2 · K D 2

1
4bg1g2

f 2 H1ẑ · X K 3 ¹
H2

f D cos w J , (B.1)

where we have taken only the plus sign. The difference from the case with u ¹(H2/f ) u 5 0
in Section 3b arises from the last term in the square root of (B.1). This term can be rewritten
as,

4bg1g2

f 2 H1ẑ · X K 3 ¹
H2

f D cos w 5 2
4bg1g2

f 2 H1 u ¹~H2/f ! u sin~w 2 wq!cos w. (B.2)

where wq is the direction of ¹(H2/f ) (p , wq , 3p/ 2 in the northern half of the gyre and
p/ 2 , wq , p in the southern half). When only the plus sign is taken, the westward
propagating N-mode is given by w 5 p, and the A-mode propagating along H2/f contours
is given by w 5 wq 1 p/ 2 in the north and by w 5 wq 2 p/ 2 in the south. It should be
noted that w 5 wq 2 p/ 2 is anti-parallel to U2, hence c , 0 for the A-mode in the
southern half of the gyre.

Wave propagation in the ventilated zone

First, let us consider the effect of ¹(H2/f ) (or the second layer potential vorticity
gradient) on the westward propagating N-mode with w 5 p. Since wq . p in the northern
half of the ventilated zone and wq , p in the south, the term (B.2) is negative in the
northern half and positive in the southern half. Therefore, the westward velocity of the
N-mode in the southern half of the ventilated zone is higher than that in the RY pool, and
lower in the northern half. On the other hand, since the w derivative of the term (B.2) at w 5
p is positive everywhere in the ventilated zone, the direction with the maximum phase
velocity of the N-mode shifts southward from westward.
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In regard to the A-mode propagating along the second layer potential vorticity contour,
sin(w 2 wq)cos w is positive in the north and negative in the south. Since c . 0 in the
north and c , 0 in the south, this means that the phase speed of the A-mode propagating in
the direction of U2 is smaller than the advection speed. Since cos w is a decreasing function
of w for 0 , w , p/2 (south) and is an increasing function for 3p/2 , w , 2p (north), we
can � nd that the direction of the fastest propagating A-mode shifts rightward from the
direction of U2.

Stationary waves and steady response

From (B.1) or the condition that d11d22 2 d12d21 5 0, we can easily � nd that the
stationary wave solutions satisfy

w 5
p

2
, or w 5 2tan21

V2

U2
(B.3)

The eigenvectors of stationary waves become

Rs 5 X H1

H D for stationary N-mode ~w 5 p/2!, (B.4)

Rs 5 X H
2H1

D for stationary A-mode ~w 5 2tan V2/U2!. (B.5)

The group velocities of these modes are westward for the stationary N-mode, and
southwestward along U2 for the stationary A-mode.

When we write a steady solution as

X h1

h2
D 5 Rsf, (B.6)

the equation of the amplitude f for steady forcing W becomes

LsNRs

]f

]n
5 LsW, (B.7)

for each stationary mode, where Ls is the left eigenvector of D, n is the coordinate directed
to w 1 p/2 (perpendicular to s-coordinate), N 5 2A sin w 1 B cos w and W 5t (2we 1
wd, 2we). Since Ls 5 (0, 1) for the stationary N-mode and Ls 5 (1, 21) for the
stationary A-mode, the steady we forcing excites only the stationary N-mode, while the
steady wd-forcing excites only the stationary A-mode.

C. Steady solutions in oceanic gyre

Although we can derive the linear steady solutions from (2.9) with ]/]t 5 0, here we
derive them by linearizing the nonlinear steady solution (A.2)–(A.4) to a perturbation.
Since the stationary N-mode is generated by a we anomaly, we can obtain the perturbed
interface depth, h1 and h2, corresponding to the stationary N-mode, by changing D0

2 to
D0

2 1 fN, where fN is an anomaly of the Sverdrup function. On the other hand, since the
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stationary A-mode is generated by the potential thickness anomaly without change in the
total transport, we can obtain those for the stationary A-mode, by changing the second layer
potential thickness functional relation, H2/f 5 Q2(H), to (H2 1 h2 2 h1)/f 5 Q2(H 1
h2) 1 fA(H 1 h2), where Q2(H) denotes the functional relation between the second
layer potential thickness and the second layer stream function H in the basic state, and fA

is an anomaly of the potential thickness.

Rhines and Young pool

When we take fN into consideration, the Sverdrup relation becomes

g1~H1 1 h1!
2 1 g2~H 1 h2!

2 5 H0
2 1 D0

2 1 fN, (C.1)

where fN is a constant in the zonal direction, because we consider the N-mode wave far
from the forcing region. Linearized version of (C.1) is

2g1H1h1 1 2g2Hh2 5 fN. (C.2)

Since the stationary N-mode has no potential thickness anomaly in the second layer,

h2 2 h1 5 0. (C.3)

From (C.2) and (C.3), we obtain

h1 5 h2 5
fN

2@g1H1 1 g2H#
. (C.4)

On the other hand, for the stationary A-mode, the potential thickness in the second layer
is

1
f

~H2 1 h2 2 h1! 5 Q2~H 1 h2! 1 fA~H 1 h2!. (C.5)

Since the potential vorticity in the basic state, Q2
2 1, is constant in the RY-pool, the

linearized version of this equation becomes

1
f

~h2 2 h1! 5 fA~H!. (C.6)

From (C.2) with fN 5 0 and (C.6), we obtain

h1 5 2
f g2H

g1H1 1 g2H
fA~H!, h2 5

f g1H1

g1H1 1 g2H
fA~H!. (C.7)

f decreases southward, while H1 increases. So, the latitudinal distributions of u h1u and u h2u
are different. The amplitude in h1 decreases southwestward, but that in h2 slightly
increases for fHw/f1H . (1 1 g2/g1) 2 =(g2/g1)(1 1 g2/g1), where Hw 5 H(lw, u1).
Since H 1 h2 gives a perturbed stream line in the second layer and H increases westward,
the positive h2 means eastward shift of the stream line, and the southward increase in h2
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means that the difference between the stream lines in the basic state and the perturbed state
increases southward.

Ventilated zone

For the stationary N-mode, since there is no potential thickness anomaly and Q2(H 1
h2) 5 (H 1 h2)/f1, the linearized potential thickness equation becomes

1
f

~h2 2 h1! 5
h2

f1
. (C.8)

From (C.2) and (C.8), we obtain

h1 5
~1 2 f/f1!fN

2@g1~1 2 f/f1!
2 1 g2#H

, h2 5
fN

2@g1~1 2 f/f1!
2 1 g2#H

. (C.9)

The amplitude decreases westward since H increases.
For the stationary A-mode, the potential thickness becomes

1
f

~H2 1 h2 2 h1! 5
1
f1

~H 1 h2! 1 fA~H 1 h2!. (C.10)

The linearized version of this equation is

1
f

~h2 2 h1! 5
1
f1

h2 1 fA~H!. (C.11)

From (C.2) with fN 5 0 and (C.11), we obtain

h1 5 2
g2 ffA~H!

g1~1 2 f/f1!
2 1 g2

, h2 5
g1 f~1 2 f/f1!fA~H!

g1~1 2 f/f1!
2 1 g2

. (C.12)

Because of the dependenceof f on latitude, the amplitude of h1 decreases southward, while
that of h2 slightly increases for f/f1 . (1 1 g2/g1) 2 =(g2/g1)(1 1 g2/g1). The
potential thickness anomaly (h2 2 h1)/f is not conserved along the H contour but its
magnitude is always larger than u fAu , because the trajectory path is not along the H
contour; the trajectory path shifts eastward when fA is positive and westward when fA is
negative. Since H2/f increases westward, the eastward shift of the trajectory path yields a
positive potential thickness anomaly larger than fA.

N-mode crossing the internal boundary

The vertical structure of the stationary N-mode in the RY pool is different from that in
the ventilated zone, so that the linear solution will be discontinuous at the internal
boundary between them. This discontinuitymust be canceled by the change in the location
of the internal boundary. If the longitude of the internal boundary in the basic state is
located at lB and the displacement caused by the N-mode is Dl, the linearized potential
thickness at l 5 lB 1 Dl evaluated in the RY pool and in the ventilated zone can be
written, respectively, as
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1
f

~h2 2 h1! U
lB2

5 DQ2, (C.13)

1
f

~h2 2 h1! U
lB1

1
1
f

]H2

]l
U

lB1

Dl 5
h2

f1
U

lB1

1
1
f1

]H

]l
U

lB1

Dl, (C.14)

where the subscripts lB2 and lB1 denote the values at lB evaluated in the RY pool and in
the ventilated zone, respectively, and DQ2 is an anomaly of the homogenized potential
thickness in the RY pool which occurs when the anomalous we forcing is applied at the
outcrop latitude. The condition that they coincide to each other yields

Dh2 2 Dh1 2
]H2

]l
U

lB1

Dl 5 0, (C.15)

f1DQ2 2 h2 u lB1 2
]H

]l
U

lB1

Dl 5 0, (C.16)

where Dhj 5 hj u lB2
2 hj u lB1

. On the other hand, continuity of the Sverdrup function at
lB 1 Dl requires

g1H1Dh1 1 g2HDh2 5 0. (C.17)

Solving (C.15)–(C.17), we obtain the jumps in hj at l 5 lB as

Dh1 5 h1 u lB2
2 h1 u lB1

5
g1fH

f1P1
~f1DQ2 2 h2 u lB1

!, (C.18)

Dh2 5 h2 u lB2
2 h2 u lB1

5
g1fH1

f1P1
~f1DQ2 2 h2 u lB1

!, (C.19)

where we used (A.3). Since H is much larger than H1, the jump in the upper interface is
more signi� cant than that in the lower interface.
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