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The transport in the Ekman surface layer
on the spherical Earth

by Nathan Paldor1

ABSTRACT
The modi� cation of the transport in the Ekman layer on the f-plane due to the Coriolis parameter’s

variation with latitude and the curvature of Earth’s surface is analyzed by considering the temporal
changes in the angular momentum. The latter plays the role of a dynamical variable of the model,
replacing the zonal velocity component, and drag is modeled by Rayleigh friction. The steady
transport,which on an f-plane is perpendicularto the applied wind stress, is recoveredon the Earth as
a special solution where the meridional velocity is time-independent. For zonal wind stress, the
trajectory on Earth is simply a great circle that passes through the poles while for meridional wind
stress the special solution can have a time-independent nonzero meridional component so the
trajectory does not have to be purely zonal. This asymmetry between zonal and meridional wind
stresses on the Earth is due to the Coriolis parameter’s variation with latitude only—an effect that is
completely neglected on the f-plane.

For steady wind forcing, the dynamical system is three-dimensionaland its � xed points are located
at the latitudes of vanishing wind stress. In the drag-free case, when the curl of the wind stress does
not vanish at the � xed points, these points are always unstable; namely there exists at least one
repulsivedirection in (the 3D) phase space. When drag is included, these steady states still prevail but
become stable for realistic values of the wind forcing and drag. An additional steady state, located
right on the equator, exists in this case and its zonal velocity attains a constant value determined by
the balancebetween the applied stress and the drag force. Although drag is present, this steady state is
unstable for negative wind stress (i.e. easterly winds) so any deviation from a purely westward,
equatorial, trajectory will grow exponentially in time. Naturally, no similar instability of the steady
states occurs on the f-plane.

The curl of the zonal wind stress at the latitudes where the stress itself vanishes determines the
trajectoryof a water column originatingthere via the nonlinear interactionbetween the motion due to
inertial oscillationsand that due to the wind-forced changes of the angular momentum.

Temporal or zonal dependence of the wind stress has a profound effect on the trajectories,
especially near the unstable latitudes due to the increase in the dimensionality of the system that
enables more complex trajectories. The present simple model can quantitatively reproduce the
observed fast dispersal of nearby launched drifters with steady and smooth wind stress. It can also
explain qualitatively the different spectra of clusters of drifters launched in two � eld experiments in
the NE Paci� c Ocean under similar winds and the highly variable angle between the wind and the
observed trajectoriesof clusters of drifters.
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1. Introduction

This study is motivated by recent observations of the fast dispersal of trajectories of
drogued drifters in the ocean’s surface such as that documented in Paduan and Niiler
(1993; Fig. 4), shown here as Figure 1. Three TRISTAR drifters (drogued at 15 m) that had
been launched in early October 1987 within 1 week and 200 km of each other, converged
to a distance of about 100 km of each other on 10/Oct./87. In the subsequent 164 days,
drifter #7930 traveled about 1000 km northward, drifter #7944 traveled about 850 km
eastward while drifter #7981 hardly moved at all from its launch site. Such dramatic
dispersal of nearby trajectories is typical of chaotic dynamics where phase space orbits can
diverge exponentially. Yet, the existing theory of transport in the Ekman layer is linear
( f-plane), which implies that the only way for it to be relevant to these drifter observations
is for the wind stress (i.e. the forcing term) to vary wildly on short time and length scales.

Figure 1. Observation of the trajectories of three drifters launched in the northwest Paci� c Ocean
during the � rst week of October 1987. On the 10th of October, the three drifters came within
200 km of one another and during the following 164 days one drifter moved less than 100 km, a
second one moved 850 km eastward and the third drifter traveled 1000 km northward. On the
f-plane this can only be explained as a result of high short-scale (in time and/or space) variability
of the wind stress. Reproduced by permission of the American MeteorologicalSociety.
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We seek an alternate theory that can account for these observations by including
nonlinear dynamics on the Earth but with smooth (in space) and time-independent wind
stress. The theory developed here is an extension of the f-plane model to the Earth where
the Coriolis parameter, and in accordance with it the wind stress too, vary in space. As in
the f-plane model, drag is modeled by Rayleigh friction but on the Earth, the Ekman layer
dynamics is chaotic. Additional features of drifter trajectories, not fully explained based on
f-plane dynamics, are addressed in the Discussion section and the present theory suggests
that these, too, can be explained on the Earth. The f-plane model and the essential elements
in its extension to the Earth are reviewed next.

a. Ekman transport on the f-plane

The observation of inertial currents in the mixed layer was successfully simulated with
“striking accuracy” (Pollard and Millard, 1970; PM70, hereafter) by a linear model on the
f-plane in which the time-dependent wind stress is uniformly distributed over the entire
surface mixed layer and drag is modeled by Rayleigh friction. The same model was
employed to simulate observations of moored current meters in other locations (Kundu,
1976; Käse and Olbers, 1979) and these simulations, too, resulted in qualitatively
satisfactory currents. It is explicitly assumed in these studies that the mixed layer is
turbulently homogenized so the horizontal velocity there is uniform, and changes in the
wind stress are instantaneously transmitted to its entire depth. This implies that the
current’s forcing at any depth within the mixed layer is given by the wind stress divided by
the depth of the mixed layer. A model of wind-driven transport, i.e. vertically integrated
horizontal velocity in the mixed layer, obeys the same equations (Gill, 1982) but with the
forcing provided by the wind stress itself instead of the wind stress divided by the
mixed-layer depth.

These simulations (and observations) focused on the temporal changes in the current at a
particular station when the water is forced by the observed wind stress. However, they
provide no information on the current’s spatial distribution and on the trajectory of a
tagged water column when the wind stress is not spatially uniform, which is the goal of
drifter tracking.

b. An outline of the main modi� cations to the f-plane Ekman model

The present study employs an angular momentum-based, Lagrangian, version of the
local, f-plane, PM70 model to simulate the large-scale trajectories of water columns in the
mixed layer. While in PM70 the observed, time-dependent,wind stress is assumed uniform
in space, the present work considers the complementary case where the wind stress is
time-independent but varies spatially. To be consistent with the inclusion of the wind
stress’ spatial variation, the spatial variation of the Coriolis parameter has to be included,
too. The present extension of PM70 also includes replacing the local time derivative by
material derivative and using angular momentum as a dynamical variable instead of the
zonal velocity. The latter approach was successfully employed to study inertial and
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near-geostrophic � ows (Paldor and Boss, 1992; Rom-Kedar et al., 1997) and equator
crossings (Dvorkin and Paldor, 1999). The method provided a simple and powerful tool
that helps unravel the dynamics underlying the numerically computed solutions of the
governing equations. Compared with Eulerian models (Böning and Cox, 1988; Figueroa
and Olson, 1989) the resolution of Lagrangian models is unlimited so water columns can
originate from any location and their trajectory followed to any desired distance. Thus,
Lagrangian models allow the identi� cation of regions in phase space where small changes
in either an initial condition or a parameter value have a drastic effect on the resulting
trajectory.

The inclusion of drag in the present model renders the dynamics dissipative in contrast
to the Hamiltonian structure of the inertial, quasi-geostrophic and cross-equatorial cases.
The system’s � xed points (steady states) can thus be sinks and spirals so the inclusion of
zonal- or time-variation of the wind stress can have a more dramatic effect on the drifter
trajectories. A complete analysis of a dissipative nonlinear dynamical system cannot be
accomplished in a single paper and the present study is only a � rst step in unraveling the
intricacies associated with drifter trajectories.

Two points are now in order. First, the analyses of PM70 and the present model focus
solely on the momentum equations, completely ignoring the continuity equation, so it
cannot be applied straightforwardly to oceanic (� uid) � ows. However, the fast horizontal
dispersal shown in Figure 1 clearly demonstrates that continuity does not play a role in the
dynamics of drifter trajectories in the ocean, so this study is as relevant to water � ows as
drifter trajectories. Second, in the title of this work “spherical earth” indicates that the
analysis will be signi� cantly altered if the centrifugal force associated with the rotation of
perfect “sphere” is included. The following analysis is only valid when this centrifugal
term can be neglected, as is the case when Earth’s eccentricity of 0.003 (that balances the
centrifugal term with the horizontal component of gravity) is taken into account.

2. The Ekman transport on the Earth

Consider the time derivatives (denoted by the subscript t) of the vertically averaged
zonal (u) and meridional (v) velocity components of a water column in the bulk surface
mixed layer (depth h) on the rotating (frequency V) Earth (radius R). Combining the
effects of Earth’s curvature with the slab parameterization of the wind stress the momen-
tum equations (see Eqs. 4.12.14–15 and 9.3.6 in Gill, 1982 and PM70) are:

u t 5 v sin ~f!$2V 1 u/~R cos ~f!!% 1 Gx/~hr! 2 g*u, (1a)

in the zonal (l) direction and,

vt 5 2u sin ~f!$2V 1 u/~R cos ~f!!% 1 Gy/~hr! 2 g*v, (1b)

in the meridional (f) direction. The surface wind stress is G [ (Gx, Gy), r is the density of
water and derivatives on the l.h.s. are material derivatives and the transport in the layer is
simply hu and hv.
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The dissipationof kinetic energy is parameterized by g* . 0 (units: time21), where 1/g*
measures the e-folding time for the velocity to approach zero once the wind ceases to blow.
The f-plane, PM70 model predicted correctly the observed currents with a drag time, 1/g*,
of 2–8 days (Kundu, 1976; Käse and Olbers, 1979). The terms proportional to 2V in Eqs.
(1a, b) are the Coriolis force and the u/(R cos (f)) terms arise from the spherical geometry.
The latter terms are usually neglected in f-plane studies since u/(2VR cos (f)) is of order
1023 but in the present study they are retained so as to enable an exact evaluation of the
changes in the angular momentum along the trajectory.

In addition to these equations the changes in the column’s longitude (l) and latitude (f)
are:

l t 5 u/~R cos ~f!!, (1c)

f t 5 v/R. (1d)

System (1) is naturally nondimensionalized using the length scale R and the time scale
(2V)21. For terrestrial values the velocity scale of (2VR) equals 930 m s21 so the
nondimensionalized speed of surface � ow in the ocean is order 1024–1023. The nondimen-
sional drag coef� cient g corresponding to a dimensional decay time of n days is simply
1/(4np) ’ 0.08/n.

The acceleration scale is (2V)2R ’ 0.135 m s22 so the nondimensional acceleration, t,
due to a vertically averaged wind stress of G/(hr) is: t 5 G/(rh4V2R). For u G u 5

0.2 N m22 (10 m s21 winds), Ekman layer thickness, h, of order 20 m and r 5 103 kg m23

t is 1024. Aside from the (4V2Rr)2 1 5 1/135 m2 s2 kg21 factor, t is proportional to
G/h—the wind stress divided by the column’s thickness—so its sign is determined by the
wind direction. Assuming that t only has a zonal component that varies with latitude,
tx(f), the scaled version of system (1) becomes:

u t 5 v sin ~f!$1 1 u/~cos ~f!!% 1 tx~f! 2 gu, (2a)

v t 5 2u sin ~f!$1 1 u/~cos ~f!!% 2 gv, (2b)

l t 5 u/cos ~f!, (2c)

f t 5 v. (2d)

In system (2) the effect of the Coriolis force (including the geometric terms) appears in a
similar way in Eqs. (2a) and (2b). Replacing the zonal momentum equation, (2a), by an
equation for the evolution of the angular momentum, which is affected by body forces
only, facilitates the analysis since the Coriolis term appears, in a different form, only in the
meridional momentum (2b). This change of variables where the zonal velocity, u, is
replaced by the angular momentum was proven useful in analyses of similar systems
(Rom-Kedar et al., 1997; Dvorkin and Paldor, 1999). The nondimensional form of the
angular momentum, D , is:
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D 5 cos ~f!~1�2 cos ~f! 1 u! (3a)

so u can be expressed in terms of D as:

u 5 D/cos ~f! 2 1�2 cos ~f!. (3b)

Substituting D for u in system (2) one gets:

f t 5 v, (4a)

v t 5 1 �2 sin ~2f!$1�4 2 D2/cos4 ~f!% 2 gv, (4b)

D t 5 tx cos ~f! 2 g~D 2 1�2 cos2 ~f!!, (4c)

l t 5 D/cos2~f! 2 1�2 . (4d)

The calculation of the longitude time series, l(t), in Eq. (4d) is required only for
calculating the geographic trajectory (l(t), f(t)) but has no effect on the dynamics, which
is determined by system (4a–c) only. Thus, l(t 5 0) 5 0 is assumed, without loss of
generality, in the rest of this work.

It should be noted that since u is of order 1023, the value of D (Eq. 3a) is very nearly 1�2
cos2 (f) i.e. close to 1�2 at low latitudes and even in midlatitudes (f ’ 45°) the value of D is
near 0.25. The value of D approaches 0.0 only near the poles, f ’ 690°.

System (4) is analyzed in the next section while in Section 4 it is integrated numerically.

3. Analytical considerations

A natural starting point for analyzing the nonlinear system (4) is the inertial case when
all body forces vanish. The dynamics of this case were studied in detail in Paldor and Boss
(1992) and Rom-Kedar et al. (1997) and the main results pertinent to model (4) are brie� y
summarized next.

a. The inertial � ow

Setting both tx(f) and g in the system (4) equal to zero Eq. (4c) implies that D is
conserved so it becomes a model parameter instead of a system’s variable. The dynamics is
described by:

f t 5 v, (5a)

vt 5 1 �2 sin ~2f!$1�4 2 D2/~cos4~f!!%, (5b)

that conserves the kinetic energy Ek 5 (v2 1 u2)/ 2 as no body forces are present. The
conserved kinetic energy, Ek, provides a guess for the Hamiltonian of the system and, in
terms of (v, f) variables, it only requires that D be substituted for u using relation (3b) i.e.:

H 5 1 �2 @v2 1 ~D/cos ~f! 2 1�2 cos ~f!!2#. (6)
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It is easy to show that v and f are indeed conjugate variables satisfying:

f t 5 H v and vt 5 2Hf.

Thus, the set (5) comprises an integrable, 1-Degree-Of-Freedom (1-DOF) system and its
dynamics is completely determined by the values of D and the Hamiltonian, H. System (5)
has a pitchfork bifurcation at D 5 1 �2 : For D . 1 �2 there exists only one, elliptic, � xed
point at the origin (vs, fs) 5 (0, 0) while for D , 1 �2 this � xed point at the origin turns
hyperbolic and two elliptic � xed points arise at (vs, fs) 5 (0, 6arccos ([2 u D u ]1/2)). The
evolution of the inertial system is completely determined by the initial conditions (v0, f0)
and the value of the parameter D (determined by f0 and u0).

The motion near the elliptic points (vs 5 0; fs 5 0, D . 1 �2 and fs 5 6arccos
((2 u D u )1/2), D , 1 �2 ) consists of inertial oscillations, i.e. zonally migrating (v, f) circles.
The oscillations’ periods are given by the imaginary eigenvalues of the matrix that obtains
from linearizing system (5) near the � xed points. The result is that the eigenvalues are the
roots of the quadratic equations:

m2 5 ~1 �4 2 D2!, when D . 1�2 (7a)

m2 5 2sin2 ~fs! 5 2D 2 1, when D , 1�2 . (7b)

The eigenvalues in Eq. 7b are imaginary so the trajectory of a water column launched with
v0 5 0 from a latitude f0 close to (but not equal) fs [ arccos ([2 u D u ]1/2) will consist of
pure (anticyclonic) oscillations in (v, f) with a frequency equal to sin (fs). Thus, if f(t 5

0) 5 f0 is higher (lower) than fs it will move initially equatorward (poleward) so initially
the latitude, f(t), will decrease (increase).

b. The drag-free case

When tx(f) Þ 0 is assumed in Eqs. (4a–c), (but g is still set equal to zero) one gets:

f t 5 v, (8a)

v t 5 1 �2 sin ~2f!$1�4 2 D2/cos4 ~f!%, (8b)

D t 5 tx~f! cos ~f!. (8c)

System (8) differs fundamentally from the inertial system (5). Kinetic energy changes with
time since work is being continuously done on the moving column by the wind stress, so
for general wind stress, when no potential exists (but a particular counter example is given
below), the system is not Hamiltonian. As a result, the zonal velocity, u, is unbounded and
so is D and at suf� ciently long times Eq. (8c) implies that the sign of D (and u) equals that
of tx(f).

From Eq. (8c) one can immediately conclude that the latitudes of the system’s � xed
points, fs, all satisfy tx(fs) 5 0 and Eqs. (8a, b) imply that any � xed point (vs, fs, Ds)
has to satisfy:
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~vs, fs, Ds! 5 ~0, fs, 1 �2 cos2 ~fs!!.

Since fs are the latitudes of vanishing wind stress the number of � xed points is determined
by the meridional form of zonal wind stress. The value of D at the � xed points Ds 5 1 �2
cos2 (fs) , 1 �2 suggests that these are the counterparts of the elliptic � xed points of the
inertial system (5) in the D , 1 �2 case. The type of the � xed points is determined by the
eigenvalues of the (3 by 3) matrix obtained by linearizing system (8) near these points. A
negative (positive) eigenvalue indicates that near the � xed point there is a direction in (v,
f, D) space along which the system is attracted-to (repelled-from) the � xed point,
respectively (this direction is determined by the corresponding eigenvector). Imaginary
eigenvalues imply oscillations (e.g. inertial) about the � xed point, i.e. circles in phase
space, while complex ones combine the two types of time dependence i.e., spirals and
sinks.

When system (8) is linearized about a � xed point the three eigenvalues, denoted as mi,
i 5 1 . . . 3, are determined by the roots of the characteristic polynomial

h3 1 h 1 tf~f s!/sin
2 ~fs! 5 0, fs Þ 0 (9)

where h [ m/sin (fs) and tf (fs) denotes the f-derivative of the wind stress evaluated at
f 5 fs. The case fs 5 0 (vanishing wind stress on the equator) is degenerate as all three
eigenvalues, mi 5 0, i 5 1 . . . 3 equal zero so 2nd order terms are required. Regardless of
the value/sign of tf (fs)/sin

2 (fs) for fs Þ 0 one root of Eq. (9) is always real and the
other two constitute a complex conjugate pair.

The eigenvalue equation (9) is interpreted in two steps. First, the homogeneousequation
is analyzed followed by an analysis of the changes due to the inclusion of the inhomoge-
neous term.

i. The case when fs is a multiple zero of tx(f) [i.e. tf(fs) 5 0]. When tf (fs) vanishes the
real root of Eq. (9), h3 1 h 5 0, vanishes too, m1 5 0 5 h1, while the other two are purely
imaginary, h2 5 21, i.e. m2,3 5 6sin (fs)(21)1/2. Thus, the system evolves near fs, in
an identical way to the inertial system (5): Along one direction (the eigenvector belonging
to m1) the system remains constant (to � rst order) in time, as it does along the D direction in
the inertial case. In the perpendicular plane, spanned by the eigenvectors belonging to m2

and m3, the system merely oscillates with frequency sin (fs) identical to the frequency of
the inertial oscillations in the (v, f) plane near its elliptic � xed points—Eq. (7b). This
suggests that the real root of (9), m1 5 0 corresponds to the D coordinate while the complex
pair, m2,3 corresponds to the (v, f) plane. A calculation of the (v, f, D) eigenvectors
con� rms this inference.

It can be concluded from this analysis that to � rst order in time and in the vicinity of
latitudes where both the wind forcing and its f-derivative vanish, the trajectory oscillates
as in the inertial case. For longer times, these oscillations are compounded by the slow
temporal changes in D as determined by Eq. (8c) so the realization of these oscillation at
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intermediate times rests upon the changes in D being commensurate with those in f.
Consider, for example, a northward initial displacement from the � xed point: f0 . fs. In
this case the inertial motion requires that f decreases at � rst which, for small enough u, is
accomplished by an increase in the value of D. According to Eq. (8c) this initial increase in
D due to the inertial motion agrees with the direct changes in D only when tx(f0) is
positive. On the other hand, if tx(f0) is negative (tx(f) has a maximum at fs) then D
decreases initially (Eq. 8c) which contradicts the tendency of the inertial oscillations.
Similar considerations apply to the case when f0 , fs.

ii. The case when fs is a simple zero of tx(f) [i.e. tf(fs) Þ 0]. In this case, the real
eigenvalue is determined by the intersection of the real cubic f(h) [ h3 1 h with the
horizontal line g(h) [ 2tf (fs)/sin

2 (fs). Thus, tf(fs) Þ 0 causes the real eigenvalue,
m1 5 0, of the tf (fs) 5 0 case to be shifted in accordance with the sign of tf (fs). Since
f(h) is monotonically increasing with h for all h ( fh (h) [ 1 1 3h2 . 0) and since
sign ( g(h)) 5 2sign (tf (fs)), when tf (fs) . 0, m1 is shifted downward—m1 ,

0—while when tf (fs) , 0 2 m1 . 0 i.e. sign (m1) 5 2sign (tf (fs)).
The three eigenvalues given by the roots of Eq. (9) satisfy m1 1 m2 1 m3 5 0 (i.e. the

negative of the coef� cient of the quadratic term). Thus, the real part of the complex
conjugate pair satis� es Re{m2,3} 5 2 1 �2 m1 so Re{m2,3} 5 sign (tf (fs)) i.e., the
nonoscillatory evolution results from the nonzero wind stress’ curl at fs. For small initial
departure the system spirals away from the � xed point in the (v, f) plane when tf(fs) .

0 and along D when tf(fs) , 0. Since at least one of the three eigenvalues has a positive
real part all steady states are unstable as long as tf(fs) Þ 0!

iii. A Hamiltonian dynamics with nonvanishing wind forcing. The particular case when
the wind forcing satis� es: tx(f) cos (f) 5 Const. ([A) is peculiar because the system
is Hamiltonian despite the work done by the wind forcing. The interpretation of
tx(f) cos (f) 5 Const. is that upon completing a revolution around the globe along a
latitude circle (of length 2p cos (f)) the change in the water column’s zonal velocity is
independent of the latitude. Eq. (8c) implies that in this case no steady states (i.e. � xed
points) exist since Dt never vanishes. In (v, f) plane, however, the origin is a � xed point
(stable for D2 . 1 �4 and unstable for D2 , 1 �4 ) so the � nal latitude of the water column is
the equator with zero meridional velocity while the zonal velocity and the longitude
increase or decrease inde� nitely. Simply, the water column is accelerated by the wind
forcing (eastward or westward depending on the sign of A) so its zonal speed is ever
increasing and, since the Coriolis force vanishes there, the equatorial zonal � ow is not
compounded by inertial oscillations.From an analytic viewpoint, a potential can be de� ned
in this case so that a total energy that is conserved along the trajectory can be de� ned and
the system can be shown to be Hamiltonian. In analogy with the inertial case, Eq. (6), we
de� ne the Hamiltonian as:

H 5 1 �2 @v2 1 ~D/cos ~f! 2 1�2 cos ~f!!2# 2 Al. (10)
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Since the potential energy, Ep [ 2Al (the negative sign implies that the potential energy
decreases with increasing longitude which enables the increase in kinetic energy) does not
depend on v or f these variables remain conjugate, as in the inertial case, while a direct
inspection of Eqs. (8c), (4d) shows that D and l now constitute an additional pair of
conjugate variables satisfying:

l t 5 HD and Dt 5 2Hl.

The conservation of total energy, i.e. the Hamiltonian Eq. (10), provides a constraint that
has to be satis� ed by any numerical solution of system (8 and 4d). The system is now
2-DOF and even a small perturbation (e.g. time- or zonal-dependence of the wind forcing)
will signi� cantly alter the trajectory of a given water column and the statistical characteris-
tics of an ensemble of drifters.

Since Dt is constant ([A) D(t) 5 D0 1 At so when D passes the bifurcation value of 1�2
(i.e. f near 0) the longitude evolution is approximated by l(t) ’ 1 �2 At2. These estimates
provide further checks (in addition to the conservation of the Hamiltonian) on the
numerical calculations.

c. The effect of drag

The inclusion of drag (g Þ 0 in Eqs. 4b, c) entails two changes in the analysis of
Subsection b.

First, the system now possesses a new � xed point (vs, fs, Ds) 5 (0, 0, tx(0)/g 1 1 �2 )
where the zonal velocity, given by us 5 tx(0)/g, does not vanish. At this � xed point the
energy production due to the work done by the wind stress on the moving column, tx(0)u,
is balanced by the dissipation of kinetic energy, (2g) 1 �2 u2. The longitude of the column,
l(t), changes with time at a constant rate given by Eq. (4d): lt 5 us 5 tx(0)/g.

The eigenvalues of the linearized system, mi, i 5 1 . . . 3, near this new � xed point
satisfy:

m~m 1 g!2 2 ~1 �4 2 D s
2!~m 1 g! 5 0. (11)

Thus, there always exists one real negative root, m1 5 2g, and the remaining two roots are
given by m2,3 5 (2g 6 [g2 1 4(1 �4 2 Ds

2)]1/2)/ 2. For (1 �4 2 Ds
2) [ 2us(1 1 us) . 0

one of the two roots is real positive and the � xed point is unstable. On the other hand, for
(1 �4 2 Ds

2) , 0 (i.e. us . 0 and the unphysical case, us , 21) both eigenvalues have
negative real parts so the � xed point is stable. Thus, westerly winds (tx(0) . 0) and
unphysically strong easterlies (tx(0) , 2g) are both associated with a stable steady state
while for physically acceptable easterly winds any deviation from the steady state will
grow exponentially with time.

Second, in addition to this new � xed point all the � xed points calculated in Subsection b
for the g 5 0 case still prevail when g is nonzero since both vs and us vanish (Ds 5
1 �2 cos2 (fs)) there so the Rayleigh drag terms vanish there even when g Þ 0. However,
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the stability characteristic of the points changes drastically when g does not vanish. The
characteristic equation (9) becomes:

h@~h 1 a!2 1 1# 1 tf~fs!/sin
2 ~fs! 5 0, fs Þ 0, (12)

where a [ g/sin (fs) and h is related to the eigenvalue,m, by h 5 m/sin (fs). Thus, in this
case, the cubic equation contains a quadratic term with a real coef� cient 2a so the sum of
its three roots is h1 1 h2 1 h3 5 22a and the three eigenvalues, m1,2,3, add up to the real
negative number (22g). Thus, all three eigenvalues can have negative real parts so that the
inherent instability of the g 5 0 case, where at least one eigenvalue has a positive real part,
is removed by the drag force.

The analysis of Eq. (12) can be carried out in similar manner to the drag-free case; First
the case when the inhomogeneous term, tf (fs)/sin

2 (fs), vanishes is analyzed, followed
by an analysis of the changes when this term is not zero. In the homogeneouscase, Eq. (12)
has a zero root (h1 5 0 5 m1) while the other two roots are the roots of the quadratic
equation:

~h 1 a!2 1 1 5 0,

i.e. h2,3 5 2a 6 (21)1/2 or m2,3 5 2g 6 (21)1/2 sin (fs). Since, by de� nition, g is real
positive, the effect of drag is, as expected, to turn the neutral � xed points of the inertial
oscillations into stable spirals.

The effect of nonzero wind forcing gradient, tf(fs) Þ 0, in Eq. (12) is similar to that in
the drag-free case. The real root of the homogeneous Eq. (12), h1, (i.e. the zero root of the
tf (fs) 5 0 case) is now determined by the intersection of the parabola f(h) [ (h 1
a)2 1 1 with the hyperbola B/h (B [ 2tf(fs)/sin

2 (fs)) both shown in Figure 2 for
several values of B. It is easy to show that sign (h1) 5 sign (B) 5 2sign (tf (fs)) as in the
drag-free case. Since the sum of the three roots equals (22a) regardless of the value of
tf (fs), the real part of the pair of complex conjugate roots has to satisfy Re {h2,3} 5
2a 2 1 �2 h1 which is negative provided h1 . 22a.

In order for the � xed point at fs to be stable the real part of all three eigenvalues has to
be negative which occurs for 0 . h1 . 22a. From the graph of f(h) shown in Figure 2 it is
evident that for h in the range (22a, 0) this parabola satis� es f(h) , (1 1 a2). Thus, in
order for B/h to intersect f(h) at some 0 . h . 22a, B has to satisfy: 22a(1 1 a2) ,
B , 0 which, in terms of the forcing gradient, implies that stability is guaranteed only for:

0 , tf~f s! , 2g sin ~fs!~1 1 g2/sin2~fs!!.

In reality, since the nondimensionalvalue of tx(f) ’ 1024 is three orders of magnitude
smaller than g ’ 1021, this stability condition holds everywhere for suf� ciently smooth
tx(f) provided fs Þ 0.

Finally, the rate of change of kinetic energy, Ek [ 1 �2 (u2 1 v2), can be calculated at any
time and for any location in phase space by multiplying Eq. (2a) by u and Eq. (2b) by v.
Adding the resulting equations and rearranging, one gets (Ek)t 5 txu 2 2gEk so the
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drag’s effect is simply to restore any deviation of the kinetic energy from its steady value,
Eks [ txu/(2g) (with txu taken as independent of Ek), back to this value. The relaxation
of the kinetic energy to this steady value is exponential with an e-folding time of (2g)21.

These analytical results help interpret, and validate, the numerical solution of system (4)
for different parameter values and initial conditions.

4. Model trajectories

System (4) was integrated numerically using a 5th order Runge-Kutta scheme with a
1027 tolerance between t 5 0 and t 5 Tf where the � nal time, Tf, is less than 40p; i.e., 10
days. In each case the calculated geophysical trajectories, (l(t), f(t)), of a water column

Figure 2. The determination of the stability of the � xed point at fs , the latitude of vanishing wind
forcing, when drag is included. The real eigenvalue of the D direction, h1 , is determined by the
intersectionof the parabola f(h) 5 1 1 (a 1 h)2 (solid curve) with the hyperbolaB/h (shown for
three negative values of B marked on the correspondingdashed curves). For B . 0 the eigenvalue
h1 is positive (B/h intersects f(h) only at h . 0) while for B , 0, h1 , 0. The real part of the
other two eigenvalues,Real{h2 ,3} equals (2a 2 1�2 z h1 ) so it is negative only for h1 . 22a. All
three eigenvalues have negative real parts only if h1 is within the range 22a , h1 , 0 which
implies that 1 , f(h) , (1 1 a2 ) (these bounds are marked by the two horizontal lines). For
B/h to intersect f(h) in the range 22a , h , 0, the value of B has to satisfy: 22a z (1 1 a2 ) ,
B , 0.
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are shown (top panel) in addition to phase space, (v, f), diagrams (middle panel) and a
graph of D(t) (bottom panel). The latter diagrams illustrate the analytical point being
interpreted/validated and the former simulates the corresponding trajectory of the water
column as observed by tracking a drogued drifter. The beginning and end of the trajectory
are marked by “x” and “o,” respectively.

The meridional shape of the wind forcing, tx(f), the launching latitude, f0, and the
value g are all varied in order to cover a broad spectrum of scenarios while the initial values
of v, l and D were set, to 0, 0 and 1�2 cos2 (f0), respectively. The generic form of the wind
forcing in all cases (the order follows that of Section 3) is:

tx~f! 5 t0 sinn~k~f 2 fce!!, (13)

where k, taken to equal 2, is the wavenumber and fce is the central latitude of the wind
forcing (which vanishes at all latitudes, fs, satisfying: 2p/ 2 , fs 5 fce 6 mp/k ,
p/ 2 for some integer m). The multiple zero case, tf (fs) 5 0, obtains for n . 1 while n 5

1 yields the simple zero, tf(fs) Þ 0. The amplitude, t0, was varied so as to yield wind
forcing, tx(f), not much larger than 1024 (see Section 2) throughout the entire travel time
(and latitude range) of the water column.

a. Drag-free simulations

Recall from Section 3 that fs, the latitudes of vanishing wind stress, are the � xed points.

i. The behavior near the elliptic � xed point when fs is a multiple zero of tx(f) [tf(fs) 5

0]. The wind forcing parameters that demonstrate the inertial oscillations of Subsubsection
3b(i) are:

n 5 2, k 5 2, fce 5 0.3 ~’17.189N! and t0 5 0.15. (14)

The central latitude, 17.189N, is one of the � xed points of the system because Dt

vanishes there and by our choice of n 5 2 the wind forcing is directed everywhere
eastward so at fce it has a local minimum. Therefore, from the discussion in Section 3b, at
short times we expect D to increase, and hence the latitude to decrease. This change in D
agrees with the direct change of f anticipated by the inertial oscillations when the initial
latitude f0 is higher than fce and opposes it when f0 , fce. The results shown in Figure 3
for the case f0 (50.31) . fce (50.3) demonstrate these � ndings: The inertial
oscillations are evident in the (v, f) plane plot as the equatorward (left) migrating, nearly
closed, loops. The values of both v and l remain negligibly small, and those of f and D
deviate only slightly from the initial ones, throughout the entire integration interval of t 5

(0, 50) i.e. about four days. The subsequent small drift in D which causes a further, slower,
general decrease in f can be seen clearly in the geographic, (l, f), trajectory but even with
this latitude drift the trajectory remains north of the � xed point (fs [ fce 5 17.1898)
even at t 5 50. The changes in D are very small (and monotonic) during the entire
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integration time as both latitude and kinetic energy of the water column (estimated by the
maximal value of v) have not changed much.

In contrast to this, in Figure 4 the integration was done for identical model parameters
but with the initial latitude set to f0 5 0.29 i.e. 0.01 Rad. (about half a degree of latitude)
south of the � xed point’s latitude fs 5 fce 5 0.3. In this case, initially, the changes in f

due to the changes in D are in the opposite sense to the direct changes in f due to the
inertial oscillations. This causes signi� cant differences between this and the former cases:
No inertial oscillations are encountered in either the (v, f) portrait or the geographic, (l,
f), trajectory and the latitude changes are much faster—at t 5 50 the trajectory is located
about 8° south of the � xed point at 17.189N. Also, the changes in D are O(1) so D reaches
a value very close to 0.5, where the dynamics is not at all affected by the existence of a
� xed point at fs 5 0.3. When the sign of t0 is reversed the large changes occur when f0 is
slightly above the � xed point (not shown). This supports the conclusion that trajectory is
very strongly affected by whether or not the direct, wind-forced, changes in D are
commensurate with the changes in f due to inertial oscillations.

ii. The behavior near the Elliptic � xed point when fs is a simple zero of tx(f)[tf(fs) Þ 0].
The wind pro� le assumed for demonstrating the main � ow features in this case (considered

Figure 3. The geographic trajectory (top panel), phase plane portrait (middle panel) and changes in
angular momentum (bottom panel) in the drag-freecase (g 5 0) near the latitude fc e 5 0.3 where
both the wind forcing and its meridional-gradient vanish. The initial latitude is 0.31 (0.01 Rad.
north of fc e ) so for small zonal velocity the direct changes in D are in accordancewith the change
of latitude by inertial � ow. Wind forcing is given by Eq. (13) with k 5 2, and t0 5 0.15. Initial and
� nal points are marked by x and o, respectively.
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analytically in Subsubsection 3b(ii)) has the form given by Eq. (13) with the parameters:

n 5 1; k 5 2; fce 5 0.3 ~ < 17.189N! and t0 5 0.01. (15)

The amplitude, t0, was decreased in this case to 0.01 so as to ensure that the magnitude
of tx(f) is similar to that of the previous subsection throughout the entire trajectory.
Unlike the previous case, for n 5 1 the wind forcing changes sign at f 5 fce. The real
part of all eigenvalues does not vanish, which implies that spirals replace the (midlatitude,
inertial) centers encountered in the previous case. The results of the integrations shown in
Figure 5 demonstrate these � ndings. No signi� cant difference is evident when the
integration starts from a latitude higher than fce (Fig. 5a) or lower than fce (Fig. 5b) and
the overall change in the values of v, f, D and l throughout the entire integration time of
t 5 (0, 50) is similar in both cases. This is an immediate consequence of the inherent
instability that exists for any tx(f) predicted in Subsubsection 3b(ii). In addition, these
changes are much smaller than those of Figure 4 despite the larger wind forcing used here
in the immediate vicinity of fce (however, at latitudes more than 2° away from fce the
wind stress here is already smaller!) as compared with the n 5 2 case.

iii. The Hamiltonian case. The case tx(f) 5 A/cos (f), discussed in Subsubsection
3b(iii), provides an important particular case where the total energy, described by the
Hamiltonian in Eq. (10), is conserved. This distribution of winds only approximates the

Figure 4. Same as Figure 3 but the initial latitude is 0.29 (0.01 Rad. south of fc e ) so the explicit
changes in D do not permit the inertial oscillations to take place.
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Figure 5. The case when fc e 5 0.3 is a simple zero; i.e., the meridionalderivativeof the zonal wind
does not vanish there. The wind forcing amplitude is chosen to be t0 5 0.01 so that the order of
magnitude of the wind forcing along the trajectory is the same as that in Figure 4. Regardless of
whether the initial displacement is northward, (a): f0 5 0.31, or southward (b): f0 5 0.29 the
explicit changes in D by the wind forcing permit the inertial oscillations to take place.
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situation in middle and low latitudes when the wind stress increases poleward. By contrast,
right at the poles no zonal wind forcing exists so, by continuity, the wind forcing should
diminish at high latitudes.

The numerical integration (not shown) demonstrate that even at t 5 40p the total
energy is conserved (to O(102 4) and that the angular momentum increases linearly, D t 5
A, as expected.

b. Simulations with drag

When drag is included, a new steady state appears on the equator which is addressed
� rst.

i. The behavior near the equatorial � xed point. The results of Subsection 3c point to the
crucial effect that the relative values of g and tx(0) have on the stability of this � xed point.
In Figure 6 both the existence of the new � xed point right at the equator and the change in
its stability when tx(0) is varied are demonstrated for g 5 0.1. The wind forcing
parameters in Eq. (13) are:

n 5 1; k 5 2; fce 5 20.3 and t0 5 0.03, 20.4 and 20.03 (16)

for the three cases considered in the � rst part of Subsection 3c. The central latitude, fce 5
20.3, is shifted to the Southern Hemisphere to ensure that a water column originating at
f0 5 10.4 (22.9N) experiences a wind forcing of one sign throughout its entire
equatorward motion and does not encounter one of the � xed points associated with
vanishing wind stress.

The case t0 5 0.03, where tx(0) 5 0.017 . 0, is shown in Figure 6a and it con� rms the
analytic expectation of a stable point for positive wind forcing at the equator. The same
occurs for t0 5 20.4 (i.e. tx(0) 5 20.226 , 20.1 5 2g) shown in Figure 6b. In
contrast, the case t0 5 20.03 shown in Figure 6c implies that 0 . tx(0) 5 20.017 .

20.1 5 2g and the instability in this case repels trajectory poleward. The � nal values of
D in the stable cases shown in Figures 6a–b, 0.67 and 21.76, are in excellent agreement
with the analytical estimate, Ds 5 1 �2 1 tx(0)/g. In the unstable case shown in Figure 6c,
the trajectory is repelled by the instability of the equator to such high latitudes that the
value of D has to be close to zero so the steady state value of 0.33 is never realized.

Two additional points are apparent in the simulations shown in Figure 6. The � rst is that
in the stable case shown in Figure 6b the u-velocity associated with D ’ 22 is
unphysically large. This is a direct result of the unrealistically large wind forcing tx(0) 5
20.4 used here to demonstrate the stability of high westward-directed wind stress. The
second point is that in the two stable cases (Figs. 6a and 6b) the initial rate of change in D
(i.e. the slope of the D(t) curve for t , 1, D ’ D0) is very well approximated by its
analytical estimate 2g(D0 2 Ds). This estimate arises directly from the validity of the
linear eigenvalue theory m1 [ Dt/D 5 2g near the � xed point, D 5 Ds. By contrast, in
the unstable case shown in Figure 6c the � xed point (Ds 5 0.33) is never reached by the
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Figure 6. The effect of water drag on the trajectory near the equator for a drag coef� cient, g, equal to
0.1. The � xed point at the equator is attractive when the wind forcing there is positive, (a), or when
it is suf� ciently large and negative, (b). By contrast, when the wind forcing at the equator is weak
and negative the equator is repulsive (c). The initial latitude is 0.4 in all cases. The wind forcing
has the same latitude dependenceas in Figure 5 (meridional wavenumber 2) but its zero is located
in the Southern Hemisphere, at fc e 5 20.3 and its amplitude is: t0 5 0.03 (a); t0 5 20.4 (b); and
t0 5 20.03 (c).
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trajectory and this is consistent with the initial rate of change in D (about 20.025 from the
slope of the D(t) curve shown in the lower panel of Fig. 6c) being nearly three times the
analytical value: 2g(D0 2 Ds) ’ 20.009.

ii. The behavior near the � xed points of the drag-free system. A simple case where the
inclusion of drag turns the neutral circles of the drag-free case into stable spirals is shown
in Figure 7a for the same wind forcing distribution and initial conditions as in Figure 5a
(i.e. Eq. 15) and with a drag coef� cient g equals 0.1. This choice of g along with fs 5 0.3
yields 2g sin (fs)(1 1 g2/sin2 (fs)) 5 0.066. On the other hand, the wind forcing, Eq.
(13), with n 5 1 implies tf (fs) 5 kt0 so that for k 5 2 stability of the � xed point at fs is
granted as long as t0 is smaller than its stability cut-off at 0.033. The choice of t0 5 0.01,
then, puts the expected dynamics well within the stable range of t0 [ (0.0, 0.033) so that,
as all three panels of Figure 7a show, the settling of the system into the steady state is very
fast. In contrast to this, when t0 is set equal to 0.03 (a tad below the stability cut-off at
0.033) the convergence of the trajectory to the � xed point is much slower. As Figure 7b
shows, many inertial oscillations take place in this case before the trajectory arrives close
to the steady state. When the value of t0 is further increased to 0.05—above the stability
cut-off value—the � xed point turns unstable as is evident from the results shown in Figure
7c. A careful examination of the system evolution in the 3 panels of Figure 7c supports the
analytic considerations: from the middle and lower panels it is evident that the instabilityof
the � xed point is manifested � rst in the increase of the radius of inertial oscillations, while

Figure 6.—Continued
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Figure 7. The effect of drag in the vicinity of latitude of vanishingwind forcing for increasingvalues
of the forcing amplitude. The drag coef� cient, g, equals 0.1 and the initial latitude is 0.31 (0.01
Rad. north of fc e 5 0.3). For small amplitude, t0 5 0.01 (a), the trajectory settles quickly to the
steady state at fc e and D reaches its � nal value monotonically.As the amplitude is increased, t0 5
0.03 (b) the settling to fc e is much slower and D oscillates around its � nal value. For large enough
amplitude, t0 5 0.05 (c) the column can be repelled to the equator leaving, altogether, the basin of
attraction of fc e .
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the value of D during this initial time is hardly altered (Re{h2,3} is positive while h1 is
negative near the � xed point). When the trajectory reaches latitudes that are far enough
from fs 5 10.3 (by increasing the radius of the inertial oscillations) the direct wind
forcing of D (e.g. Eq. 4c) causes large excursions that will eventually cross the Equator.

5. Discussion

The particular parameter values and zonal wind stress form were only chosen in Section
4 to illustrate the expected type of trajectory and not to simulate a particular observation.
The role of the various model parameters determining the trajectory that emerges from the
preceding analysis and integration is as follows. The initial latitude relative to the � xed
point’s latitude determines the tendency of the trajectory to move toward or away from the
� xed point due to the inertial motion. The form of the wind stress determines the stability
of the � xed point according to whether or not the curl of the wind stress also vanishes there.
Lastly, drag turns the neutral (elliptic) � xed points into stable ones but does not,
necessarily, stabilize the unstable ones.

a. Comparison with f-plane dynamics

The steady transport in the Ekman layer on the f-plane, Ve 5 (txk)/( f ) (where
k—vertical unit vector, t —wind stress vector and f—the Coriolis parameter), is not a � xed
point of the present model since D varies with time following the change in f. Rather than

Figure 7.—Continued
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a � xed point, the steady f-plane transport obtains here as a special solution of the drag-free
case when vt 5 0 (but D and f vary with time). Setting vt 5 0 in Eq. (8b) one gets that
D(t) 5 1 �2 cos2 (f(t)) and differentiating this expression with respect to time yields Dt 5
2cos (f) sin (f)ft. Comparing this expression for Dt with that given in Eq. (8c) one gets:
ft [ v 5 2tx(f)/sin(f) which is precisely the nondimensional form of the Ekman
transport on the f-plane with sin (f) and tx(f) considered constants. Although D is not
constant, u [ D/cos (f) 2 1�2 cos (f), vanishes at all times so the changes in D induce
changes in f only so the kinetic energy is unchanged. Thus, for t 5 tx the north-south,
straight line, trajectory on the f-plane is trivially transformed into a polar great circle (with
constant v) on the Earth.

A meridional wind stress, t 5 ty, on the other hand, mandates that Dt 5 0 (Eq. 8c) and
that a ty term be added to the right-hand side of Eq. 8b. Setting vt 5 0 in Eq. (8b) implies
that when ty is positive D . 1 �2 cos2 (f) so u . 0 and when ty is negative D , 1 �2 cos2 (f)
so u , 0. Thus, for any sign of ty, the sign of u in these, vt 5 0, solutions of the present
model agrees with that on the f-plane. However, vt 5 0 does not necessarily imply v 5 0
and when v Þ 0 the work done by ty on the meridionally moving water column alters its
kinetic energy, which will also change the zonal velocity component, in accordance with
the temporal change in f when D is conserved. Starting with � nite v(0) 5 v0 Þ 0 the
scenario on the Earth is very different from that on the f-plane where the addition of an
initial, nonzero, velocity component parallel to the wind stress does not entail a subsequent
change of the kinetic energy (see Gill, 1982). It can, therefore, be expected that
time-dependent wind stress will have a very different effect on the f-plane and on the Earth
since on the f-plane the � nite velocity at the time when wind stress changes is simply added
to the velocity due to the wind stress itself. By comparison, on the Earth the nonlinear
interaction of the two velocities can lead to a decrease/increase in the kinetic energy.

b. Temporal and zonal dependent wind stress

The structure of the dynamical system developed here provides a � rst step toward
analyzing the observed trajectories in the realistic and more complicated cases when the
wind forcing is not steady and zonal. A simple illustration of the unexpected effect that a
periodic wind stress forcing can have on some of the trajectories calculated above obtains
when the expression for the wind forcing in Eq. (13) is simply multiplied by sin (s z t)
where, say, s 5 0.3. The temporal average of the new wind forcing is zero and it never
exceeds the steady forcing (at tn 5 (2n 1 1)p/ 2 the two are equal). The results of the
calculations in the two opposing cases corresponding to those shown in Figures 3 and 4 are
shown in Figure 8. It is evident from Figure 8a that the oscillatory case of Figure 3 becomes
more energetic under the time-dependent forcing with the maximum meridional velocity
about 4 times that of the steady forcing. In contrast, the nonoscillatory case of Figure 4,
where the drifter traveled 7 degrees of latitude in just 4 days and reached a meridional
velocity of 17 m s21, turned into the oscillatory case of Figure 8b where the latitude span is
only 0.6 degree and the meridional velocity is less than 2 m s21. Thus, time dependence
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Figure 8. The effect of periodicallyvarying amplitude (frequency0.3) on the trajectoriesnear fc e in
the drag-free cases. (a) Initial latitude located north of the forcing’s minimum as in Figure 3. (b)
Initial latitude south of the forcing’s minimum as in Figure 4. The periodic time dependence
implies that the long-term (i.e. at times exceeding several forcing periods) average of the wind
forcing is zero although its effect on the trajectories and changes in angular momentum is
signi� cant.
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interferes with the trajectories of steady wind forcing either constructively or destructively
as is expected when a nonlinear system is forced by a periodic forcing. Similar complex
effects are encountered when drag is included in the dynamics (not shown) or when zonal
variations are included (see below) so one can expect time or zonal variations of the wind
stress to alter the steady forcing scenario in a complex way.

Since, in reality the wind stress over the ocean varies with both time and longitude it is
expected that both the rate of dispersal of a cluster of drifters and its mean motion are
sensitive to the forcing the cluster encounters along its entire trajectory. This might be the
reason for the very different trajectories observed when several drifters are launched from
nearby locations and for the fast dispersal of drifters that are ubiquitous in observations. A
reconstruction of observed trajectories requires both that the stress be known with � ne
temporal and spatial resolutions and that the available wind � elds at a standard height of
10 m are well calibrated with the actual forcing. Both constraints are not likely to be met on
a global scale but might be satis� ed in regional studies where one can � nd nearby stations
with continuous, long term, wind records.

c. Application to observations

Several points of comparison exist between the (qualitative and quantitative) results of
the present model and the observed motion of drogued surface drifters. The � rst is the
angle between the applied wind stress at the ocean’s surface and the resulting averaged
drifter’s trajectory. The present study implies that this angle is highly dependent on the
drifter’s launching latitude relative to the latitude of zero wind stress. A launch north of
that latitude results in an angle of about 90° (Fig. 3) while a launch south of it results in an
angle of about 45° (Fig. 4). When the wind stress curl does not vanish at that latitude, the
resulting scenario is even more complicated (e.g. compare Figs. 5a and 5b). When the wind
stress is periodic, rather than steady, many more angles can be expected (e.g. Figs. 8a and
8b). This is consistent with the summary of Niiler and Paduan (1995, Fig. 3) suggesting the
existence of a wide range of angles depending on the wind stress frequency but the
relationship between the frequency of the wind and the angle is rather complex.

A second observed feature consistent with the results of the present model is the
different velocity spectra of two clusters of drifters launched in the NE Paci� c under
similar wind stress forcing in Oct. 1987 and Oct. 1989 reported by Niiler and Paduan
(1995). Despite the similarity in the wind stress spectra in the two years (their Fig. 1), the
velocity spectra of the two ensembles of drifters are different, especially at the high
frequency (0.5–1 cpd) end (their Fig. 2). The spectral density at the 1 cpd frequency of the
1989 cluster is nearly 100 times higher than that of the 1987 cluster. This conspicuous
difference between the two clusters can not be attributed to ensemble size (16 vs. 47
drifters) or duration of drift (6 vs. 3 months) since the wind stress spectra in the two
experiments were indistinguishable. Although the authors attribute the difference in
spectra to different averaging schemes applied to the two data-sets, the present model
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provides an alternate, physical, explanation:Similar (constant) wind stress � elds can yield
very different velocities and trajectories for drifters launched in slightly different locations.
The 5-degree span in central launching location of the two clusters and the difference in
their initial spatial distribution are more than suf� cient to account for the vastly different
spectra even if the wind stress did not change at all between 1987 and 1989. The fact that
the biggest spectral gap occurs near the inertial frequency at 1 cpd is consistent with the
expectation of the present theory.

Lastly, the present study can account for the fast dispersal shown in Figure 1 with a
steady and smooth wind stress. The three trajectories shown in Figure 9 emanate within
100 km of each other and are driven by the steady wind stress: tx(f) 5 t0 tanh ((f 2

48°)/45°) and ty(l) 5 (0.2t0) sin (6(l 1 142°) with t0 5 20.0004. The quantitative
similarity between the trajectories calculated with this wind stress and those shown in
Figure 1 points to the signi� cance of nonlinearity included in this model, which merely
extends the f-plane dynamics to the Earth.
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Figure 9. The 164-day-longmodel-generatedtrajectoriesof three numerical drifters launched within
150 km of each other under time-independent and relatively smooth wind stress 2tx (f) 5 t0

tanh ((f 2 488)/458), ty (l) 5 (0.2t0 ) z sin (6(l 1 142°)) with t0 5 20.0004. The value of g is
0.0001 and the initial velocitiesare: u(0) 5 0 5 v(0) in all three cases. The launching coordinates
of the three trajectories are: f(0) 5 (48.2°, 48.01°, 47.99°); l(0) 5 (2142°, 2141.9°, 2140°) for
the (northward, stationary and eastward) moving trajectories,respectively.These three trajectories
are the numerical counterpartsof those shown in Figure 1.
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