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A data assimilative marine ecosystem model of the central
equatorial Paci� c: Numerical twin experiments

by Marjorie A. M. Friedrichs1

ABSTRACT
A � ve-component, data assimilative marine ecosystem model is developed for the high-nutrient

low-chlorophyll region of the central equatorial Paci� c (0N, 140W). Identical twin experiments, in
which model-generated synthetic ‘data’ are assimilated into the model, are employed to determine
the feasibility of improving simulation skill by assimilating in situ cruise data (plankton, nutrients
and primary production) and remotely-sensed ocean color data. Simple data assimilative schemes
such as data insertion or nudging may be insuf� cient for lower trophic level marine ecosystem
models, since they require long time-series of daily to weekly plankton and nutrient data as well as
adequate knowledge of the governing ecosystem parameters. In contrast, the variational adjoint
technique, which minimizes model-data mis� ts by optimizing tunable ecosystem parameters, holds
much promise for assimilating biological data into marine ecosystem models. Using sampling
strategies typical of those employed during the U.S. Joint Global Flux Study (JGOFS) equatorial
Paci� c process study and the remotely-sensedocean color data available from the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS), parameters that characterize processes such as growth, grazing,
mortality, and recycling can be estimated. Simulation skill is improved even if synthetic data
associated with 40% random noise are assimilated; however, the presence of biases of 10–20%
proves to be more detrimental to the assimilation results. Although increasing the length of the
assimilated time series improves simulation skill if random errors are present in the data, simulation
skill may deteriorate as more biased data are assimilated. As biological data sets, including in
situ, satellite and acoustic sources, continue to grow, data assimilative biological-physical
models will play an increasingly crucial role in large interdisciplinary oceanographic observa-
tional programs.

1. Introduction

Methods for systematically constraining dynamical models with available data extend
back to engineering control theory and geophysics; however, the terminology “data
assimilation” itself was developed in meteorology in the 1960s and was originally used to
describe the technique(s) of using observations to improve the forecasting skill of
operational models (Malanotte-Rizzoli and Tziperman, 1996). In the following decade,
physical oceanographic data assimilative models began to be developed; however the lack
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of a unifying objective for oceanographic data assimilation, such as the driving force of
numerical weather prediction for meteorology, caused oceanographers to de� ne data
assimilation much more broadly (Malanotte-Rizzoli and Tziperman, 1996). In physical
oceanography, data assimilation refers to many different techniques of combining dynami-
cal models with observations, and is not only used for ocean forecast (Peloquin, 1992; De
Maria and Jones, 1993; Carnes et al., 1996; Aikman et al., 1996), but is also often used to
quantitatively and systematically test and improve poorly known subgrid-scale parameter-
izations and boundary conditions that are abundant in many numerical models (Seiler,
1993; Lardner and Das, 1994; Gunson and Malanotte-Rizzoli,1996a; Ullman and Wilson,
1998).

Just as the scienti� c community witnessed the evolution of a new generation of data
assimilative physical oceanographic models in the 1970s and 1980s, in the past several
years the � eld of data assimilative biogeochemical ocean modeling has begun to emerge;
however, just as the many innate differences between meteorology and physical oceanog-
raphy have caused data assimilation goals and techniques to evolve very differently in
these two � elds, differences between physical and biological oceanography are also
resulting in substantial differences between these types of data assimilation (Hofmann and
Friedrichs, 2001a). Because biological systems have no analog to the � uid dynamicists’
Navier-Stokes equations, ecosystem models are by necessity empirical, nonlinear, and
abound with poorly known formulations. Such models typically include large numbers of
parameters that are dif� cult, or even impossible to measure with current oceanographic
instrumentation. As a result, data assimilation methods are often applied to marine
ecosystem models in order to test different parameterizations of biogeochemical processes
(Matear, 1995) and to estimate optimal parameter values (Evans, 1999; Vallino, 2000).
Space and time scales in physical and biological oceanographic systems can also be
different. The rapid doubling rates of the most abundant phytoplankton species O(1 d21)
may cause the synoptic time scales of these systems to resemble their meteorological
counterparts (O(days)) as opposed to the physical oceanographic scales of several months.
Furthermore, just as there are much less physical oceanographic data than meteorological
data, there may be equally less biological data than physical data.

For these reasons, the application of data assimilation techniques to biogeochemical
ocean models, and speci� cally to marine ecosystem models, presents many exciting new
challenges (Hofmann and Friedrichs, 2001a). In the past decade large interdisciplinary
programs, e.g. the Joint Global Ocean Flux Study (JGOFS), have included model
prediction and forecast as speci� c research objectives (Sarmiento et al., 1987; Abbott,
1992). However, new studies are revealing that much more work needs to be performed
before this becomes a realistic and achievable goal (Sarmiento and Armstrong, 1997). It is
rapidly becoming evident that until high resolution biological and chemical data are
available over large regions of the ocean, and until a much clearer understanding of the
intricacies of marine ecosystems is attained, data assimilation in ecosystem models will be
more useful for model improvement and parameter estimation (Matear, 1995; Fasham and
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Evans, 1995; Prunet et al., 1996a,b; McGillicuddy et al., 1998; Spitz et al., 1998; Evans,
1999; Hurtt and Armstrong, 1999; Vallino, 2000) rather than model prediction and forecast
(Hofmann and Friedrichs, 2001b).

Many methods for combining model dynamics with data exist. One particularly
straightforward method entails replacing the model solution with data whenever such
information is available. This technique, referred to as data insertion, integrates the model
forward in time until additionalobservations become available, at which point the model is
reinitialized, and the process repeated. In an initial application of data insertion in physical
oceanography, Holland and Hirschman (1972) attempted to estimate velocity � elds by
inserting temperature and salinity data into relatively complex ocean models. Model-data
inconsistenciescaused the resulting simulations to compare poorly with observations. This
led to the development of techniques in which the model solution is nudged toward
observations, instead of being replaced by observations, whenever data become available.
Although this method represents a signi� cant improvement over the earlier insertion
technique, it still lacks a means by which information on data uncertainty can be
incorporated, and does not provide an estimate of the uncertainties of the resulting solution
(Sarmiento and Bryan, 1982; Holland and Malanotte-Rizzoli,1989; Malanotte-Rizzoli and
Young, 1995). Data insertion and nudging have also been applied to simple marine
ecosystem models (Ishizaka, 1990; Armstrong et al., 1995). In these studies, chlorophyll
estimates made from satellite ocean color measurements were the only biological data
available for assimilation.Although estimates of phytoplanktonbiomass were improved as
a result of the assimilation, the accuracy of other model componentswas reduced. Nudging
has also been used to keep an ecosystem model from drifting (Moisan and Hofmann, 1996)
or to represent unresolved biological processes (Najjar et al., 1992).

More sophisticated assimilation schemes such as optimal interpolation and the Kalman
� lter have been successfully applied to weather forecast models by meteorologists, yet
hold little hope for marine ecosystem models because of the inherent nonlinearities of
biological systems. Instead, schemes which have recently been applied to nonlinear
physical oceanographic systems, such as the variational adjoint method (Tziperman and
Thacker, 1989), the Extended Kalman Filter (Evensen, 1992), and simulated annealing
(Barth and Wunsch, 1990; Kruger, 1993), may be more applicable to biological problems.
These methods can be used to determine an optimal solution that maximizes agreement
between the model solution and the observations. Both the variational adjoint method and
simulated annealing have been successfully used to assimilate biological data into marine
ecosystem models (Matear, 1995; Hurtt and Armstrong, 1996, 1999; McGillicuddy et al.,
1998; Friedrichs, 2001), and have their respective advantages and drawbacks. The
variational adjoint method can be used to ef� ciently estimate best-� t values for unknown
model parameters and rate coef� cients; however, because of the nonlinearnature of marine
ecosystem models, it is possible that an adjoint method may lead to multiple suboptimal
parameter sets, thereby necessitating techniques for identifying a single optimal set of
parameters. The stochastic, ‘random-walk’ nature of simulated annealing may allow the
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investigation of more parameter values resulting in a greater ability to identify the
global optimum parameter set, but this technique is less ef� cient than the adjoint
method. Both simulated annealing and the Extended Kalman Filter may be computa-
tionally too intensive to be of wide-scale use in large-scale biological oceanographic
assimilation analyses.

Before the application of these types of data assimilation techniques to marine ecosys-
tem models becomes routine, a number of methodological issues need to be addressed. For
example, it is not yet clear under what conditions different assimilation schemes will be
most appropriate, what sampling strategies will be optimal, or what levels of imprecision
or inaccuracies in the measurements will be acceptable. One method for addressing such
methodological issues is through the use of numerical twin experiments, in which
model-generated data are assimilated into a model. Although the utility of numerical twin
experiments is well accepted within the � elds of meteorology and physical oceanography
(Ghil and Malanotte-Rizzoli, 1991; Sheinbaum, 1995; Gunson and Malanotte-Rizzoli,
1996a,b), this approach has only recently been applied to ecosystem modeling analyses.
Lawson et al. (1995; 1996) � rst used these types of experiments to demonstrate the
feasibility of applying the adjoint method to recover optimal values for various ecosystem
parameters. They determined that the assimilation of data at monthly intervals was
adequate for the recovery of most rate parameters. Although bi-weekly data collection
signi� cantly enhanced the results, weekly assimilation provided no further improvement.
Harmon and Challenor (1997) used numerical experiments to assess the success of a new
Monte Carlo Markov Chain data assimilation algorithm speci� cally developed for use with
highly nonlinear ecosystem models. Twin experiments have also been used to determine if
model parameters can be estimated independently, and thus whether or not a given model
will need to be simpli� ed (Spitz et al., 1998). Even more recently, Gunson et al. (1999)
seeded numerical � oats in an eddy-permitting basin-scale model of the North Atlantic
Ocean, and followed their trajectories with a one-dimensional biological model. Using
twin experiments to assimilate simulated ocean color data, the authors were able to
determine which parameters could be recovered in different regions of the model domain.

In this paper, the ecosystem model described by Friedrichs and Hofmann (2001;
hereafter referred to as FH01) is run in a data assimilative mode. In the following section,
methodologicaldetails of the ecosystem model, the adjoint method, and the numerical twin
experiments are presented. Twin experiments are then conducted in order to (i) compare
the results of simple and sophisticated assimilation schemes, (ii) determine the effects of
assimilating biological data that contain random errors and biases, and (iii) assess both the
suitability of assimilating in situ cruise data versus remotely-sensed ocean color data as
well as the effects of varying sampling strategy and frequency of data collection (Section
3). The paper concludes with a discussion and summary section (Section 4) as well as a
section describing some future challenges for data assimilative marine ecosystem model-
ing (Section 5).
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2. Methods

a. Ecosystem model

The ecosystem model of FH01 contains � ve model components (phytoplankton (P),
zooplankton (Z), ammonium ( A), nitrate (N), and detritus (D); Fig. 1) and has been
developed for use in the central equatorial Paci� c (i.e. 0N, 140W). Because of the rapid
growth rates of the picoplankton and microzooplankton in this region (O(1 d21)), the
biology directly responds to physical forcing on relatively short (daily) time scales. As a
result, the model is not forced by ocean general circulation model output as is typical for
one-dimensional marine ecosystem models (Fasham et al., 1993; Leonard et al., 1999;
McClain et al., 1999; Gunson et al., 1999), rather it is forced using daily observations of
solar radiation, temperature (T), and velocity (u, v) obtained from the extensive Tropical-
Atmosphere Ocean (TAO) mooring array (McPhaden et al., 1998). Daily vertical pro� les
of vertical velocity (w( z)) are also computed from TAO data (u, v, and T) according to the
method of FH01. Based on recent observations from the equatorial Paci� c, iron limitation
of the phytoplankton is assumed a priori (Frost, 1996; Behrenfeld et al., 1996). Daily
vertical pro� les of iron concentration are derived from the empirical formulation of
Gordon et al. (1997) combined with a deep Fe:T relationship (Friedrichs, 1999; FH01). A
brief outline of the model equations is included in the Appendix and a more thorough
discussion of the model formulations is given in FH01. Based on a review of the literature
describing the biology of the equatorial Paci� c, best estimates of the model parameters are
made (Table 1). Model runs begin on September 1, 1991 (Fig. 2).

b. Variational adjoint implementation

In this study, both the relatively straightforward techniqueof data insertion as well as the
more sophisticatedadjoint method are applied to the FH01 ecosystem model. We provide a
brief overview of how the variational adjoint method is speci� cally applied to the FH01
ecosystem model. Detailed descriptions of the variational adjoint method appear in
Wunsch (1996) and Bennett (1992).

Figure 1. Schematic of the � ve-component ecosystem model: phytoplankton (P), zooplankton (Z),
ammonium ( A), nitrate (N) and detritus (D). Adapted from Friedrichs and Hofmann (2001).
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i. Cost function. The FH01 ecosystem model is run forward in time using the parameter
values listed in Table 1, in order to obtain a value of the cost function, which is de� ned to
be a measure of the mis� t between the predicted variables (a) and observed variables (â).
Assuming that the errors in the data set to be assimilated are uncorrelated, the general cost
function, J, can be mathematically expressed as a weighted sum of squares:

J 5
1

2 O
i51

M O
j51

N

w i~a ij 2 â ij!
2. (1)

The sums are carried out over the number of time-steps (N days) as well as the number of
variables (M 5 5) for which observations are available: P, Z, A, N, and the rate of
primary production (PP). The weights, wi, account for differences in the relative
magnitudes of the ecosystem components. For example, if data are not available then wi 5

0. If data are available, then wi 5 maxi (^ai&)/^ai&, where ^ai& is the time average of ai

over the entire two-year model simulation, and maxi (^ai&) is the maximum value of these
� ve time-averages (^PP&, ^P&, ^Z&, ^ A&, ^N&) (Lawson et al., 1996). Numerical twin
experiments are used a posteriori to test the sensitivity of the assimilation results to this
particular choice of weights. On average, doubling or halving any single value of wi

changed the errors in the resulting parameter estimates by less than 3%. Although it is
possible to include separate terms in the de� nition of the cost function in order to allow a
priori constraints or penalties on the parameter values (McGillicuddy et al., 1998; Gunson
et al., 1999), because of the high degree of uncertainty associated with the values of many
of the ecosystem parameters, and in order to maintain the highest possible degree of
freedom in the model control variables, no upper or lower limits are imposed on any of the
parameter values.

An adjoint, or backward model, is used to compute the gradients of the cost function

Table 1. Values, units, and de� nitions of the parameters used in the biologicalmodel.

Parameter Value Units De� nition

wZ 0.5 m d21 Z sinking rate
wD 12 m d21 D sinking rate
wP 0.45 d2 1 P loss rate
wZ 0.75 d2 1 Z loss rate
g 0.75 (none) Z assimilation ef� ciency
b 0.3 (none) A regeneration fraction
rD 1 d2 1 D regeneration rate
g 29 d2 1 Z maximum grazing rate
L 1 (mmol N m23)21 Ivlev grazing parameter
kF e 0.034 mmol Fe m2 3 Iron half-saturationvalue
a 29 d2 1 (E m22 h21)21 Initial slope of P-I curve
PM 14 d2 1 Max. rate of photosynthesis
kA 0.1 mmol N m23 A half-saturationvalue
dc 45 m Depth of max. P, A conc.
Fem in 0.026 mmol Fe m2 3 Min. concentrationof iron
mF e 0.001 mmol Fe m2 4 Slope of iron pro� le
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with respect to the input parameter set, frequently referred to as the set of ‘model control
variables.’ The technique developed by Lawson et al. (1995) is used to construct the
adjoint code directly from the model code by means of Lagrange multipliers. Values of
these gradients are passed to a variable-storage quasi-Newton optimization procedure
(Gilbert and Lemarechal, 1989) which computes the optimal direction toward the mini-
mum of the cost function, and the optimal step size in that direction. New values of the
control variables that yield a smaller mis� t between the model solution and observations
are then used to rerun the model, and recompute the cost function. The process of running
the adjoint model and the optimization routine continues iteratively until the control
variables converge to values which maximize agreement between the model-derived

Figure 2. Fifty simulated time series (thin lines) of (a) rP P (t), (b) rP (t), (c) rZ (t), (d) rA (t), and (e)
rN (t) averaged over fourteen days and generated using imperfect random values for the model
control variables which fall within the a priori uncertainty ranges of Table 3. The true simulation
(heavy lines; Ĉ(t)) is generated using values of 1.0 for all six scaled control variables. All
simulations represent vertical averages over the euphotic zone.

2001] 865Friedrichs: Data assimilative marine ecosystem model



quantities and the observations; i.e., until the minimum of the cost function is identi� ed.
Uncertainties in the recovered values of the control variables are computed from a � nite
difference approximation of the Hessian matrix of the cost function at its minimum
(Tziperman and Thacker, 1989; Matear, 1995; Gunson and Malanotte-Rizzoli,1996b).

ii. Model control variables. Model control variables can consist of a variety of unknowns,
such as component initial conditions, empirical model coef� cients, and parameters related
to model forcing. Because ecosystem model components (e.g., plankton concentrations)
typically become independent of their initial values quite quickly, it is often not necessary
nor feasible to use the adjoint method to estimate component initial conditions (Friedrichs,
1999). Conversely, the numerous poorly known model parameters which characterize
many ecosystem models may constitute appropriate choices for the control variables;
however, the inherent nonlinearities associated with most ecosystem models frequently
cause many model parameters to be highly correlated (Matear, 1995). If correlated
parameters are chosen as control variables in an adjoint analysis, the system may become
underdetermined resulting in large uncertainties in the estimated parameter values. An
alternative approach consists of choosing the control variables to be the subset of model
parameters which are uncorrelated, or at most weakly correlated (Friedrichs, 1999, 2001).

Although formal methods exist for determining the degree of correlation between pairs
of model parameters (Matear, 1995), in this study the results of a sensitivity analysis are
used to estimate the degree of correlation between various model parameters. The
sensitivity of a certain model component or model diagnostic (C) to a given model
parameter (k) can be quanti� ed by calculating the normalized sensitivity (SC,k) de� ned as
the fractional change in C due to a fractional (25%) increase in the value of k (FH01):

SC,k 5

CR 2 CS

CS

kR 2 kS

kS

. (2)

In this notation, CR is the steady-state value of P, Z, A, N, or PP obtained using the
reference parameter value (kR; Table 1), whereas CS is the analogous value obtained using
kS 5 1.25kR. (Note that SC,k is a good measure of sensitivity only as long as C does not
have maxima or minima over the interval kR to kS. Experiments using other fractional
increases (10%, 20%) indicate that this is the case for nearly all the parameter values listed
in Table 2.)

Similarities in the absolute magnitudes of SP, SZ, SA, SN, and SPP (Table 2) for wZ and g

suggest that these parameters are highly correlated. Similarly, the SC for L are about twice
that of g, indicating that these two parameters are also correlated. These two pairs of
zooplankton-related parameters are distinct from the iron-related parameters which also
appear to be highly correlated: kFe, Femin, and mFe. Two other correlated parameter
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triplets include PM, a, and dc, as well as kA, rD, and wD. Parameter wP is relatively
independent of the other model parameters.

Based on this sensitivity analysis, the set of model control variables is chosen to include
wP, as well as one parameter from each of the � ve correlated parameter pairs/triplets
discussed above: wP, PM, kFe, wZ, g and rD. The speci� c parameter choice (from the two
or three included in the pair/triplet) is generally based on the sensitivity of the cost function
to each parameter. Since the value of kFe typically affects the value of the cost function
much more than either Femin or mFe, the set of control variables includes kFe.

An a posteriori error analysis indicates that the assimilation results are not sensitive to
the speci� c choice of these six parameters. For example, similar results are obtained if the
model control variables PM and rD are replaced with a and kA, respectively. Similarly, the
mean error associated with the set of six recovered control variables is independent of
whether the Ivlev grazing parameter (L) or the maximum grazing rate ( g) is chosen as a
model control variable; however, if both L and g are included as control variables, the
mean error in the (seven) model control variables increases by more than an order of
magnitude. As discussed above, it is the correlation of L and g that causes this increased
error. Only independentmodel parameters can be successfully recovered in a least-squares
type of analysis.

Values of the control variables vary over many orders of magnitude (Table 3). To avoid
precision problems with the data assimilative model, these values are scaled to give the
control variables more uniform magnitudes. The control variables are non-dimensionalized
as: PM 5 c1P9M, wZ 5 c2w9Z, kFe 5 c3k9Fe, wP 5 c4w9P, g 5 c5g9, rD 5 c6r9D, where ci

are constant scaling factors (Table 3). Scaled control variables with values of 1.0 represent
the best estimates available from experimental studies; however, these best estimates are
associated with relatively high levels of uncertainty. To obtain growth and grazing rates in

Table 2. Results of model sensitivity analysis. Sensitivities (SC ) to parameters are computed
according to Eq. (2). Dashes indicate model insensitivity ( u Sc u , 0.15) to parameter changes.

Parameter SP SZ SA SN SP P

g 20.4 20.3 — 20.3 20.4
L 20.8 20.5 0.2 20.5 20.7
wZ 0.5 20.6 — 0.3 0.4
g 20.4 0.7 — 20.3 20.4
kF e — 20.9 20.7 — 20.5
Fem i n — 0.7 0.6 — 0.3
mF e — 20.3 20.2 — —
PM — 1.0 — — 0.5
a — 0.8 — — 0.4
dc — 20.6 — — 20.3
wP — 21.0 — — —
kA — — 1.0 — —
rD — — 0.2 — —
wD — — 20.2 — —
wZ — — — — —
b — — — — —
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agreement with those of Landry et al. (1995) and Verity et al. (1996) (Table 6 of FH01),
values of P9M and k9Fe could be anywhere within the range 1.0 6 0.3, and that of g9 could be
within the range 1.0 6 0.5 (Table 3). Similarly, non-negative nitrate concentrations and
f-ratios in agreement with those of McCarthy et al. (1996) are obtained if r9D is in the range
1.0 6 0.5. Estimates of w9P and w9Z are nearly nonexistent,yet the model is quite sensitive to
choices for these parameters; e.g., the model fails if the value of w9Z exceeds 1.3. As
discussed in more detail below, these uncertainty ranges (Table 3) are used to randomly
select a priori values for the model control variables.

There is no guarantee that the adjoint method will always identify the global minimum
of the cost function; it is possible that different relative minima may be identi� ed,
depending on the initial a priori values assigned to the model control variables. Therefore,
in order to test the sensitivity of the assimilation results to the speci� c a priori values
initially assigned to the model control variables, a uniform random number generator is
used to select � fty distinct a priori estimates for each of the six model control variables
such that they are constrained to fall within the uncertainty ranges of Table 3. If the same
set of optimal parameter values is returned in each of the � fty assimilation runs, it is highly
likely that the global minimum of the cost function has been located.

c. Numerical twin experiments

In a numerical twin experiment, a model is initially run in order to provide a “true”
simulated time series (Ĉ(t)), which is subsampled in order to create a model-generated
synthetic data set. The model is then run a second time using an imperfect set of model
control variables, to generate a “reference” (no assimilation) time series (rc(t)). This same
imperfect parameter set is used in the third and � nal model run, but this time the synthetic
data are assimilated into the model in order to generate a new time series (C(t)). The
success of the twin experiment is judged by the degree of agreement between these results
and the true simulation.

In this analysis, numerical twin experiments are performed (i) to compare results
obtained using data insertion with those obtained via the adjoint method, (ii) to determine
the impact of assimilating data containing known levels of random noise and biases, and
(iii) to examine whether the sampling strategies of the U.S. JGOFS EqPac experiment

Table 3. Scaled control variables and scaling factors.

Scaled control
variable

A priori range of values
for scaled control variables Scaling factor Value of scaling factor

P9M 1.0 6 0.3 c1 14 d21

w9Z 1.0 6 0.3 c2 0.75 d21

k9F e 1.0 6 0.3 c3 0.034 mmol Fe m23

w9P 1.0 6 0.3 c4 0.45 d21

g9 1.0 6 0.5 c5 29 d21

r9D 1.0 6 0.5 c6 1.0 d2 1
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(Murray et al., 1994, 1995) and the remotely-sensed ocean color data available from the
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (McClain et al., 1998) are adequate
for parameter estimation studies.

To accomplish these goals, three synthetic data sets, subsampled using different
sampling strategies, are assimilated. Data Set I (DSI; Table 4) is obtained by subsampling
the true simulation using a sampling strategy characteristic of the JGOFS EqPac Time
Series II cruise: PP, P, Z, A, and N are sampled every other day for 20 days beginning on
YD276. Data Set II (DSII) is obtained by subsampling the true P simulation every other
day for 6 months beginning on YD1, and is typical of the data available from SeaWiFS. As
a result of cloud cover and satellite path, ocean color data within a 10° longitude and 2°
latitude region centered on 0N, 140W, are typically available 50% of the time. Data Set III
combines Data Set II with PP, P, Z, A, and N cruise data from two days in 1992.

Because biological and chemical measurements may contain large uncertainties, it is
crucial to quantify the effect of assimilating model-generated data with known levels of
noise. As a � rst approximation, instrument imprecision is accounted for by adding various
levels of uniform random noise to the synthetic data sets. For example, a time series with
20% random noise is created by randomly generating a time series of numbers within the
range [20.2, 0.2], multiplying this by the original (true) time series, and adding the
resulting time series to the original time series. A data set associated with 20% random
noise thus represents data to which a maximum of 20% noise has been added. The
deleterious effects of assimilating biased data are also investigated. A data set with 20%
bias is created by multiplying the true simulated time series by a constant factor of 1.2.

To quantify the success of a particular numerical experiment, two measures of mis� t are
calculated. First, the variable Rc is introduced to quantify the original disagreement that
exists prior to the assimilation process; i.e., the mis� t between the true simulation of
component C computed using values of 1.0 for each of the scaled model control variables
(Ĉ(t)), and the reference simulation generated using a randomly selected (from the a priori
ranges of values listed in Table 3) imperfect set of control variables (rc(t)):

Rc~t! 5
u Ĉ~t! 2 rc~t! u

Ĉ~t!
. (3)

Table 4. Descriptionsof data sets used in numerical twin experiments.

Data set Cruise data Satellite data

DSI PP , P, Z, A, N every other day for 20 days
starting on YD276*

none

DSII none P every other day for six months
starting on YD1

DSIII PP , P, Z, A, N on YD87 and YD89 P every other day for six months
starting on YD1

*The notation YD276 refers to the 276th day of 1992.
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Time-averaged (over the 730 day model run) values of this a priori mis� t are de� ned:
^Rc& 5 ^ u Ĉ(t) 2 rc(t) u &/^Ĉ&. Because ^Ĉ& is always nonzero, this particular de� nition
ensures that ^Rc& remains � nite. The mean a priori mis� ts for the � fty reference simulations
are: ^RPP& 5 0.15, ^RP& 5 0.15, ^RZ& 5 0.27, ^RA& 5 0.25, and ^RN& 5 0.20.

A second measure of mis� t, Cc(t), is de� ned as the mis� t that remains after the
assimilation experiment is complete, i.e. the mis� t between the true simulation (Ĉ(t)) and
the simulated time series obtained from an assimilation experiment (C(t)):

Cc~t! 5
u Ĉ~t! 2 C~t! u

Ĉ~t!
. (4)

The time-averaged value of the post-assimilation mis� t is de� ned: ^Cc& 5 ^ u Ĉ 2 C u &/^Ĉ&.
Note that although Cc(t) may approach in� nity if Ĉ(t) approaches zero, ^Cc& remains
� nite since ^Ĉ& is always nonzero.

d. Reference simulations (rc(t))

Fifty reference simulations for phytoplankton (rP(t)), zooplankton (rZ(t)), ammonium
(rA(t)), nitrate (rN(t)) and primary production (rPP(t)) (Fig. 2) are generated using � fty
distinct sets of a priori parameter estimates (randomly chosen such that they are
constrained to fall within the uncertainty ranges of Table 3). These simulations illustrate
how large differences in plankton and nutrient concentrations can result from relatively
small changes in parameter values. Even if relatively conservative estimates of parameter
uncertainties are made (Table 3), model components can often not be constrained to within
a factor of 5 or more. For example, nitrate concentration at the end of 1993 could range
anywhere from 5 mmol N m23 to 40 mmol N m23 (Fig. 2), depending on the various
reasonable choices made for the model parameters. Although generally the � fty reference
simulations are within 630–50% of the true simulation, during the time periods when
zooplankton and ammonium reach particularly low concentrations, zooplankton and
ammonium can differ from those of the true simulation by more than 100%.

The characteristics of the nitrate simulations are very different from those of PP, P, Z,
and A: whereas the envelopes for the plankton and ammonium simulations appear to
remain tight and nearly constant in time, the envelope of the 50 nitrate simulations
broadens over time. This is because planktonand ammonium concentrationsare dominated
by biological processes which have very short O(1 d21) time scales, and are characterized
by a quick (2–5 day) loss of memory of the initial conditions. Because the Figure 2 time
series are averaged over a time period (two weeks) which exceeds the time period of this
memory loss (several days), it appears that these model components instantaneously
become independent of their initial conditions, even though in actuality this occurs over a
time span of several days. Thus, the width of the envelope of the 50 PP, P, Z, and A
simulations is not governed by initial conditions, but rather is a function of the ranges of
parameter values used for the � fty simulations. On the contrary, nitrate concentration is
primarily determined by physical advective processes which have much longer time scales.
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As a result, nitrate remains dependent on initial conditions throughout the entire two-year
simulation, causing the envelope of 50 simulations to gradually expand through time.

3. Results

a. Comparison of assimilation schemes

i. Data insertion. Data insertion experiments are performed in which Data Sets I and II
(Table 4) are inserted into the ecosystem model. The insertion of Data Set I (synthetic
cruise data) results in time series of Cc(t) which are identical to those of Rc(t) until the day
on which the � rst data are inserted on YD276 (Fig. 3). On this date, and on the other nine
days when data are inserted, Cc(t) drops to zero as expected; however, on alternate days
when data are unavailable (YD277, YD279. . .) values of Cc are large. Because the
synthetic data are derived using parameter values that may be quite different from those
used to run the model, the insertion of data may cause instabilities in the model. As a result,
it is possible for values of Cc computed after the insertion of DSI (e.g. CP and CA on
YD277, YD279) to exceed the corresponding values of Rc computed without data
assimilation.

After all available data have been inserted, values of CPP, CP, CZ and CA overshoot
the corresponding a priori time series (Rc), indicating that as soon as data are no longer
available, a deterioration in simulation skill quickly results. Only 5–10 days after the
insertion is complete, the assimilation time series converge to the corresponding reference
(no assimilation) time series. This rapid convergence is due to the insensitivity of the
model to the component initial conditions, which in turn results from the short (O(1 day))
time scales of the dominant biological processes (e.g. growth, grazing). Thus, the success
of assimilation schemes such as data insertion and nudging will depend on time series
observations of nutrient concentrations and plankton biomass consistently being available
at these time scales (O(days)).

Although the DSI insertion results in only a temporary improvement in simulation skill
for PP, P, Z, and A, there is a relatively long-term improvement in the simulation skill of
nitrate (Fig. 3e). Whereas plankton biomass and ammonium concentrationare governed by
biological processes with time scales of O(1 day), nitrate concentration is largely deter-
mined by physical (advective) processes with much longer time scales. The nitrate
simulation, therefore, remains dependent on the initial condition for a much longer period
of time. The continual reinitialization of the model via data insertion thus provides a
signi� cant improvement to the overall simulation skill of nitrate, whereas any improve-
ment for phytoplankton,zooplankton or ammonium is short-lived.

In a second experiment, Data Set II (synthetic ocean color data) is inserted into the FH01
model. As expected, CP 5 0 at the speci� c times when observations are inserted into the
model (Fig. 3b); however, on alternate days when data are not available, values of CP are
just as high as the a priori mis� ts (RP) computed from the non-data assimilative
simulation. For the year of 1992, the DSII insertion results in an average reduction in
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model data mis� t for phytoplankton from 0.06 to 0.02, and little or no improvement in the
simulation skill of the remaining model components. In fact, over this time period the
simulation skill of nitrate deteriorates from an a priori value of RN 5 0.25 to CN 5 0.29.
Furthermore, as soon as data are no longer inserted, there is a rapid convergence of the
assimilation and no-assimilation time series: for example, only seven days after the last
ocean color data point is inserted, the post-assimilation mis� t (CC) and a priori mis� t
(RC) are indistinguishable.

ii. Variational adjoint method. When DSI (synthetic cruise data) is assimilated using the
adjoint method, the exact values of the model control variables are perfectly recovered.

Figure 3. Comparison of model-data mis� ts generated without data assimilation (RC (t); thick line),
with the insertion of DSI (solid line), and with the insertion of DSII (dot-dash line) for (a) primary
production, (b) phytoplankton, (c) zooplankton, (d) ammonium, and (e) nitrate. Speci� c times of
DSI insertion are denoted by x; DSII insertion occurs every other day throughout 1992. Note the
change in y-axis scale in (b).
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The cost function is reduced from O(103) to O(102 8) in roughly 25 iterations (Fig. 4a),
and the six model control variables are recovered nearly simultaneously (Fig. 4b).
Forty-nine additional twin experiments are conducted in which the scaled model control
variables are randomly assigned different initial values within their respective a priori
ranges (Table 3). In each case the same values of the control variables are recovered,
indicating that the global minimum of the cost function has been identi� ed. If the a priori
ranges of the model control variables are tripled, perfect parameter recoveries are still
possible, however the number of iterations required is roughly 50% larger. Similar results
are also obtained when fewer data, e.g. 4 days of PP, P, Z, A, and N cruise data, are
assimilated. When even fewer data are assimilated, multiple values for the model control
variables are recovered, and it becomes increasingly dif� cult to identify the absolute
minimum of the cost function.

The assimilation of DSII (synthetic ocean color data) results in the perfect recovery
of � ve of the six control variables in all � fty numerical experiments; however, the
value of the recycling parameter (rD) always remains unchanged (Fig. 4c). Because
primary production and plankton concentrations are independent of the value assigned
to rD, the assimilation of a data set that does not include nutrient concentrations cannot

Figure 4. (a) Value of the cost function as a function of iteration number for the adjoint assimilation
of DSI, DSII and DSIII (a), and values of the scaled model control variables as a function of the
number of iterations for the assimilation of DSI (b), DSII (c), and DSIII (d).
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recover any information on rD. As a result, these assimilation experiments result in
simulated time series of PP, P, and Z that exactly reproduce the data, whereas the
simulated time series of ammonium and nitrate, which depend heavily on the value
assigned to rD, produce mis� ts that show little improvement over their pre-assimilation
values (Fig. 5).

The assimilation of DSIII, which supplements DSII with two days of PP, P, Z, A, and N
cruise data, results in the perfect recovery of all six control variables (Fig. 4d), and hence
CPP(t) 5 CP(t) 5 CZ(t) 5 CA(t) 5 CN(t) 5 0. Further experimentation reveals that
perfect parameter recoveries are also possible even if only 3 months, rather than six
months, of phytoplanktondata are supplemented with two days of cruise data.

Figure 5. Time series of (a) CP P (t), (b) CP (t), (c) CZ (t), (d) CA (t), and (e) CN (t) averaged over
14 days, generated using parameter sets recoveredvia the adjoint assimilationof DSII. Results are
shown for 50 different a priori estimates of the control variables. In (a), (b) and (c), mis� ts are
always equal to zero. Shaded regions indicate plus and minus one standard deviation of the mean
of the � fty reference (no assimilation) time series, RC (t).
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b. Variational adjoint assimilation of imperfect data

In the numerical twin experiments described thus far, the synthetic data have been
perfectly consistent with the model dynamics; however, in reality inconsistencies between
data and model arise from observational errors, including mis� ts due to subsampling
spatially variable � elds, as well as missing model dynamics. To examine the rami� cations
of such inconsistencies,numerical experiments are conducted with data containing various
levels of random noise and bias.

i. Data with random noise. Twenty percent random noise is added to Data Set I and Data
Set III, and the resulting noisy data are assimilated via the adjoint method in separate
assimilation experiments. Because this procedure involves random errors, multiple experi-
ments will not produce identical results. Therefore, ten realizations (each consisting of � fty
experiments) are performed for both DSI and for DSIII, in which different random errors,
always with a maximum magnitude of 20%, are added to the synthetic data. For each
realization, the same � fty sets of initial values are used for the control variables; however,
all � fty experiments always result in the recovery of the same parameter set, indicating that
the global minimum of the cost function is successfully identi� ed in each realization.

Recovered values of the scaled control variables differ from those used to generate the
true model simulation. The mean differences between the recovered and true values is
about 5% for the assimilation of in situ cruise data (Table 5), and 9% for the assimilation of
ocean color data (Table 6), suggesting that the long (six months) time series of phytoplank-
ton chlorophyll does not make up for having only two days (as opposed to ten days) of
cruise data available for the remaining model components. The greatest departures
between the true and recovered values occur for P9M, w9P, and k9Fe. Although the
assimilation of DSI yields errors in the recovery of k9Fe of only 3% (Table 5), the
assimilation of DSIII results in average errors in k9Fe of 19% (Table 6). The error in the
recovery of P9M is also twice as great for the DSIII assimilation (14% versus 7%), whereas

Table 5. Summary of variation in scaled control variables recovered from assimilation of DSI with
20% random noise. Values of 1.00 indicate perfect parameter recoveries.

Realization P9M w9Z k9Fe w9P g9 r9D

1 1.01 6 0.04 0.98 6 0.01 0.98 6 0.03 1.11 6 0.04 0.95 6 0.02 0.99 6 0.03
2 0.99 6 0.04 1.05 6 0.02 1.00 6 0.03 0.98 6 0.05 1.06 6 0.02 1.04 6 0.03
3 0.91 6 0.04 0.99 6 0.01 1.06 6 0.03 0.81 6 0.04 0.96 6 0.02 0.97 6 0.02
4 0.99 6 0.04 0.98 6 0.01 0.96 6 0.03 1.00 6 0.04 0.89 6 0.02 0.95 6 0.02
5 0.95 6 0.04 1.01 6 0.02 0.99 6 0.03 1.05 6 0.04 0.98 6 0.02 0.93 6 0.02
6 0.93 6 0.04 1.01 6 0.01 1.03 6 0.03 0.83 6 0.04 1.00 6 0.02 1.00 6 0.03
7 0.90 6 0.03 1.06 6 0.02 1.02 6 0.03 0.85 6 0.04 1.06 6 0.03 1.00 6 0.03
8 1.14 6 0.06 0.97 6 0.02 1.01 6 0.03 1.21 6 0.05 1.00 6 0.02 0.96 6 0.03
9 0.96 6 0.04 0.95 6 0.01 1.05 6 0.03 0.89 6 0.04 0.98 6 0.02 0.98 6 0.03

10 0.81 6 0.03 1.01 6 0.02 0.94 6 0.03 0.86 6 0.04 1.02 6 0.03 0.88 6 0.02
Mean percent error over

ten realizations* 7% 3% 3% 12% 4% 4%

*Mean percent error over ten realizations is computed as: 100 ¥j51
10 u yj 2 1.0 u /10 where the yj are the ten realizations of each

scaled control variable.
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the error in the recovery of w9P is smaller for the DSIII assimilation (7% versus 12%). An
examination of the model sensitivity results (Table 2) reveals that variations in these three
parameters have similar effects on the model components; e.g., all signi� cantly affect
zooplankton biomass, but have very little impact on phytoplankton abundance. This is an
indication that these parameters are probably correlated, resulting in relatively poor
parameter recoveries with correspondinglyhigh levels of uncertainty.

The inexact recovery of parameter values (Tables 5 and 6) leads to time series of CC(t)
that are no longer identically equal to zero. When the noisy version of Data Set I is
assimilated (Fig. 6), the average mis� ts for the ten realizations are computed to be:
^CPP& 5 0.04, ^CP& 5 0.02, ^CZ& 5 0.07, ^CA& 5 0.13, and ^CN& 5 0.03. These
values are 2–8 times smaller than the corresponding ^Rc& values obtained for the reference
(no assimilation) simulations. Thus, even when noisy observations are assimilated using
the adjoint method, simulation skill is still substantially improved.

Although values of CPP(t), CP(t), and CN(t) are low (typically less than 0.05; Fig. 6),
values of CA(t) are greater, at times exceeding 1.0. These high values occur because
ammonium can undergo large (order of magnitude) changes in concentration on very short
time scales (O(days); FH01, their Fig. 8). As a result, small changes in event timing can
cause large changes in the values of CA(t). In contrast, the characteristic time scales of
chlorophyll and nitrate are longer (FH01), and thus small changes in event timing do not
cause large values of CP(t) or CN(t).

Experiments with other levels of random noise (0–40%) are also performed for both
DSI and DSIII, as well as a combination of Data Sets I and III (Fig. 7a–e). Values of ^Cc&

increase nearly linearly for all model components as the magnitude of random noise added
to the synthetic data is increased. Because the ocean color data set (DSIII) contains more
plankton data and fewer nutrient data than the cruise data set (DSI), the assimilation of
noisy ocean color data results in values of ^CPP& and ^CP& which are 40% lower than
those obtained via the assimilation of noisy in situ cruise data, whereas ^CA& and ^CN& are

Table 6. Summary of variation in scaled control variables recovered from assimilationof DSIII with
20% random noise. Values of 1.00 indicate perfect parameter recoveries.

Realization P9M w9Z k9Fe w9P g9 r9D

1 1.25 6 0.09 1.03 6 0.03 1.18 6 0.02 1.06 6 0.11 1.03 6 0.06 1.00 6 0.06
2 1.11 6 0.11 0.91 6 0.03 1.19 6 0.19 0.91 6 0.02 0.95 6 0.01 0.90 6 0.004
3 0.88 6 0.06 0.99 6 0.04 0.81 6 0.08 1.05 6 0.09 1.01 6 0.05 1.03 6 0.05
4 1.09 6 0.15 0.94 6 0.05 1.09 6 0.19 0.95 6 0.12 0.94 6 0.05 0.97 6 0.04
5 0.92 6 0.12 0.96 6 0.03 0.94 6 0.13 0.98 6 0.05 0.98 6 0.03 1.02 6 0.06
6 1.09 6 0.10 1.04 6 0.02 1.07 6 0.10 1.03 6 0.06 1.03 6 0.01 0.97 6 0.03
7 1.05 6 0.13 1.00 6 0.07 1.18 6 0.23 0.90 6 0.13 0.99 6 0.08 0.97 6 0.03
8 0.75 6 0.04 0.99 6 0.03 0.54 6 0.02 1.20 6 0.06 1.02 6 0.04 1.19 6 0.04
9 0.78 6 0.10 1.06 6 0.08 0.70 6 0.08 1.09 6 0.13 1.13 6 0.09 1.12 6 0.08

10 1.16 6 0.01 0.96 6 0.01 1.20 6 0.10 0.99 6 0.02 0.96 6 0.02 0.98 6 0.01
Mean percent error over

ten realizations* 14% 4% 19% 7% 4% 6%

*Mean percent error over ten realizations is computed as: 100 ¥j51
10 u yj 2 1.0 u /10 where the yj are the ten realizations of each

scaled control variable.
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nearly twice as high when the ocean color data are assimilated in place of the cruise data.
Not surprisingly, the highest simulation skill and lowest mis� ts are obtained if Data Sets I
and III are both assimilated simultaneously. In this case ^CPP& and ^CP& are nearly
identical to those obtained for the DSIII assimilation case, whereas ^CZ&, ^CA& and ^CN&

are even lower than those of the DSI assimilation case (Fig. 7a–e).
When high levels of random noise (.30%) are added to the synthetic data prior to

assimilation, multiple minima of the cost function are found; i.e., the same parameter set is
not recovered for all 50 initial estimates of the control variables. (Results shown in Figure 7
represent those associated with the most commonly occurring parameter set.) Even though
multiple minima are occurring when 40% random noise is added to the assimilated data, a
doubling of random noise from 20% to 40% is generally still associated with a doubling in

Figure 6. Time series of (a) CP P (t), (b) CP (t), (c) CZ (t), (d) CA (t), and (e) CN (t) averaged over
14 days, for simulations generated using parameter sets recovered via the adjoint assimilation of
Data Set I to which 20% random noise has been added. Ten random realizations are shown, as
described in text. Shading representsplus and minus one standard deviationof the mean of the � fty
reference (no assimilation) time series, RC (t).

2001] 877Friedrichs: Data assimilative marine ecosystem model



the magnitudes of each ^Cc& component. The one exception is the nonlinearity in ^CA& for
the Data Set III assimilation case, which is most likely due to these multiple minima.

ii. Biased data. In addition to random errors, observations are typically also associated
with a certain degree of bias. Depending on the type of observation, (e.g., rate, plankton
biomass, or nutrient concentration) and the observational platform from which the data are
collected, (e.g., satellite or ship) varying levels of bias may be present. In order to

Figure 7. Model-data mis� ts ^CC & obtained via the adjoint assimilation of various imperfect data
sets. (a) ^CP P &, (b) ^CP &, (c) ^CZ &, (d) ^CA &, and (e) ^CN & are shown as a function of the percent
random noise added to the synthetic data: DSI (dotted line), DSIII (dash-dot line), and both DSI
and DSIII (solid line). Model-data mis� ts (f) ^CP P &, (g) ^CP &, (h) ^CZ &, (i) ^CA &, and (j) ^CN &
are shown as a function of the percent bias added individually to the � ve components of DSI.
Model-data mis� ts obtained without data assimilation, ^RC & (dotted lines), are included for
reference.
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investigate the potential problems associated with assimilating data containing biased
errors, numerical experiments are conducted in which 120% and 220% biases are added
to the PP component of DSI, while the P, Z, A, and N data are assumed to be error-free.
Experiments are also carried out in which these biases are added individually to the other
components of DSI (P, Z, A, N), as well as to all � ve data components simultaneously. In
a � nal experiment, biases are added to the synthetic ocean color observations of DSIII. In
each of these cases, � fty numerical experiments are carried out with different initial
random estimates for the model control variables. When highly biased data (20%) are
assimilated, multiple minima of the cost function can exist; results associated with the most
commonly occurring minimum are presented.

When biases are added to the assimilated data sets, often the model control variables are
no longer perfectly recovered. Because of nonlinearities associated with the model
equations, a bias of a certain percentage typically does not result in errors in the recovered
parameter values of the same magnitude.However, in general the assimilation of positively
and negatively biased data tends to alter the values of the recovered parameters by roughly
an equal magnitude, but in the opposite direction (Table 7). For example, if the PP
component of DSI is biased by 220%, the recovered value of P9M is 0.70, i.e. a decrease of
30% from the true value of 1.00. An analogous PP bias of 120% results in an increase in
P9M of nearly the same magnitude, such that the � nal value of P9M is 1.27 (Table 7).

Although the assimilation of biased PP data results in the imperfect recovery of P9M and
w9P by 30% and 45% respectively, other parameters, such as those governing zooplankton
biomass ( g9 and w9Z), are successfully recovered. If the biases are added to the P
component of DSI instead of to the PP data, not only are P9M and w9P poorly recovered, but
the value of g9 is associated with a 33% error as well. When biases are added to ammonium
or nitrate data, w9Z, w9P, and g9 are successfully recovered; however, values of P9M, k9Fe, and
r9D are in error by 10–20%. If biases are added simultaneously to all � ve components of

Table 7. Summary of variation in scaled control variables recovered from assimilation of data sets
with varying levels of bias. Values of 1.00 indicate perfect parameter recoveries.

Bias
Data
set Component P9M w9Z k9Fe w9P g9 r9D

Mean
param.
error*

220% I PP 0.70 6 0.02 1.01 6 0.01 1.05 6 0.04 0.55 6 0.03 1.00 6 0.02 0.93 6 0.03 15%
20% I PP 1.27 6 0.04 0.99 6 0.01 0.87 6 0.02 1.45 6 0.06 1.00 6 0.02 0.97 6 0.02 15%

220% I P 1.43 6 0.07 0.90 6 0.02 1.00 6 0.03 1.40 6 0.09 1.33 6 0.06 1.08 6 0.04 22%
20% I P 0.76 6 0.03 1.07 6 0.01 0.97 6 0.03 0.76 6 0.03 0.79 6 0.02 0.88 6 0.02 15%

220% I Z 0.95 6 0.04 1.08 6 0.02 0.93 6 0.03 1.14 6 0.05 1.12 6 0.03 0.93 6 0.03 9%
20% I Z 1.03 6 0.04 0.94 6 0.01 1.05 6 0.03 0.85 6 0.04 0.91 6 0.02 1.06 6 0.03 7%

220% I A 1.18 6 0.05 0.98 6 0.02 1.21 6 0.03 0.97 6 0.05 1.00 6 0.03 0.86 6 0.03 10%
20% I A 0.85 6 0.03 1.01 6 0.02 0.83 6 0.02 0.99 6 0.04 0.98 6 0.02 1.15 6 0.03 9%

220% I N 0.87 6 0.02 0.98 6 0.02 0.86 6 0.02 1.01 6 0.03 0.97 6 0.02 0.80 6 0.02 9%
20% I N 1.10 6 0.12 1.06 6 0.03 1.10 6 0.07 0.98 6 0.08 1.05 6 0.03 1.22 6 0.16 9%

220% I PP, P, Z, A, N 1.02 6 0.05 0.98 6 0.02 1.10 6 0.03 1.00 6 0.06 1.49 6 0.07 0.68 6 0.02 16%
20% I PP, P, Z, A, N 0.96 6 0.03 1.04 6 0.01 0.89 6 0.02 0.99 6 0.03 0.73 6 0.01 1.34 6 0.04 14%

220% III P 1.03 6 0.12 0.92 6 0.05 0.82 6 0.09 1.24 6 0.12 1.40 6 0.09 0.97 6 0.07 16%
20% III P 0.90 6 0.09 1.06 6 0.04 1.01 6 0.11 0.88 6 0.02 0.77 6 0.02 1.18 6 0.05 12%

*Mean parameter error is computed as: 100/6 ¥i51
6 u xi 2 1.0 u where the xi are the values of the six scaled control variables.
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DSI, g9 and r9D are associated with errors as large as 30–50%. Overall, the poorest
parameter recoveries occur if biases are added to phytoplankton data, suggesting that the
simulation results are most highly dependent on this model component. Thus it is crucial
for observational programs to attain high quality chlorophyll measurements, since phyto-
plankton time series are of central importance to attaining accurate model simulations.

The imperfect parameter recoveries resulting from the assimilation of biased data can
lead to large model-data mis� ts. In general, the magnitudes of these mis� ts are linearly
dependent on the magnitude of bias added to the synthetic data (Fig. 7f–j). For example, if
a 10% bias is added to the primary production component of DSI and the resulting time
series is assimilated along with perfect time series of P, Z , A, and N, the resulting value of
^CPP& is 0.10. If a 20% bias is assumed and the same assimilation experiment is
performed, ^CPP& doubles in magnitude to 0.20 (Fig. 7f). Generally the greatest values of
^CC& occur when a bias exists in model component C; however, this is not true for
ammonium. The assimilation of biased N data results in a poor recovery of rD, to which the
concentration of ammonium is particularly sensitive (Table 2). The assimilation of biased
PP data also strongly affects ammonium concentration, since regenerated production (a
primary term in the ammonium conservation equations; see the Appendix) is a strong
function of PP. Thus biases in PP and N cause just as large a deterioration in the
simulation skill of A, as do biases in the ammonium data itself.

c. Sampling strategies

Successful parameter recoveries are dependent not only on observational errors, but also
on the amount of available data. The degree of spatial and temporal averaging of the data
may also affect the success of assimilative model runs. Numerical twin experiments are
performed in order to examine the potential magnitude of these effects.

i. Data availability. As discussed earlier, if 20% noise is added to DSI (a 20 day time
series) prior to assimilation, imperfect model control variables are recovered, and values of
^CC& range between 0.02 and 0.07 (Fig. 7b,d). If, however, only a 6-day (10-day) time
series of noisy cruise data is available for assimilation, model-data mis� ts are signi� cantly
higher (Fig. 8a), ranging from ^CP& 5 0.06 (0.03) to ^CA& 5 0.13 (0.09). If longer time
series are available for assimilation (e.g. 40 days), the deterioration in simulation skill due
to the addition of random noise is substantially reduced, with ^CC& , 0.05 for all model
components. Thus, when random noise is present in the data, the increase in time series
length from 6 days to 40 days can provide a large (70%) improvement in simulation skill.
A large percentage of this improvement occurs if 10 days rather than 6 days of data are
assimilated. This is because of the strong 6–8 day variability of the equatorially trapped
internal gravity waves (FH01). Further improvement results if the strong tropical instabil-
ity wave signal (20–30 day) is resolved by assimilating at least 40 days of data.

If biased errors are individually added to each component of DSI, an increase in the
number of days of data that are assimilated produces little change in simulation skill
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(Fig. 8b). However, simulation skill can depend on the particular days on which data are
assimilated. For example, the relatively large value of ^CA& associated with the 10-day
time series as compared to the 6-day time series (Fig. 8b), is reduced if data from YD286 to
YD296 are assimilated in place of data from YD276 to YD286. This is primarily because
of the large peaks in P, Z, and A concentrationsoccurring between YD282–285 (FH01); in
contrast, concentrations during YD286–296 are more stable, resulting in lower assimila-
tion errors.

A similar set of twin experiments is also conducted for ocean color data (Fig. 9). If no
random noise is added to the synthetic data, a 90-day time series supplementedby two days
of in situ data provides suf� cient information such that the control variables are recovered
exactly; however, if 20% random noise is present in the 90-day assimilated time series,
imperfect values of the control variables are recovered, resulting in model-data mis� ts

Figure 8. Model-data mis� ts, ^CC &, as a function of the length of the assimilated synthetic cruise
data time series. In (a) ^CC & is computed after 20% random noise is added simultaneously to PP ,
P, Z, A, and N, and in (b) each ^CC & is computed after 20% bias is added only to component C of
the synthetic cruise data time series.

Figure 9. Model-data mis� ts, ^CC &, as a function of the length of the assimilated synthetic satellite
ocean color time series. In (a) 20% random noise is added, and in (b) 20% bias is added to the
synthetic data.
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ranging between ^CA& 5 0.17 to ^CP& 5 0.02 (Fig. 9a). As the assimilated time series is
lengthened,values of ^CC& decrease. Because there is signi� cant energy in the temperature
forcing � elds at a period of 10–12 months, a dramatic decrease in model-data mis� t results
if a year of ocean color data are assimilated rather than six months. There is no additional
improvement in simulation skill if more than two years of data are assimilated.

In contrast, if biased ocean color data are assimilated, there is no improvement in
simulation skill as longer and longer time series become available (Fig. 8b). If the
assimilated time series is lengthened from three months to three years, model-data mis� ts
for primary production and zooplankton more than double and mis� ts for ammonium
increase by 30%. The simulation skill of phytoplanktonis nearly independent of how many
days of data are assimilated, and is always poorer than the a priori (nonassimilative) case
(^RP& 5 0.15). Although model-data mis� ts for nitrate are slightly reduced as more biased
ocean color data are assimilated, in general assimilating more biased data does not
necessarily improve simulation skill, and may even increase model-data mis� ts.

Numerical twin experiments are also used to examine the effects of altering the
frequency at which data are assimilated. For instance, if cruise data are assimilated every
day as opposed to every other day, simulation skill is improved by 25%–40% (Table 8). If
the total number of observations is held constant, but data are available every day for
10 days as opposed to every other day for 20 days, there is no signi� cant change in
simulation skill, with the possible exception of zooplankton (4.6 6 0.4 versus 5.7 6 0.4).
During the JGOFS EqPac experiment, nutrient data were generally collected at least once a
day, whereas primary production and plankton data were obtained once every other day.
This higher frequency of nutrient data collection improves the simulation skill of A (15%)
and N (31%) as would be expected; however, this increased nutrient sampling frequency
does not signi� cantly affect the simulation skill of PP, P, or Z (Table 8).

A combination of satellite position and cloud cover causes SeaWiFS ocean color data in
the central equatorial Paci� c to be available about 50% of the time; i.e., approximately
every other day. Twin experiments demonstrate that assimilating ocean color data every

Table 8. Average mis� ts (^Cc & p 100) as a function of cruise length and sampling strategy of DSI.
Results represent means and standard errors of ten realizations assuming a random noise level of
20%.

Length of in situ
cruise data set Sampling strategy ^CP P & ^CP & ^CZ & ^CA & ^CN &

20 days PP , P, Z, A, N every
other day

4.1 6 0.4 3.2 6 0.2 5.7 6 0.4 6.7 6 0.2 3.5 6 0.3

20 days PP , P, Z, A, N every
day

2.8 6 0.2 2.4 6 0.2 3.4 6 0.3 5.1 6 0.3 2.2 6 0.2

10 days PP , P, Z, A, N every
day

3.5 6 0.3 3.2 6 0.3 4.6 6 0.4 7.0 6 0.3 3.3 6 0.3

20 days PP , P, Z every other day
A, N every day

3.7 6 0.3 3.0 6 0.2 5.1 6 0.4 5.7 6 0.2 2.4 6 0.2
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day, as opposed to every other day, does not reduce model-data mis� t; however, if data are
assimilated every 4 days instead of every 2 days, a large deterioration in simulation skill
occurs for most model components (Fig. 10).

ii. Assimilating SeaWiFS composites. Ocean color satellite data are typically available as a
time series of composites, where each composite is computed as the average of all data
falling within a speci� ed spatial and temporal range. SeaWiFS data, for example, are
routinely available as 8-day and monthly composites. In order to investigate the effect of
assimilating composited data, as opposed to instantaneous (daily) data, four different
synthetic ocean color time series are assimilated (each in addition to two days of cruise
data): (i) instantaneous data once every 2 days (i.e. DSIII), (ii) instantaneous data once
every 8 days, (iii) 8-day composites, and (iv) 4-day composites once every 8 days. Note
that time series (ii)–(iv) all contain the same number of observations,whereas four times as
many observations are available in DSIII (i).

Assuming no random noise nor biases are present, the assimilation of instantaneous data
every two days or every eight days results in perfect parameter recoveries and ^CC& 5 0
(Fig. 11); however, if composites are assimilated in place of the instantaneous data, ^CC&

may reach values as high as 0.15 even in the absence of any random noise or bias
(Fig. 11d). Because random errors are partially averaged out in the formation of the
composited time series, the addition of random noise to the synthetic ocean color data
causes a larger deterioration in simulation skill for the instantaneous data time series, than
for the composited data time series. For example, when random noise is added to the
instantaneous data time series and the resulting data set is assimilated, model-data mis� ts
increase substantially:values of ^CA& increase sharply from 0.00 to 0.16, and are no longer
signi� cantly different from the analogous values of ^CA& obtained using the composited
data (Fig. 11d). In the presence of even higher noise levels (40%), the composited and

Figure 10. Model-data mis� ts, ^CC &, as a function of the frequency for which the assimilated
satellite ocean color data are available. In each case 20% random noise has been added to a
two-year long synthetic data time series.
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instantaneous assimilation results also become indistinguishable for ^CPP&, ^CZ& and
^CN&. Thus, even though the assimilation of error-free instantaneous data is more
successful than the assimilation of error-free composited data, the assimilation of noisy
composited data results in nearly as high simulation skill as the assimilation of noisy
instantaneous data.

4. Discussion and summary

Although useful for many meteorological applications, simple data assimilation schemes
such as data insertion may be insuf� cient for marine ecosystem models. Meteorological

Figure 11. Model-data mis� ts (a) ^CP P &, (b) ^CP &, (c) ^CZ &, (d) ^CA &, and (e) ^CN & obtained via
the assimilation of 180-day time series of composited and instantaneous (daily) ocean color data,
shown as a function of the percent random noise added to the synthetic data. Model-data mis� ts
obtained without data assimilation, ^RC & (dotted lines), are shown for reference.
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models are typically highly dependent on initial conditions, and thus simple assimilation
schemes which involve reinitializing the model whenever data become available can be
quite successful in weather forecasting. Partially because of the short time scales of the
dominant biological processes, lower trophic level marine ecosystem models quickly
(within days) become independent of component initial conditions. As a result, in the
numerical twin experiments conducted in this analysis, the assimilation and no-
assimilation time series of plankton concentrations are indistinguishable only seven days
after the last ocean color data point is inserted.

These results are consistent with those of Ishizaka (1990), who found that the insertion
of satellite ocean color data into a physical-biological model of the southeastern U.S.
continental shelf caused the simulated phytoplankton� eld to rapidly (within four days after
the last assimilated observation) converge to the analogous � elds obtained without
assimilation. When biological processes were removed from the model, the assimilation
and nonassimilation cases still converged within several days, suggesting that this rapid
convergence was at least partially due to the short time scales of the physical processes
associated with the Gulf Stream system. Similarly, in the present study equatorially-
trapped internal gravity waves with periods of 6–8 days (FH01; Wunsch and Gill, 1976)
may be effecting the rapid convergence of the assimilation/nonassimilation time series.

The success of data insertion thus depends on biological (plankton) and chemical
(nutrient) observations being available at very frequent intervals (O(days)). The inception
of remote-sensing ocean color sensors, such as SeaWiFS, now makes it possible to obtain
surface chlorophyll data on these time scales. However, numerical experiment results
(Fig. 3) indicate that successful simulations will require high frequency data on other
model componentsas well. Currently there are no analogous high frequency measurements
of zooplankton available on a global scale, and synoptic time series observations of
nutrient concentrations such as ammonium and nitrate are rare.

The most serious disadvantage of applying schemes such as data insertion to marine
ecosystem models, is that these types of methods assume an adequate knowledge of not
only the model parameterizations, but also the model parameters. Ecosystem models are
typically characterized by multiple empirical formulations for which parameter values are
poorly known, and often unmeasurable. Simulations are often highly dependent on
mortality rates, but these rates are dif� cult or impossible to measure and therefore poorly
constrained. If inappropriate values are assigned to these parameters, simulation skill may
be poor, even if data are inserted every other day (Fig. 3). Furthermore, it may be dif� cult
to determine whether a failed simulation results from an inappropriate choice of parameter
values, or whether there is an intrinsic error in model formulation. For example, nudging
the Fasham et al. (1990) model toward ocean color observations causes ammonium
concentrations to reach unrealistically high values (Armstrong et al., 1995). Although
altering the structure of the model to include multiple plankton size classes is one way to
eliminate this pathological behavior (Armstrong et al., 1995), it is possible that alternate
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choices of parameters in the original Fasham et al. (1990) model also may reduce
ammonium concentrations to realistic levels.

Although the variational adjoint method assumes that the model parameterizations are
correct, speci� c values for each of the model parameters do not need to be precisely known
as they do for data insertion. Results of identical twin experiments indicate that the adjoint
method, which minimizes model-data mis� ts by adjusting model parameters, holds much
promise for the assimilation of biologicaldata into marine ecosystem models. For example,
exact parameter recoveries are possible when assimilating synthetic data subsampled using
the resolution of the JGOFS EqPac Time Series cruises (Fig. 4b). Exact parameter
recoveries are also possible when synthetic ocean color data are assimilated along with a
small amount (2 days) of nutrient, plankton and production data (Fig. 4d). Similarly
promising results are also obtained when actual cruise and ocean color data at this
resolution are assimilated into the FH01 ecosystem model using the variational adjoint
method (Friedrichs, 2001). However, because it is possible that recovered parameter values
may be offsetting either other parameter values that have remained � xed or inaccurate
parameterizations, one may think of this parameter optimization procedure as a ‘calibra-
tion’ of the model, rather than an accurate determination of actual biological rate constants.
The real utility of these simulations is not necessarily in identifying precise values of
speci� c ecosystem parameters, but rather in knowing that the model has been calibrated to
be reasonably consistent with the available data. As a result, we have greater faith in the
other results and processes described by the model.

In the identical twin experiments described in this paper, data are generated by the model
and thus the model and data are, by de� nition, entirely consistent. In reality, however, both
observational errors in precision and accuracy as well as de� ciencies in the model may
cause simulated time series distributions to be inconsistent with observations. When this
inconsistency is arti� cially reproduced by adding random noise to the synthetic data prior
to assimilation, the adjoint method still improves simulation skill (Figs. 6, 7a–e). The
presence of biases in the data, however, is more detrimental to the assimilation results
(Fig. 7f–j). The addition of 20% bias to the phytoplankton component of the in situ cruise
data causes errors of up to 43% in the values of the recovered control variables (Table 7),
and high model-data mis� ts which exceed the a priori values computed without data
assimilation (Fig. 7g). In contrast, the addition of 20% random noise to the same data set
produces errors in the recovered control variables of only 3–12% (Table 5), and further-
more even when phytoplankton data associated with 40% random noise are assimilated,
model-data mis� ts are still signi� cantly reduced (Fig. 7b).

Biased errors are also particularly troublesome since increasing the duration over which
biased data are available generally does not improve simulation skill (Figs. 8b, 9b). In fact,
when assimilating biased ocean color data, increasing time series length from 6 months to
3 years causes a signi� cant increase in model-data mis� t (Fig. 9b). In contrast, when noisy
data are assimilated, increasing the duration of the data time series improves simulation
skill. Speci� cally, the largest improvement occurs if the cruise data time series is increased
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from 6 days to 10 days (Fig. 8a), or the available satellite ocean color data time series is
increased from 6 months to one year (Fig. 9a). This is because the time series of
chlorophyll concentration has signi� cant energy at periods ranging between 6–8 days and
6–12 months. In order to resolve high frequency processes such as equatorially-trapped
internal gravity waves (FH01) and seasonal to annual variability, at least 10 days of cruise
data and at least one year of ocean color data must be assimilated, respectively.

During the JGOFS EqPac cruises, plankton data were collected every other day for
roughly 20 days; however, numerical twin experiments demonstrate that assimilating
10 days of data collected every day instead of 20 days of data collected every other day
does not affect simulation skill (Table 8). Therefore, if it is possible to collect data on a
daily basis as opposed to every other day, the length (and expense) of a cruise could be
reduced or even halved. On the contrary, there appears to be no additional reduction in
model-data mis� t if ocean color data are assimilated every day as opposed to every other
day. There is, however, a signi� cant deterioration in simulation skill if data are available
only every 4 days (Fig. 10). Thus, although typical cloud cover in the equatorial Paci� c
may not affect assimilation results, unusually cloudy weather associated with El Niño
conditions may cause remotely-sensed ocean color data to be unavailable for days at a
time, and hence simulation skill may be substantially reduced.

SeaWiFS data are typically available as 8-day and monthly composites; however,
because the dominant time scales of marine ecosystems are typically on the order of days,
the formation of these ocean color composites may produce time series that are inconsis-
tent with biological observations. For example, a spectral analysis of the synthetic ocean
color data reveals a spike in energy corresponding to a period of approximately 6 days,
associated with equatorially trapped internal gravity waves (FH01). In the formation of an
8-day data composite, this energy spike is smeared out, causing an inconsistency between
the model and composited data. As a result, the assimilation of this temporally-averaged
data leads to relatively poor parameter recoveries. In contrast, 4-day composites at least
partially resolve the internal gravity waves, and model-data mis� ts obtained after assimilat-
ing 4-day composite time series are typically less than half of those obtained for the 8-day
composite assimilation (Fig. 11). If random noise is present in the data, however, the
formation of the data composite will average out much of this noise, resulting in similar
results for the assimilation of both the composited and instantaneous data (Fig. 11).
Because real data are typically associated with signi� cant random noise, it is anticipated
that when actual observations are used (Friedrichs, 2001), the assimilation of composited
data will be equally as successful as the assimilation of instantaneous data.

5. Future challenges

This analysis demonstrates that the variational adjoint method provides a successful
means for combining biological and chemical oceanographic observations with marine
ecosystem models, in order to improve simulation skill. Through the assimilation of
synthetic cruise data based on the JGOFS EqPac experiment as well as synthetic SeaWiFS
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ocean color data, it is possible to recover parameters governing processes such as grazing,
growth, mortality and recycling. However, because high correlations exist between many
model parameters, it is typically not possible to recover the entire parameter set with any
degree of certainty (Matear, 1995; Prunet et al., 1996a,b; Harmon and Challenor, 1997).
Therefore, in this analysis the control variables consist of a subset of the model parameters.
This results in the successful recovery of the control variables with low levels of
uncertainty. A more robust and objective method would involve nondimensionalizing the
model to obtain a parameter set containing a smaller number of uncorrelated parameters
which could then be successfully recovered in its entirety. The feasibility of this approach
is currently under investigation.

In the simple formulation of the cost function used in this analysis, there are no
limitations on the values that the control variables may attain; i.e., there are no a priori
penalties placed on these parameters. Although the initial parameter estimates are always
within the uncertainty ranges of Table 3, there is no guarantee that the recovered optimal
values will fall within these ranges. In certain experiments when very noisy observations
are assimilated, seriously � awed parameter sets with errors exceeding 40% may be
recovered. Despite these large errors, in certain cases the simulated time series generated
from these � awed parameter sets may still agree reasonably well with the true time series.
In these cases the model is tracking the data by misrepresenting key biological processes;
because the amount of data assimilated in these experiments is small relative to the number
of degrees of freedom, the model is poorly constrained and it may be possible for the model
to reproduce the data without representing the correct dynamical processes. Thus when
actual observations are assimilated (Friedrichs, 2001), it is important to be able to de� ne
reasonable error bounds on each of the model parameters, and either discard parameter
estimates that fall outside these ranges or add penalties to the cost function to eliminate
unrealistic parameter estimates.

As biological data sets, including in situ, satellite, and acoustic sources, continue to
grow, data assimilative biological-physical models will play an increasingly crucial role in
large multidisciplinary oceanographic observational programs. The research described
here provides a framework for future global and basin-scale studies of biological data
assimilation and predictive biogeochemical modeling; however there are still many
questions which need to be addressed before biological-physicalmodels are routinely data
assimilative. For instance, an optimal method for assimilating both physical and biological
data simultaneously is still under investigation. In this paper, the advantages and disadvan-
tages of data insertion and the variational adjoint method were discussed independently;
however, it is possible that these methods could be used as complimentary tools, where the
adjoint could � rst be used to optimize the parameter values, and then nudging could be
used to bring the simulation into even closer agreement with the data, if desired. Although
the adjoint method is shown to be a very powerful technique for improving simulation skill
through the combined use of data and models, it is not yet clear whether it is feasible to
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apply this method to a fully three-dimensional coupled physical-biological model. Work
toward this goal is currently underway.
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APPENDIX

Ecosystem model equations

Each of the � ve model components (phytoplankton (P), zooplankton (Z), ammonium
( A), nitrate (N), and detritus (D)) satis� es a general conservation equation of the form:

]C~t!

]t
5 FC~t! 1 BC~t! 2

C~t! u z52E

E~t!

d~2E~t!!

dt
(A1)

where the overbar notation indicates the vertical average of a quantity from the depth of the
bottom of the euphotic zone (computed daily as the 0.1% light level; 2E(t)) to the surface.
The quantitiesFC and BC denote the physical and biologicalprocesses, respectively,which
affect the concentration of component C, and the � nal term of Eq. (A1) arises via the
Liebniz rule, since the lower integral limit (E(t)) is a function of time (see FH01, Eq. (2)).
The vertical pro� les of P, Z, A, N and D are speci� ed, based on observations from the
JGOFS EqPac experiment (see FH01, Fig. 6).

The physical processes (advection and sinking) affecting the concentrations of each of
the model components, can be written mathematically as:

FP 5 2
1

E~t! E
2E~t!

0

w
]P

]z
dz (A2)
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E~t! E
2E~t!

0

~w 1 wZ!
]Z

]z
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FD 5 2
1

E~t! E
2E~t!

0

~w 1 wD!
]D

]z
dz (A6)

where wZ and wD represent the sinking rates of zooplanktonand detritus, respectively. The
various biological pathways for nitrogen cycling in the model ecosystem (Fig. 1) are
described by the following equations:

BP 5 PP~Fe, I, P# ! 2 G# ~P# , Z# ! 2 wPP# (A7)

BZ 5 gG# ~P# , Z# ! 2 wZZ# (A8)

BN 5 2NP~Fe, I, P# , A# ! (A9)

BA 5 2RP~Fe, I, P# , A# ! 1 bwZZ# 1 rDD# (A10)

BD 5 wPP# 1 ~1 2 b!wZZ# 1 ~1 2 g!G# ~P# , Z# ! 2 rDD# (A11)

where the values and de� nitions of speci� c parameters are given in Table 1. A brief
overview of these various processes will now be given, but the reader is referred to FH01
for a more thorough discussion of the model formulations.

The biological processes affecting phytoplankton biomass include natural mortality
(wPP# ), grazing by zooplankton (G# ):

G# ~P# , Z# ! 5 gP# Z# L~1 2 e2P# L! (A12)

and primary production (PP). Because recent results of in situ iron additions to macronu-
trient-rich equatorial waters during the IronEx cruises have unequivocally established that
the availability of iron limits the cell division rates and abundance of phytoplankton(Frost,
1996; Behrenfeld et al., 1996), iron limitation is assumed a priori. Thus, instead of
re-testing the iron hypothesis, the novel approach of assuming iron limitation and
examining the implications for marine ecosystem structure at 0N, 140W is taken. Until
more information becomes available on iron chemistry and the speci� c roles various forms
of iron play in equatorial ecosystems, an explicit iron model is not justi� ed. Therefore, in
this study iron concentration is not included as a separate model component, but rather it is
included in the growth term where iron limitation is speci� ed. Primary production is
modeled as:

PP 5
1
E E

2E

0 Fe~z!

Fe~z! 1 kFe
P~z! E

0

1

Pmx~1 2 e2Ia/Pmx!dtdz (A13)

where Pmx(t) 5 PM sin (2p(t 2 0.25)) for 0.25 , t , 0.75, and Pmx(t) 5 0 otherwise,
and the photosynthetically active portion of the visible light spectrum (PAR) is computed
as:
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I~t, z! 5
0 for t , 0.25 or t . 0.75
I0~1 2 Cs! sin ~2p~t 2 0.25!!R~z! for 0.25 , t , 0.75.

In these formulations, t represents nondimensionalized time (t 5 t/ 24 h, where t 5 [0,
24 h]), I0 is the clear sky value of PAR, Cs is fraction cloud cover, and R( z) is the depth
dependent attenuation as described in Appendix B of FH01. Iron concentration (Fe( z)) is
determined from a bilinear approximation to the empirical formulation of Gordon et al.
(1997): Fe( z) 5 MAX [Femin, Fe u z5 2 100 2 mFe( z 1 100)], where iron concentrations
at 100 m depth (Fe u z5 2100) are computed from a Fe:T regression.

A fraction (g) of the grazed phytoplankton is assumed to represent zooplankton growth
from assimilated ingestion, and is partially offset by a generalized loss term (wZZ# ). A
fraction (b) of this loss term is attributed to zooplankton excretion, and the remainder
represents losses such as natural mortality and predation. Primary production is supported
by both nitrate uptake (new production; NP) and ammonium uptake (regenerated produc-
tion; RP). Recently a strong suppressing effect of ammonium on nitrate uptake rates has
been observed in the central equatorial Paci� c (McCarthy et al., 1996). Therefore, if
ammonium concentrations are high enough to provide enough nitrogen to fuel all primary
production, then RP 5 PP. Otherwise,

RP 5 mmx

A

kA 1 A
P# . (A14)

where mmx is the iron-saturated growth rate. New production (NP) is de� ned as that
portion of total primary production that is supported by nitrate uptake, instead of by
ammonium utilization, i.e. NP 5 PP 2 RP.

Other biological processes affecting the ammonium balance include zooplankton
excretion and recycling via the detrital pool (rDD# ), where rD represents a generalized rate
at which detritus is recycled into ammonium. Biological processes affecting the detrital
pool include contributions from phytoplankton and zooplankton mortality, unassimilated
grazing, and the loss of detrital nitrogen to ammonium nitrogen via recycling.
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