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The impact of model-error correlation on regional data
assimilative models and their observational arrays

by Philip S. Bogden1

ABSTRACT
Data assimilative models often minimize a penalty functional that measures model adjustment and

model-data mis� t. The penalty functional builds assumptions about model error into the analysis.
Usually, errors from different parts of the model (e.g., dynamics and boundary conditions) are
presumed to be uncorrelated. This is clearly not a valid assumption in regional models where
uncertain large-scale forcing affects open-oceanboundary conditions.In this study, calculationswith
a regional wind-driven inverse model provide a speci� c example where model error from uncertain
wind stress is correlated with model error from uncertain open boundary conditions. This physically
realistic scenario motivates development of a more general penalty functional that includes
model-error correlation. In fact, model-error correlations must be included in order to meet the
objective of making the open-ocean boundaries behave like the open ocean. Statistical issues for the
generalized inverse model are described in the context of objective analysis. Implications for array
design are addressed. For data assimilative models that incorrectly neglect model-error correlation,
data should not come from open-oceanboundary regions. Rather, data should come from the interior
of the regional domain. There is no such restrictionon data placement for the assimilative model that
correctly accounts for model-error correlation.

1. Introduction

Suppose a limited number of current meter moorings will be used to estimate coastal
wind-driven currents. Suppose also that the data will be used in a regional data assimilative
model to estimate the entire current � eld. As with many regional models, problematic
open-ocean boundary conditions will be a major source of model error. Therefore, should
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the moorings be placed near the open boundaries of the regional model so as to directly
in� uence the open boundary conditions, or should they be placed in the interior of the
domain and allowed to in� uence the open boundary conditions from afar? Results from
this study indicate that optimal mooring placement is highly sensitive to statistical
assumptions incorporated into the assimilative model.

Statistical assumptions are generally used to de� ne a penalty functional that provides a
quadratic measure of model adjustment and model-data mis� t; the optimal solution
minimizes the penalty functional. Statistical issues are especially subtle with regional
coastal models because of the open boundary conditions (OBCs). Uncertain OBCs provide
the central focus for this study. The scenario presented in Section 2 is based on a regional
model of central Long Island Sound that has open-ocean boundaries on two sides.
Dynamical errors arise from uncertain local wind forcing, and OBC errors arise from
uncertain remotely driven � ows. We presume that large-scale winds provide the ultimate
source of both types of model error. Other potential sources of model error are neglected in
order to focus on the treatment of OBCs.

This study is based on simpli� ed dynamics of a single shallow-water layer. Neverthe-
less, the open-boundary effects encountered here are characteristic of regional models with
more complex dynamics. The seasonal Gulf of Maine calculation by Xue et al. (2000)
provides an example. Their simulation exhibits unrealistic � ows near the open boundary,
although � ows in the interior seem unaffected by the open-boundary artifacts. They use a
radiation condition for barotropic � ow that is similar to an OBC employed here.

Bogden et al. (1996) use a generalized inverse to estimate OBC forcing for a
shallow-water model of the subtidal wind-driven circulation in Massachusetts Bays. Their
inverse uses moored current meter data from the interior of the regional model domain.
Wind is prescribed from observations, and a radiation OBC is adjusted in the inverse.
Estimates of the interior � ow are strongly in� uenced by OBC adjustments. The resulting
� ow estimates are robust near interior moorings. However, � ows near the open boundary
exhibit unrealistic features that are relatively sensitive to assumptions about OBC-error
statistics.

One goal of the study described here is to determine model-error statistics that produce
accurate velocity estimates throughout the regional domain. That is, model-error covari-
ances must make the open boundary behave like the open ocean. A problem occurs because
the model errors have large horizontal scale so that local winds are correlated with remote
winds. Remote winds drive currents outside the model domain which subsequently affect
the OBCs. Therefore, local winds are correlated with remotely driven � ows at the open
boundary. The implication for the data assimilative model is that errors in the local forcing
are correlated with errors in the OBCs. If the two sources of model error are correlated,
then data-based adjustment for one type of model error must correlate with adjustment for
the other.

This kind of cross-correlation between different model errors can arise in a variety of
contexts. Nevertheless, model-error correlations are rarely included in data assimilative
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models. Model errors are often presumed to be autocorrelated over large length and time
scales, but cross-correlation is another issue. In analogy with maximum likelihood
methods, Section 3 shows how model-error correlations are incorporated into the penalty
functional. Bennett (1992) states that such terms “greatly clutter the inversion and are
neglected in most applications, corresponding to the assumption of uncorrelated errors.
Indeed, there is little prospect of providing credible estimates for such covariances,
although it is plausible that they are small.” This study provides a speci� c counter-example
to Bennett’s statement. The example is particularly relevant for regional data-assimilative
models of the coastal ocean.

We show that the neglect of model-error correlation has a detrimental impact on the
analysis by considering a case where the exact model-error statistics are known. Exact
statistics for the regional inverse model are computed from a second dynamical model
whose domain includes all of Long Island Sound. Statistics are computed with OBCs for
the regional model that have been extracted from the large-domain model. Such OBCs are
“correct” in that they make the regional model exactly reproduce the circulation of the
large-domain model. Moreover, OBC statistics computed from the large-domain model
allow the regional inverse model to produce OBCs that are statistically consistent with the
large-domain model. That is, with the correct model-error statistics, the open boundaries in
the regional inverse model behave like the open ocean.

Results of this study, which include implications for array design, are described in the
context of objective analysis (Bretherton et al., 1976). We exploit the fact that the
well-known technique of objective analysis is equivalent to the generalized inverse of a
linear dynamical model (Bennett, 1992; Egbert and Bennett, 1996). The two seemingly
different procedures for estimating velocity � elds from velocity data yield the same results
if they are based on the same statistics. The equivalence is not obvious, largely because of
different problem formulations and statistical prescriptions. With objective analysis, one
generally speci� es velocity statistics. Such velocity statistics are implicit in the inverse,
although they can be determined explicitly from the model and model-error statistics
employed in the penalty functional. Bennett (1992) establishes the equivalence between
the generalized inverse and objective analysis by showing that the penalty functional and
the data distribution de� ne a set of functions, called representers, which correspond to the
velocity statistics used in standard objective analysis. The representers in this study exhibit
complex structure associated with the variable coastal bathymetry. This complexity would
make it very dif� cult to specify the velocity statistics without a numerical model.

Section 2 describes examples of the wind-driven velocity response, and its statistics, for
the basic model. Regional velocities based on OBC forcing from the large-domain model
are compared with those based on a standard radiation condition. The comparison sets the
stage for statistical analysis of the data assimilative models.

Section 3 presents a general penalty functional that correctly accounts for model-error
correlation. This general form is contrasted with a more standard penalty functional that
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neglects such terms. Objective analysis motivates the comparison of the two inverse
models.

Implications for array design and dynamical hypothesis testing are addressed in Section
4. Again, the implications of different penalty functionals are assessed. Results with a
small array show that tests based on expected error variance may not detect the neglect of
model-error correlation. Nevertheless, � ow structures clearly show that optimal mooring
placement depends on the accuracy of statistical assumptions used to formulate the penalty
functional.

2. Basic wind-driven model

The basic model uses linear shallow-water dynamics for a single layer. In standard
notation, the equations for momentum and mass conservation are

]u

]t
2 fv 5 2g

]h

]x
2

r

H
u 1 ex,

]v

]t
1 fu 5 2g

]h

]y
2

r

H
v 1 ey, (1)

]h

]t
5 2
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]x
2

]~Hv!

]y
.

The friction parameter is r 5 0.0015 m/s, and H( x, y) is ocean depth. Here and in (3), the
e terms represent model errors whose statistics are prescribed and whose speci� c values are
estimated with the generalized inverse. In principle, model errors can have a variety of
sources including neglected physics, inaccurate parameterizations, numerical truncation,
and uncertain forcing. The analysis in this study is simpli� ed by presuming that model
errors arise only from uncertain wind stress forcing t 5 (tx, ty)

T. The associated
dynamical errors are 5 (ex, ey)

T 5 t /H .
Two types of boundary conditions apply:

unx 1 vny 5 0, (2)

unx 1 vny 5 Î g

H
h 1 eo. (3)

The � rst speci� es no normal � ow at coastal boundaries; (nx, ny) is the unit normal vector
directed out of the domain. The second is a well-known radiation condition for open-ocean
boundaries, and eo is the OBC error. In one dimension, with eo 5 0 and constant H, Eq. (3)
radiates outward-propagating gravity waves traveling at =gH. The OBC is discussed at
length by Bennett (1992).

The data assimilative model in Section 3 uses velocity data from a few moorings to
estimate the entire wind-driven velocity � eld. Since the dynamical model that relates wind
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and velocity is linear, the problem is equivalent to estimating t (x) from measurements of
u 5 (u, v)T. In practice, one might have prior estimates of t from coastal stations, buoys,
or an atmospheric model. These priors would yield prior estimates of wind-driven velocity,
and would then represent an error in the prior estimate of t . While it is straightforward to
include a nonzero prior in the analysis, we presume that the prior is zero in order to clarify
the relationship between uncertain wind forcing and uncertain OBCs.

This study considers only steady-state solutions; the model is allowed enough spin-up
time (H/r ’ 1 day) so that results do not depend on initial conditions. The steady-state
simpli� cation is not necessary. In fact, the intention is to apply the methodology to realistic
time-dependent problems for which the OBC can be especially troublesome. For time-
dependent regional models, some sort of radiative or absorbing condition is necessary at
the open boundary in order to suppress unrealistic basin oscillations. The radiation OBC
obtained with eo 5 0 (Eq. (3)) has no such oscillations and produces an accurate response
in the interior of the domain, as shown below. Near the open boundaries, however, the
radiation OBC produces unrealistic artifacts.

Eqs. (1) are discretized on a standard C grid. Figure 1 shows bathymetry for the
large-domain model. The line between New London and Fort Pond Bay is an open-ocean
boundary for the large domain. The smaller square outlines the small domain used for the
regional calculations and the generalized inverse. The smaller domain has complex
bathymetry with open-ocean boundaries on the east and west. A relatively shallow sill
(evident in the 25 meter isobath) extends from coast to coast in the center of the domain.
Grid spacing is 500 meters and 750 meters in the east and north directions, respectively.
The small domain is 66 by 41 grid points and the large domain is 285 by 92.

Figure 1. Model bathymetry for Long Island Sound. Gray shades darken with depth, and contours
show 25 and 35 meter isobaths. The line between New London and Fort Pond Bay is an
open-oceanboundaryfor the large domain model. The smaller square, with open ocean boundaries
on the east and west, outlines the regional domain for the generalized inverse.
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a. Response to large-scale wind stress

Figure 2 shows the large-domain response to a 1 dyne/cm2 westerly wind. Velocity
vectors for every other grid point are superposed on the bathymetry. Currents are presented
only for the small domain. The response is strongest near the coasts, where currents � ow
parallel to shore in the downwind direction. In deeper water, large-scale pressure gradients
drive upwind currents.

The maximum speeds are 7 cm/s. These are weak relative to tidal currents but
comparable to residual � ows associated with tidal recti� cation in a fully nonlinear
shallow-water model. Realistic tides exhibit weak nonlinearity in this area. The linear
model (1) produces tidal � ow, utide, that compares well with the observed depth-averaged
tidal currents and with tidal � ows in the nonlinear model. Furthermore, the linear model

Figure 2. Large-domain response to westerly wind for the regional domain outlined in Figure 1.
Velocity vectors for every other grid point are superposedon the bathymetry.
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forced by the time-average of utide { = utide produces the same tidal residual as the fully
nonlinear model (unpublished results). Thus, the linear dynamics (1) provides a plausible
working hypothesis for subtidal circulation. With weak nonlinearity, the tidal residual
could be included as part of the ensemble-averaged circulation. So we neglect the tidal
residual without loss of generality.

Figure 3 shows the response to westerly wind for the small-domain model. This case
uses the homogeneous radiation condition, eo 5 0 in (3), along the open boundaries of the
small domain. Away from the open boundaries, the small-domain response is nearly
identical to the large-domain response in Figure 2. But the radiation condition produces

Figure 3. Response to westerly wind using the radiation condition (3) with eo 5 0 on the open
boundariesof this small domain. Except within roughly 5 km of the open boundaries, the response
here is similar to the large-domain response in Figure 2.
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unrealistic � ow parallel to the open boundaries and suppresses some of the cross-boundary
� ow observed in the large-domain response. In the regional model with eo 5 0, strong
coastal � ows come from unrealistic currents that � ow parallel to the open boundary. In
contrast, the strong coastal currents in the large-domain model � ow across the open
boundary of the regional domain.

Figure 4 shows the large-domain response to southerly wind. In most areas, wind stress
is approximately balanced by a large-scale opposing pressure gradient. Consequently, the
velocity response is generally smaller in magnitude than that in Figure 2. The pressure
gradient drives small southwestward � ow in some areas with deep water. But the largest
currents are found in shallow areas where bottom drag approximatelybalances wind stress.

In the regional model with eo 5 0, the response to southerly winds (not shown) is nearly

Figure 4. Large-domain response to southerly wind plotted for the small domain outlined in Figure 1.
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identical to that in Figure 4 for the interior of the small domain. As with westerly wind
forcing, the biggest differences between the small- and large-domain calculations occur
along the open boundary where the radiation OBC produces unrealistic artifacts.

Using the large-domain calculation as reference, eo can be computed so that the regional
model response is identical to the large-domain response. This is done by extracting u and
h from the large-domain calculation and then computing eo( x, y) along the open boundary
of the regional model with (3). We refer to OBCs computed this way as the “correct”
OBCs. The “correct” values of eo are used to compute the statistics for the inverse.

b. Statistical description of the wind-driven model

The mean and covariance of velocity provide a concise description of the wind-driven
model. These velocity statistics depend on the statistics of 5 t /H. For simplicity, wind
stress t 5 (tx, ty)

T is presumed to have zero mean,

^ t & 5 0,

where angle brackets denote an ensemble average.
The zero-mean assumption is not necessary. Indeed, as mentioned above, one could use

a nonzero time-dependent prior estimate of wind stress ^ t &. The corresponding prior
velocity ^u& is easily obtained by integrating the dynamical model forced by ^ t &. With
linear dynamics, the inverse formalism doesn’t change. An accurate nonzero prior would
reduce the variance of model error 5 t 2 ^ t &. Nevertheless, as long as the model errors
have long time and length scales, which is usually the case, the results of this study
continue to apply. Thus, we consider the zero-mean case without loss of generality.

The wind stress is presumed to be homogeneous and isotropic with covariance

^ t ~x1! t ~x2!
T& 5 s2I,

where s2 5 1 (dyne/cm2)2 is wind stress variance, and I is the 2-by-2 identity matrix. We
consider steady-state forcing, so all time-lagged autocorrelations are unity. Length scales
for wind stress are presumed to be larger than the model domain, so tx and ty are perfectly
autocorrelated at all space lags, but uncorrelated with each other. Because of the large
length and time scales, wind stress can be expressed with two parameters, and any
covariance matrix based on multiple wind-stress measurements has rank 2.

The dynamical errors, 5 t /H(x), have correspondingly simple statistics, with zero
mean and an isotropic and diagonal covariance,

^ ~x1! ~x2!
T& 5

s2

H~x1!H~x2!
I.

As with wind stress, model errors are perfectly autocorrelated in time and space.
Dependence on H(x) makes the variance inhomogeneous.

The dynamical model and wind stress statistics can be used to compute covariances
^u(x1)u(x2)T& for velocity. This could be done with a pseudo-ensemble average of velocity
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responses. The alternative method used here is based on representers, as described in the
Appendix (see also, Bennett, 1992). Representers have an important statistical interpreta-
tion that is described in the next section.

The full velocity covariance is dif� cult to visualize because it is a complex function of
two space variables. However, most of the features in the wind-driven velocity are
captured by plotting the variance ^u(x)u(x)T& at a few isolated locations. Variances for the
large-domain and regional models are plotted in Figure 5. Ellipse radii are proportional to
one standard deviation of the velocity, and the velocity scale is included in the lower right
of the � gure.

The solid ellipses in Figure 5 characterize the “correct” wind-driven currents for the
large-domain model in Figures 2 and 4. The largest ellipses occur in the shallow water near
the coast where the current response is strongest. The response would be isotropic and

Figure 5. Velocity ellipses for response to homogeneous and isotropic large-scale wind stress.
Ellipse radii are proportional to the standard deviation in the response. The scale is indicated in the
lower right of the � gure for a wind stress with standard deviation of 1 dyne/cm2 . The solid ellipses
are associated with the large domain response. The dashed ellipses are the small domain response
using a radiation condition, eo 5 0 in (3), at the open boundary of this small domain.
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velocity ellipses would be circles if wind stress were exactly balanced by bottom drag. But
such a balance only approximately describes shallow regions in the middle of the domain.
Near the coast and in deep water, velocity ellipses are highly anisotropic. These anisotro-
pies arise because the topographysupports large-scale pressure gradients that can dominate
wind stress. This complex velocity variance contrasts with the simple homogeneous
isotropic winds.

The dashed ellipses in Figure 5 represent velocity statistics for the regional wind-driven
model using the radiation OBC obtained when eo 5 0 in (3). The large dashed and solid
ellipses are nearly identical away from the open boundaries. This is because the velocity
response in the interior of the regional model is only weakly affected by the OBCs. In
contrast, along the open boundary velocity ellipses are substantially different. Unlike the
large-domain response, the radiation OBC allows only weak � ow across the open
boundary and produces relatively strong unrealistic � ow parallel to the open boundary.

Statistics of the small-domain model are “correct” when they agree exactly with those of
the large-domain model. “Correct” values of eo are computed from the large-domain
model. The “correct” statistics involve correlations between OBC errors eo and forcing
errors ex and ey. These statistics are computed with an ensemble average in which a
westerly wind is associated with eo from the large-domain response to westerly wind, and
likewise for wind in any other direction. These model-error statistics are easy to compute
because of the simplicity of the wind statistics. The relatively complex velocity covari-
ances are easily computed with the representer calculation described in the Appendix.
When the “correct” cross terms ^eoex& and ^eoey& are used, velocity ellipses for the
regional model are identical to the solid ellipses in Figure 5.

Figure 6 emphasizes the importance of the cross terms ^eoex& and ^eoey&. The solid
ellipses in Figures 5 and 6 are identical and “correct.” The dashed ellipses in Figure 6 differ
only because they involve the incorrect assumption of uncorrelated model errors, ^eoex& 5
^eoey& 5 0. This case is equivalent to a regional model that is independently forced by
local wind stress and OBC inhomogeneities. Velocity ellipses in the center of the domain
are not sensitive to the OBC in� uence. But near the open boundary, the neglect of cross
terms results in qualitatively different velocity statistics. In some places, � ows near the
open boundary are more isotropic and more energetic than they are with the correct
statistics. In other places, open-boundary artifacts are highly anisotropic and oriented
parallel to the open boundary.

3. Data assimilation with the regional wind-driven model

Model-error statistics are incorporated into the generalized inverse through the penalty
functional.Each penalty functional in this study has a unique and easily obtained minimum
(see the Appendix). The objective here is to construct a penalty functional for the regional
model so that the OBCs drive the “correct” response observed in the large-domain model.

Most data assimilative models use a penalty functional based on quadratic measures of
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model-data mis� t and model-adjustment.Using a notational shorthand, a standard form for
the wind-driven model is

Jstandard@u, v# 5 ex x Cxx
21 x ex 1 ey x Cyy

21 x ey 1 eo Coo
21 eo 1 e { Cee

21e. (4)

The solid and open circles represent multiple integrals. For arbitrary functions a(x, t) and
b(x, t), the solid circle is an integral over all model space x and time t,

a x b ; E dx E
0

T

dt a~x, t!b~x, t!.

The open circle represents an integral over time and along the open boundary,

Figure 6. The velocity ellipses for correct statistics (solid) are identical to those in Figure 5. The
dashed ellipses are based on the same prior statistics, except the OBC errors are presumed to be
uncorrelatedwith model errors.
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ao bo ; E
o

ds E
0

T

dt a~s, t!b~s, t!.

For covariance functions such as Cxx(x1, t1, x2, t2) 5 ^ex(x1, t1)ex(x2, t2)& the integral
operators can be applied twice,

a x C x b ; E dx1 E dt1 E dx2 E dt2a~x1, t1!C~x1, t1, x2, t2!b~x2, t2!.

The superscripts in 4 represent functional inverses de� ned as follows,

Cxx x Cxx
21 5 d~x1 2 x2!d~y1 2 y2!d~t1 2 t2!.

As shown in the Appendix, Cxx must be prescribed but it is never necessary to evaluate
Cxx

21.
The � rst term on the right-hand side of (4) is an integral of squared error in the

x-momentum equation weighted by its inverse covariance Cxx
21(x1, t1, x2, t2). The second

and third terms are contributions from ey and eo. The last term is a weighted sum of the
squared model-data mis� t, where

d 5 L@u, v# 1 e

is an N-vector of data values. Each element of L[u, v] is a component of model velocity
evaluated at the location and time of the corresponding datum, and e is the corresponding
measurement-error vector. The model-data mis� t is presumed to come from uncorrelated,
homogeneous and isotropic measurement errors, so

Cee ; ^eeT& 5 see
2 I,

with constant variance see
2 .

The model-error covariances for ex and ey are de� ned in the previous section. The
covariance for OBC error eo in the regional model is computed with values of eo 5unx 1

vny 2 =g/Hh extracted from the large-domain wind-driven model.
Up to this point, the development closely follows that given by Bennett (1992), where

L[u, v] would be referred to as a vector of linear evaluation functionals. The penalty
functional (4) is “standard” because it neglects model-error cross products between eo, ex,
and ey. Neglect of such cross terms corresponds to the assumption that model errors are
uncorrelated, ^exey& 5 ^eoex& 5 ^eoey& 5 0. The “correct” penalty functional includes the
cross terms,

Jcorrect 5 F ex

ey

eo

G T F xCxxx 0 xCxo

0 xCyyx xCyo

xCxo xCyo Coo

G 21 F ex

ey

eo

G 1 e { Cee
21e. (5)
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In this more general form, individual model errors are elements of a model-error vector,
and the inverse of the model-error covariance matrix involves a combination of vector and
integral operations. The inverse operator is symbolic in this equation. As shown in the
Appendix, Jcorrect can be minimized without evaluating the matrix inverse or inverse
covariances in (5). We use the so-called representer method (Bennett, 1992). The
representer method is elegant, and it can be extremely ef� cient. With linear dynamics there
is no iteration. See the Appendix for details.

a. Generalized inverse and objective analysis

The focus here is on the statistical interpretation of representers and their analogs in
objective analysis. We begin by restating the data assimilation problem as an example of
objective analysis.

Objective analysis provides the linear minimum-variance unbiased estimate û(x, t) of
u(x, t) based on the available data d. That is, û(x, t) minimizes E 5 ^(û 2 u)2&. The
Gauss-Markov theorem states that

û~x, t! 5 ^u~x, t!dT&Cdd
21d, (6)

where Cdd 5 ^ddT& is the data-data covariance. Cdd is the sum of two components,

Cdd 5 R 1 Cee.

R is associated with measurements of the velocity � eld that is being mapped. That is,

R 5 ^L@u, v#L@u, v#T&

is the covariance of noise-free data.
This optimal estimate û in (6) is generally derived by � rst writing û(x, t) as a linear

combination of the data, û(x, t) 5 ¥i51
N a idi. The optimal data weights a i(x, t) are then

obtained by minimizing E. But it is instructive to consider an equivalent expression for the
optimal estimate,

û~x, t! 5 O
i51

N

bi^diu~x, t!&, (7)

where bi 5 (Cdd
2 1d)i are data-dependent weights for the covariance functions ^diu(x, t)&.

When measurement errors are uncorrelated with model errors, as presumed here, then
^diu(x, t)& 5 ^u(xi, ti)u(x, t)& when di is a measurement of u, and ^diu(x, t)& 5 ^v(xi,
ti)u(x, t)& when di is a measurement of v.

In the generalized inverse, the covariances between the velocity � eld and the velocity
measurements, ^u(xi, ti)u(x, t)& and ^v(xi, ti)u(x, t)&, are referred to as “representers”
(Bennett, 1992). There is one for each scalar datum. The measurement covariance R can be
computed by measuring the representers,
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R ij ; Lj@^diu~x!&#.

In the generalized inverse, R is that part of the data-data covariance associated with the
model adjustments. R is referred to as the representer matrix.

The so-called “representer method” uses representers to minimize J elegantly and
ef� ciently. Egbert and Bennett (1996) describe an extremely ef� cient algorithm. But it is
the statistical interpretation of representers that is important here. In particular, objective
analysis and the generalized inverse are equivalent when ^diu(x, t)& and Cdd are consistent
with the model and the model-error statistics that de� ne J. In this case, the optimal estimate
û(x, t) is the velocity � eld that minimizes J.

With objective analysis, the standard approach is to prescribe the covariances ^diu(x, t)&
and Cdd, compute bi based on the data, and then compute the sum in (7). Bretherton et al.
(1976) could estimate velocity covariances with data because statistics of the eddy � eld are
fairly simple. However, ^diu(x, t)& and Cdd for the coastal wind-driven problem are
complex functions of x. These statistics are dif� cult to estimate with the sparse data sets
available to most oceanographers.

With the generalized inverse, however, one prescribes the relatively simple statistics
of and eo and then easily computes ^diu(x, t)& and R as described in the Appendix. It is
worth emphasizing that each penalty functional is associated with its own set of
representers. That is, each penalty functional implies a unique set of velocity
covariances and data-data covariances. These covariances form the basis of the
following analysis.

b. Representers

Figure 7 shows a representer based on the incorrect assumption of uncorrelated model
errors, Cxo 5 Cyo 5 0, used in Jstandard. The datum, di, for this representer is a
measurement of u near the open boundary in the northwest corner of the regional domain;
the datum location is indicated by a solid circle. The largest amplitude � ows occur near the
western open boundary, with relatively weak � ow in the interior. The representer is
dominated by unrealistic � ow near the western open boundary that is qualitativelydifferent
from any of the correct responses in the wind-driven model.

In contrast, when the correct model-error covariances Cxo and Cyo are used with
Jcorrect, the representer structure (not shown) is barely distinguishable from large-
domain response to a westerly wind shown in Figure 2. Consequently, a data
assimilative model using Jstandard and this single datum would produce reasonable
� ows throughout the regional domain, including the cross-boundary � ows on the
opposite side of the domain.

This seemingly remarkable result is actually quite reasonable. The correct values of Cxo

and Cyo make the regional model consistent with the large-domain model. In this case, any
model adjustment must give rise to a linear combination of the two large-scale � elds in
Figures 2 and 4. The response to westerly winds dominates the structure in the representer
for Jcorrect because it is the strongest response to the isotropic winds.
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When the datum is located near the center of the regional domain, away from the open
boundaries, the representer for Jcorrect again looks like the large-domain response to
westerly wind forcing. However, the incorrect assumption Cxo 5 Cyo 5 0 in Jstandard

produces a representer that looks like the response to wind forcing with a homogeneous
OBC, eo 5 0, as shown in Figure 3. This makes sense because the interior of the domain is
weakly affected by the OBC forcing, and the representer includes only the � ows that are
correlated with the datum. Therefore, when Cxo 5 Cyo 5 0, a datum in the interior of the
domain will be strongly correlated with � ows driven by local wind, but uncorrelated with
OBC forcing.

Figure 7. Representer for measurement of eastward � ow near the open boundary at the northeast
corner of the regional model domain. The measurement location is indicated by a solid circle. The
representer has been normalized by one standard deviation of the model measurement.
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To summarize, unrealistic results with one datum are entirely attributable to setting
Cxo 5 Cyo 5 0. For Jstandard, all datum locations produce open boundary artifacts. Datum
placement along the open boundary will produce unrealistic � ows even in close proximity
to the datum. With the datum in the interior, solutions with Jstandard will resemble those
using the radiation condition eo 5 0; interior � ows near the datum will be accurate and
boundary regions will have artifacts. Thus, with Jstandard, the preferred datum location is
in the interior of the domain, away from the effects of problematic OBCs.

With Jcorrect and the correct values of Cxo and Cyo, solutions are much less sensitive to
datum placement. The assimilative model will have realistic large-scale � ows throughout
the domain, even across the open boundaries. In this case, it makes sense to place the datum
in a region where the wind-driven � ows are large, so as to maximize the signal to noise
ratio.

c. Analysis of mooring distributions

In order to generalize these results to arrays with multiple moorings, consider the
data-data covariance matrix, Cdd 5 R 1 Cee for the special noise-free data, Cee 5 0, so
that Cdd 5 R. The eigenvector-eigenvalue decomposition of R is

R 5 ULUT,

and the unitary eigenvector matrix U can be normalized,

Z 5 L1/2UT,

so that Z has units of velocity and R 5 ZZT. The columns of Z are the empirical
orthogonal functions (EOFs) of noise-free data. If Cee is nonzero and diagonal, as often
presumed, then Cdd and R have the same eigenvectors.

Let z denote the dominant EOF associated with the largest eigenvalue l. Since z 5
l21Rz, the representers can be used to relate z to the entire velocity � eld as follows:

z 5 l21 O
i

L@^u~xi, ti!u~x, t!&#zi 5 L F l21 O
i

zi^u~xi, ti!u~x, t!& G . (8)

Bennett (1992) refers to the linear combination of representers l21 ¥i z i^uiu& as a
“solution antenna mode.” Eq. (8) shows that z. is recovered by measuring the solution
antenna mode with L. Thus, an antenna mode is the velocity � eld associated with an EOF,
and the antenna mode equals the EOF at the data locations.

Figure 8 shows the dominant antenna mode for Jstandard and an array of 4 moorings
located near the open boundaries of the regional model. The data locations are indicated by
solid circles. There is strong cross-boundary � ow at the eastern end of the domain and
strong � ow in the interior. Both features are qualitatively consistent with westerly wind
forcing. However, � ows at the western open boundary are unrealisticallyoriented along the
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boundary. These western open-boundary� ows are characteristic of the homogeneousOBC
with eo 5 0.

Figure 9 shows the dominant antenna mode again based on Jstandard but with the
moorings located in the interior of the domain. The structure is similar to that with
moorings near the open boundary, except this antenna mode has relatively strong � ow in
the interior and near the solid boundary.

Figure 10 shows the dominant antenna mode based on Jcorrect and the interior mooring
distribution. There are no open-boundary artifacts in this case. With correct model-error
statistics, the dominant antenna mode depends only weakly on the mooring locations.

In summary, the antenna mode structure in the interior of the domain is not sensitive to
neglect of model-error correlations when the moorings are located in the interior. Jstandard

and Jcorrect will yield similar solutions near the interior data locations, but Jstandard will
exhibit open-boundary artifacts. This contrasts the sensitivity that occurs with moorings

Figure 8. Dominant antenna mode for J s t a n d a r d and an array of moorings near the open boundaries.
Data locations are indicated by solid circles.
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near the open boundaries. With an open-boundary array and Cuo 5 Cvo 5 0, the dominant
antenna mode has weak interior � ow, and strong unrealistic � ows near the moorings. With
correct statistics, antenna modes for Jcorrect are not sensitive to mooring placement.

In practice, antenna modes should have accurate structure in the vicinity of the data.
Otherwise, measurement errors that project onto these modes will produce unrealistic � ow
� elds. That is, unrealistic antenna-mode structure makes the assimilative model sensitive
to noise in the data. Therefore, with a data assimilative model based on Jstandard, moorings
should not be placed near the open boundary.

d. Testing dynamical hypotheses

The statistical assumptions used to de� ne the penalty functional comprise a null
hypothesis about the model and its errors. It is desirable to have an objective test of such

Figure 9. Dominant antenna mode for J s t a n d a r d and a 4-mooring array in the interior of the domain.
As in Figure 8, the model-error statistics are based on the incorrect assumption Cu o 5 Cv o 5 0.
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hypotheses. Even the “correct” statistics in our scenario comprise a hypothesis worthy of
testing because the large-domain model may have signi� cant errors.

The data-dependent posterior penalty functional Ĵ provides a test statistic for the
statistical assumptions that are built into J. Bennett (1992) shows that Ĵ 5 dCdd

2 1d for
zero-mean data, as presumed here. Summation notation can be used to rewrite this as Ĵ 5
Tr[Cdd

2 1/2dTdCdd
2 1/2]. When the null hypothesis is correct, that is, when the model-error

covariances from the large-domain model are accurate (as presumed here), then Cdd [
^ddT& 5 R 1 Cee, so

^Ĵcorrect& 5 Tr@Cdd
21/2^dTd&Cdd

21/2# 5 N,

where N equals the number of observations. Furthermore, if the model errors satisfy a
normal distribution (or if one appeals to the central limit theorem) then Ĵ is a x2 random

Figure 10. Dominant antenna mode for correct statistics, Jc o r r e c t , and moorings in the interior of the
domain. The antenna mode for moorings near the open boundaries is nearly identical to the one
shown here.
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variable with N degrees of freedom. Thus, standard statistical tests can be used to test the
null hypothesis that de� nes J.

Let Cstandard denote the data-data covariance matrix based on the incorrect null
hypothesis associated with Jstandard. The expected value of the posterior penalty func-
tional is

^Ĵstandard& 5 Tr@Cstandard
21/2 CddCstandard

21/2 # Þ N.

If the difference between ^Ĵstandard& and ^Ĵcorrect& is large compared to =N (the standard
deviation of xN

2 ), then Ĵ should provide a sensitive statistic to test for erroneous neglect of
correlated errors.

Table 1 shows ^Ĵ& computed for two different 4-mooring arrays, and four different null
hypotheses. Cases 1 through 4 are based on moorings near the open boundaries, as in
Figure 8. Case 1 uses the correct statistics, so ^Ĵcorrect& 5 8 because four 2-component
vectors provide N 5 8 scalar measurements. Note also that ^Ĵcorrect& 5 8 regardless of the
measurement-error variance see

2 .
Case 2 is based on the data-data covariance Cstandard associated with Jstandard, so

Cuo 5 Cvo 5 0. In this case, ^Ĵstandard& and ^Ĵcorrect& are not substantially different for
reasonable values of measurement error. They only become distinguishable for rms
measurement errors much less than 1 cm/s, which is unreasonably small for most
situations.

Case 3 is based on an assimilative model, Jinterior, that allows dynamical adjustments ex

and ey, but does not allow adjustment of the homogeneous OBC, so eo 5 0. Without OBC
adjustment, the average velocity variance at the moorings, (1/N)Tr[R], is less than half the
correct value. For this case, ^Ĵinterior& substantially exceeds N 5 8 for even the largest
value of see

2 .

Table 1. Expected values of the posterior penalty functional for four different null hypotheses, and
two different moorings arrays. The � rst four cases are based on a 4-mooring array near the open
boundary,and cases 5– 6 are based on moorings in the interior of the regionaldomain. Jc o r r e c t uses
the correct statistics, Js t a n d a r d neglects correlation of different model errors, J i n t e r i o r allows
adjustment of the wind forcing but keeps the OBCs � xed, and JO B C allows adjustmentof the OBC
but makes interior dynamics a strong constraint. The right-most column shows the velocity
variance at the moorings based on each null hypothesis.

^ Ĵ&

Case Null hypothesis see
2 5 10 see

2 5 1 see
2 5 0.1 see

2 5 0.01 (1/N)Tr[R] (cm/s)2

1 ^Ĵcorrect& 8.0 8.0 8.0 8.0 8.8
2 ^Ĵstandard&, Cxo5 Cyo5 0 7.9 8.6 14.6 65.3 9.8
3 ^Ĵinterior&, eo 5 0 11.1 25.7 240.4 2663.7 3.9
4 ^ĴOBC&, eu 5 ev 5 0 10.3 19.9 175.0 1873.8 5.8

5 ^Ĵcorrect& 8.0 8.0 8.0 8.0 4.1
6 ^Ĵstandard&, Cxo5 Cyo5 0 8.0 7.7 7.1 6.5 4.0
7 ^Ĵinterior&, eo 5 0 8.1 8.6 13.3 60.5 3.8
8 ^ĴOBC&, eu 5 ev 5 0 11.1 38.9 306.3 2445.6 0.2

2001] 851Bogden: Impact of model-error correlation on assimilative models



In case 4, JOBC, only the OBCs are allowed to vary, so the unforced momentum
equations provide strong constraints on the inverse. As with case 3, (1/N)Tr[R] is much
smaller than the correct value of 8.8 (cm/s)2, and ^ĴOBC& exceeds N 5 8 for largest value
of see

2 .
Cases 5 through 8 in Table 1 show results for the same four null hypotheses, but for a

4-mooring array located in the interior of the regional model domain (as in Fig. 9). The data
variances for cases 5–7 are virtually identical because OBC adjustmentshave a small effect
on the interior of the regional model. For these three cases, ^Ĵ& is not signi� cantly different
from ^Ĵcorrect&. In contrast, ^ĴOBC& provides a sensitive test for Case 8. So, for interior
moorings, JOBC is the only case for which (1/N)Tr[R] differs substantially from the
correct value.

In summary, results show that Ĵ provides a sensitive test statistic only when the velocity
variance based on incorrect statistics differs substantially from the correct variance. For
moorings near the boundary, we should easily detect erroneous neglect of OBC errors with
JOBC, or forcing errors with Jinterior, since the expected data variance changes up to 50%.
For moorings in the interior, only JOBC has signi� cantly different variance.

The neglect of model-error correlation with Jstandard has relatively little effect on
average variance regardless of mooring location. Model-error correlation changes orienta-
tion and ellipticityof the velocity ellipses near the open boundary and these account for the
observed artifacts in the � ow. However, the posterior penalty functional Ĵstandard is not
sensitive to these effects. Fortunately, this seemingly pessimistic conclusion cannot be
generalized because fractional errors in Ĵ become more signi� cant as N increases. N is
quite small in this study. In general, Ĵ provides a test statistic for the hypotheses used to
de� ne J and we advocate using it as such.

4. Discussion

The regional model in this study has two types of model error: forcing error from
uncertain local winds and OBC error from uncertain remotely driven � ows. The open-
boundary � ows are driven by remote winds which have in� nite length scales. Therefore,
model errors have only two degrees of freedom corresponding to the two independent
components of wind stress. To account for this fact, the statistically consistent penalty
functional, Jcorrect, includes the cross terms, Cxo and Cyo, that relate winds to OBCs. The
more standard form, Jstandard, neglects such off-diagonal terms. Their neglect allows OBC
adjustments, eo, to be independent of interior adjustments, ex and ey, thereby increasing
the degrees of freedom from two to six; there are two from ex and ey, two from associated
values of eo on the western open boundary, and two more from eo on the east.

Idealized scenarios can be constructed where the cross terms don’t matter. For example,
if the data are perfect and the number of independent data, N, exceeds the degrees of
freedom in the model, then the model can interpolate the data. However, this idealized case
is not realistic. In reality, data errors make it undesirable to have the model and data in
exact agreement. For example, with Jstandard the model can develop unrealistic artifacts
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near the open boundary in order to minimize model-data mis� t. With Jcorrect, the � ows are
reasonable because adjustments are statistically consistent with the “correct” model. On
average, assimilation with Jstandard will yield better agreement with the data than Jcorrect.
But, the smaller model-data mis� t will come at the expense of unrealistic boundary
artifacts.

Representers illustrate how the problems arise. The one-datum scenario is particularly
informative because there is only one representer for each penalty functional, and optimal
velocity � elds are proportional to their respective representers. With Jcorrect, the repre-
senter exhibits realistic and complex � ow structure characteristic of the correct response to
wind. In contrast, the representer for Jstandard exhibits unrealistic artifacts along the open
boundary. In both cases, spatially uniform winds generate complex � ows because of the
dynamics and the highly variable bathymetry. But realistic � ows require accurate model-
error statistics. The antenna-mode analysis shows that these conclusions generalize to
arrays of moorings.

Sensitivity to mooring location develops because of the inaccurate model-error statistics
in Jstandard. Representers for the single-datum scenario are again informative. For a single
datum located in the interior of the regional domain, representers for Jstandard and Jcorrect

have similar structure near the datum and substantial differences near the open boundary.
Thus, with one interior datum, both models will produce reasonable velocity estimates in
the interior. Near the open boundary, Jcorrect still produces realistic � ows but Jstandard

produces artifacts.
The results for Jstandard degrade further for a single datum placed near the open

boundary, in which case the � ows are unrealistic even in the vicinity of the datum. In fact,
Jstandard will produce unrealistic � ows regardless of data accuracy because representer
structure does not depend on the actual data value. As before, antenna modes generalize
these results for arrays of moorings. In general for the data assimilative model, Jstandard,
which neglects cross terms, moorings should be placed in the interior, away from the open
boundaries. There is no such restriction on mooring location with Jcorrect.

Two simpli� cations used in this study are worth discussion. First, the situation described
here is extreme because the correct inverse has only two degrees of freedom. This
simpli� cation arises because the model errors are correlated with in� nite length scales.
Many things, including � nite length scales, can contribute to make the errors uncorrelated
and thereby increase the degrees of freedom. Second, the focus on neglected cross terms is
really a special case of a more general sensitivity to inaccurate model-error statistics. The
related sensitivity to mooring placement encountered here can also arise in very different
scenarios.

The study by Bogden et al. (1996) provides an example. Prescribed winds for their
regional inverse model were presumed correct so the only model adjustments were
associated with OBC errors. With error-free interior forcing, the “correct” cross terms are
identically zero. In addition, their inverse calculation had many degrees of freedom
because the OBC errors had � nite length scales comparable to grid resolution. They found
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that velocities along the open boundary were highly sensitive to assumptions about
OBC-error covariance. In contrast, they found that interior velocity estimates were
relatively robust. This is fortunate because the OBC-error statistics were poorly under-
stood. They concluded that only the large-scale interior � ows were reliable. Their
conclusions are consistent with this study because the moorings were located in the interior
of their domain. In retrospect, the interior mooring placement was fortunate. Had the
moorings been located near the open boundary, we infer from results presented here that
velocities everywhere in the domain would have been sensitive to uncertain OBC-error
statistics.

This example addresses one reviewer’s suggestion that it may be better to invert in the
large domain and expect results to be sensible only in the smaller area near the moorings.
And if details of � ow at the boundary are ignored or masked, then one might replace
unknown model-error statistics in the large domain with ad hoc smoothness criteria that
“regularize” the data assimilative model. We do not advocate such an approach. Increasing
the size of the model domain increases computational expense and complicates accurate
speci� cation of “interior” forcing. Furthermore, unless the larger domain is a closed basin,
one must still verify that the open boundaries are suf� ciently far away to be unimportant.
This is not a trivial task.

We prefer to use a large-domain model to generate model-error statistics for the small
domain inverse, as was done here. The prescribed model-error statistics represent hypoth-
eses that should be tested with data. The two penalty functionals in this study correspond to
two different hypotheses. The statistics employed with Jstandard are clearly wrong, and
Jcorrect is “correct” because it is consistent with the large-domain model. But the
large-domain model is itself a hypothesis.Thus, a regional inverse based on Jcorrect can be
used to test whether the large-domain model is statistically consistent with the data.

This approach can be extended to test models of varying dynamical complexity. For
example, the neglected terms in the momentum balance of a simple model represent a type
of model error. The statistics of such errors can be estimated from a more complex model
which includes those terms. This approach has advantages because assimilation schemes
based on the simpli� ed dynamics can be much easier to implement and understand. In
contrast, generalized inversion of complex strati� ed nonlinearmodels is neither simple nor
straightforward. For example, Bennett (1992) discusses the problems that arise because
OBCs of primitive equation models generally lead to ill-posed forward problems.

While issues such as these continue to present formidable challenges, the transition to
more complex dynamics need not be so abrupt. Some oceanographers such as Thompson et
al. (2000) and Lynch et al. (1998) employ a so-called incremental approach to data
assimilation. They use a barotropic inverse model, similar to the one used here, to provide
depth-averaged OBCs for a strati� ed model that has more complex dynamics. Their
approach is incremental in its treatment of dynamical complexity and may bene� t from the
issues discussed here.
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APPENDIX

The procedures for minimizing Jstandard and Jcorrect are nearly identical. In both cases,
standard application of the calculus of variations leads to an Euler-Lagrange system of
equations. Results are presented below, and the reader is referred to Bennett (1992) for the
theoretical development. The only difference introduced by model-error correlation occurs
when relating the adjoint variables mx(x, t), my(x, t), and mh(x, t), to the model
adjustments. This involves the model-error covariance matrix operating on the adjoint
variables,

F ex

ey

eo

G 5 F Cxxx 0 Cxo

0 Cyyx Cyo

Cxo Cyo Coo

G F mx

my

mo

G
.

These relations also hold for Jstandard, in which case Cxo 5 Cyo 5 0.
The Euler-Lagrange system includes the basic model equations (1) and boundary

conditions (2) and (3) along with a similar system for the adjoint variables,

]mx

]t
2 fmy 5 2H

]mh

]x
1

r

H
mx 2 ~d 2 L@u, v#! { Cee

21 D x,

]my

]t
1 fmx 5 2H

]mh

]y
1

r

H
my 2 ~d 2 L@u, v#! { Cee

21 D y, (9)

]mh

]t
5 2gX ]mx

]x
1

]my

]y D ,

with coastal boundary condition

mxnx 1 myny 5 0,

and OBCs

mxnx 1 myny 5 2 Î H

g
mh,

mo 5 2Hmh.

The vectors D x and D y represent delta functions at the locations of u and v measurements,
respectively, so L[u, v] 5 D x x u 1 D y x v.

Adjoint variables satisfy the terminal condition

mx~x, T! 5 my~x, t! 5 mh~x, T! 5 0.
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In this study, setting T equal to one day after the last measurement makes results
independent of the terminal conditions.

The Euler-Lagrange system represents a coupled two-point boundary value problem
because the solution variables u and v appear as forcing terms for mx and my. The problem
is ef� ciently solved with representers, and Bennett (1992) describes the methodology in
detail.

For completeness, we present the representer solution. The notation is cumbersome but
the manipulations are straightforward. Let rx(x, t), ry(x, t), and rh(x, t) denote column
vectors of length N. If the scalar variable rx denotes component i of rx, then

~rx, ry! 5 ^d iu~x, t!&.

That is, the three functions from row i of the N-vectors rx(x, t), ry(x, t), and rh(x, t)
comprise representer for di. The representer matrix R is obtained by evaluating rx and ry at
the data locations with L.

The representers are obtained by integrating the system

]rx

]t
2 fry 5 2g

]rh

]x
2

r

H
rx 1 Cxx x a x 1 Cxo a o,

]ry

]t
1 frx 5 2g

]rh

]y
2

r

H
ry 1 Cyy x a y 1 Cyo a o,

]rh

]t
5 2

]~Hrx!

]x
2

]~Hry!

]y
,

with coastal boundary condition,

rxnx 1 rxnx 5 0,

and OBC,

rxnx 1 ryny 5 Î g

H
rh 2 HCoo a h 2 Cox x a x 2 Coy x a y.

The adjoint representer vectors, denoted by a , are obtained by integrating the uncoupled
system,

] a x

]t
2 fa y 5 2H

]a h

]x
2

r

H
a x 2 D x,

] a y

]t
1 fa x 5 2H

]a h

]y
2

r

H
a y 2 D y,

] a h

]t
5 2gX ]a x

]x
1

]a y

]y D .
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with coastal boundary condition

a xnx 1 a yny 5 0,

open boundary condition

a xnx 1 a yny 5 2 Î H

g
a h,

and terminal conditions

a h~x, T! 5 a x~x, T! 5 a y~x, T! 5 0.

This system is integrated backward in time. Note that the forcing terms are delta functions,
so each adjoint representer is a Greens function for the wind-driven model.

The optimal solution is obtained by � rst de� ning the N-vector b of representer
coef� cients

b 5 ~d 2 L@u, v#! { Cee
21 (10)

so that the adjoint variables are mx 5 b { a x, my 5 b { a y, mh 5 b { a h . The optimal � ow
� elds are û 5 b { rx and v̂ 5 b { ry. It can be shown that

b 5 ~R 1 Cee!
21d,

so that, once R is known, b can be computed with the data and substituted into (9) using
(10). This uncouples the system so that the adjoint equations can be integrated backward in
time to obtain the optimal model adjustments. The optimal solution is then obtained by
integrating the model equations. There is no iteration.
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