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Salt � ngers in an unbounded thermocline

by Melvin E. Stern1, Timour Radko1,2 and Julian Simeonov1

ABSTRACT
Numerical solutions for salt � ngers in an unbounded thermocline with uniform overall vertical

temperature-salinity gradients are obtained from the Navier-Stokes-Boussinesq equations in a � nite
computational domain with periodic boundary conditions on the velocity. First we extend previous
two-dimensional (2D) heat-salt calculations [Prandtl number Pr 5 n/kT 5 7 and molecular
diffusivity ratio t 5 kS /kT 5 0.01] for density ratio R 5 2; as R decreases we show that the average
heat and salt � uxes increase rapidly. Then three-dimensional(3D) calculations for R 5 2.0, Pr 5 7,
and the numerically “accessible”values of t 5 1/6, 1/12 show that the ratio of these 3D � uxes to the
corresponding 2D values [at the same (t, R, Pr)] is approximately two. This ratio is then
extrapolated to t 5 0.01 and multiplied by the directly computed 2D � uxes to obtain a � rst estimate
for the 3D heat-salt � uxes, and for the eddy salt diffusivity (de� ned in terms of the overall vertical
salinity gradient).

Since these calculations are for relatively “small domains” [O(10) � nger pairs], we then consider
much larger scales, such as will include a slowly varying internal gravity wave. An analytic theory
which assumes that the � nger � ux is given parametricallyby the small domain � ux laws shows that if
a critical number A is exceeded, the wave-strain modulates the � nger � ux divergence in a way which
ampli� es the wave. This linear theoretical result is con� rmed, and the � nite amplitude of the wave is
obtained, in a 2D numerical calculation which resolves both waves and � ngers. For highly
supercritical A (small R) it is shown that the temporally increasing wave shear does not reduce the
� uxes until the wave Richardson number drops to ;0.5, whereupon the wave starts to overturn. The
onset of density inversions suggests that at later time (not calculated), and in a suf� ciently large 3D
domain, strong convective turbulence will occur in patches.

1. Introduction

The early experimental and theoretical investigations of double-diffusive convection
(e.g., Linden, 1973, 1978; Kunze, 2000; Radko and Stern, 2000) considered a relatively
thin salt � nger layer sandwiched between two very deep mixed layers with speci� ed
temperature (DT*) and salinity (DS*) differences; analogous quantities are used in
(isothermal) sugar-salt experiments, where “T*” refers to the substance of higher molecu-
lar diffusivity (kT) and “S*” refers to the lower diffusivity kS , kT. The experimental laws
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relating the vertical heat/salt � ux to (DT*, DS*) were thought to be applicable to the
relatively strong vertical temperature gradient region observed in steplike (“staircase”)
pro� les in the ocean thermocline, but oftentimes the thickness of these gradient regions
greatly exceeded the (scaled) laboratory values. In this case the � uxes should be related to
the observed vertical gradients ]T# */] z*, ]S# /] z*. As indicated below, Shen (1995) has
made a start on the numerical problem; also see Kunze (1987) for a much simpler ad hoc
theory.

An important physical difference between the thick and thin layer regimes arises
because the � ngers in the latter case (Radko and Stern, 2000) are coherent over the entire
extent of the gradient layer and are thereby able to reduce its mean vertical S*-gradient
toward a state of marginal stability; this is a well-known mechanism for offsetting the
linear growth rate of a normal mode and equilibrating its amplitude. The equilibration
mechanism is quite different in the “thick” regime since the � ngers are vertically coherent
only over a small fraction of the average height Lz ® ` of the gradient region.
Consequently, these � ngers do not alter the “overall” gradients (]T# */] z*, ]S# /] z*), in the
unbounded model, although they do alter the horizontal ( x*, y*) average at each z* and
each time (t*). If the density ratio R is not too small, the statistically steady state consists
of a “pure” � nger � eld in which amplitude equilibration occurs by transfer of energy to
other wavelengths; i.e., classical “triad” interactions [see the unboundedsugar-salt calcula-
tions of Radko and Stern (1999)].

Shen (1995) has made an unbounded domain calculation in two dimensions (2D) for
heat-salt [Pr 5 7, t 5 0.01] � ngers with R 5 2.0. Starting from rest, the sequence of
primary and secondary instabilities (Holyer, 1981, 1984) eventually lead to a statistical
steady state with average heat/salt � uxes (FT*/FS*). Shen’s work will be extended in three
respects; � rst we obtain (Section 3) the 2D � ux gradient laws for other values of R. Such
variability occurs in the ocean on a vertical scale of a couple of meters and in connection
with isopycnal intrusions [cf. Ruddick et al., 1999] between water masses with different
T-S properties. Next we need to determine (Section 4) whether the 3D � uxes are
signi� cantly larger or smaller than in 2D. For the case of sugar-salt (t 5 1/3) gradients,
Radko and Stern (1999) showed that the 2D � ngers are unstable, and the resulting 3D
� ngers have much larger � uxes. A 3D heat/salt calculation at R 5 2 for t . 0.01 is,
however, not feasible because of the smallness of the salinity dissipation scale, and
therefore an indirect method (viz., extrapolation from numerically accessible values of
t ! 1) is used (Section 4) to obtain a � rst estimate of the 3D heat-salt � ux at R 5 2.

All the foregoing calculations are for a small computational domain [O(10) � nger
pairs], and, therefore, in our third problem the domain size is increased by an order of
magnitude. This allows us to consider (Section 5) the coupling of a slowly varying internal
gravity wave with the � nger � ux. The effect of the latter is parameterized by the previously
calculated “small domain” laws. Although the procedure is similar to frequently used eddy
coef� cient formalisms (e.g., Schmitt, 1981; Walsh and Ruddick, 1995), these lack the
quantitativeknowledge of the relevant coef� cients, such as is supplied by Sections 3 and 4.
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The predicted (Section 5) ampli� cation of the internal wave is then con� rmed by a 2D
numerical calculation (Section 6) which resolves both � ngers and large-scale wave. The
discussion in Section 7 shows that the ampli� ed internal wave can overturn if R 2 1 is
small.

The results of the three interrelated parts (Section 3, Section 4 and Sections 5–7) are
summarized in Section 8, along with a reference to relevant measurements in the open
ocean.

2. The nondimensional Navier-Stokes-Boussinesq equations

As is conventional, the expansion coef� cients (a, b) relating temperature and salinity
(T*, S*) to the density (r*) will be absorbed in a new “temperature” aT* and “salinity”
bS*; likewise for the new average convective � uxes FT 5 aFT*, FS 5 bFS*. The density
ratio is R 5 (a]T# */] z*)/(b]S# */] z*), the average heat � ux is given by a Nusselt number
Nu:

Nu 5 aFT*
~a]T# */]z*!21kT

21,

and the heat/salt � ux ratio is given by

g 5 aFT*
/bFS*

5 FT/FS.

Note that (by de� nition) the overall vertical T*, S* gradients in a given computational
domain are constants independent of the motion generated, even if a staircase thermocline
with large steps (Kelley, 1984) should develop; the only relevant nondimensional parame-
ters are (Pr, R, t) and the (large) nondimensional domain size. Also note that there is no
basic shear or horizontal T*, S* gradient in the model.

Also conventional (e.g., Radko and Stern, 1999) is the nondimensionalization of the
Navier-Stokes Boussinesq equations (2.1) using the length scale d 5 (nkT/( ga]T# */
] z*))1/4, the velocity scale kT/d, the time scale d2kT, the pressure scale nkT/d2, and
ad(]T# */] z*) as the scale for the deviations (T/S) from the undisturbed temperature/
salinity. This scaling makes the buoyancy force in Eq. 2.1 of the same order as the viscous
force and the pressure force. The nondimensional heat/salt equations (2.1c), (2.1d) are
expressed in terms of the departures (T 5 T9 1 u and S 5 S9 1 s) of the total
temperature/salinity from the undisturbed � elds, where u ( z, t), s( z, t) are the horizontal
averages of T, S. These nondimensionalBoussinesq equations are

5
Pr21dv/dt 5 2¹p 1 ¹2v 1 ~T9 2 S9!k, ~2.1a!
¹ z v 5 0, ~2.1b!
d

dt
@T9 1 u# 1 w 5 ¹2~T9 1 u!, T ; T9 1 u ~2.1c!

d

dt
@S9 1 s# 1

1
R

w 5 t¹2~S9 1 s!, S ; S9 1 s. ~2.1d!
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Note that the undisturbed temperature gradient appears explicitly in the coef� cient [unity]
of the w term in (2.1c), and in the undisturbed salinity gradient 1/R. Also note that two
more (mean-� eld) equations for ]u/]t, ]s/]t are implicit in (2.1c,d), and will appear as the
zero horizontal wave number component in the Fourier series calculations given below.
Eqs. (2.1) will be solved for periodic boundary conditions on v, T , S in a rectangular
domain of size (Lx, Ly, Lz). In the statistically steady case, Eq. (2.1c) yields the “power
integral.”

2^wT&av 5 ^~¹T!2&av (2.1e)

where “bar,” “brace,” “av” indicate horizontal, vertical, and time average, respectively.
Note that although the following calculations focus on (Nu, g) the important r.m.s.
temperature gradient is immediately given by Eq. (2.1e). Since FT

*
is the average of

(kT/d)w(d]T# */] z*)T the value of Nu is

Nu 5 2^wT&av (2.1f)

and the “Cox number” ^(¹T)2&av is equal to Nu. The power integral obtained from (2.1a)
gives a time rate of increase of “kinetic energy” ^v2&Pr2 1/ 2 equal to the buoyancy work
minus the dissipation.

Eqs. (2.1) will be integrated using a pseudo-spectral method in which all the equations
are inverted exactly in the Fourier space, and the aliasing error is removed by zero padding.
Time integration is performed by a fourth order Runge-Kutta scheme [with the integrating
factor technique], and a periodic Cartesian grid with (Nx, Ny, Nz) points is used to compute
the nonlinear terms. The code is essentially the same as in Radko and Stern (1999).
Extensive tests of the adequacy of the grid point resolution, domain size, and time step Dt
have been made; for example see Eq. (3.1), Figure 13b, Sec 4 (¶2), Figure 14 discussion,
and Figure 12.

3. 2D � uxes for Pr 5 7, t < 0.01

Our � nal estimate (Section 4) of the 3D heat/salt � uxes [for � xed R 5 2, Pr 5 7] will
require information about the asymptotic (t ! 1) behavior of the solutions of Eqs. 2.1, and,
therefore, we will start the required sequence of calculations with t 5 1/6, in a 2D
computational domain whose horizontal width contains four fastest growing wave-
lengths (F.G.W.) with m [ (F.G.W.)/(longest � nite z-wavelength) 5 0.1, (64 3 128 grid).
Figure 1a shows the temporal variation of the x-z averaged (2wT), and although the salt
� ux was computed it is not shown. The time averages are Nu 5 12 6 2, g 5 0.75.
Essentially the same Nu 5 12 6 3, g 5 0.73 was obtained (not shown) for a smaller m 5

1/20 (64 3 256 grid). A discussion of the corresponding � ux for 3D � ngers (Fig. 1b) is
deferred to Section 4, and we now continue the discussion of the 2D calculations.Figure 1c
shows the decreased � ux which occurs for t 5 1/6 when R is increased to R 5 2.5. For a
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smaller t 5 1/12 at R 5 2.0, Figure 1e shows that the heat � ux increases slightly
compared to Figure 1a. The time averages for even smaller t (at R 5 2) are:

t 5 1/12, Nu 5 13.5 6 2, g 5 0.66 6 0.05, 4 F.G.W.~64 3 128!

t 5 1/24, Nu 5 19 6 3, g 5 0.63 6 0.04, 4 F.G.W.~128 3 256!

t 5 1/24, Nu 5 19 6 2, g 5 0.63 6 0.03, 16 F.G.W.~512 3 256! (3.1)

t 5 1/48, Nu 5 19 6 3, g 5 0.58 6 0.04, 4 F.G.W.~256 3 512!

t 5 1/96, Nu 5 22 6 3, g 5 0.57 6 0.04, 4 F.G.W.~256 3 512!

Figure 1. Comparison of 2D/3D � uxes. (a) The 2D nondimensionalheat � ux is plotted as a function
of time for Pr 5 7, R 5 2, t 5 1/6 with four F.G.W. and 16 points/� nger pair (see text). The time
origin is of no signi� cance since initializationwas obtained using the output of a previous test run.
(b) The corresponding3D calculation as discussed in Section 4. (c) Same 2D calculation as in (a)
except R 5 2.5. (d) Same as (c) except for 3D. (e) Same 2D calculation as in (a) except for t 5
1/12. (f) Same as (e) except for 3D (1283 grid). In all cases the 3D � uxes exceed the corresponding
2D values by at least a factor of two.
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The last run agrees with Shen’s (1995) result for R 5 2.0, t 5 0.01: Nu 5 20, g 5 0.61,
Lx 5 8 F.G.W. Eqs. (3.1) indicate that as t decreases from t 5 1/12 to t 5 0.01, Nu
increases and g decreases toward asymptotic values, which are given (with suf� cient
accuracy for present purposes) by the values at t 5 1/24.

The plot of total density (including the basic gradient) for t 5 1/24 (Fig. 2) reveals the
chaotic nature of the � ngers, and provides insight into the life cycle of an individual salt
� nger. In the earliest (top, right) of the four stages shown in Figure 2c we isolated a
relatively small amplitude density anomaly which is completely surrounded by less dense
� uid (not shown). The plume is descending and increasing its maximum density (due to the
lateral heat exchange) in the second and third stages. In the fourth stage the plume (laterally
offset) reaches a stagnation level (zero vertical velocity) where it spreads laterally and then
tends to rise in a neighboring upgoing � nger. Subsequently the “identity”of the plume will
be lost, so that the vertical distance l between the � rst and last stages [i.e., O(10) � nger

Figure 1. (Continued)
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wavelengths] may be designated as a vertical “mixing length.” It is conjectured that in the
three-dimensional case (Section 4), there will be a greater probability that some of the � uid
surrounding a stagnation point contains a down-going � nger which enables the laterally
spreading plume (Fig. 2c) to continue downward, thereby increasing l. This suggests that
in 3D the r.m.s. T/S anomalies and the heat/salt � ux will be larger than in 2D. This
argument does not apply to the “thin” � nger layer case (Linden, 1974) where the plume
descends monotonically.

Before turning to the 3D problem, it is important to indicate how the 2D � uxes for t 5

1/24 vary with R. Figure 3a gives the temporal variation of heat � ux for R 5 1.25, and
Figure 3b shows that the time average � ux is � ve times larger than for R 5 2. Note that as
R decreases, the eddy salt diffusivity [which will be seen (Section 6) to be proportional to
R Nu/g] also increases, in contrast to the result of oversimpli� ed calculations (Kunze,
1987).

Figure 1. (Continued)
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Figure 2. The chaotic structure and large gradients in � ngers. (a) Isolines of constant total density r
in the entire domain for 2D � ngers at t 5 1/ 24, R 5 2, Pr 5 7 (see text). (b) The nominal density
is divided into three parts, the � rst prints only the lowest (0–25) isopycnals; the middle diagram
prints the (25–45) range; and the last prints only the largest range. (c) A temporal sequence of a
“� nger” obtained by printing only the isopycnals in a very restricted density and spatial interval.
The last snapshot is laterally offset to avoid overlapping with the three earlier ones. Note the
limited vertical extent and “life history” of a plume, and its tendency to rise after the stagnation
point is reached. The total elapsed time is 4.5 nondimensionalunits.
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4. 3 D � uxes for Pr 5 7

Since the 2D � uxes (Eq. 3.1) asymptote as t ® 0.01 it is plausible that the ratio

3D-heat flux

2D-heat flux
(4.1)

asymptotes, or at least varies slowly in the vicinity of t 5 0.01. We, therefore, propose to
compute (4.1) at numerically “accessible” values of t . 0.01, and to extrapolate the ratio to
t 5 0.01; the result will then be multiplied by the computed (Eq. 3.1) 2D-� ux at t 5 0.01 to
obtain a � rst estimate of the 3D � ux for the heat-salt case.

A 3D-calculation was � rst made for t 5 1/6 in a rather small domain containing only
2 3 2 F.G.W. in the horizontal (each F.G.W. is 9.05d) with m 5 0.1 and 32 3 32 3 64
grid points. The initial condition consisted of a normal mode (of the linear problem) whose

Figure 2. (Continued)
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horizontal wave length equaled one F.G.W., and whose vertical wavelength corresponded
to m (vertical wavenumber zero is present in the computer noise). In the subsequent
evolution of this normal mode the exponential increase in amplitude agreed with linear
theory, and eventually � ux equilibration occurred with oscillations about Nu 5 28 6 5,
g 5 0.67 6 0.05. The adequacy of the time step was con� rmed by the balance (to 0.7%)
of the terms in the equation for the production/dissipation of T-variances, but inadequate
resolution of the smallest S-wavelengths was apparent in the ¹S spectrum, which dropped

Figure 2. (Continued)
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precipitously to zero at the smallest zero padded vertical wave number m. Therefore, the
vertical resolution was doubled and the calculation was continued. Although this only
resulted in a small increase in the � ux to Nu 5 31 6 5, the tail of the ¹S spectrum at large
m behaved more satisfactorily by tapering off more gradually to zero; this suggests that the
� uxes are insensitive to the smallest ¹S scale. Figure 4 shows typical salinity and vertical
velocity sections for this run. To obtain our � nal result for the � uxes at t 5 1/6 (Fig. 1b) the
number of � nger pairs in x and y was doubled, yielding average values Nu 5 26 6 3, g 5

0.68; this Nu is only 15% smaller than the previous run with less � ngers.
Comparison of Figures 1a,b gives the ratio

3D-heat flux

2D-heat flux
.

26

12
5 2.2 @ t 5

1

6
, R 5 2. (4.2)

Figure 3. 2D heat-salt � uxes for various R (using t 5 1/24). (a) The time variation of heat � ux when
R 5 1.25. (b) The variation of Nu, g. The third curve is proportional to the eddy salt diffusivity
[RkT (Nu/g)]. The vertical bars indicate the r.m.s. temporal deviation. A curve which � ts the
heat-� ux is Nu 5 1.06 exp(5.62/R).
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A similar 3D calculation for R 5 2.5 is shown in Figure 1d, and comparison with
Figure 1c yields approximately the same (3D)/(2D) � ux ratio as in Eq. 4.2. To con� rm the
approach to the t-asymptote of the ratio in (4.2) a 3D calculation at R 5 2.0 was made for
t 5 1/12 (on a super-computer). Initialization was provided by the last output of the t 5

1/6 run, and the horizontal grid spacings were halved. Figure 1f shows the spatially
averaged heat � ux with time average Nu 5 35 6 3, and g 5 0.63. The ratio of this Nu to
the corresponding 2D � ux (Fig. 1e, Eq. 3.1) at the same t 5 1/12 is

3D-heat flux

2D-heat flux
.

35

14
5 2.5 @ t 5

1

12
, R 5 2. (4.3)

Thus we see that halving t only increases Eq. 4.2 by 0.3 (or 10%), and this justi� es an
extrapolation to the heat-salt case, for which the estimate is

Figure 4. An example of the 3D calculations for Pr 5 7, R 5 2, t 5 1/6; there are
2 3 2 3 10 F.G.W. (see text). (a) The value of S at various y. (b) Horizontal S sections at various
z. (c) Horizontal sections of vertical velocity. The solid lines are $ 0. Contours are separated by
“ci” units. The units along the axis are in grid point numbers. There is no vertical exaggeration.
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3D-heat flux
2D-heat-flux

5 2.5 6 0.3 @ t 5 0.01, R 5 2. (4.4)

To obtain a � rst approximation for the 3-D value of Nu for heat-salt at R 5 2, the ratio
in Eq. (4.4) is multiplied by the previously calculated [Eq. 3.1] 2D value of Nu > 20 to get

Nu 5 20~2.5! . 50 ~R 5 2, Pr 5 7, t 5 0.01!

g . 0.63. (4.5)

It is convenient to de� ne an eddy salt diffusivity DS by dividing the salt � ux (FT
*
/bg) by

the overall salinity gradient in the computational domain:

DS ;
FT p

/g

b]S# p /]z p

5
kTNu~a]T# p /]z p !

gb]S# p /]z p

5
kTRNu

g
(4.6)

DS 5 F ~1.5 3 1023 cm2/sec!~2.0!

0.63 G 50 5 0.24 cm2/sec, (4.7)

Figure 4. (Continued)
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and a similar de� nition for the eddy heat diffusivity gives

D 5
gDS

R
5 0.076 cm2/sec.

The variation of DS with R for 2D-� ngers is, therefore, proportional to the (R/g) Nu curve
in Figure 3.

Ocean heat � ux measurements (Sec. 8) based on Eq. (2.1e) assume that the right-hand
side is partitioned equally between vertical r.m.s. gradients and horizontal ones. On the
other hand our computed value of the r.m.s. ]T/] z for R 5 2, t 5 1/12 is

^~]T/]z!2&av

^~¹T!2&av
5 0.18, (4.8)

which is less than half that which would occur with equi-partition of ¹T in all three
directions. From the order of magnitude of the inertial terms in these calculations we also
found that the � nger Reynolds number is of order unity (as expected). But as we shall now
see the � nger � ux is capable of generating much larger Reynolds number motions.

Figure 4. (Continued)
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5. Parametric theory of the collective instability of salt � ngers

What happens when the domain size and the number of � nger pairs increases by an order
of magnitude? Consider a 3D stochastic � eld of � ngers (e.g., Section 4) whose ensemble
average is stationary and homogeneous (independent of x, y, z), with uniform average
overall gradients, T# z( z), S# z( z), R 5 T# z/S# z. For the purpose of this section (only) it is
convenient to start with dimensional coordinates, so that T, S are given here in buoyancy
units. Assume that the small domain � ux gradient laws [cf. Sections 3, 4] have been
computed as a function of R [for any given t, Pr], so that the dimensional downward
convective � uxes are known and are given by

FT 5 1kTNuT# z ; 1DT# z, (5.1a)

FS 5 1
R

g
kTNuS# z 5 1

R

g
DS# z 5 DS~R!S# z, (5.1b)

D ; kTNu, DS 5
R

g
D . (5.1c)

[The small molecular � uxes may easily be included in (5.1) if desired.]
Now subject this statistical equilibrium to (an ensemble average) perturbation whose

z-wavelength 2pH is much larger than the dominant � nger width, and whose x-
wavelength 2pHk2 1 is even larger (k ! 1). The ensemble average temperature, salinity,
and velocity perturbation T0, S0, U0 may (without loss of generality in the following linear
theory) be taken as 2D, even if the � nger � eld is 3D. In the absence of � ngers this “large
scale” perturbation would behave like a classical low-frequency internal gravity wave
[damped mainly by viscosity, if n @ kT @ kS]. But in the presence of the � ngers and their
perturbed heat, salt and momentum � ux divergences, there will be a slight modi� cation of
the internal wave due to several distinct physical effects. As in Stern’s (1969) “collective
instability” theory, the U0-shear can differentially tilt different groups of � ngers, thereby
changing the direction of the convective heat � ux vector in different regions of the
large-scale motion; the resulting � ux convergence then modi� es the large-scale buoyancy
force, causing an “overstable” ampli� cation of a low-frequency (k ! 1) internal wave. But
that theory neglected the perturbation in the magnitude of the � ux vectors, and it is this
effect which is isolated below. Also previously neglected was the perturbed momentum
� ux vector, which can result in either an upgradient or a downgradient mean momentum
� ux; the latter is produced by � nger plumes sinking or rising into regions with different U0,
whereas an upgradient � ux can be produced by the shear-induced correlation of the vertical
and horizontal � nger velocities. The eddy momentum � ux is neglected below and will be
discussed in the Appendix; all effects will be included in the � nite amplitude numerical
calculation (Section 6).

We assume that the variations of FT, FS on the scale of the wave can be computed
parametrically from (5.1) using the perturbed large-scale Tz, Sz gradients on the same
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scale. The validity of this (rather conventional eddy coef� cient parameterization) depends
on the fact that the wave � eld varies so slowly in space-time that each region, containing a
large number of � ngers, has time to adjust to the statistical equilibrium � ux corresponding
to the local gradients. The large-scale � nger � ux convergences (1]FT/] z, 1]FS/] z) will
subsequently be set equal to ]/]t(T0, S0) 1 w0(T# z, S# z), where w0 is the vertical component
of U0, to obtain the modi� ed density force in the wave.

We must take into account that FT depends on both the temperature gradient and on the
density ratio, whose perturbed value is R 5 (T# z 1 T 0z)/(S# z 1 S 0z); and whose in� nitesimal
deviation from R# 5 T# z/S# z is

R0 5
T# z 1 T 0z
S# z 1 S 0z

2
T# z

S# z

5 R# X T 0z
T# z

2
S 0z
S# z
D . (5.1d)

These � uctuations in density ratio are due to the � nger heat/salt � ux, for otherwise a pure
gravity wave would cause the bracketed term to vanish. The � rst order expansions of the
� uxes FT 5 1D(R)[T# z 1 T 0z], FS 5 1Ds(R)[S# z 1 S 0z], and their vertical convergences
are given by

1
]FT

]z
5 kT

]

]z F Nu~R# 1 R0!
]~T# 1 T0!

]z G
5 kTNu~R# !

]2T0

]z2 1 kT

]T#

]z

]Nu

]R#
]

]z X T# z 1 T 0z
S# z 1 S0

2
T# z

S# z
D

5 D
]2T0

]z2 1 DT# zrT

]2

]z2 X T0

T# z

2
S0

S# z
D , (5.2a)

1
]FS

]z
5

kT

g

]

]z F RNu
]~S# 1 S0!

dz G 5
DR#

g

]2S0

]z2 1
D

g
T# zrS

]2

]z2 X T0

T# z

2
S0

S# z
D , (5.2b)

where

rT ;
R#

Nu

]Nu

]R#
, rS 5

1
Nu

]R# Nu

]R#
5 1 1 rT, (5.2c)

~rT , 0!

and where the relatively small variation in the � ux ratio g (cf. Sections 3, 4) has been
neglected.

For a 2D wave with streamfunction c0, and molecular viscosity n, the vorticity equation
is

X ]

]t
2 n¹2D ¹2c0 5 1g X ]T0

]x
2

]S0

]x D . (5.3a)

The heat/salt perturbation equations obtained using Eqs. (5.2) are
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T# zc 0x 1 X ]

]t
2 D

]2

]z2 D T0 5 DrT

]2

]z2 ~T0 2 S0R# !, (5.3b)

S# zc 0x 1 X ]

]t
2

DR#

g

]2

]z2 D S0 5
DrS

g

]2

]z2 ~T0 2 S0R# !. (5.3c)

In solving the associated constant coef� cient eigenfunction equations, it is now convenient
to use a wave-dynamical nondimensionalization (rather than one related to the small-scale
� ngers in Section 2). Accordingly, let

z 5 Hz1, x 5 Hk21x1, t 5 @g~T# z 2 S# z!#
21/2k21t1, (5.4a)

T0 5 HT# zT1, S0 5 HS# zS1, c0 5 @g~T# z 2 S# z!#
11/2H2c1, (5.4b)

e1 ; H22D@g~T# z 2 S# z!#
21/2, b ; e1/k. (5.4c)

In order to relate the following results to the more detailed numerics in the following
section, we express the vertical wavelength 2pH as a multiple (Q) of the � nger scale (d):

H ; Qd/2p b 5
4p2kT

21D

Q2k@Pr~1 2 1/R!#1/2 . (5.4d)

Since the parameter e1 is the ratio of a relatively small “eddy diffusion” rate (D/H2) to the
buoyancy frequency, we will be primarily interested in the case where e1 ! 1.

By introducing Eqs. (5.4) in Eqs. (5.3), simplifying, and then dropping “sub 1” we get

F ]

]t
2

nb

D X ]2

]z2 1 k2
]2

]x2 D G X ]2

]z2 1 k2
]2

]x2 D c 5 1
]

]x

TT# z 2 SS# z

T# z 2 S# z

5 1
]T

]x
1

1

R# 2 1

]

]x
~T 2 S!, (5.5)

]c

]x
1 H ]

]t
2 b

]2

]z2 J T 5 brT

]2

]z2 ~T 2 S!, (5.6)

]c

]x
1 H ]

]t
2

R# b

g

]2

]z2 J S 5 rS

R# b

g

]2

]z2 ~T 2 S!. (5.7)

For the normal modes (T, S, c) 5 (T̂, Ŝ, ĉ)exp(iz 1 ix)eV t Eqs. (5.5)–(5.6) become
(respectively)

2 F V 1
nb

D
~1 1 k2! G ~1 1 k2!ĉ 5 F T̂ 1

T̂ 2 Ŝ

R# 2 1 G i, (5.8)

ĉi 1 ~V 1 b!T̂ 5 2brT~T̂ 2 Ŝ!. (5.9)

The third equation [obtained by subtracting Eqs. (5.6)–(5.7)] is
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~V 1 b!T̂ 2 X V 1
R# b

g D Ŝ 5 2brT~T̂ 2 Ŝ! 1
R# brs

g
~T̂ 2 Ŝ!,

or

~T̂ 2 Ŝ! F V 1 b X rT 2
R# rS

g D 1
R# b

g G 2 b X R#

g
2 1 D T̂ 5 0. (5.10)

When this is used to eliminate T̂ 2 Ŝ in (5.8) and (5.9) we get, respectively,

2F V 1
nb

D
~1 1 k2! G ~1 1 k2!ĉ 5 iT̂ 3 1 1

b X R#

g
2 1D ~R# 2 1!21

V 1 bX rT 2
rSR#
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and

2ĉi 5 T̂ 3 V 1 b 1
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2 1 D rT

V 1 b X rT 2
rSR#

g
1

R#

g D 4 .

By dividing the last two equations, we obtain a cubic equation for the growth rate V:

F V 1
nb

D
~1 1 k2! G H ~V 1 b! F V 1 b X rT 2

rSR#

g
1

R#

g D G 1 b2rT X R#
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2 1 D J

5 2
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1 1 k2 2
b

1 1 k2 1 rT 2
rSR#

g
1

R#

g
1

R#

g
2 1

R# 2 1
2 .

Since rS 5 1 1 rT, this cubic simpli� es to

V3 1 a2V
2 1 a1V 1 a0 5 0, (5.11a)

a2 5
nb~1 1 k2!

D
1 b F 1 1 rT X 1 2

R#

g D G , (5.11b)

a1 5
1

1 1 k2 1 b2 F 1 1 rT X 1 2
R#

g D G n

D
~1 1 k2!, (5.11c)

a0 5 2
b

1 1 k2 F rT 2
1

R# 2 1 G X R#

g
2 1 D . (5.11d)

To leading order in b ! 1 (cf. 5.4c) a2 ® 0, a0 ® 0, a1 ® (1 1 k2)2 1, and therefore
V 5 (2a1)1/2 5 6i(1 1 k2)2 1/2 corresponds to nearly “pure” internal gravity waves.
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The condition for their marginal stability, obtained by setting V 5 iv with v real in (5.11),
is v2 5 a1, a2v2 5 a0, or

a2a1 5 a0. (5.12)

{If there are (as subsequently veri� ed) two complex conjugate V roots, then the third root
is 2b[(R 2 1)21 2 rT][R/g 2 1] , 0; this is damped because: Nu increases as R#

decreases, rT # 0, and R# /g . 1.} When (5.11b,c,d) is substituted in (5.12) we get
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D
~1 1 k2! 1 1 1 rT X 1 2
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g D J H 1

1 1 k2 1 b2 F 1 1 rT X 1 2
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g D G n

D
~1 1 k2! J

5 2

R#

g
2 1

1 1 k2 X rT 2
1

R# 2 1
D

or

n

D
~1 1 k2! 1 1

1 1 k2 5
X R#

g
2 1 D Y ~R# 2 1!

1 1 k2 2 b2 F 1 2 rT X R#

g
2 1 D G 2 n

D
~1 1 k2!

2 b2 F 1 2 rT X R#

g
2 1 D G X n

D D 2

~1 1 k2!2. (5.13)

Since rT # 0 and R# /g . 1, both b2 terms are negative, so that a necessary condition for
marginal instability is

n

D
# X ~R# /g! 2 1

~R# 2 1!
2 1 D ~1 1 k2!21 5 X ~1/g! 2 1

1 2 1/R# D ~1 1 k2!21,

or

A ;
D

n

X FS

FT
2 1 D

X 1 2
S# z

T# z
D 5

FS 2 FT

n~T# z 2 S# z!
$ 1 1 k2 . 1. (5.14)

If e1 ! 1 then A . 1 is also suf� cient for instability, since k may be chosen such that b2 5
e1

2/k2 ! 1 is negligible in (5.13). But if e1 is � xed and k ® 0, then b2 ® `, and the
right-hand side of (5.13) approaches negative in� nity; this implies that ultra-long internal
waves are not ampli� ed. [Although the A . 1 condition for instability happens to be the
same as in Stern (1969), the two theories are very different. The latter assumes that the
wave shear rotates the local � nger � ux vector without changing its magnitude. Also
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different is Holyer’s (1981) theory of the Floquet instability of laminar � ngers with
molecular diffusivities kT . kS.]

Typical growth rate curves (Fig. 5) relevant to heat-salt were obtained by solving the
cubic for (t 5 1/ 24, Pr 5 7, R 5 1.25) using the 2D values (Fig. 3b) of Nu 5 86.7,
g 5 0.68, rT 5 23.12; from these we get A 5 29.0, n/D 5 A2 1[1/g 2 1](1 2

1/R)21. The value of b (Eq. 5.4d), obtained for various k and nondimensionalwavelengths
Q was plotted (Fig. 5) as a function of the growth rate (expressed as a fraction of the
buoyancy frequency). The value of the dimensional wavelength at the arrows in Figure 5 is
expressed in terms of the salt � nger width (d) for Nu 5 86.7. For a wave with k 5 1/6 and
Q 5 269d the growth rate is (0.02) times the buoyancy frequency, or (0.02/(1/6)) 5 0.12
times the frequency of the amplifying k-wave. By way of illustration we note that for d 5

1 cm, the vertical half wavelength is Qd/ 2 ; 1.3 meters, and the horizontal half-
wavelength is 6 3 1.3 5 7.8 meters. It should be noted that the basic physical assumption
of the parametric theory ceases to be valid if k is so large that the growth rate is comparable
with the wave frequency, or if H/d is not large.

A physical explanation of the “overstable” oscillation can be obtained from Figure 6
which shows a plane internal gravity wave with velocity amplitude U0 inclined at a small
angle (f) to the horizontal. In the region of convergent vertical velocity (i.e., ]w0/] z , 0),
there is a vertical compaction (strain) of isotherms and isohalines (increased local ]T/] z,
]S/] z) which increases the downward � nger � uxes. The convergence of the latter
increases the mean density along the wave front in the region where the slanting velocity

Figure 5. Solution of the cubic equation (5.11) for the growth rate for Pr 5 7, R 5 1.25, t 5 1/ 24
as a function of k and H (see text). The values of Nu 5 86.7, g 5 0.68, A 5 29, rT 5 23.12
were obtained from a previous 2D numerical calculation (Fig. 3b).
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(U0) is upward. When this motion reverses and the � uid parcel returns to its starting z it has
greater density, and consequently the maximum amplitude of U0 increases with time in an
“over-stable” mode.

A simpli� ed version of the foregoing theory can be obtained by noting that as a � rst
approximation (in e) the normal mode is a pure internal wave with T0 > R# S0, suggesting
that the terms on the right-hand side of 5.3b,c [i.e., containing rT, rS] are negligible
compared to the terms on the left-hand side containing only D, [as may be veri� ed by the
exact algebra given above for e1 ! k ! 1]. Then by transforming the dependent variables
in the simpli� ed Eqs. 5.3b–c one can obtain a purely formal analogy with the well-known
problem of the laminar diffusive instability of a stable salinity gradient which is heated
from below (Baines and Gill, 1969), thereby immediately proving the instability. An
interesting dividend emerging from this simpli� cation is the value of the average wave � ux
ratio:

gW ;
^c 0xT0&

^c 0xS0&
. (5.15)

at marginal stability []/]t^(T9)2& 5 0]. If the simpli� ed (rT 5 rS 5 0) Eq. 5.3b is
multiplied by T0 and averaged we get T# z^cxT0& 1 D^(]T0/] z)2& 5 0; likewise (5.3c)
gives S# z^cxS0& 1 D(R# /g)^(]S0/] z2)& 5 0. Since ]T0/] z0 > R]S0/] z0 for the normal
mode it follows that ^(]T0/] z)2&/^(]S0/] z)2& 5 R# 2 1 . . . , and therefore R# gW 5 (g/R# )R# 2

or gW 5 g . The important effect of the salt � ngers on an internal wave is to (slightly)
modify the relative phases of its components. A broad band of internal waves [such as is

Figure 6. Illustratingthe collective instability of a � nite amplitude � eld of � ngers (wiggly lines). The
vertical component w0 of a large scale and slowly varying internal gravity wave with small
amplitude U0 increases (decreases) the locally averaged (]T/] z, ]S/] z); the local salt � ux
Fs

1 (FS
2) is thereby increased (decreased),and the vertical divergences of these produce buoyancy

perturbations in the scale of the wave. This ampli� es if A . 1 (see text).
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generated in the ocean by other causes] can be projected on the (slightly different)
collective instability modes, thereby implying an ampli� cation of waves that may exist in
the background of the � ngers. Also noteworthy is the fact that if (R# , D, rT) are taken as
constant, then Eqs. (5.5)–(5.7) are valid for a � nite amplitude plane wave since the
non-linear terms vanish identically.But this result of our ensemble average theory does not
necessarily hold for an individual realization (such as considered below) because the
smaller scale � uctuations of the chaotic � nger � uxes will force an entire spectrum of weak
disturbances.

Although the instability of a pure � nger � eld, and the subsequent generation of larger
scales, has been realized in laboratory experiments (Linden, 1978), it has not been
established that the mechanism is due to collective instability ( A . 1).

6. Numerical test of collective instability

It is, therefore, desirable to provide a direct numerical calculation from Eqs. (1.1) to test
the prediction (Section 5) that the strain-induced vertical (T-S) gradients in a relatively
large-scale gravity wave can modulate the � nger � uxes in a way which ampli� es the wave.
Whereas the theory of Section 5 started (t 5 0) with a basic state of statistically steady and
homogeneous � ngers which is then perturbed by an in� nitesimal amplitude wave, it is
computationally convenient (and physically instructive), to reverse the procedure by
starting (t 5 0) with a state consisting of a particular small � nite amplitude internal gravity
wave, with much smaller computer noise to generate the � ngers. The question then is
whether this “designated” wave will increase in energy, or whether its shear will inhibit the
� nger � ux. Since two greatly different scales are now involved, we must restrict the
numerical calculations to a 2D � nger model with computationally “accessible” values of
(t, R, Pr) [not corresponding exactly to any known substance]. The nondimensional
number A [in (5.14)] which is relevant to the instability is the buoyancy � ux divided by the
product of the density gradient and the molecular viscosity, or

A 5
FS 2 FT

n~T# z 2 S# z!
;

Nu

Pr

~1/g 2 1!

~1 2 1/R!
. (6.1)

Our procedure is to � rst make small domain [O(10) � ngers] calculations to � nd
parameters yielding A . 1, in which case we expect that in a larger computational domain
an internal wave will be ampli� ed by its interaction with the � ngers. Such a small domain
2D calculation (not shown) for R 5 1.2, Pr 5 7, t 5 1/3, using 8 pairs of � ngers in a
256 3 256 grid yielded Nu 5 79 6 8, g 5 0.84, with a highly supercritical A 5 12. A
similar calculation for R 5 1.3, Pr 5 7, t 5 1/3 gave Nu 5 47 6 5, g 5 0.82 with A 5

6.4. From these two calculations the approximate value of the second relevant number
(5.2a) is

rT 5 RNu21]Nu/]R . 24.7. (6.2)
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Therefore we proceeded to make a large domain calculation for

R 5 1.2, Pr 5 7, t 5 1/3, (6.3)

[anticipating on the basis of Sections 3 and 4 that the result will underestimate the
instability for t 5 0.01 (i.e., heat-salt)].

The vertical extent of the computational domain in terms of the � nger width (d) used in
nondimensionalizing Eq. (1.1), was 230d; the horizontal extent was 6.4 3 230d, the
F.G.W. was 11.5d, and the grid size was (2048, 256). The large-scale initial disturbance
consisted of a � nite amplitude plane wave whose fronts had a slope 1/6.4 (relative to the
horizon) and which propagated upwards as determined by the phase of a classical
internal-gravity wave; the vertical wavelength was equal to the domain size, and the initial
peak temperature amplitude was 2Tm 5 12. At t . 0 the small-scale computer noise
resulted in � nger � uxes (Fig. 7a) which increased rapidly at t . 75, and then equilibrated
at values of Nu 5 70, g 5 70/84 which are essentially the same as in the small domain
calculation. Subsequently, the gravity wave maintains its frequency while increasing its
amplitude exponentially (Fig. 7b). This can be expressed as a Richardson number (Ri),
de� ned here as the squared value of the undisturbed buoyancy frequency [ ga(]T# */
] z*)(1 2 1/R)] divided by the square of the modal amplitude of the wave shear. The
dimensional value of the latter is (kT/d2)[(2Um )(2pQ21)], where kT/d2 is the unit of
shear appropriate to Eqs. (1.1), 2Um is the nondimensionalvelocity amplitude of the wave,
and Q [see Eq. 5.4d] is its non-dimensional wavelength. We found (not shown) that
although the value of

Ri 5
Pr~1 2 1/R!

16p2Um
2Q22

in 0 , t , 200 � rst increased [from Ri 5 10, to Ri 5 20], it then dropped to Ri 5 2.5 at
t 5 200, but a minimum value (see below) was not yet reached. Figure 8 shows the tilted
salt � ngers at a relatively early time.

A con� rmation of the wave ampli� cation was obtained from a similar calculation using
a different initial condition consisting of a standing cellular internal gravity wave, with
nodal surfaces at the x-z boundaries of the domain. Although there is now a large temporal
oscillation of the heat � ux, the average (50 , t , 250) in Figure 9 is close to that for the
previously considered plane wave. Figure 10 shows the � nger structure (T) embedded in
the cellular wave. Figure 11a shows the total wave energy, de� ned here as the average of
0.5[(u0)2 1 (w0)2] 1 0.5Pr(1 2 1/R)2 1(r0)2, with its components (quadratic ampli-
tude) oscillating at twice the buoyancy frequency. The wave energy is still increasing at t 5

225, and the minimum Ri(1.09) in Figure 11b is approaching unity.

7. Overturning waves

In view of the large computational time already required, the following more expedi-
tious numerical code was developed to determine the maximum value of the wave energy.
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For this purpose we restrict attention to a plane wave whose fronts are inclined at a small
angle f to the horizon, and write Eqs. (2.1) in a “tilted box” (orthogonal) coordinate system
whose x axis is also inclined at the angle f. The gravity force then has an x as well as a z

Figure 7. A test of the collective instability mechanism using a numerically “accessible” 2D model
with Pr 5 7, R 5 1.2, t 5 1/3 (see text) and a very large computational domain including
128 F.G.W. The initial disturbance consisted of a � nite amplitude (plane) internal gravity wave
with no � ngers (except for computer noise). (a) The � nger � ux increases from t 5 0 to an average
Nu 5 70 6 3. (b) The peak temperature amplitude of the initial wave also increases after the
� ngers develop, but Tm has not yet equilibrated.
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component, and now the “designated” (initial) internal wave is denoted by x-wave number
zero. The evolution of this is computed, along with the much smaller scale � ngers, in a new
( x, z) domain whose size [20 3 20 � nger F.G.W.] is much less than that [128 3 20 � nger
wavelengths] in the vertical box model (Fig. 7). In the latter case the internal wave had
nonzero wavenumber, which required the explicit computation of its (relatively unimpor-
tant) � rst, second, . . . harmonics; not all of these Fourier components are required or
computed in the tilted box model, and consequently the computer time is reduced. Of
course the smaller number of Fourier components in the tilted box model may result in a
somewhat diminished quantitative accuracy, but the representation still allows for the
collective instability mechanism. Although the Fourier series for v, T are now periodic in
the coordinate system of the tilted box, the heat � ux (Nu) given below is computed parallel
to gravity by resolving v in that direction. The computations for f 5 1/6 were performed
by initializingthe x-component of the upward propagatingwave velocity as Umeimz 1 c.c.,
and the associated temperature deviations as Tmeimz 1 c.c.; these had exactly the same
relative phase as in a classical internal wave. Although the amplitude Um (0) 5 1.5 was
smaller than that used in Figure 7, the values of (t, R, Pr) 5 (1/3, 1.2, 7) were the same,
and small random computer noise was also used to initialize the � ngers. After some testing
of the spatial resolution Figure 12 was obtained using a 512 3 512 grid and a time step

Figure 8. (a) A vertical salinity (S) section [for Fig. 7 at t 5 80)] which reveals the � ngers being
tilted by the shear. The actual value of the total horizontal distance is 6.4 times larger than the total
vertical distance.
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Dt 5 0.005 at t 5 0. At t 5 50 the � ux levels off to a value Nu 5 80. This is
approximately 10% higher than the value in the vertical box (Fig. 7) (a difference which is
attributed to the 50% smaller grid spacing (per F.G.W.) in the latter model) and
approximately equal to that in a higher resolution small domain calculation.

The amplifying internal wave oscillations in Nu are clearly seen [Fig. 12] after t 5 180,
and the running mean Nu indicates that the wave increases the average � ux, as predicted
[Section 5]. The total kinetic plus potential energy (Fig. 13a) of the designated (largest
scale) wave � nally equilibrates at t 5 259, and Figure 13c shows that a minimum
Richardson number > 0.5 is reached at t 5 258. Prior to this time an exponential � t (not
shown) to the wave energy (Fig. 13a) gave a growth rate which was only 12% lower than
the linear theoretical value 2V 5 2(0.0112) obtained from the cubic equation (5.11).
Figure 13b shows that these calculations resolve the smallest scale in the salinity gradient;
this is given by the spectrum of ¥m (k2 1 m2)ŜŜ* as a function of k (solid line), and by ¥k

(k2 1 m2)ŜŜ* as a function of m.
Figure 14 gives the total kinetic energy in all the modes (a), as well as the integrated

buoyancy work (2r9w9) term (b) and the total dissipation (c). The dashed-dot curve and
the “x” points are reproductions of the respective solid curves, starting from t 5 260, in
which the time step has been reduced to Dt 5 0.0008 (from Dt 5 0.001). Although the
two curves cease to track at t 5 279, the Dt 5 0.0008 calculation appears to be
adequately resolved at t # 281, in view of the fact that the integrals in the equation for the
rate of increase of kinetic energy balanced to an error which was 3% of the dissipation.The
spike (sign reversal) in total heat � ux at t 5 279 in Figure 12 is due to an upward

Figure 9. Same as Figure 8 except that the initial internal wave is standing cellular oscillation with
horizontal and vertical nodal surfaces. Heat � ux as a function of t. Note that the wave does not
decrease the average � nger � ux.
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component (magnitude 5 37.2) of the large-scale (.5 F.G.W.) wave in excess of the
downward � ux (25.6) of the � ngers (,5 F.G.W.); the total downward salt � ux, however, is
positive. The points for the Dt 5 0.0008 calculation (Fig. 14) con� rm this spike, whose
occurrence is consistent with the behavior of the low passed isopycnals (Fig. 15). These
steepen at the earlier time (Fig. 15a), and in the subsequent (Fig. 15b) overturn the wave
crest contains relatively cold and heavy � uid (originatingat greater depths). The � nal result
is a density inversion with sinking cold � uid, which accounts for the aforementioned
positive wT of the large scale motion.

The calculation in Figure 15b was not continued in time because of the onset of a new
kind of motion, viz., large Reynolds number convective “turbulence.” In any further
calculation the third dimension should be included and the domain size should also be
increased (to get larger wavelengths). The resulting evolution should be similar to that
which occurs with Kelvin-Helmholtz instabilities or critical layer absorption [Winters and
D’Assaro, 1994] when the waves break. Such an effect in Figure 15b will probably “kill”
the � ngers, and the removal of this prime energy source tends to dissipate the larger scale
motion. Later on however, the � ngers should be re-established in the relatively quiet
region, and so it goes. Patches of relatively large dissipation should appear intermittently
[without necessarily forming a permanent “staircase”] after the � ngers supply enough
energy for the wave to overturn.

Figure 10. A vertical T section for Figure 9 revealing the � ngers embedded in the cellular wave.
Compare with the plane wave in Figure 8.
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A similar tilted box calculation was made with an increased R 5 1.4, for which we
computed Nu 5 30.4 6 1.6 (g 5 0.83 6 0.01, rT 5 26.8); these values produced a
smaller A 5 3.1, and a much larger e-folding time 5 909. Consequently, a 50% larger
initial amplitude of the “designated” (largest scale) plane wave was used in Figure 16, but
this wave decays signi� cantly before the � nger � ux reaches its equilibrium amplitude.

Figure 11. (a) The total wave energy and its two components for Figure 9. (b) Note that the minimum
Richardson number has not yet been reached.
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Subsequently (t $ 80) the internal wave amplitude stabilizes at a small � nite value, with
no tendency for wavebreaking even after a very long time. Although the two calculations
(Figs. 15 and 16) con� rm the theoretical result that � nite amplitude internal waves can be
maintained if A . 1, Figure 16 indicates that a higher critical value is required for
wavebreaking. The latter effect might also depend on t.

8. Conclusions and speculations

The 2D heat-salt (Pr 5 7, t 5 0.01) � ux-gradient laws (Fig. 3b) in a “small”
computational domain show that as the “overall” density ratio R decreases the � uxes and
the eddy diffusivities [de� ned by the overall vertical gradients] increase substantially.
These preliminary results may supply useful � rst approximations for � nger � uxes in
regions of the ocean thermocline where R varies on a vertical scale of a couple of meters.

Numerical calculationsof the 3D-� uxes for R 5 2.0, 2.5 were made and compared with
the corresponding2D-� uxes at the same t, R. For t 5 1/6 the ratio of (3D)/(2D) � uxes was
approximately 2.0, and only slightly larger for t 5 1/12. By extrapolating this ratio to t 5

0.01, and by multiplying it with the directly calculated 2D � ux at R 5 2.0, we obtained
� rst estimates [Eqs. 4.5] of the space-time average 3D � uxes for heat-salt � ngers. The
corresponding salt/heat diffusivities, are respectively DS 5 0.24 cm2/sec and D 5

Figure 12. Time record of the total heat � ux for R 5 1.2, t 5 1/3, Pr 5 7.0 in the 20 3 20 F.G.W.
tilted box model (see text). The heavy line is a running average (15 time units). The average total
� ux is increased by the presence of the wave! The arrows mark the beginningof the intervalwhen,
for the purpose of numerical stability, the time step was changed to: (a) Dt 5 0.005, (b) Dt 5
0.002, (c) Dt 5 0.001. The spike at t 5 279 with 2^wT& 5 Nu , 0 corresponds to an upward
heat � ux (see text) in an overturning gravity wave.
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0.076 cm2/sec. Also noteworthy is the result that at t 5 1/12, R 5 2 the anisotropy factor
of � ngers, as given by the ratio of the average (]T/] z)2 to (¹T)2, is approximately 0.18.

By using the results of Section 3 and 4 to parameterize the � nger � ux it was shown that if
A . 1 the strain of an ambient internal wave � eld modulates the � nger � uxes, thereby
producing a slight phase shift in the components of the gravity wave. This results in a time
average (downward) salt � ux in the wave which exceeds the wave heat � ux, and
consequently the wave amplitude increases.

Perhaps the most important result is the direct numerical con� rmation [Section 6] and

Figure 13. (a) Time record of the total internal wave energy which peaks at time t 5 259. An
exponential � t to the curve in 0 , t , 250 gives a growth rate 2V 5 2(0.0098) which compares
well with (5.11). (b) Salinity gradient spectra at t 5 248; Ŝ(k, m) is the Fourier transform of S.
¥m (k2 1 m2 )ŜŜ* (solid line) is shown as a function of k, and ¥k (k2 1 m2 )ŜŜ* (dashed line) is
shown as a function of m. The Fourier mode k 5 20 corresponds to the fastest growing wave
(F.G.W.). (c) Time record of the minimum Richardson number based on the maximum wave
shear. This calculation resolves the least minimum Ri.

384 [59, 3Journal of Marine Research



elaboration of this effect in a model where both � ngers and waves are resolved. The
ampli� cation of the wave shear does not decrease the � nger � ux [cf. Fig. 12] until the wave
Richardson number drops to Ri ; 0.5, at which point the tip of the isopycnals overturn
(Fig. 15), producing large scale density inversions. We suggest that if the calculationswere
continued in time the accumulated wave energy would be rapidly dissipated in a more
vigorous convective regime, similar to the 3D turbulence computed for mechanically
driven wave overturns (Winters and D’Assaro, 1994). Our sample calculation of the fastest
growing wave (Qd/ 2 5 1.3 meters) might be extended to estimate patch size due to � nger
instability.

Laboratory experiments (Linden, 1973) also show that a pure � nger regime can give way
to large scale eddies, and eventually these can form deep mixed layers separated by thin
� nger interfaces. In this regime (not discussed herein) the vertically averaged � uxes are
much larger than in the pure � nger (thick gradient) regime, and consequently the “small
domain” 3D � ux laws [Section 3 and 4] generally provide only lower bounds for the � uxes
in the unbounded model with given overall gradients.

Since the salt � eld is the only prime energy source in our thermocline model, it does not
tell us what the effect would be in an ocean which included the forces of the wind, tides,
baroclinicity, etc. However, the calculation in Section 6 does contain some large scale
shear effects with low Richardson number [O(1)]. Furthermore there are open ocean

Figure 14. Energetics. (a) Time record of the total kinetic energy de� ned here as ^(u2 1 w2 )/ 2Pr&,
(b) The rate of increase of total kinetic energy due to buoyancy (in the direction of gravity), (c)
Viscous work 2 û Dc u 2 &. The “x” points and the “dashed dot curve” are reproductions of the run
(solid curves) using a smaller time step Dt 5 0.0008. See Figure 12.
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Figure 15. Total low passed density plots (nominal units) in the tilted ( x, z) coordinate system (note
the gravity vector); (a) at t 5 279, (b) at t 5 281. These show the steepening of the isopycnals,
the onset of wave breaking and formation of density inversions. (The actual value of the average
total density at z 5 512 minus the average on z 5 1 equals the undisturbed density difference
measured parallel to the gravity vector g.) The axis are labeled in grid point numbers, and there is
no vertical exaggeration.
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regions where the effect of the aforementioned forces on the mixing in the main
thermocline is minimal, and where comparison of microstructure measurements with our
simple model might be instructive. In such an oceanic region (with R , 2) the horizontal
tows of Mack (1985, 1989) reveal salt � ngers in isolated patches (meter thick), but the
� ngers are unresolved in the much more extensive regions of the observations with R $ 2;
the calculations (Section 4) should be most applicable in these relatively “non-turbulent”
regions. Mack also observed thin patches with “turbulent microstructure signatures,” and
these are also highly intermittent. The mechanism for producing these is conjectural,
because overturning waves on a vertical scale of a couple of meters were virtually absent,
in marked contrast with the abundance of overturns in shelf slope regions (Alford and
Pinkel, 2000) where the strong tides and currents undoubtedly produce the turbulence.
Despite their intermittency in the open ocean, the isolated turbulence patches have
relatively large dissipation which makes a large contribution to the vertically averaged
heat-salt � uxes, according to the microstructure soundings of Ruddick et al. (1997), St.
Laurent and Schmitt (1999). The latter authors (in their Table 1) give D and DS as a

Figure 16. Same as Figure 12 except for a large R 5 1.4, and a smaller A 5 3.1. The energy in the
designatedwave (largest scale) is plotted.
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function of R; at R 5 2 the measured (Cox Method) vertical temperature gradients yield
D 5 0.07 cm2/sec. For regions with a smaller R 5 1.6 St. Laurent and Schmitt (1999)
obtain D 5 0.12 cm2/sec, and Ledwell et al. (1998) obtained similar values from
observations of the vertical spread of a thin dye patch. In the smaller R regions the
intermittent high dissipation patches in the soundings are most prominent. Although these
might be due to “turbulence” of the Kelvin-Helmholtz type, we have suggested that a
similar effect might be produced by � ngers amplifying the background internal wave � eld
in the ocean.
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APPENDIX

The role of a horizontal shear � ow and the � nger Reynolds stress

As previously mentioned, the mechanism (Section 5) proposed for amplifying internal
waves neglects the Reynolds stress which might be produced by the tilted � ngers. To
justify the neglect we took the output data at t 5 40 in Figure 9 [which contained a � nite
amplitude internal wave as well as relatively weak � ngers], and superimposed a purely
horizontal shear � ow u# ( z) 5 Ussin 2pz/Q whose amplitude Us 5 8.0 (or Ri 5 24) was
comparable to that in the internal wave. The subsequent evolution at 0 , t , 46 as given
in Figure 17 by the dashed curve, yields a � nal heat � ux which is not much different from

Figure 17. The effect of a horizontal shear � ow u# ( z) [see Appendix] on the � nger � ux as a function
of time. Also present at t 5 0 was a � nite amplitude internal wave, but it was removed at t 5 40
and the size of the computational domain was reduced to eliminate collective instability. The t .
40 calculationshows that the � nger � ux was unaffected by u# ( z).
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what we previously got without (i.e., for u# 5 0).
In order to examine the effect of a horizontal shear � ow u# , in the absence of an internal

wave oscillation, we then initiated a new run by removing from the data at t 5 46 (Fig. 16)
the longest vertical and horizontal wavelengths (i.e., the dominant internal wave), and
reduced the size of the computational domain to 8 3 20 F.G.W. The subsequent evolution
(the solid line in Fig. 17), containing only u# and the 2D-� ngers, shows that the purely
horizontal shear � ow (when it is weak enough) has very little effect on Nu. [The physical
reason for this seems clear from the small vertical mixing length (l) in Fig. 2c].
Furthermore, the subsequent evolution of the energy in u# (not shown) is one of decay, in
marked contrast to the previously found temporal increase in the internal waves. From
these calculations we concluded that the � nger Reynolds stress (not shown) is insigni� cant
since its rate of work on u# at t . 150 had a value 10.031 6 0.03 which was smaller than
the work done by u# against molecular viscosity. The plausible inference is that the � nger
Reynolds stress produced by a slightly inclined wave is negligible compared to the
modi� ed buoyancy forces.
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