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On the use of the method of images to investigate nearshore
dynamical processes

by S. A. Thorpe1,2 and L. R. Centurioni1

ABSTRACT
This note describeshow the method of imagesmay be used to determinethe motion and evolutionof two

related kinds of phenomena within a wedge of inviscid � uid. The image � eld of a curved vortex within a
wedge with vortex lines lying along sectors of circles around the apex of the wedge is that segment of a
complete vortex ring which remains outside the wedge and of which the curved vortex forms a part. The
image system can be used to describe the motion, interaction and stability of single or multiple vortices
within the wedge.Axisymmetric jets form the image system for � ow parallel to the edgeof the wedge, akin
to alongshore currents. Knowledge of the instability of jets provides information about the evolution of
waves in the wedge domain.Existing results on the motion and instabilityof single or multiple co-axial ring
vorticesand of waves and instabilitiesin jets may be applied to describethe evolutionof low Froudenumber
eddiesand waves in alongshore� ow over a steadily shelvingsea bed.

1. Introduction

The method of images is a well known and powerful mathematical technique for � nding
solutions of � uid motions, often those associated with vortices, in domains with boundaries
(e.g. Acheson, 1990). The real � ow domain is extended beyond its boundary and a � ow
� eld in the new ‘virtual’ or ‘� ctitious’ region (the image of the � ow in the real domain) is
introduced which, together with the � ow in the real domain, satis� es the conditions (e.g.
zero normal � ow) at the real � ow boundary.

The purpose of this note is to draw attention to the images which can be found of vortices
and � ows with unstable modes of oscillation within the limited domain of a wedge, images
for which many analytical and numerical results are already available. An application is
made to the motion and evolution of � ow in a nearshore coastal zone where water depth
increases with distance from shore. This is known to be a region of alongshore � ows
induced by momentum lost from breaking waves, � ows which are observed to become
unstable (Oltman-Shay et al., 1989; Bowen and Holman, 1989). Analytical progress in
studying processes in the nearshore wedge domain has proven difficult because of the
sloping lower boundary and problems associated with the vanishingly small water depth at
the shore line, although progress aided by numerical methods has been made in the
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description of periodic disturbances known as ‘vorticity waves’ (see Bowen and Holman,
1989; Shrira et al., 1997; Shrira and Voronovich, 1996). Numerical studies (Allen et al.,
1996; Slinn et al., 1998; Özhan-Haller and Kirby, 1999) show that localized eddies or
vortices are generated and are important in dispersing dissolved matter or suspended
sediments. In the representation described below, the water depth increases uniformly with
distance offshore and is independent of alongshore position. The upper surface will be
taken as horizontal, rigid, but free slip, and the water is con� ned to a wedge between the
surface and the sloping bottom, also free slip.

The image systems are useful in discovering how the motion � eld in the wedge evolves,
providing predictions with which more sophisticated models may be compared, and in
gaining prior insight into the stability of � ow and eddy motion within the con� ned region.
The theoretical ideas are described in Section 2 (the dynamics of vortices) and Section 3
(the dynamics of an alongshore current). The applications to the nearshore zone, and their
limitations, are discussed in Section 4.

2. Axisymmetric vortex rings and vortices in a wedge

Images of line vortices lying parallel to plane boundaries are very useful in calculating
the motion of the vortices and aspects of instability (e.g. Rosenhead, 1929, 1930; Robinson
and Saffman, 1982; Thorpe, 1992). Other image systems have been known for a long time;
for example, that of a vortex ring in a � uid bounded by a sphere when the axis of the ring
passes through the center of the sphere (see Lamb, 1932).

Peregrine (1996, 1998) has shown that an image system exists which is useful in
describing the motion of a vortex in a wedge of angle a . The motion of a vortex ring with
no swirl and with axis z in an unbounded inviscid � uid is con� ned entirely to the z and
radial, r, directions; there is no azimuthal, u , component of motion around the z axis, nor,
by symmetry, is there any pressure variation induced by the vortex ring in the u direction.
There is no � ow normal to a plane, u 5 0, say, containing the z-axis; the motion on the
plane is parallel to its surface. A second plane, u 5 a , also containing the z-axis is likewise
parallel to the � ow � eld (Fig. 1a). The � ow in the sector 0 , u , a satis� es the free-slip
and zero normal velocity component boundary conditions on the planes u 5 0 and u 5 a ,
and the equations of motion. It, therefore, represents a possible steady motion � eld within the
sector or wedge of � uid boundedby � xed, plane, free-slip boundariesat u 5 0 and u 5 a .

The � ow � eld outside the wedge (i.e. in a , u , 2 p ) may be regarded as the image of
the curved vortex con� ned within the wedge, shown hatched in Figure 1a. The curved
vortex lines within 0 , u , a intersect its boundaries at right angles. This avoids
difficulties which may occur when a vortex � lament meets a plane surface non-normally.
As the position of contact of the vortex and its image at the surface is approached, the
image of such a vortex � lament in the plane (locally identical to its optical image) induces
increasingly large motions parallel to the plane and steady conditions cannot be sustained
at the location of the � lament. This is a problem which occurs when a vortex with a vertical
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Figure 1. A perspectivesketch showing two planes, u 5 0 and u 5 a , within the � uid domain which meet
on AA8. When u 5 0 is horizontal, it and u 5 a form the wedge. This represents a nearshorezone, with
shore-line,AA8. (a) shows a vortex ring with axisAA8. The segment, BB8, of the vortex ring between the
two planes (hatched) has an image consistingof the remainder of the vortex ring (dashed or dotted); (b)
shows a jet with � ow in direction AA8 and axisymmetric about AA8. The � ow between the planes
representsan alongshoredrift current,U, in the nearshorezone.The distanceof a point from theAA8 axis
is r. The � ow, U, is a functionof r only.Axisymmetricdisturbances(waves or growing instabilities)of the
jet are similar to perturbationsof the alongshore� ow in the nearshorezone.
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axis is introduced within a wedge since, although vortex lines meet the upper horizontal
surface normally, they intersect the sloping boundary at angle (p /2 2 a ).

At � rst sight there appears to be a fundamental difference between the nature of the
image systems of a line vortex parallel to a plane surface and that of the vortex in a wedge.
A single line vortex in an in� nite � uid induces a circular motion around its core which must
be modi� ed to satisfy the condition of no-normal-� ow when the plane boundary is
introduced. A second vortex, the image located at the location of the optical image of the
� rst in the plane, makes the appropriate adjustment to the � ow � eld. In contrast, vortex
lines in the wedge lying along segments of circles intersect both boundaries at right angles.
The vortex elements close to each boundary do not induce any � ow normal to the nearby
surface. Those more remote elements of the vortex in the wedge are however inclined
non-normally to the boundary and do induce a component of normal � ow, and it is this
which has to be balanced by the presence of the image composed of the remaining segment
of the circular vortex outside the wedge region.

As Peregrine (l.c.) has pointed out, there is much information immediately available to
describe the motion of the vortex in the wedge from well-established results found for
vortex rings. These are discussed in many standard texts, e.g. Lamb (1932), Batchelor
(1967) and Saffman (1992). Steady vortices propagate parallel to the edge or apex of the
wedge. For example, when the core of the vortex is of uniform vorticity and has a circular
cross-section of radius, a, vortex strength, k , and its center lies at distance L ¾ a from the
edge or apex of the wedge, the speed of the ring speed parallel to the apex line (i.e. along
the direction,AA8 in Fig. 1a) is approximately

V 5 (k /4 p L)[log (8L/a) 2 1/4]. (1)

Lamb (1932) describes how vortices carry with them a body of irrotational � uid. The
existence of a family of steady vortex rings extending from Hill’s spherical vortex to rings
with very small cross-section is discussed by Norbury (1973). He extends earlier results,
notably those of Fraenkel (1972), describes the shape of the boundary of steady vortex
cores, and estimates the speed of the rings.

The representationof the image system of a single vortex ring can be extended immediately to
multiple vortices in a wedge by observing that they are segments of a corresponding array of
co-axial vortex rings. Calculationsand experimentsmade, for example of the movement through
one-anotherof pairs of vortex rings with vorticity of the same sign, or the increasing radius, L, of
approachingequal strength vorticesof opposite sign (Weidmanand Riley, 1993) can be appliedto
the evolution of the location of vortices within a wedge provided that viscous effects on the
boundariesare negligible(see Section 4). The instabilityof regular arrays of coaxial vortex rings,
and, therefore, of the corresponding vortices in a wedge, can be predicted using the results
developedby Levy and Forsdyke (1927).

Peregrine’s image system can be extended to study the instability of single vortices
within a wedge. It is known that vortex rings become unstable to an azimuthal instability in
which the vortex ring develops stationary growing waves around its perimeter. These are
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well illustrated by Van Dyke (1982; see plates 112–115) and have been studied in
laboratory experiments by Widnall and Sullivan (1973) and Maxworthy (1977). The
instability is sometimes known as Widnall instability (e.g. see Van Dyke, 1982; plate 113),
after the theory and experiments by Widnall and colleagues. Widnall and Tsai (1977)
consider the instability of a ring of radius, R. The core is of uniform vortex strength, k , and
radius, a, and a/R ½ 1. Instability is found in the form of stationary waves having no
self-induced rotational motion around the axis of the ring. Their wavenumber, k, is such
that ka 5 C, where C takes a set of prescribed values, 2.50, 4.35, etc. found by Widnall and
Tsai. The expression for the instability contains terms proportional to exp (in u ). The
number of growing waves, n, around the perimeter of a ring is given by

n 5 CR/a, (2)

and their growth rate is a function of the constant, C. For example, when C 5 2.5, the
growth rate is approximately

q 5 (k /4 p R2)[0.856 ln (8R/a) 2 0.9102]. (3)

The number of growing waves depends, however, on the distribution of vorticity inside the
core of a ring and can vary considerably from the uniform case (Saffman, 1978). Instability
waves with n up to about 28 have been observed in experiments (e.g. see Maxworthy,
1977). If the wedge angle, a , is an integer fraction of p (i.e. when there exists an integer m
such that m 5 p / a ), the position of the wedge boundaries can be chosen to be located at the
crest or trough of the growing wave where there is only motion in the r-z plane, the
remainder of the ‘wavy’ vortex ring now forming the image. The instability ‘� ts’ into the
wedge with azimuthal wavenumber, n, which is an integer multiple of m. The value n 5 m
gives a half wave length perturbation within the wedge, n 5 2m gives a full wave etc., and
each wave form has associated with it a vortex core of particular radius, a, which will be
given by (2) when a is small (as it is in the applications in mind). The growth rates are as
given by (3). This implies that vortices in wedges with core radii much larger than CRa /p
do not contain unstable wave modes. They will be stable to perturbations along their axes.

3. Axisymmetric jets and alongslope � ows in a wedge

There is another class of well-studied dynamical systems in a wedge which have simple
images. An inviscid axisymmetric jet, and stable or unstable waves on the jet, may similarly be
notionallydivided by free-slip surfaces intersecting along its axis of symmetry, so as to represent
the motion within a wedge bounded by free-slip planes, and its image � eld (Fig. 1b).

Jets are known to become unstable through the growth of axisymmetric ripples forming
in the shear layer around the core of the jet. These rapidly develop into circular,
azimuthally-coherent, vortex rings which subsequentlymerge and become turbulent (Crow
and Champagne, 1971; Zaman and Hussain, 1980; see also Van Dyke, 1982, plates 102,
118–120). The stability of inviscid jets of circular section which are spreading very slowly
have been studied by Batchelor and Gill (1962) and Mattingly and Chang (1974). Useful
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results are also given by Morris (1976, quoting inviscid cases) and Michalke and Hermann
(1982, e.g. when their external � ow, U ` is zero.)

Results are available for a variety of velocity pro� les. Batchelor and Gill provide
estimates of the conditions for instability, the growth rate and wavelength of the most
unstable disturbances, for mean axial � ows, U, with the ‘top hat’ form where U is equal to
U0 for r , a and is zero for r . a, where r is the distance from the axis, AA8 in Figure 1b,
U0 is a constant reference speed and a is a constant radius. In addition to proving a
semicircle theorem akin to that in plane shear � ows, Batchelor and Gill also consider the
stability of U 5 U0/[1 1 (r2/a2)], showing that it is only unstable when the disturbances are
non-axisymmetric and proportional to exp (in u ), where u is the azimuth angle, in the
particular case when n 5 1. In this case the inviscid � ow, U, in a wedge appears to be
stable. Mattingly and Chang compute eigenfunctions, phase speeds and growth rates for
n 5 0, 1 and 2 disturbancesof the jet pro� le U 5 U0(r , a) and U 5 U0 exp [2 s (r 2 a)2/b2] for
r $ a, with the constant s 5 0.693, chosen so that U 5 U0/2 when r 5 (a 1 b), a measure
of the half width of the jet including the core of radius a and half the shear zone thickness,
b. The fastest growing n 5 0 axisymmetric disturbances have maximum spatial growth
rates, 0.35(a 1 b) 2 1, 0.255(a 1 b) 2 1 and 0.115(a 1 b) 2 1, wavelengths of 12.6(a 1 b),
8.6(a 1 b) and 5.8(a 1 b), and phase speeds 0.73U0, 0.699U0 and 0.763U0, at (a 1 b)/a 5
1.21, 1.36 and 1.83, respectively. (The n 5 1 and 2 disturbances correspond to what
Mattingly and Chang describe as helical and double helical modes. These are suppressed
by the introduction of the wedge’s rigid boundaries and do not appear to be useful as
images or in the applications, except when a is large, i.e. p /4 when n 5 2; see Section 2.
We are not aware of solutions with large n in jets, similar to those in vortex rings, which
would be useful in providing solutions in a wedge with small a .) The theoretical results
agree well with the observations when the disturbance amplitudes are small. Morris (1976)
provides estimates of the phase speeds and growth rates of the mode with n 5 0 for three jet
speed pro� les:—(i) U 5 U0(1 1 r2/a2) 2 2, (ii) U 5 U0 for 0 # r/a , 1 2 d /2, U 5
U0 5 1 1 tanh [2(1 2 r/a)/e ] 6 for r/a . 1 2 d /2, with d chosen so that tanh ( d / e ) is close to
unity and e 5 4U0

2 2 e U(U0 2 U ) dr, the momentum boundary layer thickness of the jet
shear layer, and (iii) U 5 (U0/2)5 1 2 tanh [(r/a 2 a/r)/ e ] 6 . The velocity gradient at the
center of the shear layer in (iii), where U 5 U0/2 and r 5 a, is U0/ e . Michalke and Hermann
(1982) also give solutions for pro� le (iii), showing, for example, maximum spatial growth
rates of 0.364e 2 1, 0.172e 2 1 and 0.048e 2 1, disturbance wavelengths of 7.3e , 6.3e and 4.8e ,
and phase speeds of 0.65U0, 0.76U0 and 0.91U0, when 4a/ e 5 10, 5 and 2.5, respectively;
the growth rates and phase speeds of the disturbances depend on the velocity pro� le.

4. Application to the nearshore zone

The image results can be applied to predict the development of instability in an alongshore
current over a uniformly shelving sea bed in which the current speed depends only on the
distance, r, from a straight shore line, provided viscous or small-scale turbulent effects can be
neglected. The image system is an axisymmetric jet. Since the instability of jets is known to
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include the formation of axisymmetric vortex rings, it is, therefore, of no surprise that vortices are
signi� cant features in the developmentof disturbances to alongshore � ows.

Whilst results from studiesof jets may provide insight into the instabilityof an alongshore� ow,
several limitationsmust be taken into considerationbefore using the results in a quantitativeway.
Jets become unstable at relatively low Reynolds numbers of order 100 in laboratory studies
reviewed by Morris (1976), althoughthe studiesof Crow and Champagne(1971) and Zaman and
Hussain (1980) show development of ring vortices around the jet at Reynolds numbers of order
104 to 105. Mattingly and Chang’s (1974) experiments are at a diametrical Reynolds number of
300 which appears to be ‘sufficiently large to correspond to the inviscid theory.’ Alongshore
currents with a width of 50 m and maximum speeds of 0.5 m s2 1 at Leadbetter Beach or about
150 m and 1 m s2 1, respectively, in the SUPERDUCK data set, are reported by Dodd et al.
(1992). Oltman-Shay et al. (1989) report growing waves with wavelengthsof 45 m to 300 m and
periodsof 45 s to 1000 s in SUPERDUCK. Alongshorecurrents of 0.5 m s2 1 and a width of order
50 m have Reynolds numbers based on molecular viscosity and width (the appropriate length
scale for the equivalent jets) of about 25 3 106, apparentlysufficiently large for inviscid theory to
apply.

The presence of the turbulent bottom boundary in the nearshore zone and the breaking
waves of the surf zone introduce stresses not represented in the inviscid image system and
imposes a more severe limitation to the use of the image theory. Where the radial
component of viscous stresses are dominant, the � ow evolving in a jet at high Reynolds
number may be similar to that in comparative structures in a nearshore zone in which
transfer of momentum in the direction radial from the shoreline (or approximately
horizontal when a is small) by turbulent eddies is far greater than the vertical. In general,
however, the effect of the momentum transfer and dissipation by turbulent motions leading
to the loss of energy of growing waves, factors considered by Dodd et al. (1992) and Dodd
(1994), will limit the direct application of the simple model described here. A further
limitation is that the jets for which solutions are available as described above all have
maximum speeds on the r 5 0 axis, at the center of the jet. A jet with maximum � ow speed
at some nonzero distance from the shoreline, r, would be more appropriate in representing
the alongshore � ows calculated by Thornton and Guza (1986) and reported by Dodd et al.
(1992). Solution of the stability equation in cylindrical coordinates (see for example
Batchelor and Gill, 1962) for these jet-like � ows is now computationally easy. Dodd
(1994) infers, however, that control of the instability is in fact dominated by shear in the
deeper water, offshore shear layer (where dissipation may be much less important), which
is represented by a jet with a single maximum. Other effects, such as strati� cation, wind
stress, and Coriolis effects are not represented in the image system. (Shrira and Voronovich
(1996) � nd that the Earth’s rotation does not affect the linear dynamics of vorticity waves.)
In spite of these reservations, the analogy with jets does appear to allow qualitative insight
to be gained into the evolution of disturbances to an alongshore � ow.

The growth and phase speed estimates of Mattingly and Chang imply that an alongshore
� ow of 0.5 m s 2 1 between the shore and r 5 30 m and a current which then falls to
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0.25 m s 2 1 over the next 11 m will support fastest growing waves of wavelength 350 m
which propagate in the current direction at about 0.35 m s 2 1 and grow by a factor e in a
distance 160 m. Michalke and Hermann’s calculations with jet pro� les (iii) and with
current U0 5 0.5 m s 2 1 in a 20 m wide shear zone centered 50 m from shore (4a/e 5 10)
have fastest growing waves of wavelength 146 m and phase speed 0.32 m s 2 1 growing by a
factor e in 55 m. A 48 m wide shear zone centered 120 m from shore (4a/e 5 10) with
U0 5 1 m s 2 1 will have fastest growing waves of length 356 m moving at 0.65 m s 2 1 and
growing by a factor e in 131 m. These estimates are independent of the slope of the sea bed
and assume that the shear zone itself is not changing rapidly.

The evolution of ring vortices, the � nite amplitude stage of transition to turbulence
following the growth of unstable waves in the jet, provides a link between the two image
systems described above. Provided their Froude number is small, the results imply that
single eddies in the nearshore zone will propagate parallel to shore, driven by their image
system through a background mean alongshore � ow, at speeds which do not depend on the
bottom slope. Not represented is the effect on the orbits of eddies of variation of the
alongshore current with r, although when their vorticity greatly exceeds that of the mean
� ow, the effect of the latter may be small. Eddies of opposite sign escaping the nearshore
shear � ow or generated, for example by rip-currents (Smith and Largier, 1995), will
continue to move offshore into deeper water. Like-signed eddies may be expected to rotate
around one another. Eddies with core radii much larger than 2R a / p (i.e. with radii much
greater than the water depth) should be stable to perturbations along their axes. Much
smaller eddies appear likely to be unstable to such perturbations.

Viscosity will affect the eddies. Whilst vertical vortices approaching a plane vertical
boundary in a viscous � uid are known to move along orbits qualitatively as described by
the inviscid image system, the effect of viscosity is to generate secondary vortices near the
wall which subsequently cause the primary vortices to move away from the wall (e.g. see
Doligalski et al., 1994). Laboratory experiments on the approach of vertical vortices to a
uniformly shelving beach (to be reported elsewhere by LC) show a general agreement with
the predictions of the wedge image theory when the slope angle is moderate, but
secondaries are also formed as for a vertical boundary. Moreover, the interaction of the
rotating vortex with the sloping rigid bottom and with the free surface promotes a vertical
circulation within the vortex, apparently as a consequence of viscosity.

The results obtained in these ways to the nearshore zone are applicable only when the
vertical displacement of the free water surface induced by the circulation of naturally-
occurring eddies can be disregarded.The radii of a pair of eddies observed in the nearshore
zone by Dr J. A. Smith (Scripps Institution of Oceanography; private communication,
2000) are of order 20 m in water depth of 5 m and their vortex strength, k , is of order
10 m2 s 2 1. The Froude number of the eddies, Fr 5 k 2/gHR2, is about 5 3 10 2 3, very small,
and their Reynolds number, Re 5 k H/ n R, is of order 106. The surface slope, dh/dr, derived
from the u equation of motion in cylindrical co-ordinates assuming uniform pressure on the
water surface and neglecting viscosity, is about k 2/gR3, giving a depression at the center of
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an eddy of about k 2/gR2. This displacementwill usually be very small, typically 0.025 m, if
Smith’s eddies are representative of those in the nearshore zone, so that the rigid upper
surface is likely to be a good approximation.

A further factor limiting application is the extent to which alongshore shear � ows or
eddies may, in reality, be produced with a structure symmetrical about the shore line,
depending on r but not on u . Near-vertical structures seem more likely. For moderate
values of a when the u variation is small and the vortices or vorticity in the mean � ow are
nearly vertical, the theory may, however, provide good approximations to the � ow and
useful predictions. In the extreme case when a 5 90°, the axisymmetric theory fails to have
realistic application. The only realistic steady solution for a vortex which intersects the
upper horizontal boundary of a domain of depth, h, with a vertical (shore) boundary,
appears to be a vertical two-dimensional vortex. The ninety degree circular vortex arcs
suggested by the present theory have sets of circular images in the upper, lower and shore
boundaries which do not offer steady solutions. (A horizontal vortex with multiple images
in the upper and lower boundaries (e.g. Rosenhead, 1929), is a further solution in the
domain, but does not intersect the upper boundary.)
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Özhan-Haller,H. T. and J. T. Kirby. 1999. Non-linear evolution of shear instabilities in the longshore

current and comparison of observationsand computations. J. Geophys. Res., 104, 25,953–25,984.
Peregrine,D. H. 1996. Vorticity and eddies in the surf zone, in Coastal Dynamics 95, W. R. Dally and

R. B. Zeidler, eds., American Soc. of Civil Engineers, NY, 1065 pp.
—— 1998. Surf Zone Currents. Theoret. Comput. Fluid Dynamics 10, 395–309.
Robinson, A. C. and P. G. Saffman. 1982. Three-dimensional stability of vortex arrays. J. Fluid

Mech., 125, 411–427.
Rosenhead, L. 1929. The Karman street of vortices in a channel of � nite breadth. Phil. Trans. R. Soc.

Lond., 228, 411–427.
—— 1930. The spread of vorticity in the wake behind a cylinder. Proc. R. Soc. Lond., A, 127,

590–612.
Saffman, P. G. 1978. The number of waves on unstable vortex rings. J. Fluid Mech., 84, 625–639.
—— 1992. Vortex Dynamics. Cambridge University Press, 311 pp.
Shrira, V. I. and V. V. Voronovich.1996. Nonlinear dynamics of vorticity waves in the coastal ocean.

J. Fluid Mech., 326, 187–203.
Shrira, V. I., V. V. Voronovich and N. G. Kozhelelupova. 1997. Explosive instability of vorticity

waves. J. Phys. Oceanogr., 27, 542–554.
Slinn, D. N., J. S. Allen, P. A. Newberger and R. A. Holman. 1998. Nonlinear shear instabilities of

alongshorecurrents over barred beaches. J. Geophys. Res., 103, 18,357–18,379.
Smith, J. A. and J. L. Largier. 1995. Observationsof near-shorecirculation:Rip currents. J. Geophys.

Res., 100, 10,967–10,975.
Thornton,E. B. and R. T. Guza. 1986. Surf-zone longshorecurrents and random waves: � eld data and

models. J. Phys. Oceanogr., 16, 1165–1178.
Thorpe, S. A. 1992. The break-up of Langmuir circulation and the instability of an array of vortices.

J. Phys. Oceanogr., 22, 350–360.
Van Dyke, M. 1982.An Album of Fluid Motion, The Parabolic Press, Stanford, CA, 176 pp.
Weidman, P. D. and N. Riley. 1993. Vortex ring pairs: numerical simulation and experiment. J. Fluid

Mech., 257, 311–337.
Widnall, S. E., D. B. Bliss and C. Y. Tsai. 1974. The instability of short waves on a vortex ring. J.

Fluid Mech., 66, 36–47.
Widnall, S. E. and J. P. Sullivan. 1973. On the stability of vortex rings. Proc. R. Soc. Lond. A, 332,

335–353.
Widnall, S. E. and Tsai, C. Y. 1977. The instability of a thin vortex ring of constant vorticity. Phil.

Trans. R. Soc. Lond. A, 287, 273–305.
Zaman, K. B. M. Q. and A. K. M. F. Hussain. 1980. Vortex pairing in a circular jet under controlled

excitation.Part 1. General jet response. J. Fluid Mech., 101, 449–491.

Received: 21 February, 2000; revised: 31 July, 2000.

788 Journal of Marine Research [58, 5


