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The equatorial thermostad and subsurface countercurrents
in the light of the dynamics of atmospheric Hadley cells

by Frédéric Marin', Bach Lien Hua' and Sophie Wacongne'*

ABSTRACT

The simple Held and Hou (1980) nearly inviscid model of the axisymmetric atmospheric
circulation, rationalizing the existence of Hadley cells, Jet Streams, and tropical homogenization of
potential temperature and vorticity, is adapted to the oceanic subthermocline region. The meridional
profile of radiative equilibrium temperature, which provides the driving in the atmospheric case, is
replaced, in the oceanic case, by the large-scaleequatorial doming of the thermocline. The meridional
structure of the equatorial thermostad and the existence, at its poleward flanks, of eastward
subsurface countercurrents coincident with sharp potential vorticity gradients are thus explained via
angular momentum redistribution by secondary ageostrophic over-turning cells in the meridional
plane. Taking into account the existence of the equatorial undercurrent within the thermocline has
little effect on the overall structure of the subthermocline solution at a given longitude, even though
homogenizationof propertiesis less efficient.

1. Introduction

One of the main features of the zonally-averaged atmospheric circulation is illustrated in
Figure 1, which displays the potential temperature and zonal velocity fields in boreal winter
from ECMWF data. The large-scale potential temperature field shows a huge equator-pole
temperature difference which is the result of the differential radiative balance, mostly
visible in the 30-100 kPa pressure range. Equatorward of these strong gradients lies a
region of meridionally uniform temperature. Between O and 20 kPa, the sign of the
meridional temperature gradient weakly reverses and the meridionally uniform tempera-
ture region is flanked by two strong eastward jets—the Jet Streams. Held and Hou (1980)
(hereafter HH) first proposed an illuminating quantitative model to explain these features:
as a consequence of the radiative balance, the equilibrium potential temperature presents a
large-scale meridional gradient that creates a geostrophic zonal wind at mid-latitudes; near
the equator, angular momentum conservation is violated by this wind field, and ageostro-
phic meridional cells take place in each hemisphere to redistribute angular momentum in
the tropical region. These cells—the Hadley cells—are characterized by rising motion near
the equator and strong descent in the subtropics. By using a two-dimensional (2D) model in
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Figure 1. Contours of zonally-averaged zonal wind and potential temperature ® for December—
February based on 6 years of ECMWEF data (adapted from James, 1994). Contour interval 5 m s~ !,
values in excess of 20 m s~! shaded and dotted lines corresponding to westerlies. Contour interval
for @ is 5 K. Note that pressure (in kPa) is running upward to facilitate the comparison with the
oceanic case and recall that, unlike temperature, potential temperature increases monotonically as
pressure decreases.

the meridional plane, HH were able to relate the extent of the meridional cells to the
equator-pole equilibrium temperature difference, and to predict both the meridional
homogenization of potential temperature in the tropical region and the amplitude of the Jet
Streams that are created at its poleward edges.

Below 200 m in the Pacific Ocean, the distribution of temperature and zonal velocity as
seen by SURTROPAC sections at 165E (Fig. 2) shows strong similarities with the
atmospheric case: the base of the thermocline appears to shoal from the subtropics to the
equator in the southern hemisphere, except in a narrow equatorial region where tempera-
ture is homogeneous. This equatorial region is known as the 13°C thermostad, and is
flanked at its poleward edges by the eastward flowing SubSurface CounterCurrents
(SSCC) near 3° latitude. The large-scale meridional gradients for potential temperature are
of opposite sign for the atmosphere and the ocean, the latitudinal scales of the circulation
are different (~30° in the atmospheric case, ~3° in the oceanic case) and the presence of
the Equatorial UnderCurrent (EUC) within the oceanic equatorial thermocline complicates
the picture. Nevertheless, the analogy in the observed distributions suggests an analogy in
the dynamics involved. The point of this paper is indeed to explain the characteristics of the
equatorial subthermocline by a mechanism analogous to HH based on an equatorial
redistribution of angular momentum in response to the large-scale shoaling of the
thermocline.
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Figure 2. Mean values of (a) temperature (°C) and (b) zonal current (¢cm s~') from SURTROPAC
(1984-1992) at 165E. Information on the data can be found in Delcroix et al. (1992).

The bowl-shape of the subtropical thermocline and, in particular, the large-scale upward
slope and vertical tightening toward the low latitudes illustrated on Figure 2 has been
documented for a long time. The upward sloping is fairly monotonic in the southern
hemisphere while interrupted near 10N by a sharp ridge associated with the NECC. This is
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discussed for instance by Defant (1936) in his study of the troposphere of the Atlantic
Ocean based on the meridional sections of the Meteor expedition (1925-1927), and is
apparent in the 1972-1973 meridional sections from the GEOSECS program. In the
Pacific, the upward sloping, tropical tightening and associated fanning are particularly well
represented on the widely cited meridional distribution of mean temperature by Wyrtki and
Kilonsky (1984) in the upper 400 m near 155W, based on the 1979-1980 Hawaii-to-Tahiti
Shuttle Experiment data. Another salient feature of the tropical thermocline is its zonal
slope, upward toward the east. The thermocline, therefore, has a three dimensional
structure. Both meridional and zonal slopes are consistent with the large-scale geostrophic
wind-driven circulation, the low latitude portions of the subtropical gyres flowing equator-
ward and westward. The theory of the ventilated thermocline (Luyten et al., 1983),
successful at predicting the shape of the thermocline and the strength of the associated
geostrophic flow at subtropical latitudes, was first extended to the equatorial zone by
Pedlosky (1987) (see also McCreary and Lu (1994) and Liu (1994)). As reviewed by
Pedlosky (1996), the solution for the subtropical thermocline depth presents no singularity
when the limit of zero latitude is taken. However, the geostrophic balance for the zonal
momentum equation fails as the geostrophic meridional velocity becomes infinitely large
as latitude tends toward zero. According to Pedlosky (1996), this happens within an
equatorial boundary layer, whose width dy is set inertially, and within which the EUC
develops. In other words, the theory of the ventilated thermocline, and thus its prediction
for the thermocline depth and the fact that both velocity components are in geostrophic
balance below the mixed layer, would be valid to within a distance dy = x/WB from the
equator, i.e., for U= 1ms 'and B = 2. X 107" m~!s7!, dy = 2° in latitude. However,
the theory of the ventilated thermocline does not so far address subthermocline features
such as the 13°C thermostad and the SSCCs seen on Figure 2.

The SSCCs, also called Tsuchiya jets, are observed in both Atlantic and Pacific
equatorial oceans (Tsuchiya, 1972, 1975; Tsuchiya et al., 1994). They appear as distinct
eastward velocity cores (with maxima detached from the EUC maximum) coincident with
the meridional density gradients at the poleward edges of the equatorial 13°C thermostad.
A complete review can be found in Rowe et al. (2000). Johnson and Moore (1997) have
documented their zonal evolution in the Pacific Ocean: the SSCCs are found from west to
east with relatively constant volume transports, even though they appear to shoal and
depart from the equator when they cross the equatorial basin. Gouriou and Toole (1993)
described them as the location of strong meridional gradients of properties such as
potential vorticity and tracers, suggesting that the SSCCs act as a barrier to the meridional
flow. This view is reinforced by Rowe et al.’s (2000) recent data analysis, which reveals
much sharper zonal velocity profiles and potential vorticity fronts through the use of stream
coordinates. Tsuchiya (1981) used maps of properties on isanosteric surfaces to suggest
that the characteristics of the 13°C water are acquired in the northeast of New Zealand and
in the Tasman Sea by convection and are then advected equatorward. A similar process is
found by Tsuchiya (1986) in the Atlantic Ocean.
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McPhaden (1984) first proposed a theory for the dynamics of the SSCCs. With a linear
and vertically diffusive model, he explained these jets as diffusive extensions of the EUC,
at the poleward edge of a diffusive equatorial vorticity boundary layer broader than the
diffusive momentum one. The induced planetary vorticity advection is balanced by vortex
stretching that weakens the temperature stratification: a thermostad is then formed and the
SSCCs appear as the geostrophic response to this thermostad. However, a diffusive theory
cannot explain a local maximum in zonal velocity at the core of the SSCCs; nonlinearities
must play a part. Comparing idealized linear and nonlinear responses of the equatorial
ocean to zonal winds as obtained numerically by Philander and Pacanowski (1980),
McPhaden noticed indeed that the SSCCs become distinct from the EUC in the nonlinear
run. He invoked the need for poleward flow at the base of the EUC. Assuming an a priori
eastward jet in the western part of the basin, Johnson and Moore (1997) explained the
SSCCs zonal evolution by using an inertial jet model based on conservation of both
Bernoulli function and potential vorticity. They successfully related the poleward shift of
the jets to the eastward shoaling of the tropical thermocline, however without addressing
the mechanism that initially creates the SSCCs.

In this paper, we address the formation mechanism of the SSCCs and the thermostad,
neglecting the dynamics of the zonal evolution, in contrast with Johnson and Moore
(1997), and we focus on nearly inviscid dynamics in contrast with McPhaden (1984). We
will be arguing, by analogy with the atmospheric case, that geostrophic balance for the
zonal momentum equation fails over an equatorial latitude range wider than Pedlosky’s
inertial boundary layer, within which an angular momentum conserving secondary flow
takes place. We will start from a profile of thermocline depth consistent with the ventilated
thermocline theory all the way to the equator (the analog of the profile of radiative
equilibrium temperature in the atmosphere), and let a secondary circulation develop to
redistribute angular momentum (the analog of the Hadley cell). The width of the zone so
homogenized will be of the order of an equatorial radius of deformation; i.e., 3 degrees
latitude (the analog of the 30 degrees latitude of the atmospheric case) and it will be
bounded by eastward jets, the subsurface countercurrents (the analogs of the Jet Streams).
We will restrict our attention to a problem strictly symmetric with respect to the equator.

Section 2 extends the main results that were obtained by HH to the oceanic case. With
the same minimal assumptions as HH, the equatorial recirculation implied by angular
momentum redistribution is assumed to take place in the meridional plane, and a 2D model
presented in Section 3 is used. Section 4 presents numerical results for the oceanic
subthermocline when the contribution of the zonal gradients is neglected, in strict analogy
to the HH model (cases with zero or westward surface flows are considered). In Section 5,
zonal gradients are parameterized in the zonal momentum equation as a forcing term that
creates the EUC at thermoclinelevels, and the interactions between the oceanic equivalents
of the Hadley cells and the EUC are discussed. Section 6 summarizes and discusses the
results of this paper.
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2. Held and Hou theory for the oceanic case

Using a 2D model in the meridional plane, HH describe the Jet Streams and the
meridional homogenization of potential temperature in the tropical atmosphere as the
response, via an angular-momentum conserving circulation, to the large-scale meridional
gradient in potential temperature imposed by radiative equilibrium.

In this section, a similar approach is used for the oceanic case. In the ocean, a large-scale
meridional gradient in density is also observed, due to the large-scale shoaling of the
pycnocline from the subtropics to the equator caused by ventilation. The large-scale
density field p is seen to vary quasi-linearly in y — z in the tropical region (see Fig. 2(a) or
Tsuchiya, 1994), in agreement with the thermocline depth deduced by Luyten et al. (1983)
from their 24-layer ventilated model (to the west of an eventual shadow zone in layer 2)

(D3(x, y) + H2)
h(x, y) = —— — (1)

1
L+—(1 = lyl/y)?
Y2

Here y, is the latitude of subduction for layer 2, ¥, and Y, are the reduced gravities for layer
1 and 2, respectively; H, is the thickness of layer 2 at the eastern boundary at y = y, and
D}(x,y) is proportional to the Ekman pumping integrated from the eastern boundary.
Under the assumption that the windstress is essentially zonal and independent of the
latitude in the tropical region, D} is no longer a function of y and the thermocline depth
then behaves as

Y1 M
Yit Y22

172
(Yl J:vz) X (D(x) + HY)'” X (1 +
when |y| — 0, i.e. linearly in |y|. In particular, as remarked by Pedlosky (1996), the
thermocline depth deduced from the ventilation theory is well behaved when one
approaches the equator.
For the sake of simplicity, P is assumed to be symmetric with respect to the equator and
is chosen of the form

p(y,2) = Fz + aly), )
over a domain extending from the base of the mixed layer (considered as z = 0) to the base
of the thermocline (z = —Hry). The coefficient o is constant and represents the meridional

slope of the thermocline. F is an a priori arbitrary function, which we choose to be linear.
At the equator (y = 0), F is related to the mean thermocline Brunt-Viisila frequency ./
by F(z) = —(py/g)./ "z, where /"2 is taken as a constant and where P, is the mean
reference value for the density; therefore the form of F is given by F(z + aly) =
—(Po-/ g)(z + aly)). Such a formulation yields the required large-scale shoaling of the
thermocline, which is seen in Figure 2(a) and which constitutes our ventilation constraint
(in analogy with the radiative heating constraint of the atmospheric case).
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The geostrophic velocity # implied by (2) can be deduced from the thermal wind
balance:

oil g op o
~ T h s T a3 ./’T//.Z’ (3)
0z Byp, Oy Blyl
yielding
a -
a(y,z) = (y, —Hpy) = — Byl Az + Hay). )

The geostrophic velocity is singular at the equator so that different dynamics must take
place in an equatorial region.

In the atmospheric case, the situation is different. In contrast with the linear dependence
of the thermocline depth with latitude due to the dynamics of the ventilation in the oceanic
case, the large-scale potential temperature ®; in the atmosphere presents a parabolic
dependence in y (O = O — (AB/a?)y? at a given depth, a being the Earth’s radius and
A® the pole-equator temperature difference) as the result of radiative equilibrium. The
vertical gradient for the geostrophic velocity u is then constant and uy = (2gA®/Ba20,)z
presents no singularity at the equator. Therefore, (u = uz, ® = ©y) is a stationary solution
of the motion equations for the atmosphere in the absence of dissipation. However, in
presence of viscosity (no matter how small), it cannot be a steady solution for the
symmetric equations of motion. Indeed, according to Hide (1969), the absolute angular
momentum M = (B/2)a® + a(u — (B/2)y?) (under the B-plane assumption) cannot have a
maximum in the fluid interior in presence of viscous terms. Its extremum value must occur
at the ground, where it coincides with the angular momentum of the solid earth?

pa  pa

> (@ =y)= - ®)
Now u; = (2gAO/Ba?0 )z implies westerlies at the equator, i.e. positive M that, at y = 0,
increases with height, which is forbidden by Hide’s argument.

So, in the ocean as in the atmosphere, the zonal thermal wind solution implied either by
the ventilation constraint or by the radiative equilibrium constraint, cannot be a solution in
the vicinity of the equator. An initial condition based on such constraints is unstable,
causing a secondary circulation to develop. In the atmosphere, a convective meridional cell
indeed takes place to redistribute angular momentum near the equator so that Hide’s
argument is satisfied. In the ocean, we can assume that a redistribution mechanism
similarly based on angular momentum conservation occurs in the meridional plane, and
explore the consequences of our assumption. At the base of the thermocline, far from the
viscous mixed layer, the zonal velocity u,, deduced from angular momentum conservation

3. In the remainder of the paper, we redefine angular momentum as M = (1/a)[M — (B/2)a3] = u — (B/2)y* < 0.
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would be:

B
uy(y,z = —Hpy) = Eyz + Ugg, (6)

where ug, is the zonal velocity at the equator at the base of the mixed layer. Thus u,y
exhibits a characteristic meridional profile which is quadratic, and, averaged over the
vertical, the corresponding density field Py, follows from thermal wind balance

i@: % B M(ZZO)_MM(Z:_HTH):_ By’
Py Oy Y 0z Y Hrpy 2Hqyy’

(M

assuming negligible variation in latitude of the surface current over the region of interest.
Hence,

BPy

—— (®)
8gHry

Pu(y) = Pu,
where Py, = Py(y = 0).

The density that is implied by conservation of angular momentum follows a y* law, a
much flatter profile, near y = 0, than the linear profile for the ventilated thermocline: one
effect of the angular momentum redistribution is to meridionally homogenize the potential
temperature field in the vicinity of the equator.

Following HH,* the meridional extent Y of the equatorial Hadley cell can then be
obtained from two arguments. The first one is an argument of continuity of the heat content,

S,y dz= 2 Bu(Y) dz e,

Hiy — poP?
> OYHry| = Py Hy — —— Y*. €))

8g

pO'/f/ 2
8

If we assume, furthermore, that heat exchange between the local Hadley cells and the
subtropics can be neglected as a first step, the second one is an argument of no net heating

over the domain, fyoﬁ p(y,2)dydz= fyofHTH Pu(y) dydz, ie.

Hry
Po-/ " Hiy P2 Pof3?
—Y—oa——H Y?=py YHy —— Y. 10
< > 2g Pu Aty 409 (10)
Y is thus given by
Sa.) 2H.
Y3 = TTH , (1 1)

4. HH theory is derived more simply for Cartesian coordinates in James (1994, pp. 80-111).
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or, if we note Ap the density jump across the thermocline,

\ 5gaAp
poP?

12)

A typical value for the density jump across the thermocline is Ap ~ 2, and the large-scale
slope of the thermocline is of order 150 m for 10° latitude, so that o ~ 1.5 X 107*. An
estimate of the meridional extent of the oceanic Hadley cells is then ¥ = 2.9°, which is
consistent with the meridional extent of the oceanic thermostad. The value of Y is found to
be close to the first equatorial radius of deformation and is wider than the 2° half-width of a
1 m s~ !inertial undercurrent.

An estimate of the eastward jets at the poleward edges of the meridional overturning cell
is then:

B
uy(Y, —Hrpy) — ugy = E Y, (13)

ie. uy(Y, —Hpy) ~ 100cm s™! for ugp(z =0) = 0, given the values of Ap and a
mentioned above. If the equatorial velocity at the base of the mixed layer is westward
instead, the estimate of uy (Y, —Hry) is less. For instance, ug, = —25cm s™! implies
uy(Y, —Hpy) ~75cms™ 1.

Thus, the application of the HH theory to the oceanic case gives a rationale for the
meridional extent of the oceanic Hadley cells analogs and the latitude of the oceanic Jet
Streams analogs at their poleward edges. Both Y and ugscc are determined exclusively by
the large-scale meridional slope induced by the ventilation and the density jump across the
thermocline. The meridional width Y associated with the angular momentum redistribution
is seen to be close to the equatorial radius of deformation, unlike the meridional width of
the EUC which is inertial. The scaling with the radius of deformation has already been
noticed by Condie and Rhines (1994), for topographic Hadley cells, in laboratory
experiments where the bottom topography provided a convenient way for establishing
radial temperature gradients. In their case as in ours, the Hadley cell width is limited by the
tendency to conserve angular momentum.

The same arguments applied to the atmospheric case lead to the following estimates for
the meridional extent Y1, of the Hadley cell and the amplitude uz of the Jet Streams:

_ [20gHAG)|1~
Yim = 3BT290 , (14)
B 10gHA®
ter =3 Yarm = 3pa0, (15)
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both estimates depending only on the equilibrium equator-pole temperature difference’ A®
and on the height H of the atmosphere conserved by angular momentum redistribution.

With O, = 255K, A® = 40K and H = 15 X 103 m (Lindzen, 1990), the theoretical
meridional extent of the atmospheric Hadley cells is 2800 km and the amplitude of the Jet
Stream is about upr ~ 85 m s,

Thus, the HH symmetric solution predicts a finite meridional extent for the Hadley cells
and yields a jet at about the right place in both ocean and atmosphere. In the ocean, the
estimate of the meridional extent of the Hadley cells analogs yields encouraging results
when compared to the observations, but the amplitude of the oceanic Jet Streams proves to
have too large an amplitude. In the atmosphere, the intensity of the Hadley cells proves to
be weaker than what is observed and the magnitude of the Jet Streams is far too large
(Lindzen, 1990), suggesting that the asymmetry about the equator between the winter and
summer hemispheres (Lindzen and Hou, 1988) and the eddies that are neglected in a 2D
model play a quantitative role for the fully three-dimensional solution.

3. Formulation of the problem

The two main ingredients of HH theory yielding our analytic predictions for Y and u,,(Y)
have been the angular momentum conserving character of the secondary circulation and
the assumption that the Hadley cells are thermally insulated from the subtropics. Only a
fully three-dimensional framework, delayed to a subsequent publication, will allow a
definitive test of these assumptionsin the oceanic case. In this section, we formalize how to
parameterize within a 2D framework the effects of the 3D oceanic circulation, and clarify
where the above assumptions enter the problem.

The large-scale flow associated with the prescribed density field p(x, y, z), denoted by ~,
is assumed to be stationary, in geostrophic balance, hydrostatic and incompressible

1

Pyt = — p—oﬁy, (16a)
p.+pg=0, (16b)

ap, + vpy +Wp. = Z(P), (16¢)
i, + 7, + 1w, = 0. (16d)

The equatorial B-plane approximation is made, and Z, refers to the dissipation operator
(assumed to be linear).

Once P is set, the three components (i, ¥, W) of the velocity and the pressure p are
completely determined by (16). The equation for the zonal momentum enters the problem
only implicitly through the choice of p. In the subtropics, the large-scale observed density

5. Both AO in the atmosphere and 0.Ap in the ocean correspond to a lateral, rather than vertical, temperature
difference of the large-scale flow.
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field is close to the value prescribed by ventilation theory, and both zonal and meridional
momentum equations are in geostrophic balance. However, as one approaches the equator,
there is a latitude where a geostrophic balance for the zonal momentum equation no longer
holds: a secondary flow has to take place in the final flow. We shall denote the secondary
flow by (u',v',w', p’, p") and the total flow by (u, v, w, p, p), e.g. u = i + u’, etc. The
total flow is a solution of the complete primitive equations

1

u, + un, + vuy, + wu, — Byy = — p—px + Z,(u), (17a)
0

1 )

v+ uv, v, + wy, + Byu = — p—py + Z,(v), (17b)
0

p.+pg =0, (17¢)

p, + up, +vp, +wp, = Z(p), (17d)

u,+ v, +w, =0. (17e)

Egs. (17b) and (17¢) can be replaced by an equation for the zonal component of vorticity

L= v,

Z

8 _
G+ uC +vG,+wl + p_ py — Byu, + uw, —uy, = —[AO)].. (18)
0

In this paper, the 2D framework of HH is kept by assuming that the zonal variations of
only the secondary flow can be neglected

wy=vy=wi=p,=p.=0, (19)
while the 3D character of the large-scale flow is retained (in particular p, is not required to
be zero at any depth). Under this assumption, the incompressibility condition reduces to

vi+w, =0, (20)
and a streamfunction /" for displacement in the meridional plane can be defined, such that
L e T S 21

The advection operator associated with the secondary flow is thus d/dr = /0t + J(V', .)
where J is the Jacobian J(a, b) = a,b, — ab.
Subtracting (16¢) to (17d), we obtain the equation for the total density

P+ I, p) = —9p), —Wwp, — u'P, + L), (22)

which is forced by (i) the advection of the secondary density field by the large-scale
meridional flow, which could cause a net heat exchange with the subtropics, and (ii) the
advection of the large-scale density field by the zonal secondary velocity. In this study it is
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assumed that these forcings mainly act to maintain the total density close to the large-scale
density field, and that they can be parameterized by a relaxation term of the form —rpp’, so
that an exact steady solution, in presence of the relaxation term, is p = p, when neglecting
both viscous effects and secondary circulation (v = w’ = 0). Such a choice, which
replaces nonlinear transport terms in (22) by a linear expression, implies that there is no net
heat exchange between the equatorial region and the subtropics, a restriction inherent to
our 2D framework. A Rayleigh relaxation is used throughout Sections 5 and 6a, but other
forms are tested in Section 6b. Because we consider that the large-scale meridional velocity
and the zonal density gradient are due to thermocline ventilation, they vanish beneath the
thermocline. The relaxation term is thus chosen to be zero in the subthermocline. The
subthermocline region of interest is therefore driven from above, in contrast to the
atmospheric case where the forcing acts throughout the entire height of the domain.
The zonal momentum equation for the total flow

1
u, +JW', u) — Byv' = — p—ﬁx + ByV — uii, — vu, — wu, + A (u) (23)
0

is forced by both the geostrophic imbalance between the meridional velocity and the zonal
pressure gradient, and the interactions between the total zonal velocity and the large-scale
circulation. The geostrophic imbalance is supposed to be negligible everywhere except in the
immediate vicinity (both in y and z) of the EUC, where it is exactly balanced by the advection of
zonal velocity by the large-scale flow and by the dissipation of the large-scale flow

1
upuc(puc)x + 7(Uguc)y + Wlugye). — Byv = — p_OﬁX + A (ugyc) (24)
(Pedlosky, 1988).

As in Eq. (22), the forcing terms in (23) are parameterized by a relaxation term
—r,(u — ugyc) which only acts in the thermocline and within a narrow equatorial band,
where ugyc is chosen to correspond to the observations. In the same way as for the density,
the choice of a linear relaxation term implies no net angular momentum exchange between
the equatorial region and the subtropics. Because (¢ = i, ' = 0) is expected to be a
solution of the zonal momentum equation in the subtropics, the relaxation term must be
vanishingly small far from the equator. Similarly, the action of the large-scale flow in the
zonal vorticity equation (18) is parameterized by a relaxation term (—ry\/;,) toward a state
of no secondary circulation, whose effect turns out to be negligible.

The problem that has to be solved within a 2D framework in y and z becomes

u + IV, u) — Byv' = L(u — ugye) — r. — ugye), (252)
8 _
W) IO ) — Byul, + p_ Py = [AWD], — ryWl, (25b)
0

P I, p) = Ap') — rp'. (25¢)
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It is now apparent that, if or where the relaxation term —r, (¥ — ugyc) is zero, Eq. (25a)
does conserve angular momentum (apart from dissipative terms), given our assumption
thatp’. = 0.

The system (25) is solved in a [—LL] X [—HO0] rectangular domain, with the following
boundary conditions at the bottom (z = —H), the surface (z = 0), and the southern
(y = —L) and northern (y = L) boundaries:

aty = L u=i Py = Py, y' =0, w' =), =0, (26a)
atz=-H u=0, p=p V=0 v.=y.=0, (26b)
atz=0 U = USURp p. =0, V' =0, vi= V5, =0. (26¢)

At the poleward boundaries, the zonal velocity is assumed to remain in geostrophic
balance, and the vertical velocity for the secondary flow is set to zero. At the bottom, the
boundary condition is one of no flux for the meridional secondary velocity, and zonal
velocity and density are chosen to remain equal to those prescribed by the large-scale field.
At the surface, because we have no means to set the wind stress as a boundary condition in
a 2D model, we prescribe u arbitrarily, and conditions of no flux for density and meridional
secondary velocity are assumed. Finally ' = 0 at all boundaries because the secondary
circulation is anticipated to be mostly confined to the equatorial thermocline. It must be
noted that the choice of v/ = 0 instead of v/, = 0 at the surface and bottom has also been
tried and produces no significant change. Although x does not appear explicitly, the
solution will depend on x through the specification of ugyc and p.

Steady-solutions of (25-26) are sought in a given meridional plane at x = x,, for H =
700 m and L = 1000 km; they should be representative of the time-mean circulation near
the equator, at that longitude. One possible solution s the thermal-wind velocity implied by
the large-scale latitudinal shoaling of the thermocline, with (v' = w' = 0). Another
solution is such that a secondary meridional circulation takes place (v', w’ # 0) to
accommodate boundary conditions. In that case one obtains a different zonal velocity field.
The problem is run as an initial-value problem starting from rest with p = p(x,, y, z) to
determine which solution actually takes place.

We now choose a p(x, y, z) field that resembles the observations, i.e. a thermocline that
shoals linearly toward the equator while becoming thinner, a feature consistent with PV
conservation. We thus prescribe at 9S and 9N a tanh vertical profile centered at 350 m and
yielding a 150 m-thick thermocline, and at the equator another tanh vertical profile
centered at 200 m and yielding a 50 m-thick thermocline. These profiles are then linearly
connected. The density jump across the thermocline is chosen to be Ap = 2.6, and the
Brunt-Viisili frequency of the deep ocean is taken as 3.1073 s™!. The above values are
inspired by the Pacific observations. The resulting field is presented on Figure 3(a) for a
case without EUC.

The relaxation coefficient r, of the density field toward the large-scale ventilated density
field is presented in Figure 3(b). It is maximum above the thermocline where its value is set
at r, = 107¢ s71, which corresponds to a minimum relaxation time of T, ~12 days, and
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vanishes beneath the thermocline where the ventilation does not act. The choice of 12 days
will be justified a posteriori in Subsection 4(a). The relaxation coefficient 7, must be
vanishingly small in the subtropics, so that it acts exclusively in a narrow equatorial region,
where we set it equal to 7.

Finally the dynamics of the subthermocline is supposed to be only weakly dissipative,
which is made possible by the fine vertical resolution of the model grid (typically 10 m).
9, is chosen of a Laplacian form: the lateral viscosity coefficient is set constant at v, =
10 m? s~ ! throughout the paper, while the vertical viscosity coefficient has an exponential
profile, in order to simulate a surface-intensified frictional layer:

vV, =V, + vy exp (2/zy) 27

withv, =3.107m2s7 1, v,=5.10*m?s ! and z, = 40 m.

Let us emphasize the two main differences between the atmospheric and oceanic cases.
First the ventilation only acts within the thermocline portion of the domain of interest,
while the forcing in density due to radiative balance is throughout the atmosphere. Second,
the angular momentum M is not conserved everywhere because of the x-dependent forcing
term within the equatorial oceanic thermocline in a narrow equatorial band, whereas M is
strictly conserved, apart from dissipative terms, in the atmospheric case studied by HH.

We shall address these two differences by first considering the strictly angular momen-
tum preserving dynamics (Section 4) and then by taking into account the existence of the
EUC (Section 5).

4. Angular momentum preserving dynamics

In this section, the closest analog of the atmospheric case is studied by setting r, = 0 and
ugyc = 0 in (25a). It is well documented in HH theory that the final wind distribution
strongly depends upon the interactions between the Hadley cells and the ground viscous
boundary layer. In our case, the sea surface mixed layer plays an analogous role.

a. Case of zero surface flow

The simplest assumption for the boundary condition at the surface which ensures a
viscous boundary layer is to set usyrr = 0.

Figure 4 illustrates the steady-state solution found in that case. Note the strong
resemblance between Figure 4(a)-(b) and Figure 1. Eastward jets are formed near 3°
latitude in each hemisphere at the base of the thermocline. These jets reach an amplitude
close to 87 cm s~! in the steady-state solution, but they appear very quickly in the
numerical simulations (in less than 30 days), when compared to the equilibration time of
about 2000 days, which results from the low vertical viscosity used in the model. Easterly
winds (dotted lines in Fig. 1) and westward currents (dashed lines in Fig. 4(a)) occur near
y = 0in both the atmosphere and the ocean, in agreement with Hide’s argument. Between
3S and 3N the density is meridionally homogenized to form a thermostad, just like the
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potential temperature field displays little latitudinal variations in the tropical atmosphere.
In the lower thermocline, this homogenization is the product of the overturning cells
developed by the secondary circulation, the oceanic Hadley cells analogs, which are
strongest within the thermocline in the depth range [200-270 m] (Fig. 4(c)). Below the
thermocline, the density is unforced; therefore, in contrast with the atmospheric case, free
transient gravity oscillations, visible in ' at early stages, are excited in the numerical
solutions. This results in a geostrophic adjustment of the deeper layers, with, in the final
state, an homogenized layer between 250 m and 400 m bounded by strong meridional
density gradients in thermal wind balance at its poleward flanks (compare Fig. 4(d) to
4(a)).

Figure 4(c) displays a zoom between 4S and 4N and z = 500 m of both the secondary
circulation V' and contours of the angular momentum M. The sense of rotation of the
overturning cells implies net descent of fluid parcels in the thermocline at the equator.
Along the upper and lower branches of the thermocline overturning cells, isolines of the
two fields are fairly parallel, thus illustrating the angular momentum conserving character
of the dynamics involved. This is corroborated by Figure 5(a) that compares the zonal
velocity at the depth of the SSCCs maxima (z = —270 m) to the zonal velocity deduced
from angular momentum conservation uy, = (B/2)y? (Eq. 6, with ugy = 0). These two
curves display a very close correspondence up to |y| = 3.2°, with a vertical shift that
reflects the existence of a westward flow at the base of the mixed layer, and a sharp
transition to much weaker subtropical velocities beyond |y| = 4°.

The steady nearly inviscid recirculation cells displayed on Fig. 4(c) constitute another
example of the type of 2D closed-streamline flows studied by Batchelor (1956). These
flows are known to homogenize any conservative scalar field that they enclose by expelling
gradients to their periphery, insofar as the majority of the streamlines do not pass through
the viscous boundary layer at the surface, thereby allowing the application of the
Prandt-Batchelor theorem (see also Cessi, 1998). Figure 4(c) illustrates indeed the
weakening of M gradients equatorward of 3° and their concentration at 3S and 3N.

The interaction between the cells and the density field (which is not strictly conserved
because of the relaxation term within the thermocline, see Eq. (25¢)) is illustrated on
Figure 5(b), which displays the depths of a given isopycnal surface for both p and p. The
functions displayed on Figure 5(b) also represent, within a positive multiplicative factor,
the meridional profiles of the large-scale and final thermoclines. Figure 5(b) illustrates that,
for [yl < 2°, relaxation toward the ventilated density field cools the fluid (—rp’ > 0),
which is consistent with the sense of rotation of the overturning cells. This slanted
convective circulation does not imply static instability (/2 = —(g/p,)(0p/0z) remains
positive). Note the y* dependence in the case of p, in contrast with the linear y-dependence
in the case of p.

The argument of no net heating is not valid for a given isopynal (e.g. the areas between
the two curves of Figure 5(b) are not equal); yet this argument still holds when considering
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the depth-averaged density distribution within the forced region (i.e. we have numerically
checked that ffrpp dz dy=ff rop dzdy for vy > 0).

Recall that, by definition, the secondary velocities (v, w") associated with the overturn-
ing cells are distinct from the total fluid parcels velocities. Orders of magnitude are v’ ~
4cms land w' ~ 6 X 107°m s~ !, which, given the dimensions of the cells, leads to an
overturning time scale of about 400 days.

We now turn to the interaction between the cells and the field of Ertel Potential Vorticity
Cg = (8IP) (M, p) = —(8/Po)p.(f—uy) — (8/Py)u-p, (Fig. 6). Note that, because of p, L
is not strictly conserved either. Large-scale (computed with the large-scale thermal wind
velocity, set to zero at the bottom) and final fields of ¢ are displayed on Figure 6(a) and
6(b), and meridional sections at z = —270 m are shown on Figure 6(c) and 6(d). Figure
6(a) shows a large region, in the upper thermocline and equatorward of about 2 degrees in
latitude, where fr < 0, suggesting that inertial instability® plays a quantitative role to
trigger the secondary circulation (Hua et al., 1997). This is corroborated by the rapid
appearance of eastward jets in the numerical simulations: the formation time of 30 days is
indeed much shorter than both the homogenization time scale of 400 days and the diffusive
time scale of 2000 days. The overturning cells recognize (g, by expelling its gradients near
3° and by setting g to zero in the upper part of the thermostad (Fig. 6(b)). This zero value
follows from ¢ definition: Zr = (g/py)i- VM X Vp (i is a unit vector in the zonal
direction). Equatorward of 3°, M is homogenized, so is p (at least below the thermocline),
and thus |VM| ~ 0, |Vp| ~ 0, and & ~ 0. This is consistent with observations of
nearly-zero ¢ in the atmospheric troposphere (Hoskins, 1991) and in the mean equatorial
subthermocline (Gouriou and Toole, 1993, Rowe et al., 2000). At the poleward edges of
this homogenized region, the strong barrier effect of the SSCCs, well documented by the
above papers, is corroborated by strong gradients in < (Fig. 6(c)). The homogeneous pool
for the final % (solid line in Fig. 6(c)) is much wider than the large-scale one (dashed line),
as a consequence of the expulsion of gradients within the meridional cells. The homogeni-
zation and ¢ fronts are due to the combination of the planetary and relative potential
vorticities (Fig. 6(d)). On the equatorward side of the jets, the relative potential vorticity
((g/pPo)J(u, p)) compensates the planetary one (—( g/Py)Pyp,), yielding a flattening of <,
where, within their cores, the two components add up to enhance the jump. In particular,
without the shear term, the < jump would be less pronounced, in agreement with Figure 8
of Rowe et al. (2000). Note however that the reversals of Z; gradients near |y = 4° should
trigger strong shear instability at the poleward edges of the jets. This is not taken into
accountin our strictly 2D model, but would take place in a fully 3D representation of the jet
dynamics. The resulting eddy fluxes of heat and momentum would quickly modify the jet
profile into a more stable form, and a weaker amplitude for the jet maxima would be
obtained. Nevertheless the well-homogenized region should be void of instability even in a
3D representation.

6. An average inertial instability time scale within the overturning cells is about 4-5 days (Coriolis parameter
aty = 1.5°). Our choice of 1, = 12 days thus enables inertial instability to take place within the thermostad.
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b. Case of westward surface flow

So far we have set ugyrr = 0, while observed surface currents are known to be westward
in the vicinity of the equator. We shall study in this subsection the case where ugygr is
prescribed to be representative of the South Equatorial Current velocity,

‘y‘ Vs

ugure(y) = uy|1 — tanh

/ 2. (28)

YEXT

This profile is confined equatorward of |y, = 600 km and its poleward edges have a

characteristic width ygxr = 600km. uy = —25cm s~!

, so that the magnitude of the
equatorial surface current is about —20 cm s~ ! in the mixed layer.

Figure 7 presents the results obtained in that case. The most salient features are the
weakening of the SSCCs amplitudes (65 cm s~ ! versus 87 cm s ™! previously, Fig. 7(a)) and
the modification of the lower part of the thermostad (Fig. 7(b)) to accommodate the strong
deep westward flow at the equator. However SSCCs are still located at the same latitude, they are
still mostly geostrophic (Fig. 7(d)) and the overturning cells are hardly modified (Fig. 7(c)). The
corresponding meridional distributions of zonal velocity, isopycnal depth and Ertel PV support
the same conclusions as in the previous subsection and are not shown here.

The weakening of the jets amplitude remains totally compatible with angular momen-
tum preserving dynamics (Fig. 7(c)) and is such that

Usscc ~ 5 Y2~ ugpr. (29)

The SSCCs amplitude thus proves to be strongly modified by the value of the westward
flow in the mixed layer.

We have tested the scaling law Y3 o< Ap predicted in Section 2 (Eq. 12) for the latitude Y
of the jets, by varying Ap in a series of numerical simulations. The result is shown in
Figure 8: the numerical estimates of Y (stars) follow the analytical prediction, within errors
due to horizontal grid resolution of 20 km, when taking an effective density jump (Ap),
across the thermocline region where r, > 0 (dot-dashed line). The solid line corresponds to
the case where Ap is the total density jump across the thermocline.

5. Interactions with the EUC
a. Rayleigh relaxation in density

In this section, the dynamics associated with the existence of a large-scale zonal pressure
gradient, neglected in the previous section, is parameterized by a Rayleigh relaxation
toward the following EUC profile

2 | (z— ZO)Z‘

272

ugye = Uguc exp| — , (30)

exp

1
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Y=1H(Ap)
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200

Figure 8. Log-log plotof jet position Y versus Ap: ¥ = [(5g0Ap)/(poB2)]'7 (solid), ¥ = [(5g0Apgrs)/
(PoP )1 (long-dashed) for an effective density jump Apggr across the thermocline region where
r, > 0, and results of numerical simulations without EUC (stars) and in the presence of an EUC
(circles). In both simulations ugygr is given by (28). No circles for Ap < 2 implies no eastward jet
(for this choice of ugygrp).

with a maximum velocity equal to Ugyc = 1 m s~ ! and a Gaussian profile centered at z, =
230 m, with latitudinal and vertical scales respectively of y; = 70 km and z; = 30 m. The
value 1 m s™! is a standard value for the EUC velocity in the Pacific, although it is an
overestimate for the western region (Fig. 2(b) would yield Ugyc = 0.40 cm s™!). The
Rayleigh coefficient 7, is chosen with the same profile and a maximum amplitude R, of 3 X
1077 s~!, which ensures that the relaxation term vanishes outside of the EUC region.

It is well known (e.g. Fig. 2) that the presence of an EUC has a geostrophic signature in
density, corresponding to a splitting of the isopycnals within the thermocline at the equator.
The previous run corresponds to an idealized case where ventilation theory applies up to
y = 0, in the limiting case where the shadow zone intersects the equator in the westernmost
part of the basin, implying no EUC and a poleward mass transport occurring entirely in the
western boundary layer. The present section corresponds to the case where the shadow
zone intersects the equator in the mid-basin, and mass balance requires the existence of an
inertial EUC (Pedlosky, 1987), which is in thermal wind balance with the meridional
density gradient. Accordingly the large-scale density field p, shown in Figure 9(a), is now
geostrophically consistent with the prescribed EUC (Eq. 30), and the Rayleigh relaxation
term is adjusted to follow a given isopycnal of the large-scale density field (Fig. 9(b)).

Since Subsection (4.b) yields more realistic SSCCs than (4.a), we continue to specify
ugyrr With (28).
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Figure 10 presents the numerical results in the presence of an EUC. The SSCCs still exist
though with a weaker amplitude (47 cm s~! vs 65 cm s~! in Fig. 10(a)). They are slightly
shifted toward the equator (2.7° vs 3.1°), but remain entities clearly separate from the EUC.
Westward flow beneath the thermocline is very strongly reduced compared to Figure 7(a),
which explains the flattening of the lower part of the thermostad near the equator (compare
Fig. 7(b) and Fig. 10(b)). The thermocline overturning cells still exist as well, but they have
a weaker amplitude and no longer reach the equator (Fig. 10(c)). Note that R, stronger than
3 X 1077 s7! generates additional upwelling cells above the EUC, with a meridional extent
similar to the EUC’s (not shown). Again the lower part of the thermostad and of the jets
results from geostrophic adjustment (Fig. 10(b,d)).

Figure 10(c) reveals that the upper branch of the thermocline overturning cells still tend
to conserve angular momentum, but less efficiently when compared to Figure 7(c). The
lower portion of the cells, by contrast, strongly interacts with the EUC, losing their
conservative character. For |y| < 2°, the zonal velocity profile at z = —270 m is no longer
quadratic in y (Fig. 11(a)), because of the EUC, while it remains quadratic for 2 < |y| < 3°,
Note however that the relative extent of these two regions would be affected by our choice
for r,.

The presence of the EUC flattens the large-scale density field p, so that the available heat
content which is redistributed is much less than in the previous cases (compare Fig. 11(b)
to Fig. 5(b)). The overturning cells and thus the heat redistribution that they cause now
occur only between 1° and 3° on either side of the equator, and the changes of slope
between initial and final states are less pronounced. Finally < is shown in Figure 12.
General comments made in previous subsections still apply, even though the £z homogeni-
zation proves to be less efficient, with weaker meridional barriers in the range 250-300 m
(compare Fig. 6(b) and Fig. 12(b)). In addition, the presence of the EUC translates into a
horizontal barrier at the base of the thermocline (Fig. 12(a)—(b)), as in Gouriou and Toole
(1993). That barrier still has a signature at 270 m between 1S and IN (Fig. 12(c)). Besides,
the large-scale  field, computed with a geostrophic velocity that is set to zero at the
bottom, is not as inertially unstable as in the case without EUC, suggesting that inertial
instability plays a lesser role here. Note that Emanuel (1995) has shown that inertial
instability strongly depends on the reference level for the geostrophic velocity, so that we
cannot conclude whether inertial instability still triggers off the secondary circulationin the
presence of a relaxation term toward the EUC in the x-momentum equation.

The dependence of the meridional extent ¥ for Hadley cells has been tested in the
presence of an EUC (circles in Fig. 8), and the (Ap)'3-dependence still seems to hold, even
though a shift in ordinate is observed. We can rationalize this shift by reapplying the
analytical theory of Section 2 to a case where the shoaling of P flattens in the region of the

EUC. Calling ygyc the EUC’s half-width, we obtain, in contrast with Eq. 12:
2
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which explains the (Ap)'"3*-dependence of Y and the vertical shift in Figure 8 for Y large
enough compared to ygyc.

b. Dependence on the density forcing

So far the density forcing is a Rayleigh relaxation, which has no spatial scale selection,
and is restricted to the thermocline in order to parametrize the ventilated large-scale
circulation.

In order to assess the influence of the vertical structure of the relaxation coefficient,
Figure 13(a) and 13(b) present the solution found, in the presence of an EUC, for the
extreme case of r, constant throughout the whole domain. In this case, the SSCCs become
z-independent below the thermocline, geostrophic adjustment cannot take place (since
density is forced everywhere), and thus the deep isopycnals remain flat. Limiting the
vertical extent of the relaxation region, therefore, proves crucial to simulating SSCCs with
a finite vertical extent as well as a realistic deep thermostad.

Another way to force preferentially within the thermocline is to adopt, instead of
—7r,(2)(P — P), a Laplacian scale-selective forcing k,(0%/0z%)(p — p). The resulting fields
are shown for K, = 1073 m? s™! in Figure 13(c)—(d) and present the same structure as in the
Rayleighrelaxation case presented in Subsection 5a, namely the existence of SSCCs at the
same latitude, although with a lesser amplitude, and the existence of a similar thermostad
(see Fig. 10(a)—(b)).

From these two sets of solutions, we infer that the mechanism for the formation of
SSCCs is largely independent of the details of the prescribed density forcing. The essential
driving is actually the large-scale sloping of the thermocline; this has been confirmed by
numerical solutions, not shown, where a flat large-scale thermocline produces no eastward
jets distinct from the EUC. By contrast, the vertical structure of the SSCCs and the deep
thermostad are sensitive to the choice of density forcing: forcing must become weak at
subthermocline levels to obtain realistic results.

6. Discussion

With the same minimal assumptions as HH, we have rationalized the existence of the
SSCCs and the meridional homogenization of temperature in the equatorial subthermo-
cline observed in both the Atlantic and Pacific oceans. The forcing is the shoaling of the
thermocline from the subtropics toward the equator due to large-scale ventilation, the
analog of the meridional gradient of radiative balance temperature in the atmosphere. The
mechanism is the redistribution and homogenization of angular momentum by secondary
ageostrophic meridional cells located in the lower thermocline, the analogs of the Hadley
cells. These cells also accomplish temperature homogenization, contributing to the overall
structure of the equatorial thermostad. The SSCCs, at the poleward edges of that
thermostad, appear as the oceanic counterparts of the Jet Streams.

Homogenization of angular momentum and of density results in nearly zero Ertel



[58,3

Journal of Marine Research

434

DENSITY

ZONAL VELOCITY

Latitude

-2

Latitude

-6

8

-4

FROM .1 TO 3.2 BY .1 (X 1)

7

'
v
i
'
1]

FROM —3 TO 9 BY .5 (X .1)

-5004~ -

-600f- - -

-708

DENSITY

ZONAL VELOCITY

Latitude

Latitude

_’4

-6

_.2

(o e -

PSS

i

-300

FROM .1 TO 3.2 BY .1 (X 1)

FROM —.4 TO .95 BY .05 (X 1)

Figure 13. Zonal velocity (a) and density field (b) for a constant r, throughout the whole domain.

Zonal velocity (c) and density field (d) for a Laplacian density forcing. Unit for velocity is m s™!

and density is givenby p — py + Ap.



2000] Marin et al: Dynamics of the equatorial subthermocline 435

potential vorticity in the lower thermocline and within the thermostad. Inertial instability
may play a role in the rapid trigering of the equatorial secondary circulation. The
homogenization of properties subsequently takes place within the closed streamlines of the
meridional circulation, on a much longer time scale. Meridional gradients at the poleward
edges of the lower (unforced) part of the thermostad are enhanced by geostrophic
adjustment of the density field, a distinct feature of the oceanic case when contrasted to the
atmospheric one, where no free geostrophic modes can be excited, the radiative forcing
extending to the whole domain. As noted by Rowe et al. (2000), observations suggest the
existence of strong diapycnal processes. Our ageostrophic cells provide a plausible
mechanism for such diapycnal mixing.

We have seen that angular momentum is conserved, although more weakly, along the
upper branch of the ageostrophic overturning cells even in the presence of an EUC, which
implies that the amplitude of the SSCCs depends on the strength of the westward flow in
the surface layer. This nearly inviscid nonlinear mechanism is fundamentally different
from McPhaden’s (1984) diffusive theory. In the presence of an EUC, the overall structure
of the solutions remains the same, although homogenizationis weaker, yielding eastward
jets still distinct from the EUC, but of lesser amplitude, and meridional cells of lesser
width.

An important implication of this paper is that the geostrophic balance for the zonal
momentum, one building block of the ventilation theory, fails at a distance of about 3°
latitude from the equator, i.e. a distance wider than the inertial half-width of the EUC. This
distance corresponds to the meridional extent of the thermocline overturning cells and
closely depends on the equatorial radius of deformation. Equatorward of 3° latitude, one
must superimpose to geostrophic dynamics an ageostrophic circulation that tends to
conserve angular momentum, in analogy with the atmospheric case.

Another important implication of this paper is that the SSCCs are not the consequence
of, but the cause for, importing water masses from high latitudes. The dynamics described
above are local, in that the large-scale thermocline slope, thermocline thickness and
equatorial radius of deformation at a given longitude determine the latitude and depth of
the eastward jets at that longitude. The latitude and depth at which water must be extracted
from the western boundary to satisfy zonal continuity is therefore determined by down-
stream rather than upstream factors.

The first obvious limitation of our approach is the essentially 2D framework which has
been chosen for the secondary circulation. Previous studies of the axi-symmetric atmo-
spheric circulation have shown that such a formulation yields about the right geometry for
the Hadley cells, but Jet Streams with too large an amplitude. As remarked in Section 4a,
the jet profiles found in our 2D simulations are obviously prone to shear instability on their
poleward flanks and would reach a weaker amplitude in a fully 3D model. Since the
dependence on longitude of our 2D formulation is purely parametric, another issue we
cannot address is the zonal evolution of the SSCCs (y, z)-structure caused by the eastward
shoaling of the thermocline, as studied by Johnson and Moore (1997). In a 3D case, the
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implied zonal stretching would contribute to the determination of the latitude and depth of
the SSCCs, as do the local parameters mentioned above.

Another limitation of our approach is that we are looking for steady state solutions
which are supposed to be representative of the time-mean equatorial circulation, while the
observed flows are not steady (see Rowe et al. (2000)). Finally, our model is completely
symmetric about the equator, while the seasonal asymmetry of the Hadley cells about the
equator plays a quantitative role in the atmospheric case. The effects of meridional
asymmetry and of zonal dependence are under study and will be addressed subsequently.
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