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Emergence of modons from collapsing vortex
structures on the b -plane

by Z. Kizner1 and D. Berson1

ABSTRACT
The evolution of unstable barotropic vortices is studied numerically. Exact solutions to the

equation of potential vorticity conservation under the ‘‘rigid lid’’ condition, as well as nonsteady-
state con� gurations,are set as initial states in the evolutionaryexperiments.The examined ‘‘shielded
modon’’ structures usually collapse within one to several synoptic periods and radiate vortex pairs
propagating westward and eastward. The latter are shown to be modons of Larichev and Reznik. The
westward dipoles are identi� ed as ‘‘nonlocal modons,’’ that is, vortical cores of stationary nonlinear
Rossby waves. In the case of standing Stern modons, some small initial perturbations induce slow
westward drift and subsequent collapse of the vortex structure due to the Rossby wave radiation,
others lead to their transformation into Larichev and Reznik’s modons. This conclusion is supported
by the results of a numerical integration of the linear stability problem.

1. Introduction

Dipole mesoscale vortices made their appearance in modern geophysical hydrodynam-
ics some time before they were actually observed in the ocean or atmosphere (Stern, 1975;
Larichev and Reznik, 1976). The accession of high-resolution remote sensing imaging
devices has made it possible to discover mesoscale vortical pairs in different parts of the
World Ocean (Thomson, 1984; Ikeda et al., 1984; Ikeda and Emery, 1985; Kennelly et al.,
1985; Ahlnas et al., 1987; Johannessen et al., 1989; Hooker et al., 1995a,b). Stern (1975)
suggested the term ‘‘modon’’ to designate a dipole current system described by an exact
solution of the equation of conservation of potential vorticity in a barotropic ocean with a
plane bottom (i.e., where motions are horizontal) on the b -plane. This solution was
constructed by dividing the (x, y)-plane into two parts, a circular area containing two
antisymmetric vortices and a motionless exterior, and by matching the internal and the
external solutions. Characteristic properties of Stern’s modon are zero translation speed
and discontinuity of the acceleration and the vorticity of the � uid particles at the matching
contour. Larichev and Reznik (1976) subsequently extended this concept to the case of
continuousacceleration and vorticity to achieve solutions characterized by greater smooth-
ness and nonzero translation speed. For brevity, solutions marked by continuous and
discontinuous vorticity will be henceforth called high-smooth and low-smooth, respec-
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tively. Under the ‘‘rigid lid’’ condition,which is appropriate for mesoscale movements, the
modon of Larichev and Reznik propagates toward the east. A number of subsequent
analytical researches (Flierl et al., 1980; Berestov, 1979, 1981; Kizner, 1984, 1988, 1997)
treating of barotropic, two-layer, or three-dimensional modons were inspired by the
pioneering works of Stern (1975) and Larichev and Reznik (1976). Numerically, it was
shown that modon-like westward-going dipoles may result from the interaction of isolated
barotropic vortices (McWilliams, 1983), while a vortex with an initially purely baroclinic
mode structure, in a two-mode model, may behave as an eastward propagating modon
(McWilliams and Flierl, 1979). Similarly, Mied and Lindemann (1982), in the framework
of a two-layer numerical model, demonstrated that a heton-type pair of vortices, while
evolving, creates a dipolar barotropic mode that determines the eastward propagation of
the entire vortical structure.

Apart from the dipolar modons, more complicated multipolar structures (in terms of
both streamfunction and potential vorticity) with poles located on a straight line parallel to
the y-axis can be constructed based on the Stern and Larichev and Reznik solutions. Using
numerical techniques, the propagating barotropic modons of Larichev and Reznik have
been shown to be quite resistant (McWilliams et al., 1981; see also Makino et al., 1981;
Larichev and Reznik, 1982, 1983; McWilliams and Zabusky, 1982). However the robust-
ness of standing Stern modons as well as that of multipolar Stern or Larichev and Reznik
solutions, to the best of our knowledge, has not yet been examined in such a way.

In the present paper, the stability properties of Stern’s modons and the four-polar
solutions of Stern and Larichev-Reznik, which following Orlandi et al. (1994) can be
called ‘‘shielded modons,’’ are studied by means of a high-resolution numerical model.
Initial value problems were run with these exact solutions set as initial states. The shielded
Stern and Larichev and Reznik modons were found to be unstable. Larichev and Reznik’s
shielded modon collapses within a few synoptic periods (i.e., about a month). Stern’s
shielded modon persists longer, but ultimately also collapses.A remarkable outcome of the
experiments with these solutions is the � nding that vortical pairs traveling nearly steadily
west and east are emitted at a certain stage of evolution. This has something in common
with the numerical results of Orlandi et al. (1994) and Hesthaven et al. (1995). They
studied two-dimensional shielded dipoles in a uniformly rotating � uid, that is, within the
f-plane approximation, which may be appropriate for small-scale vortices. Orlandi et al.
proved instability of Lamb’s (1932) shielded modon, while Hesthaven et al. demonstrated
the transformation of the core part of a shielded dipole categorized by a cubic relationship
between the potential vorticity and the streamfunction into a nonshielded dipole. However,
b -effect plays a signi� cant role in the dynamics of synoptic eddies in the ocean (Kamenk-
ovich et al., 1986), which we are addressing in the present work.

Reliable identi� cation of the emitted quasi-stable structures in terms of exact solutions is
made difficult by their relatively small sizes. Nonetheless, we attach much importance to
this result, which was typical for most of our experiments with different kinds of unstable
vortex structures. This is why much of the present study is focused on the evolution of
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compact vortex structures that, in the course of this evolution, radiate eastward and
westward propagating dipoles large enough to be reliably identi� ed. In terms of the
streamfunction, the initial states in the corresponding runs are made up of dipoles
positioned in a motionless � uid, but due to the high smoothness of the streamfunction, they
are of a four-polar character when considered from the viewpoint of potential vorticity. It
should be observed that, in our numerical simulations, not only the internal vortices
transformed into unshielded dipoles, but also their break-away ‘‘shields’’ usually joined
together to form a dipolar structure. The emerged eastward eddy pair is shown to be
Larichev and Reznik’s modon, while the westward dipole is identi� ed as the core of a
quasi-stationary nonlinear Rossby wave characterized by a linear relationship between the
potential vorticity and the streamfunction (taken in the traveling frame) in the inner area,
which is in fact the so-called ‘‘nonlocal modon’’ (Boyd, 1994). The westward modon also
shows some degree of similarity to the strongly nonlinear modon studied by Flierl and
Haines (1994), but represents a high-smoothness exact solution, possesses a more compli-
cated external structure and allows greater freedom in the choice of parameters.

Immediate interpretation of the evolutionary experiments with Stern’s modon is some-
what complicated due to the numerical effects, which decrease as the resolution of the
model increases. Based on a comparative analysis of the results obtained at different
resolutions, we arrived at the conclusion that such structures are unstable, their evolution
being dependent on the type of perturbations imposed on the initial state. Some small initial
perturbations induce slow westward drift and subsequent collapse of the vortex structure
due to Rossby wave radiation, while others cause Stern’s modon to transform into a
Larichev and Reznik’s modon that travels eastward. Results of a numerical integration of
the linearized equation governing the evolution of an initial perturbation imposed upon the
Stern modon support the conclusion regarding its instability (or feeble stability).

Our experiments suggest that, along with the conventional Rossby wave radiation, the
emergence of long-lived eastward and westward propagating modons is a typical outcome
of the evolution of unstable barotropic vortex structures on the b -plane. Thus the results
presented below add to our understanding of the abundance of paired vortices in the ocean.

2. Equations and initial conditions

We will base our consideration on the well-known law of conservation of potential
vorticity. When a barotropic ocean on the b -plane with a plane bottom is considered and
the ‘‘rigid lid’’ condition is assumed at the upper surface, the potential vorticity is given by

z 5 = 2 c 1 b y, (1)

while the conservation equation is

 z

 t
1

 c

 x

 z

 y
2

 c

 y

 z

 x
5 0 (2)
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or



 t
= 2c 1 b

 c

 x
1

 ( c , = 2c )

 (x, y)
5 0. (3)

Here x and y are the eastward and northward coordinates, c is the streamfunction b 5
const. is the northward gradient of the Coriolis frequency, = 2 and  /  (x, y) are Laplacian
and Jacobian operators in x, y.

To set an initial value problem, it is necessary to specify the initial and boundary
conditions.The initial states under consideration are discussed below in this section, while
the boundary conditions applied in the numerical model are described in Section 3. The
exact steady-state solutions of Eq. (3) suggested by Stern (1975) and Larichev and Reznik
(1976) constitute an important class of initial conditions. The vortices speci� ed by these
solutions may stand (Stern), or they may propagate eastward (Larichev and Reznik) at a
constant translation speed s without changing structure. In the moving reference frame, j 5
x 2 st, y, associated with such a steady vortex, Eq. (3) is replaced with



 ( j , y)
[ c 1 sy, = 2 c 1 b y] 5 0, (4)

where the differentiation is carried out with respect to j instead of x. The meaning of Eq. (4)
is that, in the moving reference frame, the potential vorticity, z , is conserved along the
streamlines, i.e., is an arbitrary function of the full streamfunction, C 5 c 1 sy.

Using the polar coordinates r, a de� ned by j 5 r cos a , y 5 r sin a , Stern’s solution of
Eq. (4) and that of Larichev and Reznik can be represented by a uni� ed formula:

c 5 5 3 AJ1( pr) 2 1 b

p2
1 s 2 r 4 sin a , r , r0,

BK1(qr) sin a , r . r0,

(5)

where J1 and K1 are the � rst-order Bessel and Macdonald functions, respectively, p, q and
r0 are constants, A 5 b r0 /[p2J1( pr0)]. Zero values of the parameters s and B correspond to
the standing solution of Stern, while the relationships s 5 b /q2 . 0 and B 5 2 b r0 /
[q2K1(qr0)] determine the eastward propagating solution of Larichev and Reznik. In
Stern’s solution both the streamfunction and the velocity � elds are continuous but the
vorticity is discontinuousat the separatrix contour r 5 r0 (at which C 5 0), whereas in that
of Larichev and Reznik the vorticity � eld is continuous (high smoothness). Correspond-
ingly, in Stern’s solution the matching conditions require that J2( pr0) 5 0, while in
Larichev and Reznik’s solution they give the so-called dispersion relationship for Rossby
solitons that relates the parameters k 5 pr0 and l 5 qr0:

2 k
J1( k )

J2( k )
5 l

K1( l )

K2( l )
, (6)

where J2 and K2 are the second-order Bessel and Macdonald functions, respectively.
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Conventionally, in the case s 5 0, the � rst zero of the equation J2( pr0) 5 0 is chosen,
pr0 5 j2,1 < 5.136, to yield the classical dipolar standing modon (Stern, 1975). Similarly, a
moving dipolar modon is obtained if k in Eq. (6) ranges within the � rst zeros of the
functions J1 and J2, that is, if 3.832 < j1,1 , k , j2,1 < 5.136 (Larichev and Reznik, 1976).
However, the solution (5) describes multi-polar structures as well. If, say, one puts s 5 0
and pr0 5 j2,2 < 8.417, or s . 0 and 7.016 < j1,2 , k , j2,2 < 8.417, then a shielded modon,
that is, a structure comprising four vortices, respectively standing or moving, will be
obtained.

In the numerical experiments described below, we examine the evolution of such
shielded modons, as well as that of a dipolar Stern modon, and show that the shielded
modons are unstable. An interesting manifestation of this instability is the emission of
vortex dipoles that travel both eastward and westward (Section 4). The relatively small size
of these dipoles, however, makes it difficult to identify them in terms of exact solutions of
Eq. (3) or (4). In order to ascertain to what degree such dipole generation is typical, and to
facilitate the identi� cation of emerging vortical pairs, we consider the evolution of vortex
con� gurations that do not represent an exact steady-state solution but merely serve as
initial conditions for the model runs. These initial states are given by the function

c * t5 0 5 5 a[ J1(br) 1 cr3 1 dr] sin a , r , r0,

0, r . r0,
(7)

where the parameters b, c and d are � tted so as to assure the continuity of the
streamfunction, velocity, and vorticity � elds. The amplitude factor a remains arbitrary and
can be taken to be both positive and negative. This implies that Eq. (7) can be utilized to
describe not only shielded dipole structures akin to the shielded modons given by Eq. (5),
but structures made up of inverse vortices as well. Note that the vorticity � eld given by (7)
can be four-polar even if the streamfunction has only two poles.

Effects speci� c to numerical models require especially careful execution and scrutiny of
the experiments for the case of standing solutions or small translation speeds. That is why
we will begin by demonstrating the instability of the shielded modons of Larichev and
Reznik in Subsection 4a below, then go on to study the evolution of structures given by
Eq. (7) (Subsection 4b), and only after that the stability properties and evolution of Stern’s
modons will be discussed in Subsection 4c.

3. Numerical model

The numerical model was developed based on the principle of conservation of potential
vorticity. A number of initial value problems were integrated with the con� gurations (5)
and (7) set as initial states. We used nondimensional versions of Eqs. (1), (2), (5), (7) with
the scales L and T 5 1/ b L for the space and time variables, and c * 5 b L3 and z * 5 b L for
the streamfunction and vorticity, respectively. In the most of the experiments, a square
15L 3 15L grid with the mesh size d 5 0.1L was considered. In the course of the
computations the time step t was controlled by the gradients of c and z and did not exceed

2000] 379Kizner & Berson: Emergence of modons



2.5 · 10 2 3T. The boundary conditions assumed were periodicity in the x-direction and c 5
0 at the northern and southern boundaries.

Brie� y, the computational algorithm is as follows. At any moment t . 0 the vorticity is
computed from a � nite analog of Eq. (2) with the use of a combination of direct and
Matsuno schemes and theArakawa approximation for the Jacobian operator (Mezinger and
Arakawa, 1976), which affords conservation of the integral vorticity, the streamfunction
being taken from the previous moment, t 2 t . Subsequently, c is determined as a solution
of the Poisson problem (1), using a decomposition into eigenfunctions in the x-direction
and a sweep method in the y-direction (Samarsky, 1989).

The Larichev and Reznik modons moving east with the translation speeds 0.3 to 1.2L/T
were used to test our model. No visible changes in their structures were registered within a
period of 300T. Subsequently, experiments were run with the initial states described above.
Conservation of total energy and enstrophy was found to hold within 0.1 to 0.3% in all our
experiments.

As we are dealing with nondimensional variables, henceforth the scales T, L, L/T, L 2 1

etc. will be omitted unless essential for clarity. Even though in our nondimensional model
b 5 1, the symbol b will be retained in all relevant relations in order to set off the role of
the b -effect.

4. Results and discussion

Below we present the results of numerical experiments relating to the evolution of the
vortex structures generated at t 5 0 by Eqs. (5) and (7).

a. Instability of the Larichev and Reznik shielded modon

In contrast with the conventional Larichev and Reznik modons, the shielded modons
given by Eqs. (5) and (6) exhibited strong instability in our computer simulations,
collapsing within a few synoptic periods. The evolution of a Larichev and Reznik shielded
modon determined by the parameters r0 5 1.5 and s 5 0.8 (that is, k 5 4.754, k 5 7.131) is
shown in Figure 1. In terms of z -contours, the instability manifests itself in a gradual
breaking away of the outer vortices from the central core in the eastward direction, each
such vortex splitting into two distinct parts. The eastern parts join, creating a dipole that
travels east. In parallel, the core vortices elongate in the x-direction, and, gradually, the
greatest vorticity becomes concentrated in their western parts, which by t 5 7 form a
distinct vortex pair moving west. [Note, that formally, due to potential vorticity conserva-
tion, which forbids the breaking and closing of z -contours (see, e.g., Larichev, 1983a,b),
the separated vortices must be connected by some � laments. However, these � laments may
thin down so that they cannot be resolved by the numerical model.] The subsequent
propagation of each of the two vortical pairs is quite steady, but due to the relatively small
size of these dipoles, they cannot be reliably identi� ed in terms of exact solutions of
Eq. (3).
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Figure 1. Collapse of the Larichev and Reznik shielded modon given by solution (5), (6) at r0 5 1.5
and s 5 0.8 in terms of streamfunction(on the left—a, c, e) and potentialvorticity (on the right—b,
d, f): formation of the eastward and westward modons.
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b. Modon emission from nonstationary shielded dipole structures

i. Overview. When experimenting with the structures given by Eq. (7), two cases, a 5
2 2.5 and a 5 2.5, were considered, in the both experiments the values r0 5 1.5, b 5 4.253,
c 5 0.282 and d 5 0.759 being used. The corresponding results are presented in Figs. 2–9
and are discussed below; the initial states are shown in Figures 2a,b and 5a,b.According to
our computations, these structures collapse within the synoptic period T (Figs. 2, 5, 6a,b).
The two experiments at a , 0 and a . 0, below referred to as the � rst and the second,
respectively, share the common property that the decaying structures radiate vortical pairs
traveling both east and west. These radiated dipoles exhibit relative stationarity (Figs. 3, 6,
7a, 8a, 9a) and high smoothness (Figs. 7d, e, 8d, e, 9d, e) and are strong enough to survive
in interactions that occur due to the periodicity assumed in our model (Figs. 4).

ii. Quasi-stationarity.As noted above, when a form-preserving structure propagates in the
x-direction with constant speed U, its potential vorticity z functionally depends on the
streamfunction C 5 c 1 Uy in the moving reference frame j 5 x 2 Ut, y. According to
(4), if this structure is compact, that is if c ® 0 and = 2 c ® 0 at r ® ` , then at sufficiently
large r that dependence must be a simple proportionality, z 5 6 l2 C , implying that = 2c 5
6 l2 c , where l2 5 6 b /U 5 const. This immediately supplies a number of criteria for testing
the stationarity of the generated vortical pairs. First, if such a dipole is already formed and
propagates steadily (or evolves slowly with a characteristic time of change considerably
exceeding T ), then its apparent translation speed U must stabilize. Second, away from the
dipole core, the proportionality between the relative vorticity and the streamfunction,
= 2c < 6 l2c , must be good. Finally, the translation speed, Ũ 5 b / 6 l2, estimated using the
above factor of proportionality 6 l2, must conform with the estimate U obtained by analysis
of the displacements of the vortices (Figs. 7a, 8a and 9a).

Based on these criteria and according to our estimates, the outer parts of the generated
dipole structures can be regarded as quasi-stationary or evolving very slowly (Figs. 7a,b;
8a,b and 9a,b). In the � rst experiment (at a , 0), the visible speed of propagation of the
right-hand (eastward) dipole stabilizes at t < 3 and remains nearly constant (U < 1.89)
until t < 7 (Fig. 7a), at which time the interaction between the eastward and westward
dipoles starts (Fig. 4a,b); so any t within the interval 3 , t , 7 can be chosen for testing.
For example, at t 5 3 the correlation between = 2c and c (Fig. 7b) is good, the coefficient of
correlation R being extremely high (R < 0.9998), and the two estimates of the translation
speed are in close agreement (Ũ < 1.93 versus U < 1.89). The left-hand (westward) dipole
in this experiment is weaker and less stable; the corresponding estimates are: U < 2 0.83
(average over the period from t 5 4.4 to t 5 7), Ũ < 2 0.69 (at t 5 6), R < 2 0.9996
(Fig. 8b). In the second experiment (where a . 0), the generated westward dipole shapes at
t < 2.75 and remains nearly stable until t < 6. The estimates of its translation speed are
U < 2 2.20 and Ũ < 2 2.33 (at t 5 2.5), the coefficient of correlation being R 5 2 0.9997.
The second of the dipoles generated in this experiment shifts to the east very slowly and, in
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Figure 2. Initial stage of evolution of the structuregiven by Eq. (7) at a 5 2 2.5 and r0 5 1.5 in terms
of streamfunction (on the left—a, c, e) and potential vorticity (on the right—b, d, f): formation of
the eastward and westward modons.
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Figure 3. Quasi-steadypropagationof the eastward and westward modons resulting from collapse of
the structure determined by (7) at a 5 2 2.5 and r0 5 1.5 (Fig. 2a, b): streamfunction (a, c) and
potential vorticity (b, d).
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Figure 4. Late stage of evolution of the structure given by (7) at a 5 2 2.5 and r0 5 1.5 in terms of
streamfunction (on the left—a, c, e) and potential vorticity (on the right—b, d, f): collision of the
westward and eastward dipoles.

2000] 385Kizner & Berson: Emergence of modons



terms of z , is not organized well enough to be analyzed and identi� ed in such a manner
(Fig. 6). That is why the corresponding estimates are not presented.

In the both experiments under consideration the proportionality established between
= 2c and c holds outside the dipole core right up to the contour of zero C , which indicates

Figure 5. Initial stage of evolution of the structuregiven by Eq. (7) at a 5 2.5 and r0 5 1.5 in terms of
streamfunction(on the left—a, c, e) and potential vorticity (on the right—b, d, f): formation of the
eastward and westward dipoles.
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Figure 6. Development and quasi-steadypropagationof the westward dipole resulting from collapse
of the structure determined by (7) at a 5 2.5 and r0 5 1.5 (Fig. 5a, b): streamfunction (a, c) and
potential vorticity (b, d).
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the boundary of the core and is roughly circular. Our estimates of l2 and Ũ correspond to
the annular areas 1.05r1 , r , 2r1, where r1 5 const. designates the radius of the contour
C 5 0. Note that for the westward vortex pairs the coefficient l2 bears a minus sign, while
in the case of the eastward dipole the correlation is positive.

Clearly, the above criteria are insufficient: in order to judge whether the radiated dipoles

Figure 7. Identi� cation of the eastward modon resulting from collapseof the structuregiven by (7) at
a 5 2 2.5 and r0 5 1.5 (Fig. 2a, b): the x-coordinateof max z vs. time (a); correlationbetween = 2c
and c (b): scatter diagram of z vs. C (c); computed solution (dashed line) and � tted exact solution
(5), (6) (solid line) in terms of streamfunction(d) and potential vorticity (e).
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can be regarded as stationary or not, we have to test how closely z 5 = 2 c 1 b y and C 5
c 1 Uy are related in the interior, i.e., within the contour C 5 0. The scatter-diagrams of z
vs. C shown in Figures 7c, 8c and 9c indicate quite a good correlation between potential
vorticity and streamfunction (taken in the moving reference frame) in both the exterior and
interior regions, the coefficients of correlation for the interior being 2 0.9919, 2 0.9884 and

Figure 8. Identi� cation of the westward modon resulting from collapse of the structure given by (7)
at a 5 2 2.5 and r0 5 1.5 (Fig. 2a, b): the x-coordinate of min z vs. time (a); correlation between
= 2c and c (b); scatter diagram of z vs. C (c); computed solution (dashed line) and � tted exact
solution (8) (solid line) in terms of streamfunction(d) and potential vorticity (e).
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2 0.9833, respectively. This means that, within the contour C 5 0, the proportionality z 5
2 k2C is valid to a high level of approximation. For the eastward vortex pair k < 4.78. For
the westward dipole k < 5.19 in the � rst experiment and k < 5.77 in the second. The
quasi-steady eastward- and westward-propagating dipoles generated in the two experi-
ments are shown in Figures 3 and 6.

Figure 9. Identi� cation of the westward modon resulting from collapse of the structure given by (7)
at a 5 2.5 and r0 5 1.5 (Fig. 5a,b): the x-coordinateof min z vs. time (a); correlationbetween = 2 c
and c (b); scatter diagram of z vs. C (c); computed solution (dashed line) and � tted exact solution
(8) (solid line) in terms of streamfunction(d) and potential vorticity (e).

390 Journal of Marine Research [58, 3



iii. Identi� cation of dipoles. If we neglect the small changes in U, z and C that take place
at the stages of quasi-steady propagation of the radiated dipoles, then the following
question arises: what high-smoothness exact solutions of Eq. (4) can describe the structure
and dynamics of these vortex pairs that have essentially continuous � elds of streamfunc-
tion, velocity and vorticity?

Based on our analysis, in the case of the eastward dipole (the � rst experiment) we have
the equation:

= 2 c 1 b y 5 5 2 k2(c 1 Uy), r , r1,

l2( c 1 Uy), r . r1,

which yields the familiar Larichev and Reznik modon given by Eqs. (5) and (6), where p, q

and r0 are replaced with k, l and r1, respectively, A and B are functions of k, l and r1; l 5 lr1

and 3.832 < j1,1 , k 5 kr1 , j2,1 < 5.136.An exact solution of this type can be � tted to the
eastward dipole.

The correspondence between actual c and z at t 5 3, on the one hand, and the � tted exact
solution (5), (6) on the other, is evident from Figure 7d,e. The � tting was carried out for the
meridional cross section passing through the points of maximum and minimum of c and z
by minimization of the integral (over the interval 2 2r1 , y , 2r1) squared deviation, ISD,
of the theoretical c from the actual one. In the minimization procedure, ISD was regarded
as a function of r1 and U, while parameter k was determined from relationship (6), where
l 5 r1l 5 r1Î b /U. The found ‘‘best � t’’ estimates of r1, U and k, (r1 5 0.83, U 5 1.80 and
k 5 4.67) are quite close to the observed radius of the zero C contour (r1 5 0.82) and the
above estimates of U and k, attesting to that our eastward dipole does indeed belong to the
category of Rossby solitions described by Larichev and Reznik (1976).

The nature of the westward vortex pairs can be established in a similar manner. For these
structures we have the following equation:

= 2 c 1 b y 5 5 2 k2(c 1 Uy), r , r1,

2 l2( c 1 Uy), r . r1.

Its general solution, which is limited at r 5 0 and has continuous streamfunction, velocity
and vorticity, can be expressed in terms of the � rst-order Bessel and Neumann functions J1

and N1:

c 5 5 3 AJ1(kr) 2 1 bk2
1 U 2 r 4 sin a , r , r1,

[BJ1(lr) 1 CN1(lr)] sin a , r . r1.

(8)
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The coefficients A, B and C determined by the conditionsof matching c ,  c / r and  2 c /  r2

at r 5 r1 are functions of r1, l and k:

A 5
b r1

k2J1(kr1)
,

B 5
A

D
[lJ2(kr1)N1(lr1) 2 kJ1(kr1)N2(lr1)],

C 5
A

D
[kJ2(lr1)J1(kr1) 2 lJ1(lr1)J2(kr1)],

where

D 5
l2

k
[J2(lr1)N1(lr1) 2 J1(lr1)N2(lr1)]

and J2 and N2 are the second-order Bessel and Neumann functions. It is signi� cant that no
‘‘dispersion relationship’’ is imposed upon the parameters r1, l and k of the solution (8), and
hence they can be taken arbitrarily subject only to the conditions that they be positive and
J1(kr1) Þ 0.

Taking l corresponding to the apparent translation speed (l 5 r1Î 2 b /U) and minimizing
ISD as a function of both r1 and k we � tted a solution from (8) to the observed westward
dipoles at t 5 6 (note that l, r1, and k in (8) are independent). In the � rst experiment, where
U 5 2 0.83, the ‘‘best � t’’ parameter estimates are: r1 < 0.62 and k < 6.10; in the second
experiment (U 5 2 2.20), the ‘‘best � t’’ r1 and k estimates are 0.66 and 5.77. These
estimates correspond well to the observed r1 < 0.62 and the regression estimate k < 6.15,
in the � rst experiment, and r1 < 0.65 and k < 5.77, in the second experiment.The results of
� tting exact solutions of the type (8) to the computed c and z are shown in Figures 8d,e and
9d,e.

The solution given by (8) oscillates and drops off slowly at in� nity:

c , 2 Î 2

p lr 3 B cos 1 lr 2
p

4 2 1 C sin 1 lr 2
p

4 2 4 sin a at r ® ` ,

which means that our westward modons are in fact relatively strong vortical cores of
nonlinear Rossby waves characterized by a speci� c nonperiodic, antisymmetric structure.
Boyd (1994), who adapted the spherical solutions of Tribbia (1984) and Verkley (1984) to
the b -plane, and Flierl and Haines (1994) independently obtained similar ‘‘nonlocal’’
modon solutions with oscillatory ‘‘far � elds.’’Boyd introduced a dispersion relationshipby
maximizing the ratio between the amplitudes of the core and the ‘‘far � eld.’’ Flierl and
Haines considered a strongly nonlinear ‘‘nonlocal’’ modon (though with no BJ1 component
in the ‘‘far � eld’’). The solution they studied was actually low-smooth, as, due to the
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asymptotic approach applied, they used the dispersion relationship of Lamb (1932), J1(kr1) 5 0,
for a dipoleon the f-plane.

Two remarks need to be made in the conclusion of this subsection. The validity of the
above identi� cations is limited both in time, due to the slow evolution of the vortices, and
space, as the � tting applies only to the area r , 2r1 (see Figs. 7a–e, 8a–e, and 9a–e). For
example, solution (8) should be treated as an approximation to the westward-going dipole
and its neighborhood rather than to the overall current � eld (notice that formally, the
Rossby wave � eld present in solution (8) has in� nite energy). Moreover, while the
proportionalitybetween z and C outside the vortex core (i.e., on open isolines of C ) can be
strictly proven for truly steady, isolated free vortices on the b -plane (Larichev and Reznik,
1976; see also Flierl et al., 1980), the dependencebetween z and C in the region of trapped
isolines may be taken arbitrarily. However, for the circular dipole solutions on the b -plane
known to date, this dependence is either linear (conventionalmodons) or weakly nonlinear
(asymptotic solutions of Nycander, 1988). In the latter case the dipole is slightly elliptical.
Free elliptical dipoles on the f-plane were considered by Boyd and Ma (1990) (see also
Hesthaven et al., 1995; Nogan et al., 1996). They showed numerically that in order to
provide elliptical modons the relationship between = 2C and c in the interior must be
nonlinear, but this relationship is linear for circular modons. This seems to be true for the
b -plane as well: as the above analysis showed, in each of the dipoles that emerged in our
experiments, the separatrix, i.e., the contour of demarcation between the internal and
external areas (the zero C contour), was nearly circular (the eccentricity being under 0.02)
and the internal z vs. C dependence was approximately linear. This is also in agreement
with the results of Haupt et al. (1993) who dealt with numerical equilibrium circular
modon solutions in weak symmetric shear � ow on the b -plane: for all types of shear
studied they found that the diagnosed functional relationship between the streamfunction
in the traveling reference frame and the vorticity appeared linear.

As can be seen from Eq. (3) (or (1) and (2)), antisymmetry with respect to the x-axis is
inherent in c and z � elds at any time if the initial condition possesses such a property. In
this connection, evolutionary experiments are of signi� cance, in which small perturbations
break the antisymmetry of the vortex con� gurations (7). We ran a series of such
experiments, the perturbations being introduced into the initial condition by tilting the axis
of antisymmetry. As previously, the main result was that at early stages, vortical dipoles
with nonzero components of westward and eastward drift emerged within a few synoptic
periods. Their subsequent evolution was mainly dependent on the initial tilt angle u (which
ranked from 0.1° to 5° in our runs) and the x-component U of the initial translation speed of
the emerged dipole. In most of the runs we had no way of following the long-term
evolution of these emerged vortex pairs due to their interaction, which was caused by the
postulated periodicity in the x-direction. However, the eastward-traveling dipoles dis-
played behavior characteristic of Larichev and Reznik, modons: their oscillated trajectories
tending to stabilize (Makino et al., 1981; Hesthaven et al., 1993). The evolution of the
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westward-going dipoles was also qualitatively similar to that of westward-propagating
Larichev and Reznik modons in the equivalent-barotropic model (Hesthaven et al., 1993;
Nycander, 1992). In a few simulations that we ran with a 30L 3 15L grid pulled out in the
x-direction, the westward-going dipoles demonstrated oscillatory, unstable behavior gener-
ally similar to that of initially westward-propagating Larichev and Reznik modons in the
equivalent-barotropicmodel (Hesthaven et al., 1993; Nycander, 1992). They either turned
up into eastward Larichev and Reznik modons or exhibited a tendency to disintegrate after
a number of oscillations. For example, at u 5 5° the duration of reliably determined
westward drift was about 9T for U < 2 0.5 versus 13T for U 5 2 0.3. At u 5 1° the
corresponding times were 15T and 17T, respectively. Finally, at u 5 0.1° the westward drift
times were around 20–25T both. Thus, the possibility for both eastward and reasonably
long-standing westward drift of the emerged vortex pairs can be judged from these
experiments.

c. Evolution of Stern’s modons

A number of experiments with Stern’s modon (solution (5) at s 5 0) were carried out at
different grid steps d , the matching radius being taken as r0 5 2.35. For example, in the
experiment at d 5 0.1 (Fig. 10), until approximately 15T no signi� cant changes in c and z
� elds can be observed (Fig. 10a–d), while within the next 15T the vortical pair undergoes a
certain deformation and shifts slightly to the west (Fig. 10c–f). At the subsequent stage of
evolution the two vortices separate and keep away from each other, their intensities (in
terms of the streamfunction) decreasing. In fact, at this stage, a classical scenario was
observed: the westward moving eddies that initially constitute a coherent structure lose
their energy due to Rossby wave radiation (Larichev, 1983a,b; Flierl, 1987; Nycander,
1994) and gradually drift apart, approaching their ‘‘rest latitudes’’ (Larichev, 1983a,b).
Similar results were obtained at other values of the grid step. To summarize them brie� y,
the smaller the grid step, the slower the observed westward drift of the modon. In other
words, this westward drift must be attributed to numerical effects. At the same time, these
results suggest instability (or feeble stability) of Stern’s modon in the sense that some small
but uninterruptedly acting perturbations inducing slow westward drift of the modon may
lead to its collapse.

However, the question remains as to whether some evolutionary scenario other than that
described above would emerge if the numerical inaccuracies could be minimized. One
possible way of overcoming these numerical effects is to run an evolutionary experiment
starting from a slightly perturbed initial state. We performed a series of experiments in
which the perturbations given by Eq. (7) at a , 0 were added to Stern’s modon at t 5 0, the
perturbation amplitudes increasing gradually from run to run. While very small perturba-
tions did not change the modon evolution signi� cantly, perturbations of a certain strength
induced the modon’s eastward propagation. Let e be the ratio between the perturbation and
the exact initial state amplitudes. The threshold value of this ratio, e T, that distinguishes
between the subsequent eastward and westward drift of the modon depends on the mesh
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Figure 10. Evolution of the Stern modon (solution (5) at r0 5 2.35 and s 5 0) at d 5 0.1 resulting
from the small perturbations introduced by the numerical scheme: streamfunction (on the left—a,
c, e) and potential vorticity (on the right—b, d, f).
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size d and, based on our data, tends to zero at d ® 0 (Fig. 11). This result lends support to
the above conclusion on the instability of Stern’s modon. For example, at d 5 0.1 and e 5
0.025 (Figs. 12, 13) the modon rearranges its outer structure due to smoothing z -� eld
(which effect was quite weak in the experiment described above). This can be seen in
Figs. 12b,d,f and 13e (cf. Fig. 10b,d,f). The vortex pair does not shift signi� cantly by t 5
25 (Fig. 12c,d) but constantly accelerates in the eastward direction, picking up a signi� cant
eastward speed (U 5 0.092) which remains nearly constant between t 5 30 and t 5 50, the
end of the experiment (Fig. 13a).According to our identi� cation criteria (see Subsection 4b
and Fig. 13b–e), Stern’s modon completes its evolution into a Larichev and Reznik modon
(r1 5 1.92, U 5 0.092) by t 5 30, and thereafter it propagates almost steadily. The
identi� cation of this modon presented in Figure 13 corresponds to t 5 40, the differences in
the estimates obtained by different methods (analysis of the modon drift, scatter diagrams,
best � tting) being negligible.

The introductionof a small perturbation in the form (7) at a . 0 into Stern’s modon leads
to westward drift of the vortex structure and its subsequent collapse. This development is
similar to, but faster than, that shown in Figure 10.

The experiments presented in this subsection concern instabilityof Stern’s modon to perturba-
tions of � nite, even if small, amplitudes. Let us now go over to the examination of its linear
stability. For thispurposewe will represent the streamfunction c in the form c 5 c S 1 w where c S

is the basic solution of Stern and w is its perturbation.Correspondingly, the potential vorticity z is
represented as z 5 z S 1 v , where z S is the potentialvorticity of Stern’s modon and

v 5 = 2w (9)

Figure 11. Threshold relative amplitude, e T, of the initial perturbationgiven by (7) at a , 0, vs. mesh
size, d , that distinguishes between the subsequent eastward and westward drift of Stern’s modon:
points—experimental data, bars—possible errors in determining e T.
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Figure 12. Transformation of the Stern modon (solution (5) at r0 5 2.35 and s 5 0) into a Larichev
and Reznik modon resulting from the addition of a small perturbation in the form (7) to the initial
state (d 5 0.1, e 5 0.025): streamfunction (on the left—a, c, e) and potential vorticity (on the
right—b, d, f ).
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Linearization of Eq. (3) then implies:



 t
v 1

 ( c S, v )

 (x, y)
1

 ( w , z S)

 (x, y)
5 0. (10)

Figure 13. Identi� cation of the dipole that developedinto a Larichev and Reznik modon (Fig. 12c–f)
in the course of the evolution of the perturbed Stern modon (solution (5) at r0 5 2.35 and s 5 0) at
t 5 40: the x-coordinate of max z vs. time (a); correlation between = 2c and c (b); scatter diagram
of z vs. C (c); computed solution (dashed line) and � tted exact solution (5), (6) (solid line) in terms
of streamfunction(d) and potential vorticity (e).
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Eqs. (9), (10) were solved numerically using the method similar to that described in
Section 3. The initial perturbation was again given by (7) with w replaced for c . The
boundary conditions assumed were the same as for c : periodicity in the x-direction and
w 5 0 at the northern and southern boundaries. Whereas the ‘‘mixed’’ (or linear with
respect to the perturbation) components of the total kinetic energy and enstrophy,

KMX 5 e
2 X

X
dx e

2 Y

Y 1  c S

 x

 w

 x
1

 c S

 y

 w

 y 2 dy, EMX 5 e
2 X

X
dx e

2 Y

Y
z S v dy,

can be shown to be conserved (thus serving to control the computational process), the
kinetic energy, Kp, and enstrophy, Ep, of the perturbation itself,

KP 5
1

2
e

2 X

X
dx e

2 Y

Y 3 1  w

 x 2
2

1 1  w

 y 2
2

4 dy, EP 5 e
2 X

X
dx e

2 Y

Y
v 2 dy,

exhibit an exponential increase in time, which is typical for linear instability (Fig. 14). It is
pertinent to note that no signi� cant growth of EP and KP was observed within 300T in a test
experiment with a notoriously stable zonal � ow. Although numerical simulation cannot be
regarded as strict evidence (especially in such a delicate � eld as the linear stability
analysis), this result supports the above conclusion regarding the instability (or feeble
stability) of Stern’s modon.

Our experiments with the Stern shielded modons (Eq. (5) at s 5 0, r0 5 3.5 and
pr0 5 j2,2 < 8.417) proved the instabilityof these structures (Fig. 15), their evolution being
generally similar to (though slower than) that of the Larichev and Reznik shielded modon
(cf. Fig. 1).

5. Conclusion

We have cited only a few out of a great number of experiments performed with the
vortex structures given by Eq. (5) and (7). In most of our simulations, collapse of unstable
structures resulted in emission of vortex pairs traveling both east and west and exhibiting

Figure 14. Exponentialgrowth of the kinetic energy (a) and enstrophy(b) of the perturbation(KP and
EP are normalized to their initial values).
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Figure 15. Collapse of the Stern shieldedmodon determined by Eq. (5) at r0 5 3.5 and s 5 0 in terms
of streamfunction(on the left—a, c, e) and potential vorticity (on the right—b, d, f).
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high survival. These paired vortices can be identi� ed as Larichev and Reznik modons or
modons of the type described by Eq. (8), respectively. Our results suggest that the
emergence of long-lived modons from collapsing vortex structures might be an important
factor determining the abundance of paired vortices in the ocean. They also suggest that
along with the Rossby solitions propagating toward the east, the westward nonlocal
modons (i.e., cores of nonlinear Rossby waves) may play a large role in forming the
mesoscale pattern of the ocean currents. In all likelihood, some of the paired vortices
observed in different parts of the ocean and described in the literature (see Introduction)
can be associated with such westward modons.

Our experiments indicate that the Stern modon is unstable (or feebly stable) in the sense
that some small perturbations cause its slow westward drift and subsequent decay, while
others may lead to its slow transformation into an eastward-propagating Larichev and
Reznik modon. This inference is supported by the results of a numerical integration of the
linear stability problem.
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