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Improving marine ecosystem models:
Use of data assimilation and mesocosm experiments

by J. J. Vallino1

ABSTRACT
Our inability to accurately model marine food webs severely limits the prognostic capabilities of

current generation marine biogeochemistry models. To address this problem we examine the use of
data assimilation and mesocosm experiments to facilitate the development of food web models. The
components of the data assimilation demonstrated include the constructionof measurement models,
the adjoint technique to obtain gradient information on the objective function, the use of parameter
constraints, incorporation of discrete measurements and assessing parameter observability.We also
examine the effectiveness of classic and contemporary optimization routines used in data
assimilation.

A standard compartment-type food web model is employed with an emphasis on organic matter
production and consumption. Mesocosm experiments designed to examine the interaction of
inorganic nitrogen with organic matter provide the data used to constrain the model.Although we are
able to obtain reasonable � ts between the mesocosm data and food web model, the model lacks the
robustness to be applicableacross trophic gradients, such as those occurring in coastal environments.
The robustness problem is due to inherent structural problems that render the model extremely
sensitive to parameter values. Furthermore, parameters governing actual ecosystems are not
constants, but rather vary as a function of environmental conditions and species abundance, which
increases the sensitivity problem. We conclude by brie� y discussing possible improvements in food
web models and the need for rigorous comparisons between models and data (a modeling
workbench) so that performance of competing models can be assessed. Such a workbench should
facilitate systematic improvements in prognosticmarine food web models.

1. Introduction

Aquatic food web modeling has primarily focused on conceptual models where the
objective is to capture, qualitatively, the behavior of aquatic ecosystems. For example,
models have been designed to examine the development of phytoplankton blooms
associated with the shoaling of the mixed layer (Evans and Parslow, 1985; Sverdrup,
1953), the importance of the microbial loop (Taylor and Joint, 1990), the chaotic behavior
of food webs (Beckers and Nihoul, 1995), and the ‘‘paradox of the phytoplankton’’
(Hutchinson, 1961; Stone, 1990). Although conceptual models have proved to be valuable
for elucidating principles governing aquatic ecosystems, we must consider them qualita-

1. Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, 02543, U.S.A., email:
jvallino@mbl.edu

Journal of Marine Research, 58, 117–164, 2000

117



tive because they are often only compared to limited experimental data sets, observations,
or to no data at all. These models often lack the breadth to fully capture ecosystem
biogeochemistry. Consequently, there has been relatively little improvement in the quanti-
tative, predictive capabilities of aquatic food web models, even though these models have
been under development for at least 50 years (Totterdell, 1993). With improvements in
transport and ocean circulation models and the growing interests to assess impacts of
global change, there is an increasing need to develop quantitativeecosystem models where
the focus is not on concepts but rather on prognostic capabilities, efficiency and accuracy
(Sarmiento et al., 1993).

The difficulties in quantitative modeling of aquatic foods are well appreciated (Evans
and Fasham, 1993a; Platt et al., 1981), and can be categorized by three main challenges: (1)
understanding and modeling of 4D complex multidisciplinary dynamics; (2) 4D data
acquisition; and (3) rigorous model-data comparisons and data assimilation. Although
complete ecosystem models must meet all three challenges, it is possible to decouple the
modeling effort into independent components in order to facilitate overall model develop-
ment. As will be demonstrated, mesocosm experiments (i.e., enclosed, experimental,
aquatic ecosystems, see Grice et al. (1982)) can facilitate this decoupling.

Marine ecosystems are complex systems that are governed by nonlinear growth
behavior of the constituent organisms, by highly dynamic predator-prey interactions
between organisms, and by hydrodynamic and other external drivers that can exhibit
complex patterns themselves. Hence, developing models that can accurately predict the
concentrations of organisms and the rates of the biogeochemical transformations they
mediate over large scales in open systems is a nontrivial task (Challenge 1). However,
transport processes can be removed and decoupled from the biogeochemical processes by
the use of mesocosm experiments because these systems can be designed to be well mixed.
By reducing the system dimensions from 4D (i.e., space and time) to 1D (time only),
greater effort can be placed on improving the ecosystem model, and this reduction also
lowers computational overhead.

The large effort required to obtain comprehensive data sets is unavoidable in biological
oceanography (Challenge 2). This challenge is even greater in systems with complex
circulation because it is difficult to close elemental balances without either detailed � ux
measurements across system boundaries or a well-calibrated transport model. Indeed, often
both are necessary. Although there is no substitute for � eld observations, again mesocosm
experiments can greatly facilitate problem solution, as these systems can be intensely
sampled, and only boundary � uxes across the air-water interface need be measured or
accounted for. Mesocosms also allow manipulation of experimental conditions to investi-
gate system dynamics in various regions of state space. Interestingly, while mesocosms
have been used to experimentally study ecosystem processes and impact of pollutants
(Grice and Reeve, 1982), only a few cases exist where they have been utilized for model
development (Baretta-Bekker et al., 1998). In this manuscript, we will rely on mesocosm
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experiments as the source for observations. Hence, we will investigate only 1D data
assimilation.

Even when observations are available, it is difficult to employ them for model
improvement. As a result, aquatic food web models go largely untested and uncalibrated.
Challenge 3, which addresses this difficulty, can be broken into two subareas: (a)
integration of data and models (data assimilation) to improve model state estimates, model
parameter estimates, or both; (b) adaptive improvements of observation strategies (which
data to sample, which sensors and platforms to use, and when and where to sample) based
on data and on integrated data/model simulation.

A general de� nition of data assimilation is the integration of models with data to
improve the estimation of a system’s state. The emphasis of data assimilation can be either
data centric, or model centric (McLaughlin, 1995). In the � elds of oceanography and
meteorology, the former is often the case, while the latter is often called parameter
estimation. In oceanography and meteorology, data are often abundant and the models are
accurate as they are derived from � rst principles (conservation of mass, energy and
momentum). However, because of sensitivity to initial conditions (i.e., chaos) as well as
inaccurate model parameterizations, these models require frequent updates to prevent
model divergence from the true state. In this case, data which are more or less randomly
distributed in time and space, are interpolated to a model grid, and compared to a model
forecast. By appropriate weighting of these two state assessments, an improved estimate of
the true state can be generated and used as an initial condition for the next model forecast
(Bergamasco et al., 1993; Daley, 1991; Evensen, 1994; Tziperman and Thacker, 1989;
Wiggins, 1972). The Kalman � lter is a classic example of model-data integration in this
manner (Burger et al., 1998), but other methods exist, including adjoint method, inverse
analysis, and optimal interpolation (Courtier et al., 1993; Robinson et al., 1998). In
model-centric data assimilation, data are used to improve estimates of model parameters
instead of the model state (Bennett, 1992; Evensen et al., 1998; Gunson et al., 1999;
Robinson et al., 1998), although it is possible to achieve both objectives of state and
parameter estimation simultaneously (Malanotte-Rizzoli and Tziperman, 1996). This
manuscript addresses the parameter estimation component of data assimilation for marine
food web models.

Minimizing parameter uncertainty is particularly important in food web models.
Because marine food web models are quite sensitive to parameter values, model dynamics
can change substantially with slightly different parameter values. Consequently, a poor � t
between model output and observations can result from either poor model structure due to
inappropriate physics or growth models, or from poor selection of model parameters. This
ambiguity between structural uncertainties and parameter uncertaintiesmakes it difficult to
distinguish superiority between two or more competing models, and partially explains the
plethora of models describing similar, if not the same, phenomena, such as phytoplankton
growth (Fasham et al., 1990; Geider and Osborne, 1992, pg. 159; Taylor and Joint, 1990),
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zooplankton growth (Fasham et al., 1990; Franks et al., 1986; Gunson et al., 1999) or
mortality closure terms (Steele and Henderson, 1992). If parameter uncertainty can be
removed by assimilation of experimental data, then models with superior functional
structure can be identi� ed and selected for improvement systematically. Of course, we
need to de� ne a standardized experimental data set that models can be tested against for
this approach to be successful (a modeling workbench (Evans and Fasham, 1993b)).

In addition to recursive model development, integration of measurements with models
must also be considered (Challenge 3b). State variables used in models often do not
correspond to quantities that are directly measurable in the � eld, which makes it difficult to
use all available observations and to compare models to observations. Some measurements
may encompass several state variables, while others may only represent a portion of a state
variable. Particulate organic carbon (POC) is a frequently and easily obtained measure-
ment. Yet, POC is typically not a state variable in most models because it represents carbon
from both living organisms and detritus in various states of degradation. This type of
model-observation mismatch is not often a signi� cant problem, as we will show that it is
usually possible to construct measurement models that relate state variables to measured
variables (Robinson et al., 1998). However, mapping state variables to partial observations
of that variable can be problematic. For example, biomass measurements may be available
for a particular species, while the model may use an aggregated compartment representing
a large number of species. In this case, no obvious mapping exists between the aggregated
state variable and the observed quantity without increasing the complexity of the model.
These types of problems are best resolved by better integration of experimental design with
model development.

In this manuscript, we use data assimilation to � nd the optimum set of parameter values
that minimizes error between model output and observations. For observations we make
use of experimental data collected from marine mesocosms. The manuscript illustrates (1)
the use of mesocosm experiments to generate data for model development, (2) data
assimilation using several different optimization algorithms with mesocosm data and an
organic-matter-based food web model, and (3) problems with the structure of current
generation food web models. Although there have been several studies focused on
parameter estimation in marine food web models, the majority have used only simulated
data (Crispi and Mosetti, 1993; Gunson et al., 1999; Ishizaka, 1993; Lawson et al., 1995;
Lawson et al., 1996; Marsili-Libelli, 1992) or very limited data (Fasham and Evans, 1995;
Marcos and Payre, 1988; Matear, 1995; Prunet et al., 1996) to constrain the model. This
manuscript is unique in that it is a rigorous model-data comparison.TheAppendix contains
the food web model equations and descriptions of the optimization routines.

2. Data assimilation

A standard state space model is used to describe the biogeochemistry and food web
dynamics of the marine ecosystem. The state variables represent those quantities of the

120 Journal of Marine Research [58, 1



system that are dynamic and best approximate the system in the context of the modeling
objectives.The state space model in vector form is given by,

dx(t; k)

dt
5 f(x(t; k), t; p), x(t0; k) 5 x0, x [ X 5 Rm 3 [t0, tf ],

k [ K 5 Rm, f ; X ® X

(1)

where x(t; k) is an m-dimension state vector in state space X, f is a nonlinear vector
function that describes the relationship between the state variables and their time deriva-
tives, and k is an n-dimensional vector comprised of model parameters, p, and initial state
conditions, x0, such that kT 5 [pT, x0

T]. Stochastic state models will not be considered
(Miller and Cane, 1996); however, we will assume stochastic observations.

A nonlinear measurement model (Robinson et al., 1998),

h(x(t; k), t; p) ; X ® Y, y(t) [ Y 5 R< 3 [t0, tf ], (2)

de� nes the mapping from the state space, X, to the observation space, Y, where y(t) is an
l-dimensional vector of observations taken at time t. Measurements taken discretely in
time, as is often the case, are represented by y(ti), where i ranges from 0 to q 2 1, and q is
the total number of discrete observation times. If the state and measurement models (Eqs. 1
and 2) are exact descriptions of the real process, then for the optimal parameter set, k*,

y(t) 5 h(x(t; k*), t; p*) 1 v(t), t0 # t # tf (3)

where v(t) is the measurement noise vector with zero mean and covariance R(t) (i.e.,
E 5 v(t) 6 5 0, and E 5 v(t)vT(t)6 5 R(t), where E 5 ? 6 is the expectation operator). If an
observation for an element of y, yj(ti), is unavailable at time ti, then yj(ti) is set to zero and
its error variance is set to in� nity. The measurement model for the mesocosm experiment is
given in the Appendix.

Integration of the state model (Eq. 1) generates a prediction of the state variables over
time for a given set of initial conditions, x0, and model parameters, p. The deterministic
measurement model (Eq. 3) translates the predicted state variables to observation space so
that the model output can be compared to observations, as given by the residual vector,
(h(x(t; k), t; p) 2 y(t)). The objective of the present data assimilation is to � nd the set of
initial conditions and model parameters that minimizes some aspect of the residual vector,
typically the sum of the squared residuals (i.e., least squares), but other objective functions
are possible (Janssen and Heuberger, 1995). Formally, we seek here the set of parameters,
k, that minimize the objective (or cost) function,

min
k

J(k) 5 e
t0

tf
(h(x(t; k), t; p) 2 y(t))TR(t) 2 1(h(x(t; k), t; p) 2 y(t)) dt, (4)

subject to constraints imposed by Eqs. 1 and 3. Typically, covariances between measure-
ment errors are assumed negligible, so that R(t) is approximated as a diagonal matrix,
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where the diagonal elements are the measurement error variances (discussed below). The
data assimilation problem statement, Eqs. 1-4, is also a nonlinear optimization problem.

3. Optimization

An optimum, k*, of a scalar function occurs where the gradient of the objective function
in parameter space vanishes,

 J(k)

 k *
k5 k*

5 0 (or = kJ(k) * k5 k* 5 0),

and the Hessian matrix of J(k*) at this point,

 2J(k)

 k2 *
k5 k*

,

is either positive de� nite (a minimum) or negative de� nite (a maximum). However, because the
hyper-surface de� ned by the nonlinear function J(k) need not be quadratic, it is possible to have
more than one optimum parameter set. Consideringonly minima of J(k), a minimum is said to be
a global minimum if no other lesser or equal minima exist in or on the domain of interest;
otherwise, it is considered a local minimum. Clearly, it is desirable to � nd the globalminimum of
J(k), but this is a nontrivial problem because the global minimum is only a local property of the
objective function.Consequently, it is often necessary to exhaustivelysearch all parameter space
to locate the global minimum, which is usually quite costly. Consequently, development of
efficient global optimizationalgorithms is an area of intense research (Barhen et al., 1997).

Optimization routines fall into two categories: those that search for local optima and
those that search for global optima. The principal numerical techniques for local optimiza-
tion are the methods of steepest descent, simplex, and conjugate gradient (Press et al.,
1986) (see the Appendix). The majority of local optimizationmethods for smooth objective
functions employ variations of the conjugate gradient technique (Fletcher and Reeves,
1964). The basic idea of this technique is to choose a set of conjugate search directions
such that a minimization conducted along one search direction does not corrupt a
minimization conducted along a previous search direction. Corruption of a previous search
is why methods like steepest descent are inefficient (Press et al., 1986). For a quadratic
objective function,

J(k) 5 kTAk 1 bTk 1 c, (5)

the optimum is found in n conjugate line-searches for an n-dimension system. Of course,
the objective function de� ned by Eq. 4 is not quadratic. However, in a neighborhood
sufficiently close to an optimum, k†, the objective function can be locally approximated,
via a Taylor series expansion, by the quadratic function given by Eq. 5, where the matrix A
and vector b are the Hessian and gradient of J(k), and the constant c is the objective
function, all evaluated around the current search point, k†, and with k replaced by (k 2 k†).
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The details of most conjugate gradient methods differ in how the Hessian and the gradient
of the objective function are constructed and stored. Powel’s method attempts to construct
the conjugate search directions solely from evaluations of the objective function. Fletcher-
Reeves and quasi-Newton methods construct conjugate search directions by evaluating
both the objective function and its gradient. Others require information on the Hessian at
any given point (Chow et al., 1994).

Since knowledge of = kJ(k) can greatly facilitate location of optima, it is often desirable
to calculate = kJ(k) for those optimization routines that can use it. However, since an
analytical solution for Eq. 1 typically does not exist, the objective function given by Eq. 4
only implicitly depends on k, so that = kJ(k) must be determined numerically. One
approach to calculate = kJ(k) is known as the sensitivity method (see the Appendix), but
this approach was found to be too computationally intensive.

A more elegant technique to compute = kJ(k), based on variational calculus and
extensively employed in optimal control theory (Kirk, 1970), is the adjoint method
(Courtier et al., 1993; Crispi and Mosetti, 1993; Marcos and Payre, 1988). In this method, a
set of m adjoint variables, a(t) (also know as costate or Lagrange multipliers), are
introduced, which allow the state space model constraints (Eq. 1) to be directly incorpo-
rated into an augmented objective function, J̃

J̃(k) 5 J(k) 1 e
t0

tf
a(t)T 1 f(x(t; k), t; p) 2

dx(t; k)

dt 2 dt. (6)

The solution of the augmented objective function can then be found by variational
calculus, taking derivatives with respect to p, x0, and a. Using Eq. 6 and conveniently
de� ning the evolution of the adjoint variables by the following adjoint equations and
boundary conditions,

da(t)

dt
5 2 1  f(x(t; k), t; p)

 x(t; k) 2
T

a(t) 2 2 1  h(x(t; k), t; p)

 x(t; k) 2
T

R(t) 2 1(h(x(t; k), t; p) 2 y(t)) (7)

a(tf) 5 0

the gradient of J̃(k) is given by:

 J̃(k)

 p
5 e

t0

tf 3 1  f(x(t; k), t; p)

 p 2
T

a(t) 1 2 1  h(x(t; k); t; p

 p 2
T

R(t) 2 1(h(x(t; k), t; p) 2 y(t))4 dt

 J̃(k)

 x0
5 a(t0).

(8)

The solution, a(t) ; t [ [t0, tf], is obtained by � rst integrating the state equation (Eq. 1)
forward in time, followed by backward integration from tf to t0 of Eq. 7. The adjoint
variables represent the sensitivity of J̃ with respect to x(t) at time t (Hall and Cacuci, 1983).
Once x(t; k) and a(t) are determined, the gradient is obtained by integrating the right-hand
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side of Eq. 8. The advantage of the adjoint method is that the additional number of
differential equations to be solved (Eq. 7) over one iteration is equal to the dimension of the
state space, m, which represents signi� cant computation savings over the sensitivity
method (see the Appendix). When the adjoint method could not be used to calculate the
gradient, a � nite difference method was employed (Prunet et al., 1996) (see the Appendix).

4. Implementation

In this section we describe application of nonlinear optimization for estimating param-
eters in a fairly complex aquatic food web model based on experimental data obtained from
a mesocosm experiment.

a. Experimental setup and data

Estuaries and coastal zones receive a signi� cant input of organic material exported from
terrestrial ecosystems (Peterson et al., 1995; Smith and Hollibaugh, 1993; Smith and
Mackenzie, 1987). In order to examine how marine food web communities process and use
this dissolved organic matter (DOM), a mesocosm experiment was conducted in Woods
Hole, MA, USA in which 7 m3 seawater enclosures were augmented with combinations of
dissolved inorganic nitrogen (DIN) and DOM. The enclosures were polyethylene bags
equipped with � otation collars and structural hoops which were deployed in Great Harbor.
The DOM in these experiments was prepared by leaching leaf litter in seawater. The
mesocosm experiment consisted of four treatments: Bag A, control (no additions); Bag B,
one-time addition of DOM at the start of the experiment resulting in an increase of 300 µM
DOC (dissolved organic carbon); Bag C, daily additions of nitrate, phosphate, and silica
equivalent to 5 µM N, 0.5 µM P, and 7 µM Si, respectively; Bag D, treatments B and C
combined.All treatments also received NaH13CO3 as a C-tracer.

The experiment was conducted outdoors under ambient lighting (Fig. 1) from 10 Sep. to
30 Sep. 1994. Since the focus of this paper is on data assimilation techniques and aquatic
food web models, experimental interpretation will not be presented here and only the
following subset of the full suite of measurements will be used for data assimilation
(Eq. 3): dissolved organic carbon (DOC, µM C); particulate organic carbon (POC, µM C);
particulate organic nitrogen (PON, µM N); dissolved inorganic nitrogen (DIN, µM N);
chlorophyll a (µg l2 1); net primary productivity at a speci� ed depth (NPP, µM C d 2 1);
bacterial productivity (BP, µM C d2 1); light extinction coefficient (K, m 2 1). Measurements
were taken daily or every other day.

b. Food web model

The food web model (Eq. 1) used to capture the dynamics of the mesocosm experiment
(Fig. 2, and see the Appendix) consists of the following ten state variables: autotrophs
(A(t), µM C), heterotrophs (Z(t), µM C), dissolved inorganic nitrogen (N(t), µM N),
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dissolved labile organic C (OCL(t), µM C), dissolved labile organic N (ONL(t), µM N),
dissolved refractory organic C (OCR(t), µM C), dissolved refractory organic N (ONR(t), µM
N), detrital C (DC(t), µM C), detrital N (DN(t), µM N), and bacteria (B(t), µM C). In this
model C and N are linked where the biotic compartments (i.e., A(t), Z(t), and B(t)) are
assumed to have � xed C:N ratios, while the C:N ratios of the nonliving organic
compartments are free to vary. For processes, bacteria utilize labile organic matter pools
and can either remineralize organic N or immobilize DIN dependingon the C:N ratio of the
labile DOM. The aggregated heterotrophs pool graze both the bacteria and autotrophs and
remineralize N. The autotrophs compete with bacteria for DIN, and excrete both labile and
refractory DOM. Decomposition of detrital material into DOM and decomposition of
refractory DOM into labile DOM are governed by � rst order kinetics. The overall model is
similar to other aggregated, Monod-based growth models (Evans and Parslow, 1985;
Fasham et al., 1990; Kremer and Nixon, 1978; Moloney and Field, 1991; Moran et al.,
1988; Pace et al., 1984), except that a signi� cant emphasis has been placed on modeling
organic matter production and consumption, which is consistent with the goals of the
mesocosm experiment (see the Appendix).

Figure 1. Photosynthetic active radiation (PAR) measured during the course of the mesocosm
experiments.Note, due to temporary failure of equipment,data for day 14 were reconstructedfrom
other PAR measurements.
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c. Parameters, scaling and bounds

There are 29 parameters governing the growth kinetics of the biotic compartments and
the decompositionof the organic matter pools (Table 1, and see the Appendix). In addition,
10 parameters specify the initial conditions of the state variables, which brings the total
adjustable parameter count to 39. Three of the 39 parameters were directly measured, so
they were held constant for all optimization runs: light attenuation at the air-sea interface
( h I), mesocosm bag depth (h), and initial DIN concentration (N(t0)). The remaining 36
parameters de� ne the vector k, which are the control variables that the optimization
routines manipulate to minimize the objective function (Eq. 4).

Many optimization routines assume an unbounded parameter space, K; however, some
parameter values, k, selected from parameter space K will produce an unstable state-space
model (Eq. 1) that cannot be numerically integrated. Consequently, it is necessary to place
at least simple upper and lower bounds on the parameters, of the form kL # k # kU, to
insure a mass-conserving state-space model (Table 1). These bounds were crudely chosen
to keep parameters greater than or equal to zero and less than 10 times their typical
maximum values (Moloney and Field, 1991).

There are two main techniques to impose bounds on k for optimization routines that do
not directly support them. A penalty function, V (k), of the form,

V (k) 5 o
i5 1

n

b i 1 1

ki
U 2 ki

1
1

ki 2 ki
L2 , (9)

Figure 2. Diagram of food web model used to describe dynamics of the mesocosm experiment. See
text and the Appendix for model description.
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can be added to the objective function, where b i is an appropriately chosen scaling factor
(Wang and Luus, 1980). The augmented objective, J8(k), then becomes:

J8(k) 5 5 J(k) 1 V (k) for k [ KB 5 5 k * ki
L , ki , ki

U, ; i [ 5 1, . . . , n6 6
` for k Ó KB (10)

The penalty function approach has the disadvantage that the gradient of J(k) also
requires modi� cation. This approach caused convergence problems with some of the
optimization routines, so its use was discontinued. Instead, we implement a second
approach which employs a mapping function from an unbounded space, K 8, into the
bounded space, KB , K, de� ned by kL # k # kU. One such transform is the sin-squared
function (Box, 1966) given here,

kj 5 kj
L 1 (kj

U 2 kj
L) sin2 (k8j); j 5 1, . . . , n; k8 [ K8. (11)

Consequently, the optimization routine operates in K8-space, which is unbounded but is
always transformed back into the bounded KB-space via Eq. 11 prior to integration of the
state-space model. As most of the optimization routines require an initial guess for k8(0),
this was obtained by applying the inverse transform to k(0) as follows:

k8j
(0) 5 arcsin 1 Î kj

(0) 2 kj
L

kj
U 2 kj

L 2 ; j 5 1, . . . , n (12)

Note, that the inverse transform need only be used once during the initial call to the optimi-
zation routine. Since the optimization routine operates in K8-space, but the gradient is cal-
culated via Eq. 8 in KB-space, the gradient must be transformed into K8-space as follows:

 J(k8)

 k8
5

 k

 k8

 J(k)

 k
. (13)

For the sin-squared transform, the  k/ k8 matrix is diagonal and its elements are given by

 kj

 k8j
5 2(kj

U 2 kj
L) sin (k8j) cos (k8j); j 5 1, . . . , n (14)

Optimization routines, especially those based on the conjugate gradient technique,
require the parameters to be scaled so that their magnitude is of O(1); otherwise, the
routines will often fail. One of the bene� cial consequences of the sin-squared transform
(Eq. 11) is that the parameters in K8-space are also scaled to O(1) by the transform. For
those optimization routines that internally manage simple bounds so that the sin-squared
transform was not required, parameters were scaled by a simple linear transform,

k8j 5
kj 2 kj

L

kj
U 2 kj

L
; j 5 1, . . . , n, (15)

and the gradient appropriately scaled (Eq. 13).
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Table 1. Parameters governing the growth dynamics of the mesocosm food web model described in
the Appendix.Also given are the lower and upper bounds on parameters, the initial guess, k (0), and
the best solution, k* (see text).

Parameter Description ki
L – k i

U k (0) k*

w B
M Maximum speci� c uptake rate of

OCL by bacteria
0.01–50 5.0 49.9 d 2 1

kOB Half saturation constant for OCL

consumption by B
0.01–100 1.0 48.8 µM

j B
M Maximum growth efficiency of bac-

teria
0.01–1 0.70 0.804

r Z C:N ratio of heterotrophs 3–8 6.6 4.72 at.
j Z Growth efficiency of heterotrophs 0.01–1 0.5 0.151
w Z

M Maximum speci� c feeding rate of
heterotrophs

0.1–10 1.0 3.20 d 2 1

kZ Half saturation constant for A and B
consumption by Z

0.1–200 10.0 200 µM

mZ Maximum mortality rate of hetero-
trophs

0–10 0.1 0.033 d 2 1

w A
M Maximum speci� c � xation rate of

autotrophs
0.1–20 2.0 5.43 d 2 1

kNA Half saturation constant for N
uptake by A

0.1–50 1.0 0.101 µM

j A Growth efficiency of autotrophs 0.1–1 0.8 0.998
fEA Fraction of net production excreted 0–1 0.1 0.564
r A C:N ratio of autotrophs 4–20 6.6 10.8 at.
r EA C:N ratio of exudate 3–105 10.0 43200 at.
mA Maximum mortality rate of auto-

trophs
0–10 0.1 0.674 d 2 1

a P-I slope 102 3–0.09 0.0054 0.0890 m2 s d 2 1

µE 2 1

kw Light extinction coefficient of water 0.1–10 0.35 0.935 m 2 1

kp Light extinction coefficient of POC 102 5–1 0.003 0.00428 m 2 1

µM C
h I Light attenuation at sea-air interface 0.5–1 0.731 0.731
h Depth of mesocosm bag 1.8–2.5 2.0 2.0 m
fLEA Fraction of exudate that is labile 0–1 0.8 0.999
fDL Fraction of detritus that is labile 0–1 0.8 0.331
dDL Decomposition rate of detritus 0–50 0.1 49.6 d 2 1

dRL Decomposition rate of OCR and ONR 0–0.5 0.001 0.128 d 2 1

kNB Half saturation constant of N uptake
by B

0.01–50 1.0 49.1 µM

cchla Carbon to chlorophylla ratio 0.1–10 4.2 3.76 µmol C (µg
chl a) 2 1

kd Light extinction coefficient of OCR 102 6–1 0.0025 1.58 3 102 5 m2 1

µM C
r B C:N ratio of bacteria 3–7 4.5 3.57 at.
mB Maximum mortality rate of bacteria 0–50 0.1 48.4 d2 1

128 Journal of Marine Research [58, 1



d. Discrete data and measurement model

The de� nition of J(k) (Eq. 4) and the derivation of the adjoint and gradient equations
(Eqs. 7 and 8) assume that the measurements are continuous in time; however, actual
measurements are inherently discrete in time. This is usually not a problem, since it is
common practice to interpolate a smooth function such as a cubic spline through the
data, thereby generating a measurement function continuous in time (Eq. 3). This ap-
proach is valid provided the frequency of measurements exceeds the inherent dynamic
frequency of the observed quantity. For instance, interpolating daily observations of
phytoplankton concentration would be a valid approximation of the true function. If the
frequency of the observed quantity is greater than the frequency of measurements, then
simple interpolation may not be a good approximation. Certainly, such a case arises for
daily observations of net primary production, bacterial production, and perhaps DOM
concentration.

Although a discrete-time representation of the state model (Eq. 1), adjoint (Eq. 7) and
gradient (Eq. 8) equations could be used (Gunson et al., 1999; Lawson et al., 1995;
Thacker and Long, 1988), this would require linearization of the state model in order to
calculate the state transition matrix, F , at sample times ti, where F (ti, ti1 1) : x(ti) ® x(ti 1 1).
However, this approach is likely to be numerically unstable, since ecosystem models are
highly nonlinear and sample times occur infrequently. Arti� cial sample times could be
introduced between actual times, but this would result in high computational overhead.
Consequently, a continuous-time model was used for the state and adjoint equations with
the following modi� cation of the residual vector.

In order to use low frequency measurements of highly dynamic quantities, we imple-
mented a time-dependentweighting function on the residuals. Inspection of Eqs. 4, 7 and 8
reveals that complete knowledge of y(t) is not required, because the expressions only

Table 1. (Continued)

Parameter Description ki
L – k i

U k (0) k*

I o
1 (t) Light intensity at surface of water

(driver var.)
NA (Fig. 1) (Fig. 1) µE m 2 2

s2 1

A(t0) Initial autotrophs concentration 0.1–10 5.0 4.29 µM C
Z(t0) Initial zooplankton concentration 0.1–30 1.0 28.5 µM C
N (t0) Initial DIN concentration 20–100 46.5 46.5 µM N
OCL(t0) Initial labile DOC concentration 1–300 100.0 101 µM C
ONL(t0) Initial labile DON concentration 102 3–20 10.0 16.8 µM N
OCR(t0) Initial refractory DOC concentration 100–500 350.0 359 µM C
ONR(t0) Initial refractory DON concentra-

tion
0.1–100 0.35 0.158 µM N

DC(t0) Initial detrital carbon concentration 102 3–50 5.0 2.35 µM C
DN(t0) Initial detrital nitrogen concentra-

tion
0.01–10 0.10 0.834 µM N

B(t0) Initial bacteria concentration 0.1–15 1.0 0.102 µM C
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depend on the weighted residual vector, R 2 1/2(t)(h(x(t), t) 2 y(t)), where the covariance
weighting matrix R(t), de� ned by

E5 (h(x(t)) 2 y(t))T(h(x(t)) 2 y(t)) 6 5 R(t) 5 3
s 1

2(t) 0

·
·
·

0 s l
2(t)

4 , (16)

represents instrument uncertainty and noise associated with measurements. However, we
do not know y(t) ; t. Only when t 5 tk is y(tk) known. Although we can express the
continuous residual function as

R 2 1/2(t)(h(x(t), t) 2 y(t)) 5 R 2 1/2(tk)(h(x(t), t) 2 y(tk))d tkt
, (17)

where d tkt
is the Kronecker delta, this leads to numerical integration problems due to the

discontinuity introduced by d tkt
. Instead, we associate with y(t) an uncertainty that

increases beyond the instrument precision when t does not correspond to an observation
time, ti. The measurement error model hence varies with time. We therefore represent the
uncertainty in y(t) as a product of the measurement uncertainty, s m (t), and a time dilation
uncertainty about an observation, G (t), as follows:

s j(t) 5 s j
m(t) G (t); j 5 1, . . . , l . (18)

Since s m(t) depends on y(t), a continuous-time function is produced from the discrete
observations, y(ti), using the following piecewise continuous zero-order interpolating
function (Fig. 3a):

y(t) 5 y(ti) for 1�2(ti2 1 1 ti) , t # 1�2(ti 1 ti1 1); i 5 0, . . . , q 2 1. (19)

From y(t), the continuous-time,measurement-uncertainty vector is de� ned as

s j
m (t) 5 s j

r * yj(t) * 1 s j
a; j 5 1, . . . , l , (20)

where s j
r and s j

a are the relative and absolute standard deviations of measurement j,
respectively (Table 2). The time dilation uncertainty function is modeled as a series of
inverse Gaussian functions centered about each observation time, ti

G (t) 5 o
i5 0

q2 1

exp 1 t 2 ti
t 2

2

(21)

where t speci� es the time-bandwidth over which an observation, y(t), is allowed to
in� uence the residual (Fig. 3b). The Gaussian function used for G (t) has the advantage of
being smooth and continuously differentiable, in contrast to the Kronecker delta (Eq. 17).
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The value of t is based on the time before and after a given observation for which the
datum is expected to be valid. For the mesocosm data, we used a value of 0.05 d for t for all
optimization runs. An example of constructing the weighted residual vector from discrete
measurements is illustrated in Figure 3.

Figure 3. Example of generating a continuous weighted residual. (a) Model output, h(x(t), t) (solid
line), and observations (y(ti), � lled circles) connected by piecewise continuous function (y(t), Eq.
19, dashed line). (b) Unweighted residual function (h(x(t), t) 2 y(t), dashed line) and inverse of
the time-dilation uncertainty function ( G 2 1(t), Eq. 21, solid line). (c) Weighted residual
function, R(t) 2 1(h(x(t), t) 2 y(t)). For this example t in Eq. 21 was set to 0.2 d and a measurement
uncertainty, s m, of 1.0 was used.
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e. Parameter observability and model underdeterminess

A parameter is observable if a statistically signi� cant change in its value leads to a
statistically signi� cant change in the objective function (Eq. 4). Since a parameter that is
not observable cannot affect the objective function, nonobservable parameters should be
removed from the set of adjustable parameters, as their values cannot be determined from
the available measurements. One means to determine the observability of parameters is to
examine the sensitivity of J(k) with respect to k (e.g., , kJ(k)) (Fasham et al., 1990; Prunet
et al., 1996). For a quadratic objective function, a parameter, kj, for which , kj

J(k) equals 0
for k 5 / k* is considered nonobservable. However, for nonquadratic objective functions,
, kj

J (k) can equal zero over some regions of 5 kj * kj
L # kj # kj

U 6 and be nonzero over other
regions (see Section 4c.). That is, a parameter may be locally nonobservable, but still be
globally observable. For a parameter to be globally nonobservable, , kj

J (k) must equal
0 ; kj [ 5 kj * kj

L # kj # kj
U 6 . Consequently, it is necessary to evaluate , kJ (k) at several

different locations in parameter space to identify nonobservable parameters, kj, for which
, kj

J(k) 5 0 ; kj [ 5 kj * kj
L # kj # kj

U 6 holds. Since an exhaustive search is impractical for this
crude analysis, we compared values of J at a local minimum, k*, to J evaluated at the upper
and lower bounds on k, as given by

J(k* 1 D kj
Uej ) 2 J(k*)

J(k*)
and

J(k* 2 D kj
Lej) 2 J(k*)

J(k*)
; j 5 1, . . . , n, (22)

where D kj
U 5 kj

U 2 k*j , D kj
L 5 k*j 2 kj

L, and ej is an elementary vector with 1 at element j
and zeros elsewhere.

The above description is a special case of nonobservability. It is possible that a
combination of parameters are dependent, so that , kj

J(k) Þ 0 for individual parameters,
but , MkJ(k) 5 0 for some combination of parameters, Mk. For example, consider an
observable parameter, k1, that is replaced by (k2 1 k3); neither k2 nor k3 can be uniquely
determined. In this case, the system is not completely observable (Jazwinski, 1970,
pg. 231) and is also referred to as underdetermined. That is, there are more unknown

Table 2. Relative and absolute standard errors associated with the measured variables, y(ti) for the
mesocosm experiment. See Eq. 20.

Measurement
y(ti)

Rel. Error
s r

Abs. Error
s a

DOC(t) (µM C) 0.03 5.0
POC(t) (µM C) 0.05 0.5
PON(t) (µM N) 0.05 0.1
DIN(t) (µM N) 0.02 0.5
G(t) (µg l2 1) 0.05 0.1
NPP(t) (µM C d 2 1) 0.05 1.0
BP(t) (µM C d2 1) 0.10 0.5
K (t) (m2 1) 0.05 0.1
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parameters than constraining independent equations. For linear, discrete systems such as
y(t) 5 A(t)k, the dimensions and rank of A govern whether the system is exactly-, over- or
under-determined (cf. Noble and Daniel, 1977). For nonlinear systems, no simple methods
exist to determine whether the parameters can be uniquely de� ned from the observations,
y(t), and the constraints imposed by the minimization problem (Eq. 4). However, we can
examine whether the parameters are uniquely de� ned at a given optimum point, k*, by
expanding the objective function in the neighborhoodsufficiently close to the optimum, k†,
which gives

J(k) 5 J(k†) 1
 JT

 k *
k†

(k 2 k†) 1
1

2
(k 2 k†)T

 2J

 k2 *
k†

(k 2 k†) 1 O((k 2 k†)3). (23)

Taking the derivative of this expansion with respect to k and dropping the higher order
terms produces

 J

 k
<

 J

 k *
k†

1
 2J

 k2 *
k†

(k 2 k†). (24)

Since

 J

 k
5 0

at an optimum, the right-hand side of Eq. 24 can be solved for k* to yield

k* 5 2 1 
2J

 k2 *
k†2

2 1  J

 k *
k†

1 k†, (25)

provided the Hessian matrix,

 2J

 k2 *
k†

,

is nonsingular. Note, that if the system is linear, then Eq. 25 reduces to

k* 5 1 e t0

tf
AT(t)R 2 1A(t) dt 2 2 1 e

t0

tf
AT(t)R 2 1y(t) dt (26)

which is the standard weighted least-squares solution to Eq. 4 for h(x(t; k), t; p) 5 A(t)k.
For discrete-time systems, the integrals of Eq. 26 are dropped since the time dependency is
embedded in the vector and matrix elements. Consequently, by evaluating the rank of the
Hessian matrix at a minimum, k*, we can assess whether the system is underdetermined at
that point. Furthermore, if the Hessian is nonsingular, its inverse gives the covariance
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matrix for the model parameters (Matear, 1995), assuming the higher order nonlinear terms
in the Taylor expansion (Eq. 23) are small.

To numerically estimate the Hessian of J(k) at a point k* [ KB, the gradient of J was
calculated via Eqs. 7 and 8 at k* 6 D k, then central differences were used to obtain the
second order derivatives, as given by

J2(k)

 ki  kj
*
k*

5
1

2 D ki
1  J(k 1 D kiei)

 kj
2

 J(k 2 D kiei)

 kj
2 *

k*

(27)

where D kj is given by Eq. A4 in the Appendix. To improve numerical stability in
subsequent analyses, the Hessian matrix was normalized as follows:

H̃ 5 (ki
U 2 ki

L)
J2(k)

 ki  kj
(kj

U 2 kj
L) (28)

To examine the condition of H̃, a singular value decomposition (SVD) was employed, so
that H̃ could be expanded as

H̃ 5 U L VT (29)

where the diagonal matrix, L , contains the singular values of H̃. A matrix is considered
computationallysingular (rank de� cient) if the ratio of the maximum to minimum singular
values (also know as the matrix condition number) exceeds the inverse of the computer’s
machine precision, which in this case is approximately 10 2 16 for a PC using double
precision arithmetic. However, the condition number of H̃ compared to machine precision
is overly optimistic, as the precision of the measurements is typically far less than machine
precision. Consequently, singular values of H̃ are considered signi� cant if

l j

l 1
. 10 2 j , j 5 1, . . . , n (30)

where l i are the singular values and j is the number of signi� cant digits associated with the
measurements (Tziperman and Thacker, 1989).

If the Hessian matrix is singular as determined by Eq. 30, then several techniquesexist to
identify those parameters that are uniquely de� ned by the measurements from those that
are not. Sensitivity analysis (i.e., Eq. 22 and (Fasham et al., 1990)) does identify those
parameters that are not well de� ned, but does not provide information on correlation
between parameters. Consequently, sensitivity analysis cannot detect linearly dependent
parameters at k*. To obtain this information, the correlation matrix can be calculated from
the Hessian (Matear, 1995). However, this approach cannot be used if H̃ is computationally
singular, and we found the correlation matrix only marginally useful for large dimensional
problems. Another approach is to calculate the resolution matrix of H̃ (Tziperman and
Thacker, 1989; Wiggins, 1972). If we rewrite Eq. 24 as H̃k 5 z and make use of the SVD
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of H̃ (Eq. 29), then it is easy to show from the properties of the SVD that

VVTk 5 V L 2 1UTz, (31)

where VVT is the resolution matrix. Because V is an orthonormal matrix, when H̃ is full
rank (nonsingular) VVT is the identity matrix, so that the parameters, k, are all uniquely
de� ned (or resolved). However, when H̃ is singular, Eq. 31 shows that the magnitudes of
the diagonal terms of VVT de� ne the extent to which each parameter is resolved, and the
magnitude of the off-diagonal terms identify those parameters that cannot be well resolved.
Speci� cally, each row vector of VVT (or column vector, since VVT is symmetric) identi� es
the extent of linear dependency between parameters. It should be noted that the above
analysis does not apply globally and is only valid in the neighborhood of the minimum
about which the objective function is linearized, Eq. 23.

f. Optimization routines

Twelve different algorithms (Table 3) were employed to solve the nonlinearoptimization
problem (Eqs. 1, 3 and 4), four of which attempt to locate the global optimum. These
algorithms are described in the Appendix along with details on the numerical computa-
tions.

5. Results

We � rst present the parameter observability analysis in order to determine which
parameters or initial conditions cannot be resolved and should be removed from the
adjustable parameter set, k. In Section 5b, the results of the data assimilation are presented
for each of the 12 optimization routines tested (Table 3). Performance of the optimization
routines is only for the assimilation of the DOM 1 DIN mesocosm data (Bag D).

a. Parameter observability

Sensitivity analysis (Eq. 22) applied to the food web model shows that all parameters
and initial conditions (Table 1) can signi� cantly in� uence the objective function (Eq. 4).
The only parameters which did not produce signi� cant change ( . 100%) in J(k) (Eq. 22)
were DC(t0) and DN(t0), which produced only 4% and 6% changes, respectively. However,
caution must be used when applying this crude test, as dependent parameters will not be
detected. Parameter dependency can only be determined at a given optimum.

The maximum and minimum singular values of the Hessian of J(k) calculated from
Eq. 29 at the optimum located by the simulated annealing algorithm (see below) were
found to be approximately 108 and 10-2, respectively, which gives a condition number of
1010. Although the Hessian condition number is much smaller than the inverse of the
machine precision, 1016, Eq. 30 indicates that ten singular values are of questionable
signi� cance given a measurement precision of � ve digits. Examination of all the singular
values of H̃ (Fig. 4) shows that the last � ve or six singular values deviate from the general
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trend, which is usually an indication that these singular values may not be signi� cant. To
examine how the last six singular values (i 5 31, . . . , 36) affect the observability of
parameters, we calculated the resolution matrix, VVT (Eq. 31), with the last six column
vectors of V removed (corresponding to the six smallest singular values). The diagonal
elements of the resulting resolution matrix (Table 4) show that parameters r EA, dDL, DC(t0),
and DN(t0) are not well resolved, and theoreticallycould be replaced by linear combinations
of the other 32 parameters thereby reducing the dimension of k by four. The diagonal
elements of the resolution matrix (Table 4) can also be interpreted to mean that the
objective function is insensitive to the values of r EA, dDL, DC(t0), and DN(t0) in the
neighborhoodof the SA minimum. Of course, this analysis is only locally valid. Indeed, the
observability analysis from Eq. 22, which de� nes a more global perturbation, only
identi� es DC(t0) and DN(t0) as being poorly resolved globally. Since DC(t0) and DN(t0) are
not particularly important parameters (they are only initial conditions), no attempt was
made to reduce the number of adjustable model parameters for subsequent analyses.

Table 3. Optimization routines used for data assimilation in the mesocosm model. See the Appendix
for descriptions and references.

Routine
Name Algorithm

Optima
Search

Gradient
Required

Constraints
Allowed* Notes

SA Simulated annealing Global No SB
GLOBAL Quasi-Newton with sto-

chastic searching.
Global No SB 1

DN2FB Adaptive Newton with
trust region.

Local Yes SB 2, 3

PRAXIS Powel’s Conjugate gra-
dient w/restarting.

Local No No

DNLS1 Levenberg-Marquardt Local Yes No 2, 3
SUBPLEX Modi� ed simplex Local No SB
BBVSCG Quasi-Newton and Conju-

gate gradient
Local Yes No

VE08 Quasi-Newton Local Yes SB
TN Truncated Newton Local Yes SB 4
SIGMA Stochastic differential

equations
Global No SB 5

GA Genetic algorithm Global No SB
TENSOR Tensor method Local Yes No 6

*SB: Simple upper and lower bounds.
1. Quasi-Newton local search is not bounded, so sin-transform(Eq. 11) was employed.
2. Uses internal � nite difference code to calculate gradient.
3. Uses vector objective function of residuals (Eq. A5), so adjoint method (Eqs. 7 and 8) not used.
4. Finite difference calculation of Hessian caused bounds to be violated, so used sin-transform

(Eq. 11) to implement bounds.
5. Obtained better performance using sin-transform(Eq. 11) than codes SB constraints.
6. Uses internal � nite differences to calculate Hessian matrix.

136 Journal of Marine Research [58, 1



b. Optimization routines

The simulated annealing routine, SA, located the minimum with the smallest objective
function value of 170 (Table 5). However, location of this minimum came at considerable
expense, requiring 350,000 function evaluations and 253 hr of CPU time (133 MHz Intel
Pentium). The three local search routines, DN2FB, PRAXIS, and DNLS1 did almost as
well as SA, but required only a fraction of the number of function evaluations and CPU
time. The two global routines, SIGMA and GA, did rather poorly, both consuming large
amounts of CPU time and locating minima with relatively large � nal costs. TENSOR also
did poorly, which is a result of having to numerically calculate the Hessian. The other

Table 4. Diagonal elements of the resolution matrix, VVT, (Eq. 31) with the six smallest singular
values removed, so that V [ R36 3 30.

Param. Resolution Param. Resolution Param. Resolution

r EA 0.0000014 kOB 0.903 mA 0.998
dDL 0.007 w Z

M 0.929 w A
M 0.999

DC(t0) 0.009 mB 0.944 a 0.999
DN(t0) 0.021 A(t0) 0.952 DRL 0.999
kNB 0.592 j B

M 0.977 fEA 0.999
Z(t0) 0.778 j A 0.981 KNA 0.999
ONL(t0) 0.798 r A 0.984 kw 1.000
r B 0.800 cchla 0.990 B(t0) 1.000
kZ 0.808 OCL(t0) 0.992 j Z 1.000
ONR(t0) 0.817 fDL 0.993 mZ 1.000
r Z 0.852 OCR(t0) 0.994 kp 1.000
w B

M 0.890 fLEA 0.995 kd 1.000

Figure 4. Singular values of Hessian matrix evaluated at the minimum located by the simulated
annealing algorithm.
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routines fell in between the two extremes (Table 5). We should emphasize here that many
of the optimization routines tested require several parameters, speci� c to the particular
routine, to be speci� ed by the user. Unless obviously incorrect, we used the recommended
default parameter values for the optimization routines. Without extensive use of the
routine, it is difficult to have a good intuitive understanding for the ideal choice of
algorithmic parameters. Consequently, it is likely that performance of several of the
routines could be improved by judicious selection of the algorithmic parameters.

Comparing the parameters associated with the minimum found by each optimization
routine (Fig. 5) reveals that each minimum (Table 5) is a different local optimum. Indeed,
the twelve optima found appear to span the entire bounded parameter space, KB, and
several of the parameters in an optimal set lie on the boundary of KB. The presence of such
a large number of vastly different optima is just one of the problems associated with current
generation food web models, as will be discussed below.

A comparison between the measurements obtained from the mesocosm experiment and
the model output based on the optimum solution found by the SA routine (Table 1), shows
good � ts for DIN (Fig. 6d) and Chl-a (Fig. 6e), while the � ts for the other variables could
stand improvement, especially POC and PON (Figs. 6b and 6c). Model-data � ts of
phytoplanktonand bacterial productivity (Figs. 6f and 6g, respectively) are fairly good, but
are difficult to interpret due to their highly dynamic nature. The model output based on the
initial parameter guess is illustrated as the dashed line (Fig. 6).

Although PAR (Fig. 1) and the daily addition of nitrate introduce oscillations to the

Table 5. Computation requirements and value of objective function associated with the minimum
found by each of the optimizations routines. The initial objective function value was 39430.

Routine
Name

Function
Calls

Gradient
Calls

CPU Time*
(hr)

Final Cost
J(tf ) Notes

SA 350000 — 253 170 1
GLOBAL 181273 — 347 204 2
DN2FB 3537 NG 7.77 237 3, 4
PRAXIS 8455 — 6.65 248
DNLS1 566 NG 1.15 258 3
SUBPLEX 6946 — 5.1 292
BBVSCG 169 169 0.74 337 4
VE08 241 241 1.35 345 4
TN 539 539 2.13 471 4
SIGMA 179422 — 485 546
GA 200020 — 321 577 1
TENSOR 57902 82 278 693 4

*CPU: 133 MHz Intel Pentium.
1. Terminated by iteration limit.
2. Located 19 other minima.
3. Used numerical gradient (NG) since routines use vector objective function (see Eq. A5).
4. Convergenceerror associatedwith minimum located.
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Figure 5. Parameter values, scaled by Eq. 15, associated with each of the minima located by the
twelve optimization routines. Parameters marked with an asterisk were held constant for data
assimilation.Also see Tables 3 and 5.
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system, these driver oscillations are ampli� ed in the state and output variables due to the
parameter values associated with the optimum located by the SA routine (Fig. 6). In
particular, the extreme growth kinetics for bacteria ( w B

M, kOB, mB, Table 1), the rapid
decomposition rate of detritus (dDL, Table 1) and the high DOM exudation rate by
phytoplankton ( fEA, Table 1) produce the signi� cant oscillatory behavior in DOC and
bacterial production (Fig. 6a,g). Other optimal solutions with higher � nal costs (Table 5)
did not exhibit such oscillations due to less extreme parameter values; however, these
parameter sets did not produce as good a � t to the DOC data (Fig. 7).

Figure 6. Comparisonbetween food web model simulations (lines) and the eight mesocosm observed
variables (� ll circles) for the DOM 1 DIN treatment (Bag D). Model simulations are based on
initial parameter guesses (dashed line, Table 1) and the optimum parameter set (Table 1) obtained
by the simulated annealing (SA) routine (solid line). Error bars are based on Eq. 20 and values
listed in Table 2.
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6. Discussion

In general, the � t between the food web model and the observations (Fig. 6) is
inadequate if we intend to use the model as a prognostic tool. The poor � t is not unusual for
these models, as several other investigators have had difficulty in � tting ecosystem models
to observations (Fasham and Evans, 1995; Lawson et al., 1996; Matear, 1995; Prunet et al.,
1996). Here we examine possible areas that may prevent good � ts between model and
observations and provide some suggestions as to how food web models might be
improved.

a. Parameter observability

The large condition number of the Hessian matrix about the SA minimum indicates that
the values of some parameters may be difficult to determine, at least at this point in KB.

Figure 7. Same as Figure 6, except model � t based on optimum parameter set obtained by the
PRAXIS routine (Table 5).
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Examination of the singular values (Fig. 4) and resolution matrix of H̃ (Table 4) indicate
that the parameters r EA, dDL, DC(t0), and DN(t0) are poorly resolved. However, due to strong
nonlinearities in the food web model, it is likely that poor resolution of the parameters r EA

and dDL is only associated with the SA minimum. For instance, for large values of the C to
N ratio of phytoplankton exudate, r EA, we would not expect the objective function to be
sensitive to changes in r EA because the difference in N content of DOM exudate with a C:N
of 43200 versus 30000 is basically zero. Conversely, when r EA is small (i.e., similar in
value to r A) a small perturbation in r EA will have relatively major effects on N dynamics,
which would cause signi� cant changes in the value of the objective function. Conse-
quently, identifying dependent (or poorly resolved) parameters in highly nonlinear models
is a nontrivial task, because parameter resolution is a function of the location of the optima.

Although the presence of dependent parameters in a model is not desirable, such
dependency does not prevent the model from � tting the observations; that is, parameter
dependencydoes not explain the poor � t of the food web model to some of the observations
(Fig. 6). The presence of dependent parameters simply means that there exists more than
one solution (parameter set) that will � t the observations equally well. If the main object of
the data assimilation is to produce a model that accurately tracks state, x(t), and output,
y(t), variables, then parameter dependency is not critical. However, if some of the
parameters in the model have intrinsic value to the modeler (for instance, they will be used
in another model or can be directly measured), then parameter dependency needs to be
removed. Removal of dependent parameters also reduces computational requirements
because it decreases the dimension of searchable parameter space, KB.

b. Objective function

In our analysis we used a least-squares objective function (J(k), Eq. 4) to describe the
quality-of-� t between the model output and the observations. Interestingly, the best
least-squares � t between the food web model and the mesocosm data (Fig. 6) was not the
most appealing � t due to the oscillatory nature of some of the state and output variables
(Fig. 6a,g) and the extreme values of many of the parameters associated with OM
processing (Table 1). Visually, other solutions appeared to � t the data marginally better
than the SA solution (e.g., PRAXIS, Fig. 7), but had a slightly larger objective function
(Table 5). Since the parameter set obtained by data assimilation ultimately depends on the
functionality of the objective function, use of different criteria for J(k), such as maximal
absolute error, may be worth investigating (Janssen and Heuberger, 1995). However, such
modi� cations are relatively minor in this case, and it is not expected they would improve
the general � t between the food web model and mesocosm data (Fig. 6) since the model
likely contains signi� cant structural errors (discussed below). Model structural errors are
also evident by the large residual error compared to the assumed measurement errors
(Fig. 6).
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c. Local optima and optimization

It is clear from Table 5 and Figure 5 that the hyper-surface described by the objective
function J(k) is replete with local optima. Indeed, routine GLOBAL located 20 unique
optima with J(k) ranging from 204 to 9443. To get some sense of the J(k) surface, we
visually examined a large number of 2D and 3D slices through the optimum located by the
SA routine.Although many of these slices revealed well-behaved surfaces (i.e., describable
by low order polynomials, Fig. 8a), several of the surfaces examined were highly irregular,
especially surfaces de� ned by parameters associated with OM processing (Fig. 8b). In
addition to the several smooth local minimum valleys on the kOB versus OCL(t0) surface
(Fig. 8b), there are also highly spiked areas on the surface that appear to be numerical
instabilityproblems. Inspection of these spikes reveals no numerical problems. Instead, the
spikes occur when a peak in modeled bacterial production coincides with an observation
(Fig. 6g). Small shifts in either kOB or OCL(t0) time-displace the BP(t) peak, so that a spike in
J(k) appears and disappears as the BP(t) peak wanders on and off an observation as a
function kOB or OCL(t0) (consider Fig. 3 with spikes in model output). It seems likely that
this phenomenon can occur for other highly dynamic variables. Although the spikes
perhaps could be removed by not including such measurements as BP(t) and NPP(t), it is
usually better to include all possible measurements to fully constrain the model. Even if the
spikes were not present, J(k) would still contain many local optima both within and on the
boundary of KB (Fig. 8a, b). Consequently, selection of an appropriate optimization routine
that can perform well under the above circumstances is an important component of data
assimilation.

The simulated annealing algorithm in routine SA performed the best in this study
(Table 5), so we recommend its use for similar type problems (also see routine ASA
(Ingber, 1993), Matear (1995), and Siarry et al. (1997)). The fact that this algorithm has
two to three orders of magnitude greater computational requirements than classical
algorithms is becoming less of a problem since computation costs continue to drop while
CPU speeds increase. However, food web models embedded in ocean circulation models
(Gunson et al., 1999; Sarmiento et al., 1993) or other transport models (Hopkinson and
Vallino, 1995; Oguz et al., 1996) are still computationally intensive, so use of efficient
optimization routines is paramount for these cases. For models with high computational
requirements, we recommend using either DN2FB or PRAXIS, with a preference going to
PRAXIS since this routine does not require gradient information. We also note that
convergence to the global optimum using these local optimization routines can be
improved by employing a subset of the observation data in an iterative manner (Wang and
Luus, 1980). In this approach, an optimum is located using a subset of the data, then more
data are introduced and a new optimum is located. This iteration continues until all
observation data have been assimilated.

In our analysis, we have examined local and global optimization algorithms that require
the gradient of the objective function as well as ones that do not (Table 3). Our results show
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Figure 8. Two-dimensional slices through the objective function hyper-surface (Eq. 4) about the
optimum located by the SA routine (Table 1). (a) Objective surface as a function of maximum
zooplankton growth rate, w Z

M (d 2 1), and the � rst order decomposition rate of refractory OM to
labile OM, dRL (d 2 1). (b) Objective surface as a function of the half saturation constant for labile
DOC, kOB (µM), and initial concentrationof labile DOC, OCL(t0) (µM).
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that the routines that use gradient information converged to an optimum faster, often
signi� cantly faster, than those routines not using gradient information (except TENSOR,
Table 5). We also found that the gradient calculated via the adjoint method (Eqs. 7 and 8)
had greater accuracy and precision and was 10 to 20 times faster than forward � nite-
differences (Eqs. A3 and A4 in the Appendix).Yet many of the gradient-requiring routines,
especially those where the adjoint equations were used (BBVSCG, VE08, TN, and
TENSOR), ranked poorly in terms of � nal cost and often terminated with algorithm errors
(Table 5). This is perhaps not surprising given the highly irregular nature of the objective
function (Fig. 8b). Since the programming and computational requirements associated with
the adjoint equations and � nite differences are high, we recommend the use of routines that
do not require calculation of the gradient, except for those cases where computational
requirements are extreme, as noted above. Given the good performance of the Levenberg-
Marquardt-like routines (DN2FB and DNLS1, Table 5), we also recommend development
of adjoint equations for the calculation of gradient information associated with vector
objective functions (Eq. A5), as required by these routines.

Does the presence of many local optima (Fig. 8) prevent a good � t between model and
observations (Fig. 6)? Since we cannot prove that a given optimum is global, there always
exists the possibility that a different solution, possibly outside of KB, would allow the
model to � t the observations perfectly, especially for large dimensional problems where an
exhaustive search over all parameter space is computationally impossible. To examine the
possibility, albeit unlikely, that the optimization is the source of poor model � t, we used the
food web model with the parameters obtained by the SA routine (Table 1) to generate
simulated observations at one-day intervals. Using the same initial guess for k as before
(Table 1), we then examined how well the optimization routines SA, GLOBAL and
PRAXIS could � t the simulated data. For this case, known as a twin experiment, an exact
solution exits and is known a priori. We found similar results for all three routines. Good
� ts were obtained between the model and simulated data for all output variables except for
DOC, DOC(t), and bacterial production, BP(t) (Fig. 9). The poor � t to DOC(t) and BP(t),
however, is understandable, since the SA solution produces a very dynamic model (Fig. 6)
which is difficult to resolve with only daily sampling. The twin experiment was also able to
recover most of the parameter values, except some associated DOM and bacteria dynam-
ics. The twin experiment also indicates that the sin-squared transform (Eq. 11) did not
inhibit recovery of the parameters, since routines SA and GLOBAL do not use the
transform but PRAXIS does, yet all three routines were able to recover the parameters
(Fig. 9). Consequently, it is unlikely that poor optimization is the root cause of the
less-than-perfect model � t.

d. Model structure and aggregation uncertainty

The root cause of the poor � t between the model and observations (Fig. 6) is the
underlying model structure. Model structure refers to the state variables used to represent
the fundamental system dynamics, how the state variables are interconnected, and the type
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of growth kinetics used to describe the interconnecting � ows. There are two main sources
of model structure uncertainty. One source is simply the lack of adequate knowledge about
the system, which in our case is mostly associated with organic matter production and
consumption.The second uncertainty is due to model aggregation.

Due to the extreme complexity of aquatic ecosystems, almost all aquatic food web
models aggregate a large number of functionally similar species into a single compartment
(i.e., zooplankton) or perhaps several subcompartments when size is also considered
(Moloney and Field, 1991). These aggregated compartments are then modeled as a single
species, where the kinetic parameters are often derived from laboratory experiments
involving pure cultures. Although the growth kinetics used for aggregated state variables

Figure 9. Twin experiment to examine the ability of data assimilation to recover parameters from
simulated data (� lled circles) based on model parameters obtained from the best solution, k*
(Table 1). Optimization routines tested: SA (solid line), GLOBAL (dashed line) and PRAXIS
(dotted line).
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are gross approximations, their use continues due to the lack of comprehensive knowledge
on ecosystem food webs and the difficulty with aggregation in nonlinear models (Iwasa et
al., 1989).

Aggregated models, nevertheless, maintain a high degree of nonlinearity and associated
dynamics, including chaos (Beckers and Nihoul, 1995; Kot et al., 1992), and typically
exhibit strong predator-prey dynamics due to the auto-catalytic nature of the growth
kinetics (i.e., growth rate is a function of biomass). As a result, aggregated models are quite
sensitive to parameter values and initial conditions. For example, Steele and Henderson
(1992) have noted that slight changes in the mortality function in simple food web models
can lead to signi� cant differences in model dynamics. Such sensitivity to parameter values
explains the large number of local optima we observed in the J(k) surface (Fig. 8) and the
extreme range of values associated with a given parameter obtained by the optimization
routines examined in this study (Fig. 5). Furthermore, model aggregation often makes it
difficult to obtain model parameters from direct measurements. For instance, Wallach and
Genard (1998) have shown that a better � t between model and observations can usually be
obtained if the model parameters are allowed to assume values that differ from their values
reported in the literature, which appears consistent with our results (Table 1). Unfortu-
nately, this makes it difficult to use parameter values reported in the literature that are based
on culture experiments or allometric relationships (Moloney and Field, 1991) when
aggregated models are used. This also means parameters obtained by data assimilation for
one model cannot be readily used for other models.

Current generation food web models, including ours, also suffer from the use of
� xed-value parameters. All parameters used in our food web model are treated as
constants, yet many of the parameters can change value either due to physiologicalchanges
in the organisms or shifts in species composition. For example, it is well known that the
C:N ratio of phytoplankton can vary widely depending on N availability or growth rate
(Goldman et al., 1979), yet this parameter is held constant in our model. Likewise, since
state variables represent an aggregation of functionally similar organisms, alteration of the
effective uptake kinetics of nutrients, such as NO3 or NH4, can change as different species
dominate the functional group. Although one can attempt to make model parameters a
function of environmental conditions, the complexity of the resulting models increase in
both the number of state variables and parameters. This increased complexity does not
guarantee a better � t. For instance, to better capture the observed DOC dynamics (Fig. 6a),
we tried modeling the C and N content of phytoplanktonexplicitly to allow for internal C
or N storage (i.e., variable phytoplankton C:N ratio) (e.g., Geider et al., 1998; Tusseau et
al., 1997). Even though this model had two more state variables and several more
parameters, it did not � t the DOM data better than the model given in the Appendix. We
also note here that a reduced-complexity model using only � rst order kinetics (instead of
Monod, or Holling type-III) was tried, but this pseudo-linear model � t the data poorly
(Fig. 10). Consequently, nonlinear kinetics must be retained in order to accurately capture
food web dynamics.
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The problem with � xed-valued parameters (or inaccurate model structure) becomes
quite apparent when we compared the food web model simulation using the optimum
parameter set (Table 1) to data from the same experiment, but from a different mesocosm
treatment. Although the model does an adequate job of � tting the DOM only treatment
(Bag B, Fig. 11), the model only marginally reproduces the control treatment (Bag A,
Fig. 12) and completely breaks down for the DIN-only treatment (Bag C, Fig. 13). The
model is able to reproduce all four treatments if data assimilation is used to � nd new
parameter sets for each treatment, but the new parameter sets differ signi� cantly form the
parameter set obtained from the DIN 1 DOM treatment (i.e., Table 1).

Although the � xed-value parameter constraint may be less of a problem for pelagic food
web models where environmental conditionsare more stable, it is a signi� cant problem for
systems where environmental conditions can change signi� cantly over relatively short

Figure 10. Same as Figure 6, except a linear food web model was used to � t the observations.
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temporal or spatial scales, such as in estuaries. Indeed, our mesocosm experiment was
intended to contrast ecosystem dynamics between the relatively oligotrophic marine
end-member (treatment A) and the eutrophic freshwater end-member (treatment D).
Unfortunately, there are no easy solutions to remove problems associated with model
structure uncertainty, but we believe aquatic ecosystems model can be improved.

e. Suggestions for model improvements

One means to remove problems associated with model aggregation is to explicitly
represent all organisms and their interactions.This reductionist approach is likely to fail, of
course, since real ecosystems consist of hundreds, if not thousands, of species exhibiting

Figure 11. Same as Figure 6, except observations are from the DOM-only treatment (Bag B). Model
simulations are based on the optimum parameter set obtained by the SA routine (Table 1), except
the daily addition of DIN has been turned off during simulation.
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autotrophic, heterotrophic, or even mixotrophic feeding behaviors, that can change with
ontogeny (Turner and Roff, 1993). It is unlikely that we will ever be able to accurately
model all these organisms and their feeding behaviors. Indeed, a recent model of
phytoplanktongrowth required three state variables and ten parameters to capture observed
dynamics for a single species (Geider et al., 1998). Instead, it will probably be more
productive to continue modeling these systems as consisting of just a few trophic or
functional groups (Totterdell et al., 1993); however, the underlying growth kinetics should
not be modeled as a single organism, as is currently done in many models. For the
aggregation approach to succeed, a greater effort must be placed on developing growth
models that represent the feeding characteristics of an aggregated consortium of species or

Figure 12. Same as Figures 6 and 11, except observationsare from the control treatment (Bag A), and
initial conditionsfor DOM (OCL(t0), ONL(t0), OCR(t0), and ONR(t0)) and DIN (N(t0)) have been changed to
re� ect the lower initial concentrationsin Bag A, and the daily additionof DIN has been turnedoff.
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individuals. For example, intratrophic feeding can be modeled as a general type of
cannibalism (Pitchford and Brindley, 1998). Such aggregated models will require develop-
ment from fundamental concepts and holistic understanding of ecosystem function, as
opposed to systematic aggregation of complex models (Iwasa et al., 1989). This is a
signi� cant departure from standard approaches, where the emphasis has been on isolation
of organisms and reductionist modeling.

Use of more abstract representations of aquatic ecosystems that attempt to capture
emergent properties of these systems may prove to be more robust with respect to
parameter uncertainty and data requirements (Platt et al., 1981; Vallino et al., 1996).
However, these models have not seen wide applicability due to the complex concepts
involved whose understanding is still in its infancy. Nevertheless, classical engineering

Figure 13. Same as Figures 6 and 11, except observationsare from the DIN Only treatment (Bag C),
and initial conditions for DOM (OCL(t0), ONL(t0), OCR(t0), and ONR(t0)) and DIN (N(t0)) have been
changed to re� ect the lower initial concentrationsin the experiment.
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approaches to modeling ecosystem dynamics that rely solely on mass and energy
conservation have their limitations, so novel approaches will likely be required for
improving ecosystem dynamic models.

We have found the use of mesocosm experiments coupled to data assimilation to be a
powerful tool for the development and testing of aquatic ecosystem models. Indeed, the
food web model given in the Appendix is the result of data assimilation with several
iterations of models with various state dimensions and levels of complexity, including a
linear model (Fig. 10). Currently, food web models are not rigorously tested against
experimental data, so it is difficult to know if a new model represents a real improvement in
predictive capabilities. Furthermore, if the model does not � t observations, it is unknown
whether the poor � t of the model is due to parameter uncertainty, structural uncertainty, or
both. By using data assimilation coupled with extensive experimental data, we can
determine the best a given model can � t an experimental observation set (assuming the
global optimum can be found). If, after data assimilation, the model still � ts the data poorly,
we can assume with high probability that the model suffers from structural uncertainties. In
other words, data assimilation can be used to remove parameter uncertainty and thereby
reveal structural uncertainty.The modeling community can then focus on improving model
structure. Mesocosm experiments also facilitate development of robust models, since
environments ranging from oligotrophic to eutrophic conditions can be readily produced,
and perturbation studies can be conducted to discriminate between models based on
transient responses. Mesocosm experiments of different size, scope and complexity can be
conducted (from small tanks to much larger ocean enclosures) to address various modeling
needs.

Detractors of mesocosms claim the experiments are not useful due to side effects
introducedby the containing walls, which do not exist in real systems.Although mesocosm
walls do in� uence ecosystem dynamics, their in� uence can be explicitly described by
developing two or more submodels. Thus, one model is developed for the water column
and a separate model accounts for processes occurring on the walls and/or benthos. The
models are developed so that they can be readily separated. This modularity allows the
mesocosm wall model to be dropped when the water column model is embedded into a
transport model. Of course, with this approach, the mesocosm wall must be an integral part
of the experimental observations, so that the effects of the walls can be accurately modeled.

There is also a need to develop experimental measurements that address speci� c
modeling needs. These new measurements may, or may not, be easily interpretable on their
own. For example, measuring the fraction of POM that is living would allow direct
constraints to be imposed on biotic compartments, but may be of little interest to
experimentalists. Until we aggressively combine modeling with experimental observa-
tions, we are unlikely to see signi� cant improvements in aquatic ecosystem models.
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APPENDIX

This Appendix contains (1) alternative approaches for calculating the gradient of the
objective function, J(k), (2) descriptions of the optimization routines employed in the
study, (3) the equations governing the state and measurement models for the mesocosm
experiment, and (4) the numerical routines employed.

Alternatives for calculating ,,, kJ(k)

Sensitivity method

In this method (Biegler et al., 1986),, kJ(k) is calculated by taking the derivative of
Eq. 4 with respect to k, as follows,
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where use of the chain rule has been made. Eq. A1 contains two unknown matrices,
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These matrices can be determined by taking the derivative of Eq. 1 with respect to p and x0

and again employ the chain rule as follows:
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It is clear from Eq. A2, that in order to calculate , kJ(k), an m 3 n matrix of differential
equations must be solved each time the optimization routine requires the gradient. Due to
the high computation overhead, this approach was abandoned in favor of the adjoint
method (Eqs. 7 and 8).

Finite differences method

When the adjoint method could not be used to calculate the gradient of J(k), a
� nite difference method was used. The forward difference estimate of the gradient is
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given by

 J(k)

 kj
<

J(k 1 D kjej ) 2 J(k)

D kj
, j 5 1, . . . , n (A3)

with

D kj 5 max 5 d , * kj * d 6 and d 5 max 5 Î e ,
k

106 (A4)

where ei is an elementary vector with 1 at element i and zeros elsewhere, e is the machine
precision, and k is the user requested accuracy (Kraft, 1994). Clearly, as D kj approaches
zero in Eq. A3, gradient accuracy increases, but precision goes toward zero. Consequently,
the � nite difference approach sacri� ces accuracy for precision or vice versa (Herstine,
1998). This approach often results in a large loss of precision, perhaps maintaining only
half the precision compared to the adjoint or sensitivity methods.

Optimization routines

Four global and eight local optimization routines (Table 3) were investigated to � nd the
optimal parameter set(s), k*, that minimizes the nonlinear objective function J(k), Eq. 4.
This section brie� y describes these routines. For reference, the most rudimentary method,
steepest descent, is brie� y described.

The method of steepest descent proceeds in an iterative fashion (as most methods do)
from the current point, k(i), in parameter space to an optimum in one dimension along a
search direction described by the negative of the function gradient at the current point,
2 , kJ(k) * k5 k(i) . As with most local optimization techniques, the iteration terminates when
some speci� ed criteria are met, such as minimal change in J(k), , kJ(k) approaches zero,
or insigni� cant difference between k(i) and k(i 1 1). The steepest descent method works
adequately when the current point is far from the local optimum. However, the method
becomes inefficient in the neighborhood of the optimum because the search direction
speci� ed by the gradient does not take advantage of the quadratic nature of the objective
function in the vicinity of the optimum. Consequently, steepest descent methods are
typically not used, or are employed only initially in search algorithms.

Routine SA (Corana et al., 1987; Goffe et al., 1994) uses simulated annealing to locate a
global optimum.The algorithm employs a stochastic search, whereby a simulated tempera-
ture governs the likelihood of accepting a current guess. At high-simulated temperature,
there is a high probability that a suboptimal guess will be incorporated into the search. This
simulated thermal noise helps to prevent the routine from being trapped in a local mini-
mum. The algorithm is based on phase transitions in condensed matter, such as freezing.

Routine GLOBAL (Boender et al., 1982; Csendes, 1988) combines a standard conjugate
gradient-type search with a stochastic clustering multistart driver to locate the global
minimum. The stochastic multistart driver provides initial locations to begin the determin-
istic gradient-based search.
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RoutinesDN2FB (Dennis et al., 1981a, b) and DNLS1 (Vandevenderand Haskell, 1982)
employ a variation of the Levenberg-Marquardt least-squares algorithm (Conway et al.,
1970). These algorithms take advantage of the form of the minimization function (i.e., sum
of squared residuals, or x 2 distribution), which allows direct calculation of the Hessian
matrix (Press et al., 1986 pg. 522). The disadvantage of these routines in the current
context is that the objective function is represented as a vector instead of scalar and is
discrete in time, as given by,

Ĵ( j2 1)q 1 i 1 1(k) 5
(hj (x(ti;k), ti; p) 2 yj(ti))2

s j
2

; i 5 0, . . . , q 2 1; j 5 1, . . . , l . (A5)

Consequently, the adjoint equations could not be used to provide the gradient of the vector
objective function, so � nite differences were used (Eqs. A3 and A4).

Routines PRAXIS (Brent, 1973), BBVSCG (Buckley and Lenir, 1985; Buckley, 1994),
VE08 (Griewank and Toint, 1982), and TN (Nash, 1984) employ variations of the
conjugate gradient algorithm to locate local minimum; however, PRAXIS does not require
gradient information.

The routine TENSOR (Chow et al., 1994) also uses a conjugate gradient approach;
however, instead of approximating J(k) by a quadratic function about the optimum,
TENSOR employs a fourth-order (quartic) approximation. Consequently, in addition to
J(k) and its gradient, the routine also explicitly requires the Hessian of J(k). Solution of the
adjoint equationsprovided the gradient of J(k), but � nite differences (internal to TENSOR)
were used to calculate the Hessian.

Routine SUBPLEX (Rowan, 1990) employs a variation of the simplex algorithm to
subspaces of the overall parameter space. Simplex methods (Marsili-Libelli, 1992; Nelder
and Mead, 1965) (not to be confused with the simplex method of linear programming)
employ a simplex (i.e., the hyper-volume de� ned by n 1 1 points whose edges span all of
parameter space) to locate an optima. The n 1 1 vertex points of the simplex are moved in
a simple geometric manner so as to � rst move the entire simplex ‘‘down-hill’’ (for
minimization) and then contract around the local optimum. The advantages of the simplex
method are that (1) gradient information is not required, (2) discontinuous or discrete
functions can be handled, and (3) it is easily implemented. Like steepest descent, however,
the simplex method does not converge to the optimum in the fewest number of steps for
quadratic objective functions and only locate local optima.

Routine SIGMA (Aluffi-Pentini et al., 1988a,b) uses the solution of a stochastic
differential equation derived from the steepest descent equation perturbed by white noise.
In theory, the noise perturbation of the differential equation allows a trajectory to be
bumped across barriers so that the algorithm can potentially locate the global optimum.

The routine GA (Carroll, 1996) uses a genetic algorithm to locate the global optimum.
Genetic algorithms locate optima by simulating natural selection as follows. Initialization
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begins by generating a random population of individuals that each represents a unique
parameter set, k. The � tness (i.e., J(k)) of each individual is determined, and the � ttest (i.e.,
smallest J(k)) are used to generate the next populationof individuals in a manor analogous
to gene crossover and mutation. The algorithm terminates after a speci� ed number of
generations have occurred.

All optimization routines started with the same initial guess for k (Table 1), except for
routines GLOBAL and GA, which randomly select initial conditions. This initial guess
produced a value of 39430 for the objective function (Eq. 4).

Mesocosm state and measurement models

Below is a description of the model developed for the mesocosm experiment. Because
of our focus on dissolved organic matter (DOM), processes involving DOM production
and consumption are represented in greater detail than is typically found in pelagic food
web models (e.g., Fasham et al., 1990). See Table 1 in main text for description of
parameters.

State equations

State vector

xT(t) 5 [A(t), Z(t), N(t), OCL(t), ONL(t), OCR(t), ONR(t), DC(t), DN(t), B(t)] (A6)

Autotroph balance

A‚ (t) 5 ( w A(t) 2 RA(t) 2 EA
C(t) 2 w mA(t))A(t) 2 w AZ(t)Z(t) (A7)

Heterotroph balance

Z‚ (t) 5 ( w AZ(t) 1 w BZ(t) 2 RZA(t) 2 RZB(t) 2 w mZ(t))Z(t) (A8)

Bacteria balance

B‚ (t) 5 ( w B(t) 2 RB(t) 2 w mB(t))B(t) 2 w BZ(t)Z(t) (A9)

Dissolved inorganic nitrogen balance

N‚ (t) 5 2 UA
N(t)A(t) 2 UB

N(t)B(t) 1 (EAZ
N (t) 1 EBZ

N (t))Z(t) (A10)

Dissolved labile organic carbon balance

O‚ CL(t) 5 fLEAEA
C(t)A(t) 2 w B(t)B(t) 1 dRLOCR(t) 1 fDLdDLDC(t) (A11)

Dissolved labile organic nitrogen balance

O‚ NL(t) 5
1

r EA
fLEAEA

C(t)A(t) 2 w B(t)B(t)
ONL(t)

OCL(t)
1 dRLONR(t) 1 fDLdDLDN(t) (A12)
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Dissolved refractory organic carbon balance

O‚ CR(t) 5 (1 2 fLEA)EA
C(t)A(t) 1 (1 2 fDL)dDLDC(t) 2 dRLOCR(t) (A13)

Dissolved refractory organic nitrogen balance

O‚ NR(t) 5
1

r EA
(1 2 fLEA)EA

C(t)A(t) 1 (1 2 fDL)dDLDN(t) 2 dRLONR(t) (A14)

Detrital carbon balance

D‚ C(t) 5 w mA(t)A(t) 1 w mB(t)B(t) 1 w mZ(t)Z(t) 2 dDLDC(t) (A15)

Detrital nitrogen balance

D‚ N(t) 5
1

r A
w mA(t)A(t) 1

1

r B
w mB(t)B(t) 1

1

r Z
w mZ(t)Z(t) 2 dDLDN(t) (A16)

Autotroph growth equations

Autotrophs are limited by both DIN and light availability (Fasham et al., 1990), excrete
fEA fraction of net primary productivity as DOM, respiration is growth associated, and
mortality is a function of DIN availability.

w A(t) 5 Q (Io
1 (t), t)

N(t)

N(t) 1 kNA (A17)

Q (Io
1 (t), t) 5

1

h e
0

h w A
Ma I(t, z)

Î ( w A
M)2 1 ( a I(t, z))2

dz

5
w A

M

h(kw 1 kpPM(t) 1 kdOCR(t))
ln 3 a I(t, 0) 1 Î ( a I(t, 0))2 1 ( w A

M)2

a I(t, h) 1 Î ( a I(t, h))2 1 ( w A
M)2 4

PM(t) 5 A(t) 1 B(t) 1 Z(t) 1 DC(t)

I(t, z) 5 h IIo
1 (t) exp [2 (kw 1 kpPM(t) 1 kdOCR(t))z]

(A18)

RA 5 (1 2 j A) w A(t) (A19)

EA
C(t) 5 fEA j Aw A(t) (A20)

UA
N(t) 5 1 1 2 fEA

r A
2

fEA

r EA
2 j A w A(t) (A21)

w mA(t) 5 mA 1 1 2
N(t)

N(t) 1 kNA
2 (A22)
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Bacterial growth equations

Bacteria (osmotrophs) consume DOM and immobilizeor remineralize DIN as a function
of the N content of DOM. Bacteria will respire all DOC as total N availability goes to zero.
Bacterial mortality is a function of DOC (i.e., energy) availability and respiration is growth
associated.

w B(t) 5
w B

MOCL(t)

OCL(t) 1 kOB
(A23)

j B(t) 5 j B
M 3 N(t)

N(t) 1 kNB
(1 2 z ) 1 z 4 where z 5 5

r BONL(t)

j B
MOCL(t)

for
r BONL(t)

j B
MOCL(t)

, 1

1 for
r BONL(t)

j B
MOCL(t)

$ 1

(A24)

RB(t) 5 (1 2 j B(t)) f B(t) (A25)

UB
N(t) 5 1 j B(t)

r B
2

ONL(t)

OCL(t) 2 w B(t) (A26)

w mB(t) 5 mB 1 1 2
w B(t)

w B
M 2 (A27)

Heterotroph growth equations

Heterotrophs consume both autotrophs and bacteria using modi� ed Holling type III
growth kinetics (Holling, 1965). Heterotrophic growth can be either C or N limited, but
when C limited, the excess N is excreted as ammonium. Mortality is a function of food
availability.

w AZ(t) 5
w Z

MA(t)2

A(t)2 1 B(t)2 1 kz
2 (A28)

RZA(t) 5 5 (1 2 j Z) w AZ(t) for
j Zr A

r Z
# 1

1 1 2
r Z

r A
2 w AZ(t) for

j Z r A

r Z
. 1

(A29)

EAZ
N (t) 5 5 1

1

r A
2

j Z

r Z
2 w AZ(t) for

j Z r A

r Z
# 1

0 for
j Z r A

r Z
. 1

(A30)
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w BZ(t) 5
w Z

MB(t)2

A(t)2 1 B(t)2 1 kZ
2

(A31)

RZB(t) 5 5 (1 2 j Z) w BZ(t) for
j Zr B

r Z
# 1

1 1 2
r Z

r B
2 w BZ(t) for

j Zr B

r Z
. 1

(A32)

EBZ
N (t) 5 5 1

1

r B
2

j Z

r Z
2 w BZ(t) for

j Zr B

r Z
# 1

0 for
j Zr B

r Z
. 1

(A33)

w mZ(t) 5 mz 1 1 2
w AZ(t) 1 w BZ(t)

w Z
M 2 (A34)

Measurement model

Here we detail the mapping from state space to observation space, or formally:

h(x(t; k), t; p) ® y(t) (A35)
Measurement vector

yT(t) 5 [DOC(t), POC(t), PON(t), DIN(t), G(t), NPP(t), BP(t), K(t)] (A36)

Dissolved organic carbon (µM C)

OCL(t) 1 OCR(t) ® DOC(t) (A37)

Particulate organic carbon (µM C)

A(t) 1 B(t) 1 Z(t) 1 DC(t) ® POC(t) (A38)

Particulate organic nitrogen (µM N)

A(t)

r A
1

B(t)

r B
1

Z(t)

r Z
1 DN(t) ® PON(t) (A39)

Dissolved inorganic nitrogen (µM N)

N(t) ® DIN(t) (A40)
Chlorophyll a (µg l 2 1)

A(t)

cchla
® G(t) (A41)
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Net primary productivity at depth zI (µM C d2 1)

(1 2 fEA) j A

N(t)

N(t) 1 kNA

w A
Ma I(t, zI)

Î ( w A
M)2 1 ( a I(t, zI))2

A(t) ® NPP(t, zI) (A42)

where zI is the depth at which the incubation was performed.
Bacterial productivity (µM C d 2 1)

BP(t) 5 j B(t) w B(t)B(t) (A43)

Light extinction coefficient (m 2 1)

kw 1 kPPM(t) 1 kdOCR(t) ® K(t) (A39)

Numerical integration and quadrature

The routines DDRIV3 and DQAGP from the SLATEC library (Vandevender and
Haskell, 1982) were used for numerical integration of the differential equations and
numerical quadrature of the objective function (Eq. 4), respectively. DDRIV3 employs an
error controlled adjustable time-step and dynamically selects either Adams’ method (for
nonstiff equations) or Gear’s method (for stiff equations). Because of the spiky nature of
the residual vector (Fig. 3c) driving Eqs. 4, 7 and 8, both integration and quadrature
routines were forced to evaluate the functions at times corresponding to observations, ti, to
insure that the numerical solution did not step over the residual correction term.

Code to generate derivativesof f(x(t; k), t; p) and h(x(t; k); p) with respect to x(t; k) and
p for the adjoint method (Eqs. 7 and 8) was symbolically derived using ADIFOR 2.0
(Bischof et al., 1992) from the source code of f(x(t; k), t; p) and h(x(t; k); p), respectively.
The LINPACK singular value decomposition (SVD) routine DSVDC (Dongarra et al.,
1979) was used to examine the maximum and minimum singular values of the normalized
Hessian matrix (Eq. 28).
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