
 
 

 
 
 
 

P.O. BOX 208118 | NEW HAVEN CT 06520-8118 USA | PEABODY.YALE. EDU 

 
 
JOURNAL OF MARINE RESEARCH 
The Journal of Marine Research, one of the oldest journals in American marine science, published 

important peer-reviewed original research on a broad array of topics in physical, biological, and 

chemical oceanography vital to the academic oceanographic community in the long and rich 

tradition of the Sears Foundation for Marine Research at Yale University. 

 

An archive of all issues from 1937 to 2021 (Volume 1–79) are available through EliScholar,  

a digital platform for scholarly publishing provided by Yale University Library at  

https://elischolar.library.yale.edu/. 

 

Requests for permission to clear rights for use of this content should be directed to the authors, 

their estates, or other representatives. The Journal of Marine Research has no contact information 

beyond the affiliations listed in the published articles. We ask that you provide attribution to the 

Journal of Marine Research. 

 

Yale University provides access to these materials for educational and research purposes only. 

Copyright or other proprietary rights to content contained in this document may be held by 

individuals or entities other than, or in addition to, Yale University. You are solely responsible for 

determining the ownership of the copyright, and for obtaining permission for your intended use. 

Yale University makes no warranty that your distribution, reproduction, or other use of these 

materials will not infringe the rights of third parties. 

 
This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. 
https://creativecommons.org/licenses/by-nc-sa/4.0/ 

 

 



The stability of an NPZ model subject to realistic levels
of vertical mixing

by Christopher A. Edwards1,2, Thomas A. Powell1 and Harold P. Batchelder1

ABSTRACT
The linear stability of a vertically-distributed, Nutrient-Phytoplankton-Zooplankton (NPZ) ocean

ecosystem model is analyzed to understand how vertical mixing in� uences biological dynamics. In
the absence of vertical diffusion, the model generally exhibits both stable � xed point and limit cycle
behavior, depending on the depth and choice of parameters. Diffusion couples the dynamics of
nearby levels and can induce stable pro� les as well as oscillatorydynamical trajectories that become
vertically phase-locked for large mixing levels. Calculations of the Lyapunov exponent reveal that
vertical diffusion can drive this model into a chaotic state, though this occurs only for levels of
diffusion well below those found in nature. The dynamics of the model, assuming macrozooplankton
are the dominant grazers in the ecosystem, are compared to those in which microzooplankton
dominate, with a faster grazing rate and poor assimilation efficiency. While the coupled physical-
macrozooplantonsystem has a stable pro� le, the coupledmicrozooplanktonpro� le remains unstable,
even at large mixing levels. Fluctuationsoccur on time scales varying between a few days and a few
months, dependingon the parameters and magnitude of diffusion.

1. Introduction

Many models that describe the interaction between different plankton taxa in the ocean
have been formulated and applied to studies of pelagic ecosystems. One class of such
models includes the box models that group entire populations into individual, mutually
interacting compartments. Complexity in these models varies widely, depending on the
number of state variables included as well as the rules that govern their interaction. One
well-known model (Fasham et al., 1990) includes seven boxes: phytoplankton, zooplank-
ton, bacteria, nitrate, ammonium, dissolved organic nitrogen, and detritus.Among the most
simple of the prognostic biological models is the NPZ model of Franks et al. (1986), which
considers only three compartments: phytoplankton, zooplankton, and dissolved nutrients.

Although the number of components and the details of process formulations vary, each
model has been used to simulate and, in turn, interpret the development of phytoplankton
blooms and other biological features in the ocean. The models are often coupled to physical
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models of different levels of complexity. Examples of zero-dimensional ecosystem models
(in which biological � elds are averaged over the surface mixed layer) include those of
Fasham et al. (1990) and Denman and Gargett (1995). Doney et al. (1996) coupled a
multi-component biological model with a one-dimensional (vertical) physical model to
reproduce chlorophyll features observed at the Bermuda Atlantic Time-Series (BATS) Site.
In two dimensions, Wroblewski (1977) modeled the development of phytoplankton
blooms along the Oregon coast during upwelling-favorable wind conditions. When
coupled to large-scale general circulation models, the large-scale geographical distribution
of climatological primary productivity can also be assessed (e.g., Sarmiento et al., 1993).

Even as these models are increasingly applied to a variety of physical circumstances, a
fundamental understanding of their underlying dynamics remains incomplete. Such
understanding is essential to their interpretation. Individual simulations are simply inca-
pable of characterizing the system. Collections of simulations often explore model result
sensitivity to reasonable changes in poorly known parameters. In some studies, the steady
state solution is determined and its sensitivity to parameter choices calculated (e.g., Moisan
and Hofmann (1996) for a one-dimensionalphysical/biologicalmodel). In general, though,
the dynamics of that steady solution are not analyzed.

The model of Franks et al. (1986) represents a counter-example, a model which has been
well characterized in zero physical dimensions. In the original work, the authors deter-
mined the analytic steady-state solutions and compared the temporal response and
parameter sensitivity of the model using both an Ivlev and an alternative Mayzaud-Poulet
grazing function for a given set of parameters. Subsequently, Busenberg et al. (1990)
performed a detailed analysis of the existence and stability of the model’s steady-state
solutions. Both stable and unstable � xed points, resulting in limit cycle oscillations, were
noted for solutions with nonzero phytoplankton, zooplankton and nutrient concentrations.
However, the dynamics of the biological system are inherently spatially dependent because
the growth rate is naturally dependent on the light � eld which decays with depth. As a
result, the dynamics should be expected to vary within the water column, even in the
absence of physical processes.

Furthermore, physical mechanisms may signi� cantly impact the dynamics of the
biological � elds. The contribution of vertical mixing toward setting physical properties in
the surface ocean is well established. Wind, thermal, and fresh-water forcing at the surface
drives turbulent structures that mix physical properties vertically and in turn in� uence the
exchange of momentum, heat and fresh water between the atmosphere and the ocean. The
calculation of the depth of the mixed layer and the magnitude of the mixing coefficient are
critical components of physical models and not surprisingly also affect the development of
biological � elds. Indeed, it is the interaction of vertical mixing and biological processes
that forms the foundation of the seminal theory of plankton blooms (Sverdrup, 1953). The
signi� cant role that the mixed layer plays in the growth and structure of phytoplankton
patches has been described by Franks (1997). In that work, a coupled bio-physical model
examined cross-frontal exchange with and without surface mixed-layer models. Both a
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slab mixed-layer model and a turbulence-closure scheme were tested and, though the
systems were complicated by the inclusion of advective effects, the vertical mixing was
shown to strongly in� uence the magnitude and physical scales of the evolving patches as
well as their nonlinear interactions.By redistributing material vertically, diffusion modi� es
the dynamical budgets and can lead to substantially different time series than would be
expected in its absence.

This paper builds upon previous efforts by exploring the effects of vertical diffusion on
the dynamics of the simple second-order biologicalmodel of Franks et al. (1986). This is of
interest for two primary reasons. First, although simple, this model has been widely applied
to several ocean systems, ranging from basin scale (Wroblewski et al., 1988) to more
localized wind-forced (Franks and Walstad, 1997) and tidally forced (Franks and Chen,
1996) frontal systems. Despite its wide application, a detailed analysis of the model
response to vertical mixing has not been explored. We do that here. Second, the model as it
has been generally applied has had parameter values suited to macrograzers (copepods).
Within the past 15 years, numerous studies (Gifford, 1988; Banse, 1992; Verity et al., 1993;
Neuer and Cowles, 1994) have documented that the primary grazers in almost all ocean
ecosystems are not the copepods, but rather the microzooplankton. Microzooplankton,
particularly ciliates and heterotrophic � agellates, have biological dynamics very different
from copepods. Without altering the fundamental con� guration of the model, we reparam-
eterize the grazing component of the NPZ model to better represent known microzooplank-
ton dynamics/bioenergetics, evaluate the response of the ‘‘microzooplankton’’ model to
vertical mixing and compare it to the ‘‘macrozooplankton’’ model. We conduct the analysis
in a stepwise fashion, � rst in the absence of physical processes, and then with the addition
of vertical diffusion. We examine the potential stabilizing and destabilizing impact of
vertical mixing on the coupled bio-physical system. Depending on the parameter set and
the magnitude of the diffusion, the dynamics can be either stabilized or destabilized. In
some cases, the in� uence is found to be nonmonotonic. That is, moderate diffusivity can
stabilize the vertical pro� le from its heterogeneous nondiffusive character, and yet higher
levels lead to oscillations.Lastly, we inquire whether this model generates chaotic plankton
dynamics. The existence of chaos in pelagic ecosystems remains an open research
question. Model studies (e.g., Hastings and Powell, 1991) suggest that ecosystem dynam-
ics may be chaotic, and limited observational evidence (e.g., Ascioti et al., 1993) supports
deterministic nonlinear, though not de� nitively chaotic, interactions. This aspect of the
present model has not been examined, and is of particular interest as such complex
behavior could only result from the coupled bio-physical nature of this system. Chaos
driven by diffusive coupling of adjacent oscillators was � rst explored in a spatially-
extended predator-prey model by Pascual (1993). For both micro- and macrozooplankton
cases, we � nd that very weak levels of diffusion lead to a chaotic state. However, for
realistic levels of mixing associated with internal wave processes, the model does not
exhibit chaos.
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2. Model formulation

The biological model considers the exchange of nitrogen between single phytoplankton
(P) and zooplankton (Z) species, and a nutrient pool (N ). The biological interactions are
described by

dP

dt
5

VmNP

ks 1 N
ekextz 2 RmZ(1 2 e 2 L P) 2 mP (2.1a)

dZ

dt
5 (1 2 g )RmZ(1 2 e 2 L P) 2 gZ (2.1b)

dN

dt
5 2

VmNP

ks 1 N
ekextz 1 g RmZ(1 2 e 2 L P) 1 mP 1 gZ. (2.1c)

Here, Vm is the maximum uptake rate of nutrients by the phytoplankton and ks is the
Michaelis-Menten half-saturation value. The uptake is governed by the exponential decay
of photosyntheticallyavailable radiation below the surface with an e-folding scale of kext

2 1.
The grazing is assumed to have an Ivlev functional form, with Rm the maximum rate, and L
sets the level of saturation. The assimilation efficiency of the grazers is denoted (1 2 g )
and the phytoplanktonand zooplankton mortalities are m and g, respectively.

In the ocean, the purely biological dynamics are subject to advection and diffusion. In
addition, the total nitrogen within the system is � xed (i.e., N 1 P 1 Z 5 NT). For uniform,
NT, the three component dynamics may be reduced to two and expressed

 P

 t
1 u · = P 5 F 1



 z 1 Kv

 P

 z 2 1 = h · (Kh= hP ) (2.2a)

 Z

 t
1 u · = Z 5 G 1



 z 1 Kv

 Z

 z 2 1 = h · (Kh = hZ) (2.2b)

where F 5 dP/dt and G 5 dZ/dt in the absence of diffusion (i.e., Eqs. 2.1a and 2.1b).
Cartesian coordinates (x, y, z) and corresponding velocities (u, v, w) are assumed. The
origin is located at the ocean surface, with z , 0 within the domain. Though risking some
confusion, we apply the conventional notation that small z refers to distance and capital Z
refers to the zooplankton concentration. Mixing is anisotropic, Kv being the vertical
diffusivity and Kh being its horizontal value. The horizontal gradient operator is denoted
by = h.

Our primary concern is the effect of vertical mixing on the dynamics of the model. As a
result, we neglect horizontal dimensions (i.e., set Kh 5 0), set the velocity � eld to zero, and
recast the dynamics in terms of vertical mixing only. The stability of the steady-state
solution (P*, Z*) is then determined by analyzing the response of small perturbations
about the � xed point. Thus we let

P(z, t) 5 P*(z) 1 P8(z, t) (2.3)
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and introduce

P8(z, t) 5 P̂(z)e l t. (2.4)

Inserting Eqs. 2.3 and 2.4 into the system 2.2a–2.2b and linearizing then yields the relation

3
 F

 P
1



 z 1 Kv



 z 2
 F

 Z
 G

 P

 G

 Z
1



 z 1 Kv



 z 2 4 3 P̂Ẑ 4 5 l 3 P̂Ẑ 4 . (2.5)

The components of the matrix on the left-hand side of Eq. 2.5 are determined at the � xed
point (P*(z), Z*(z)). If all eigenvalues, l , have negative real parts then the steady-state
solution is linearly stable, whereas one eigenvalue with a positive real part indicates that
small perturbations from the solution will grow.

In this work, the � xed point solutions are determined in two steps. First, the steady-state
in the absence of diffusion is determined through the analytic solution of Franks et al.
(1986) over the full domain 2 H , z , 0. Second, this initial condition is iteratively
adjusted to approach the solution to the discretized nonlinear set of equations that include
nonzero diffusivity. No � ux boundary conditions are enforced at the upper and lower
boundaries:

Kv

dP

dz
5 Kv

dZ

dz
5 0 at z 5 0 and z 5 2 H. (2.6)

The numerical algorithm applied is fsolve.m, included in the Optimization Toolbox of
Matlab 5.2 (Mathworks, Inc). We require time-derivative terms associated with the � nal
solution to be smaller than 10 2 4 µmole Nitrogen/(1 day), which is deemed close enough to
the true solution for the stability calculations. Most solutions have time-derivatives several
orders of magnitude smaller. Once the � xed point is determined, Eq. 2.5 is solved using the
eigenvalue solver, eig.m, also included in the standard Matlab distribution. Edwards and
Pedlosky (1998) have used this method previously to examine the enhanced barotropic
instability of the western boundary current. For this study, H 5 65 m and dz 5 1 m. While
qualitatively, the behavior described below is quite robust, some quantitative changes
occur with differing resolutions. We choose dz 5 1 m as a reasonable resolution for
one-dimensional studies. However, we emphasize that the stability boundaries will vary
somewhat for other resolutions and maximum depths. The full system of equations is
extended from n 5 2 for the purely biological model to n 5 2H/dz for that including
vertical mixing. It is this extension of the dimensionality of the system that enables more
complicated dynamics than would occur in the purely biological model.

To facilitate comparisons with other parameter sets, this model can be rescaled through
the substitutionsdescribed in Table 1 to yield a nondimensional set of equations. Including
vertical mixing and dropping primes that represent nondimensional quantities, these
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equations are expressed

dP

dt
5

NP

ks 1 N
ez 2 RmZ(1 2 e 2 L P) 2 mP 1 Kv

 2P

 z2
(2.7a)

dZ

dt
5 (1 2 g )RmZ(1 2 e 2 L P) 2 gZ 1 Kv

 2Z

 z2
. (2.7b)

As our interest is to examine the in� uence of realistic mixing levels on the NPZ dynamics,
all results expressed in this study are dimensional.All times and rates cited are in terms of
days and meters, except for diffusivities which are always cast in the more conventional
m2/s. The nondimensional values can be obtained easily by scaling time by the uptake rate
inverse, Vm

2 1, depth by the light-limiting e-folding scale, kext
2 1, and the biomass concentra-

tions by the total nitrogen, NT.
In the next section, we compare and contrast two parameter sets de� ned in Table 2. Set

(a) represents the more conventional parameters used in Franks and Walstad (1997). In
particular, the parameters related to the growth efficiency, the maximum grazing rate Rm,
the Ivlev constant L and the assimilation efficiency (1 2 g ), are most applicable to a
system in which macrozooplankton, like copepods, are the primary grazers. These
parameter choices re� ect the longstanding bias in the ocean ecosystem modeling commu-
nity to ignore the micrograzers, and to assume a nutrient-diatom-copepod system. Over the
past 15 years many studies have documented that microzooplankton—ciliates and � agel-
lates—are the predominant grazers in both nearshore and oceanic ecosystems (Gifford,
1988; Banse, 1992; Verity et al., 1993; Neuer and Cowles, 1994). Microzooplanktonhave
very different biological dynamics than copepods. First, protists undergo cell division, so
their numerical response to favorable feeding conditions is rapid and not limited by

Table 1. Transformations to nondimensionalized model. Nondimensional quantities are denoted
with primes.

t8 5 Vmt
z8 5 kextz
P8 5 P/NT

Z8 5 Z/NT

N8 5 N/NT

R8m 5 Rm/Vm

m8 5 m/Vm

g8 5 g/Vm

k8s 5 ks/NT

L 8 5 NTL

K8v 5 Kv

kext
2

Vm

g 8 5 g
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life-history constraints. Growth rates for microzooplanktonrival those of their phytoplank-
ton prey, on the order of 0.5–2.0 day2 1 (Strom and Morello, 1998).Assuming gross growth
efficiency (growth/ingestion) of micrograzers to be roughly 0.33 (range 0.15–0.64; Strom
and Morello, 1998; Straile, 1997), then ingestion must be of order 1.5–6.0 day2 1—clearly
sufficient to consume large quantities of phytoplanktonand prevent substantial blooms. If a
third of the consumed phytoplankton contributes to zooplankton biomass, then the
remainder is immediately remineralized (through excretion and metabolism) to the
dissolved nutrient pool. In short, microzooplankton efficiently convert phytoplankton
biomass into dissolved nutrients, while macrozooplanktonconvert phytoplanktonpredomi-
nantly into zooplankton biomass, and only slowly into dissolved nutrients. Thus, micro-
zooplankton- and macrozooplankton-dominated ecosystems (and models) differ dramati-
cally in the relative � ows between the NPZ compartments.To explore these Z-compartment
differences (ingestion, growth, remineralization), we altered three parameters in the NPZ
model (Table 2, set (b)). The microzooplanktonparameterization has a maximum ingestion
rate Rm that is eight times higher than that of macrozooplankton. Second, we increased L
by 50%, which causes grazing in the microzooplankton to saturate at lower levels of
phytoplankton. And � nally, we more than doubled g , so that more of the ingested
phytoplanktonis remineralized than incorporated into zooplankton biomass.

3. Results

a. Dynamics without diffusion

The linearized model, Eq. 2.5, is examined initially in the absence of diffusion by setting
Kv 5 0. This simpli� cation eliminates the coupling between vertical levels. Biological
interactions at each level can now be considered independent dynamical systems having
different maximal uptake rates equal to Vm 3 ekextz. The steady solutions of this system have
been described by Wroblewski et al. (1988) and their existence and stability carefully
characterized by Busenberg et al. (1990).

Table 2. Biological parameters applied in this study. Set (a) is targeted toward macrozooplankton
grazers, and set (b) corresponds to microzooplankton-dominated systems.

(a)
Macro

(b)
Micro Units

Vm 2.0 2.0 day2 1

ks 0.1 0.1 µmole Nitrogen l 2 1

kext 0.06 0.06 m 2 1

Rm 0.5 4.0 day2 1

L 0.2 0.3 (µmole Nitrogen l2 1) 2 1

g 0.3 0.7
m 0.1 0.1 day2 1

g 0.2 0.2 day2 1

NT 10 10 µmole Nitrogen l 2 1
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For the macrozooplanktonparameterization, the � xed point solution and eigenvalues are
shown in Figure 1. The steady state solution shown in Figure 1a, which was also
determined in Franks and Walstad (1997), can be divided into two domains. Above a
transition depth (roughly z 5 2 50 m for this parameter set), there exists a solution with
nonzero phytoplankton and zooplankton components. In this region, the phytoplankton
population is independent of depth, depending only on the grazing and zooplankton
mortality parameters through Eq. 2.1b, and not on the magnitude of the uptake. Below this
depth, a steady solution with zero phytoplankton and zooplankton concentrations applies.
To be precise, the transition depth itself really represents a narrow window within which a
steady solution balancing only phytoplankton and nutrients is found. However, on the

Figure 1. Steady pro� le and eigenvalues for the macrozooplankton parameters and zero diffusion.
(a) Steady-state solution for N ( 2 ), P (--), and Z( 2 ·) which results in eigenvalues whose real
portion is shown in (b) and positive real portion emphasized in (c). The imaginary component is
shown in (d). N, P, and Z are expressed in µmole Nitrogen/l and eigenvaluesare expressed in units
day2 1.
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coarse resolution of the present model, this balance is not observed, and as a result is
ignored in our further discussion.

Presented in Figure 1b is the real portion of the eigenvalues associated with this
steady-state solution, two eigenvalues at each depth level. Near the surface, the set of the
eigenvalues marked with the circles have large negative real parts. Eigenvalues denoted by
stars are also negative near the surface, though barely so with values near 2 0.2/day. These
values indicate that the steady solution near the surface is stable. At mid-depth, the sign of
the eigenvalues is difficult to interpret, and as a result, we plot in Figure 1c the same
eigenvalues as in Figure 1b, but only show the positive half-plane. Though of smaller
magnitude than the negative values near the surface, there clearly exists a portion of the
water column (between 25 and 50 m) with eigenvalues having positive real parts. At these
depths the steady state is linearly unstable. Finally, at depths below , 50 m, the steady
solution, with zero phytoplankton and zooplankton concentrations, is again stable. The
dynamical modes are further characterized by the imaginary portion of the eigenvalue,
shown in Figure 1d. Here, the near-surface eigenvalues have zero imaginary part,
indicating a direct return to the stable � xed point. In the unstable portion of the water
column, the eigenvalues have nonzero imaginary components. In fact, they are complex
conjugate solutions, since the matrix in Eq. 2.5 is real. Thus the solution will drift away
from the steady states in an oscillatory fashion, ultimately leading to limit cycle behavior
because individual pools of nitrogen are necessarily bounded by the total magnitude of
nitrogen NT in the system. Finally, in the biologically stable depths below 50 m, the
eigenvalues are purely real, re� ecting again a direct return to the stable � xed points. We
also note that there exists a narrow set of depths just above the unstable region in which the
eigenvalues have negative real part, but are complex. At these depths, the model should
return to the stable state through an oscillatory exchange of nitrogen between the three
pools.

To illustrate the utility of the � xed-point analysis in describing the dynamical response
of the model, we show in Figure 2 time series of N, P, and Z, at several depths for the
nondiffusive, macrozooplankton parameter system. In each panel, the model was initial-
ized at levels, P 5 4 µmole Nitrogen/l and N 5 Z 5 3 µmole Nitrogen/l. Each of the
different regimes described above can be observed. In the uppermost panel, corresponding
to a 5-m depth, the system returns following a transient phytoplankton bloom to its stable
equilibrium near the surface. In panel (b) at 25 m, the return is through oscillations with a
period of approximately 25 days. At 35-m depth in panel (c), the system approaches limit
cycles with oscillations over roughly 50 days. We do not expect the time scale for
oscillation predicted by the stability analysis to apply exactly to the system far from
equilibrium because the analysis speci� cally characterizes only small perturbations from
that steady state; however, it is worth comparing these estimates quantitatively. The
imaginary component of the eigenvalue at 25 m depth is approximately Im( l ) 5 0.25/day,
which corresponds to a period of oscillation of T 5 2 p /Im( l ) > 25 days. The quantitative
agreement at 45 m depth is not as good, though the qualitative trend is borne out by the
stability analysis: Im( l ) 5 0.064/day, which implies a period T > 98 days. Though not
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shown, a longer time series at 45 m reveals oscillations with a period of roughly 125 days.
Finally, the return to the stable phytoplankton- and zooplankton-free equilibrium at z 5
55 m is presented in Figure 2e.

Applying the same analysis to the microzooplankton parameterization (Table 2, column
b) illustrates that the structure of dynamical behavior associated with the macrozooplank-
ton parameters is not universal, but can vary with the parameters chosen. Figure 3a shows
the steady state pro� le for the microzooplankton. The same basic structure exists with
nonzero phytoplankton and zooplankton values only above the transition depth (which is
the same as the previous case because the parameters which determine this depth have not
changed). However, the magnitude of the phytoplanktonand zooplankton is now consider-

Figure 2. Time series solution of the nondiffusive macrozooplankton model at depths (a) 5 m, (b)
25 m, (c) 35 m, (d) 45 m, and (e) 55 m. Nutrients are shown as solid, phytoplanktonas dashed, and
zooplankton is shown as dot-dashed lines.
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ably smaller than in the previous case. There is little nutrient depletion in the surface waters
with this steady solution. The phytoplankton levels are determined through a balance of
assimilated ingestion and zooplankton mortality. The substantial increase in the grazing
constants of the microzooplankton parameterization leads directly to this reduction in the
steady-state value. As before, eigenvalues are real and negative below the transition depth.
However, above this depth, all eigenvalues are complex, with positive real parts. Thus the
steady solution is unstable to small perturbations at all depths above roughly z 5 2 50 m.
The time series of N, P and Z shown in Figure 4 again con� rms expectationsfrom the linear
stability analysis. For all levels above the transition depth, the microzooplankton model
exhibits limit cycle behavior, with the period of oscillation increasing with depth.

Figure 3. Steady pro� le and eigenvalues as in Figure 1, for the microzooplanktonparameters in the
absence of diffusion: (a) Steady-state solution for N ( 2 ), P (--), and Z(2 ·); (b) real portion of
associatedeigenvalues; (c) positive real portion; (d) imaginary component.
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b. Dynamics with diffusion

i. Linear stability. The limited range of behavior observed in the previous section is to be
expected in second-order dynamical systems. As shown below, this behavior is enriched
through the coupling of diffusion which multiplies the dimension by the number of levels.
Thus dynamics otherwise impossible in such a simple biological system are observed.

Figure 5a shows the steady-state solution subject to vertical diffusion corresponding to
background, internal wave levels of the deep ocean (Kv 5 10 2 5 m2/s) (Toole et al., 1994;
Polzin et al., 1997). The close similarity of this � xed point to the analytical solution of
Figure 1a is clear. In the upper portion of the water column there is very little modi� cation
to the pro� le. The major difference occurs near the transition depth where the analytic
pro� le is discontinuous. Diffusion modi� es the steady solution to one with smooth

Figure 4. As in Figure 2, time series solution of the nondiffusivemicrozooplanktonmodel at depths
(a) 5 m, (b) 25 m, (c) 35 m, (d) 45 m, and (e) 55 m.

48 Journal of Marine Research [58, 1



gradients. Panel 5b shows the real parts of eigenvalues associated with this steady solution.
Unlike the analogous previous plots in which depth was used as the vertical axis, these real
parts are plotted as a function of an index associated with an arbitrary numbering of the
eigenvalues.This index serves to connect each growing or decaying mode with its vertical
structure as given by the corresponding eigenfunction, to be explored further below. It is
clear from Figure 5b that there again exist a series of decaying modes, with very large
amplitude, as in the nondiffusive system. However, close examination of the eigenvalues
reveals that none has positive real part. The linear stability analysis suggests that diffusion
has stabilized the � xed point solution.

The temporal progression of the coupled system at several depths is shown in Figure 6.
In the surface waters, there exists the same phytoplankton bloom, followed by a slow
( , 30 day) return to equilibrium values. At formerly unstable mid-depths the � elds return
to equilibrium, as a damped oscillator, consistent with complex eigenvalues (not pre-
sented). The time scale for the mid-depth return to equilibrium is approximately 70 days.
Indeed, diffusion does stabilize this biological pro� le.

In a similar calculation of the modes using a higher level of diffusivity (Kv 5 10 2 2 m2/s),
all resulting eigenvalueshave a negative real part, as in the case just examined. However, at
this higher level of mixing all eigenvalues are real, implying a direct return to equilibrium

Figure 5. (a) The � xed point solution (N (2 ), P (--), and Z( 2 ·)) subject to Kv 5 10 2 5 m2/s and (b)
real part of the eigenvalues for the macrozooplanktonparameters.All eigenvalues have real parts
less than zero. N, P, and Z are expressed in µmole Nitrogen/l and eigenvaluesare expressed in units
day2 1.
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at all depths. This behavior is borne out in the time series shown in Figure 7, in which the
strong vertical mixing leads to nearly uniform dynamics within the water column. The
steady state approached varies in the vertical, but the initial phytoplankton blooms,
followed by their relaxation to equilibrium all have the same time scale. Thus for this
parameter set, diffusion stabilizes the water column and does so more strongly at higher
levels of mixing, with slow oscillatory returns at weak levels and more direct and vertically
coupled returns at higher levels.

In the limit of very weak mixing, the diffusive model (Eq. 2.5) must be consistent with
the nondiffusive model described above. Calculations at a range of mixing levels indicate
that the transition from an unstable mid-depth part of the water column to stability occurs
for this parameter set at approximately 3.9 3 102 7 m2/s, well below diffusivities found in
nature.

Figure 6. As in Figure 2, but with time series solution of the diffusive macrozooplankton model
(Kv 5 102 5 m2/s) at depths (a) 5.5 m, (b) 25.5 m, (c) 35.5 m, (d) 45.5 m, and (e) 55.5 m.
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This stabilizing effect of mixing is not universal, and can be explored further through the
microzooplankton model. As described above the nondiffusive case reveals linearly
unstable, steady-state solutions throughout the upper 50 m of the water column with the
maximum growth rate nearest the surface. As before, mixing couples biological dynamics
in the vertical. However, for diffusivities up to 102 2 m2/s, the model remains unstable.
Figure 8 shows the stability properties for Kv 5 102 5 m2/s. The vertical pro� le of the steady
solution shown in panel (a) reveals some modi� cation of the nondiffusive steady solution
near the transition depth. In panel (b) is shown only the positive real part of the
eigenvalues.There are two growing modes, and they are complex conjugate solutions with
their imaginary parts shown in panel (c). The vertical structure of this growing mode is
shown in panel (d) for the phytoplankton � eld and (e) for the zooplankton. Each
eigenfunction shows a surface-enhanced amplitude function.

Figure 7. As in Figure 6, with time series solution of the diffusive macrozooplanktonmodel but with
Kv 5 10 2 2 m2/s.
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The dynamics alter little for increased mixing levels (not shown). Growing modes are
found for all diffusivities tested up to a level of Kv 5 102 2 m2/s. The main differences at
higher diffusivities are, not surprisingly, that the steady solutions and eigenfunctions
become more vertically uniform and less surface enhanced.This fact is re� ected in the time
series. At the background mixing levels, the time-scales of the oscillationsvary with depth.
However, at larger levels, the variability becomes phase-locked in the vertical. Finally, it is
worth noting that the time scales of the variability re� ect not the surface values of the
nondiffusive system, but rather a growth rate at an intermediate depth. The oscillations

Figure 8. Steady pro� le, eigenvalues and structure of growing modes for the microzooplankton
diffusive model (Kv 5 10 2 5 m2/s): (a) the steady solution; (b) positive real eigenvalues; (c)
imaginary components of eigenvalues shown in (b); the eigenvectors of growing modes for
phytoplankton (d) and for zooplankton (e). N, P, and Z are expressed in µmole Nitrogen/l and
eigenvalues are expressed in units day2 1.
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have roughly a 50-day period, roughly twice that of the surface oscillations in the
nondiffusive limit.

The previous analysis can be applied to efficiently scan parameter space. Since it is the
sign of the real part of the eigenvalues that determines the return to or motion away from
the � xed point, space is divided into regions delineated by the largest real part. For
example, consider the stability diagram shown in Figure 9. Domains of linear stability as a
function of the mixing coefficient and the maximum grazing rate are shown in black and
are characterized by eigenvalues whose real parts are negative; an unstable domain in
which at least one eigenvaluehas a positive real part is shown in white. The macrozooplank-
ton parameters have been used, except for the variable grazing rate. Notice that for some
grazing levels, stable regions are bracketed by unstable regions for different levels of the
diffusivity. Although the examples analyzed above show a rather monotonic in� uence of
diffusion, this plot shows that in fact it can be nonmonotonic.The analysis reveals linearly
stable dynamics at some levels of mixing, but predicts unstable motion at others. This is
particularly true for a grazing rate of, for example, 3.5/day which cross stability boundaries
more than once as the diffusion is increased.

ii. Chaos. Although several measures of the dynamics of nonlinear systems exist, a
critical one is the calculation of the Lyapunov exponent. This quantity measures the
average exponentialdivergence rate of adjacent trajectories within a dynamical system and
a positive exponent is a characteristic signature of chaos in the system. The method through

Figure 9. Stability diagram for the macrozooplanktonmodel parameters subject to variablediffusion
and maximum grazing rate. Dark portions indicate stable regions in which the largest real part of
the eigenvalues is negative.The light portion indicates linearly unstable regions.
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which this quantity is estimated has been described by several authors; one clear
explanation is given by Wolf et al. (1985). A � ducial trajectory is calculated according to
the complete, nonlinear set of equations. The Lyapunov spectrum is determined by
integrating an orthonormal basis set through the linearized dynamics as determined along
the � ducial course. Over the course of the linearized integration, vectors are rotated,
stretched and contracted to the point where machine precision is reached. To avoid such
numerical limitations the vector set is periodically reorthonormalized using the Gram-
Schmidt procedure. Our approach follows the spirit of this description, though only the
largest exponent is calculated, and renormalization occurs at every time step.

The Lyapunov exponent is calculated using a vertical resolution of 1 m, a full depth of
65 m, and a time step of 0.01 day. Trajectories are integrated for 3 3 105 days. Qualitative
agreement after only 105 days of integration is excellent, with most exponents that are not
approximately zero differing by only a few percent. Selected sensitivity analyses using a
time step of 0.005 days also show good agreement with exponents presented below.

Figure 10 presents the exponent as a function of mixing coefficient for both the
macrozooplankton (panel a) and microzooplankton (panel b) parameterizations. This
exponent is positive for both models with quite weak diffusivities. Thus a chaotic attractor
does exist for the diffusively coupled second-order system, but not in the range of realistic
oceanic mixing levels. The largest of the exponents for the macrozooplankton model
occurs for Kv , 6.7 3 102 8 m2/s and has a value of approximately 0.003 day2 1. The
microzooplankton model maximum exponent is found at a slightly larger diffusivity
(Kv , 1.7 3 10 2 7 m 2 2/s) but its maximum is nearly an order of magnitude larger
( l max , 0.025 day2 1). The Lyapunov exponent also provides a measure of predictability
for the system. This time scale depends on the accuracy of the initial conditions. For
example, initial conditions known to within 1 part in 8 (i.e., 3 bits or , 10%) have
minimum predictability time scales of roughly 3 years for the macrozooplankton model as
compared to roughly 4 months for the microzooplankton.

For realistic ocean levels of mixing, above 10 2 5 m2/s, the largest Lyapunov exponent in
the macrozooplankton model is negative, indicative of a stable � xed point solution and in
agreement with the linear stability analysis presented above. Indeed, in the Lyapunov
calculation, the transition to stable dynamics occurs very near to the critical value of 3.9 3
102 7 m2/s mentioned previously. In contrast, the microzooplankton model shows a nearly
zero exponent for realistic ocean diffusivities, indicative of a periodic attractor or other
motion on a surface. This result is also consistent with the linear stability analysis
conclusion that for large diffusivities, the many unstable modes of the microzooplankton
model couple, coalesce and phase-lock in the vertical leading to a single oscillation over a
large portion of the water column.

4. Summary and biological implications

The dynamics of a vertically-extendedNPZ model subject to diffusive physics has been
examined for two sets of biological parameters and a range of diffusivities. The biological
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dynamics depend on depth through the variable growth rate that decreases exponentially
with depth due to light availability.When considered independently from the physics in the
limit of zero diffusion, the biological model exhibits the expected characteristics of
second-order dynamical systems, namely stable � xed points and limit cycle behavior,
though this behavior does vary with depth, even for a constant set of parameters (Table 2).
For parameters typical of macrozooplankton grazing and ingestion rates, the steady
solution to the model is stable for depths less than roughly 25 m, unstable in the
mid-portion of the water column ( 2 25 m . z . 2 50 m), and again stable below 50 m,
where the light limitation is so severe that the � xed point solution has zero phytoplankton
and zooplankton concentrations. Using microzooplankton parameters reveals limit cycles
that persist for all depths for which the phytoplanktonpopulation is nonzero. In both cases,

Figure 10. The largest Lyapunov exponent for (a) the macrozooplanktonand (b) the microzooplank-
ton parameterizationsas a function of the vertical mixing coefficient.
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the oscillations that result in the biologically unstable portions of the water column have
minimum periods of roughly 25 days nearest to the surface, increasing with depth.

The addition of sufficient diffusion to the system stabilizes the water column in the case
of the macrozooplankton. This transition occurs at a Kv , 4 3 102 7 m2/s, signi� cantly
below the diffusivities associated with even background levels of mixing. At weak but
realistic levels (Kv 5 10 2 5 m2/s), arbitrary initial conditions eventually lead to stable � xed
points at all depths. Biological quantities oscillate at those depths that are unstable at lower
diffusivities, but ultimately return to their steady-state values. For stronger levels of
mixing, for example associated with wind-forced mixed layers, the oscillations are
eliminated. In contrast, the microzooplankton parameter model maintains a � xed point
solution that is unstable for even large mixing levels. Oscillations at different depths merge
as the diffusivity is increased, until ultimately the growth and decay of biological � elds
within the entire water column are phase-locked.

Calculations of the largest Lyapunov exponent show that, consistent with the predator-
prey model studied by Pascual (1993), the Franks et al. (1986) model is chaotic when a
spatial dimension is added, with variable growth rate, and adjacent oscillators are coupled
by diffusion. The more unstable nature of the nondiffusive microzooplankton model
manifests itself through a Lyapunov exponent that is nearly 10 times larger than that
calculated for the microzooplanktonmodel. However, the chaoticmotion is largest only for
extremely weak diffusivities O(10 2 7 m2/s), and would not be observed in model applica-
tions using more realistic levels. The observation of chaos within real pelagic ecosystems
remains inconclusive. While the analysis of a diatom time series from the Scripps pier
revealed signatures of chaotic dynamics (Sugihara and May, 1990), analysis of net
zooplankton and net phytoplankton biomass from a Middle Atlantic Bight mooring could
neither support nor refute chaotic dynamics (Ascioti et al., 1993). Within models, it is well
known that systems of more than two dynamical variables can exhibit chaos, but its
presence as a result of diffusion is less explored. In the present model it is not surprising
that large diffusivities, which homogenize the upper water column on very short time
scales, induce biological dynamics that are nearly spatially independent, and therefore not
chaotic. However, it is less obvious that even background levels of mixing in the ocean
would be sufficient to prevent chaos.

Our microzooplankton and macrozooplankton results have several implications for
ecosystems in the real ocean. The NPZ model parameterized for microzooplankton has a
one-dimensional � xed point pro� le very unlike those of the macrozooplankton parameter-
ization (compare Figures 1 and 3 for the no-diffusion case). Steady solutions for the
macrozooplankton model indicate near-surface depletion of nutrients, a strong nutricline,
and relatively large surface concentrations of phytoplankton and zooplankton. These
distributionsare what one observes during late spring and summer in temperate regions. In
marked contrast, the microzooplanktonscenario has steady solutions that indicate very low
phytoplankton and zooplankton at all depths, with most of the system nitrogen in the
dissolved form. This is similar to high nutrient low chlorophyll (HNLC) regions such as the
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Equatorial Paci� c, Subarctic Paci� c, and Southern Ocean (Barber and Chavez, 1991).
Although the � xed point patterns are reminiscent of real observations for these HNLC
regions, the extreme variability in the temporal dynamics as represented by Figure 4 (or as
described in the text for the diffusive microzooplankton case) suggests inconsistencies
between the model and present understanding of real dynamics in those regions. Of course,
there may be other factors, such as iron (Martin et al., 1991; Price et al., 1991), that limit
uptake in those regions but are not included in this model.

In addition, our results highlight more generally the important role played by physical
processes in� uencing biological phenomena. The connection between levels of vertical
mixing to plankton production processes is well known (see, e.g., Denman and Gargett,
1983). However, accounting for depth-integrated productivity allows only quantitative
changes to biological � elds as a result of varying mixed-layer depths. We have inquired
how mixing generally affects ecosystem dynamics even at low diffusivities and have
shown that mixing can stabilize vertical pro� les, or not, depending on the conditions.
Furthermore, we have illustrated how this in� uence can be nonmonotonic. For example,
simply doubling the maximum grazing rate of the macrozooplanktonparameter set leads to
stable dynamics at background levels of mixing, but cyclic behavior throughout the water
column at much higher, but still realistic mixing levels. Thus model dynamics are
in� uenced qualitativelyas well as quantitativelyby diffusive processes. Our macrozooplank-
ton results suggest that during seasons of weak mixing, or shallow mixed-layer depths
during periods of strong insolation, one might anticipate that biological quantities, or those
below the mixed layer, approach steady values on long, oscillatory routes. In contrast,
during more actively forced periods, one might expect increasing variability at all depths.
Obviously the biological dynamics subject to time-dependent forcing (i.e., driven by
natural � uctuations of surface forcing) are signi� cantly more complicated than those
examined here. Nonetheless, considering changes in mixing levels on time scales long
compared to biological changes (e.g., on seasonal time scales) as we have done here leads
to interesting changes in biological dynamics. Our results also impact ecosystem interpre-
tations on short time scales. Macrozooplankton model � uctuations (beyond the initial
phytoplankton bloom) occur on the order of tens of days and therefore suggest that local,
purely biological oscillations may be irrelevant when compared with faster advectively-
induced responses. An example is the case of tidal motion considered by Franks and Chen
(1996). Blooms modeled over tidal periods more clearly re� ect direct response to physical
forcing due simply to this clear separation of time scales.

Finally, our techniques are relevant to other modeling efforts, particularly since coupled
biological-physical models are increasingly found in biological investigations (e.g., Lynch
et al., 1998). Conclusions from similar linear stability analyses promise to be useful in
anticipating and interpreting large, coupled model results in these more complicated
settings.A � rst example might be in the arena of model utilization. It is common practice to
initialize biological models with conditions satisfying the time-independent equations. It
would be valuable to know whether this solution represents a set of conditions that might
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occur in the ocean given sufficient quiescence, or if in fact the initial condition is merely a
special case in which the biological terms in the model formulations cancel, but otherwise
do not attract biological concentrations. We note here that one limitation of the analysis of
Section 2 is that it calculates only the linear stability. In the nonlinear system conditions
that lie far from a stable � xed point may not evolve to the steady solution, but may instead
approach a limit cycle (Strogatz, 1994). However, the linear analysis often provides
excellent guidance as demonstrated in both the macrozooplankton and microzooplankton
examples above. In addition, the long-term behavior of the ecosystem will of course vary
considerably, simply based on the stability properties of the coupled biology and physics.
For example, it is not unusual for NPZ-type models to produce transient phytoplankton
blooms following the injection of nutrient-rich waters into the euphotic zone. However, the
subsequent response might take one of two forms. Our model study has shown that such an
injection can result in a short-lived increase in zooplankton, followed by periodic
resurgence of this sequence, or a slow return to a stable solution that persists through time.
Thus modeled ecosystem behavior can be interpreted through the understood dynamics of
the steady solution. These implications are explored more thoroughly in the work by
Edwards et al. (2000) who apply the present model within an idealized upwelling
circulation.

Purposely, we have focused on the dynamics of among the simplest of ocean ecosystem
models. Although there exists only a limited set of responses of the purely biological
model, the spatially extended and diffusively coupled system exhibits a wider range of
behavior and is very parameter dependent. It remains to be seen how the stability properties
of the more complicatedmulti-componentbiologicalmodels will be modi� ed by advection
and diffusion, though both its stabilizing and destabilizing effects should be expected.
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