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Lattice Boltzmann solutions of the three-dimensional
planetary geostrophic equations

by Rick Salmon1

ABSTRACT
We use the lattice Boltzmann method as the basis for a three-dimensional, numerical ocean

circulationmodel in a rectangularbasin. The fundamental dynamical variables are the populationsof
mass- and buoyancy-particleswith prescribed discrete velocities. The particles obey collision rules
that correspond,on the macroscopic scale, to planetary geostrophicdynamics.The advantagesof the
model are simplicity, stability, and massively parallel construction. By the special nature of its
construction, the lattice Boltzmann model resolves upwelling boundary layers and unsteady convec-
tion. Solutions of the model show many of the features predicted by ocean circulation theories.

1. Introduction

This is the second in a series of papers in which it is hoped to develop simple, efficient,
numerical ocean circulation models based upon the lattice Boltzmann (LB) method, a
method of computational � uid dynamics in which the fundamental dependent variables are
the populations of particles with prescribed discrete velocities. The particles obey simple
collision rules that determine the macroscopic � uid dynamics. The advantages of the LB
method are simplicity, stability, and massively parallel computer code; the primary
disadvantage is a lack of � exibility in comparison to more conventionalmodels based upon
� nite differences or � nite elements. Although widely used for about 10 years, the LB
method had not previously been applied to rotating � uids.

The earlier paper (Salmon, 1999, hereafter S99) applied the LB method to the rotating
shallow water equations in the form of the ‘‘reduced gravity model’’ for a homogeneous,
wind-driven layer of � uid overlying a deeper layer that remains everywhere at rest.
Although the reduced gravity model is a respectable model of the wind-driven ocean
circulation, S99 emphasized method, offering a nearly self-contained introduction to LB
theory, the Chapman-Enskog expansion, and some connections to topics—balanced
motion, fast and slow modes—of greater familiarity to geophysical � uid dynamicists.

In this paper, we apply the LB method to the three-dimensional planetary geostrophic
equations (2.1), which omit inertia but include the advection of buoyancy. In this paper, the
emphasis is somewhat more equally divided between the development of the LB algorithm
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in Sections 2–5, and the discussion of its solutions in Section 6. Although the present paper
is self-contained, it does not repeat S99’s pedagogical introduction to LB. Therefore,
readers who are unfamiliar with the LB method may wish to read S99 before attempting
Sections 2–4 below. On the other hand, readers with no interest in the method can proceed
directly to Section 5.

In Sections 2–4 and in the appendices, we derive the lattice Boltzmann algorithm
summarized in Section 5 and demonstrate its equivalence to the time-dependent equations
(5.8) at the second order of the Chapman-Enskog expansion. Our derivation differs from
more typical LB applications in several respects. First, because the vertical spacing
between lattice points is so much smaller than the horizontal spacing, and because the
particles must hop from lattice point to lattice point in a time step, the particles move
vertically at a speed much smaller than their horizontal speed. Because of this disparity in
particle speeds, the ‘‘vertical pressure’’ is much smaller than the ‘‘horizontal pressure,’’ and
recovery of the right dynamics requires compensating adjustments that amount to an
enhancement of the friction coefficient in the vertical momentum equation. However, the
effects of this enhancement seem to be wholly bene� cial: Sidewall boundary layers are
resolved, the time step may be larger than in conventional primitive equation models, and
the most unstable convective motions have horizontal scales resolved by the model.

Second, buoyancy is incorporated by introducing buoyancy particles that make no direct
contribution to the mass, rather than by the more usual method of introducing ‘‘hot’’ and
‘‘cold’’ massive particles. The buoyancy-particle method proves essential to attaining the
high Prandtl number necessary when inertia is omitted from ocean dynamics.

Third, as in S99, Coriolis force is an essential part of the dynamics, and Section 4
presents a method for incorporating Coriolis force that is vastly superior to the clumsy and
inefficient predictor-corrector method used in S99. In the method of Section 4, an impulse
corresponding to the action of Coriolis force for an interval of one half time step is
distributed among the particles before and after each streaming step. The resulting LB
cycle is . . . spin—collide—spin—stream—spin—collide . . . , where collide and stream
denote the usual collision and streaming steps, and spin denotes the Coriolis impulse step.
The presence of two Coriolis steps per cycle proves vital to maintaining second-order
accuracy in the Chapman-Enskog expansion.

In Section 5 we summarize the complete LB algorithm, a cycle of 6 simple operations.
Then we analyze the corresponding dynamical equations (5.8). In steady state, (5.8) reduce
to (2.1) except for the previously mentioned enhancement of the viscosity coefficients in
the vertical momentum equation. This enhancement means that departures from hydro-
static balance could be as large as the departures from geostrophic balance, but solutions of
the LB equations with no-stress boundary conditions prove to be hydrostatic, except in
relatively small regions of strong convection.

In Section 6 we examine 3 solutions of the LB model with 503 resolution. The solutions
are driven by a 2-gyre wind stress and diabatic forcing. In one of the solutions, the diabatic
forcing is contrived to maintain static stability, and no convection occurs. In another
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solution, the ocean is cooled at the surface, and unsteady convection occurs on horizontal
lengthscales resolved by the model. In the third solution,we impose convective adjustment
in regions of static instability. The convective adjustment increases static stability but also
generates lattice-scale noise; fortunately, the convective adjustment seems dispensable.All
3 solutions contain numerous features predicted by ocean circulation theories and found in
more conventional calculations.

2. The lattice Boltzmann method

We seek a lattice Boltzmann (LB) model for the planetary geostrophic equations in
Cartesian coordinates. In steady state, the equations are:

= 3 · v 5 0

f k 3 u 5 2 = f 1 Ah = 2u 1 Avuzz

0 5 2 f z 1 u 1 Ah = 2w 1 Avwzz

v · = 3u 5 k h = 2 u 1 k v u zz.

(2.1)

Here, x 5 (x, y, z) is the coordinate in the (eastward, northward, upward) direction with
corresponding unit vector (i, j, k); v 5 (u, w) 5 (u, v, w) is the velocity; f is the Coriolis
parameter; f is the pressure (divided by a constant representative density); and u is the
buoyancy.Our notation is = 3 ; ( ­ x, ­ y, ­ z) and = ; ( ­ x, ­ y). Subscript z denotes ­ z. (Ah, Av)
and ( k h, k v) are the (horizontal, vertical) eddy coefficients for momentum and buoyancy,
respectively. We temporarily omit the wind and diabatic forcing terms. The planetary
geostrophic equations have become increasingly popular as the basis for numerical ocean
circulation models; see, for example, Huck et al. (1999) and references therein.

Although we prefer to work with dimensional variables, for future use we record the
standard nondimensionalform of (2.1). Let L be the ocean basin width and H the depth. Let
U be a representative horizontal velocity. Then, scaling x and y by L, z by H, u and v by U,
w by W ; d bU, where d b ; H/L is the aspect ratio based on the basin size, f by
representative value f0, f by f0UL, and u by f0UL/H ; we obtain (2.1) in the nondimensional
form,

= 3 · v 5 0

f k 3 u 5 2 = f 1 Eh = 2u 1 Evuzz

0 5 2 f z 1 u 1 d b
2Eh= 2w 1 d b

2Evwzz

v · = 3 u 5 Dh= 2 u 1 Dv u zz

(2.2)

where

Eh 5
Ah

f0L
2

, Ev 5
Av

f0H
2

, Dh 5
k h

UL
, Dv 5

k v

WH
, (2.3)

and d b are small parameters.
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In the lattice Boltzmann method, we replace the � uid by a system of discrete particles
that move from lattice point to adjacent lattice point in a time step D t. Inhomogeneous � uid
requires 2 types of particle: mass particles, which carry mass and momentum, and
buoyancy particles, which only carry buoyancy.At every time step, all the particles present
at each lattice point ‘‘collide.’’ The strategy is to prescribe collision rules that make the
particle dynamics approximate (2.1) as closely as possible. For reviews of the lattice
Boltzmann method, see Benzi et al. (1992), Rothman and Zaleski (1997) and Chen and
Doolen (1998).

To simplify the presentation, we temporarily assume that the buoyancy is uniform
( u ; 0). Then no buoyancy particles are required. We also neglect both Coriolis and
external forces. In the following section, we introduce buoyancy and discuss the buoyancy
particles. In Section 4, we incorporate forcing.

We take the lattice to be a regular Cartesian grid with a horizontal spacing of D x and a
vertical spacing of D z between lattice points. Refer to Figure 1. At each lattice point, the
mass particles move in one of 14 directions at a speed just sufficient to reach the next lattice
point in a time step. Thus the 2 particles moving parallel to the z-axis move at uniform
speed cv ; D z/D t, while the 4 particles moving parallel to the x- or y-axis move at speed
ch ; D x/ D t. The complete set of particle velocities is given by

cnmk 5 (nch, mch, kcv), (2.4)

where 5 (n, m, k) 6 is the 15-member set of integer triplets whose elements correspond to: the
rest particle (n 5 m 5 k 5 0); the 6 particles moving parallel to one of the 3 coordinate
axes (for which 2 of (n, m, k) vanish, and the third is 6 1); and the 8 particles moving along
the diagonals within each octant (for which all 3 of (n, m, k) are 6 1). This 15-member set
represents the smallest set of particle velocities with sufficient symmetry to approximate
(2.1) in the appropriate limit. Although the rest particle does not move, it interacts with the
other particles through collisions. In homogeneous � uid the rest particle is dispensable, but
our method of incorporating the buoyancy force will require the rest particle to be present.

Let r nmk(x, t) be the contributionof the mass particle moving with velocity (2.4) at lattice
point x and time t to the ‘‘density’’

r (x, t) ; o
nmk

r nmk(x, t), (2.5)

a dimensionless quantity whose precise physical meaning becomes clear as the develop-
ment proceeds. Thus, for example, r 100(x, t) is the density of the particle moving in the
direction of the positive x-axis. The summation in (2.5) is over the 15-member set just
described. We also de� ne the � uid velocity,

v(x, t) ; o
nmk

cnmk r nmk(x, t), (2.6)
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where cnmk is given by (2.4).2 Although the particles move at � xed speeds, the � uid velocity
(2.6) varies continuously. The de� ning equations (2.5–6) relate the 15 ‘‘microscopic’’
dependent variables 5 r nmk(x, t) 6 to the 4 ‘‘macroscopic’’ dependent variables 5 r (x, t), v(x, t) 6
of the continuum. (But note that r (x, t) does not actually appear in (2.1).)

2. In usual applications of the LB method, the analogue of (2.6) contains a factor r on its left-hand side. Our
de� nition is motivated by a desire that v rather than r v be exactly nondivergent when the � uid motion is steady.

Figure 1. At every time step, each mass particle (except the rest particle denoted 0) moves in one of
14 directions to a neighboring lattice point. The particles numbered 1 to 6 move parallel to one of
the coordinate axes. The mass particles numbered 7 to 14 move in diagonal directions not parallel
to any coordinate axis or plane. The 6 buoyancy particles move only in the directions parallel to a
coordinate axis. There is no rest particle for buoyancy.
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In the absence of forcing, LB dynamics comprises 2 steps: a collision step, in which all
the particles at the same lattice point interact, followed by a streaming step, in which
particles move in the appropriate direction to the next lattice point. The interaction takes
the form of a relaxation toward the local equilibrium state 5 r nmk

eq (x, t)6 , where the r nmk
eq are

prescribed functions of r and v at the same lattice point. Thus the collision step takes the
form

r 8nmk 5 r nmk 2 l D t( r nmk 2 r nmk
eq ), (2.7)

where l is the constant relaxation coefficient, and the prime denotes the value immediately
after the collision. In (2.7), all the variables are evaluated at the same lattice point and time.
The streaming step takes the form

r nmk(x 1 cnmk D t, t 1 D t) 5 r 8nmk(x, t). (2.8)

Combining (2.7) and (2.8), we obtain the complete LB particle dynamics,

r nmk(x 1 cnmk D t, t 1 D t) 5 r nmk(x, t) 2 l D t(r nmk(x, t) 2 r nmk
eq (x, t)), (2.9)

in the case of no forcing.
We take the lattice spacing, D x and D z, as given. Then the dynamics (2.9) involves the 2

unspeci� ed constants D t and l , and the 15 unspeci� ed functions 5 r nmk
eq ( r , v) 6 . (Recall that

ch 5 D x/D t and cv 5 D z/ D t.) We choose these constants and functions so that (2.9)
approximate (2.1). As we shall see, the approximation is close if the time step D t is
relatively small, and if the decay coefficient l is relatively large. If we regard ch and cv as
� xed, then small D t implies small D x and D z. Thus the limit D t ® 0 corresponds to the
limit of perfect resolution in time and space. On the other hand, large l corresponds to r nmk

very close to r nmk
eq . As we shall see, this limit corresponds to small viscosity.

Following Qian et al. (1992) and Chen et al. (1992) (see also He and Luo (1997)), we
de� ne the equilibrium densities as

r nmk
eq 5 Anmk r 1 Bnmk 1 n u

ch
1 m

v

ch
1 k

w

cv
2 , (2.10)

where

A000 5 2�9, (2.11)

for the rest particle (n 5 m 5 k 5 0);

Anmk 5 1�9, Bnmk 5 1�3 (2.12)

for the 6 particles with * n * 1 * m * 1 * k * 5 1 moving parallel to a coordinate axis; and

Anmk 5 1�72, Bnmk 5 1�24 (2.13)
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for the 8 particles with * n * 1 * m * 1 * k * 5 3 moving diagonally. The equilibrium state
de� ned by (2.10–13) satis� es the important conditions

o
nmk

r nmk
eq 5 o

nmk
r nmk 5 r (2.14)

and

o
nmk

cnmk r nmk
eq 5 o

nmk
cnmk r nmk 5 v, (2.15)

corresponding to the conservation of mass and momentum, respectively, by the collisions.
As we shall see, the properties (2.14–15) are required for LB dynamics to approximate
(2.1) at leading order. For future use, we note that (2.10–13) imply that

Pa b ; o
nmk

cnmk,a cnmk, b r nmk
eq (2.16)

vanishes unless a 5 b , and that

P11 5 P22 5 1�3ch
2 r ; ph and P33 5 1�3cv

2 r ; pv. (2.17)

Here, cnmk, a 5 cnmk · ea , where (e1, e2, e3) 5 (i, j, k). In general, D x Þ D z, hence ch Þ cv,
and thus the horizontal pressure ph is unequal to the vertical pressure pv; this requires a
compensating adjustment as the derivation proceeds.

We investigate the particle dynamics (2.9) by means of an expansion—the Chapman-
Enskog expansion—in which the small parameters are D t and e ; l 2 1. Once again, the
smallness of D t corresponds to slow variation on the scale of the time step and the lattice
spacing. The smallness of e corresponds to r nmk very near the local equilibrium state r nmk

eq .
Thus we expand

r nmk 5 r nmk
eq 1 e r nmk

(1) 1 e 2r nmk
(2) 1 · · · (2.18)

Expanding (2.9) in D t, we obtain

1 Dnmk 1
1

2
D tDnmk

2 1 · · ·2 r nmk 5 2
1

e
( r nmk 2 r nmk

eq ), (2.19)

where

Dnmk ;
­

­ t
1 cnmk · = 3 (2.20)

is the advection operator in the direction of the nmk-th particle. Then, substituting (2.18)
into (2.19), and assuming that D t and e have the same small size, we obtain

G nmk
(0) 1 G nmk

(1) 1 · · · 5 0, (2.21)
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where

G nmk
(0) ; Dnmk r nmk

eq 1 r nmk
(1) (2.22)

contains all the leading order terms, and

G nmk
(1) ; 1�2 D tDnmk

2 r nmk
eq 1 e Dnmk r nmk

(1) 1 e r nmk
(2) (2.23)

contains all the terms of order D t or e .
We obtain evolution equations for r and v by applying S nmk and S nmkcnmk to (2.21). First

note that (2.14–15) and (2.18) imply

o
nmk

r nmk
(1) 5 o

nmk

r nmk
(2) 5 o

nmk
cnmk r nmk

(1) 5 o
nmk

cnmk r nmk
(2) 5 0. (2.24)

By (2.14–17, 24),

o
nmk

G nmk
(0) 5

­ r

­ t
1 = 3 · v (2.25)

and

o
nmk

cnmk G nmk
(0) 5

­ v

­ t
1 1 ­ ph

­ x
,
­ ph

­ y
,
­ pv

­ z 2 . (2.26)

Thus, at leading order, the dynamics (2.9) is equivalent to

­ r

­ t
1 = 3 · v 5 0

­ v

­ t
5 2 1 ­ f

­ x
,
­ f

­ y
, d 2

­ f

­ z 2
(2.27)

where

f ; ph 5 1�3ch
2 r , (2.28)

and

d ;
cv

ch
5

D z

D x
(2.29)

is the aspect ratio based on the mesh size.
Typically d is very small. According to (2.27b), small d arti� cially reduces the vertical

component of the pressure gradient.This arti� cial reduction occurs because, when cv ½ ch,
particles move vertically at a speed much smaller than their horizontal speed, and therefore
the momentum transferred by collisions to a horizontal wall immersed in the � uid—the
vertical pressure—is much smaller than the momentum that would be transferred to a
vertical wall. To compensate for the arti� cially small vertical pressure gradient, we shall
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reduce the buoyancy (and other vertical forces, if present) by the same factor of d 2. For now
we continue with the analysis of (2.9).

The LB dynamics (2.9) implies a dissipation of momentum that appears at the next order
of the Chapman-Enskog expansion. The steps leading to the following results are given in
AppendixA. We � nd that, to consistent order,

o
nmk

G nmk
(1) 5 0 (2.30)

and

o
nmk

cnmk G nmk
(1) 5 2 1 e 2

D t

2 2 1

3
(ch

2= 2v 1 cv
2vzz 2 ch

2 = r t 2 cv
2k r z t). (2.31)

Here and below, subscripts x, y, z and t denote partial derivatives. It follows from (2.30)
that the continuity equation (2.27a) holds to the � rst two orders in D t and e . To the same
order of accuracy, (2.27b) and (2.31) imply that

­ u

­ t
5 2 = f 1 Ah = 2u 1 Avuzz 2 A = f t

­ w

­ t
5 2 d 2f z 1 Ah = 2w 1 Avwzz 2 d 2A f z t

(2.32)

where

(A, Ah, Av) ; 1 1l 2
D t

2 2 1 1,
ch

2

3
,
cv

2

3 2 (2.33)

and we have used (2.28) to eliminate r in favor of f . From (2.33) we see that the viscosity
decreases with increasing l , vanishing at the critical value l max 5 2/D t. Still larger l leads
to instability in the form of negative viscosity coefficients. The last two terms in (2.32a, b)
have no obvious physical interpretation. As we shall see in Section 5, these terms are
negligible if the time step is sufficiently small.

3. Buoyancy

To accommodate buoyancy, we must introduce buoyancy particles. For reasons to be
explained, we require only 6 buoyancy particles. Each buoyancy particle moves in 1 of the
6 directions parallel to a coordinate axis. Refer again to Figure 1. Thus

c1 5 (ch, 0, 0), c2 5 (0, ch, 0), c3 5 ( 2 ch, 0, 0),

c4 5 (0, 2 ch, 0), c5 5 (0, 0, cv), c6 5 (0, 0, 2 cv)
(3.1)

is the set of buoyancy-particlevelocities.There is no rest particle for buoyancy.
Let u i(x, t) be the contributionof the i-th buoyancy particle to the buoyancy,

u (x, t) 5 o
i 5 1

6

u i(x, t). (3.2)

1999] 855Salmon: Lattice Boltzmann solutions



Like the mass particle dynamics (2.9), the buoyancy particle dynamics,

u i(x 1 ci D t, t 1 D t) 5 u i(x, t) 2 L D t( u i(x, t) 2 u i
eq(x, t)), (3.3)

comprises a streaming step and a collision step in which each u i relaxes, with relaxation
coefficient L , toward its local equilibrium state u i

eq. The de� nition

u i
eq 5

1

6
u 1

1

2ci
2

ci · v u (3.4)

satis� es

o
i

u i
eq 5 o

i
u i 5 u (3.5)

and

o
i

ci u i
eq 5 v u . (3.6)

Note, however, that

o
i

ci u i
eq Þ o

i
ci u i. (3.7)

The asymmetry between (3.7) and (2.15) corresponds to the fact that the velocity v is
de� ned by (2.6) as a mass-weighted—not a buoyancy-weighted—average. Because of this
asymmetry, a diffusivity term appears in the evolution equation for u , but not in the
evolution equation (2.27a) for r .

To investigate(3.3), we apply the Chapman-Enskogexpansion again, and sum (3.3) over
i. The details are given in Appendix B. To the � rst two orders in the Chapman-Enskog
expansion, the result is

­ u

­ t
1 = 3 · (v u ) 5 k h = 2 u 1 k v u zz 1 k = 3 ·

­

­ t
( u v), (3.8)

where

( k , k h, k v) ; 1 1L 2
D t

2 2 1 1,
ch

2

3
,
cv

2

3 2 . (3.9)

Just as l controls the viscosity in (2.32), L controls the diffusivity in (3.8). The last term in
(3.8) is analogous to the last two terms in (2.32).

We defer discussion of the full, time-dependent LB dynamics until Section 5. Here we
note that in steady state, (2.27a), (2.32) and (3.8) reduce to

= 3 · v 5 0

0 5 2 = f 1 Ah = 2u 1 Avuzz

0 5 2 d 2f z 1 Ah = 2w 1 Avwzz

v · = 3u 5 k h = 2u 1 k v u zz .

(3.10)
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Thus we obtain a buoyancy equation (3.10d) of the correct form with only 6 buoyancy
particles, whereas 15 mass particles were required to obtain the desired momentum
equations. This difference arises from the different mathematical character of buoyancy
and velocity. The buoyancy is a scalar whose � ux, a vector, is accurately represented by a
weighted sum of the buoyancy velocities ci. On the other hand, the velocity is a vector
whose � ux, a dyad formed from the products of the mass velocities cnmk, requires
diagonally directed cnmk for its accurate representation.

The steady dynamics (3.10) differs from (2.1) in the absence of buoyancy and Coriolis
force, and in the factor d 2 preceding the vertical derivative of pressure. We can add the
buoyancy force by the general method of the following section. Instead, we prefer to build
the buoyancy force into the de� nition of the local equilibrium state. Let the de� nition of
r nmk

eq for the 3 mass particles with n 5 m 5 0 be changed from (2.10–13) to

r 000
eq 5

2

9
r 1 b

r 001
eq 5

1

9
r 1

w

3cv
2

b

2

r 00-1
eq 5

1

9
r 2

w

3cv
2

b

2

(3.11)

where b is a functional of u to be determined. When b 5 0, (3.11) reduce to (2.10). When
b Þ 0, the conservation laws (2.14–15) are unchanged. Thus the continuity equation
(2.27a) still holds to the � rst two orders in the Chapman-Enskogexpansion.The horizontal
pressure (2.28) is also unchanged, but the vertical pressure

P33 5 1�3cv
2r 2 cv

2b 5 d 2 f 2 d 2ch
2b (3.12)

acquires a term proportional to b. If we de� ne

b(x, y, z, t) ;
1

ch
2 e

z
u (x, y, z8, t) dz8, (3.13)

then the leading-order momentum equation (2.27b) acquires the buoyancy term d 2 u k on its
right-hand side. At next order, b Þ 0 contributes an additional term; for details see
Appendix C. We � nd that, to the � rst two orders in the Chapman-Enskog expansion, the
vertical momentum equation generalizes from (2.32b) to

­ w

­ t
5 2 d 2

­ f

­ z
1 d 2 u 1 Ah = 2w 1 Avwzz 2 d 2A( u t 1 f zt). (3.14)

The last two terms in (3.14) are terms like the time-derivative terms on the right-hand sides
of (2.32) and (3.8). We discuss all these terms in Section 5, where we consider properties of
the full, time-dependent LB equations. But � rst, in the following section, we incorporate
the Coriolis, wind, and diabatic forcing.
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4. Forcing

Let F(x, t) be a general horizontal force (per unit mass).3 We incorporate F into LB
dynamics by inserting an impulse step on each side of the streaming step. Each impulse
step consists of two parts. In the � rst part, we estimate the change D u in the horizontal
velocity caused by F acting for a time D t/2. In the second part of the impulse step, we
distribute this impulse among the particles. That is, we replace r nmk by

r 8nmk 5 r nmk 1
Bnmk

ch
2

cnmk · D u 5 r nmk 1
Bnmk

ch
(n D u 1 m D v), (4.1)

where Bnmk is given by (2.12–13), and the prime denotes the value immediately after the
impulse step. Using (2.4), (2.6), and (2.12–13) it is easy to see that the horizontal velocity
corresponding to r 8nmk differs from that corresponding to r nmk by the amount D u.4

To ensure the required second-order accuracy in the Chapman-Enskog expansion, the
composite impulse-stream-impulse step must be equivalent to a second-order accurate
solution of

1 ­­ t
1 cnmk · = 2 r nmk 5

Bnmk

ch
2

cnmk · F. (4.2)

A discrete algorithm having this property is

r nmk(x 1 cnmk D t, t 1 D t) 5 r nmk(x, t) 1 D t
Bnmk

ch
2

cnmk

· 3 12 F(x 1 cnmk D t, t 1 D t) 1
1

2
F(x, t) 4 .

(4.3)

To see that (4.3) yields the correct result, we � rst expand (4.3) in D t, obtaining

1 D tDnmk 1
1

2
( D t)2Dnmk

2 1 · · ·2 r nmk(x, t)

5 D t
Bnmk

ch
2

cnmk · 3 F(x, t) 1
1

2
D tDnmkF(x, t) 1 · · · 4 .

(4.4)

From (4.4) we see that the presence of F generalizes (2.22) to

G nmk
(0) 5 Dnmk r nmk

eq 1 r nmk
(1) 2

Bnmk

ch
2

cnmk · F, (4.5)

3. Although, the discussion is easily generalized to include vertical forces, we require only horizontal forces.
4. As this is the only property required, (4.1) is somewhat arbitrary, but it seems best to distribute the

momentum using the same weights as in the de� nition (2.10) of the equilibrium states.
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and (2.23) to

G nmk
(1) 5

D t

2
Dnmk

2 r nmk
eq 1 e Dnmk r nmk

(1) 1 e r nmk
(2) 2

D t

2

Bnmk

ch
2

Dnmk(cnmk · F). (4.6)

By carefully repeating the steps in Section 2 and AppendixA for the more general case F Þ
0, we � nd no other change than the appearance of F on the right-hand side of the horizontal
momentum equation (2.32a).

If the horizontal force F can be prescribed, as if F is actually steady (like the wind stress
in the solutions described in Section 6), then it is very easy to use the algorithm (4.3).
However, if F depends upon the � ow itself, so that the right-hand side of (4.3) depends on
r nmk at the new time t 1 D t, then the formula (4.3) is implicit and therefore very difficult to
satisfy exactly. Unfortunately, the Coriolis force, F 5 2 f k 3 u, is such a force. Despite
this, S99 incorporated the Coriolis force into shallow-water LB dynamics by using a
predictor-corrector approximation to the analog of (4.3). However, the predictor-corrector
method is unaesthetic and required too many correctors for the present three-dimensional
application. Here we show the method of inserting a Coriolis impulse on each side of the
streaming step to be a superior alternative. Since this is a new result of great practical
importance, we give the full details.

In each Coriolis impulse step, we compute the change

D u a 5 Aa b u b (4.7)

in the horizontal velocity caused by Coriolis force acting for a half time step. Here, Greek
subscripts denote directional components, repeated Greek subscripts are summed from 1 to
2, and the matrix Aa b is de� ned by

[Aa b ] 5 3 cos 1 f D t

2 2 2 1 sin 1 f D t

2 2
2 sin 1 f D t

2 2 cos 1 f D t

2 2 2 14 5
f D t

2
e a b 2

( f D t)2

8
d a b 1 · · · (4.8)

where e a b is the permutation symbol and d a b the Kronecker delta. The velocity on the

right-hand side of (4.7) is the velocity before the impulse step.

We distribute the impulse (4.7) among the particles by substituting (4.7) into (4.1). The

result is

r 8nmk(x, t) 5 r nmk(x, t) 1
Bnmk

ch
2

cnmk,a Aa b u b (x, t), (4.9)

where cnmk, a 5 cnmk · ea , and the prime denotes the particle density immediately after the
impulse. The Coriolis impulse (4.9) is followed by the streaming step,

r 9nmk(x 1 cnmk D t, t 1 D t) 5 r 8nmk(x, t), (4.10)
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and the other Coriolis impulse,

r -nmk(x, t) 5 r 9nmk(x, t) 1
Bnmk

ch
2

cnmk, a Aa b u9b (x, t). (4.11)

Here, double primes denote the state immediately after the streaming step, and triple
primes denote the state after the second Coriolis impulse. The full LB cycle comprises the
three steps (4.9–11) followed (or preceded) by the collision step. Unlike (4.3), the 3 steps

(4.9–11) are explicit; the velocities on the right-hand sides of (4.9) and (4.11) are computed
from the results of the previous equation.

We must show that the three steps (4.9–11) are together equivalent to (4.3) or (4.4) with
the required second order accuracy. We proceed by back-substitutionfrom (4.11).After the
second Coriolis impulse, the densities are given by (4.11) in the form

r nmk(x 1 cnmk D t, t 1 D t) 5 r 9nmk(x 1 cnmk D t, t 1 D t)

1
Bnmk

ch
2

cnmk, a A a b (x 1 cnmk D t, t 1 D t) o
rsp

crsp, b r 9rsp(x 1 cnmk D t, t 1 D t).
(4.12)

Substituting from (4.10), this is

r nmk(x 1 cnmk D t, t 1 D t) 5 r 8nmk(x, t)

1
Bnmk

ch
2

cnmk,a Aa b (x 1 cnmk D t, t 1 D t) o
rsp

crsp, b r 8rsp(x 1 cnmk D t 2 crsp D t, t).
(4.13)

Finally, substituting from (4.9) and using (2.6) we obtain

r nmk(x 1 cnmk D t, t 1 D t)

5 r nmk(x, t) 1
Bnmk

ch
2

cnmk, a A a b (x, t) o
rsp

crsp, b r rsp(x, t)

1
Bnmk

ch
2

cnmk,a Aa b (x 1 cnmk D t, t 1 D t) o
rsp

crsp, b

3 5 r rsp(x 1 (cnmk 2 crsp) D t, t) 1
Brsp

ch
2

crsp, g A g d (x 1 (cnmk 2 crsp) D t, t)

3 o
abd

cabd, d r abd(x 1 (cnmk 2 crsp) D t, t) 6

(4.14)

Eq (4.14) relates the particle densities after the second Coriolis impulse to the densities
before the � rst impulse. In Appendix D we show that, to the required second order accuracy,
(4.14) is equivalent to (4.4) with F 5 2 fk 3 u. This proves that the Coriolis impulse algorithm
yields the desired Coriolis force when the Chapman-Enskog expansion is applied.

To incorporate a prescribed diabatic heating Q, we distribute the buoyancy amount Q 3
D t/2 among the 6 buoyancy particles before and after each streaming step. That is, we add
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Q 3 D t/12 to each u i. It is easy to show that this corresponds to the addition of Q to the
right-hand side of the buoyancy equation, (3.8) or (3.10c).

5. Properties of the lattice Boltzmann model

First we summarize the lattice Boltzmann model as an algorithm with a 6-step cycle:
[1] At every lattice point, compute the macroscopic variables

r (x, t) 5 o
n,m,k

r nmk(x, t)

v(x, t) 5 o
n,m,k

cnmk r nmk(x, t)

u (x, t) 5 o
i

u i

(5.1)

where cnmk is de� ned by (2.4). The nmk-summation is over the 15-member set of mass
particles, and the i-summation is over the 6-member set of buoyancy particles.
[2] Compute the local equilibrium states

r nmk
eq 5 Anmk r 1 Bnmk 1 n u

ch
1 m

v

ch
1 k

w

cv
2 1 d n0d m0 5 b, k 5 0

2 1�2b, k 5 6 1
(5.2)

and

u i
eq 5

1

6
u 1

1

2c i
2

ci · vu , (5.3)

where the coefficients Anmk and Bnmk are given by (2.10–13), b by (3.13), and the buoyancy
particle velocities ci by (3.1).
[3] Collide the particles,

r nmk ¬ r nmk 2 l D t( r nmk 2 r nmk
eq )

u i ¬ u i 2 L D t(u i 2 u i
eq)

(5.4)

[4] Apply impulses representing the action of horizontal forcing and heating for a time
interval of D t/2,

r nmk ¬ r nmk 1
D tBnmk

2ch
(n D u 1 m D v) (5.5)

u i ¬ u i 1
D t

12
Q . (5.6)

Here, D u, the change in the horizontal velocity caused by the force, is given by (4.7–8) for
the case of Coriolis force. Q is the diabatic heating.
[5] Stream the particles,

r nmk(x 1 cnmk D t, t 1 D t) 5 r nmk(x, t)

u i(x 1 ci D t, t 1 D t) 5 u i(x, t)
(5.7)
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[6] Apply step 4 again.
[7] Return to step 1.
Thus the LB algorithm corresponds to a computer code with a half dozen simple loops. The
boundary conditions correspond to modi� cations of the streaming step (5.7) near the
boundaries, and will be discussed in Section 6.

As shown in Sections 2–4 and in the appendices, to the � rst 2 orders in D t, l 2 1 and L 2 1,
the algorithm (5.1–7) is equivalent to the following set of differential equations:

­ f

­ t
1 cs

2= 3 · v 5 0

­ u

­ t
1 f k 3 u 5 2 = f 1 Ah = 2u 1 Avuzz 1 F 2 A = f t

d 2 2
­ w

­ t
5 2

­ f

­ z
1 u 1 d 2 2Ah = 2w 1 d 2 2Avwzz 2 A( u t 1 f z t)

­ u

­ t
1 = 3 · (v u ) 5 k h= 2 u 1 k v u zz 1 Q 1 k = 3 · ( u v)t

(5.8)

where

cs
2 ; 1�3ch

2, (5.9)

and we have used (2.28) to eliminate r . In (5.8), F is the external forcing and Q is the
diabatic heating. The viscosity and diffusion coefficients are given by (2.33) and (3.9). It is
easily shown that cs is the speed of ‘‘sound waves’’ in the horizontal direction; the sound
waves travel vertically at speed d cs. These sound waves are arti� cial in the sense that their
speed is determined by the arbitrarily prescribed particle velocities, ch and cv, and not by an
imposed equation of state. As we shall see, the prescribed particle velocities must, for sake
of numerical stability, exceed the velocities of gravity waves and macroscopic � uid
particles but they need not be as great as the speed of real sound waves.

Our numerical experiments show that, if the forcing and heating are steady, then the
solutions of the LB equations approach a quasi-steady state. Hence, the most important
property of the LB dynamics is that, in steady state, (5.8) reduce to

= 3 · v 5 0

f k 3 u 5 2 = f 1 Ah = 2u 1 Avuzz

0 5 2 f z 1 u 1 d 2 2(Ah = 2w 1 Avwzz)

v · = 3u 5 k h = 2 u 1 k v u zz

(5.10)

which differs from (2.1) only in the presence of the large dimensionless factor d 2 2 in the
w-viscosity. (To simplify the discussion, we once again temporarily omit the external
forcing and heating terms.) That is, insofar as steady solutions are concerned, the only
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effect of the compromises required to formulate planetary geostrophic dynamics as a lattice
Boltzmann model is the arti� cially enhanced w-viscosity in (5.10c). As we have seen, this
large w-viscosity results from the typicallyvery small ratio d 5 D z/D x between the vertical
and horizontal lattice spacing. Now, making virtue out of necessity, we argue that this large
w-viscosity is exactly what is needed to resolve the sidewall frictional boundary layers that
occur in solutions of (5.10).

Suppose that (5.10) are made nondimensional using the same scalings as for (2.1).
Suppose further that d b 5 d , where, as in Section 2, d b ; H/L is the aspect ratio based on the
ocean basin dimensions. Then the nondimensional form of (5.10) differs from the
nondimensional form (2.2) of (2.1) only in the disappearance of the d b

2-factor in the
w-viscosity. That is, the d 2 2-factor in (5.10) cancels out the d b

2-factor that appears in (2.2c).
Thus, in steady LB dynamics (5.10), viscous departures from hydrostatic balance can be as
large as the viscous departures from geostrophic balance. Whether this is wanted or not, it
seems to be necessary if we mean to resolve all the viscous boundary layers. Unresolved
boundary layers typically cause spurious oscillations and large errors in the solutions.

In classic papers, Pedlosky (1968, 1969) explored the boundary layer structure of the
linearized form of (2.2). In the case of homogeneous � uid (Pedlosky, 1968), if d b ½ Eh

1/3,
then there are 3 nested, longitudinalboundary layers with the thicknesses Eh

1/3, Eh
1/2, and d b.

The thickest, Eh
1/3-layer is the Munk layer. The thinnest, d b-layer is nonhydrostatic.

However, if d b ½ Eh
1/3, then it is practically impossible to resolve this thinnest boundary

layer in a numerical model. On the other hand, if d b ¾ Eh
1/3—and, once again, the LB

model effectively sets d b 5 1—then the three boundary layers coalesce into a single
nonhydrostatic boundary layer of thickness Eh

1/3, which is easy to resolve.
In the nonhomogeneous (strati� ed) case (Pedlosky, 1969), the value of d b seems almost

irrelevant, but linear strati� ed theory, which assumes that the mean buoyancy is indepen-
dent of horizontal location, bears a very problematic relation to solutions of the full,
nonlinear, planetary geostrophic equations, in which horizontal variations of the buoyancy
are as large as vertical variations, and large regions of the subpolar gyres are nearly
homogeneous. Even in the strati� ed case, it seems intuitively clear that the effective
assumption of unit aspect ratio by the LB model permits the use of approximately the same
number of lattice points in the vertical and horizontal directions.

Of course, the conventional approach to ocean circulation modeling is to impose the
condition of exact hydrostatic balance, and to determine the vertical velocity w from the
condition = 3 · v 5 0 at all horizontal locations. In this approach, one loses the ability to
prescribe sidewall boundary conditions on w, but the only elliptic equation requiring
solution is two-dimensional. If the boundary condition on the horizontal velocity u is
no-slip, this conventional approach produces the somewhat bizarre situation that particles
move freely along the sidewall in the vertical direction only. In Section 6, we show that LB
solutions with boundary conditions of no-stress (in both tangential directions) are globally
hydrostatic despite the large viscosity in the vertical momentum equation, and therefore
probably similar to solutions of the conventional equations.
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Although primary interest attaches to steady � nal solutions satisfying (5.10), we now
brie� y consider the full, time-dependent LB dynamics (5.8). The full equations appear
inconsistent in that they contain the local time-derivatives of momentum but omit its
advection. However, we view these local time-derivative terms merely as a device for
relaxing the velocity � eld to its quasi-steady equilibrium state. The equilibrium state is
geostrophic and hydrostatic, apart from signi� cant viscous boundary layer corrections. If
the time-derivatives of velocity had been omitted, we would instead be solving elliptic
equations to determine the velocity � eld. Time-stepping the velocity is analogous to
solving these elliptic equations by a relaxation method, but the time-stepping strategy is
simpler and more physically appealing.5 In particular, linear wave solutions of (5.8)
resemble the wave solutions of the linearized primitive equations.

The primary differences between (5.8) and the primitive equations are the presence of
the compressibility term f t in (5.8a), the terms proportional to A and k in (5.8b–d), and the
u = 3 · v term in (5.8d). First we show that these unfamiliar terms are negligibly small in
solutions that obey the standard scaling for large-scale, low-frequency ocean � ow. Then we
analyze these terms more closely, showing that they can lead to numerical instability, but
only when the time step is relatively large.

If we apply the standard scaling described in Section 2 (with, additionally, time scaled by
T 5 L/U ), we obtain (5.8) in the nondimensional form

µ
­ f

­ t
1 = 3 · v 5 0

Ro
­ u

­ t
1 f k 3 u 5 2 = f 1 Eh = 2u 1 Evuzz 2 µEh = f t

Ro
­ w

­ t
5 2

­ f

­ z
1 u 1 Eh = 2w 1 Evwzz 2 µEh( u t 1 f zt)

­ u

­ t
1 = 3 · (v u ) 5 Dh = 2u 1 Dv u zz 1 DhM 2 = 3 · ( u v)t

(5.11)

where Ro ; U/ f0L is the Rossby number, M ; U/cs is the Mach number, µ ; M 2/Ro, and
the other parameters are de� ned in (2.3). Thus, if the Mach number is sufficiently small, all
the terms proportional to µ or M in (5.11) are negligible, and = 3 · (v u ) < v · = 3 u . Then
(5.11) take a familiar form, remarkable only for the absence of Reynolds stresses and for
the absence of the d 2-factor in the 3 w-terms of (5.11c); compare (2.2). For � xed lattice
spacing, small Mach number corresponds to small time step. However, as we see next,
numerical stability requirements force the Mach number to be small, thus virtually
guaranteeing that the unphysical terms in (5.8) are negligible in the large-scale, low-
frequency � ow of interest.

5. Based on my experience, time-stepping is more stable and hardly less efficient than even sophisticated
relaxation methods when the Ekman numbers are realistically small.
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We begin our analysis of the time-dependent equations by noting that (5.8) imply an
energy equation of the form,

­ t[1�2u2 1 1�2v2 1 1�2 d 2 2w2 2 z u 1 1�2cs
2 2f 2] 5 2 = 3 · (vf 2 vz u ) 1 D, (5.12)

where

D 5 Ahu · = 2u 1 Avu · uzz 1 d 2 2(Ahw = 2w 1 Avwwzz)

2 Av · = 3 f t 2 Aw u t 2 z k h = 2u 2 z k v u zz 2 z k = 3 · ( u v)t

(5.13)

contains all the terms arising at the second order of the Chapman-Enskog expansion. The
vertical kinetic energy in (5.12) is enhanced by the expected factor of d 2 2 and thus has the
same size as the horizontal kinetic energy. The internal energy—the last term on the
left-hand side of (5.12)—is insigni� cant if the Mach number is small, that is, if the particle
speeds ch and cv are much larger than the corresponding � uid speeds.

The A-terms containing f t in (5.8b–c) and (5.13) are like those present in compressible
Navier-Stokes theory. While the form of (5.8) emphasizes that these terms vanish in steady
state, the A f t-terms take a more familiar form if we eliminate f t by substitution from
(5.8a). Then, as expected, all the terms not containing u in (5.13) may be integrated by parts
to yield a negative de� nite contribution to the spatial integral of D. On the other hand, the
u -terms proportional to A and k in (5.8c–d) and (5.13) have no obvious physical
interpretation.As we shall see, these terms cause instability if the time step is too large.

First, consider the k -term in the buoyancy equation (5.8d). Once again, all the terms
appearing on the right-hand side of (5.8d) arise at the second order of the Chapman-Enskog
approximation.Therefore, we may consistently substitute from the leading order balance—
the left-hand side of (5.8d)—to obtain the approximation

k = 3 ·
­

­ t
( u v) < 2 k u tt . (5.14)

Thus, to consistent order, the buoyancy equation (5.8d) is equivalent to

­ u

­ t
1 = 3 · (v u ) 5 k ( 2 u tt 1 cs

2 = 2u 1 d 2cs
2 u zz) 1 Q (5.15)

in which the ‘‘sound-wave operator’’

2 ­ tt 1 cs
2= 2 1 d 2cs

2­ zz (5.16)

appears in place of the desired diffusivity. If, at leading order, u ~ exp (ik · x 2 v t), where
the frequency v corresponds to any physical wave or � uid particle advection speed (e.g.
v 5 v · k), then the wave operator (5.16) is proportional to

v 2 2 cs
2kh

2 2 d 2cs
2kv

2 (5.17)
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where kh is the horizontal wavenumber and kv the vertical wavenumber. If (5.17) is
positive—that is, if the velocity of waves or � uid particles exceeds the sound speed—then
the solution grows exponentially. The condition that (5.17) be negative is just the
Courant-Lewy-Friedrichs (CLF) condition.

A similar conclusion applies to the A u t-term in (5.8c). In the case of linear waves, u t <
2 wN 2 at leading order, where N is the Vaisala frequency, and thus

d 2 2Ah = 2w 1 d 2 2Avwzz 2 A u t 5 A d 2 2cs
2(= 2w 1 d 2wzz) 1 AN2w. (5.18)

If w ~ exp (ik · x 2 v t), this is proportional to

d 2N2 2 cs
2kh

2 2 d 2cs
2kv

2. (5.19)

Note that (5.19) corresponds to (5.17) with v 5 d N. Once again, numerical instability
results if (5.19) is positive. However, (5.19) corresponds to the CLF criterion for internal
waves with a (maximum) frequency of d N, with the d -factor arising from the arti� cially
enhanced vertical momentum—the d 2 2-factor in the � rst term of (5.8c). Thus the arti� cial
enhancement of the vertical momentum produces a bene� t as great as the corresponding
enhancement of friction in the same equation, namely, the ability to take time steps much
larger—by a factor of d 2 1—than in the conventional primitive equations.

All of these results are based upon (5.8). Since (5.8) rest upon the assumptions of small
D t, l 2 1 and L 2 1 (via the Chapman-Enskog theory), it is somewhat dangerous to use (5.8) to
infer limits on D t. On the other hand, a direct stability analysis of the general algorithm
(5.1–7) seems impossible. As with all complicated numerical algorithms, we must largely
judge the algorithm by its results. This we do in the following section.

6. Numerical solutions

Now we examine solutions of the lattice Boltzmann model in a square ocean basin, 0 ,
x, y , L, with side L 5 4000 km and depth H 5 4 km. We take f 5 f0 1 b ( y 2 L/2) where
f0 5 2p day2 1 and b 5 f0/6400 km. All of the solutions described have 503 lattice points.
Thus D x 5 80 km, D z 5 80 m, and d b 5 d ; both the basin and the lattice elements have the
same aspect ratio. Then the remaining parameters of the model (besides the external
forcing) are the time step D t, and the relaxation coefficients l and L .

For � xed lattice spacings, the time step determines ch 5 D x/ D t, cv 5 D z/ D t, and the
sound speed cs 5 ch / Î 3. Once again, a large time step corresponds to a small sound speed,
and numerical instability results if the sound speed becomes too small. In all the solutions
described ch 5 1000 km day2 1; hence D t 5 D x/ch 5 0.08 days and cv 5 1.0 km day2 1.
Experiments showed the results to be independent of the sound speed at speeds larger than
this, but (even though numerical stability was maintained) a dependence on sound speed
began to appear at lower speeds. Thus D t 5 0.08 days seems to be largest practicable time
step. This is still many times larger than the maximum time step in conventional primitive
equation models.
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The relaxation coefficients control the viscosity and diffusivity. We choose the mass-
particle relaxation coefficient l by demanding that the western boundary layer, of thickness
(Ah/ b )1/3, be 2 lattice spacings (160 km) wide. This leads to Ah 5 5 3 108 cgs, Av 5 d 2Ah 5
5 3 102 cgs, and l 5 0.761l max, where l max 5 2/D t.

We choose the buoyancy-particle relaxation coefficient L by specifying the vertical
diffusion coefficient k v. Experiments showed that the smallest attainable k v depends
strongly on the vertical resolution. For D z 5 80 km, as in all the solutions presented, the
smallest attainable k v is 5 cgs, corresponding to k h 5 d 2 2k v 5 5 3 106 cgs and L 5
0.997 L max. This is larger than the canonical value of k v 5 0.1–1.0 cgs, but the results
depend rather weakly on diffusivity; recall that the internal boundary layer corresponding
to the main thermocline has a thicknessvarying as k v

1/2.6 At 503 resolution, solutions with k v

less than 5 cgs showed spurious oscillations in the midwater region of rapid vertical
buoyancy variation with depth. Thus the need to resolve this internal boundary layer
apparently determines the minimum value of diffusivity.

The solution is driven by wind forcing and diabatic heating. For the wind forcing we
take

F 5
1

d
ez /d( t 0, 0), (6.1)

where z 5 0 corresponds to the ocean surface, and

t 0(x, y) 5 1.0 cm2 sec2 2 sin2 ( p y/L), 0 , y , L (6.2)

is the eastward component of wind stress. Thus the wind momentum enters as a body force
acting in a layer of constant thickness d near the ocean surface. In all the experiments
discussed, d 5 2 D z 5 160 m. The wind stress (6.2) corresponds to a double gyre. This
wind stress and its curl vanish at the northern and southern boundaries.

Of course, one could equally well model the wind stress as a momentum � ux through the
ocean surface, relying on the � uid viscosity for downward mixing in an Ekman layer of
thickness of (Av / f0)1/2. The advantage of the body-force approach (which, considering the
special and very complicated nature of momentum mixing near the ocean surface, is at
least equally defensible) is that the Ekman layers need not then be resolved. Indeed, the
viscosity values given above imply an Ekman layer thickness of about 25 m, which is
smaller than the vertical lattice spacing of 80 m. In all the experiments presented, we
impose boundary conditions of no stress. For example, u 5 wx 5 vx 5 0 at the western
sidewall, and w 5 uz 5 vz 5 0 at the ocean surface. In the LB model, these boundary
conditions correspond to elastic collisions of the particles with the boundaries. If the
interior ocean � ow is smooth on the scale of the Ekman layers, then the interior � ow
satis� es the top and bottom boundary conditions by itself, and no Ekman layers are
required at leading order. Other solutions (not presented) with no-slip or prescribed-� ux

6. See, for example, Salmon, 1998, pp. 191–195, and references therein.
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boundary conditions required larger values of viscosity to resolve the Ekman layers.
However, because of the linkage Av 5 d 2Ah between vertical and horizontal diffusivities,
those more viscous solutions had unrealistically wide western boundary layers.7

For reference, we � rst examine the steady � nal state of a homogeneous ( u ; 0) ocean
with the wind forcing (6.1). The horizontal � ow is geostrophic and z-independent below
the wind forcing layer near the surface. This surface forcing layer plays the same role as the
classical Ekman layer, creating a horizontal divergence that drives the deep interior by
vortex stretching associated with depth-independent ­ w/ ­ z. Figure 2 shows a plan view of
pressure, horizontal velocity, and vertical velocity at a depth just below the surface forcing
layer. The horizontal velocity in Figure 2 corresponds closely to Munk’s classic model with
no-slip conditions; the no-stress boundary conditions cause only a slight change in the
structure of the western boundary layer. The western boundary layer is the only boundary
layer present at leading order, because the Sverdrup and Ekman transport velocities have

7. The linkage between horizontal and vertical diffusivities results from the use of a single relaxation
coefficient l in the lattice Boltzmann equation for the mass particles. To obtain independent viscosities, one must
generalize the method by (roughly speaking) relaxing horizontally moving particles toward the average of the
horizontal particles at a different rate from the corresponding vertical relaxation. However, in this initial
application to three-dimensional � ow, I thought it best to take the simpler alternative of ‘‘isotropic diffusivity in
scaled coordinates.’’

Figure 2. Solution of the lattice Boltzmann model with uniform buoyancy and the two-gyre wind
stress (6.2). Left: The horizontal velocity (arrows) and the dynamic height (contours, with darker
lines corresponding to larger dynamic height) at 160 m depth, just below the wind forcing layer.
The maximum velocity is 3.78 km day2 1, and the rms velocity is 0.74 km day2 1. The range in
dynamic height is 13.62 cm. To reduce the contrast in arrow sizes, the arrows are proportional to
the square root of the � uid speed. Right: The vertical velocity at the same depth. The maximum
(minimum) vertical velocity of 1.73 3 102 4 (2 1.53 3 102 4) km day2 1 occurs at the western
(eastern) boundary.The downwelling regions are hatched.

868 Journal of Marine Research [57, 6



no components normal to the northern, southern and eastern boundaries. The upwelling
(downwelling) observed at the western (eastern) boundaries is a response to the second
order interior � ow. At second order in the viscosity, the interior velocity acquires an
eastward, downwind component; this requires downwelling near the surface at the eastern
boundary and upwelling near the western boundary to maintain mass balance. However,
these up- and downwelling velocities are the same size as the interior vertical velocity—
not Eh

2 1/3 larger, as would be expected in leading order sidewall upwelling layers. In the
strati� ed solutions to be described next, the interior velocity acquires a (leading order)
thermal wind component normal to the coastline; mass balance then requires upwelling
boundary layers with vertical velocities much larger than the interior vertical velocity.

Solutions with nonuniform buoyancy require sources and sinks of buoyancy to maintain
a realistic buoyancy range in the face of diffusion. In reality, all of these sources and sinks
lie near the ocean surface. However, ocean surface cooling tends to produce regions of
static instability, which usually require an externally imposed convective adjustment to
restore neutral stability. The convective adjustment is distasteful because it is completely
arbitrary, and because it can become a source of computational noise; see Cessi (1996) and
Cessi and Young (1996).

In both primitive equation models and planetary geostrophic models, static instability
occurs because the typically very small aspect ratio of the gridboxes inhibits convection.
Linear stability theory predicts that the fastest growing convective cells have horizontal
and vertical scales comparable to, or somewhat smaller than, the ocean depth. Thus models
with horizontal grid spacing much larger than the ocean depth do not resolve the fastest
growing cells. On the other hand, because the LB model effectively imposes unit aspect
ratio in scaled variables, the most unstable convective cells have a real (dimensional)
horizontal scale about 1000 times larger than the vertical scale. Thus the LB model resolves
convection, but the convection occurs at an unrealistically large horizontal scale. Convec-
tive adjustment may still be required, but it seems to play a less essential role than in the
more conventionalmodels.

We examine 3 solutions with non-uniform strati� cation. The � rst solution (solution A)
has no convective adjustment, but the diabatic heating is especially chosen to avoid static
instability. Solution A is steady; its regions of static instability are very small; and
spontaneous convection seems to be absent. The second solution (solution B) also lacks
convective adjustment, but the diabatic forcing includes a signi� cant surface cooling at
high latitude. Solution B is unsteady, with persistent large-scale spontaneous convection
occurring near the northern boundary. The third solution (solution C) has the same diabatic
heating as B but also includes an arbitrary convective adjustment. The convective
adjustment in C removes most of the unsteady convection present in B, but the two
solutions are otherwise surprisingly similar.

All three solutions, A, B and C, have the geometry, dissipation parameters, and wind
forcing described above. They differ only in the presence or absence of convective
adjustment, in the diabatic heating term Q(x, y, z) on the right-hand side of the buoyancy
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equation (5.8d), and in the boundary condition on u at the ocean bottom. In solutionA, we
take

Q 5 ez/d cos 1 p y

2L 2 ( u * 2 u sfc)/t , 0 , y , L, (6.3)

where d is the same as in (6.1), u * and t are prescribed constants, and u sfc(t) is the average
buoyancyat the ocean surface. We take u 5 0 as the boundary conditionon buoyancyat the
ocean bottom. At all other boundaries, the boundary conditions are no normal � ux of u ,
corresponding to elastic collisions of the buoyancy particles with the boundary in the LB
model. Thus, in solutionA, we heat the ocean surface layer everywhere, but more intensely
in the south, until the difference between the average surface buoyancy u sfc and the uniform
bottom buoyancy approaches the prescribed value u *; t is the time-scale for the adjust-
ment. We regard the uniform bottom buoyancy as resulting from the sinking and
subsequent spreading of cold water near the northern boundary by small-scale processes
not contained in the model.Alternatively,we could regard solutionA as a model of, say, the
upper half ocean, with the bottom boundary condition corresponding to a uniformly cold
abyss.

In solution B, we take

Q 5 ez/d 1 u * cos 1 p y

2L 2 2 u 2 Y t , (6.4)

where u * and t are constants with the same values as in solution A, and we take the lower
boundary condition to be no � ux of u into the ocean bottom. In (6.4) u is the local value of
buoyancy; thus (6.4) corresponds to ‘‘surface restoring conditions’’ of the kind often used
in ocean circulation models. At equilibrium, the average volume integral of (6.4) vanishes.
Hence the diabatic forcing (6.4) corresponds to heating near the ocean surface in the
southern ocean and surface cooling in the north. The surface cooling produces a large
region of static instability. Nevertheless, we do not apply convective adjustment to solu-
tion B.

In solution C, we take the same diabatic forcing (6.4) and bottom boundary condition as
in solution B, but we apply a convective adjustment in the form of an additional term,

Qc 5 ( u sort 2 u )/ t c, (6.5)

on the right-hand side of the buoyancy equation. Here, u sort is the buoyancy corresponding
to a vertical sorting (to produce buoyancy increasing upward) of the buoyancy at each
horizontal location, and t c is the time scale for convective adjustment. Thus Qc vanishes if
the water column is statically stable. In all three solutions,A, B and C, we take t 5 1 year
and u * to be the change in buoyancy corresponding to 2 units of s u . In solution C, we take
t c 5 5 days.

We begin our discussion of the 3 strati� ed solutions with a brief overall summary. The
greatest differences are between solutionsA and B. In solutionA, with surface heating (6.3)
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and bottom boundary condition u 5 0, the surface buoyancy range of 0.66 sigma units
(sgu) is much smaller than the imposed difference of 2.0 sgu between the average surface
buoyancy and the uniform buoyancy at the ocean bottom. The net heat � ux is downward
and through the ocean bottom. The � ow is statically stable except within a few small and
extremely thin surface regions in which cold water � ows southward over warmer water.
Unsurprisingly therefore, solution A resembles the predictions of the linear theory of
wind-driven ocean circulation, in which the mean buoyancy varies only with depth.

In solution B, with surface heating in the south, cooling in the north, and no buoyancy
� ux through the bottom, the net heat � ux is northward. The surface buoyancy range of
1.67 sgu is comparable to the average difference between the surface and bottom, and the
� ow contains a strong thermohaline component. Solution B is statically unstable in a
relatively deep layer covering the northeastern third of the ocean basin. This layer of static
instability reaches depths greater than 1 km along the northern boundary. Within and below
this unstable layer, we observe unsteady convective motions with horizontal scales of
hundreds of kilometers. Time-averaging smooths out these convective eddies but has little
other effect on the solution; hence we prefer to view ‘‘snapshots’’ of solution B.

SolutionA begins in a state of rest with u ; 0. After 235 years it seems to have reached a
steady state.All the pictures of A correspond to this time. Solution B begins at the end-state
of A. All the pictures of B correspond to a time 86 years later, by which B has achieved a
statistically steady state. Solution C begins from B, and spans an additional25 years.At 503

resolution, the solutions require 1.23 sec per time step, that is, 91.4 minutes per simulated
year, on a desktop workstation with a 170 Mhz processor.

Figure 3 shows the horizontal velocity and dynamic height (top), buoyancy (middle),
and vertical velocity (bottom) at a level just below the surface forcing layer in solutionsA
(left) and B (right). Figure 4 shows the corresponding quantities at mid-depth. Figures 5
and 6 show sections of buoyancy. Since the ocean bottom is � at, all of our solutions have
the same, steady, depth-averaged � ow. Once again, this depth-averaged � ow is just the
Munk solution for the wind (6.2) and is very similar to the sub-surface-layer � ow shown in
Figure 2 for the homogeneous solution. The near-surface � ow in A (Fig. 3, upper left)
closely resembles the Munk solution.The sub-thermocline � ow (Fig. 4, upper left) is much
weaker, except in the western subpolar gyre, where relatively cold water outcrops at the sea
surface, and the wind-driven circulation penetrates deepest. The near-surface vertical
velocity (Fig. 3, bottom left) resembles the homogeneous case (Fig. 2, right) in the interior
ocean, but shows a region of very strong upwelling along the western boundary. This
upwelling region, which extends through the full depth of the thermocline (about 1 km
maximum at the western boundary), occurs where the interior thermal wind has a strong
offshore component. The upwelling along the western boundary feeds this offshore � ow
and bends the isopycnals upward near the boundary (Fig. 6).

In solution B, the diabatic heating produces a strong surface buoyancy gradient (Fig. 3,
middle right) with virtually no closed contours of buoyancy. The corresponding thermal
wind dominates the surface � ow in the subpolar gyre (Fig. 3, upper right) so that the � ow is
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Figure 3. The horizontalvelocity and dynamic height (top), buoyancy (middle), and vertical velocity
(bottom) at a level just below the wind forcing layer in solution A (left) and B (right). Arrows are
proportionalto the square root of the velocity, and darker contourscorrespond to larger values. The
maximum (and rms) horizontal velocities are 19.22 (3.32) km day2 1 in solution A and 40.22
(5.64) km day2 1 in B. The buoyancy extrema (middle) are in units of s u . The vertical velocity
ranges between 2 9.39 3 10 2 4 and 1.95 3 102 3 km day2 1 in A (lower left), and between 2 9.66 3
10 2 3 and 5.34 3 10 2 3 km day2 1 in B (lower right). Downwelling regions are hatched.



Figure 4. The same as Figure 3, but in mid-water, at a depth of 2 km. The maximum horizontal
velocity in solution A (1.50 km day2 1, top left) arises from the deep penetration of the subpolar
wind gyre. In B, sinking along the northern boundary feeds a southward-�owing deep western
boundary current (top right) with a maximum velocityof 6.09 km day2 1. The buoyancy range in B
(1.82 sigma units, middle right) is more than twice as great as in A (middle left, 0.77 sgu) and is
clearly associatedwith the convection.Because of convection,the vertical velocity is more than an
order of magnitude larger in B (lower right, range 2 8.83 3 102 3 to 1 2.74 3 10 2 3 km day2 1) than
in A (lower left, range 2 1.77 3 102 4 to 1 1.16 3 102 4 km day2 1).



eastward throughout most of the interior ocean. The strongest upwelling occurs at the
subtropical western boundary (as in A) but the strongest downwelling occurs in the
northeastern region of unsteady convection, where the the horizontal � ow converges
(Fig. 3, lower right). Below the thermocline, solution B differs strikingly from A. The
sinking along the northern boundary penetrates the deep ocean (Figure 4, lower right),
driving a westward � owing northern boundary layer and a southward � owing deep western
boundary current (Fig. 4, upper right). Because the transport in the deep western boundary
current exceeds the Sverdrup transport in the subpolar gyre, the surface � ow is actually
northward in the subpolar western boundary layer (Figure 3, upper right). The down-
welling along the northern boundary in B is balanced by a deep upwelling (and correspond-
ing poleward � ow) that, in contrast to A, covers nearly the whole interior ocean (Fig. 4,
lower right). This deep upwelling produces a much sharper internal boundary layer in B
than in A; see Figures 5 and 6. In overall summary, the thermohaline circulation appears to
be unrealistically strong in solution B and unrealistically weak in A, but the two solutions
show many of the features anticipated by the classical theories of ocean circulation.

In solution C, the addition of the convective adjustment (6.5) with an adjustment time
t c 5 5 days removes most of the unsteady convective motions but has relatively little other
effect on the � ow. In fact, pictures of solution C closely resemble time-averages of B.
Figure 7 shows the minimum and maximum Vaisala frequency N at each horizontal
location in solutions B and C. Figure 8 shows a section of N from south to north along x 5
2L/3. We take N as positive if N 2 . 0, and we de� ne N to be a negative real number if N 2 ,
0. Thus the hatched regions in Figures 7 and 8 correspond to regions of static instability.
We see that the convective adjustment reduces the amplitude and extent of static instability,
but produces signi� cant noise on the scale of the lattice. When the time scale t c for
convective adjustment was reduced from 5 days to 1 day (to make the adjustment almost
instantaneous), this noise reached an unacceptable level. From Figures 5B and 5C we see
that the region of active convection in B becomes a region of nearly vertical isobuoyancy
lines in C. However, this seems to be the only signi� cant difference between C and time
averages of B. Thus convective adjustment seems both harmful and unnecessary when the
model can resolve its own convection.

The LB model differs from conventional primitive equation models in that it does not
impose hydrostatic balance. We test for hydrostatic balance by computing the quantity

µ ;
H

f0UL
* f z 2 u * , (6.6)

where U 5 1 km day2 1 is the scale for horizontal velocity. If the � ow is hydrostatic, µ ½ 1.
In the homogeneous solution depicted in Figure 2, the � eld of µ at mid-depth has a
maximum of 2.5 3 10 2 3, thus, as expected, the homogeneous solution is hydrostatic. In
solutionA, the strati� ed solution heated from above and cooled from below, the mid-depth
µ shows a maximum of only 0.023; solution A is also hydrostatic. Solutions B and C, with
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surface cooling, showed signi� cant departures from hydrostatic balance but only in a
narrow region near the northern boundary, where µ attained respective maxima of 1.01 and
0.28. In summary then, the solutions of the LB model are hydrostatic almost everywhere,
despite the arti� cial enhancement of inertia and friction in the vertical momentum
equation. Signi� cant departures from hydrostatic balance occur only in the regions of
strong static instability.

Figure 5. South-north sections of buoyancy at mid-basin, x 5 L/2, in solutions A, B and C. The
maximum and minimum values are given in sigma units. The convective adjustment in C causes
the iso-buoyancy lines to become vertical in regions where solution B is statically unstable but
produces little other effect.
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7. Discussion

The most attractive feature of the lattice Boltzmann method is its stark simplicity. The 6
steps of the LB algorithm, summarized in (5.1–7), are easy to code and easy to check for
errors. Even more signi� cantly—although I have not taken advantage of this yet—these
steps are massively parallel. The parallelism re� ects the philosophy of LB that all the
physics is local. Nevertheless, it is easy to foresee that numerical ocean circulation models
will eventually blend LB methodology with more conventional methods based on � nite

Figure 6. East-west sections of buoyancy (sigma units) in the subtropical gyre at y 5 L/3, in
solutions A, B, and C. The deep upwelling required to balance the sinking of cold water near the
northern boundaryproducesa much sharper thermocline in B and C, but the convectiveadjustment
present in C has little effect on the subtropicalgyre.
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differences, combining the stability and efficiency of the former with the greater � exibility
of the latter.

The present application adheres almost completely to the LB philosophy that the
interactions between particles be purely local.A strict adherence to this philosophyseemed
appropriate in this initial application of the method to 3-dimensional ocean circulation, and
it led almost inevitably to the enhancement of inertia and friction in the vertical momentum
equation associated with small aspect ratio. The effects of this enhancement, especially the

Figure 7. The minimum (top) and maximum (bottom) Vaisala frequency N in the water column in
solutions B (left) and C (right). These two solutions differ only in the presence of the convective
adjustment in C. In B, the minimum N (top left) varies between 2 2.25 and 1 .365 cycles per hour
(cph) with negative values (corresponding to hatched regions on the � gure) denoting static
instability. Convective adjustment reduces static instability—the minimum N varies between
2 .543 and 1 .361 cph in solution C (upper left)—but introduces a signi� cant noise on the lattice
scale. The maximum N in the water column is very similar in the two solutions. Its range in B
(lower left) is 1 .487 to 1 2.84 cph; its range in C (lower right) is 1 .486 to 1 2.96 cph.
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ability to resolve upwelling boundary layers and unsteady convection, seem wholly
bene� cial. This is a strategy that could, and perhaps should, be applied to more conven-
tional models. However, it is possible, even within the philosophy of LB, to adopt a
completely different strategy, and regard all the particles in a vertical column as ‘‘internal
variables’’ at the same location. In this approach, the physics of the vertical momentum
equation is contained within the rules for the collisions between particles at the same
horizontal location, and hydrostatic balance could even be regarded as a ‘‘conservation
law’’ to be respected by the collisions. The collisions would thus represent a kind of

Figure 8. The Vaisala frequency N in a south-north section at x 5 2L/3 in a snapshot of solution B
(top, range 2 .448 to 1 .652 cycles per hour), the time-average of B over 37 years (middle, 2 .451
to 1 .643 cph), and in solution C (bottom, 2 .105 to 1 .666 cph). Negative values, denoting static
instability, correspond to hatched regions on the � gure.
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‘‘meta’’ convective adjustment, whose precise form would undoubtedly require much
investigation.

S99 offered 2 conjectures which must now be retracted. The � rst was that a 7-velocity
model, the 3-dimensional analogue of the 4-velocity model described in Section 5 of S99,
would prove adequate for solutions of the 3-dimensional planetary geostrophic equations
despite the peculiar, anisotropic friction of the 7-velocity model. Unfortunately, solutions
of the 7-velocity model were found to contain spurious oscillations which could, in
hindsight, be attributed to the form of the friction. S99 also conjectured that a 27-velocity
model would be required to simulate Navier-Stokes viscosity in 3 dimensions. However,
solutions of the 27-velocity model were found to be virtually identical to solutions of the
15-velocity model described in this paper.

The incorporation of realistic bathymetry is the biggest remaining challenge in the
developmentof an LB ocean circulation model.Although the LB method may be extended
to wholly irregular lattices, it loses much of its appeal, and computer storage requirements
quickly become prohibitive. The better strategy is to retain the regular lattice, and to
incorporate realistic bathymetry into the rules governing particle collisions with the ocean
bottom. Since the lattice points along the ocean bottom constitute a ‘‘subset of zero
measure’’ of the set of all lattice points, the relatively complicated collision rules required
to simulate arbitrary bottom topography do not harm the efficiency of the LB method.
Preliminary experiments with smooth bottom topography give excellent results.
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APPENDIX A

Derivation of the viscosity

To consistent order, we may solve the � rst order approximation, G nmk
(0) 5 0, to (2.21) for

Dnmk r nmk
eq 5 2 r nmk

(1) (A.1)

and use (A.1) to eliminate r nmk
eq from the second order expression (2.23), which then

becomes

G nmk
(1) 5 2

D t

2
Dnmk r nmk

(1) 1 e Dnmk r nmk
(1) 1 e r nmk

(2) . (A.2)

The conservation relations (2.24) imply (2.30) and

o
nmk

cnmk, a G nmk
(1) 5 1 e 2

D t

2 2 o
nmk

cnmk, a Dnmk r nmk
(1) 5 1 e 2

D t

2 2 ­

­ x b
o
nmk

cnmk, a cnmk, b r nmk
(1) . (A.3)
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Repeated Greek subscripts are summed from 1 to 3. To consistent order, we may use (A.1)
again to express (A.3) solely in terms of the equilibrium densities. Thus

o
nmk

cnmk,a G nmk
(1)

5 2 1 e 2
D t

2 2 ­

­ xb
o
nmk

cnmk, a cnmk, b Dnmk r nmk
eq

5 2 1 e 2
D t

2 2 ­

­ x b
1 ­­ t onmk

cnmk, a cnmk, b r nmk
eq 1

­

­ x g
o
nmk

cnmk, a cnmk, b cnmk,g r nmk
eq 2

5 2 1 e 2
D t

2 2 1 ­

­ x b

­

­ t
Pa b 1

­

­ x b

­

­ x g
o
nmk

cnmk, a cnmk, b cnmk,g Bnmk 1 n u

ch
1 m

v

ch
1 k

w

cv
2 2

(A.4)

where we have used (2.20), (2.26) and (2.10). Suppose a 5 1. Then, using (2.17) and
(2.27a), (A.4) becomes

o
nmk

cnmk,1G nmk
(1) 5 2 1 e 2

D t

2 2 5 2 ch
2

3

­

­ x
= · v 1

1

ch
2

­ 2u

­ xb ­ x g
o
nmk

cnmk,1cnmk, b cnmk,g cnmk,1Bnmk

1
1

ch
2

­ 2v

­ xb ­ xg
o
nmk

cnmk,1cnmk, b cnmk, g cnmk,2Bnmk

1
1

cv
2

­ 2w

­ xb ­ xg
o
nmk

cnmk,1cnmk, b cnmk, g cnmk,3Bnmk 6 .

(A.5)

Using (2.4) and (2.11–13), we � nd that

1

ch
2

­ 2u

­ x b ­ xg
o
nmk

cnmk,1cnmk,b cnmk, g cnmk,1Bnmk 5 ch
2uxx 1

1

3
ch

2uyy 1
1

3
cv

2uzz. (A.6)

Similarly,

1

ch
2

­ 2v

­ x b ­ xg
o
nmk

cnmk,1cnmk, b cnmk, g cnmk,2Bnmk 5
2

3
ch

2vxy (A.7)

and

1

cv
2

­ 2w

­ xb ­ xg
o
nmk

cnmk,1cnmk, b cnmk, g cnmk,3Bnmk 5
2

3
ch

2wxz. (A.8)

Substituting (A.6–8) into (A.5), we obtain

o
nmk

cnmk,1G nmk
(1) 5 2 1 e 2

D t

2 2 1

3
(ch

2uxx 1 ch
2uyy 1 cv

2uzz 1 ch
2( = 3 · v)x). (A.9)
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Proceeding in a similar manner, we � nd that

o
nmk

cnmk,2 G nmk
(1) 5 2 1 e 2

D t

2 2 1

3
(ch

2vxx 1 ch
2vyy 1 cv

2vzz 1 ch
2( = 3 · v)y) (A.10)

and

o
nmk

cnmk,3G nmk
(1) 5 2 1 e 2

D t

2 2 1

3
(ch

2wxx 1 ch
2wyy 1 cv

2wzz 1 cv
2(= 3 · v)z). (A.11)

In many applications of Navier-Stokes theory, the = 3 · v term is negligible. However, the
transient LB dynamics has signi� cant compressibility. Substituting r t 5 2 = 3 · v into
(A.9–11), we obtain (2.31).

APPENDIX B

Derivation of the buoyancy equation

We derive (3.8) in a manner very similar to the derivation of (2.32). Expanding (3.3) in
D t, and substituting

u i 5 u i
eq 1 e u i

(1) 1 e 2 u i
(2) 1 · · · (B.1)

where now e 5 L 2 1, we obtain

g i
(0) 1 g i

(1) 1 · · · 5 0, (B.2)

where

g i
(0) ; Di u i

eq 1 u i
(1) (B.3)

contains all the � rst order terms, and

g i
(1) ;

D t

2
D i

2 u i
eq 1 e Di u i

(1) 1 e u i
(2) (B.4)

contains all the terms of order D t or e . Here,

Di ;
­

­ t
1 ci a

­

­ x a
(B.5)

is the advection operator in the direction of the i-th particle, with ci a 5 ci · ea , and repeated
Greek subscripts are summed from 1 to 3. We obtain the evolution equation for u by
applying S i to (B.2). Since (B.1) and (3.5) imply

o
i

u i
(1) 5 o

i
u i

(2) 5 0, (B.6)
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we obtain

o
i

g i
(0) 5

­ u

­ t
1 = · ( u v) . (B.7)

Since (B.2–3) implies

Di u i
eq 5 2 u i

(1) (B.8)

at leading order, we have the consistent order approximation

g i
(1) 5 1 e 2

D t

2 2 Di u i
(1) 1 e u i

(2) . (B.9)

Hence, using (B.6),

o
i

g i
(1) 5 1 e 2

D t

2 2 o
i

Di u i
(1) 5 1 e 2

D t

2 2 ­

­ xa
o

i
ci a u i

(1) . (B.10)

Using (B.8) again and (3.6), this becomes

o
i

g i
(1) 5 2 1 e 2

D t

2 2 ­

­ xa
o

i

ci a Di u i
eq

5 2 1 e 2
D t

2 2 ­

­ xa
1 ­

­ t
( u va ) 1

­

­ xb
o

i

ci a ci b u i
eq2

5 2 1 e 2
D t

2 2 5 = 3 ·
­

­ t
( u v) 1

ch
2

3 1 ­
2u

­ x2
1

­ 2 u

­ y2 2 1
cv

2

3

­ 2u

­ z2 6 .

(B.11)

Thus by (B.7) and (B.11), the i-summation of (B.2) is equivalent to (3.8).

APPENDIX C

Higher order terms arising from buoyancy force

Since the generalization (3.11) of the equilibrium densities satis� es (2.14–15), (2.24)
still apply. Hence (2.22) and the horizontal components of (2.26) are unchanged. The
vertical component of (2.26) acquires the term 2 d 2u . At the next order, (2.30) still holds
but (2.31) does not; in the last line of (A.4), the term

­ 2P33

­ z ­ t
5 d 2

­

­ t
( f z 2 u ) (C.1)

by (3.12–13). The latter term contributes the u t-term to (3.14).
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APPENDIX D

Proof that (4.14) corresponds to Coriolis force

We expand (4.14) in D t, keeping terms of � rst and second order. Remembering that
A a b 5 O( D t), we have, to consistent order,

1 D tDnmk 1
1

2
( D t)2Dnmk

2 2 r nmk

5
Bnmk

ch
2

cnmk, a A a b o
rsp

crsp,b r rsp 1
Bnmk

ch
2

cnmk, a A a b o
rsp

crsp, b

· 5 r rsp 1 D t(cnmk 2 crsp) · = r rsp 1
Brsp

ch
2

crsp, g Ag d o
abd

cabd, d r abd 6
1

Bnmk

ch
2

cnmk, a D t(cnmk · = Aa b ) o
rsp

crsp,b r rsp

(D.1)

where all quantities are evaluated at (x, t) and repeated Greek indices are summed from 1
to 2 only (because Aa b has only horizontal components). That is,

1 D tDnmk 1
1

2
(D t)2Dnmk

2 2 r nmk 5
2Bnmk

ch
2

cnmk, a Aa b u b

1
Bnmk

ch
2

cnmk, a 5 D t 1 cnmk · = (A a b u b ) 2 A a b

­ f

­ xb
2 1 Aa b Ab d ud 6

(D.2)

where we have used (2.5–6), (2.28) and

o
rsp

Brspcrsp, b crsp,g 5 ch
2 d b g . (D.3)

Substituting from (4.8), we obtain, to consistent order,

1 D tDnmk 1
1

2
( D t)2Dnmk

2 2 r nmk

5
2Bnmk

ch
2

cnmk, a 3 f D t

2
e a b 2

( f D t)2

8
d a b 4 u b 1

Bnmk

ch
2

cnmk, a

( D t)2

2

· 5 e a b 1 cnmk · = ( fu b ) 2 f
­ f

­ xb
2 1

1

2
f 2e a b e b d u d 6 .

(D.4)
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Using e a b e b d 5 2 d a d and combining terms, this is

1 D tDnmk 1
1

2
( D t)2Dnmk

2 2 r nmk 5
2Bnmk

ch
2

cnmk,a 3 f D t

2
e a b 2

( f D t)2

4
d a b 4 ub

1
Bnmk

ch
2

( D t)2

2
cnmk, a e a b 1 cnmk · = ( fu b ) 2 f

­ f

­ x b
2 .

(D.5)

The last line in (D.5) contributes at the second order. Thus we may consistently substitute
the leading order momentum equation into the last term as follows:

cnmk · = ( fub ) 2 f
­ f

­ xb
5 Dnmk( fu b ) 2 f 1 ­ u b

­ t
1

­ f

­ x b
2

< Dnmk( fu b ) 2 f 2 e b g u g .

(D.6)

Replacing the last parentheses in (D.5) by the � nal expression in (D.6) and cancelling some
terms, we obtain an equation equivalent to (4.4) with Fa 5 f e a b u b .
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